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Abstract: Heritability is essential for understanding the biological causes of disease, but requires
laborious patient recruitment and phenotype ascertainment. Electronic health records (EHR) passively
capture a wide range of clinically relevant data and provide a novel resource for studying the heritability
of traits that are not typically accessible. EHRs contain next-of-kin information collected via patient
emergency contact forms, but until now, these data have gone unused in research. We mined emergency
contact data at three academic medical centers and identified millions of familial relationships while
maintaining patient privacy. Identified relationships were consistent with genetically-derived relatedness.
We used EHR data to compute heritability estimates for 500 disease phenotypes. Overall, estimates were
consistent with literature and between sites. Inconsistencies were indicative of limitations and
opportunities unique to EHR research. These analyses provide a novel validation of the use of EHRs for

genetics and disease research.

One Sentence Summary: We demonstrate that next-of-kin information can be used to identify familial

relationships in the EHR, providing unique opportunities for precision medicine studies.
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Main Text:

Introduction

Family history is one of the most important disease risk factors necessary for the implementation of
precision medicine in the clinical setting (/, 2). The predictive value of family history for any given trait
is directly related to the fraction of phenotypic variance attributable to genetic factors, called heritability
(3, 4), as well as to shared environmental factors. Knowledge of disease heritability combined with family
history information is clinically useful for identifying risk factors, estimating disease risk, customizing
treatment, and tailoring patient care (5). Moreover, by quantifying the genetic contribution to a trait,
heritability estimation represents the first step in gene mapping efforts for any disease.

Estimating heritability has traditionally required in-depth family studies, with twin studies being the
most commonly used method. By their nature these studies can be laborious, limiting their sample sizes
and, subsequently, their power. A notable exception, and perhaps the largest single study, used 80,309
monozygotic and 123,382 same-sex dizygotic twins to conclude that there is significant familial risk for
prostate, melanoma, breast, ovary, and uterine cancers (6). Another study brought together 2,748 twin
studies conducted since 1955 covering 14.5 million subjects. However, individual data are not available
in such a meta-analysis, preventing any study of cross-sections, combinations of traits, or strata that were
not analyzed in the original study (7).

Electronic Health Records (EHR) are in broad use and offer an alternative to traditional phenotyping.
Every day, the EHR records information for thousands of patients from drug prescriptions and disease
diagnoses to clinical pathology results and physician notes. Use of EHR data presents a novel opportunity
to conduct rapid and expansive studies of disease and phenotype heritability. In particular, it enables
access to traits that otherwise might not be explored. In addition, data captured by these systems represent
the diversity of the patient populations they serve, and, in ethnically diverse regions like New York City,
make previously unattainable cohorts available for study (8). The caveat is that these data are known to

contain issues regarding missingness and accuracy which limits their use (9, /0). The most critical
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limitation for genetic studies may be the uncontrolled ascertainment bias (/7). The probability that a
particular trait is recorded in the EHR is not uniform across disease conditions or patients. For example, a
patient seen for a routine checkup with no symptoms is unlikely to undergo an MRI, regardless of
whether or not they have an unruptured brain aneurysm (/2). However, a patient that lives nearby may
receive much of their care at the hospital and have fairly complete records. A recent study used the first
release of the UK Biobank data to estimate hundreds of heritabilities from 130,000 patients’ genotype and
EHR data, however, they did not address the issues of ascertainment biases(/3).

The genetic relatedness between patients is not routinely captured in the EHR during clinical practice.
In some hospitals, as is the case for two out of three we represent, a link is made between the mother’s
and child’s medical records upon birth. In general, however, familial links are not present. Recent work
has identified twins by comparing birth dates and surnames (/4), but there is a more comprehensive
source of familial relationship data that is available at nearly every hospital across the country — the
emergency contact information. Upon admission, each patient is asked to provide contact details to be
used in case of emergency as well as the relationship to the individual provided. If accurate, this
ubiquitous resource can be used to define a broad network of relatedness across a hospital’s patient
population.

In this study, we demonstrate the utility of the EHR as a resource for genetics research, even in the
absence of genetic patient data, by using extracted familial data to estimate the heritability of 500
phenotypes, both quantitative and dichotomous. We performed this analysis independently at three large
academic medical centers in New York City. We present our algorithm for extracting relationships, called
Relationship Inference From The Electronic Health Record (RIFTEHR), and use it to infer 7.4 million
familial relationships among our patients. We then compute heritability estimates for every available
phenotype. Our derived heritability estimates are consistent with those previously reported, concordant
across sites, and we present significant heritability estimates for many traits that may otherwise never
have been studied.

Mining familial relationships from the EHR
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We obtained the data for this study from the inpatient EHR used at the hospitals of Columbia
University Medical Center, Weill Cornell Medical College, and Mount Sinai Health System. Columbia
University Medical Center and Weill Cornell Medical College operate together as NewY ork-Presbyterian
Hospital and herein, we will refer to the hospitals and the data associated with them as Columbia, Cornell
and Mount Sinai, respectively. The study was approved by Institutional Review Boards independently at
each site.

In total, 3,550,598 patients provided 6,587,594 emergency contacts at the three medical centers. Of
these, we identified the emergency contact as a patient in 2,191,695 cases (825,880, 573,804 and 792,011
at Columbia, Cornell, and Mount Sinai, respectively). Of those, 1,902,827 provided 1,588,134 family
members as emergency contact (488,932, 297,011 and 802,191, at Columbia, Cornell and Mount Sinai,
respectively; Table 1). Using these next-of-kin data, we inferred an additional 2,755,448 relationships at
Columbia, 1,237,749 at Cornell and 1,819,581 at Mount Sinai (Figure 1). Including inferences, we
identified a total of 3,244,380 unique relationships at Columbia, 1,534,760 at Cornell, and 2,621,772 at
Mount Sinai. Inferred relationships include first to fourth-degree relatives as well as spouses and in-laws
(Table 1, Table S1). We grouped individuals into families by identifying disconnected subgraphs
(Materials and Methods). We found 223,307 families at Columbia containing 2 to 134 members per
family. Similarly, we found 155,883 families at Cornell, with up to 129 members per family and 187,473
families at Mount Sinai, with up to 57 family members. These include 4,271 families with fourth-degree
relatives (i.e. families that contain first cousin once removed, great-grandaunt/great-granduncle or great-
grandnephew/great-grandniece) at Columbia, 1,045 families at Cornell, and 992 families at Mount Sinai.

The relationship between mother and child was explicitly documented in the EHR for newborns
delivered at Columbia and Cornell. This ‘EHR mother-baby linkage’ provided a reference standard for
maternal relationships, allowing us to compute sensitivity and positive predictive value (PPV) of the
relationship inference method. For maternal relationships, we obtained 92.9% sensitivity with 95.7% PPV

at Columbia and 96.8% sensitivity with 98.3% PPV at Cornell (Figure 2A).
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We validated the identified relationships by comparison to genetically-derived relatedness (Figure 2).
We collected data for 1,222 patients from Mount Sinai and 302 patients from Columbia for whom we
have EHR-inferred relationships and available genetic data that was consented for reuse. We included
spousal relationships as a negative control using a heuristic definition of being genetically unrelated (IBS
< 0.1). We estimated relatedness using PLINK (/5). At Columbia, almost all 134-predicted parent-
offspring relationships had the expected genetic relatedness of 50% and the three grandparental
relationships had the expected relatedness of 25%. All 26 sibling relationships were genetically related,
but four were identical twins and three were half-siblings (Figure 2B). At Mount Sinai, the positive
predictive value (PPV) to predict spousal relationships was 91%, 80% for parent-offspring, 66% for
sibling, and 47% for grandparental and 32% for avuncular relationships (Figure 2D). Overall,
relationships extracted from the EHR significantly correlate with the expected genetic relatedness
(r=0.60, p=1.81e-18 at Columbia and r=0.67, p<1.2e-162at Mount Sinai).
Health records-based estimates of heritability

To differentiate heritability estimates derived under uncertain ascertainment conditions, we introduce
the concept of “observational 2” or h,’. h, is an estimate of the narrow-sense heritability where the
phenotypes (traits) come from observational data sources. Observational data are subject to confounding
biases from physician and patient behaviors that will affect the probability that a particular trait is
ascertained. The differential probability that a given individual will be phenotyped for a study trait is the
ascertainment bias. When ascertainment biases vary from family to family, they can produce unstable
heritability estimates that will be dependent on the particular families with available data. In an ideal
setting, these biases would be identified and the phenotyping corrected. For a single trait, this would be
feasible. However, in a systematic evaluation of heritability across all traits and physiological systems, it
is not. Therefore, we used repeated subsampling to produce heritability estimates that are robust to this
bias. For each sampling we used SOLAR(/6) to estimate the heritability of the trait adjusted for age and

sex, in a procedure we call SOLARStrap (Materials and Methods).
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We used simulations of quantitative and dichotomous traits with heritability ranging from 5-95% to
validate the accuracy and robustness of SOLARStrap. SOLAR was precise in restating the heritability of
both quantitative (r* = 0.999) and dichotomous (r* = 0.994) traits (Figure 3A). We ran SOLARStrap in the
simulated quantitative traits and it accurately estimated the heritabilities regardless of the sampling size
(Figure 3B, 1 = 0.986, p = 3.22e-15). For dichotomous traits, we ran SOLARStrap in two scenarios: (1)
including all families regardless of the number of cases in the family and (2) including only families with
at least once case. In the latter scenario, we randomly chose one of the cases in each family to be the
proband. SOLARStrap accurately recapitulated the heritability estimates regardless of the number of
families sampled in both cases, with accuracy lower when a proband was assigned than the complete
ascertainment (r* = 0.988, p = 7.57e-15 without proband and r* = 0.930, p = 2.85e-11 with proband;
Figure 3C and 3D). We found that both SOLAR and SOLARStrap produce accurate estimates given
complete data and in the presence of random missingness (Figure 3E). However, SOLARStrap produces
accurate estimates in the presence of ascertainment biases that vary from family to family (Figure 3F). As
expected, SOLARStrap produces estimates with larger confidence intervals than SOLAR. SOLARStrap
becomes more sensitive to bias as the number of families sampled increase towards the total number of
families available (Figure 3G) however the estimate of heritability is not dependent on the number of
families sampled (Figure 3H, r=0.02, p=4.1e-8). We use the Proportion of Significant Attempts (POSA)
as a quality score for the heritability estimates generated by SOLARStrap. Higher POSA represents a
more accurate heritability estimate from SOLARStrap (Figure 3I). We injected noise into the data by
randomly shuffling a subset of the patient diagnoses, simulating misclassification (misdiagnosis or missed
diagnosis) in the medical records. Injection of 5% noise reduces the estimate 13% (from 4,” =0.77 to h,’
=0.67) and 10% noise reduces the estimate 30% (from 4,” =0.77 to h,” =0.53, Figure 3J).
Misclassification is one explanation of lower than expected estimates compared to a carefully ascertained
study.

We found that heritability estimates are significantly correlated across sites (Figure 4A, Columbia

r=0.35, p=1.32e-05, Cornell r=0.48, p=8.20e-10 and Mount Sinai r=0.36, p=5.48e-03 with other sites).
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We mined the literature for heritability estimates and found 91 phenotypes that mapped to phenotypes we
curated from the EHR. We also included all traits reported in the latest meta-analysis(7). We used
simulations to set the quality control parameters of the SOLARStrap procedure (Materials and Methods).
33 traits passed these quality control criteria, and we found that they were significantly correlated with
literature estimates for these traits (r=0.45, p=9.11e-03, Figure 4B). On average, observational heritability
estimates were 27% lower than those reported in the literature.

In addition to the additive genetic model (AE), we also modeled heritability with a term for common
environment (ACE) using the mother ID as the household ID. ACE and AE models are overall
significantly correlated (r=0.66, p=1.25e-34, Figure 4C) and are also correlated when computing
heritability estimates for ICD10 codes alone (r=0.49, p=4.21e-13, Figure 4D).

Phenotypes from the EHR can increase sample size and recapitulate heritability estimates that are
well known. For example, the most heritable trait we found was for sickle cell disease, h,’=0.97 (0.75-
1.00), N=857 (Table 2). We also computed heritability of height and stratified the estimates based on self-
reported race and ethnicity as captured in the EHR. The latest meta-analysis reported heritability of height
to be 0.77 (CI=0.74-0.80). Using EHR data, we obtained observational heritability of 0.80 (CI=0.74-
0.86). The heritability of height among whites had a lower quality control score and is higher than the
other groups. (Figure 4E).

Using phenotypes from the EHR for heritability can provide clarity for poorly studied traits, reveal
subtle differences between closely related conditions, and open up new avenues of heritability research.
For example, two previous studies have shown conflicting evidence for the relative heritability of HDL
cholesterol and LDL cholesterol(/7, 18). The larger of these two studies (N=378) found no difference in
the heritability of these two traits when adjusting for age and sex, while the other found a slightly higher
heritability for HDL, but was underpowered to detect significance. We present evidence that HDL is more
heritable than LDL (h,’=0.48 CI: 0.42 - 0.56 vs 0.36 CI: 0.27 - 0.45 at Columbia; 4,°=0.51 CIL: 0.35 - 0.67
vs 0.26 CI: 0.15 - 0.38 at Cornell). This finding holds when accounting for the use of HMG-CoA

reductase inhibitors as treatment for hypercholesterolemia (Figure 4F). At 96,241 patients in the
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Columbia cohort and 33,239 patients in the Cornell cohort, ours is the largest heritability study of
cholesterol ever conducted, to our knowledge.

The use of EHR data can also shed light on diseases where the disease prevalence has changed due to
changes in clinical practice. For example, cystic fibrosis is an autosomal recessive disease caused by
mutations, either homozygous or compound heterozygous, in the cystic fibrosis conductance regulator
gene (CFTR). Many studies report a decrease in the incidence of cystic fibrosis due to carrier screening to
couples planning a pregnancy(/9-22). In our study, the heritability of cystic fibrosis was much lower than
the reported in the literature (h,’= 0.01 CI: 0.01-0.02). Patients diagnosed with cystic fibrosis or mutation
carriers now have other reproductive options. Therefore, we observe a reduction in the number of patients
with cystic fibrosis in families, resulting in lower heritability estimates.

In addition, subtle phenotypical variations that are routinely collected clinically can be studied. For
example, analysis of the highest and lowest heritability estimates by category provides us with interesting
findings. Among neurological diseases, we observe that sleep disorders are highly heritable (4,’=0.31 CI:
0.19-0.48) whereas headache syndromes are not (h,"=0.02 CI: 0.01-0.03). A comprehensive list of
heritability estimates for multiple diseases’ categories is available in Table 2. Finally, our study
demonstrated that the EHR can identify novel traits for future genetic studies. We computed heritability
estimates for 500 traits, only 33 of which had been previously studied as part of the latest meta-analysis or
identified by our literature review. All heritability estimates are available through a web interface and to

download at http://riftehr.tatonettilab.org.

Discussion

Analysis of EHR data has yielded insight into drug effectiveness and allowed precise definition of
phenotypes to investigate disease processes(23-28). For the first time on a large scale, we have used EHR
data to infer pedigrees from patient-provided emergency contact information. We present our novel
algorithm for performing this relationship extraction, RIFTEHR, validated its performance, and applied it

to the medical records of three independent institutions. This approach has significant implications for
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estimating heritability of disease without genetic testing. The EHR data used in this research are nearly
ubiquitous and, if privacy is adequately protected, could allow almost any research hospital to identify
related patients with high specificity. Finally, we used EHR-inferred relationships to compute high
confidence heritability estimates for 500 traits. The heritability of many of these traits has never been
studied.

Heritability is a key component in precision medicine, and is typically estimated based on family
history. Collection of comprehensive and accurate family history is time-consuming and does not occur
during the vast majority of clinical encounters (29). The construction of pedigrees by inference of
relatedness from administrative records allows for rapid assessment of family history and heritability at
scales that were previously impossible to achieve. The algorithm used in this study uncovered over
560,000 pedigrees within the medical records of three academic medical centers. We validated the
inferred familial relationships against both clinical and genetic references and found PPV between 66%
and 98% among first-degree relatives. One of the limitations of our method is the inability to detect
adoptions, differentiate half-siblings from full siblings, or detect non-paternity events. Emergency contact
is not a biological construct; therefore, patients identify not only direct blood relatives, but also adoptive
family members and use familial labels for friends.

We used EHR-inferred relationships to calculate heritability estimates among individuals with
defined relationships. Previous research in this area has focused on family studies of known relatives,
specifically twins. Mayer and colleagues used EHR data to create a cohort of 2,000 twins/multiple births
and measured concordance among identified twins for two highly heritable diseases, muscular dystrophy
and fragile-X syndrome(/4). Our study looked not only at twins, but entire families across several
generations. Importantly, most previous studies have predominantly involved White Europeans and may
not be representative of other populations. However, our results reflect the diverse, multiethnic population
of New York City — the majority of our patient population is not self-reported as “white”. For example,
we stratified patients that had height available in the EHR by self-reported race and ethnicity and used

these cohorts of patients to compute heritability of height. We observed that the heritability estimate was
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higher among whites in comparison to other race and ethnicity groups. Bias might explain this difference
since this group had a lower quality control score than the others. But we also investigated income as a
possible confounder using patient ZIP codes and Census data. Overall, the population self-identified as
white has twice the average income than other populations -- one possible explanation for this difference
given that heritability estimates increase in more homogenous environments. This could create a
difference in heritability of height both across ethnicities and across income levels. In other cases, traits
have been shown to be more heritable in high socioeconomic strata than in lower strata (30-32). The
stratification by race and ethnicity was not feasible for all traits since over 78% of the families have more
than a single race and ethnicity reported. Estimates of traits that had a large enough sample size to stratify
by race and ethnicity are available at http://riftehr.tatonettilab.org.

The primary and most significant challenge when using traits defined from an observational resource,
like the EHR, is incomplete phenotype information resulting in ascertainment bias. In a heritability study,
the phenotype of each study participant is, ideally, carefully evaluated and quantified. This is not feasible,
however, when the cohort contains millions of patients with thousands of phenotypes. The bias may
depend on many latent factors, including the trait being studied, the trait status of relatives, the proximity
to the hospital, and an individual's ethnicity and cultural identification, among others. The consequence of
this uncontrolled ascertainment bias is that heritability estimates will be highly dependent on the
particular individuals in the study cohort. We observed that a small number of highly biased families
could significantly sway the heritability estimate. Repeated sub-sampling will be robust to these types of
biases. EHR-based heritability estimates are particularly well-suited for complex traits that require large
numbers of patients (e.g., Type 2 Diabetes Mellitus and Obesity).

The unique nature of the relationships and phenotypes derived from the EHR may necessitate novel
methods for estimating heritability. We used a mixed linear model implemented in SOLAR(/6) to
estimate heritability and used repeated sampling, which we call SOLARStrap, to correct for ascertainment
heterogeneities. We evaluated the impact of bias and missingness on SOLARStrap by comparing the

heritability estimates with simulated data and demonstrated that SOLARStrap is robust to bias. There may
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be more accurate ways to estimate heritability from this unique data source. Future work could focus on
using only certain types or relationships or use alternative modeling strategies.

There are significant bioethical considerations regarding the use of the RIFTEHR method, including
how best to balance the competing demands of protecting patients’ privacy with clinicians’ duty to warn
relatives of potential genetic risks. The method could readily be applied in EHR systems, such that
clinicians could easily access the health information of a patient’s family members. In the United States,
accessing a family member’s health information in this manner may be considered a violation of the 1996
Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule(33). On the other hand, case
law in the United States has established that healthcare providers have a responsibility to inform a
patient’s relatives about heritable conditions that may reasonably put the relatives “at risk of harm”(34).
These conflicts may need to be resolved before automatic relationship inference can be used clinically.

We have described and validated a novel method for identifying familial relationships in patient
medical records and used 7.4 million relationships inferred from the EHRs at three academic medical
centers to estimate heritability of 500 traits without genetic testing. We found that heritability estimates
were concordant across the three centers, suggesting that the method may have broad applicability.
Genetic information is valuable but expensive and not always available. In this case, familial relationships
extracted from emergency contact information can personalize disease risk prediction and facilitate
heritability determination for phenotypes that were not previously investigated in family-based or twin
studies. The correspondence of our heritability estimates with family-based estimates provides a direct
and novel validation of the value of electronic health records for generating inferences about disease,

making RIFTEHR a valuable tool for the advancement of precision medicine.
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Fig. 1. Inference of familial relationships and estimation of heritability from the electronic health
records. 680,000, 430,000 and 780,000 reported next-of-kin data that could be identified in the
institutional EHR at the healthcare systems from Columbia and Cornell Universities, and Mount Sinai
respectively. From these initial relationships, we were able to infer additional relationships resulting in
3.2 million patient relationships at Columbia, 1.5 million relationships at Cornell, and 2.6 million
relationships at Mount Sinai. Families are groups of patients with no relationships outside of the group. In
total, we identified 223,000 families at Columbia, 155,000 families at Cornell, and 187,000 at Mount
Sinai. The largest 400 families from Columbia were visualized as a graph using a force layout (Materials
and Methods). Each disconnected subgraph is a family. Each node is an individual. Solid nodes represent
patients in our respective EHRs. Colored nodes indicate the presence of a disease diagnosis in one of four
classes: cardiovascular disease (red), musculoskeletal disease (purple), metabolic disease (blue), and skin
disease (green). The top left shows 93 of the top families at Columbia. The largest family shown contains
23 individuals and the smallest, 12. We constructed detailed pedigrees for one family from Columbia
(bottom left). The pedigree shown was modified for de-identification purposes. Each node is an
individual. Individuals indicated by dashed lines are inferred to exist but are not in our EHR. The top
right shows a map of the number of individuals from Columbia that we have relationships for. The colors
represent the number of individuals that live in each ZIP code. The bottom right shows a bar graph with
the number of individuals by relationship type for each institution. We used all disease diagnosis data and
clinical pathology report data (laboratory tests) available for patients in our cohort to study genetic
heritability. At Columbia, 6.6 million disease diagnoses were used to estimate heritability of dichotomous
traits and 42 million laboratory tests were used to estimate heritability of quantitative traits. At Cornell, 3
million disease diagnoses were used and 16 million laboratory tests and at Mount Sinai, 4 million disease

diagnosis.
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Fig. 2. Validation of familial relationships inferred from the EHR. (A) The medical centers at both
Columbia and Cornell have implemented a link between the electronic health records of mother and baby
at the time of birth. We used these links as a gold standard to evaluate RIFTEHR, our algorithm for
automatically inferring relationships from the EHR. Of 40,095 mother-baby links at Columbia, RIFTEHR
correctly identifies 35,775, falsely identifies 1,600 and misses 2,720. Positive predictive value (PPV) is
96% and sensitivity is 93%. Of 39,691 mother-baby links at Cornell, RIFTEHR correctly identifies
37,797, falsely identifies 657, and misses 1,237. PPV is 98% and sensitivity is 97%. (B) Through
biobanks at Columbia, 302 of the patients with identified relationships from RIFTEHR also had genetic
data available and appropriately consented for use in our study. For these 302 patients, RIFTEHR
predicted a total of 172 relationships: 134 parent/child relationships, 26 sibling relationships, 3
grandparent/grandchild relationships, 8 aunt/uncle/niece/nephew relationships, and one
grandaunt/grandniece relationship. Genetic relatedness was determined for each pair of individuals.
Almost all 134 parent/child relationships had the expected genetic relatedness of 50% (51%+3%). Of the
siblings predicted by RIFTEHR 19 were full siblings, 3 were half siblings (genetic relatedness of 25%)),
and 4 were identical twins. The high rate of twins in our small sample is a result of the secondary use of
existing data — which was originally collected for genetic studies. Excluding these twins yields a more
accurate estimate of RIFTEHR’s performance (PPV=86.4%). Overall the RIFTEHR relationship and the
genetic relationship were significantly correlated (r=0.60, p=1.81e-18). (C) Average age differences for
each relationship type. We computed the age differences for each pair of individuals at Columbia (blue),
Cornell (red) and Mount Sinai (purple). The age differences are consistent across sites. (D) At Mount
Sinai, we identified 1,222 patients that had familial relationships from RIFTEHR and also had genetic
data available with appropriate consent for use in our study. Among these, RIFTEHR inferred 303
parent/child relationships, 149 sibling relationships, 18 grandparent/grandchild relationships, 26
avuncular relationships, and 431 spouse relationships. Genetic relatedness was determined for each

individual pair and compared to the relationships inferred by RIFTEHR. RIFTEHR’s performance varied
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from 32% to 91% PPV, being more accurate in identifying members of the nuclear family. Overall the

RIFTEHR relationship and the genetic relationship were significantly correlated (r=0.67, p<l.2e-162).
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Fig. 3. Validation of SOLARStrap accuracy and robustness using simulated data. (A) Traits with
heritabilities ranging from 5% to 95% were generated using the SOLAR simqtl command to generate a
quantitative trait with the desired heritability. We used actual family structures extracted from the EHR by
RIFTEHR to generate the simulated traits. We then created dichotomous (binary) versions of the trait by
choosing a threshold that would yield a trait with 15% prevalence. SOLAR was very accurate at
recapitulating the correct heritability for both quantitative (r2 =0.999) and binary (r2 =0.994) traits. (B)
SOLARStrap was run on each of the simulated quantitative traits and was accurate at estimating the true
heritability (r* = 0.986). SOLARStrap was accurate regardless of the number of families that was used in
the sampling procedure (left). (C) SOLARStrap was run on each of the binary traits in the setting of
complete ascertainment. SOLARStrap achieved equal accuracy as in the quantitative case (r* = 0.988).
(D) SOLARStrap was run on each of the binary traits in the setting of incomplete ascertainment. In this
case families without any cases were dropped and a proband was randomly assigned in each family. The
accuracy is lower than the case of complete ascertainment (r* = 0.930). (E) We evaluated the accuracy of
SOLAR and SOLARStrap in the presence of randomly missing information. Both SOLAR and
SOLARStrap produce accurate estimates of the true heritability even when up to 60% of the data are
removed. However, in four cases where the proportion removed was 35%, 45%, and above 50%
SOLARStrap estimates did not pass our internal quality control criteria. (F) We evaluated the accuracy of
SOLAR and SOLARStrap in the presence of family-based ascertainment biases. SOLAR is sensitive to
this bias and produces in accurate results as the strength of the bias increases. SOLARStrap is robust to
these biases and produces accurate estimates of heritability even in the most extreme case of bias. (G) As
the number of families sampled increases toward the total number of available families SOLARStrap
becomes more sensitive to bias -- in the most extreme case where the number of sampled families is equal
to the total number of available families SOLARStrap reduces to simply running SOLAR. (H) The
estimate of heritability is not dependent on the number of families sampled (r=0.02, p=4.1e-8). (I) The
Proportion of Significant Attempts (POSA) is a primary estimate of quality for heritability estimates

produced by SOLARStrap. The accuracy of SOLARStrap increases as the POSA increases (shown as
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error here). (J) The effect of noise injection on the estimate of observational heritability of rhinitis. We

injected noise into the data by randomly shuffling a subset of the patient diagnoses. This simulates

misclassification (misdiagnosis or missed diagnosis) in the medical records. When no noise is injected the

estimate is 0.77 (0.60-0.92). As noise is introduced the estimate of the heritability decreases to 0.36 (0.23-

0.49) once one quarter of the data are randomized.
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Fig. 4. Estimating heritability of disease using electronic health records. We designed a method,
called SOLARStrap, for estimating the heritability of traits where the phenotype is derived under
unknown ascertainment biases, the /,°. (A) We found that performance was consistent across sites and
(B) that A,” is significantly correlated with literature estimates of 1. (C) Heritability estimates from ACE
(household effect) and AE (without household effect) models are significantly correlated (red). (D) These
models are also correlated when computing heritability estimates for ICD10 codes alone. (E) Heritability
of traits that have been studied before, such as height, have been recapitulated by our study. We also
stratified heritability of height by self-reported race and ethnicity as available in EHR. (F) Observational
heritability of HDL cholesterol (blue) is significantly higher than heritability of LDL cholesterol (red).
This difference is still observed after stratifying patients by the presence or absence HMG-CoA reductase

inhibitors as treatment for hypercholesterolemia.


https://doi.org/10.1101/066068
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/066068; this version posted May 24, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A 1.0 1.0 § 1.0
. .
0.8 | 0.8 o T 0.8 .
.
ae * LY o ° . R * .
< | . . o | . = ]
2061 . - C . % 06 e . F o6 . .
£ t . e LT TR @ : .
2 04 . . CEE R, AN S 04 4 R
[&] . oo Rl “ o R TR .
L) .)' *- . = . s e,
0.2 4 L . 0.2 4 A ::‘- 0.2 .*Q
n=147, r=0.35, p=1.32e-05 n="147, r=0.48, p=8.20e-10 n=58, r=(.36, p=5.48e-03
0.0 —— T 1 0.0 S T T T 1 0.0 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Other Sites h? Other Sites h?2 Other Sites h?2
B 1.0 ~ Cio. ) ) ) Do ) )
- n=460,7=0.66,p=1.25¢ — 34 n=193,r=0.49,p=4.2le - 13
L4 -0
° -1l
0.8 4 . .-' .. - 0.8 . . s 0.8 4 —Q—C/
. . ] -o- Vi
DN oo L4 ° Vil
<06 . ~< 06 ~< 06 - i
5 06 206 .. 2008 s T
=] * i w -&- X
o ) Q t Q N
8 0.4 4 .o < 0.4 < 0.4 ° - xi
= Xin
- .. ° . ® e - X\v
3 ‘e @ Xvi
0.2 | 0.2 4 c e 0.2 -@- xvi ¢
. e, -@- xvii
. -@- XX
n=33, r=0.45, p=9.11e-03 XX
0.0 . . . . . 0.0 — - T T T 0.0 Ay oo T .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Observational h? AE 1} AE h?
E White ° 92% (80-100%)* LDL Cholesterol With Treatment ° 39% (23-57%)*
" 0 _519%)**
Hispanic/Latino O TT% (71-84%)™ LDL Cholesterol Without Treatment ° 42% (33-51%)
LDL Cholesterol ° 36% (27-45%)***
Black/AA ° 77% (53-97%)*
HDL Cholesterol With Treatment ° 48% (29-66%)***
All Groups HDL Cholesterol Without Treatment ° 48% (39-55%)"*
MaTCH (Best) O 7% (74-80%) HDL Cholesterol ° 48% (42-56%)**
r T T T T 1 T T T T T 1
00 02 04 06 08 10 00 02 04 06 08 1.0

Observational h?

Observational h?


https://doi.org/10.1101/066068
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/066068; this version posted May 24, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table 1. Demographic data of the electronic health records at Columbia University Medical Center, Weill

Cornell Medical College, and Mount Sinai Health System.

Variable Columbia Cornell Mount Sinai
N 682,267 437,375 783,185
Relationships 3,244,380 1,534,760 2,621,772
N provided relationships 488,932 297,011 802,191
N inferred relationships 2,755,448 1,237,749 1,819,581
Families 223,307 155,811 187,473
Gender, Female 418,657 (61.36%) 261,482 (59.78%) 449,878 (57.45%)
Age 40.15 (24.81) 39.85 (25.02) 51.44 (23.20)
Race/Ethnicity
Black or African American 69,506 (10.19%) 30,975 (7.08%) 79,854 (10.20%)
White 123,800 (18.15%) 110,485 (25.26%) 285,559 (36.46%)
Hispanic or Latino 373,552 (54.75%) 52,087 (11.91%) 151,785 (19.38%)
Other 11,438 (1.68%) 26,687 (6.10%)

Unknown/Declined to answer
Degree of relationship

First (i.e. child, parent)

Second (e.g. grandchild)

Third (e.g. great-grandparent)

Fourth (e.g. great-great-grandchild)

Other
None (e.g. spouse, in-laws)
Unknown (e.g. parent/parent-in-law)

103,971 (15.24%)

1,388,858
605,922
432,262
215,300

172,158
429,880

217,141 (49.65%)

814,650
225,796
137,712
61,986

127,748
166,868

(
25,864 ( 3.30%)
240,123 (30.66%)

798,440
243,434
136,936

58,500

571,250
813,212
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Table 2. Heritability Ranges for Dichotomous and Quantitative Trait Categories. The median

observational heritability and ranges are shown for dichotomous trait categories, both ICD9 and ICD10

codes, and for quantitative trait categories, LOINC codes. Within each category, the trait with the highest

heritability and the trait with the lowest heritability are shown.

Trait with Highest Heritability

Trait with Lowest Heritability

ICD9 Name Median h,° 1CD9 Name Median hy°
Dichotomous Disease Category Median h,° Code (95% CI) Code (95% C1)
R Immune thrombocytopenic 0.71 . 0.20
Hematologic Diseases 0.50 287.31 purpura (0.33-0.96) 285.9 Anemia (0.15-0.36)
. Adjustment disorder with mixed 0.95 Other developmental speech or 0.11
et el i (Bleeses WLl 3 anxiety and depressed mood (0.36-1.00) B language disorder (0.09-0.15)
. . 0.93 e L . 0.10
Sense Organs Diseases 0.41 365.11  Primary open angle glaucoma (0.52-1.00) 382.9 Unspecified otitis media (0.06-0.16)
Endocrine and Metabolic . 0.71 Other and unspecified 0.23
Diseases WD FER  CruEbEn (0.54-0.88) 272*  hyperlipidemia (0.15-0.37)
. . . . . 0.78 . 0.12
Gastrointestinal Diseases 0.39 579 Celiac disease (0.55-0.97) 521 Dental caries (0.07-0.18)
Infectious Diseases 0.34 111 Pityriasis versicolor 0 780.6 Fever O
- Y (0.50-0.94) - (0.05-0.23)
. . Allergic rhinitis, cause 0.72 0.09
Respiratory Diseases 0.34 477.9 unspecified (0.25-0.93) 464.4 Croup (0.05-0.12)
) ) . . 0.59 . 0.18
Cardiovascular Diseases 0.33 785.2 Undiagnosed cardiac murmurs (0.42-0.84) 786.59  Other chest pain (0.11-0.25)
Trait with Highest Heritability Trait with Lowest Heritability
ICD10 Name Median h,° ICD10 Name Median hy°
Dichotomous Disease Category Median h,° Code (95% CI) Code (95% Cl1)
S Maternal care related to the
P hil h .7\ - .41
regnancy, C ;S::geriaunn('j\ 0.54 030 Multiple gestation © 3%71600) gzg fetus and amniotic cavity and © 1(;70 61)
: : possible delivery problems : :
A (] n . 0.97 . 0.18
Hematologic Diseases 0.45 D57 Sickle-cell disorders (0.75-1.00) D64 Other anemias (0.11-0.30)
. - Toxic effect of other gases, 0.81 0.18
Injury and Poisoning 0.40 T59 fumes and vapors (0.49-0.98) S01 Open wound of head (0.10-0.36)
. ) : 0.81 .. 0.11
Infectious Diseases 0.40 B35 Dermatophytosis (0.41-0.98) B8O Enterobiasis (0.04-0.13)
- ) Excessive, frequent and irregular 0.85 N80- Noninflammatory disorders of 0.15
Genitourinary Diseases 037 N92 menstruation (0.62-0.99) N98 female genital tract (0.09-0.20)
1 . b .02
Respiratory Diseases 0.35 Jo1 Acute sinusitis © 6(:)1-%598) 102 Acute pharyngitis © O(:)l-(()) 03)
) . . 0.55 . N 0.18
Eye Diseases 0.34 H35 Other retinal disorders (0.33-0.77) H10 Conjunctivitis (0.10-0.22)
q q q . . 0.84 . 0.14
Gastrointestinal Diseases 0.34 K90 Intestinal malabsorption (0.69-0.98) K02 Dental caries (0.09-0.20)
Endocrine and Metabolic Disorders of other endocrine 0.60 e . 0.01
Diseases 034 E20-E35ds (0.28-0.89) 84 Cystic fibrosis (0.01-0.02)
. . . 0.50 i i 0.18
Cardiovascular Diseases 0.33 115 Secondary hypertension (0.31-0.89) IX E;::;es oithelcicLibtony (0.10-0.28)
Lo 0.72 Other disorders of the skin and 0.17
Skin Diseases 032 L70 Acne (0.20-0.91) 180-L99 subcutaneous tissue (0.11-0.29)
Ear and Mastoid Diseases 0.31 H61 Other disorders of external ear © 6%_80293) H66 i:z’;l:;a;\:: ahdltnspecified © o%'_tlzz)
. Emotional disorders with onset 0.78 ) 0.02
Mental Health Diseases 0.31 Fo3 specific to childhood (0.27-1.00) F40-F48 Anxiety (0.01-0.03)
L Car occupant injured in other Pedestrian injured in collision
Edemaleause o] Morbld!ty 0.31 V49 and unspecified transport 0es Vo4 with heavy transport vehicle or 0oL
and Mortality X (0.87-0.99) (0.00-0.01)
accidents bus
. Abnormal findings on diagnostic 0.48 Lack of expected normal 0.07
Signs and Symptoms 030 R92 imaging of breast (0.26-0.65) R62 physiological development (0.05-0.10)
. . 0.61 MO0- . 0.18
Musculoskeletal Diseases 0.27 M71 Other bursopathies (0.25-0.99) M25 Arthropathies (0.11-0.25)
Congenital malformations 0.27 Xvil Congenital Malformations © 5?)1)396) Q85 Phakomatoses © O(())l-(())SOB)
. . 0.35 0.17
Neoplasms 0.25 D23 Other benign neoplasms of skin (0.20-0.53) 1} Neoplasms (0.08-0.27)
Perinatal Diseases 0.22 XVI Certain Conditions Originating In 0.62 PO0- gi‘:oeggr;zfgeczi?nb\:igiitoeggzlf 0.05
- the Perinatal Period (0.45-0.84) P04 oregmanty Yy comp! (0.01-0.08)
. ) . 0.31 0.02
Neurological Diseases 0.17 G47 Sleep disorders (0.19-0.48) G44 Other headache syndromes (0.01-0.03)


https://doi.org/10.1101/066068
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/066068; this version posted May 24, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Trait with Highest Heritability Trait with Lowest Heritability
LOINC Name Median h2° LOINC Name Median h,°
Quantitative Disease Category Median h,° Code (95% CI) Code (95% C1)
. . Thyrotropin [Units/volume] in 0.37 Thyroxine (T4) [Mass/volume] in 0.26
End Disord 0.30 - -
ndocrine Disorders 30163 Sorum or Plasma (0.23-0.49) 39262 serim or Plasma (0.16-0.36)

Gamma glutamyl transferase

Gastrointestinal Disorders 0.30 2324-2  [Enzymatic activity/volume] in 0B 1975-2  Total Bilirubin serum/plasma s
(0.35-0.56) (0.08-0.16)
Serum or Plasma
Hemorrhage 0.18 5902-2  Prothrombin time - patient 0.25 718-7 Hemoglobin 0.14
8 - P (0.16-0.35) 3 (0.08-0.19)
Metabolic and Nutritional Lipoprotein.alpha [Mass/ 0.49 Iron [Mass/volume] in Serum or 0.25
. .41 - X -
Disorders © A3 volume] in Serum or Plasma (0.41-0.58) AL Plasma (0.14-0.35)
S Cholesterol in HDL [Mass/ 0.51 Cholesterol in LDL [Mass/ 0.26
Metabolic Disord 0.38 - -
etabolic Disorders 2085-9 volume] in Serum or Plasma (0.35-0.67) 2089-1 volume] in Serum or Plasma (0.15-0.38)
. P 0.93 0.12
- 3 o ) 1 ils %
Reticuloendothelial Disorders 0.29 4679-7  Reticulocytes % (0.77-1.00) 26450-7 Eosinophils % (0.07-0.18)
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