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ABSTRACT

The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of
developmental mechanisms and more recently regeneration. We have sequenced the genome allowing
annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance
ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean
food crop species. We analysed the immunity related genes of Parhyale as an important comparative
system for these species, where immunity related aquaculture problems have increased as farming has
intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets
necessary to perform lignocellulose digestion (“wood eating”), suggesting this ability may predate the
diversification of this lineage. Our data provide an essential resource for further development of Parhyale
as an experimental model. The first malacostracan genome will underpin ongoing comparative work in

food crop species and research investigating lignocellulose as an energy source.
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INTRODUCTION

Very few members of the Animal Kingdom hold the esteemed position of major model system for
understanding living systems. Inventions in molecular and cellular biology increasingly facilitate the
emergence of new experimental systems for developmental genetic studies. The morphological and
ecological diversity of the phylum Arthropoda makes them an ideal group of animals for comparative
studies encompassing embryology, adaptation of adult body plans and life history evolution [[1-4]. While
the most widely studied group are Hexapods, reflected by over a hundred sequencing projects available in
the NCBI genome database, genomic data in the other three sub-phyla in Arthropoda are still relatively
sparse.

Recent molecular and morphological studies have placed crustaceans along with hexapods into a
pancrustacean clade (Figure[TJA), revealing that crustaceans are paraphyletic [5H9]. Previously, the only
available fully sequenced crustacean genome was that of the water flea Daphnia which is a member of the
Branchiopoda [10]. A growing number of transcriptomes for larger phylogenetic analyses have led to
differing hypotheses of the relationships of the major pancrustacean groups (Figure [IB) [11-14]. The
genome of the amphipod crustacean Parhyale hawaiensis addresses the paucity of high quality
non-hexapod genomes among the pancrustacean group, and will help to resolve relationships within this
group as more genomes and complete proteomes become available [[15,[16]]. Crucially, genome sequence
data is also necessary to further advance research in Parhyale, currently the most tractable crustacean
model system. This is particularly true for the application of powerful functional genomic approaches,
such as genome editing [[17H22]].

Parhyale is a member of the diverse Malacostraca clade with thousands of extant species including
economically and nutritionally important groups such as shrimps, crabs, crayfish and lobsters, as well as
common garden animals like woodlice. They are found in all marine, fresh water, and higher humidity
terrestrial environments. Apart from attracting research interest as an economically important food crop,
this group of animals has been used to study developmental biology and the evolution of morphological
diversity (for example with respect to Hox genes) [[19}23H25]], stem cell biology [26l [27], innate
immunity processes [28,[29]] and recently the cellular mechanisms of regeneration [26} 27]]. In addition,
members of the Malacostraca, specifically both Amphipods and Isopods, are thought to be capable of
“wood eating” or lignocellulose digestion and to have microbiota-free digestive systems [30H33]].

The life history of Parhyale makes it a versatile model organism amenable to experimental manipulations
(Figure[T[C)[34]]. Gravid females lay eggs every 2 weeks upon reaching sexual maturity and hundreds of
eggs can be easily collected at all stages of embryogenesis. Embryogenesis takes about 10 days at 26°C
and has been described in detail with an accurate staging system [35]]. Early embryos display an invariant
cell lineage with each blastomere at the 8-cell stage contributing to a specific germ layer (Figure
[[D)[35.36]. Embryonic and post-embryonic stages are amenable to experimental manipulations and

direct observation in vivo [36H48]]. These can be combined with transgenic approaches [25 45, 148, 149],
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RNA interference (RNAi) [24] and morpholino-mediated gene knockdown [50]], and transgene-based
lineage tracing [26]. Most recently the utility of the clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated (Cas) system for targeted genome editing has been elegantly
demonstrated during the systematic study of Parhyale Hox genes [[18,[19]. This arsenal of experimental
tools (Table[I)) has already established Parhyale as an attractive model system for biological research.
So far, work in Parhyale has been constrained by the lack of a reference genome and other standardized
genome-wide resources. To address this limitation, we have sequenced, assembled and annotated the
genome. At an estimated size of 3.6 Gb, this genome represents one of the largest animal genomes
tackled to date. The large size has not been the only challenge of the Parhyale genome, that also exhibits
some of the highest levels of sequence repetitiveness and polymorphism reported among published
genomes. We provide information in our assembly regarding polymorphism to facilitate functional
genomic approaches sensitive to levels of sequence similarity, particularly homology-dependent genome
editing approaches. We analysed a number of key features of the genome as foundations for new areas of
research in Parhyale, including innate immunity in crustaceans, lignocellulose digestion, non-coding
RNA biology, and epigenetic control of the genome. Our data bring Parhyale to the forefront of

developing model systems for a broad swathe of important bioscience research questions.

RESULTS AND DISCUSSION

Genome assembly, annotation, and validation

The Parhyale genome contains 23 pairs (2n=46) of chromosomes (Figure [2)) and with an estimated size of
3.6 Gb, it is currently the second largest reported arthropod genome after the locust genome [S14152]].
Sequencing was performed on genomic DNA isolated from a single adult male taken from a line derived
from a single female and expanded after two rounds of sib-mating. We performed k-mer analyses of the
trimmed reads to assess the impact of repeats and polymorphism on the assembly process. We analyzed
k-mer frequencies (Figure [3]A) and compared k-mer representation between our different sequencing
libraries. We observed a 93% intersection of unique k-mers among sequencing libraries, indicating that
the informational content was consistent between libraries (Supplemental Data 6). The k-mer analysis
revealed a bimodal distribution of error-free k-mers (Figure 3A). The higher-frequency peak
corresponded to k-mers present on both haplotypes (i.e. homozygous regions), while the lower-frequency
peak had half the coverage and corresponded to k-mers present on one haplotype (i.e. heterozygous
regions) [53]]. We concluded that the single sequenced adult Parhyale exhibits very high levels of
heterozygosity, similar to the highly heterozygous oyster genome (see below).

In order to quantify global heterozygosity and repeat content of the genome we assessed the de-Bruijn
graphs generated from the trimmed reads to observe the frequency of both variant and repeat branches
[54]] (Figure and C). We found that the frequency of the variant branches was 10x higher than that
observed in the human genome and very similar to levels in the highly polymorphic genome of the oyster

Crassostrea gigas [55]]. We also observed a frequency of repeat branches approximately 4x higher than
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those observed in both the human and oyster genomes (Figure[3[C), suggesting that the big size of the
Parhyale genome can be in large part attributed to the expansion of repetitive sequences.

These metrics suggested that both contig assembly and scaffolding with mate-pair reads were likely to be
challenging due to high heterozygosity and repeat content. After an initial contig assembly we remapped
reads to assess coverage of each contig. We observed a major peak centered around 75 x coverage and a
smaller peak at 150x coverage. Contigs with lower 75x coverage represent regions of the genome that
assembled into separate haplotypes and had half the frequency of mapped sequencing reads, reflecting
high levels of heterozygosity. This resulted in independent assembly of haplotypes for much of the
genome (Figure 3D).

One of the prime goals in sequencing the Parhyale genome was to achieve an assembly that could assist
functional genetic and genomic approaches in this species. Different strategies have been employed to
sequence highly heterozygous diploid genomes of non-model and wild-type samples [56]. We aimed for
an assembly representative of different haplotypes, allowing manipulations to be targeted to different
allelic variants in the assembly. This could be particularly important for homology dependent strategies
that are likely to be sensitive to polymorphism. However, the presence of alternative haplotypes could
lead to poor scaffolding between contigs as many mate-pair reads may not map uniquely to one contig
and distinguish between haplotypes in the assembly. To alleviate this problem we used a strategy to
conservatively identify pairs of allelic contigs and proceeded to use only one in the scaffolding process.
First, we estimated levels of similarity (identity and alignment length) between all assembled contigs to
identify independently assembled allelic regions (Figure[3E). We then kept the longer contig of each pair
for scaffolding using our mate-pair libraries (Figure[3F), after which we added back the shorter allelic
contigs to produce the final genome assembly (Figure fA).

RepeatModeler and RepeatMasker were used on the final assembly to find repetitive regions, which were
subsequently classified into families of transposable elements or short tandem repeats (Supplemental
Data 7). We found 1,473 different repeat element sequences representing 57% of the assembly (Figure 4,
Supplemental Table 1). The Parhyale assembly comprises of 133,035 scaffolds (90% of assembly),
259,343 unplaced contigs (4% of assembly), and 584,392 shorter, potentially allelic contigs (6% of
assembly), with a total length of 4.02 Gb (Table[2). The N50 length of the scaffolds is 81,190bp. The
final genome assembly was annotated with Augustus trained with high confidence gene models derived
from assembled transcriptomes, gene homology, and ab initio predictions. This resulted in 28,155 final
gene models (Figure @B; Supplemental Data 8) across 14,805 genic scaffolds and 357 unplaced contigs
with an N50 of 161,819, bp and an N90 of 52,952 bp.

Parhyale has a mean coding gene size (introns and ORFs) of 20kb (median of 7.2kb), which is longer
than D. pulex (mean: 2kb, median: 1.2kb), while shorter than genes in Homo sapiens (mean: 52.9kb,
median: 18.5kb). This difference in gene length was consistent across reciprocal blast pairs where ratios
of gene lengths revealed Parhyale genes were longer than Caenorhabditis elegans, D. pulex, and

Drosophila melanogaster and similar to H. sapiens. (Figure[5]A). The mean intron size in Parhyale is

il
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5.4kb, similar to intron size in H. sapiens (5.9kb) but dramatically longer than introns in D. pulex (0.3kb),
D. melanogaster (0.3kb) and C. elegans (1kb) (Figure E]B).

For downstream analyses of Parhyale protein coding content, a final proteome consisting of 28,666
proteins was generated by combining candidate coding sequences identified with TransDecoder [57]] from
mixed stage transcriptomes. Almost certainly the high number of predicted gene models and proteins is
an overestimation due to fragmented genes, very different isoforms or unresolved alleles, that will be
consolidated as annotation of the Parhyale genome improves. We also included additional high
confidence gene predictions that were not found in the transcriptome (Figure [C). The canonical
proteome dataset was annotated with both Pfam, KEGG, and BLAST against Uniprot. Assembly quality
was further evaluated by alignment to core eukaryotic genes defined by the Core Eukaryotic Genes
Mapping Approach (CEGMA) database [58]]. We identified 244/248 CEGMA orthology groups from the
assembled genome alone and 247/248 with a combination of genome and mapped transcriptome data
(Figure 4, Supplemental Figure 2). Additionally, 96% of over 280,000 identified transcripts, most of
which are fragments that do not contain a large ORF, also mapped to the assembled genome. Together
these data suggest that our assembly is close to complete with respect to protein coding genes and

transcribed regions that are captured by deep RNA sequencing.

High levels of heterozygosity and polymorphism in the Parhyale genome

To estimate the level of heterozygosity in genes we first identified transcribed regions of the genome by
mapping back transcripts to the assembly. Where these regions appeared in a single contig in the
assembly, heterozygosity was calculated using information from mapped reads. Where these regions
appeared in more than one contig, because haplotypes had assembled independently, heterozygosity was
calculated using an alignment of the genomic sequences corresponding to mapped transcripts and
information from mapped reads. This allowed us to calculate heterozygosity for each gene within the
sequenced individual (Supplemental Data 9). We then calculated the genomic coverage of all transcribed
regions in the genome and found, as expected, they fell broadly into two categories with higher and lower
read coverage (Figure[6]A; Supplemental Data 9). Genes that fell within the higher read coverage group
had a lower mean heterozygosity (1.09% of bases displaying polymorphism), which is expected as more
reads were successfully mapped. Genes that fell within the lower read coverage group had a higher
heterozygosity (2.68%), as reads mapped independently to each haplotype (Figure[6B) [54]. Thus, we
conclude that heterozygosity that influences read mapping and assembly of transcribed regions, and not
just non-coding parts of the assembly.

The assembled Parhyale transcriptome was derived from various laboratory populations, hence we
expected to see additional polymorphism beyond that detected in the two haplotypes of the individual
male we sequenced. Analysing all genes using the transcriptome we found additional variations in
transcribed regions not found in the genome of the sequenced individual. In addition to polymorphisms

that agreed with heterozygosity in the genome sequence we observed that the rate of additional variations
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is not substantially different between genes from the higher (0.88%) versus lower coverage group genes
(0.73%:; Figure[6[C). This analysis suggests that within captive laboratory populations of Parhyale there is
considerable additional polymorphism distributed across genes, irrespective of whether or not they have
relatively low or high heterozygosity in the individual male we sequenced. In addition the single male we
have sequenced provides an accurate reflection of polymorphism of the wider laboratory population and
the established Chicago-F strain does not by chance contain unusually divergent haplotypes. We also
performed an assessment of polymorphism on previously cloned Parhyale developmental genes, and
found some examples of startling levels of variation. (Supplemental Data 2, Figure 6, Supplemental
Figure 1). For example, we found that the cDNAs of the germ line determinants, nanos (78 SNPS, 34
non-synonymous substitutions and one 6bp indel) and vasa (37 SNPs, 7 non-synonymous substitutions
and a one 6bp indel) can have more variability within laboratory Parhyale populations than might be
observed for orthologs between closely related species.

To further evaluate the extent of polymorphism across the genome, we mapped the genomic reads to a set
of previously Sanger-sequenced BAC clones of the Parhyale Hox cluster from the same Chicago-F line
from which we sequenced the genome of an adult male. [18]. We detected SNPs at a rate of 1.3 t0 2.5%
among the BACs (Table [3) and also additional sequence differences between the BACs and genomic
reads, confirming that additional polymorhism exists in the Chicago-F line beyond that detected between
in the haplotypes of the individual male we sequenced.

Overlapping regions of the contiguous BACs gave us the opportunity to directly compare Chicago-F
haplotypes and accurately observe polynucleotide polymorphisms, that are difficult to detect with short
reads that do not map when polymorphisms are large, but are resolved by longer Sanger reads. (Figure
[7A). Since the BAC clones were generated from a pool of Chicago-F animals, we expected each
sequenced BAC to be representative of one haplotype. Overlapping regions between BAC clones could
potentially represent one or two haplotypes. We found that the genomic reads supported the SNPs
observed between the overlapping BAC regions. We found relatively few base positions with evidence
supporting the existence of a third allele. This analysis revealed many insertion/deletion (indels) with
some cases of indels larger than 100 base pairs (Figure[7B). The finding that polynucleotide
polymorphisms are prevalent between the haplotypes of the Chicago-F is another reason, in addition to
regions of high SNP heterozygosity in the genome sequence, for the extensive independent assembly of
haplotypes. Taken togther these data mean that special attention will have to be given to those functional

genomic approaches that are dependent on homology, such as CRISPR/Cas9 based knock in strategies.

A comparative genomic analysis of the Parhyale genome

Assessment of conservation of the proteome using BLAST against a selection of metazoan proteomes
was congruent with broad phylogenetic expectations. These analyses included crustacean proteomes
likely to be incomplete as they come from limited transcriptome datasets, but nonetheless highlighted

genes likely to be specific to the Malacostraca (Figure [5[C). To better understand global gene content
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evolution we generated clusters of orthologous and paralogous gene families comparing the Parhyale
proteome with other complete proteomes across the Metazoa using Orthofinder [59] (Figure 5D;
Supplemental Data 10). Amongst proteins conserved in protostomes and deuterostomes we saw no
evidence for widespread gene duplication in the lineage leading to Parhyale. We identified orthologous
and paralogous protein groups across 16 species with 2,900 and 2,532 orthologous groups containing
proteins found only in Panarthropoda and Arthropoda respectively. We identified 855 orthologous groups
that were shared exclusively by Mandibulata, 772 shared by Pancrustacea and 135 shared by Crustacea.
There were 9,877 Parhyale proteins that could not be assigned to an orthologous group, potentially
representing rapidly evolving or lineage specific proteins. Amongst these proteins we found 609 proteins
(2.1% of the proteome) that had paralogs within Parhyale, suggesting that younger and/or more divergent
Parhyale genes have undergone some considerable level of gene duplication events.

Our analysis of shared orthologous groups was equivocal with regard to alternative hypotheses on the
relationships among pancrustacean subgroups: 44 groups of orthologous proteins are shared among the
multicrustacea clade (uniting the Malacostraca, Copepoda and Thecostraca), 37 groups are shared among
the Allocarida (Branchiopoda and Hexapoda) and 49 groups are shared among the Vericrustacea
(Branchiopoda and Multicrustacea)(Supplemental Data 17).

To further analyse the evolution of the Parhyale proteome we examined protein families that appeared to
be expanded (z-score >2), compared to other taxa (Figure 5, Supplemental Figure 1, Supplemental Data
10, Supplemental Data 15). We conservatively identified 29 gene families that are expanded in Parhyale.
Gene family expansions include the Sidestep (55 genes) and Lachesin (42) immunoglobulin superfamily
proteins as well as nephrins (33 genes) and neurotrimins (44 genes), which are thought to be involved in
immunity, neural cell adhesion, permeability barriers and axon guidance [60-62]]. Other Parhyale gene
expansions include APN (aminopeptidase N) (38 genes) and cathepsin-like genes (30 genes), involved in

proteolytic digestion [63]].

Major signaling pathways and transcription factors in Parhyale

Components of all common metazoan cell-signalling pathways are largely conserved in Parhyale. At
least 13 Wnr subfamilies were present in the cnidarian-bilaterian ancestor. Wnt3 has been lost in
protostomes that retain 12 Wnt genes [64-66]. Some sampled ecdysozoans have undergone significant
Wnt gene loss, for example C. elegans has only 5 Wnt genes [67]. At most 9 Wnt genes are present in any
individual hexapod species [68]], with wnt2 and wnt4 potentially lost before the hexapod radiation [69]].
The Parhyale genome encodes 6 of the 13 Wnt subfamily genes; wntl, wnt4, wnt5, wntl0, wntll and
wnt16 (Figure[8). Wnt genes are known to have been ancestrally clustered [70]. We observed that wntl
and wnt10 are linked in a single scaffold (phaw_30.0003199); given the loss of wnt6 and wnt9, this may
be the remnant of the ancient wnt9-1-6-10 cluster conserved in some protostomes.

We could identify 2 Fibroblast Growth Factor (FGF) genes and only a single FGF receptor (FGFR) in the

Parhyale genome, suggesting one FGFR has been lost in the malacostracan lineage (Figure 8§,
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Supplemental Figure 1). Within the Transforming Growth Factor beta (TGF-J3) signaling pathway we
found 2 genes from the activin subfamily (an activin receptor and a myostatin), 7 genes from the Bone
Morphogen Protein (BMP) subfamily and 2 genes from the inhibin subfamily. Of the BMP genes,
Parhyale has a single decapentaplegic homologue (Supplemental Data 2). Other components of the
TGF- pathway were identified such as the neuroblastoma suppressor of tumorigenicity (NBL1/DAN),
present in Aedes aegypti and Tribolium castaneum but absent in D. melanogaster and D. pulex, and
TGFB-induced factor homeobox 1 (TGIFI) which is a Smad2-binding protein within the pathway present
in arthropods but absent in nematodes (C. elegans and Brugia malayi;Supplemental Data 2). We
identified homologues of PITX2, a downstream target of the TGF-f pathway involved in endoderm and
mesoderm formation present in vertebrates and crustaceans (Parhyale and D. pulex) but not in insects and
nematodes [[71]. With the exception of SMAD7 and SMADS/9, all other SMADs (SMADI1, SMAD?2/3,
SMAD4, SMADG) are found in arthropods sampled, including Parhyale. Components of other pathways
interacting with TGF-f signaling like the JNK, Par6, ROCK1/RhoA, p38 and Akt pathways were also
recovered and annotated in the Parhyale genome (Supplemental Data 2). We identified major Notch
signaling components including Notch, Delta, Deltex, Fringe and modulators of the Notch pathway such
as Dvl and Numb. Members of the gamma-secretase complex (Nicastrin, Presenillin, and APHI) were
also present (Supplemental Data 4) as well as to other co-repressors of the Notch pathway such as
Groucho and CtBP [72].

A genome wide survey to annotate all potential transcription factors (TFs) discovered a total of 1,143
proteins with DNA binding domains that belonged to all the major families previously identified.
Importantly, we observed a large expansion of TFs containing the zinc-finger (ZF)-C2H2 domain, that
was previously observed in a trancriptomic study of Parhyale [73|. Parhyale has 699
ZF-C2H2-containing genes [74]], which is comparable to the number found in H. sapiens [[15]], but
significantly expanded compared to other arthropod species like D. melanogaster encoding 326 members
(Figure 8, Supplemental Table 2).

The Parhyale genome contains 126 homeobox-containing genes (Figure [0} Supplemental Data 2), which
is higher than the numbers reported for other arthropods (104 genes in D. melanogaster, 93 genes in the
honey bee Apis melllifera, and 113 in the centipede Strigamia maritima) [76]. We identified a Parhyale
specific expansion in the Ceramide Synthase (CERS) homeobox proteins, which include members with
divergent homeodomains [[77]]. H. sapiens have six CERS genes, but only five with homeodomains [[78]].
We observed an expansion to 12 CERS genes in Parhyale, compared to 1-4 genes found in other
arthropods [[79] (Figure 8, Supplemental Figure 3). In phylogenetic analyses all 12 CERS genes in
Parhyale clustered together with a CERS from another amphipod Echinogammarus veneris, suggesting
that this is recent expansion in the amphipod lineage.

Parhyale contains a complement of 9 canonical Hox genes that exhibit both spatial and temporal
colinearity in their expression along the anterior-posterior body axis [18]]. Chromosome walking

experiments had shown that the Hox genes labial (lab) and proboscipedia (pb) are linked and that
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Deformed (Dfd), Sex combs reduced (Scr), Antennapedia (Antp) and Ultrabithorax (Ubx) are also
contiguous in a cluster [18]. Previous experiments in D. melanogaster had shown that the proximity of
nascent transcripts in RNA fluorescent in situ hybridizations (FISH) coincide with the position of the
corresponding genes in the genomic DNA [80, [81]]. Thus, we obtained additional information on Hox
gene linkage by examining nascent Hox transcripts in cells where Hox genes are co-expressed. We first
validated this methodology in Parhyale embryos by confirming with FISH, the known linkage of Dfd
with Scr in the first maxillary segment where they are co-expressed (Figure[I0JA-A*). As a negative
control, we detected no linkage between engrailed] (enl) and Ubx or abd-A transcripts (Figure[TOB - B
and C - C*). We then demonstrated the tightly coupled transcripts of lab with Dfd (co-expressed in the
second antennal segment, Figure[IOD - D*), Ubx and abd-A (co-expressed in the posterior thoracic
segments, Figure [IOE - E*), and abd-A with Abd-B (co-expressed in the anterior abdominal segments,
(Figure - F¥). Collectively, all evidence supports the linkage of all analysed Hox genes into a single
cluster as shown in (Figure[TI0G - G*). The relative orientation and distance between certain Hox genes
still needs to be worked out. So far, we have not been able to confirm that Hox3 is also part of the cluster
due to the difficulty in visualizing nascent transcripts for Hox3 together with pb or Dfd. Despite these
caveats, Parhyale provides an excellent arthropod model system to understand these still enigmatic
phenomena of Hox gene clustering and spatio-temporal colinearity, and compare the underlying
mechanisms to other well-studied vertebrate and invertebrate models [82].

The ParaHox and NK gene clusters encode other ANTP class homeobox genes closely related to Hox
genes [83]]. In Parhyale, we found 2 caudal (Cdx) and 1 Gsx ParaHox genes. Compared to hexapods, we
identified expansions in some NK-like genes, including 5 Bar homeobox genes (BarH1/2), 2 developing
brain homeobox genes (DBX) and 6 muscle segment homeobox genes (MSX/Drop). Evidence from
several bilaterian genomes suggests that NK genes are clustered together [84-87]]. In the current assembly
of the Parhyale genome, we identified an NK2-3 gene and an NK3 gene on the same scaffold
(phaw-30.0004720) and the tandem duplication of an NK2 gene on another scaffold (phaw_30.0004663).
Within the ANTP class, we also observed 1 mesenchyme homeobox (Meox), 1 motor neuron homeobox

(MNX/Exex) and 3 even-skipped homeobox (Evx) genes.

The Parhyale genome encodes glycosyl hydrolase enzymes consistent with lignocellu-
lose digestion ("wood eating”)

Lignocellulosic (plant) biomass is the most abundant raw material on our planet and holds great promise
as a source for the production of bio-fuels [88]. Understanding how some animals and their symbionts
achieve lignocellulose digestion is a promising research avenue for exploiting lignocellulose-rich material
[89,190]. Amongst Metazoans, research into the ability to depolymerize plant biomass into useful
catabolites is largely restricted to terrestrial species such as ruminants, termites and beetles. These
animals rely on mutualistic associations with microbial endosymbionts that provide cellulolytic enzymes

known as glycosyl hydrolases (GHs) [911,92] (Figure[TT)). Much less studied is lignocellulose digestion in
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aquatic animals despite the fact that lignocellulose represents a major energy source in aquatic
environments, particularly for benthic invertebrates [93]]. Recently, it has been suggested that the marine
wood-boring Isopod Limnoria quadripunctata and the amphipod Chelura terebrans may have sterile
microbe-free digestive systems and they produce all required enzymes for lignocellulose digestion
[30L131,194]). Significantly, these species have been shown to have endogenous GH7 family enzymes with
cellobiohydrolase (beta-1,4-exoglucanase) activity, previously thought to be absent from animal genomes.
From an evolutionary perspective, it is likely that GH7 coding genes were acquired by these species via
horizontal gene transfer from a protist symbiont.

Parhyale is a detrivore that can be sustained on a diet of carrots (Figure[TT[C), suggesting that they too
may be able to depolymerize lignocellulose for energy (Figure[TTJA and B). We searched for GH family
genes in Parhyale using the classification system of the CAZy (Carbohydrate-Active enZYmes) database
[93]] and the annotation of protein domains in predicted genes with PFAM [96]]. We identified 73 GH
genes with complete GH catalytic domains that were classified into 17 families (Supplemental Data 2)
including 3 members of the GH7 family. Phylogenetic analysis of Parhyale GH7s show high sequence
similarity to the known GH7 genes in L. quadripunctata and the amphipod C. terebrans [31] (Figure|12/A;
Figure 12, Supplemental Figure 1). GH7 family genes were also identified in the transcriptomes of three
more species spanning the multicrustacea clade: Echinogammarus veneris (amphipod), Eucyclops
serrulatus (copepod) and Calanus finmarchicus (copepod) (Supplemental Data 2). As previously
reported, we also discovered a closely related GH7 gene in the branchiopod Daphnia (Figure [12]A) [90].
This finding supports the grouping of Branchiopoda with Multicrustacea (rather than with Hexapoda) and
the acquisition of a GH7 gene by a vericrustacean ancestor. Alternatively, this suggests an even earlier
acquisition of a GH7 gene by a crustacean ancestor with subsequent loss of the GH7 family gene in the
lineage leading to insects.

GH families 5, 9, 10, and 45 encode beta-1,4-endoglucanases which are also required for lignocellulose
digestion and are commonly found across Metazoa. We found 3 GH9 family genes with complete
catalytic domains in the Parhyale genome as well as in the other three multicrustacean species (Figure
[12B). These GH9 enzymes exhibited a high sequence similarity to their homologues in the isopod
Limnoria and in a number of termites. Beta-glucosidases are the third class of enzyme required for
digestion of lignocellulose. They have been classified into a number of GH families: 1, 3, 5, 9 and 30,
with GH1 representing the largest group [93]]. In Parhyale, we found 7 beta-glucosidases from the GH30
family and 3 from the GH9 family, but none from the GH1 family.

Understanding lignocellulose digestion in animals using complex mutualistic interactions with microbes
has proven to be a difficult task. The study of “wood-eating” in Parhyale can offer new insights into
lignocellulose digestion in the absence of gut microbes, and the unique opportunity to apply molecular
genetic approaches to understand the activity of glycosyl hydrolases in the digestive system.
Lignocellulose digestion may also have implications for gut immunity in some crustaceans, since these

reactions have been reported to take place in a sterile gut [32}|33].
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Characterisation of the innate immune system in a Malacostracan

Immunity research in Malacostracans has attracted interest due to the rapid rise in aquaculture related
problems [28 29} 97]]. Malacostracan food crops represent a huge global industry (>$40 Billion at point
of first sale), and reliance on this crop as a source of animal protein is likely to increase in line with
human population growth [97]]. Here we provide an overview of immune-related genes in Parhyale that
were identified by mapping proteins to the ImmunoDB database [98] (Supplemental Data 2). The ability
of the innate immune system to identify pathogen-derived molecules is mediated by pattern recognition
receptors (PRRs) [99]. Several groups of invertebrate PRRs have been characterized, i.e.
thioester-containing proteins (TEP), Toll-like receptors (TLR), peptidoglycan recognition proteins
(PGRP), C-type lectins, galectins, fibrinogen-related proteins (FREP), gram-negative binding proteins
(GNBP), Down Syndrome Cell Adhesion Molecules (Dscam) and lipopolysaccharides and beta-1,
3-glucan binding proteins (LGBP).

The functions of PGRPs have been described in detail in insects like D. melanogaster [100] and the
PGRP family has also been reported in Vertebrates, Molluscs and Echinoderms [101}[102]]. Surprisingly,
we found no PGRP genes in the Parhyale genome. PGRPs were also not found in other sequence datasets
from Branchiopoda, Copepoda and Malacostraca (Figure [I3]A), raising the possibility of their close
phylogenetic relationship (like the GH7 genes). In the absence of PGRPs, the freshwater crayfish
Pacifastacus leniusculus relies on a Lysine-type peptidoglycan and serine proteinases, SPHI and SPH2
that forms a complex with LGBP during immune response [103]]. In Parhyale, we found one LGBP gene
and two serine proteinases with high sequence identity to SPHI/2 in Pacifastacus. The D. pulex genome
has also an expanded set of Gram-negative binding proteins (proteins similar to LGBP) suggesting a
compensatory mechanism for the lost PGRPs [[104]. Interestingly, we found a putative PGRP in the
Remipede Speleonectes tulumensis (Figure [I3]A) providing further support for sister group relationship of
Remipedia and Hexapoda [[14].

Innate immunity in insects is transduced by three major signaling pathways: the Immune Deficiency
(Imd), Toll and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways
[[LO5L[106]. We found 16 members of the Toll family in Parhyale including 10 Toll-like receptors (TLRs)
(Figure[I3B). Some TLRs have been also implicated in embryonic tissue morphogenesis in Parhyale and
other arthropods [[107]. Additionally, we identified 7 Imd and 25 JAK/STAT pathway members including
two negative regulators: suppressor of cytokine signaling (SOCS), and protein inhibitor of activated STAT
(PIAS) [108].

The blood of arthropods (hemolymph) contains hemocyanin which is a copper-binding protein involved
in the transport of oxygen, and circulating blood cells called hemocytes for the phagocytosis of pathogens.
Phagocytosis by hemocytes is facilitated by the evolutionarily conserved gene family, the
thioester-containing proteins (TEPs) [109]]. Previously sequenced Pancrustacean species contained
between 2 to 52 TEPs. We find 5 TEPs in the Parhyale genome. Arthropod hemocyanins themselves are

structurally related to phenoloxidases (PO; [110]) and can be converted into POs by conformational
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ss  changes under specific conditions [111]. POs are involved in several biological processes (like the

s« melanization immune response, wound healing and cuticle sclerotization) and we identified 7 PO genes in
a5 Parhyale. Interestingly, hemocyanins and PO activity have been shown to be highly abundant together
a6 with glycosyl hydrolases in the digestive system of Isopods and Amphipods, raising a potential

47 mechanistic link between gut sterility and degradation of lignocellulose [30}33].

a8 Another well-studied transmembrane protein essential for neuronal wiring and adaptive immune

w9 responses in insects is the immunoglobulin (/g)-superfamily receptor Down syndrome cell adhesion

470 molecule (Dscam) [112,[113]]. Alternative splicing of Dscam transcripts can result in thousands of

4 different isoforms that have a common architecture but have sequence variations encoded by blocks of
a2 alternative spliced exons. The D. melanogaster Dscam locus encodes 12 alternative forms of exon 4

473 (encoding the N-terminal half of Ig2), 48 alternative forms of exon 6 (encoding the N-terminal half of
a4 1g3), 33 alternative forms of exon 9 (encoding Ig7), and 2 alternative forms of exon 17 (encoding

475 transmembrane domains) resulting in a total of 38,016 possible combinations. The Dscam locus in

a7 Parhyale (and in other crustaceans analysed) has a similar organization to insects; tandem arrays of

477 multiple exons encode the N-terminal halves of Ig2 (exon 4 array with at least 13 variants) and Ig3 (exon
a7 6 array with at least 20 variants) and the entire Ig7 domain (exon 14 array with at least 13 variants)

a7o  resulting in at least 3,380 possible combinations (Figure[I3C-E). The alternative splicing of hypervariable
a0 exons in Parhyale was confirmed by sequencing of cDNA clones amplified with Dscam-specific primers.
451 Almost the entire Dscam gene is represented in a single genomic scaffold and exhibits high amino-acid
a2 sequence conservation with other crustacean Dscams (Figure 13, Supplemental Figure 1). The number of
a3 Dscam isoforms predicted in Parhyale is similar to that predicted for Daphnia species [[114]. It remains
48« an open question whether the higher number of isoforms observed in insects coincides with the evolution
455 of additional Dscam functions compared to crustaceans.

s From a functional genomics perspective, the Parhyale immune system appears to be a good representative
a7 of the malacostrocan or even multicrustacean clade that can be studied in detail with existing tools and

488 Iresources.

s Non-coding RNAs and associated proteins in the Parhyale genome

490 Non-coding RNAs are a central, but still a relatively poorly understood part of eukaryotic genomes. In
491 animal genomes, different classes of small RNAs are key for genome surveillance, host defense against
a2 viruses and parasitic elements in the genome, and regulation of gene expression through transcriptional,
a3 post-transcriptional and epigenetic control mechanisms [[115H123]]. The nature of these non-coding

4« RNAs, as well as the proteins involved in their biogenesis and function, can vary between animals. For
a5 example, some nematodes have Piwi-interacting short RNAs (piRNAs), while others have replaced these
a6 by alternate small RNA based mechanisms to compensate for their loss [[124].

a7 As afirst step, we surveyed the Parhyale genome for known conserved protein components of the small

a8 interfering RNA (siRNA/RNAI) and the piRNA pathways (Table ). We found key components of all
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major small RNA pathways, including 4 argonaute family members, 2 PIWI family members, and
orthologs of D. melanogaster Dicer-1 and Dicer-2, drosha and loquacious, (Figure 14, Supplemental
Figure 1). Among Argonaute genes, Parhyale has 1 AGO-1 ortholog and 3 AGO-2 orthologs, which is
presumably a malacostraca-specific expansion. While Parhyale only has 2 PIWI family members, other
crustacean lineages have clearly undergone independent expansions of this protein family. Unlike in C.
elegans, many mammals, fish and insects (but not D. melanogaster), we did not find any evidence in the
Parhyale genome for the SID-1 (systemic RNA interference defective) transmembrane protein that is
essential for systemic RNAi [[125H127]]. Species without a SID-1 ortholog can silence genes only in a
cell-autonomous manner [128]. This feature has important implications for future design of RNAi
experiments in Parhyale.

We also assessed the miRNA and putative long non-coding RNAs (IncRNA) content of Parhyale using
both MiRPara and Rfam [[129, [130]]. We annotated 1405 homologues of known non-coding RNAs using
Rfam. This includes 980 predicted tRNAs, 45 rRNA of the large ribosomal subunit, 10 rRNA of the small
ribosomal subunit, 175 snRNA components of the major spliceosome (U1, U2, U4, U5 and U6), 5
snRNA components of the minor spliceosome (U11, U12, Udatac and Ubatac), 43 ribozymes, 38
snoRNAs, 71 conserved cis-regulatory element derived RNAs and 42 highly conserved miRNA genes
(Supplemental Data 5; Supplemental Data 11). Parhyale long non-coding RNAs (IncRNAs) were
identified from the transcriptome using a series of filters to remove coding transcripts producing a list of
220,284 putative IncRNAs (32,223 of which are multi-exonic). Only one Parhyale IncRNA has clear
homology to another annotated IncRNA, the sphinx IncRNA from D. melanogaster [131]].

We then performed a more exhaustive search for miRNAs using MiRPara (Supplemental Data 11) and a
previously published Parhyale small RNA read dataset [[132]. We identified 1,403 potential miRNA
precursors represented by 100 or more reads. Combining MiRPara and Rfam results, we annotated 31 out
of the 34 miRNA families found in all Bilateria, 12 miRNAs specific to Protostomia, 4 miRNAs specific
to Arthropoda and 5 miRNAs previously found to be specific to Mandibulata (Figure[T4). We did not
identify mir-125, mir-283 and mir-1993 in the Parhyale genome. The absence of mir-1993 is consistent
with reports that this miRNA was lost during Arthropod evolution [[133]]. While we did not identify
mir-125, we observed that mir-100 and let-7 occurred in a cluster on the same scaffold (Figure 14,
Supplemental Figure 2), where mir-125 is also present in other animals. The absence of mir-125 has been
also reported for the centipede genome [76]]. mir-100 is one of the most primitive miRNAs shared by
Bilateria and Cnidaria [[133}[134]]. The distance between mir-100 and let-7 genes within the cluster can
vary substantially between different species. Both genes in Parhyale are localized within a 9.3kb region
(Figure 14, Supplemental Figure 2) as compared to 3.8kb in the mosquito Anopheles gambiae and 100bp
in the beetle Tribolium [133]]. Similar to D. melanogaster and the polychaete Platynereis dumerilii, we
found that Parhyale mir-100 and let-7 are co-transcribed as a single, polycistronic IncRNA. We also
found another cluster with miR-71 and mir-2 family members which is conserved across many

invertebrates [136] (Figure 14, Supplemental Figure 2).
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Conserved linkages have also been observed between miRNAs and Hox genes in Bilateria [137-H141]].
For example, the phylogenetically conserved mir-10 is present within both vertebrate and invertebrate
Hox clusters between Hoxb4/Dfd and Hoxb5/Scr [[142]]. In the Parhyale genome and Hox BAC
sequences, we found that mir-10 is also located between Dfd and Src on BAC clone PA179-K23 and
scaffold phaw_30.0001203 (Figure 14, Supplemental Figure 2). However, we could not detect mir-iab-4
near the Ubx and AbdA genes in Parhyale, the location where it is found in other arthropods/insects [143].
Preliminary evidence regarding the presence of PIWI proteins and other piRNA pathway proteins also
suggests that the piRNA pathway is likely active in Parhyale, although piRNAs themselves await to be
surveyed. The opportunity to study these piRNA, miRNA and siRNA pathways in a genetically tractable
crustacean system will shed further light into the regulation and evolution of these pathways and their

contribution to morphological diversity.

Methylome analysis of the Parhyale genome

Methylation of cytosine residues (m5C) in CpG dinucleotides in animal genomes is regulated by a
conserved multi-family group of DNA methyltransferases (DNMTs) with diverse roles in the epigenetic
control of gene expression, genome stability and chromosome dynamics [[144H146]. The phylogenetic
distribution of DNMTs in Metazoa suggests that the bilaterian ancestor had at least one member of the
Dnmtl and Dnmt3 families (involved in de novo methylation and maintenance of DNA methylation) and
the Dnmt2 family (involved in tRNA methylation), as well as additional RNA methyltransferases
[[147,[148]. Many animal groups have lost some of these DNA methyltransferases, for example DNMT]
and 3 are absent from D. melanogaster and flatworms [149} [150]], while DNMT?2 is absent from
nematodes C. elegans and C. briggsae. The Parhyale genome encodes members of all 3 families DNMT1,
DNMT3 and DNMT?2, as well as 2 orthologs of conserved methyl-CpG-binding proteins and a single
orthologue of 7er2, an enzyme involved in DNA demethylation [151]] (Figure[T5A).

We used genome wide bisulfite sequencing to confirm the presence and also assess the distribution of
CpG dinucleotide methylation. Our results indicated that 20-30% of Parhyale DNA is methylated at CpG
dinucleotides (Figure[I5B). The Parhyale methylation pattern is similar to that observed in vertebrates,
with high levels of methylation detected in transposable elements and other repetitive elements, in
promoters and gene bodies (Figure[I5]C). A particular class of rolling-circle transposons are very highly
methylated in the genome, potentially implicating methylation in silencing these elements. For
comparison, about 1% or less of CpG-associated cytosines are methylated in insects like Drosophila,
Apis, Bombyx and Tribolium. [144, (152} [153]]. These data represent the first documentation of a
crustacean methylome. Considering the utility of Parhyale for genetic and genomic research, we
anticipate future investigations to shed light on the functional importance and spatiotemporal dynamics of
epigenetic modifications during normal development and regeneration, as well as their relevance to

equivalent processes in vertebrate systems.
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Parhyale genome editing using homology-independent approaches

Parhyale has already emerged as a powerful model for developmental genetic research where the
expression and function of genes can be studied in the context of stereotyped cellular processes and with
a single-cell resolution. Several experimental approaches and standardized resources have been
established to study coding and non-coding sequences (Table[I). These functional studies will be
enhanced by the availability of the assembled and annotated genome presented here. As a first application
of these resources, we tested the efficiency of the CRISPR/Cas system for targeted genome editing in
Parhyale [[1'7H22]). In these studies, we targeted the Distal-less patterning gene (called PhDIl-e) [24]] that
has a widely-conserved and highly-specific role in animal limb development [154]].

We first genotyped our wild-type laboratory culture and found two PhDIl-e alleles with 23 SNPs and 1
indel in their coding sequences and untranslated regions. For PhDII-e knock-out, two sgRNAs targeting
both alleles in their coding sequences downstream of the start codon and upstream of the DNA-binding
homeodomain were injected individually into 1-cell-stage embryos (GO generation) together with a
transient source of Cas9 (Figure 16, Supplemental Figure 1 A-B). Both sgRNAs gave rise to animals with
truncated limbs (Figure[T6A and B); the first sgRNA at a relatively low percentage around 9% and the
second one at very high frequencies ranging between 53% and 76% (Figure 16, Supplemental Figure 1).
Genotyping experiments revealed that injected embryos carried PhDIl-e alleles modified at the site
targeted by each sgRNA (Figure 16, Supplemental Figure 1 B-D). The number of modified PhDIl-e
alleles recovered from GOs varied from two, in cases of early bi-allelic editing at the 1-cell-stage, to three
or more, in cases of later-stage modifications by Cas9 (Figure 16, Supplemental Figure 1 C). We isolated
indels of varying length that were either disrupting the open reading frame, likely producing
loss-of-function alleles or were introducing in-frame mutations potentially representing functional alleles
(Figure 16, Supplemental Figure 1 C-D). In one experiment with the most efficient sgRNA, we raised the
injected animals to adulthood and set pairwise crosses between 17 fertile GOs (10 male and 7 female):
88% (15/17) of these founders gave rise to G1 offspring with truncated limbs, presumably by transmitting
PhDll-e alleles modified by Cas9 in their germlines. We tested this by genotyping individual G1s from
two of these crosses and found that embryos bearing truncated limbs were homozygous for
loss-of-function alleles with out-of-frame deletions, while their wild-type siblings carried one
loss-of-function allele and one functional allele with an in-frame deletion (Figure 16, Supplemental
Figure 1 D).

The non-homologous end joining (NHEJ) repair mechanism operating in the injected cells can be
exploited not only for gene knock-out experiments described above, but also for CRISPR knock-in
approaches where an exogenous DNA molecule is inserted into the targeted locus in a
homology-independent manner. This homology-independent approach could be particularly useful for
Parhyale that exhibits high levels of heterozygosity and polymorphisms in the targeted laboratory
populations, especially in introns and intergenic regions. To this end, we co-injected into 1-cell-stage

embryos the Cas9 protein together with the strongest sgRNA and a tagging plasmid. The plasmid was
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designed in such a way that upon its linearization by the same sgRNA and Cas9 and its integration into
the PhDIl-e locus in the appropriate orientation and open reading frame, it would restore the endogenous
PhDIl-e coding sequence in a bicistronic mRNA also expressing a nuclear fluorescent reporter. Among
injected GOs, about 7% exhibited a nuclear fluorescence signal in the distal (telopodite and exopodite)
parts of developing appendages (Figure [I6IC and Figure 16, Supplemental Figure 1 E), which are the limb
segments that were missing in the knock-out experiments (Figure[I6B). Genotyping of one of these
embryos demonstrated that the tagged PhDII-e locus was indeed encoding a functional PhDII-e protein
with a small in-frame deletion around the targeted region (Figure 16, Supplemental Figure 1 F).

These results, together with the other recent applications of the CRISPR/Cas system to study Hox genes
in Parhyale |18}, [19], demonstrate that the ability to manipulate the fertilized eggs together with the slow
tempo of early cleavages can result in very high targeting frequencies and low levels of mosaicism for
both knock-out and knock-in approaches. Considering the usefulness of the genome-wide resources
described in this report, we anticipate that the Parhyale embryo will prove an extremely powerful system

for fast and reliable GO screens of gene expression and function.

CONCLUSION

In this article we described the first complete genome of a malacostracan crustacean species, the genome
of the marine amphipod Parhyale hawaiensis. At an estimated size of 3.6 Gb, it is among the largest
genomes submitted to NCBI. The Parhyale genome reported here is that of a single adult male from a
sib-bred line called Chicago-F. We find Parhyale has an abundance of repetitive sequence and high levels
of heterozygosity in the individual sequenced. Combined with analysis of available transcriptome
sequences and independently sequenced genomic BAC clones, we conclude high levels of heterozygosity
are representative of high levels of single and polynucleotide polymorphisms in the broader laboratory
population. Our comparative bioinformatics analyses suggest that the expansion of repetitive sequences
and the increase in gene size due to an expansion of intron size have contributed to the large size of the
genome. Despite these challenges, the Parhyale genome and associated transcriptomic resources reported
here provide a useful assembly of most genic regions in the genome and a comprehensive description of
the Parhyale transcriptome and proteome.

Parhyale has emerged since the early 2000’s as an attractive animal model for developmental genetic and
molecular cell biology research. It fulfills several desirable biological and technical requirements as an
experimental model, including a relatively short life-cycle, year-round breeding under standardized
laboratory conditions, availability of thousands of eggs for experimentation on a daily basis, and
amenability to various embryological, cellular, molecular genetic and genomic approaches. In addition,
Parhyale has stereotyped cell lineages and cell behaviors, a direct mode of development, a remarkable
appendage diversity and the capacity to regenerate limbs post-embryonically. These qualities can be
utilized to address fundamental long-standing questions in developmental biology, like cell fate

specification, nervous system development, organ morphogenesis and regeneration [155]]. Research on
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these topics will benefit enormously from the standardized genome-wide resources reported here.
Forward and reverse genetic analyses using both unbiased screens and candidate gene approaches have
already been devised successfully in Parhyale (Table[I)). The availability of coding and non-coding
sequences for all identified signaling pathway components, transcription factors and various classes of
non-coding RNAs will dramatically accelerate the study of the expression and function of genes
implicated in the aforementioned processes.

Equally importantly, our analyses highlight additional areas where Parhyale could serve as a new
experimental model to address other questions of broad biomedical interest. From a functional genomics
perspective, the Parhyale immune system appears to be a good representative of the malacostracan or
even the multicrustacean clade that can be studied in detail with existing tools and resources. Besides the
evolutionary implications and the characterization of alternative strategies used by arthropods to defend
against pathogens, a deeper mechanistic understanding of the Parhyale immune system will be relevant to
aquaculture. Some of the greatest setbacks in the crustacean farming industry are caused by severe
disease outbreaks. Parhyale is closely related to farmed crustaceans (primarily shrimps, prawns and
crayfish) and the knowledge acquired from studying its innate immunity could help enhance the
sustainability of this industry by preventing or controlling infectious diseases [97,[156H159].

An immune-related problem that will be also interesting to explore in Parhyale concerns the possibility of
a sterile digestive tract similar to that proposed for limnoriid Isopods [30]]. Parhyale, like limnoriid
Isopods, encodes and expresses all enzymes required for lignocellulose digestion, suggesting that it is
able to “digest wood” by itself without symbiotic microbial partners. Of course, a lot of work still needs
to be invested in the characterization of the cellulolytic system in Parhyale before any comparisons can
be made with other well-established symbiotic digestion systems of lignocellulose. Nevertheless, the
possibility of an experimentally tractable animal model that serves as a living bioreactor to convert
lignocellulose into simpler metabolites, suggests that future research in Parhyale may also have a strong
biotechnological potential, especially for the production of biofuels from the most abundant and cheapest
raw material, plant biomass.

Although more high-quality genomes with a broader phylogenetic coverage are still needed for
meaningful evolutionary comparisons, our observations from analysing the Parhyale genome and other
crustacean data sets also contribute to the ongoing debate on the relationships between crustacean groups.
While the analysis of shared orthologous groups did not provide clear support for either the Allotriocarida
hypothesis (uniting Branchiopoda with Hexapoda) or the Vericrustacea hypothesis (uniting Branchiopoda
with Malacostraca), we noted the presence of GH7 genes and the absence of PGRP genes in branchiopod
and multicrustacean genomes supporting the Vericrustacea hypothesis. It still remains to be proven how
reliable these two characters will be to distinguish between these alternative phylogenetic affinities.
Finally, Parhyale was introduced recently as a new model for limb regeneration [[26]. In some respects,
including the segmented body plan, the presence of a blood system and the contribution of

lineage-committed adult stem cells to newly formed tissues, regeneration in Parhyale may resemble the
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process in vertebrates more than other established invertebrate models (e.g. planarians, hydra).
Regenerative research in Parhyale has been founded on transgenic approaches to label specific
populations of cells and will be further assisted by the resources presented here. Likewise, we expect that
the new genomic information and CRISPR-based genome editing methodologies together with all other

facets of Parhyale biology will open other new research avenues not yet imagined.
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MATERIALS AND METHODS

Raw genomic reads are deposited at NCBI with the project accession: PRINA306836. A list of software
and external datasets used are provided in Supplemental Data 1. Detailed methodology and codes for each
section are provided as supplementary IPython notebooks in HTML format viewable with a web browser.
All supplemental data including IPython notebook can be downloaded from this figshare link:
https://figshare.com/articles/supplemental_data_for_Parhvyale_
hawaniensis_genome/3498104

Alternatively, the IPython notebooks can also be viewed at the following github repository:

https://github.com/damiankao/phaw_genome

Genome library preparation and sequencing

About 10 pg of genomic DNA were isolated from a single adult male from the Chicago-F isofemale line
established in 2001 [S1]. The animal was starved for one week and treated for 3 days with
penicillin-streptomycin (100x, Gibco/Thermo Fisher Scientific), tetracycline hydrochloride (20 pg/ml,
Sigma-Aldrich) and amphotericin B (200x, Gibco/Thermo Fisher Scientific). It was then flash frozen in
liquid nitrogen, homogenized manually with a pestle in a 1.5 ml microtube (Kimble Kontes) in 600 pl of
Lysis buffer (100 mM Tris-HCI pH 8, 100 mM NaCl, 50 mM EDTA, 0.5% SDS, 200 pg/ml Proteinase K,
20 pug/ml RNAse A). The lysate was incubated for 3 hours at 37°C, followed by phenol/chloroform
extractions and ethanol precipitation. The condensed genomic DNA was fished out with a Pasteur pipette,
washed in 70% ethanol, air-dried, resuspended in nuclease-free water and analysed on a Qubit
fluorometer (Thermo Fisher Scientific) and on a Bioanalyzer (Agilent Technologies). All genome
libraries were prepared from this sample: 1 ug of genomic DNA was used to generate the shotgun
libraries using the TruSeq DNA Sample Prep kit (Illumina) combined with size-selection on a LabChip
XT fractionation system (Caliper Life Sciences Inc) to yield 2 shotgun libraries with average fragment
sizes 431 bp and 432 bp, respectively; 4 ug of genomic DNA were used to generate 4 mate-pair libraries
with average fragment sizes 5.5 kb, 7.3 kb, 9.3 kb and 13.8 kb using the Nextera Mate Pair Sample

Preparation kit (Illumina) combined with agarose size selection. All libraries were sequenced on a HiSeq
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2500 instrument (I1lumina) using paired-end 150 nt reads.

Karyotyping

For chromosome spreads, tissue was obtained from embryos at stages 14-18 [35]. Eggs were taken from
the mother and incubated for 1-2 h in isotonic colchicine solution (0.05% colchicine, artificial sea water).
After colchicine incubation, the embryonic tissue was dissected from the egg and placed in hypotonic
solution (0.075 M KCl) for 25 min. For tissue fixation, we replaced the hypotonic solution with freshly
prepared ice-chilled Carnoy’s fixative (six parts ethanol, three parts methanol and one part anhydrous
acetic acid) for 25 min. The fixed tissue was minced with a pair of fine tungsten needles in Carnoy’s
solution and the resulting cell suspension was dropped with a siliconized Pasteur pipette from a height of
about 5 cm onto a carefully cleaned ice-chilled microscopic slide. After partial evaporation of the
Carnoy’s fixative the slides were briefly exposed a few times to hot water vapors to rehydrate the tissue.
The slides were then dried on a 75°C metal block in a water bath. Finally, the slides with prepared
chromosomes were aged overnight at 60°C. After DNA staining either with Hoechst (H33342, Molecular
Probes) or with DAPI (Invitrogen), chromosomes were counted on a Zeiss Axioplan II Imaging equipped
with C-Apochromat 63x/1.2 NA objective and a PCO pixelfly camera. FIJI was used to improve image
quality (contrast and brightness) and FIJI plugin ‘Cell Counter’ was used to determine the number of

chromosomes.

Analysis of polymorphism and repetitiveness

The Parhyale raw data and assembled data are available on the NCBI website. Genome assembly was
done with Abyss [[160] at two different k-mer settings (70, 120) and merged with GAM-NGS. Scaffolding
was performed with SSPACE [161]]. We chose cut-offs of >95% overlap length and >95% identity when
removing shorter allelic contigs before scaffolding as these gave better scaffolding results as assessed by
assembly metrics. Transcriptome assembly was performed with Trinity [S7]. The completeness of the
genome and transcriptome was assessed by blasting against CEGMA genes [58]] and visualized by
plotting the orthologue hit ratio versus e-value. K-mer analysis of variant and repetitive branching was
performed with String Graph Assembler’s preqc module [54]. K-mer intersection analysis was performed
using jellyfish2 [[162]. An in-depth description of the assembly process is detailed in Supplemental Data
6.

Transcriptome library preparation, sequencing and assembly

Parhyale transcriptome assembly was generated from Illumina reads collected from diverse embryonic
stages (Stages 19, 20, 22, 23, 25, and 28), and adult thoracic limbs and regenerating thoracic limbs (3 and
6 days post amputation). For the embryonic samples, RNA was extracted using Trizol; PolyA+ libraries
were prepared with the Truseq V1 kit (Illumina), starting with 0.6 - 3.5ug of total mRNA, and sequenced
on the Illumina Hiseq 2000 as paired-end 100 base reads, at the QB3 Vincent J. Coates Genomics

Sequencing Laboratory. For the limb samples, RNA was extracted using Trizol; PolyA+ libraries were
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prepared with the Truseq V2 kit (Illumina), starting with lug of total mRNA, and sequenced on the
Illumina Hiseq 2500 as paired-end 100 base reads, at the IGBMC Microarray and Sequencing platform.
260 million reads from embryos and 180 million reads from limbs were used for the transcriptome
assembly. Prior to the assembly we trimmed adapter and index sequences using cutadapt [163]. We also
removed spliced leader sequences: GAATTTTCACTGTTCCCTTTACCACGTTTTACTG,
TTACCAATCACCCCTTTACCAAGCGTTTACTG, CCCTTTACCAACTCTTAACTG,

CCCTTTACCAACTTTACTG using cutadapt with 0.2 error allowance to remove all potential variants
[[164]. To assemble the transcriptome we used Trinity (version trinityrnaseq_r20140413) [57] with

settings: -min_kmer_cov 2, -path_reinforcement_distance 50.

Gene model prediction and canonical proteome dataset generation

Gene prediction was done with a combination of Evidence Modeler [[165] and Augustus [[166]. The
transcriptome was first mapped to the genome using GMAP [167]. A secondary transcriptome reference
assembly was performed with STAR/Cufflinks [168|[169]]. The transcriptome mapping and Cufflinks
assembly was processed through the PASA pipeline [[165] to consolidate the annotations. The PASA
dataset, a set of Exonerate [170] mapped Uniprot proteins, and Ab inito GeneMark [171] predictions were
consolidated with Evidence Modeler to produce a set of gene annotations. A high confidence set of gene
models from Evidence Modeler containing evidence from all three sources was used to train Augustus.
Evidence from RepeatMasker [172]], PASA and Exonerate were then used to generate Augustus gene
predictions. A final list of genes for down-stream analysis was generated using both transcriptome and

gene predictions (canonical proteome dataset). Detailed methods are described in Supplemental Data 8.

Polymorphism analysis on genic regions and BAC clones

For variant analysis on the BAC clones, the short shot-gun library genomic reads were mapped to the
BAC clones individually. GATK was then used to call variants. For variant analysis on the genic regions,
transcript sequences used to generate the canonical proteome dataset were first aligned to the genome
assembly. Genome alignments of less than 30 base pairs were discarded. The possible genome
alignments were sorted based on number of mismatches with the top alignment having the least amount
of mismatches. For each transcript, the top two genome aligments were used to call potential variants.
Trascripts or parts of transcripts where there were more than five genomic mapping loci were discarded as
potentially highly conserved domains or repetitive regions. Detailed methods of this process are

described in Supplemental Data 9.

Polymorphisms in Parhyale developmental genes

Parhyale genes (nucleotide sequences) were downloaded from GenBank. Each gene was used as a query
for blastn against the Parhyale genome using the Geneious software [[173]]. In each case two reference
contig hits were observed where both had E values of close to zero. A new sequence called geneX_snp

was created and this sequence was annotated with the snps and/or indels present in the alternative
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genomic contigs. To determine the occurrence of synonymous and non-synonymous substitutions, the
original query and the newly created sequence (with polymorphisms annotated) were in silico translated
into protein sequences followed by pairwise alignment. Regions showing amino acid changes were
annotated as non-synonymous substitutions. Five random genes from the catalogue were selected for
PCR, cloning and Sanger sequencing to confirm genomic polymorphisms and assess further
polymorphism in the lab popultaion. Primers for genomic PCR designed to capture and amplify exon
regions are listed as the following: dachshund (PHIF = 5’- GGTGCGCTAAATTGAAGAAATTACG-3’
and PHIR = 5’- ACTCAGAGGGTAATAGTAACAGAA-3’), distalless exon 2 (PH2F =
5’-CACGGCCCGGCACTAACTATCTC-3’ and PH2R =
5’-GTAATATATCTTACAACAACGACTGAC-3’), distalless exon 3 (PH3F =
5’-GGTGAACGGGCCGGAGTCTC-3’ and PH3R = 5’-GCTGTGGGTGCTGTGGGT-3"), homothorax
(PH4F = 5>-TCGGGGTGTAAAAAGGACTCTG-3" and PH4R =
5’-AACATAGGAACTCACCTGGTGC-3’), orthodenticle (PHSF =
5’-TTTGCCACTAACACATATTTCGAAA-3’ and PH5R = 5’-TCCCAAGTAGATGATCCCTGGAT-3’)
and prospero (PH6F = 5’-TACACTGCAACATCCGATGACTTA-3’ and PH6R =
5’-CGTGTTATGTTCTCTCGTGGCTTC-3’).

Evolutionary analyses of orthologous groups

Evolutionary analyses and comparative genomics were performed with 16 species: D. melanogaster, A.
gambiae, D. pulex, L. salmonis, S.maritima, S. mimosarum, M. martensii, I. scapularis, H. dujardini, C.
elegans, B. malayi, T. spiralis, M. musculus, H. sapiens, and B. floridae. For orthologous group analyses,
gene families were identified using OrthoFinder [59]. The canonical proteome was used as a query in
BlastP against proteomes from 16 species to generate a distance matrix for OrthoFinder to normalize and
then cluster with MCL. Detailed methods are described in Supplemental Data 10. For the comparative
BLAST analysis, five additional transcriptome datasets were used from the following crustacean species:
Litopenaeus vannamei, Echinogammarus veneris, Eucyclops serrulatus, Calanus finmarchicus,

Speleonectes tulumensis.

Fluorescence in situ hybridization detection of Hox genes

Embryo fixation and in-situ hybridization was performed according to [40]. To enhance the nascent
nuclear signal over mature cytoplasmic transcript, we used either early germband embryos (Stages 11 —
15) in which expression of lab, Dfd, and Scr are just starting [18], or probes that contain almost
exclusively intron sequence (Ubx, abd-A, Abd-B, and enl). Lab, Dfd, and Scr probes are described in
[[L8]. Template for the intron-spanning probes were amplified using the following primers: enl-Intronl,
AAGACACGACGAGCATCCTG and CTGTGTATGGCTACCCGTCC; Ubx-Intronl,
GGTATGACAGCCGTCCAACA and AGAGTGCCAAGGATACCCGA; abd-A,
CGATATACCCAGTCCGGTGC and TCATCAGCGAGGGCACAATT; Abd-B,
GCTGCAGGATATCCACACGA and TGCAGTTGCCGCCATAGTAA.
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A T7-adapter was appended to the 5’ end of each reverse primer to enable direct transcription from PCR
product. Probes were labeled with either Digoxigenin (DIG) or Dinitrophenol (DNP) conjugated UTPs,
and visualized using sheep o-DIG (Roche) and donkey a-Sheep AlexaFluor 555 (Thermo Fischer
Scientific), or Rabbit a-DNP (Thermo Fischer Scientific) and Donkey o -Rabbit AlexaFluor 488 (Jackson
ImmunoResearch), respectively. Preparations were imaged on an LSM 780 scanning laser confocal

(Zeiss), and processed using Volocity software (Perkin-Elmer).

Cross species identification of GH family genes and immune-related genes

The identification of GH family genes was done by obtaining Pfam annotations [96] for the Parhyale
canonical proteome. Pfam domains were classified into different GH families based on the CAZy
database [95]]. For immune-related genes, best-reciprocal blast was performed with ImmunoDB genes

[98]].

Phylogenetic tree construction

Multiple sequence alignments of protein sequences for gene families of FGF, FGFR, CERS, GH7, GH9,
PGRP, Toll-like receptors, DICER, Piwi and Argonaute were performed using MUSCLE [174].
Phylogenetic tree construction was performed with RAXML [1735] using the WAG+G model from
MUSCLE multiple alignments.

Bisulfite sequencing

Libraries for DNA methylation analysis by bisulfite sequencing were constructed from 100ng of genomic
DNA extracted from one Parhyale male individual, using the Illumina Truseq DNA methylation kit
according to manufacturers instructions. Alignments to the Parhyale genome were generated using the
core Bismark module from the program Bismark [[176]], having first artificially joined the Parhyale
contigs to generate 10 pseudo-contigs as the program is limited as to the number of separate contigs it can
analyse. We then generated genome-wide cytosine coverage maps using the
bismark_methylation_extraction module with the parameter —CX specified to generate annotations of CG,
CHH and CHG sites. In order to analyse genome-wide methylation patterns only cytosines with more
than a 10 read depth of coverage were selected. Overall methylation levels at CG, CHH and CHG sites
were generated using a custom Perl script. To analyse which regions were methylated we mapped back
from the joined contigs to the original contigs and assigned these to functional regions based on
RepeatMasker [[172]] and transcript annotations of repeats and genes respectively. To generate overall
plots of methylation levels in different features we averaged over all sites mapping to particular features,
focusing on CG methylation and measuring the %methylation at each site as the number of reads showing
methylation divided by the total number of reads covering the site. Meta gene plots over particular
features were generated similarly except that sites mapping within a series of 100bp wide bins from

1000bp upstream of the feature start site and onward were collated.
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Identification and cloning of Dscam alternative spliced variants

For the identification of Dscam in the Parhyale, we used the Dscam protein sequence from crustaceans D.
pulex [114] and L. vannamei [1'77] as queries to probe the assembled genome using tBlastN. A 300kb
region on scaffold phaw_30.0003392 was found corresponding to the Parhyale Dscam extending from
IG1 to FNG6 exons. This sequence was annotated using transcriptome data together with manual searches
for open reading frames to identify IG, FN exons and exon-intron boundaries (Figure 13 supplemental
figure 1). Hypervariable regions of IG2, IG3 and IG7 were also annotated accordingly on the scaffold
(Figure 13 supplemental figure 1). This region represents a bona fide Dscam paralog as it matches the
canonical extracellular Dscam domain structure of nine IGs — four FNs — one IG and two FNs. Parhyale
mRNA extractions were performed using the Zymo Research Direct-zol RNA MiniPrep kit according to
manufacturer’s instructions. Total RNA extract was used for cDNA synthesis using the Qiagen QuantiTect
Reverse Transcription Kit according to manufacturer’s instructions. To identify and confirm potential
hypervariable regions from the Parhyale (Ph-Dscam) transcript, three regions of Ph-Dscam corresponding
to IG2, IG3 and IG7 exons respectively were amplified using the following primer pairs. IG2 region:
DF1 =5 -CCCTCGTGTTCCCGCCCTTCAAC-3’

DRI = 5-GCGATGTGCAGCTCTCCAGAGGG-3’

IG3 region:

DF2 = 5’-TCTGGAGAGCTGCACATCGCTAAT-3’

DR2 = 5-GTGGTCATTGCGTACGAAGCACTG-3’

IG7 region:

DF3 = 5’-CGGATACCCCATCGACTCCATCG-3’

DR3 =5-GAAGCCGTCAGCCTTGCATTCAA-3’

PCR of each region was performed using Phusion High-fidelity polymerase from Thermo Fisher
Scientific and thermal cycling was done as the following: 98°C 30s, followed by 30 cycles of 98°C 10s,
67°C 30s, 72°C 1m30s, and then 72°C 5m. PCR products were cloned into pPGEMT-Easy vector and a
total of 81 clones were selected and Sanger sequenced and in silico translated in the correct reading frame

using Geneious (R7; [173] for multiple sequence alignment.

Identification of non-protein-coding RNAs

Parhyale non-protein-coding RNAs were identified using two independent approaches. Infernal 1.1.1
[[L78]] was used with the RFAM 12.0 database [[130] to scan the genome to identify potential non-coding
RNAs. Additionally, MiRPara [[129] was used to scan the genome for potential miRNA precursors. These
potential precursors were further filtered using small RNA read mapping and miRBase mapping [179].
Putative IncRNAs were identified from the transcriptome by applying filtering criteria including removal

of known and predicted coding RNAs. Detailed methods are available in Supplementary Data 11.

26/77]


https://doi.org/10.1101/065789
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065789; this version posted October 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

aCC-BY-NC-ND 4.0 International license.

CRISPR/Cas genome editing

To genotype our wild-type population, extraction of total RNA and preparation of cDNA from embryos
were carried out as previously described [25]. The PhDIl-e cDNA was amplified with primers
PhDlle_2For (5’-TTTGTCAGGGATCTGCCATT-3") and PhDlle_1852Rev
(5’-TAGCGGCTGACGGTTGTTAC-3’), purified with the DNA Clean and Concentrator kit (Zymo
Research), cloned with the Zero Blunt TOPO PCR Cloning Kit (Thermo Fisher Scientific) and sequenced
with primers M13 forward (5’- GTAAAACGACGGCCAG-3’) and M13 reverse (5°-
CAGGAAACAGCTATGAC-3’).

Each template for sgRNA synthesis was prepared by annealing and PCR amplification of the
sgRNA-specific forward primer DI11: (18 nt PhDIl-e-targeted sequence underlined)
5’-GAAATTAATACGACTCACTATA
AGAGTTGTTACCAAAGAAGTTTTAGAGCTAGAAATAGC-3’

or DI12: (20 nt PhDIl-e-targeted sequence underlined)
5’-GAAATTAATACGACTCACTAT
AGGCTTCCCCGCCGCCATGTAGTTTTAGAGCTAGAAATAGC-3’

together with the universal reverse primer:
5’-AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAA
CGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-3’

using the Phusion DNA polymerase (New England Biolabs).

Each PCR product was gel-purified with the Zymoclean DNA recovery kit (Zymo Research) and 150 ng
of DNA were used as template in an in vitro transcription reaction with the Megashortscript T7 kit
(Thermo Fisher Scientific). A 4-hour incubation at 37°C was followed by DNAse digestion,
phenol/chloroform extraction, ethanol precipitation and storage in ethanol at -20°C according to the
manufacturer’s instructions. Before microinjection, a small aliquot of the sgRNA was centrifuged, the
pellet was washed with 70% ethanol, resuspended in nuclease-free water and quantified on a Nanodrop
spectrophotometer (Thermo Scientific). The Cas9 was provided either as in vitro synthesized caped
mRNA or as recombinant protein. Cas9 mRNA synthesis was carried out as previously described [45]]
using plasmid T7-Cas9 (a gift from David Stern and Justin Crocker) linearized with EcoRI digestion. The
lyophilized Cas9 protein (PNA Bio Inc) was resuspended in nuclease-free water at a concentration of 1.25
pg/ul and small aliquots were stored at -80°C. For microinjections, we mixed 400 ng/ul of Cas9 protein
with 40-200 ng/pl sgRNA, incubated at 37°C for 5 min, transferred on ice, added the inert dye phenol red
(5x from Sigma-Aldrich) and, for knock-in experiments, the tagging plasmid at a concentration of 10
ng/ul. The injection mix was centrifuged for 20 min at 4°C and the cleared solution was microinjected
into 1-cell-stage embryos as previously described [45].

In the knock-out experiments, embryos were scored for phenotypes under a bright-field stereomicroscope
7-8 days after injection (stage S25-S27) when organogenesis is almost complete and the limbs are clearly

visible through the transparent egg shell. To image the cuticle, anaesthetized hatchlings were fixed in 2%
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paraformaldehyde in 1xPBS for 24 hours at room temperature. The samples were then washed in PTx
(1xPBS containing 1% TritonX-100) and stained with 1 mg/ml Congo Red (Sigma-Aldrich) in PTx at
room temperature with agitation for 24 hours. Stained samples were washed in PTx and mounted in 70%
glycerol for imaging. Serial optical sections were obtained at 2 um intervals with the 562 nm laser line on
a Zeiss 710 confocal microscope using the Plan-Apochromat 10x/0.45 NA objective. Images were
processed with Fiji (http:/fiji.sc) and Photoshop (Adobe Systems Inc).

This methodology enabled us to also extract genomic DNA for genotyping from the same imaged
specimen. Each specimen was disrupted with a disposable pestle in a 1.5 ml microtube (Kimble Kontes)
in 50 pl of Squishing buffer (10 mM Tris-HCI pH 8, 1 mM EDTA, 25 mM NaCl, 200 pg/ml Proteinase
K). The lysate was incubated at 37°C for a minimum of 2 hours, followed by heat inactivation of the
Proteinase K for 5 min at 95°C, centrifugation at full speed for 5 min and transferring of the cleared
lysate to a new tube. To recover the sequences in the PhDII-e locus targeted by the DII1 and D112 sgRNAs,
5 ul of the lysate were used as template in a 50 ul PCR reaction with the Phusion DNA polymerase (New
England Biolabs) and primers 313For (5’ -TGGTTTTAGCAACAGTGAAGTGA-3’) and 557Rev
(5’-GACTGGGAGCGTGAGGGTA-3’). The amplified products were purified with the DNA Clean and
Concentrator kit (Zymo Research), cloned with the Zero Blunt TOPO PCR Cloning Kit (Thermo Fisher
Scientific) and sequenced with the M 13 forward primer.

For the knock-in experiments, we constructed the tagging plasmid
pCRISPR-NHEJ-KI-DII-T2A-H2B-Ruby? that contained the PhDII-e coding sequence fused in-frame
with the T2A self-cleaving peptide, the Parhyale histone H2B and the Ruby 2 monomeric red fluorescent
protein, followed by the PhDIll-e 3’UTR and the pGEM-T Easy vector backbone (Promega). This tagging
plasmid has a modular design with unique restriction sites for easy exchange of any desired part. More
details are available upon request. Embryos co-injected with the Cas9 protein, the D112 sgRNA and the
pCRISPR-NHEJ-KI-DII-T2A-H2B-Ruby?2 tagging plasmid were screened for nuclear fluorescence in the
developing appendages under an Olympus MVX10 epi-fluorescence stereomicroscope. To image
expression, live embryos at stage S22 were mounted in 0.5% SeaPlaque low-melting agarose (Lonza) in
glass bottom microwell dishes (MatTek Corporation) and scanned as described above acquiring both the
fluorescence and transmitted light on an inverted Zeiss 880 confocal microscope. To recover the
chromosome-plasmid junctions, genomic DNA was extracted from transgenic siblings with fluorescent
limbs and used as template in PCR reaction as described above with primer pair 313For and H2BRev
(5’-TTACTTAGAAGAAGTGTACTTTG-3’) for the left junction and primer pair M13 forward and
557Rev for the right junction. Amplified products were purified and cloned as described above and

sequenced with the M 13 forward and M13 reverse primers.
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Figure 1. Introduction. (A) Phylogenetic relationship of Arthropods showing the Chelicerata as an
outgroup to Mandibulata and the Pancrustacea clade which includes crustaceans and insects. Species
listed for each clade have ongoing or complete genomes. Species include Crustacea: Parhyale hawaiensis,
D. pulex; Hexapoda: Drosophila melanogaster, Apis mellifera, Bombyx mori, Aedis aegypti, Tribolium
castaneum; Myriapoda: Strigamia maritima, Trigoniulus corallines; Chelicerata: Ixodes scapularis,
Tetranychus urticae, Mesobuthus martensii, Stegodyphus mimosarum. (B) One of the unresolved issues
concerns the placement of the Branchiopoda either together with the Cephalocarida, Remipedia and
Hexapoda (Allotriocarida hypothesis A) or with the Copepoda, Thecostraca and Malacostraca
(Vericrustacea hypothesis B). (C) Life cycle of Parhyale that takes about two months at 26°C. Parhyale is
a direct developer and a sexually dimorphic species. The fertilized egg undergoes stereotyped total
cleavages and each blastomere becomes committed to a particular germ layer already at the 8-cell stage
depicted in (D). The three macromeres Er, El, and Ep give rise to the anterior right, anterior left, and
posterior ectoderm, respectively, while the fourth macromere Mav gives rise to the visceral mesoderm
and anterior head somatic mesoderm. Among the 4 micromeres, the mr and ml micromeres give rise to
the right and left somatic trunk mesoderm, en gives rise to the endoderm, and g gives rise to the germline.
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Figure 2. Parhyale karyotype. (A) Frequency of the number of chromosomes observed in 42 mitotic

spreads. Forty-six chromosomes were observed in more than half of all preparations. (B) Representative
image of Hoechst-stained chromosomes.
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Figure 3. Parhyale genome assembly metrics. (A) K-mer frequency spectra of all reads for k-lengths
ranging from 20 to 50. (B) K-mer branching analysis showing the frequency of k-mer branches classified
as variants compared to Homo sapiens (human), Crassostrea gigas (oyster), and Saccharomyces
cerevisiae (yeast). (C) K-mer branching analysis showing the frequency of k-mer branches classified as
repetitive compared to H. sapiens, C. gigas and S. cerevisiae. (D) Histogram of read coverages of
assembled contigs. (E) The number of contigs with an identity ranging from 70-95% to another contig in
the set of assembled contigs. (F) Collapsed contigs (green) are contigs with at least 95% identity with a
longer primary contig (red). These contigs were removed prior to scaffolding and added back as potential
heterozygous contigs after scaffolding.
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Figure 4. Workflows of assembly, annotation, and proteome generation. (A) Flowchart of the
genome assembly. Two shotgun libraries and four mate-pair libraries with the indicated average sizes
were prepared from a single male animal and sequenced to a predicted depth of 115x coverage after read
filtering, based on a predicted size of 3.6 Gbp. Contigs were assembled at two different k-lengths with
Abyss and the two assemblies were merged with GAM-NGS. Filtered contigs were scaffolded with
SSPACE. (B) The final scaffolded assembly was annotated with a combination of Evidence Modeler to
generate 847 high quality gene models and Augustus for the final set of 28,155 predictions. These
protein-coding gene models were generated based on a Parhyale transcriptome consolidated from
multiple developmental stages and conditions, their homology to the species indicated, and ab initio
predictions with GeneMark and SNAP. (C) The Parhyale proteome contains 28,666 entries based on the
consolidated transcriptome and gene predictions. The transcriptome contains 292,924 coding and
non-coding RNAs, 96% of which could be mapped to the assembled genome.
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Figure 5. Parhyale genome comparisons. (A) Box plots comparing gene sizes between Parhyale and
humans (H. sapiens), water fleas (D. pulex), flies (D. melanogaster) and nematodes (C. elegans). Ratios
were calculated by dividing the size of the top blast hit in each species with the corresponding Parhyale
gene size. (B) Box plots showing the distribution of intron sizes in the same species used in A. (C)
Comparison between Parhyale and representative proteomes from the indicated animal taxa. Colored bars
indicate the number of blast hits recovered across various thresholds of E-values. The top hit value
represents the number of proteins with a top hit corresponding to the respective species. (D) Cladogram
showing the number of shared orthologous protein groups at various taxonomic levels, as well as the
number of clade-specific groups. A total of 123,341 orthogroups were identified with Orthofinder across
the 16 genomes used in this analysis. Within Pancrustacea, 37 orthogroups were shared between
Branchiopoda and Hexapoda (supporting the Allotriocarida hypothesis) and 49 orthogroups were shared
between Branchiopoda and Amphipoda (supporting the Vericrustacea hypothesis).
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Figure 6. Variation analyses of predicted genes. (A) A read coverage histogram of predicted genes.
Reads were first mapped to the genome, then coverage was calculated for transcribed regions of each
defined locus. (B) A coverage distribution plot showing that genes in the lower coverage region (<105x
coverage, peak at 75x ) have a higher level of heterozygosity than genes in the higher coverage region
(>105 coverage and <250, peak at approximately 150x coverage). (C) Distribution plot indicating that
mean level of population variance is similar for genes in the higher and lower coverage regions.
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Figure 7. Variation observed in contiguous BAC sequences. (A) Schematic diagram of the
contiguous BAC clones tiling across the HOX cluster and their % sequence identities. “Overlap length”
refers to the lengths (bp) of the overlapping regions between two BAC clones. “BAC supported single
nucleotide polymorphisms (SNPs)” refer to the number of SNPs found in the overlapping regions by
pairwise alignment. “Genomic reads supported SNPs” refer to the number of SNPs identified in the
overlapping regions by mapping all reads to the BAC clones and performing variant calling with GATK.
“BAC + Genomic reads supported SNPs” refer to the number of SNPs identified from the overlapping
regions by pairwise alignment that are supported by reads. ”Third allele” refers to presence of an
additional polymorphism not detected by genomic reads. "Number of INDELs” refer to the number of all
insertion or deletions found in the contiguous region. ”Number of INDELs >100" are insertion or

deletions greater than or equal to 100. (B) Position versus indel lengths across each overlapping BAC
region.
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Figure 8. Comparison of Wnt family members across Metazoa. Comparison of Wnt genes across
Metazoa. Tree on the left illustrates the phylogenetic relationships of species used. Dotted lines in the
phylogenetic tree illustrate the alternative hypothesis of Branchiopoda + Hexapoda versus Branchiopoda
+ Multicrustacea. Colour boxes indicate the presence of certain Wnt subfamily members (wntl to wntl1,
wntl6 and wntA) in each species. Empty boxes indicate the loss of particular Wnt genes. Two
overlapping colour boxes represent duplicated Wnt genes.
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Figure 9. Homeodomain protein family tree. The overview of homeodomain radiation and
phylogenetic relationships among homeodomain proteins from Arthropoda (P. hawaiensis, D.
melanogaster and A. mellifera), Chordata (H. sapiens and B. floridae), and Cnidaria (N. vectensis). Six
major homeodomain classes are illustrated (SINE, TALE, POU, LIM, ANTP and PRD) with histograms
indicating the number of genes in each species belonging to a given class.
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Figure 10. Evidence for an intact Hox cluster in Parhyale. (A-F”’) Double fluorescent in situ
hybridizations (FISH) for nascent transcripts of genes. (A-A”) Deformed (Dfd) and Sex combs reduced
(Scr), (B-B”) engrailed 1 (enl) and Ultrabithorax (Ubx), (C-C”) enl and abdominal-A (abd-A), (D-D”)
labial (lab) and Dfd, (E-E”) Ubx and abd-A, and (F-F’) Abdominal-B (Abd-B) and abd-A. Cell nuclei are
stained with DAPI (blue) in panels A-F and outlined with white dotted lines in panels A’-F” and A”-F”.
Co-localization of nascent transcript dots in A, D, E and F suggest the proximity of the corresponding
Hox genes in the genomic DNA. As negative controls, the en/ nascent transcripts in B and C do not
co-localize with those of Hox genes Ubx or abd-A. (G) Schematic representation of the predicted
configuration of the Hox cluster in Parhyale. Previously identified genomic linkages are indicated with
solid black lines, whereas linkages established by FISH are shown with dotted gray lines. The arcs
connecting the green and red dots represent the linkages identified in D, E and F, respectively. The
position of the Hox3 gene is still uncertain. Scale bars are Sum.
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Figure 11. Lignocellulose digestion overview. (A) Simplified drawing of lignocellulose structure. The
main component of lignocellulose is cellulose, which is a 3-1,4-linked chain of glucose monosaccharides.
Cellulose and lignin are organized in structures called microfibrils, which in turn form macrofibrils. (B)
Summary of cellulolytic enzymes and reactions involved in the breakdown of cellulose into glucose.
f3-1,4-endoclucanases of the GH9 family catalyze the hydrolysis of crystalline cellulose into cellulose
chains. 3-1,4-exoclucanases of the GH7 family break down cellulose chains into cellobiose (glucose
disaccharide) that can be converted to glucose by 3-glucosidases. (C) Adult Parhyale feeding on a slice
of carrot.
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Figure 12. Phylogenetic analysis of GH7 and GH9 family proteins. (A) Phylogenetic tree showing
the relationship between GH7 family proteins of Parhyale, other crustaceans (Malacostraca,
Branchiopoda, Copepoda), fungi and symbiotic protists (root). UniProt and GenBank accessions are
listed next to the species names. (B) Phylogenetic tree showing the relationship between GH9 family
proteins of Parhyale, crustaceans, insects, molluscs, echinoderms, amoeba, bacteria and plants (root).
UniProt and GenBank accessions are listed next to the species names. Both trees were constructed with
RAXML using the WAG+G model from multiple alignments of protein sequences created with MUSCLE.
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Figure 13. Comparison of innate immunity genes. (A) Phylogenetic tree of peptidoglycan
recognition proteins (PGRPs). With the exception of Remipedes, PGRPs were not found in Crustaceans.
PGRPs have been found in Arthropods, including insects, Myriapods and Chelicerates. (B) Phylogenetic
tree of Toll-like receptors (TLRs) generated from five Crustaceans, three Hexapods, two Chelicerates, one
Myriapod and one vertebrate species. (C) Genomic organization of the Parhyale Dscam locus showing
the individual exons and exon arrays encoding the immunoglobulin (IG) and fibronectin (FN) domains of
the protein. (D) Structure of the Parhyale Dscam locus and comparison with the (E) Dscam loci from
Daphnia pulex, Daphnia magna and Drosophila melanogaster. The white boxes represent the number of
predicted exons in each species encoding the signal peptide (red), the IGs (blue), the FNs and
transmembrane (yellow) domains of the protein. The number of alternatively spliced exons in the arrays
encoding the hypervariable regions IG2 (exon 4 in all species), IG3 (exon 6 in all species) and IG7 (exon
14 in Parhyale, 11 in D. pulex and 9 in Drosophila) are indicated under each species schematic in the
purple, green and magenta boxes, respectively. Abbreviations of species used: Parhyale hawaiensis
(Phaw), Bombyx mori (Bmor), Aedes aegypti (Aaeg), Drosophila melanogaster (Dmel), Apis mellifera
(Amel), Speleonectes tulumensis (Stul), Strigamia maritima (Smar), Stegodyphus mimosarum (Smim),
Ixodes scapularis (Isca), Amblyomma americanum (Aame), Nephila pilipes (Npil), Rhipicephalus
microplus (Rmic), Ixodes ricinus (Iric), Amblyomma cajennense (Acaj), Anopheles gambiae (Agam),
Daphnia pulex (Apul), Tribolium castaneum (Tcas), Litopenaeus vannamei (Lvan), Lepeophtheirus
salmonis (Lsal), Eucyclops serrulatus (Eser), Homo sapiens (H.sap). Both trees were constructed with
RAxML using the WAG+G model from multiple alignments of protein sequences created with MUSCLE.
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Figure 14. Evolution of miRNA families in Eumetazoans. Phylogenetic tree showing the gains (in
green) and losses (in red) of miRNA families at various taxonomic levels of the Eumetazoan tree leading
to Parhyale. miRNAs marked with plain characters were identified by MirPara with small RNA
sequencing read support. miRNAs marked with bold characters were identified by Rfam and MirPara
with small RNA sequencing read support.
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Figure 15. Analysis of Parhyale genome methylation. (A) Phylogenetic tree showing the families
and numbers of DNA methyltransferases (DNMTs) present in the genomes of indicated species. Parhyale
has one copy from each DNMT family. (B) Amounts of methylation detected in the Parhyale genome.
Amount of methylation is presented as percentage of reads showing methylation in bisulfite sequencing
data. DNA methylation was analyzed in all sequence contexts (CG shown in dark, CHG in blue and CHH
in red) and was detected preferentially in CpG sites. (C) Histograms showing mean percentages of
methylation in different fractions of the genome: DNA transposons (DNA), long terminal repeat
transposable elements (LTR), rolling circle transposable elements (RC), long interspersed elements
(LINE), coding sequences (cds), introns, promoters, and the rest of the genome.
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Figure 16. CRISPR/Cas9-based genome editing in Parhyale. (A) Wild-type morphology. (B)
Mutant Parhyale with truncated limbs after CRISPR-mediated knock-out (DIIKO) of the limb patterning
gene Distal-less (PhDII-e). Panels show ventral views of juveniles stained for cuticle and color-coded by
depth with anterior to the left. (C) Fluorescent tagging of PhDIl-e expressed in most limbs (shown in
cyan) by CRISPR-mediated knock-in (DIIKI) using the non-homologous-end-joining repair mechanism.
Panel shows a lateral view with anterior to the left and dorsal to the top of a live embryo (stage S22) with
merged bright-field and fluorescence channels. Yolk autofluorescence produces a dorsal crescent of
fluorescence in the gut. Scale bars are 100 um.
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Table 1. Experimental resources. Available experimental resources in Parhyale and corresponding
references.

Experimental Resources References

Embryological manipulations

Cell microinjection, isolation, ablation [36ri38) K 1Ha6]

Gene expression studies

In situ hybridization, antibody staining 1394 20]
Gene knock-down

RNA interference, morpholinos [24150]
Transgenesis (45, 48| 49)]
Transposon-based, integrase-based T
Gene trapping 9]
Exon/enhancer trapping, iTRAC (trap conversion)

Gene misexpression 23]
Heat-inducible

Gene knock-out (19]
CRISPR/Cas

Gene knock-in (18]
CRISPR/Cas homology-dependent or homology-independent

Live imaging (43, 4] 7]

Bright-field, confocal, light-sheet microscopy
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Table 2. Assembly statistics. Length metrics of assembled scaffolds and contigs.

# sequences N90 N50 N10 Sum Length Max Length # Ns
scaffolds 133,035 14,799 81,190 289,705 3.63GB 1,285,385 1.10GB
unplaced contigs 259,343 304 627 1,779 146MB 40,222 23,431
hetero. contigs 584,392 265 402 1,038 240MB 24,461 627
genic scaffolds 15,160 52,952 161,819 433,836 1.49GB 1,285,385 323MB
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Table 3. BAC variant statistics. Level of heterozygosity of each BAC sequence determined by
mapping genomic reads to each BAC individually. Population variance rate represent additional alleles
found (more than 2 alleles) from genomic reads.

BACID Length  Heterozygosity Pop.Variance
PA81-D11 140,264 1.654 0.568
PA40-0O15 129,957 2.446 0.647
PA76-H18 141,844 1.824 0.199
PA120-H17 126,766 2.673 1.120
PA222-D11 128,542 1.344 1.404
PA31-H15 140,143 2.793 0.051
PA284-107 141,390 2.046 0.450
PA221-A05 148,703 1.862 1.427
PA93-L.04 139,955 2.177 0.742
PA272-M04 134,744 1.925 0.982
PA179-K23 137,239 2.671 0.990
PA92-D22 126,848 2.650 0.802
PA268-E13 135,334 1.678 1.322
PA264-B19 108,571 1.575 0.157
PA24-C06 141,446 1.946 1.488
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Table 4. Small RNA processing pathway members. The Parhyale orthologs of small RNA processing
pathway members.

Gene Counts Gene ID

Armitace ) phaw_30_tra_m.006391

& phaw_30_tra_m.007425
phaw_30_tra_m.000091
Spindle_E 3 phaw_30_tra_m.020806
phaw_30_tra_m.018110

phaw_30_tra_m.014329
phaw_30_tra_m.012297
phaw_30_tra_m.004444
rm62 7 phaw_30_tra_m.012605
phaw_30_tra_m.001849
phaw_30_tra_m.006468
phaw_30_tra_m.023485

phaw_30_tra_m.011247

Piwi/aubergine 2 phaw_30_tra_m.016012

Dicer 1 1 phaw_30_tra_m.001257
Dicer 2 1 phaw_30_tra_m.021619
argonaute 1 1 phaw_30_tra_m.006642

phaw_30_tra_m.021514
arogonaute 2 3 phaw_30_tra_m.018276
phaw_30_tra_m.012367

phaw_30_tra_m.006389

Loguacious 2 phaw_30_tra_m.000074

Drosha 1 phaw_30_tra_m.015433
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