

1 The genome of the crustacean *Parhyale* 2 *hawaiensis*: a model for animal 3 development, regeneration, immunity 4 and lignocellulose digestion

5 **Damian Kao¹, Alvina G. Lai¹, Evangelia Stamatakis², Silvana Rosic^{3,4},**
6 **Nikolaos Konstantinides⁵, Erin Jarvis⁶, Alessia Di Donfrancesco¹, Natalia**
7 **Pouchkina-Stantcheva¹, Marie Sémond⁵, Marco Grillo⁵, Heather Bruce⁶,**
8 **Suyash Kumar², Igor Siwanowicz², Andy Le², Andrew Lemire², Michael B.**
9 **Eisen⁷, Cassandra Extavour⁸, William E. Browne⁹, Carsten Wolff¹⁰,**
10 **Michalis Averof⁵, Nipam H. Patel⁶, Peter Sarkies^{3,4}, Anastasios**
11 **Pavlopoulos², and A. Aziz Aboobaker¹**

12 ¹**Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS,**
13 **United Kingdom**

14 ²**Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States**

15 ³**MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital**
16 **Campus, Du Cane Road, London W12 0NN**

17 ⁴**Institute for Clinical Sciences, Imperial College London, Hammersmith Hospital**
18 **Campus, Du Cane Road, London, W12 0NN**

19 ⁵**Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche**
20 **Scientifique (CNRS) and École Normale Supérieure de Lyon, Lyon, France**

21 ⁶**University of California, Berkeley, Dept. of Molecular and Cell Biology, 519A LSA 3200**
22 **Berkeley, CA 94720-3200**

23 ⁷**Howard Hughes Medical Institute, University of California, Berkeley, Department Of**
24 **Molecular and Cell Biology**

25 ⁸**Department of Organismic and Evolutionary Biology, Harvard University 16 Divinity**
26 **Avenue, BioLabs Building 4109-4111 Cambridge, MA 02138**

27 ⁹**Department of Invertebrate Zoology, Smithsonian National Museum of Natural History,**
28 **MRC-163, P.O. Box 37012, Washington, DC 20013-7012 USA**

29 ¹⁰**Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie,**
30 **Philippsstr. 13, Haus 2, 10115 Berlin, Germany**

31 **AUTHOR INFORMATION**

32 These authors contributed equally to this work: Damian Kao, Alvina G. Lai, Evangelia Stamatakis.
33 These authors also contributed equally: Anastasios Pavlopoulos, A. Aziz Aboobaker

34

35 **AUTHORS CONTRIBUTIONS**

36 Damian Kao, devised assembly strategy. Assembled and analyzed the sequencing data. Annotated the
37 genome, transcriptome and proteome. Performed orthology group analysis. Annotated small RNAs.
38 Drafting and revising the article.

39 Alvina Lai, analysed the genome including major signaling pathways, polymorphisms, immunity,
40 lignocellulose digestion, epigenetic pathways, small RNA pathways and small RNAs. Cloning of
41 DSCAM variants. Experimental confirmation of polymorphisms. Drafting and revising the article.

42 Evangelia Stamatakis, prepared the genomic libraries, performed CRISPR knock-out, performed CRISPR
43 knock-in. Drafting revising the article.

44 Silvana Rosic, contributed bisulfite sequencing data and analysis of genome wide methylation.

45 Nikolaos Konstantinides, contributed transcriptome data and transcriptome assembly.

46 Erin Jarvis, performed in situ hybridization detection of Hox genes, and interpreted data.

47 Alessia Di DonFrancesco, contributed to confirmation of polymorphism and cloning of Ph-DSCAM
48 variants.

49 Natalia Pouchkina-Stancheva, contributed to confirmation of polymorphism and cloning of Ph-DSCAM
50 variants.

51 Marie Sémon, contributed transcriptome data and transcriptome assembly.

52 Marco Grillo, contributed transcriptome data and transcriptome assembly.

53 Heather Bruce, contributed transcriptome data.

54 Suyash Kumar, performed CRISPR knock-out.

55 Igor Siwanowicz, performed Parhyale cuticle staining.

56 Andy Le, performed CRISPR knock-in.

57 Andrew Lemire, was consulted about sequencing strategy and helped with bioinformatics.

58 Michael Eisen, Contributed to RNAseq data production.

59 Cassandra Extavour, Contributed to project planning.

60 William E. Browne, Established the Chicago-F line.

61 Carsten Wolff, Performed karyotyping.

62 Michalis Averof, contributed transcriptome data and transcriptome assembly.

63 Nipam Patel, performed in situ hybridization detection of Hox genes, and interpreted data. Contributed
64 transcriptome data. Established the Chicago-F line.

65 Peter Sarkies, conceived and designed bisulfite sequencing experiments, contributed bisulfite sequencing
66 data and analysis of genome wide methylation.
67 Anastasios Pavlopoulos, conceived, designed and managed the project. Contributed to data acquisition
68 and analysis. Drafting and revising the article.
69 Aziz Aboobaker, Devised assembly strategy. Contributed to data analysis. Conceived, designed and
70 managed the project. Drafting and revising the article.
71 All authors read and approved the manuscript.

72 **For correspondence**

73 Aziz.Aboobaker@zoo.ox.ac.uk (AAA) pavlopoulosa@janelia.hhmi.org (AP)

74 **Competing interests**

75 The authors declare no competing interests

76 **Funding**

77 AAA and co-workers are funded by the Biotechnology and Biological Sciences Research Council
78 (BBSRC grant number BB/K007564/1), the Medical Research Council (MRC grant number
79 MR/M000133/1), the John Fell Fund Oxford University Press (OUP) and the Elizabeth Hannah
80 Jenkinson Fund. AGL receives funding from the Human Frontier Science Program postdoctoral
81 fellowship and the Elizabeth Hannah Jenkinson Research Fund. NHP and co-workers are funded by NSF
82 grant IOS-1257379. AP and co-workers are funded by the Howard Hughes Medical Institute. PS and
83 co-workers are funded by the Medical Research Council (MRC MC-A652-5PZ80) and an Imperial
84 College Research Fellowship to PS. MA and colleagues received funding from the Agence Nationale de
85 la Recherche (France), grant ANR-12-CHEX-0001-01. The funding bodies had no role in study design,
86 data collection and interpretation, or the decision to submit the work for publication.

87 **ABSTRACT**

88 The amphipod crustacean *Parhyale hawaiensis* is a blossoming model system for studies of
89 developmental mechanisms and more recently regeneration. We have sequenced the genome allowing
90 annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance
91 ongoing functional studies. *Parhyale* is a member of the Malacostraca clade, which includes crustacean
92 food crop species. We analysed the immunity related genes of *Parhyale* as an important comparative
93 system for these species, where immunity related aquaculture problems have increased as farming has
94 intensified. We also find that *Parhyale* and other species within Multicrustacea contain the enzyme sets
95 necessary to perform lignocellulose digestion (“wood eating”), suggesting this ability may predate the
96 diversification of this lineage. Our data provide an essential resource for further development of *Parhyale*
97 as an experimental model. The first malacostracan genome will underpin ongoing comparative work in
98 food crop species and research investigating lignocellulose as an energy source.

99 INTRODUCTION

100 Very few members of the Animal Kingdom hold the esteemed position of major model system for
101 understanding living systems. Inventions in molecular and cellular biology increasingly facilitate the
102 emergence of new experimental systems for developmental genetic studies. The morphological and
103 ecological diversity of the phylum Arthropoda makes them an ideal group of animals for comparative
104 studies encompassing embryology, adaptation of adult body plans and life history evolution [1–4]. While
105 the most widely studied group are Hexapods, reflected by over a hundred sequencing projects available in
106 the NCBI genome database, genomic data in the other three sub-phyla in Arthropoda are still relatively
107 sparse.

108 Recent molecular and morphological studies have placed crustaceans along with hexapods into a
109 pancrustacean clade (Figure 1A), revealing that crustaceans are paraphyletic [5–9]. Previously, the only
110 available fully sequenced crustacean genome was that of the water flea *Daphnia* which is a member of the
111 Branchiopoda [10]. A growing number of transcriptomes for larger phylogenetic analyses have led to
112 differing hypotheses of the relationships of the major pancrustacean groups (Figure 1B) [11–14]. The
113 genome of the amphipod crustacean *Parhyale hawaiensis* addresses the paucity of high quality
114 non-hexapod genomes among the pancrustacean group, and will help to resolve relationships within this
115 group as more genomes and complete proteomes become available [15, 16]. Crucially, genome sequence
116 data is also necessary to further advance research in *Parhyale*, currently the most tractable crustacean
117 model system. This is particularly true for the application of powerful functional genomic approaches,
118 such as genome editing [17–22].

119 *Parhyale* is a member of the diverse Malacostraca clade with thousands of extant species including
120 economically and nutritionally important groups such as shrimps, crabs, crayfish and lobsters, as well as
121 common garden animals like woodlice. They are found in all marine, fresh water, and higher humidity
122 terrestrial environments. Apart from attracting research interest as an economically important food crop,
123 this group of animals has been used to study developmental biology and the evolution of morphological
124 diversity (for example with respect to Hox genes) [19, 23–25], stem cell biology [26, 27], innate
125 immunity processes [28, 29] and recently the cellular mechanisms of regeneration [26, 27]. In addition,
126 members of the Malacostraca, specifically both Amphipods and Isopods, are thought to be capable of
127 “wood eating” or lignocellulose digestion and to have microbiota-free digestive systems [30–33].

128 The life history of *Parhyale* makes it a versatile model organism amenable to experimental manipulations
129 (Figure 1C)[34]. Gravid females lay eggs every 2 weeks upon reaching sexual maturity and hundreds of
130 eggs can be easily collected at all stages of embryogenesis. Embryogenesis takes about 10 days at 26°C
131 and has been described in detail with an accurate staging system [35]. Early embryos display an invariant
132 cell lineage with each blastomere at the 8-cell stage contributing to a specific germ layer (Figure
133 1D)[35, 36]. Embryonic and post-embryonic stages are amenable to experimental manipulations and
134 direct observation *in vivo* [36–48]. These can be combined with transgenic approaches [25, 45, 48, 49],

135 RNA interference (RNAi) [24] and morpholino-mediated gene knockdown [50], and transgene-based
136 lineage tracing [26]. Most recently the utility of the clustered regularly interspaced short palindromic
137 repeats (CRISPR)/CRISPR-associated (Cas) system for targeted genome editing has been elegantly
138 demonstrated during the systematic study of *Parhyale* Hox genes [18, 19]. This arsenal of experimental
139 tools (Table 1) has already established *Parhyale* as an attractive model system for biological research.
140 So far, work in *Parhyale* has been constrained by the lack of a reference genome and other standardized
141 genome-wide resources. To address this limitation, we have sequenced, assembled and annotated the
142 genome. At an estimated size of 3.6 Gb, this genome represents one of the largest animal genomes
143 tackled to date. The large size has not been the only challenge of the *Parhyale* genome, that also exhibits
144 some of the highest levels of sequence repetitiveness and polymorphism reported among published
145 genomes. We provide information in our assembly regarding polymorphism to facilitate functional
146 genomic approaches sensitive to levels of sequence similarity, particularly homology-dependent genome
147 editing approaches. We analysed a number of key features of the genome as foundations for new areas of
148 research in *Parhyale*, including innate immunity in crustaceans, lignocellulose digestion, non-coding
149 RNA biology, and epigenetic control of the genome. Our data bring *Parhyale* to the forefront of
150 developing model systems for a broad swathe of important bioscience research questions.

151 **RESULTS AND DISCUSSION**

152 **Genome assembly, annotation, and validation**

153 The *Parhyale* genome contains 23 pairs ($2n=46$) of chromosomes (Figure 2) and with an estimated size of
154 3.6 Gb, it is currently the second largest reported arthropod genome after the locust genome [51, 52].
155 Sequencing was performed on genomic DNA isolated from a single adult male taken from a line derived
156 from a single female and expanded after two rounds of sib-mating. We performed k-mer analyses of the
157 trimmed reads to assess the impact of repeats and polymorphism on the assembly process. We analyzed
158 k-mer frequencies (Figure 3A) and compared k-mer representation between our different sequencing
159 libraries. We observed a 93% intersection of unique k-mers among sequencing libraries, indicating that
160 the informational content was consistent between libraries (Supplemental Data 6). The k-mer analysis
161 revealed a bimodal distribution of error-free k-mers (Figure 3A). The higher-frequency peak
162 corresponded to k-mers present on both haplotypes (i.e. homozygous regions), while the lower-frequency
163 peak had half the coverage and corresponded to k-mers present on one haplotype (i.e. heterozygous
164 regions) [53]. We concluded that the single sequenced adult *Parhyale* exhibits very high levels of
165 heterozygosity, similar to the highly heterozygous oyster genome (see below).
166 In order to quantify global heterozygosity and repeat content of the genome we assessed the de-Bruijn
167 graphs generated from the trimmed reads to observe the frequency of both variant and repeat branches
168 [54] (Figure 3B and C). We found that the frequency of the variant branches was 10x higher than that
169 observed in the human genome and very similar to levels in the highly polymorphic genome of the oyster
170 *Crassostrea gigas* [55]. We also observed a frequency of repeat branches approximately 4x higher than

171 those observed in both the human and oyster genomes (Figure 3C), suggesting that the big size of the
172 *Parhyale* genome can be in large part attributed to the expansion of repetitive sequences.
173 These metrics suggested that both contig assembly and scaffolding with mate-pair reads were likely to be
174 challenging due to high heterozygosity and repeat content. After an initial contig assembly we remapped
175 reads to assess coverage of each contig. We observed a major peak centered around 75 x coverage and a
176 smaller peak at 150x coverage. Contigs with lower 75x coverage represent regions of the genome that
177 assembled into separate haplotypes and had half the frequency of mapped sequencing reads, reflecting
178 high levels of heterozygosity. This resulted in independent assembly of haplotypes for much of the
179 genome (Figure 3D).
180 One of the prime goals in sequencing the *Parhyale* genome was to achieve an assembly that could assist
181 functional genetic and genomic approaches in this species. Different strategies have been employed to
182 sequence highly heterozygous diploid genomes of non-model and wild-type samples [56]. We aimed for
183 an assembly representative of different haplotypes, allowing manipulations to be targeted to different
184 allelic variants in the assembly. This could be particularly important for homology dependent strategies
185 that are likely to be sensitive to polymorphism. However, the presence of alternative haplotypes could
186 lead to poor scaffolding between contigs as many mate-pair reads may not map uniquely to one contig
187 and distinguish between haplotypes in the assembly. To alleviate this problem we used a strategy to
188 conservatively identify pairs of allelic contigs and proceeded to use only one in the scaffolding process.
189 First, we estimated levels of similarity (identity and alignment length) between all assembled contigs to
190 identify independently assembled allelic regions (Figure 3E). We then kept the longer contig of each pair
191 for scaffolding using our mate-pair libraries (Figure 3F), after which we added back the shorter allelic
192 contigs to produce the final genome assembly (Figure 4A).
193 RepeatModeler and RepeatMasker were used on the final assembly to find repetitive regions, which were
194 subsequently classified into families of transposable elements or short tandem repeats (Supplemental
195 Data 7). We found 1,473 different repeat element sequences representing 57% of the assembly (Figure 4,
196 Supplemental Table 1). The *Parhyale* assembly comprises of 133,035 scaffolds (90% of assembly),
197 259,343 unplaced contigs (4% of assembly), and 584,392 shorter, potentially allelic contigs (6% of
198 assembly), with a total length of 4.02 Gb (Table 2). The N50 length of the scaffolds is 81,190bp. The
199 final genome assembly was annotated with Augustus trained with high confidence gene models derived
200 from assembled transcriptomes, gene homology, and *ab initio* predictions. This resulted in 28,155 final
201 gene models (Figure 4B; Supplemental Data 8) across 14,805 genic scaffolds and 357 unplaced contigs
202 with an N50 of 161,819, bp and an N90 of 52,952 bp.
203 *Parhyale* has a mean coding gene size (introns and ORFs) of 20kb (median of 7.2kb), which is longer
204 than *D. pulex* (mean: 2kb, median: 1.2kb), while shorter than genes in *Homo sapiens* (mean: 52.9kb,
205 median: 18.5kb). This difference in gene length was consistent across reciprocal blast pairs where ratios
206 of gene lengths revealed *Parhyale* genes were longer than *Caenorhabditis elegans*, *D. pulex*, and
207 *Drosophila melanogaster* and similar to *H. sapiens*. (Figure 5A). The mean intron size in *Parhyale* is

208 5.4kb, similar to intron size in *H. sapiens* (5.9kb) but dramatically longer than introns in *D. pulex* (0.3kb),
209 *D. melanogaster* (0.3kb) and *C. elegans* (1kb) (Figure 5B).

210 For downstream analyses of *Parhyale* protein coding content, a final proteome consisting of 28,666
211 proteins was generated by combining candidate coding sequences identified with TransDecoder [57] from
212 mixed stage transcriptomes. Almost certainly the high number of predicted gene models and proteins is
213 an overestimation due to fragmented genes, very different isoforms or unresolved alleles, that will be
214 consolidated as annotation of the *Parhyale* genome improves. We also included additional high
215 confidence gene predictions that were not found in the transcriptome (Figure 4C). The canonical
216 proteome dataset was annotated with both Pfam, KEGG, and BLAST against Uniprot. Assembly quality
217 was further evaluated by alignment to core eukaryotic genes defined by the Core Eukaryotic Genes
218 Mapping Approach (CEGMA) database [58]. We identified 244/248 CEGMA orthology groups from the
219 assembled genome alone and 247/248 with a combination of genome and mapped transcriptome data
220 (Figure 4, Supplemental Figure 2). Additionally, 96% of over 280,000 identified transcripts, most of
221 which are fragments that do not contain a large ORF, also mapped to the assembled genome. Together
222 these data suggest that our assembly is close to complete with respect to protein coding genes and
223 transcribed regions that are captured by deep RNA sequencing.

224 **High levels of heterozygosity and polymorphism in the *Parhyale* genome**

225 To estimate the level of heterozygosity in genes we first identified transcribed regions of the genome by
226 mapping back transcripts to the assembly. Where these regions appeared in a single contig in the
227 assembly, heterozygosity was calculated using information from mapped reads. Where these regions
228 appeared in more than one contig, because haplotypes had assembled independently, heterozygosity was
229 calculated using an alignment of the genomic sequences corresponding to mapped transcripts and
230 information from mapped reads. This allowed us to calculate heterozygosity for each gene within the
231 sequenced individual (Supplemental Data 9). We then calculated the genomic coverage of all transcribed
232 regions in the genome and found, as expected, they fell broadly into two categories with higher and lower
233 read coverage (Figure 6A; Supplemental Data 9). Genes that fell within the higher read coverage group
234 had a lower mean heterozygosity (1.09% of bases displaying polymorphism), which is expected as more
235 reads were successfully mapped. Genes that fell within the lower read coverage group had a higher
236 heterozygosity (2.68%), as reads mapped independently to each haplotype (Figure 6B) [54]. Thus, we
237 conclude that heterozygosity that influences read mapping and assembly of transcribed regions, and not
238 just non-coding parts of the assembly.

239 The assembled *Parhyale* transcriptome was derived from various laboratory populations, hence we
240 expected to see additional polymorphism beyond that detected in the two haplotypes of the individual
241 male we sequenced. Analysing all genes using the transcriptome we found additional variations in
242 transcribed regions not found in the genome of the sequenced individual. In addition to polymorphisms
243 that agreed with heterozygosity in the genome sequence we observed that the rate of additional variations

244 is not substantially different between genes from the higher (0.88%) versus lower coverage group genes
245 (0.73%; Figure 6C). This analysis suggests that within captive laboratory populations of *Parhyale* there is
246 considerable additional polymorphism distributed across genes, irrespective of whether or not they have
247 relatively low or high heterozygosity in the individual male we sequenced. In addition the single male we
248 have sequenced provides an accurate reflection of polymorphism of the wider laboratory population and
249 the established Chicago-F strain does not by chance contain unusually divergent haplotypes. We also
250 performed an assessment of polymorphism on previously cloned *Parhyale* developmental genes, and
251 found some examples of startling levels of variation. (Supplemental Data 2, Figure 6, Supplemental
252 Figure 1). For example, we found that the cDNAs of the germ line determinants, *nanos* (78 SNPs, 34
253 non-synonymous substitutions and one 6bp indel) and *vasa* (37 SNPs, 7 non-synonymous substitutions
254 and a one 6bp indel) can have more variability within laboratory *Parhyale* populations than might be
255 observed for orthologs between closely related species.

256 To further evaluate the extent of polymorphism across the genome, we mapped the genomic reads to a set
257 of previously Sanger-sequenced BAC clones of the *Parhyale* Hox cluster from the same Chicago-F line
258 from which we sequenced the genome of an adult male. [18]. We detected SNPs at a rate of 1.3 to 2.5%
259 among the BACs (Table 3) and also additional sequence differences between the BACs and genomic
260 reads, confirming that additional polymorphism exists in the Chicago-F line beyond that detected between
261 in the haplotypes of the individual male we sequenced.

262 Overlapping regions of the contiguous BACs gave us the opportunity to directly compare Chicago-F
263 haplotypes and accurately observe polynucleotide polymorphisms, that are difficult to detect with short
264 reads that do not map when polymorphisms are large, but are resolved by longer Sanger reads. (Figure
265 7A). Since the BAC clones were generated from a pool of Chicago-F animals, we expected each
266 sequenced BAC to be representative of one haplotype. Overlapping regions between BAC clones could
267 potentially represent one or two haplotypes. We found that the genomic reads supported the SNPs
268 observed between the overlapping BAC regions. We found relatively few base positions with evidence
269 supporting the existence of a third allele. This analysis revealed many insertion/deletion (indels) with
270 some cases of indels larger than 100 base pairs (Figure 7B). The finding that polynucleotide
271 polymorphisms are prevalent between the haplotypes of the Chicago-F is another reason, in addition to
272 regions of high SNP heterozygosity in the genome sequence, for the extensive independent assembly of
273 haplotypes. Taken together these data mean that special attention will have to be given to those functional
274 genomic approaches that are dependent on homology, such as CRISPR/Cas9 based knock in strategies.

275 **A comparative genomic analysis of the *Parhyale* genome**

276 Assessment of conservation of the proteome using BLAST against a selection of metazoan proteomes
277 was congruent with broad phylogenetic expectations. These analyses included crustacean proteomes
278 likely to be incomplete as they come from limited transcriptome datasets, but nonetheless highlighted
279 genes likely to be specific to the Malacostraca (Figure 5C). To better understand global gene content

280 evolution we generated clusters of orthologous and paralogous gene families comparing the *Parhyale*
281 proteome with other complete proteomes across the Metazoa using Orthofinder [59] (Figure 5D;
282 Supplemental Data 10). Amongst proteins conserved in protostomes and deuterostomes we saw no
283 evidence for widespread gene duplication in the lineage leading to *Parhyale*. We identified orthologous
284 and paralogous protein groups across 16 species with 2,900 and 2,532 orthologous groups containing
285 proteins found only in Panarthropoda and Arthropoda respectively. We identified 855 orthologous groups
286 that were shared exclusively by Mandibulata, 772 shared by Pancrustacea and 135 shared by Crustacea.
287 There were 9,877 *Parhyale* proteins that could not be assigned to an orthologous group, potentially
288 representing rapidly evolving or lineage specific proteins. Amongst these proteins we found 609 proteins
289 (2.1% of the proteome) that had paralogs within *Parhyale*, suggesting that younger and/or more divergent
290 *Parhyale* genes have undergone some considerable level of gene duplication events.
291 Our analysis of shared orthologous groups was equivocal with regard to alternative hypotheses on the
292 relationships among pancrustacean subgroups: 44 groups of orthologous proteins are shared among the
293 multicrustacea clade (uniting the Malacostraca, Copepoda and Thecostraca), 37 groups are shared among
294 the Allocarida (Branchiopoda and Hexapoda) and 49 groups are shared among the Vericrustacea
295 (Branchiopoda and Multicrustacea)(Supplemental Data 17).
296 To further analyse the evolution of the *Parhyale* proteome we examined protein families that appeared to
297 be expanded (z-score >2), compared to other taxa (Figure 5, Supplemental Figure 1, Supplemental Data
298 10, Supplemental Data 15). We conservatively identified 29 gene families that are expanded in *Parhyale*.
299 Gene family expansions include the Sidestep (55 genes) and Lachesin (42) immunoglobulin superfamily
300 proteins as well as nephrons (33 genes) and neurotrimins (44 genes), which are thought to be involved in
301 immunity, neural cell adhesion, permeability barriers and axon guidance [60–62]. Other *Parhyale* gene
302 expansions include APN (aminopeptidase N) (38 genes) and cathepsin-like genes (30 genes), involved in
303 proteolytic digestion [63].

304 **Major signaling pathways and transcription factors in *Parhyale***

305 Components of all common metazoan cell-signalling pathways are largely conserved in *Parhyale*. At
306 least 13 *Wnt* subfamilies were present in the cnidarian-bilaterian ancestor. *Wnt3* has been lost in
307 protostomes that retain 12 *Wnt* genes [64–66]. Some sampled ecdysozoans have undergone significant
308 *Wnt* gene loss, for example *C. elegans* has only 5 *Wnt* genes [67]. At most 9 *Wnt* genes are present in any
309 individual hexapod species [68], with *wnt2* and *wnt4* potentially lost before the hexapod radiation [69].
310 The *Parhyale* genome encodes 6 of the 13 *Wnt* subfamily genes; *wnt1*, *wnt4*, *wnt5*, *wnt10*, *wnt11* and
311 *wnt16* (Figure 8). *Wnt* genes are known to have been ancestrally clustered [70]. We observed that *wnt1*
312 and *wnt10* are linked in a single scaffold (phaw_30.0003199); given the loss of *wnt6* and *wnt9*, this may
313 be the remnant of the ancient *wnt9-1-6-10* cluster conserved in some protostomes.
314 We could identify 2 Fibroblast Growth Factor (*FGF*) genes and only a single *FGF* receptor (*FGFR*) in the
315 *Parhyale* genome, suggesting one *FGFR* has been lost in the malacostracan lineage (Figure 8,

316 Supplemental Figure 1). Within the Transforming Growth Factor beta (*TGF- β*) signaling pathway we
317 found 2 genes from the activin subfamily (an activin receptor and a myostatin), 7 genes from the Bone
318 Morphogen Protein (*BMP*) subfamily and 2 genes from the inhibin subfamily. Of the *BMP* genes,
319 *Parhyale* has a single decapentaplegic homologue (Supplemental Data 2). Other components of the
320 *TGF- β* pathway were identified such as the neuroblastoma suppressor of tumorigenicity (NBL1/DAN),
321 present in *Aedes aegypti* and *Tribolium castaneum* but absent in *D. melanogaster* and *D. pulex*, and
322 TGFB-induced factor homeobox 1 (*TGIF1*) which is a Smad2-binding protein within the pathway present
323 in arthropods but absent in nematodes (*C. elegans* and *Brugia malayi*;Supplemental Data 2). We
324 identified homologues of *PITX2*, a downstream target of the *TGF- β* pathway involved in endoderm and
325 mesoderm formation present in vertebrates and crustaceans (*Parhyale* and *D. pulex*) but not in insects and
326 nematodes [71]. With the exception of *SMAD7* and *SMAD8/9*, all other *SMADs* (*SMAD1*, *SMAD2/3*,
327 *SMAD4*, *SMAD6*) are found in arthropods sampled, including *Parhyale*. Components of other pathways
328 interacting with *TGF- β* signaling like the *JNK*, *Par6*, *ROCK1/RhoA*, *p38* and *Akt* pathways were also
329 recovered and annotated in the *Parhyale* genome (Supplemental Data 2). We identified major Notch
330 signaling components including Notch, Delta, Deltex, Fringe and modulators of the Notch pathway such
331 as *Dvl* and *Numb*. Members of the gamma-secretase complex (Nicastrin, Presenillin, and *APH1*) were
332 also present (Supplemental Data 4) as well as to other co-repressors of the Notch pathway such as
333 Groucho and *CtBP* [72].
334 A genome wide survey to annotate all potential transcription factors (TFs) discovered a total of 1,143
335 proteins with DNA binding domains that belonged to all the major families previously identified.
336 Importantly, we observed a large expansion of TFs containing the zinc-finger (ZF)-C2H2 domain, that
337 was previously observed in a transcriptomic study of *Parhyale* [73]. *Parhyale* has 699
338 ZF-C2H2-containing genes [74], which is comparable to the number found in *H. sapiens* [75], but
339 significantly expanded compared to other arthropod species like *D. melanogaster* encoding 326 members
340 (Figure 8, Supplemental Table 2).
341 The *Parhyale* genome contains 126 homeobox-containing genes (Figure 9; Supplemental Data 2), which
342 is higher than the numbers reported for other arthropods (104 genes in *D. melanogaster*, 93 genes in the
343 honey bee *Apis mellifera*, and 113 in the centipede *Strigamia maritima*) [76]. We identified a *Parhyale*
344 specific expansion in the Ceramide Synthase (*CERS*) homeobox proteins, which include members with
345 divergent homeodomains [77]. *H. sapiens* have six *CERS* genes, but only five with homeodomains [78].
346 We observed an expansion to 12 *CERS* genes in *Parhyale*, compared to 1-4 genes found in other
347 arthropods [79] (Figure 8, Supplemental Figure 3). In phylogenetic analyses all 12 *CERS* genes in
348 *Parhyale* clustered together with a *CERS* from another amphipod *Echinogammarus veneris*, suggesting
349 that this is recent expansion in the amphipod lineage.
350 *Parhyale* contains a complement of 9 canonical Hox genes that exhibit both spatial and temporal
351 colinearity in their expression along the anterior-posterior body axis [18]. Chromosome walking
352 experiments had shown that the Hox genes *labial* (*lab*) and *proboscipedia* (*pb*) are linked and that

353 *Deformed (Dfd), Sex combs reduced (Scr), Antennapedia (Antp) and Ultrabithorax (Ubx)* are also
354 contiguous in a cluster [18]. Previous experiments in *D. melanogaster* had shown that the proximity of
355 nascent transcripts in RNA fluorescent *in situ* hybridizations (FISH) coincide with the position of the
356 corresponding genes in the genomic DNA [80, 81]. Thus, we obtained additional information on Hox
357 gene linkage by examining nascent Hox transcripts in cells where Hox genes are co-expressed. We first
358 validated this methodology in *Parhyale* embryos by confirming with FISH, the known linkage of *Dfd*
359 with *Scr* in the first maxillary segment where they are co-expressed (Figure 10A-A“). As a negative
360 control, we detected no linkage between *engrailed1 (en1)* and *Ubx* or *abd-A* transcripts (Figure 10B - B“
361 and C - C“). We then demonstrated the tightly coupled transcripts of *lab* with *Dfd* (co-expressed in the
362 second antennal segment, Figure 10D - D“), *Ubx* and *abd-A* (co-expressed in the posterior thoracic
363 segments, Figure 10E - E“), and *abd-A* with *Abd-B* (co-expressed in the anterior abdominal segments,
364 (Figure 10F - F“). Collectively, all evidence supports the linkage of all analysed Hox genes into a single
365 cluster as shown in (Figure 10G - G“). The relative orientation and distance between certain Hox genes
366 still needs to be worked out. So far, we have not been able to confirm that *Hox3* is also part of the cluster
367 due to the difficulty in visualizing nascent transcripts for *Hox3* together with *pb* or *Dfd*. Despite these
368 caveats, *Parhyale* provides an excellent arthropod model system to understand these still enigmatic
369 phenomena of Hox gene clustering and spatio-temporal colinearity, and compare the underlying
370 mechanisms to other well-studied vertebrate and invertebrate models [82].

371 The ParaHox and *NK* gene clusters encode other *ANTP* class homeobox genes closely related to Hox
372 genes [83]. In *Parhyale*, we found 2 caudal (*Cdx*) and 1 *Gsx* ParaHox genes. Compared to hexapods, we
373 identified expansions in some *NK*-like genes, including 5 Bar homeobox genes (*BarH1/2*), 2 developing
374 brain homeobox genes (*DBX*) and 6 muscle segment homeobox genes (*MSX/Drop*). Evidence from
375 several bilaterian genomes suggests that *NK* genes are clustered together [84–87]. In the current assembly
376 of the *Parhyale* genome, we identified an *NK2-3* gene and an *NK3* gene on the same scaffold
377 (phaw_30.0004720) and the tandem duplication of an *NK2* gene on another scaffold (phaw_30.0004663).
378 Within the *ANTP* class, we also observed 1 mesenchyme homeobox (*Meox*), 1 motor neuron homeobox
379 (*MNX/Exex*) and 3 even-skipped homeobox (*Evx*) genes.

380 **381 The *Parhyale* genome encodes glycosyl hydrolase enzymes consistent with lignocellu-
lose digestion (“wood eating”)**

382 Lignocellulosic (plant) biomass is the most abundant raw material on our planet and holds great promise
383 as a source for the production of bio-fuels [88]. Understanding how some animals and their symbionts
384 achieve lignocellulose digestion is a promising research avenue for exploiting lignocellulose-rich material
385 [89, 90]. Amongst Metazoans, research into the ability to depolymerize plant biomass into useful
386 catabolites is largely restricted to terrestrial species such as ruminants, termites and beetles. These
387 animals rely on mutualistic associations with microbial endosymbionts that provide cellulolytic enzymes
388 known as glycosyl hydrolases (GHs) [91, 92] (Figure 11). Much less studied is lignocellulose digestion in

389 aquatic animals despite the fact that lignocellulose represents a major energy source in aquatic
390 environments, particularly for benthic invertebrates [93]. Recently, it has been suggested that the marine
391 wood-boring Isopod *Limnoria quadripunctata* and the amphipod *Chelura terebrans* may have sterile
392 microbe-free digestive systems and they produce all required enzymes for lignocellulose digestion
393 [30, 31, 94]. Significantly, these species have been shown to have endogenous GH7 family enzymes with
394 cellobiohydrolase (beta-1,4-exoglucanase) activity, previously thought to be absent from animal genomes.
395 From an evolutionary perspective, it is likely that GH7 coding genes were acquired by these species via
396 horizontal gene transfer from a protist symbiont.

397 *Parhyale* is a detritivore that can be sustained on a diet of carrots (Figure 11C), suggesting that they too
398 may be able to depolymerize lignocellulose for energy (Figure 11A and B). We searched for GH family
399 genes in *Parhyale* using the classification system of the CAZy (Carbohydrate-Active enZYmes) database
400 [95] and the annotation of protein domains in predicted genes with PFAM [96]. We identified 73 GH
401 genes with complete GH catalytic domains that were classified into 17 families (Supplemental Data 2)
402 including 3 members of the GH7 family. Phylogenetic analysis of *Parhyale* GH7s show high sequence
403 similarity to the known GH7 genes in *L. quadripunctata* and the amphipod *C. terebrans* [31] (Figure 12A;
404 Figure 12, Supplemental Figure 1). GH7 family genes were also identified in the transcriptomes of three
405 more species spanning the multicrustacea clade: *Echinogammarus veneris* (amphipod), *Eucyclops*
406 *serrulatus* (copepod) and *Calanus finmarchicus* (copepod) (Supplemental Data 2). As previously
407 reported, we also discovered a closely related GH7 gene in the branchiopod *Daphnia* (Figure 12A) [90].
408 This finding supports the grouping of Branchiopoda with Multicrustacea (rather than with Hexapoda) and
409 the acquisition of a GH7 gene by a vericrustacean ancestor. Alternatively, this suggests an even earlier
410 acquisition of a GH7 gene by a crustacean ancestor with subsequent loss of the GH7 family gene in the
411 lineage leading to insects.

412 GH families 5, 9, 10, and 45 encode beta-1,4-endoglucanases which are also required for lignocellulose
413 digestion and are commonly found across Metazoa. We found 3 GH9 family genes with complete
414 catalytic domains in the *Parhyale* genome as well as in the other three multicrustacean species (Figure
415 12B). These GH9 enzymes exhibited a high sequence similarity to their homologues in the isopod
416 *Limnoria* and in a number of termites. Beta-glucosidases are the third class of enzyme required for
417 digestion of lignocellulose. They have been classified into a number of GH families: 1, 3, 5, 9 and 30,
418 with GH1 representing the largest group [95]. In *Parhyale*, we found 7 beta-glucosidases from the GH30
419 family and 3 from the GH9 family, but none from the GH1 family.

420 Understanding lignocellulose digestion in animals using complex mutualistic interactions with microbes
421 has proven to be a difficult task. The study of “wood-eating” in *Parhyale* can offer new insights into
422 lignocellulose digestion in the absence of gut microbes, and the unique opportunity to apply molecular
423 genetic approaches to understand the activity of glycosyl hydrolases in the digestive system.

424 Lignocellulose digestion may also have implications for gut immunity in some crustaceans, since these
425 reactions have been reported to take place in a sterile gut [32, 33].

426 **Characterisation of the innate immune system in a Malacostracan**

427 Immunity research in Malacostracans has attracted interest due to the rapid rise in aquaculture related
428 problems [28, 29, 97]. Malacostracan food crops represent a huge global industry (>\$40 Billion at point
429 of first sale), and reliance on this crop as a source of animal protein is likely to increase in line with
430 human population growth [97]. Here we provide an overview of immune-related genes in *Parhyale* that
431 were identified by mapping proteins to the ImmunoDB database [98] (Supplemental Data 2). The ability
432 of the innate immune system to identify pathogen-derived molecules is mediated by pattern recognition
433 receptors (PRRs) [99]. Several groups of invertebrate PRRs have been characterized, i.e.
434 thioester-containing proteins (*TEP*), Toll-like receptors (*TLR*), peptidoglycan recognition proteins
435 (*PGRP*), C-type lectins, galectins, fibrinogen-related proteins (*FREP*), gram-negative binding proteins
436 (*GNBP*), Down Syndrome Cell Adhesion Molecules (*Dscam*) and lipopolysaccharides and beta-1,
437 3-glucan binding proteins (*LGBP*).

438 The functions of *PGRPs* have been described in detail in insects like *D. melanogaster* [100] and the
439 *PGRP* family has also been reported in Vertebrates, Molluscs and Echinoderms [101, 102]. Surprisingly,
440 we found no *PGRP* genes in the *Parhyale* genome. *PGRPs* were also not found in other sequence datasets
441 from Branchiopoda, Copepoda and Malacostraca (Figure 13A), raising the possibility of their close
442 phylogenetic relationship (like the GH7 genes). In the absence of *PGRPs*, the freshwater crayfish
443 *Pacifastacus leniusculus* relies on a Lysine-type peptidoglycan and serine proteinases, *SPH1* and *SPH2*
444 that forms a complex with *LGBP* during immune response [103]. In *Parhyale*, we found one *LGBP* gene
445 and two serine proteinases with high sequence identity to *SPH1/2* in *Pacifastacus*. The *D. pulex* genome
446 has also an expanded set of Gram-negative binding proteins (proteins similar to *LGBP*) suggesting a
447 compensatory mechanism for the lost *PGRPs* [104]. Interestingly, we found a putative *PGRP* in the
448 Remipede *Speleonectes tulumensis* (Figure 13A) providing further support for sister group relationship of
449 Remipedia and Hexapoda [14].

450 Innate immunity in insects is transduced by three major signaling pathways: the Immune Deficiency
451 (*Imd*), Toll and Janus kinase/signal transducer and activator of transcription (*JAK/STAT*) pathways
452 [105, 106]. We found 16 members of the Toll family in *Parhyale* including 10 Toll-like receptors (TLRs)
453 (Figure 13B). Some TLRs have been also implicated in embryonic tissue morphogenesis in *Parhyale* and
454 other arthropods [107]. Additionally, we identified 7 *Imd* and 25 *JAK/STAT* pathway members including
455 two negative regulators: suppressor of cytokine signaling (*SOCS*), and protein inhibitor of activated *STAT*
456 (*PIAS*) [108].

457 The blood of arthropods (hemolymph) contains hemocyanin which is a copper-binding protein involved
458 in the transport of oxygen, and circulating blood cells called hemocytes for the phagocytosis of pathogens.
459 Phagocytosis by hemocytes is facilitated by the evolutionarily conserved gene family, the
460 thioester-containing proteins (*TEPs*) [109]. Previously sequenced Pancrustacean species contained
461 between 2 to 52 *TEPs*. We find 5 *TEPs* in the *Parhyale* genome. Arthropod hemocyanins themselves are
462 structurally related to phenoloxidases (PO; [110]) and can be converted into POs by conformational

463 changes under specific conditions [111]. POs are involved in several biological processes (like the
464 melanization immune response, wound healing and cuticle sclerotization) and we identified 7 PO genes in
465 *Parhyale*. Interestingly, hemocyanins and PO activity have been shown to be highly abundant together
466 with glycosyl hydrolases in the digestive system of Isopods and Amphipods, raising a potential
467 mechanistic link between gut sterility and degradation of lignocellulose [30, 33].
468 Another well-studied transmembrane protein essential for neuronal wiring and adaptive immune
469 responses in insects is the immunoglobulin (*Ig*)-superfamily receptor Down syndrome cell adhesion
470 molecule (*Dscam*) [112, 113]. Alternative splicing of *Dscam* transcripts can result in thousands of
471 different isoforms that have a common architecture but have sequence variations encoded by blocks of
472 alternative spliced exons. The *D. melanogaster* *Dscam* locus encodes 12 alternative forms of exon 4
473 (encoding the N-terminal half of Ig2), 48 alternative forms of exon 6 (encoding the N-terminal half of
474 Ig3), 33 alternative forms of exon 9 (encoding Ig7), and 2 alternative forms of exon 17 (encoding
475 transmembrane domains) resulting in a total of 38,016 possible combinations. The *Dscam* locus in
476 *Parhyale* (and in other crustaceans analysed) has a similar organization to insects; tandem arrays of
477 multiple exons encode the N-terminal halves of Ig2 (exon 4 array with at least 13 variants) and Ig3 (exon
478 6 array with at least 20 variants) and the entire Ig7 domain (exon 14 array with at least 13 variants)
479 resulting in at least 3,380 possible combinations (Figure 13C-E). The alternative splicing of hypervariable
480 exons in *Parhyale* was confirmed by sequencing of cDNA clones amplified with *Dscam*-specific primers.
481 Almost the entire *Dscam* gene is represented in a single genomic scaffold and exhibits high amino-acid
482 sequence conservation with other crustacean *Dscams* (Figure 13, Supplemental Figure 1). The number of
483 *Dscam* isoforms predicted in *Parhyale* is similar to that predicted for *Daphnia* species [114]. It remains
484 an open question whether the higher number of isoforms observed in insects coincides with the evolution
485 of additional *Dscam* functions compared to crustaceans.
486 From a functional genomics perspective, the *Parhyale* immune system appears to be a good representative
487 of the malacostran or even multicrustacean clade that can be studied in detail with existing tools and
488 resources.

489 **Non-coding RNAs and associated proteins in the *Parhyale* genome**

490 Non-coding RNAs are a central, but still a relatively poorly understood part of eukaryotic genomes. In
491 animal genomes, different classes of small RNAs are key for genome surveillance, host defense against
492 viruses and parasitic elements in the genome, and regulation of gene expression through transcriptional,
493 post-transcriptional and epigenetic control mechanisms [115–123]. The nature of these non-coding
494 RNAs, as well as the proteins involved in their biogenesis and function, can vary between animals. For
495 example, some nematodes have Piwi-interacting short RNAs (piRNAs), while others have replaced these
496 by alternate small RNA based mechanisms to compensate for their loss [124].
497 As a first step, we surveyed the *Parhyale* genome for known conserved protein components of the small
498 interfering RNA (siRNA/RNAi) and the piRNA pathways (Table 4). We found key components of all

499 major small RNA pathways, including 4 argonaute family members, 2 PIWI family members, and
500 orthologs of *D. melanogaster* *Dicer-1* and *Dicer-2*, *drosha* and *loquacious*, (Figure 14, Supplemental
501 Figure 1). Among Argonaute genes, *Parhyale* has 1 *AGO-1* ortholog and 3 *AGO-2* orthologs, which is
502 presumably a malacostraca-specific expansion. While *Parhyale* only has 2 PIWI family members, other
503 crustacean lineages have clearly undergone independent expansions of this protein family. Unlike in *C.*
504 *elegans*, many mammals, fish and insects (but not *D. melanogaster*), we did not find any evidence in the
505 *Parhyale* genome for the *SID-1* (systemic RNA interference defective) transmembrane protein that is
506 essential for systemic RNAi [125–127]. Species without a *SID-1* ortholog can silence genes only in a
507 cell-autonomous manner [128]. This feature has important implications for future design of RNAi
508 experiments in *Parhyale*.

509 We also assessed the miRNA and putative long non-coding RNAs (lncRNA) content of *Parhyale* using
510 both MiRPara and Rfam [129, 130]. We annotated 1405 homologues of known non-coding RNAs using
511 Rfam. This includes 980 predicted tRNAs, 45 rRNA of the large ribosomal subunit, 10 rRNA of the small
512 ribosomal subunit, 175 snRNA components of the major spliceosome (U1, U2, U4, U5 and U6), 5
513 snRNA components of the minor spliceosome (U11, U12, U4atac and U6atac), 43 ribozymes, 38
514 snoRNAs, 71 conserved cis-regulatory element derived RNAs and 42 highly conserved miRNA genes
515 (Supplemental Data 5; Supplemental Data 11). *Parhyale* long non-coding RNAs (lncRNAs) were
516 identified from the transcriptome using a series of filters to remove coding transcripts producing a list of
517 220,284 putative lncRNAs (32,223 of which are multi-exonic). Only one *Parhyale* lncRNA has clear
518 homology to another annotated lncRNA, the sphinx lncRNA from *D. melanogaster* [131].

519 We then performed a more exhaustive search for miRNAs using MiRPara (Supplemental Data 11) and a
520 previously published *Parhyale* small RNA read dataset [132]. We identified 1,403 potential miRNA
521 precursors represented by 100 or more reads. Combining MiRPara and Rfam results, we annotated 31 out
522 of the 34 miRNA families found in all Bilateria, 12 miRNAs specific to Protostomia, 4 miRNAs specific
523 to Arthropoda and 5 miRNAs previously found to be specific to Mandibulata (Figure 14). We did not
524 identify *mir-125*, *mir-283* and *mir-1993* in the *Parhyale* genome. The absence of *mir-1993* is consistent
525 with reports that this miRNA was lost during Arthropod evolution [133]. While we did not identify
526 *mir-125*, we observed that *mir-100* and *let-7* occurred in a cluster on the same scaffold (Figure 14,
527 Supplemental Figure 2), where *mir-125* is also present in other animals. The absence of *mir-125* has been
528 also reported for the centipede genome [76]. *mir-100* is one of the most primitive miRNAs shared by
529 Bilateria and Cnidaria [133, 134]. The distance between *mir-100* and *let-7* genes within the cluster can
530 vary substantially between different species. Both genes in *Parhyale* are localized within a 9.3kb region
531 (Figure 14, Supplemental Figure 2) as compared to 3.8kb in the mosquito *Anopheles gambiae* and 100bp
532 in the beetle *Tribolium* [135]. Similar to *D. melanogaster* and the polychaete *Platynereis dumerilii*, we
533 found that *Parhyale* *mir-100* and *let-7* are co-transcribed as a single, polycistronic lncRNA. We also
534 found another cluster with *miR-71* and *mir-2* family members which is conserved across many
535 invertebrates [136] (Figure 14, Supplemental Figure 2).

536 Conserved linkages have also been observed between miRNAs and Hox genes in Bilateria [137–141].
537 For example, the phylogenetically conserved *mir-10* is present within both vertebrate and invertebrate
538 Hox clusters between *Hoxb4/Dfd* and *Hoxb5/Scr* [142]. In the *Parhyale* genome and Hox BAC
539 sequences, we found that *mir-10* is also located between *Dfd* and *Src* on BAC clone PA179-K23 and
540 scaffold phaw_30.0001203 (Figure 14, Supplemental Figure 2). However, we could not detect *mir-iab-4*
541 near the *Ubx* and *AbdA* genes in *Parhyale*, the location where it is found in other arthropods/insects [143].
542 Preliminary evidence regarding the presence of PIWI proteins and other piRNA pathway proteins also
543 suggests that the piRNA pathway is likely active in *Parhyale*, although piRNAs themselves await to be
544 surveyed. The opportunity to study these piRNA, miRNA and siRNA pathways in a genetically tractable
545 crustacean system will shed further light into the regulation and evolution of these pathways and their
546 contribution to morphological diversity.

547 **Methylome analysis of the *Parhyale* genome**

548 Methylation of cytosine residues (m5C) in CpG dinucleotides in animal genomes is regulated by a
549 conserved multi-family group of DNA methyltransferases (DNMTs) with diverse roles in the epigenetic
550 control of gene expression, genome stability and chromosome dynamics [144–146]. The phylogenetic
551 distribution of DNMTs in Metazoa suggests that the bilaterian ancestor had at least one member of the
552 *Dnmt1* and *Dnmt3* families (involved in *de novo* methylation and maintenance of DNA methylation) and
553 the *Dnmt2* family (involved in tRNA methylation), as well as additional RNA methyltransferases
554 [147, 148]. Many animal groups have lost some of these DNA methyltransferases, for example *DNMT1*
555 and 3 are absent from *D. melanogaster* and flatworms [149, 150], while *DNMT2* is absent from
556 nematodes *C. elegans* and *C. briggsae*. The *Parhyale* genome encodes members of all 3 families *DNMT1*,
557 *DNMT3* and *DNMT2*, as well as 2 orthologs of conserved methyl-CpG-binding proteins and a single
558 orthologue of *Tet2*, an enzyme involved in DNA demethylation [151] (Figure 15A).
559 We used genome wide bisulfite sequencing to confirm the presence and also assess the distribution of
560 CpG dinucleotide methylation. Our results indicated that 20–30% of *Parhyale* DNA is methylated at CpG
561 dinucleotides (Figure 15B). The *Parhyale* methylation pattern is similar to that observed in vertebrates,
562 with high levels of methylation detected in transposable elements and other repetitive elements, in
563 promoters and gene bodies (Figure 15C). A particular class of rolling-circle transposons are very highly
564 methylated in the genome, potentially implicating methylation in silencing these elements. For
565 comparison, about 1% or less of CpG-associated cytosines are methylated in insects like *Drosophila*,
566 *Apis*, *Bombyx* and *Tribolium*. [144, 152, 153]. These data represent the first documentation of a
567 crustacean methylome. Considering the utility of *Parhyale* for genetic and genomic research, we
568 anticipate future investigations to shed light on the functional importance and spatiotemporal dynamics of
569 epigenetic modifications during normal development and regeneration, as well as their relevance to
570 equivalent processes in vertebrate systems.

571 **Parhyale genome editing using homology-independent approaches**

572 *Parhyale* has already emerged as a powerful model for developmental genetic research where the
573 expression and function of genes can be studied in the context of stereotyped cellular processes and with
574 a single-cell resolution. Several experimental approaches and standardized resources have been
575 established to study coding and non-coding sequences (Table 1). These functional studies will be
576 enhanced by the availability of the assembled and annotated genome presented here. As a first application
577 of these resources, we tested the efficiency of the CRISPR/Cas system for targeted genome editing in
578 *Parhyale* [17–22]. In these studies, we targeted the *Distal-less* patterning gene (called *PhDll-e*) [24] that
579 has a widely-conserved and highly-specific role in animal limb development [154].

580 We first genotyped our wild-type laboratory culture and found two *PhDll-e* alleles with 23 SNPs and 1
581 indel in their coding sequences and untranslated regions. For *PhDll-e* knock-out, two sgRNAs targeting
582 both alleles in their coding sequences downstream of the start codon and upstream of the DNA-binding
583 homeodomain were injected individually into 1-cell-stage embryos (G0 generation) together with a
584 transient source of Cas9 (Figure 16, Supplemental Figure 1 A-B). Both sgRNAs gave rise to animals with
585 truncated limbs (Figure 16A and B); the first sgRNA at a relatively low percentage around 9% and the
586 second one at very high frequencies ranging between 53% and 76% (Figure 16, Supplemental Figure 1).
587 Genotyping experiments revealed that injected embryos carried *PhDll-e* alleles modified at the site
588 targeted by each sgRNA (Figure 16, Supplemental Figure 1 B-D). The number of modified *PhDll-e*
589 alleles recovered from G0s varied from two, in cases of early bi-allelic editing at the 1-cell-stage, to three
590 or more, in cases of later-stage modifications by Cas9 (Figure 16, Supplemental Figure 1 C). We isolated
591 indels of varying length that were either disrupting the open reading frame, likely producing
592 loss-of-function alleles or were introducing in-frame mutations potentially representing functional alleles
593 (Figure 16, Supplemental Figure 1 C-D). In one experiment with the most efficient sgRNA, we raised the
594 injected animals to adulthood and set pairwise crosses between 17 fertile G0s (10 male and 7 female):
595 88% (15/17) of these founders gave rise to G1 offspring with truncated limbs, presumably by transmitting
596 *PhDll-e* alleles modified by Cas9 in their germlines. We tested this by genotyping individual G1s from
597 two of these crosses and found that embryos bearing truncated limbs were homozygous for
598 loss-of-function alleles with out-of-frame deletions, while their wild-type siblings carried one
599 loss-of-function allele and one functional allele with an in-frame deletion (Figure 16, Supplemental
600 Figure 1 D).

601 The non-homologous end joining (NHEJ) repair mechanism operating in the injected cells can be
602 exploited not only for gene knock-out experiments described above, but also for CRISPR knock-in
603 approaches where an exogenous DNA molecule is inserted into the targeted locus in a
604 homology-independent manner. This homology-independent approach could be particularly useful for
605 *Parhyale* that exhibits high levels of heterozygosity and polymorphisms in the targeted laboratory
606 populations, especially in introns and intergenic regions. To this end, we co-injected into 1-cell-stage
607 embryos the Cas9 protein together with the strongest sgRNA and a tagging plasmid. The plasmid was

608 designed in such a way that upon its linearization by the same sgRNA and Cas9 and its integration into
609 the *PhDll-e* locus in the appropriate orientation and open reading frame, it would restore the endogenous
610 *PhDll-e* coding sequence in a bicistronic mRNA also expressing a nuclear fluorescent reporter. Among
611 injected G0s, about 7% exhibited a nuclear fluorescence signal in the distal (telopodite and exopodite)
612 parts of developing appendages (Figure 16C and Figure 16, Supplemental Figure 1 E), which are the limb
613 segments that were missing in the knock-out experiments (Figure 16B). Genotyping of one of these
614 embryos demonstrated that the tagged *PhDll-e* locus was indeed encoding a functional *PhDll-e* protein
615 with a small in-frame deletion around the targeted region (Figure 16, Supplemental Figure 1 F).
616 These results, together with the other recent applications of the CRISPR/Cas system to study Hox genes
617 in *Parhyale* [18, 19], demonstrate that the ability to manipulate the fertilized eggs together with the slow
618 tempo of early cleavages can result in very high targeting frequencies and low levels of mosaicism for
619 both knock-out and knock-in approaches. Considering the usefulness of the genome-wide resources
620 described in this report, we anticipate that the *Parhyale* embryo will prove an extremely powerful system
621 for fast and reliable G0 screens of gene expression and function.

622 CONCLUSION

623 In this article we described the first complete genome of a malacostracan crustacean species, the genome
624 of the marine amphipod *Parhyale hawaiensis*. At an estimated size of 3.6 Gb, it is among the largest
625 genomes submitted to NCBI. The *Parhyale* genome reported here is that of a single adult male from a
626 sib-bred line called Chicago-F. We find *Parhyale* has an abundance of repetitive sequence and high levels
627 of heterozygosity in the individual sequenced. Combined with analysis of available transcriptome
628 sequences and independently sequenced genomic BAC clones, we conclude high levels of heterozygosity
629 are representative of high levels of single and polynucleotide polymorphisms in the broader laboratory
630 population. Our comparative bioinformatics analyses suggest that the expansion of repetitive sequences
631 and the increase in gene size due to an expansion of intron size have contributed to the large size of the
632 genome. Despite these challenges, the *Parhyale* genome and associated transcriptomic resources reported
633 here provide a useful assembly of most genic regions in the genome and a comprehensive description of
634 the *Parhyale* transcriptome and proteome.

635 *Parhyale* has emerged since the early 2000's as an attractive animal model for developmental genetic and
636 molecular cell biology research. It fulfills several desirable biological and technical requirements as an
637 experimental model, including a relatively short life-cycle, year-round breeding under standardized
638 laboratory conditions, availability of thousands of eggs for experimentation on a daily basis, and
639 amenability to various embryological, cellular, molecular genetic and genomic approaches. In addition,
640 *Parhyale* has stereotyped cell lineages and cell behaviors, a direct mode of development, a remarkable
641 appendage diversity and the capacity to regenerate limbs post-embryonically. These qualities can be
642 utilized to address fundamental long-standing questions in developmental biology, like cell fate
643 specification, nervous system development, organ morphogenesis and regeneration [155]. Research on

644 these topics will benefit enormously from the standardized genome-wide resources reported here.

645 Forward and reverse genetic analyses using both unbiased screens and candidate gene approaches have

646 already been devised successfully in *Parhyale* (Table 1). The availability of coding and non-coding

647 sequences for all identified signaling pathway components, transcription factors and various classes of

648 non-coding RNAs will dramatically accelerate the study of the expression and function of genes

649 implicated in the aforementioned processes.

650 Equally importantly, our analyses highlight additional areas where *Parhyale* could serve as a new

651 experimental model to address other questions of broad biomedical interest. From a functional genomics

652 perspective, the *Parhyale* immune system appears to be a good representative of the malacostracan or

653 even the multicrustacean clade that can be studied in detail with existing tools and resources. Besides the

654 evolutionary implications and the characterization of alternative strategies used by arthropods to defend

655 against pathogens, a deeper mechanistic understanding of the *Parhyale* immune system will be relevant to

656 aquaculture. Some of the greatest setbacks in the crustacean farming industry are caused by severe

657 disease outbreaks. *Parhyale* is closely related to farmed crustaceans (primarily shrimps, prawns and

658 crayfish) and the knowledge acquired from studying its innate immunity could help enhance the

659 sustainability of this industry by preventing or controlling infectious diseases [97, 156–159].

660 An immune-related problem that will be also interesting to explore in *Parhyale* concerns the possibility of

661 a sterile digestive tract similar to that proposed for limnoriid Isopods [30]. *Parhyale*, like limnoriid

662 Isopods, encodes and expresses all enzymes required for lignocellulose digestion, suggesting that it is

663 able to “digest wood” by itself without symbiotic microbial partners. Of course, a lot of work still needs

664 to be invested in the characterization of the cellulolytic system in *Parhyale* before any comparisons can

665 be made with other well-established symbiotic digestion systems of lignocellulose. Nevertheless, the

666 possibility of an experimentally tractable animal model that serves as a living bioreactor to convert

667 lignocellulose into simpler metabolites, suggests that future research in *Parhyale* may also have a strong

668 biotechnological potential, especially for the production of biofuels from the most abundant and cheapest

669 raw material, plant biomass.

670 Although more high-quality genomes with a broader phylogenetic coverage are still needed for

671 meaningful evolutionary comparisons, our observations from analysing the *Parhyale* genome and other

672 crustacean data sets also contribute to the ongoing debate on the relationships between crustacean groups.

673 While the analysis of shared orthologous groups did not provide clear support for either the Allotriocarida

674 hypothesis (uniting Branchiopoda with Hexapoda) or the Vericrustacea hypothesis (uniting Branchiopoda

675 with Malacostraca), we noted the presence of GH7 genes and the absence of PGRP genes in branchiopod

676 and multicrustacean genomes supporting the Vericrustacea hypothesis. It still remains to be proven how

677 reliable these two characters will be to distinguish between these alternative phylogenetic affinities.

678 Finally, *Parhyale* was introduced recently as a new model for limb regeneration [26]. In some respects,

679 including the segmented body plan, the presence of a blood system and the contribution of

680 lineage-committed adult stem cells to newly formed tissues, regeneration in *Parhyale* may resemble the

681 process in vertebrates more than other established invertebrate models (e.g. planarians, hydra).
682 Regenerative research in *Parhyale* has been founded on transgenic approaches to label specific
683 populations of cells and will be further assisted by the resources presented here. Likewise, we expect that
684 the new genomic information and CRISPR-based genome editing methodologies together with all other
685 facets of *Parhyale* biology will open other new research avenues not yet imagined.

686 **ACKNOWLEDGMENTS**

687 We are grateful to Serge Picard for sequencing the genome libraries, and Frantisek Marec and Peer Martin
688 for useful advice on *Parhyale* karyotyping.

689 **MATERIALS AND METHODS**

690 Raw genomic reads are deposited at NCBI with the project accession: PRJNA306836. A list of software
691 and external datasets used are provided in Supplemental Data 1. Detailed methodology and codes for each
692 section are provided as supplementary IPython notebooks in HTML format viewable with a web browser.
693 All supplemental data including IPython notebook can be downloaded from this figshare link:
694 https://figshare.com/articles/supplemental_data_for_Parhyale_hawaiiensis_genome/3498104
695 Alternatively, the IPython notebooks can also be viewed at the following github repository:
696 https://github.com/damiankao/phaw_genome

698 **Genome library preparation and sequencing**

699 About 10 µg of genomic DNA were isolated from a single adult male from the Chicago-F isofemale line
700 established in 2001 [51]. The animal was starved for one week and treated for 3 days with
701 penicillin-streptomycin (100x, Gibco/Thermo Fisher Scientific), tetracycline hydrochloride (20 µg/ml,
702 Sigma-Aldrich) and amphotericin B (200x, Gibco/Thermo Fisher Scientific). It was then flash frozen in
703 liquid nitrogen, homogenized manually with a pestle in a 1.5 ml microtube (Kimbler Kontes) in 600 µl of
704 Lysis buffer (100 mM Tris-HCl pH 8, 100 mM NaCl, 50 mM EDTA, 0.5% SDS, 200 µg/ml Proteinase K,
705 20 µg/ml RNase A). The lysate was incubated for 3 hours at 37°C, followed by phenol/chloroform
706 extractions and ethanol precipitation. The condensed genomic DNA was fished out with a Pasteur pipette,
707 washed in 70% ethanol, air-dried, resuspended in nuclease-free water and analysed on a Qubit
708 fluorometer (Thermo Fisher Scientific) and on a Bioanalyzer (Agilent Technologies). All genome
709 libraries were prepared from this sample: 1 µg of genomic DNA was used to generate the shotgun
710 libraries using the TruSeq DNA Sample Prep kit (Illumina) combined with size-selection on a LabChip
711 XT fractionation system (Caliper Life Sciences Inc) to yield 2 shotgun libraries with average fragment
712 sizes 431 bp and 432 bp, respectively; 4 µg of genomic DNA were used to generate 4 mate-pair libraries
713 with average fragment sizes 5.5 kb, 7.3 kb, 9.3 kb and 13.8 kb using the Nextera Mate Pair Sample
714 Preparation kit (Illumina) combined with agarose size selection. All libraries were sequenced on a HiSeq

715 2500 instrument (Illumina) using paired-end 150 nt reads.

716 **Karyotyping**

717 For chromosome spreads, tissue was obtained from embryos at stages 14-18 [35]. Eggs were taken from
718 the mother and incubated for 1–2 h in isotonic colchicine solution (0.05% colchicine, artificial sea water).
719 After colchicine incubation, the embryonic tissue was dissected from the egg and placed in hypotonic
720 solution (0.075 M KCl) for 25 min. For tissue fixation, we replaced the hypotonic solution with freshly
721 prepared ice-chilled Carnoy's fixative (six parts ethanol, three parts methanol and one part anhydrous
722 acetic acid) for 25 min. The fixed tissue was minced with a pair of fine tungsten needles in Carnoy's
723 solution and the resulting cell suspension was dropped with a siliconized Pasteur pipette from a height of
724 about 5 cm onto a carefully cleaned ice-chilled microscopic slide. After partial evaporation of the
725 Carnoy's fixative the slides were briefly exposed a few times to hot water vapors to rehydrate the tissue.
726 The slides were then dried on a 75°C metal block in a water bath. Finally, the slides with prepared
727 chromosomes were aged overnight at 60°C. After DNA staining either with Hoechst (H33342, Molecular
728 Probes) or with DAPI (Invitrogen), chromosomes were counted on a Zeiss Axioplan II Imaging equipped
729 with C-Apochromat 63x/1.2 NA objective and a PCO pixelfly camera. FIJI was used to improve image
730 quality (contrast and brightness) and FIJI plugin 'Cell Counter' was used to determine the number of
731 chromosomes.

732 **Analysis of polymorphism and repetitiveness**

733 The *Parhyale* raw data and assembled data are available on the NCBI website. Genome assembly was
734 done with Abyss [160] at two different k-mer settings (70, 120) and merged with GAM-NGS. Scaffolding
735 was performed with SSPACE [161]. We chose cut-offs of >95% overlap length and >95% identity when
736 removing shorter allelic contigs before scaffolding as these gave better scaffolding results as assessed by
737 assembly metrics. Transcriptome assembly was performed with Trinity [57]. The completeness of the
738 genome and transcriptome was assessed by blasting against CEGMA genes [58] and visualized by
739 plotting the orthologue hit ratio versus e-value. K-mer analysis of variant and repetitive branching was
740 performed with String Graph Assembler's preqc module [54]. K-mer intersection analysis was performed
741 using jellyfish2 [162]. An in-depth description of the assembly process is detailed in Supplemental Data
742 6.

743 **Transcriptome library preparation, sequencing and assembly**

744 *Parhyale* transcriptome assembly was generated from Illumina reads collected from diverse embryonic
745 stages (Stages 19, 20, 22, 23, 25, and 28), and adult thoracic limbs and regenerating thoracic limbs (3 and
746 6 days post amputation). For the embryonic samples, RNA was extracted using Trizol; PolyA+ libraries
747 were prepared with the Truseq V1 kit (Illumina), starting with 0.6 - 3.5ug of total mRNA, and sequenced
748 on the Illumina Hiseq 2000 as paired-end 100 base reads, at the QB3 Vincent J. Coates Genomics
749 Sequencing Laboratory. For the limb samples, RNA was extracted using Trizol; PolyA+ libraries were

750 prepared with the Truseq V2 kit (Illumina), starting with 1ug of total mRNA, and sequenced on the
751 Illumina Hiseq 2500 as paired-end 100 base reads, at the IGBMC Microarray and Sequencing platform.
752 260 million reads from embryos and 180 million reads from limbs were used for the transcriptome
753 assembly. Prior to the assembly we trimmed adapter and index sequences using cutadapt [163]. We also
754 removed spliced leader sequences: GAATTTCACTGTTCCCTTACCAAGCGTTACTG,
755 TTACCAATCACCCCTTACCAAGCGTTACTG, CCCTTACCAACTCTTAACTG,
756 CCCTTACCAACTTTACTG using cutadapt with 0.2 error allowance to remove all potential variants
757 [164]. To assemble the transcriptome we used Trinity (version trinityrnaseq_r20140413) [57] with
758 settings: -min_kmer_cov 2, -path_reinforcement_distance 50.

759 **Gene model prediction and canonical proteome dataset generation**

760 Gene prediction was done with a combination of Evidence Modeler [165] and Augustus [166]. The
761 transcriptome was first mapped to the genome using GMAP [167]. A secondary transcriptome reference
762 assembly was performed with STAR/Cufflinks [168, 169]. The transcriptome mapping and Cufflinks
763 assembly was processed through the PASA pipeline [165] to consolidate the annotations. The PASA
764 dataset, a set of Exonerate [170] mapped Uniprot proteins, and Ab initio GeneMark [171] predictions were
765 consolidated with Evidence Modeler to produce a set of gene annotations. A high confidence set of gene
766 models from Evidence Modeler containing evidence from all three sources was used to train Augustus.
767 Evidence from RepeatMasker [172], PASA and Exonerate were then used to generate Augustus gene
768 predictions. A final list of genes for down-stream analysis was generated using both transcriptome and
769 gene predictions (canonical proteome dataset). Detailed methods are described in Supplemental Data 8.

770 **Polymorphism analysis on genic regions and BAC clones**

771 For variant analysis on the BAC clones, the short shot-gun library genomic reads were mapped to the
772 BAC clones individually. GATK was then used to call variants. For variant analysis on the genic regions,
773 transcript sequences used to generate the canonical proteome dataset were first aligned to the genome
774 assembly. Genome alignments of less than 30 base pairs were discarded. The possible genome
775 alignments were sorted based on number of mismatches with the top alignment having the least amount
776 of mismatches. For each transcript, the top two genome alignments were used to call potential variants.
777 Transcripts or parts of transcripts where there were more than five genomic mapping loci were discarded as
778 potentially highly conserved domains or repetitive regions. Detailed methods of this process are
779 described in Supplemental Data 9.

780 **Polymorphisms in *Parhyale* developmental genes**

781 *Parhyale* genes (nucleotide sequences) were downloaded from GenBank. Each gene was used as a query
782 for blastn against the *Parhyale* genome using the Geneious software [173]. In each case two reference
783 contig hits were observed where both had E values of close to zero. A new sequence called geneX_snp
784 was created and this sequence was annotated with the snps and/or indels present in the alternative

785 genomic contigs. To determine the occurrence of synonymous and non-synonymous substitutions, the
786 original query and the newly created sequence (with polymorphisms annotated) were in silico translated
787 into protein sequences followed by pairwise alignment. Regions showing amino acid changes were
788 annotated as non-synonymous substitutions. Five random genes from the catalogue were selected for
789 PCR, cloning and Sanger sequencing to confirm genomic polymorphisms and assess further
790 polymorphism in the lab popultaion. Primers for genomic PCR designed to capture and amplify exon
791 regions are listed as the following: dachshund (PH1F = 5'- GGTGCGCTAAATTGAAGAAATTACG-3'
792 and PH1R = 5'- ACTCAGAGGGTAATAGAACAGAA-3'), distalless exon 2 (PH2F =
793 5'-CACGGCCCGGCACTAACTATCTC-3' and PH2R =
794 5'-GTAATATATCTTACAACAAACGACTGAC-3'), distalless exon 3 (PH3F =
795 5'-GGTGAACGGGCCGGAGTCTC-3' and PH3R = 5'-GCTGTGGGTGCTGTGGGT-3'), homothorax
796 (PH4F = 5'-TCGGGGTGTAAAAAGGACTCTG-3' and PH4R =
797 5'-AACATAGGAACTCACCTGGTGC-3'), orthodenticle (PH5F =
798 5'-TTTGCCACTAACACATATTCGAAA-3' and PH5R = 5'-TCCCAAGTAGATGATCCCTGGAT-3')
799 and prospero (PH6F = 5'-TACACTGCAACATCCGATGACTTA-3' and PH6R =
800 5'-CGTGTATGTTCTCTCGTGGCTTC-3').

801 **Evolutionary analyses of orthologous groups**

802 Evolutionary analyses and comparative genomics were performed with 16 species: *D. melanogaster*, *A.*
803 *gambiae*, *D. pulex*, *L. salmonis*, *S. maritima*, *S. mimosarum*, *M. martensii*, *I. scapularis*, *H. dujardini*, *C.*
804 *elegans*, *B. malayi*, *T. spiralis*, *M. musculus*, *H. sapiens*, and *B. floridae*. For orthologous group analyses,
805 gene families were identified using OrthoFinder [59]. The canonical proteome was used as a query in
806 BlastP against proteomes from 16 species to generate a distance matrix for OrthoFinder to normalize and
807 then cluster with MCL. Detailed methods are described in Supplemental Data 10. For the comparative
808 BLAST analysis, five additional transcriptome datasets were used from the following crustacean species:
809 *Litopenaeus vannamei*, *Echinogammarus veneris*, *Eucyclops serrulatus*, *Calanus finmarchicus*,
810 *Speleonectes tulumensis*.

811 **Fluorescence in situ hybridization detection of Hox genes**

812 Embryo fixation and in-situ hybridization was performed according to [40]. To enhance the nascent
813 nuclear signal over mature cytoplasmic transcript, we used either early germband embryos (Stages 11 –
814 15) in which expression of *lab*, *Dfd*, and *Scr* are just starting [18], or probes that contain almost
815 exclusively intron sequence (*Ubx*, *abd-A*, *Abd-B*, and *en1*). *Lab*, *Dfd*, and *Scr* probes are described in
816 [18]. Template for the intron-spanning probes were amplified using the following primers: *en1-Intron1*,
817 AAGACACGACGAGCATCCTG and CTGTGTATGGCTACCCGTCC; *Ubx-Intron1*,
818 GGTATGACAGCCGTCCAACA and AGAGTGCCAAGGATACCCGA; *abd-A*,
819 CGATATAACCCAGTCCGGTGC and TCATCAGCGAGGGCACAATT; *Abd-B*,
820 GCTGCAGGATATCCACACGA and TGCAGTTGCCGCCATAGTAA.

821 A T7-adapter was appended to the 5' end of each reverse primer to enable direct transcription from PCR
822 product. Probes were labeled with either Digoxigenin (DIG) or Dinitrophenol (DNP) conjugated UTPs,
823 and visualized using sheep α -DIG (Roche) and donkey α -Sheep AlexaFluor 555 (Thermo Fischer
824 Scientific), or Rabbit α -DNP (Thermo Fischer Scientific) and Donkey α -Rabbit AlexaFluor 488 (Jackson
825 ImmunoResearch), respectively. Preparations were imaged on an LSM 780 scanning laser confocal
826 (Zeiss), and processed using Volocity software (Perkin-Elmer).

827 **Cross species identification of GH family genes and immune-related genes**

828 The identification of GH family genes was done by obtaining Pfam annotations [96] for the *Parhyale*
829 canonical proteome. Pfam domains were classified into different GH families based on the CAZy
830 database [95]. For immune-related genes, best-reciprocal blast was performed with ImmunoDB genes
831 [98].

832 **Phylogenetic tree construction**

833 Multiple sequence alignments of protein sequences for gene families of *FGF*, *FGFR*, *CERS*, *GH7*, *GH9*,
834 *PGRP*, Toll-like receptors, *DICER*, Piwi and Argonaute were performed using MUSCLE [174].
835 Phylogenetic tree construction was performed with RAxML [175] using the WAG+G model from
836 MUSCLE multiple alignments.

837 **Bisulfite sequencing**

838 Libraries for DNA methylation analysis by bisulfite sequencing were constructed from 100ng of genomic
839 DNA extracted from one *Parhyale* male individual, using the Illumina Truseq DNA methylation kit
840 according to manufacturers instructions. Alignments to the *Parhyale* genome were generated using the
841 core Bismark module from the program Bismark [176], having first artificially joined the *Parhyale*
842 contigs to generate 10 pseudo-contigs as the program is limited as to the number of separate contigs it can
843 analyse. We then generated genome-wide cytosine coverage maps using the
844 bismark_methylation_extraction module with the parameter -CX specified to generate annotations of CG,
845 CHH and CHG sites. In order to analyse genome-wide methylation patterns only cytosines with more
846 than a 10 read depth of coverage were selected. Overall methylation levels at CG, CHH and CHG sites
847 were generated using a custom Perl script. To analyse which regions were methylated we mapped back
848 from the joined contigs to the original contigs and assigned these to functional regions based on
849 RepeatMasker [172] and transcript annotations of repeats and genes respectively. To generate overall
850 plots of methylation levels in different features we averaged over all sites mapping to particular features,
851 focusing on CG methylation and measuring the %methylation at each site as the number of reads showing
852 methylation divided by the total number of reads covering the site. Meta gene plots over particular
853 features were generated similarly except that sites mapping within a series of 100bp wide bins from
854 1000bp upstream of the feature start site and onward were collated.

855 **Identification and cloning of *Dscam* alternative spliced variants**

856 For the identification of *Dscam* in the *Parhyale*, we used the *Dscam* protein sequence from crustaceans *D.*
857 *pulex* [114] and *L. vannamei* [177] as queries to probe the assembled genome using tBlastN. A 300kb
858 region on scaffold phaw_30.0003392 was found corresponding to the *Parhyale Dscam* extending from
859 IG1 to FN6 exons. This sequence was annotated using transcriptome data together with manual searches
860 for open reading frames to identify IG, FN exons and exon-intron boundaries (Figure 13 supplemental
861 figure 1). Hypervariable regions of IG2, IG3 and IG7 were also annotated accordingly on the scaffold
862 (Figure 13 supplemental figure 1). This region represents a bona fide *Dscam* paralog as it matches the
863 canonical extracellular *Dscam* domain structure of nine IGs – four FNs – one IG and two FNs. *Parhyale*
864 mRNA extractions were performed using the Zymo Research Direct-zol RNA MiniPrep kit according to
865 manufacturer's instructions. Total RNA extract was used for cDNA synthesis using the Qiagen QuantiTect
866 Reverse Transcription Kit according to manufacturer's instructions. To identify and confirm potential
867 hypervariable regions from the *Parhyale* (Ph-Dscam) transcript, three regions of Ph-Dscam corresponding
868 to IG2, IG3 and IG7 exons respectively were amplified using the following primer pairs. IG2 region:

869 DF1 = 5'-CCCTCGTGTCCCGCCCTCAAC-3'

870 DR1 = 5'-GCGATGTGCAGCTCTCCAGAGGG-3'

871 IG3 region:

872 DF2 = 5'-TCTGGAGAGCTGCACATCGCTAAT-3'

873 DR2 = 5'-GTGGTCATTGCGTACGAAGCACTG-3'

874 IG7 region:

875 DF3 = 5'-CGGATACCCCATCGACTCCATCG-3'

876 DR3 = 5'-GAAGCCGTCAGCCTTGCATTCAA-3'

877 PCR of each region was performed using Phusion High-fidelity polymerase from Thermo Fisher

878 Scientific and thermal cycling was done as the following: 98°C 30s, followed by 30 cycles of 98°C 10s,

879 67°C 30s, 72°C 1m30s, and then 72°C 5m. PCR products were cloned into pGEMT-Easy vector and a

880 total of 81 clones were selected and Sanger sequenced and in silico translated in the correct reading frame

881 using Geneious (R7; [173] for multiple sequence alignment.

882 **Identification of non-protein-coding RNAs**

883 *Parhyale* non-protein-coding RNAs were identified using two independent approaches. Infernal 1.1.1

884 [178] was used with the RFAM 12.0 database [130] to scan the genome to identify potential non-coding

885 RNAs. Additionally, MiRPara [129] was used to scan the genome for potential miRNA precursors. These

886 potential precursors were further filtered using small RNA read mapping and miRBase mapping [179].

887 Putative lncRNAs were identified from the transcriptome by applying filtering criteria including removal

888 of known and predicted coding RNAs. Detailed methods are available in Supplementary Data 11.

889 **CRISPR/Cas genome editing**

890 To genotype our wild-type population, extraction of total RNA and preparation of cDNA from embryos
891 were carried out as previously described [25]. The PhDl-e cDNA was amplified with primers
892 PhDl-e_2For (5'-TTTGTCAAGGATCTGCCATT-3') and PhDl-e_1852Rev
893 (5'-TAGCGGCTGACGGTTGTTAC-3'), purified with the DNA Clean and Concentrator kit (Zymo
894 Research), cloned with the Zero Blunt TOPO PCR Cloning Kit (Thermo Fisher Scientific) and sequenced
895 with primers M13 forward (5'- GTAAAACGACGGCCAG-3') and M13 reverse (5'-
896 CAGGAAACAGCTATGAC-3').

897 Each template for sgRNA synthesis was prepared by annealing and PCR amplification of the
898 sgRNA-specific forward primer Dll1: (18 nt PhDl-e-targeted sequence underlined)
899 5'-GAAATTAATACGACTCACTATA
900 AGAGTTGTTACCAAAGAAGTTAGAGCTAGAAATAGC-3'
901 or Dll2: (20 nt PhDl-e-targeted sequence underlined)
902 5'-GAAATTAATACGACTCACTAT
903 AGGCTTCCCCGCCATGTAGTTAGAGCTAGAAATAGC-3'
904 together with the universal reverse primer:
905 5'-AAAAGCACCGACTCGGTGCCACTTTCAAGTTGATAA
906 CGGACTAGCCTTATTTAACTTGCTATTCTAGCTCTAAAC-3'
907 using the Phusion DNA polymerase (New England Biolabs).

908 Each PCR product was gel-purified with the Zymoclean DNA recovery kit (Zymo Research) and 150 ng
909 of DNA were used as template in an in vitro transcription reaction with the Megashortscript T7 kit
910 (Thermo Fisher Scientific). A 4-hour incubation at 37°C was followed by DNase digestion,
911 phenol/chloroform extraction, ethanol precipitation and storage in ethanol at -20°C according to the
912 manufacturer's instructions. Before microinjection, a small aliquot of the sgRNA was centrifuged, the
913 pellet was washed with 70% ethanol, resuspended in nuclease-free water and quantified on a Nanodrop
914 spectrophotometer (Thermo Scientific). The Cas9 was provided either as in vitro synthesized capped
915 mRNA or as recombinant protein. Cas9 mRNA synthesis was carried out as previously described [45]
916 using plasmid T7-Cas9 (a gift from David Stern and Justin Crocker) linearized with EcoRI digestion. The
917 lyophilized Cas9 protein (PNA Bio Inc) was resuspended in nuclease-free water at a concentration of 1.25
918 µg/µl and small aliquots were stored at -80°C. For microinjections, we mixed 400 ng/µl of Cas9 protein
919 with 40-200 ng/µl sgRNA, incubated at 37°C for 5 min, transferred on ice, added the inert dye phenol red
920 (5x from Sigma-Aldrich) and, for knock-in experiments, the tagging plasmid at a concentration of 10
921 ng/µl. The injection mix was centrifuged for 20 min at 4°C and the cleared solution was microinjected
922 into 1-cell-stage embryos as previously described [45].

923 In the knock-out experiments, embryos were scored for phenotypes under a bright-field stereomicroscope
924 7-8 days after injection (stage S25-S27) when organogenesis is almost complete and the limbs are clearly
925 visible through the transparent egg shell. To image the cuticle, anaesthetized hatchlings were fixed in 2%

926 paraformaldehyde in 1xPBS for 24 hours at room temperature. The samples were then washed in PTx
927 (1xPBS containing 1% TritonX-100) and stained with 1 mg/ml Congo Red (Sigma-Aldrich) in PTx at
928 room temperature with agitation for 24 hours. Stained samples were washed in PTx and mounted in 70%
929 glycerol for imaging. Serial optical sections were obtained at 2 μ m intervals with the 562 nm laser line on
930 a Zeiss 710 confocal microscope using the Plan-Apochromat 10x/0.45 NA objective. Images were
931 processed with Fiji (<http://fiji.sc>) and Photoshop (Adobe Systems Inc).
932 This methodology enabled us to also extract genomic DNA for genotyping from the same imaged
933 specimen. Each specimen was disrupted with a disposable pestle in a 1.5 ml microtube (Kimble Kontes)
934 in 50 μ l of Squishing buffer (10 mM Tris-HCl pH 8, 1 mM EDTA, 25 mM NaCl, 200 μ g/ml Proteinase
935 K). The lysate was incubated at 37°C for a minimum of 2 hours, followed by heat inactivation of the
936 Proteinase K for 5 min at 95°C, centrifugation at full speed for 5 min and transferring of the cleared
937 lysate to a new tube. To recover the sequences in the PhDll-e locus targeted by the Dll1 and Dll2 sgRNAs,
938 5 μ l of the lysate were used as template in a 50 μ l PCR reaction with the Phusion DNA polymerase (New
939 England Biolabs) and primers 313For (5'-TGGTTTTAGCAACAGTGAAGTGA-3') and 557Rev
940 (5'-GACTGGGAGCGTGAGGGTA-3'). The amplified products were purified with the DNA Clean and
941 Concentrator kit (Zymo Research), cloned with the Zero Blunt TOPO PCR Cloning Kit (Thermo Fisher
942 Scientific) and sequenced with the M13 forward primer.
943 For the knock-in experiments, we constructed the tagging plasmid
944 pCRISPR-NHEJ-KI-Dll-T2A-H2B-Ruby2 that contained the PhDll-e coding sequence fused in-frame
945 with the T2A self-cleaving peptide, the *Parhyale histone* H2B and the Ruby 2 monomeric red fluorescent
946 protein, followed by the PhDll-e 3'UTR and the pGEM-T Easy vector backbone (Promega). This tagging
947 plasmid has a modular design with unique restriction sites for easy exchange of any desired part. More
948 details are available upon request. Embryos co-injected with the Cas9 protein, the Dll2 sgRNA and the
949 pCRISPR-NHEJ-KI-Dll-T2A-H2B-Ruby2 tagging plasmid were screened for nuclear fluorescence in the
950 developing appendages under an Olympus MVX10 epi-fluorescence stereomicroscope. To image
951 expression, live embryos at stage S22 were mounted in 0.5% SeaPlaque low-melting agarose (Lonza) in
952 glass bottom microwell dishes (MatTek Corporation) and scanned as described above acquiring both the
953 fluorescence and transmitted light on an inverted Zeiss 880 confocal microscope. To recover the
954 chromosome-plasmid junctions, genomic DNA was extracted from transgenic siblings with fluorescent
955 limbs and used as template in PCR reaction as described above with primer pair 313For and H2BRev
956 (5'-TTACTTAGAAGAAGTGTACTTTG-3') for the left junction and primer pair M13 forward and
957 557Rev for the right junction. Amplified products were purified and cloned as described above and
958 sequenced with the M13 forward and M13 reverse primers.

959 **LIST OF FIGURES AND TABLES**

960 **Primary Figures**

961 **Figure 1** Introduction

962 **Figure 2** *Parhyale* karyotype

963 **Figure 3** *Parhyale* genome assembly metrics

964 **Figure 4** Workflows of assembly, annotation, and proteome generation

965 **Figure 5** *Parhyale* genome comparisons

966 **Figure 6** Variation analyses of predicted genes

967 **Figure 7** Variation observed in contiguous BAC sequences

968 **Figure 8** Comparison of Wnt family members across Metazoa

969 **Figure 9** Homeodomain protein family tree

970 **Figure 10** Evidence for an intact Hox cluster in *Parhyale*

971 **Figure 11** Lignocellulose digestion overview

972 **Figure 12** Phylogenetic analysis of GH7 and GH9 family proteins

973 **Figure 13** Comparison of innate immunity genes

974 **Figure 14** Evolution of miRNA families in Eumetazoans

975 **Figure 15** Analysis of *Parhyale* genome methylation

976 **Figure 16** CRISPR/Cas9-based genome editing in *Parhyale*

977 **Primary Tables**

978 **Figure 1** Experimental resources

979 **Figure 2** Assembly statistics

980 **Figure 3** BAC variant statistics

981 **Figure 4** Small RNA processing pathway members

982 **Secondary Data**

983 **Figure 4, Supplemental Table 1** Classification of repeat elements

984 **Figure 4, Supplemental Figure 2** CEGMA statistics of transcriptome and genome

985 **Figure 5, Supplemental Figure 1** Expansion of gene families

986 **Figure 6, Supplemental Figure 1** Variation in selected developmental genes

987 **Figure 8, Supplemental Figure 1** *FGF* genes among arthropods and vertebrates

988 **Figure 8, Supplemental Table 2** Classification of putative transcription factor DNA
989 binding domains

990 **Figure 8, Supplemental Figure 3** Ceramide Synthase (CERS) genes in metazoa

991 **Figure 12, Supplemental Figure 1** Alignment of GH genes

992 **Figure 13 Supplemental Figure 1** Alignment of DSCAM alternative exons

993 **Figure 14, Supplemental Figure 1** Phylogenetic relationship of *DICER* and *PIWI*
994 genes

995 **Figure 14, Supplemental Figure 2** Clustering of miRNA in the *Parhyale* genome

996 **Figure 16, Supplemental Figure 1** Molecular constructs used for genome editing

997 **Supplemental Data**

998 **Data 1** List of external data sources and software used

999 **Data 2** Annotation of *Parhyale* genes used

1000 **Data 3** Variation found in *Parhyale* developmental genes

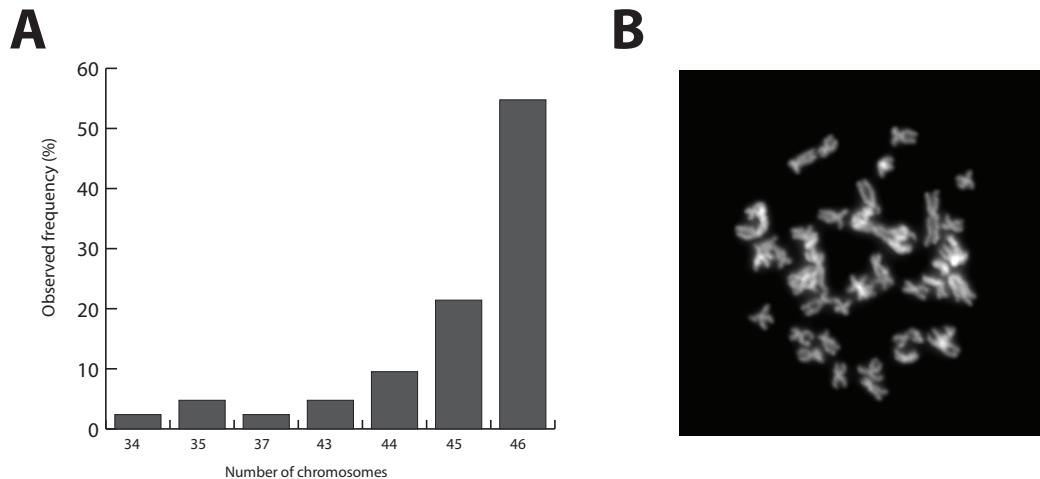
1001 **Data 4** KEGG annotation of *Parhyale* genes

1002 **Data 5** RFAM classification of putative RNA elements

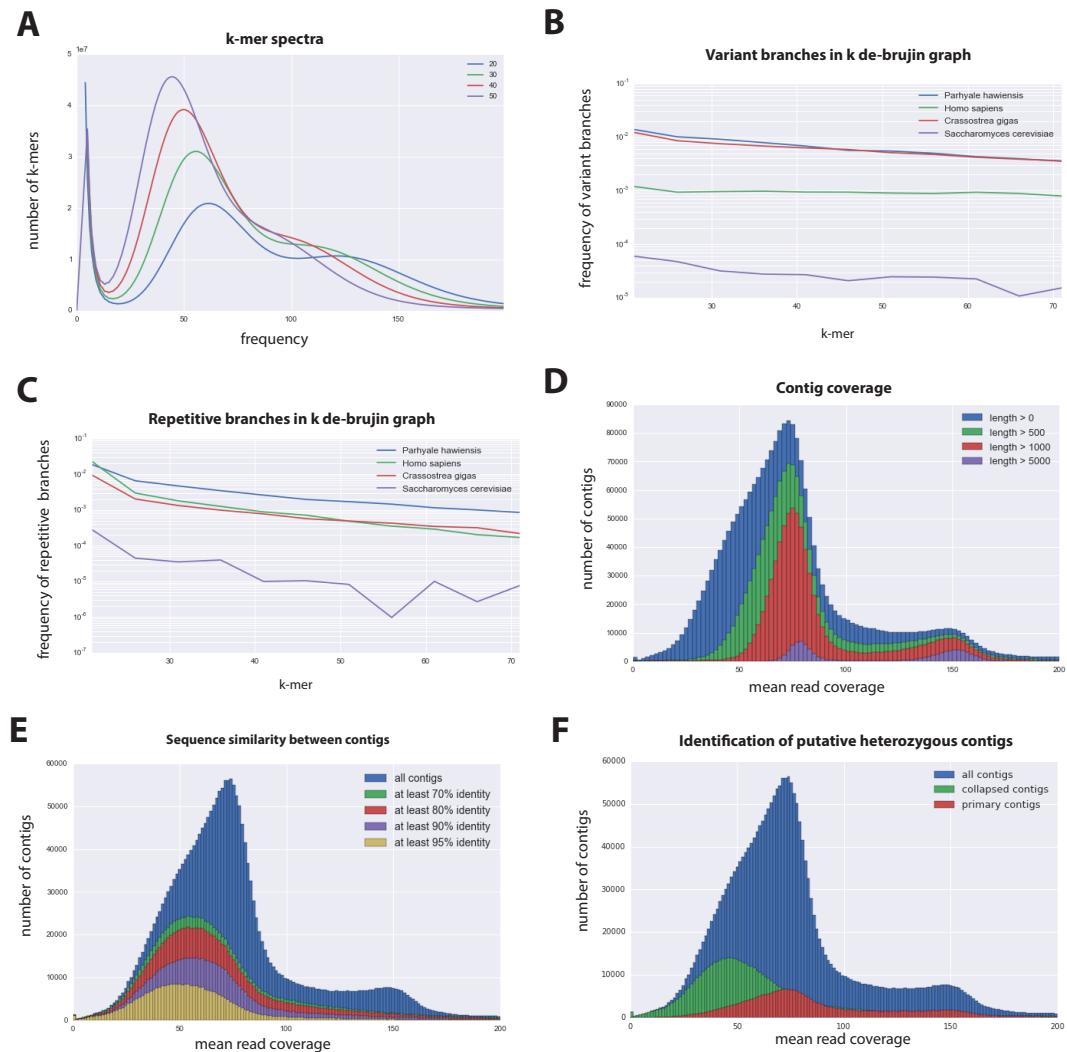
1003 **Data 6** IPython notebook detailing the assembly process

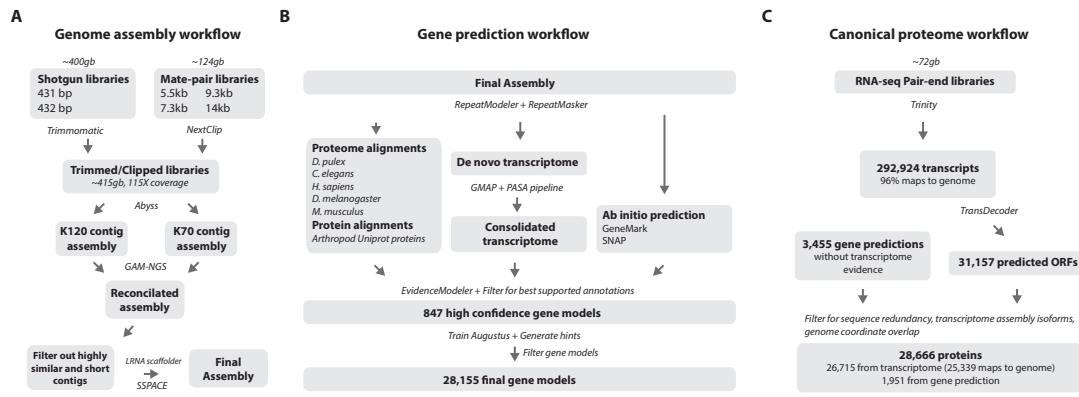

1004 **Data 7** IPython notebook detailing the repeat masking process and results

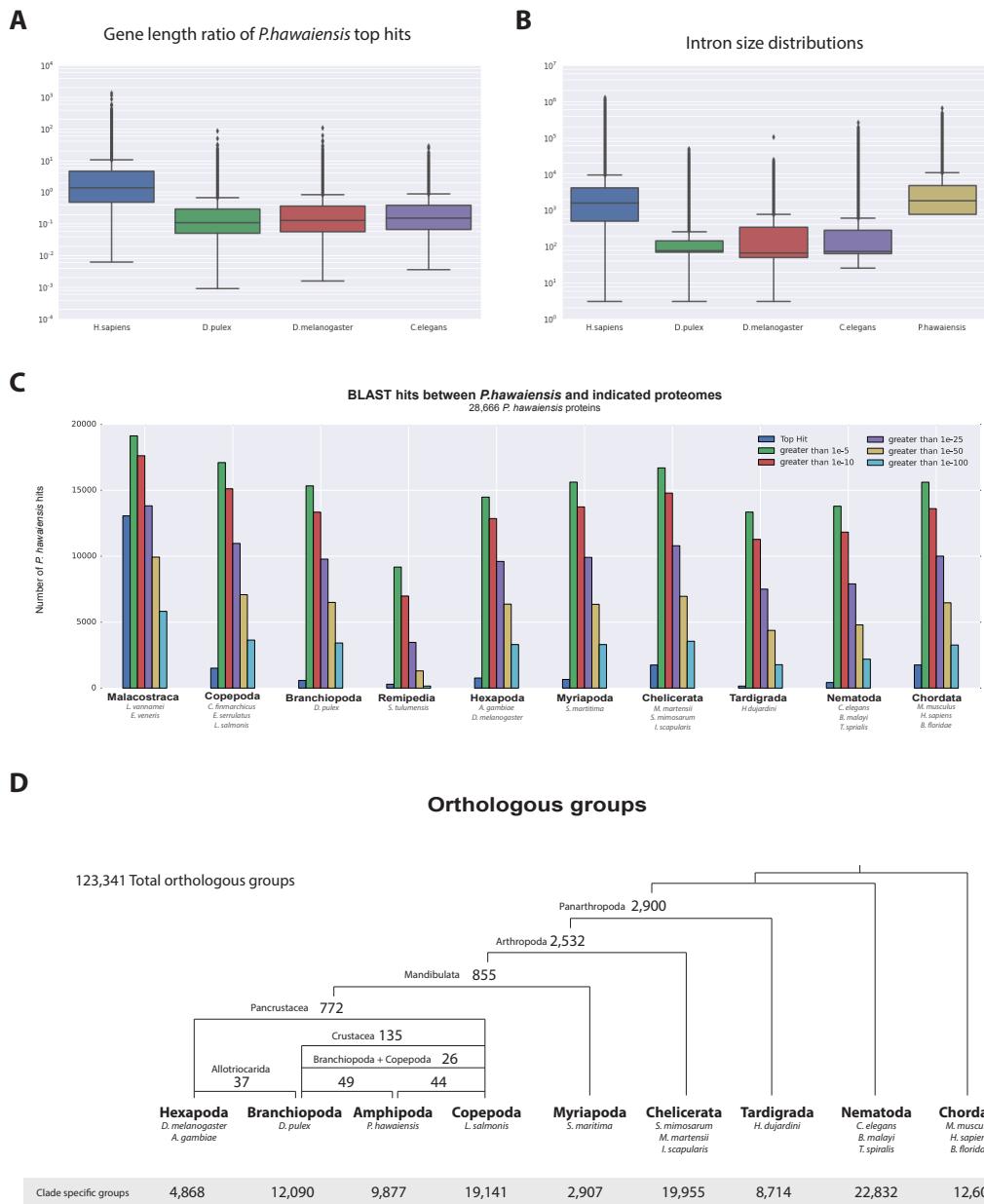
1005 **Data 8** IPython notebook detailing the annotation process


1006 **Data 9** IPython notebook detailing variant analysis

- 1007 **Data 10** IPython notebook detailing the orthology analysis
- 1008 **Data 11** IPython notebook detailing the RNA classification analysis
- 1009 **Data 12** txt file listing gene ids of amphipod specific genes
- 1010 **Data 13** txt file indexing KEGG ids to gene ids
- 1011 **Data 14** txt file listing gene ids of malacostraca specific genes
- 1012 **Data 15** txt file listing orthologous groups as outputted by OrthoFinder
- 1013 **Data 16** txt file indexing PFAM ids to gene IDS
- 1014 **Data 17** zip file of txt files listing gene ids of various clade specific gene ids


1015 **FIGURES AND TABLES**


Figure 1. Introduction. (A) Phylogenetic relationship of Arthropods showing the Chelicerata as an outgroup to Mandibulata and the Pancrustacea clade which includes crustaceans and insects. Species listed for each clade have ongoing or complete genomes. Species include Crustacea: *Parhyale hawaiiensis*, *D. pulex*; Hexapoda: *Drosophila melanogaster*, *Apis mellifera*, *Bombyx mori*, *Aedis aegypti*, *Tribolium castaneum*; Myriapoda: *Strigamia maritima*, *Trigoniulus corallines*; Chelicerata: *Ixodes scapularis*, *Tetranychus urticae*, *Mesobuthus martensii*, *Stegodyphus mimosarum*. (B) One of the unresolved issues concerns the placement of the Branchiopoda either together with the Cephalocarida, Remipedia and Hexapoda (Allotriocarida hypothesis A) or with the Copepoda, Thecostraca and Malacostraca (Vericrustacea hypothesis B). (C) Life cycle of *Parhyale* that takes about two months at 26°C. *Parhyale* is a direct developer and a sexually dimorphic species. The fertilized egg undergoes stereotyped total cleavages and each blastomere becomes committed to a particular germ layer already at the 8-cell stage depicted in (D). The three macromeres Er, El, and Ep give rise to the anterior right, anterior left, and posterior ectoderm, respectively, while the fourth macromere Mav gives rise to the visceral mesoderm and anterior head somatic mesoderm. Among the 4 micromeres, the mr and ml micromeres give rise to the right and left somatic trunk mesoderm, en gives rise to the endoderm, and g gives rise to the germline.


Figure 2. *Parhyale* karyotype. (A) Frequency of the number of chromosomes observed in 42 mitotic spreads. Forty-six chromosomes were observed in more than half of all preparations. **(B)** Representative image of Hoechst-stained chromosomes.

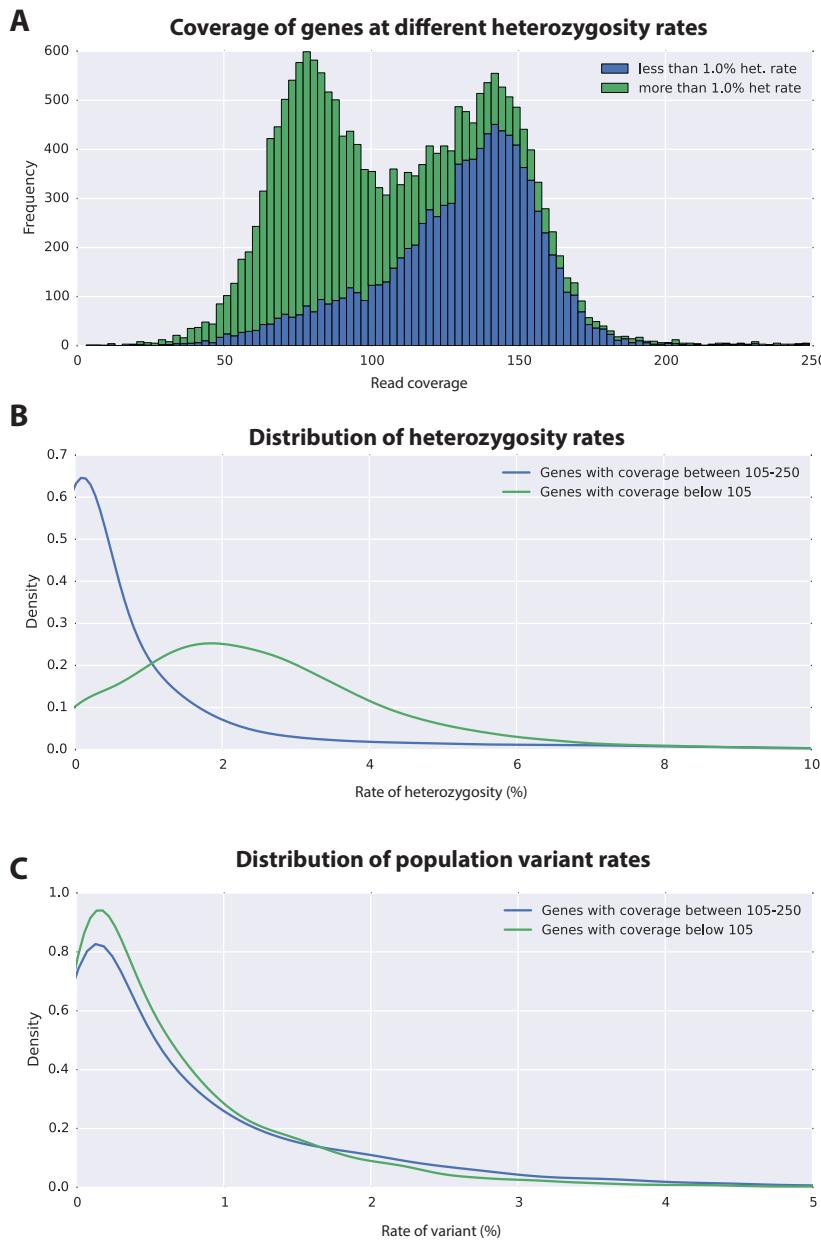

Figure 3. *Parhyale* genome assembly metrics. (A) K-mer frequency spectra of all reads for k-lengths ranging from 20 to 50. (B) K-mer branching analysis showing the frequency of k-mer branches classified as variants compared to *Homo sapiens* (human), *Crassostrea gigas* (oyster), and *Saccharomyces cerevisiae* (yeast). (C) K-mer branching analysis showing the frequency of k-mer branches classified as repetitive compared to *H. sapiens*, *C. gigas* and *S. cerevisiae*. (D) Histogram of read coverages of assembled contigs. (E) The number of contigs with an identity ranging from 70-95% to another contig in the set of assembled contigs. (F) Collapsed contigs (green) are contigs with at least 95% identity with a longer primary contig (red). These contigs were removed prior to scaffolding and added back as potential heterozygous contigs after scaffolding.

Figure 4. Workflows of assembly, annotation, and proteome generation. (A) Flowchart of the genome assembly. Two shotgun libraries and four mate-pair libraries with the indicated average sizes were prepared from a single male animal and sequenced to a predicted depth of 115x coverage after read filtering, based on a predicted size of 3.6 Gbp. Contigs were assembled at two different k-lengths with Abyss and the two assemblies were merged with GAM-NGS. Filtered contigs were scaffolded with SSPACE. (B) The final scaffolded assembly was annotated with a combination of Evidence Modeler to generate 847 high quality gene models and Augustus for the final set of 28,155 predictions. These protein-coding gene models were generated based on a *Parhyale* transcriptome consolidated from multiple developmental stages and conditions, their homology to the species indicated, and *ab initio* predictions with GeneMark and SNAP. (C) The *Parhyale* proteome contains 28,666 entries based on the consolidated transcriptome and gene predictions. The transcriptome contains 292,924 coding and non-coding RNAs, 96% of which could be mapped to the assembled genome.

Figure 5. Parhyale genome comparisons. (A) Box plots comparing gene sizes between *Parhyale* and humans (*H. sapiens*), water fleas (*D. pulex*), flies (*D. melanogaster*) and nematodes (*C. elegans*). Ratios were calculated by dividing the size of the top blast hit in each species with the corresponding *Parhyale* gene size. (B) Box plots showing the distribution of intron sizes in the same species used in A. (C) Comparison between *Parhyale* and representative proteomes from the indicated animal taxa. Colored bars indicate the number of blast hits recovered across various thresholds of E-values. The top hit value represents the number of proteins with a top hit corresponding to the respective species. (D) Cladogram showing the number of shared orthologous protein groups at various taxonomic levels, as well as the number of clade-specific groups. A total of 123,341 orthogroups were identified with Orthofinder across the 16 genomes used in this analysis. Within Pancrustacea, 37 orthogroups were shared between Branchiopoda and Hexapoda (supporting the Allotriocarida hypothesis) and 49 orthogroups were shared between Branchiopoda and Amphipoda (supporting the Vericrustacea hypothesis).

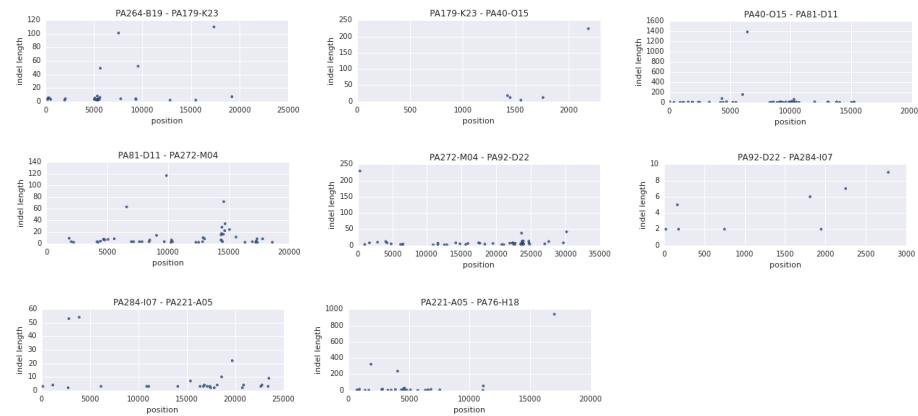
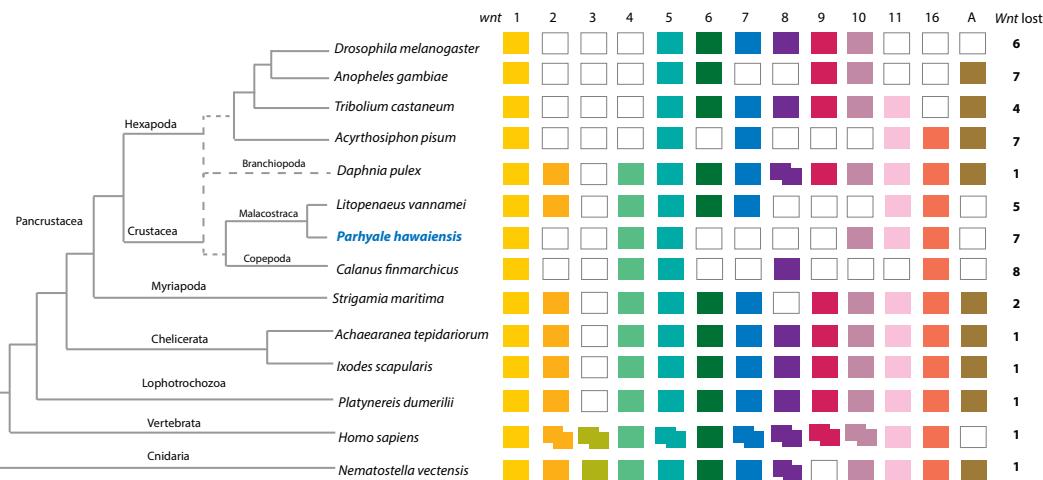
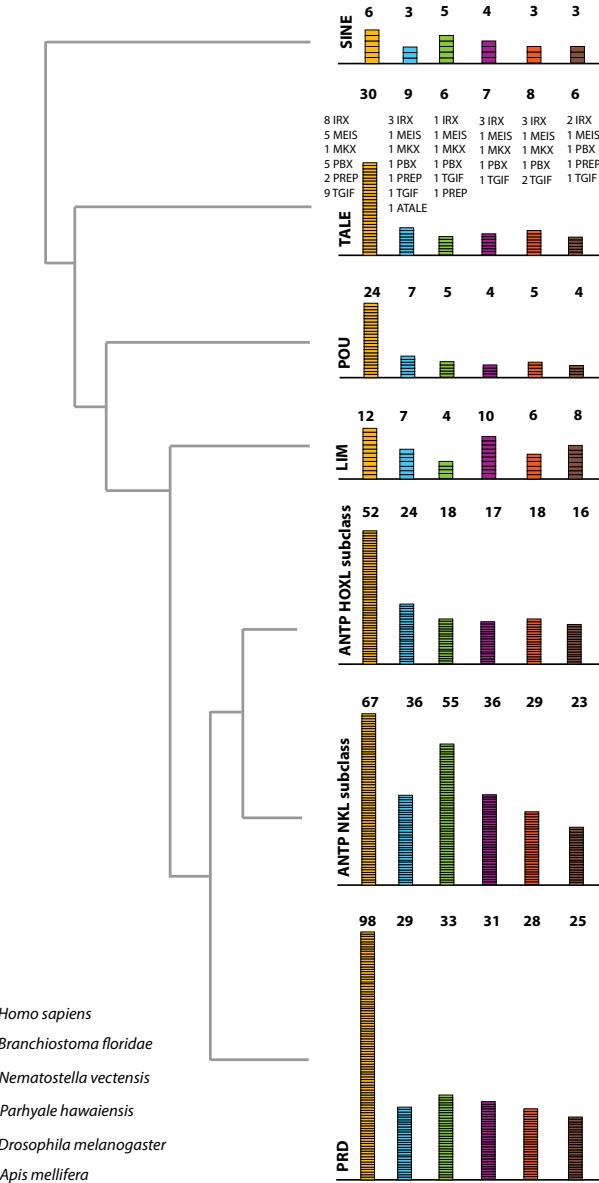
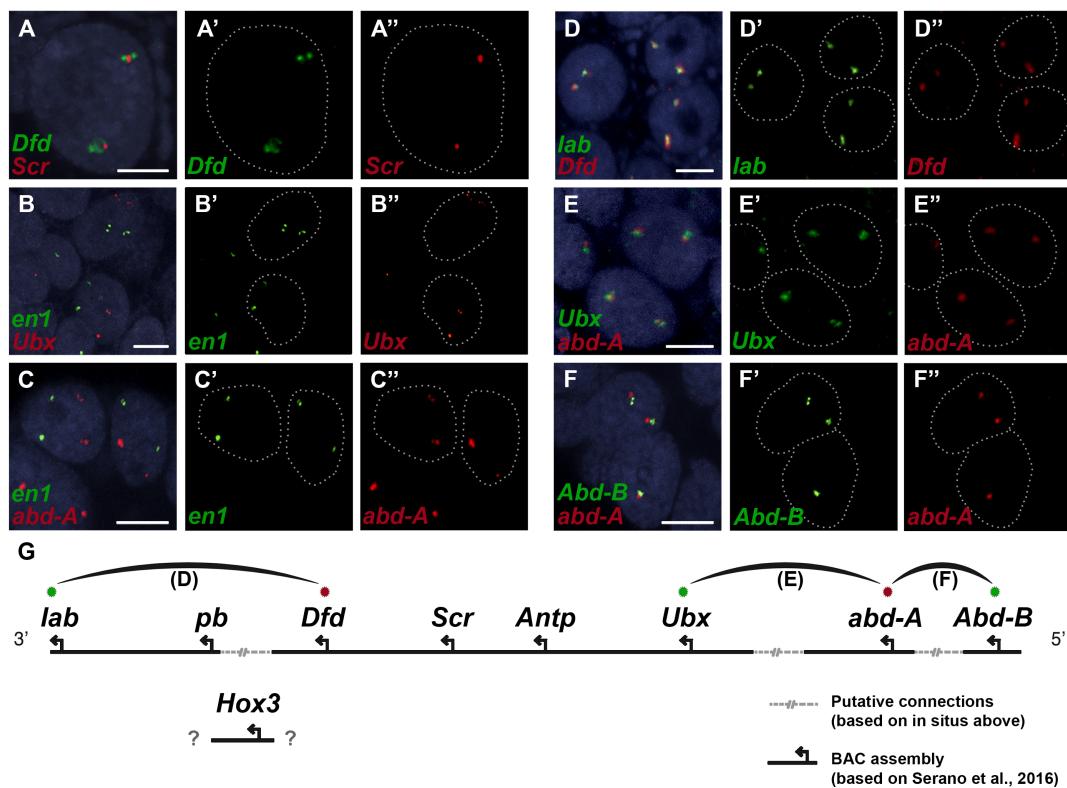


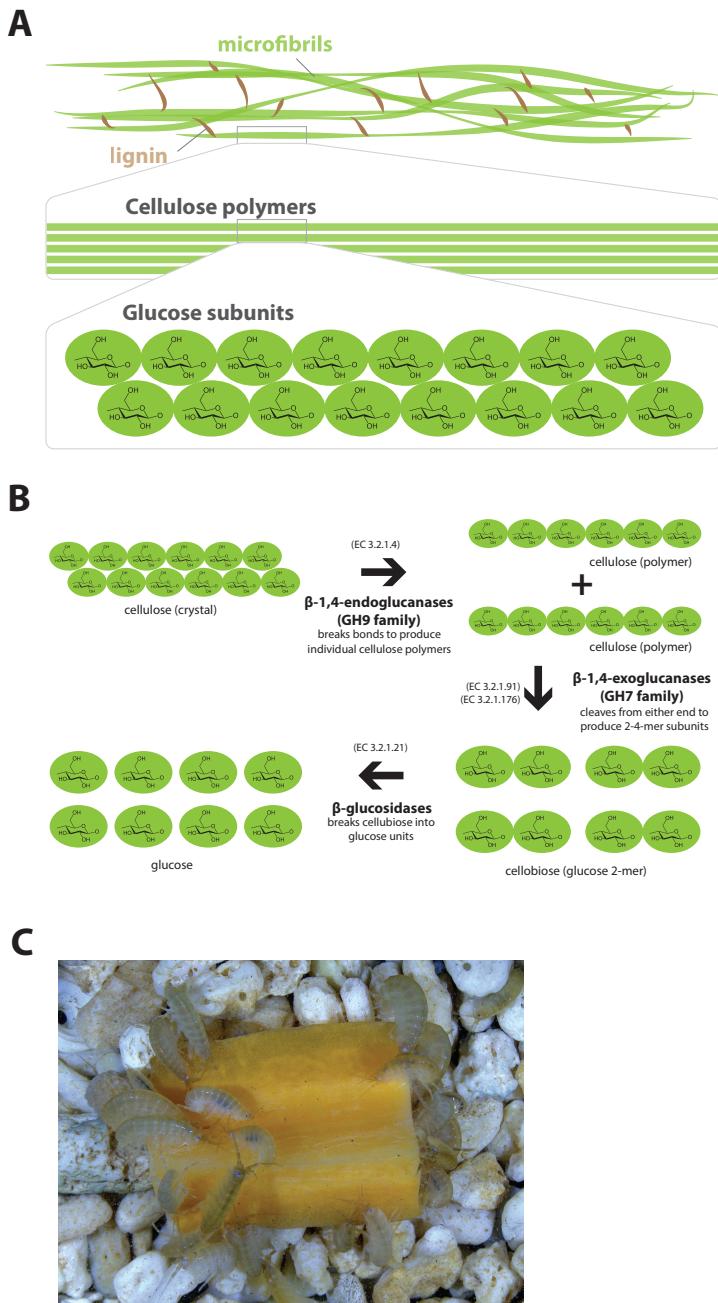
Figure 6. Variation analyses of predicted genes. (A) A read coverage histogram of predicted genes. Reads were first mapped to the genome, then coverage was calculated for transcribed regions of each defined locus. (B) A coverage distribution plot showing that genes in the lower coverage region (<105x coverage, peak at 75x) have a higher level of heterozygosity than genes in the higher coverage region (>105 coverage and <250, peak at approximately 150x coverage). (C) Distribution plot indicating that mean level of population variance is similar for genes in the higher and lower coverage regions.

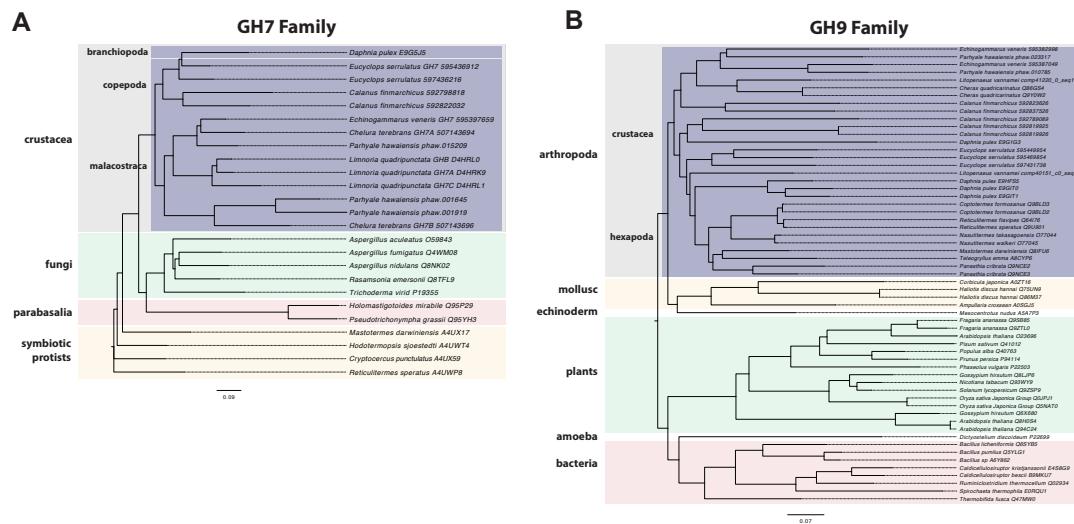

A Variation in contiguous BAC sequences

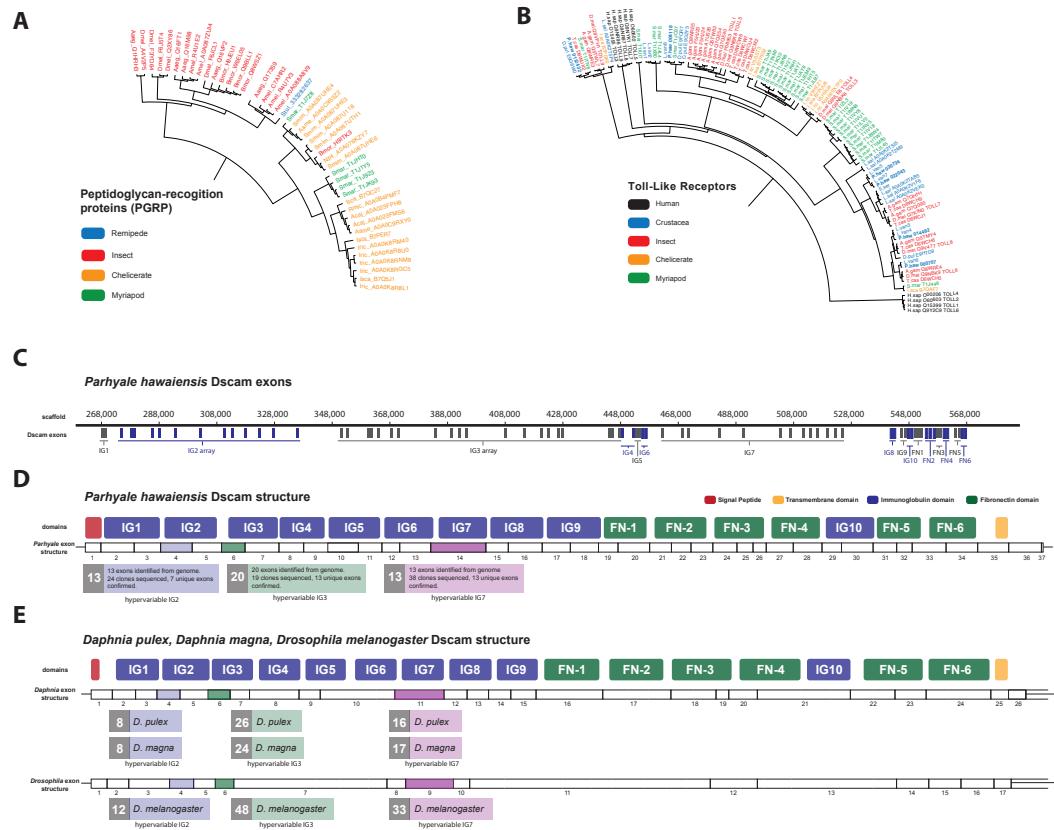
	PA264-B19	PA40-O15	PA272-M04	PA284-I07	PA76-H18
% identity according to BAC	100% ident. 98% ident.	99% ident. 96% ident.	97% ident. 94% ident.	98% ident. 96% ident.	100% ident. 93% ident.
% identity according to reads					99% ident. 97% ident.
overlap length	19,846	3,135	16,536	20,707	32,587
BAC supported SNPs	1	89	543	842	8
Genomic reads supported SNPs	425	121	902	854	1,269
BAC + Genomic reads supported SNPs	0	88	539	841	0
Third allele	0	1	13	1	0
Number of INDELs	64	17	106	115	127
Number of INDELs >= 100	2	1	5	1	0


B Position and length of indels > 1bp in overlapping BAC regions


Figure 7. Variation observed in contiguous BAC sequences. (A) Schematic diagram of the contiguous BAC clones tiling across the HOX cluster and their % sequence identities. “Overlap length” refers to the lengths (bp) of the overlapping regions between two BAC clones. “BAC supported single nucleotide polymorphisms (SNPs)” refer to the number of SNPs found in the overlapping regions by pairwise alignment. “Genomic reads supported SNPs” refer to the number of SNPs identified in the overlapping regions by mapping all reads to the BAC clones and performing variant calling with GATK. “BAC + Genomic reads supported SNPs” refer to the number of SNPs identified from the overlapping regions by pairwise alignment that are supported by reads. “Third allele” refers to presence of an additional polymorphism not detected by genomic reads. “Number of INDELs” refer to the number of all insertion or deletions found in the contiguous region. “Number of INDELs >100” are insertion or deletions greater than or equal to 100. (B) Position versus indel lengths across each overlapping BAC region.


Figure 8. Comparison of Wnt family members across Metazoa. Comparison of Wnt genes across Metazoa. Tree on the left illustrates the phylogenetic relationships of species used. Dotted lines in the phylogenetic tree illustrate the alternative hypothesis of Branchiopoda + Hexapoda versus Branchiopoda + Multicrustacea. Colour boxes indicate the presence of certain Wnt subfamily members (wnt1 to wnt11, wnt16 and wntA) in each species. Empty boxes indicate the loss of particular Wnt genes. Two overlapping colour boxes represent duplicated Wnt genes.


Figure 9. Homeodomain protein family tree. The overview of homeodomain radiation and phylogenetic relationships among homeodomain proteins from Arthropoda (*P. hawaiensis*, *D. melanogaster* and *A. mellifera*), Chordata (*H. sapiens* and *B. floridae*), and Cnidaria (*N. vectensis*). Six major homeodomain classes are illustrated (SINE, TALE, POU, LIM, ANTP and PRD) with histograms indicating the number of genes in each species belonging to a given class.


Figure 10. Evidence for an intact Hox cluster in *Parhyale*. (A-F'') Double fluorescent *in situ* hybridizations (FISH) for nascent transcripts of genes. (A-A'') *Deformed* (*Dfd*) and *Sex combs reduced* (*Scr*), (B-B'') *engrailed 1* (*en1*) and *Ultrabithorax* (*Ubx*), (C-C'') *en1* and *abdominal-A* (*abd-A*), (D-D'') *labial* (*lab*) and *Dfd*, (E-E'') *Ubx* and *abd-A*, and (F-F'') *Abdominal-B* (*Abd-B*) and *abd-A*. Cell nuclei are stained with DAPI (blue) in panels A-F and outlined with white dotted lines in panels A'-F' and A''-F''. Co-localization of nascent transcript dots in A, D, E and F suggest the proximity of the corresponding Hox genes in the genomic DNA. As negative controls, the *en1* nascent transcripts in B and C do not co-localize with those of Hox genes *Ubx* or *abd-A*. (G) Schematic representation of the predicted configuration of the Hox cluster in *Parhyale*. Previously identified genomic linkages are indicated with solid black lines, whereas linkages established by FISH are shown with dotted gray lines. The arcs connecting the green and red dots represent the linkages identified in D, E and F, respectively. The position of the *Hox3* gene is still uncertain. Scale bars are 5 μm.

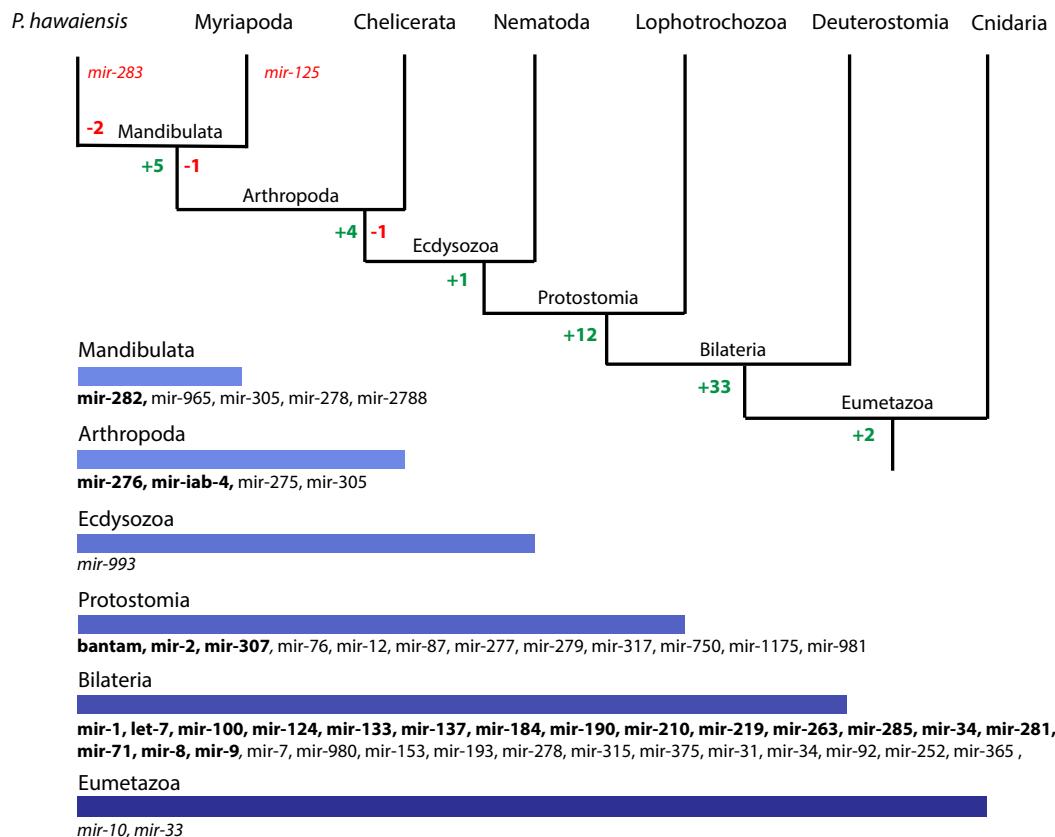

Figure 11. Lignocellulose digestion overview. (A) Simplified drawing of lignocellulose structure. The main component of lignocellulose is cellulose, which is a β -1,4-linked chain of glucose monosaccharides. Cellulose and lignin are organized in structures called microfibrils, which in turn form macrofibrils. (B) Summary of cellulolytic enzymes and reactions involved in the breakdown of cellulose into glucose. β -1,4-endoglucanases of the GH9 family catalyze the hydrolysis of crystalline cellulose into cellulose chains. β -1,4-exoglucanases of the GH7 family break down cellulose chains into cellobiose (glucose disaccharide) that can be converted to glucose by β -glucosidases. (C) Adult *Parhyale* feeding on a slice of carrot.

Figure 12. Phylogenetic analysis of GH7 and GH9 family proteins. (A) Phylogenetic tree showing the relationship between GH7 family proteins of *Parhyale*, other crustaceans (Malacostraca, Branchiopoda, Copepoda), fungi and symbiotic protists (root). UniProt and GenBank accessions are listed next to the species names. (B) Phylogenetic tree showing the relationship between GH9 family proteins of *Parhyale*, crustaceans, insects, molluscs, echinoderms, amoeba, bacteria and plants (root). UniProt and GenBank accessions are listed next to the species names. Both trees were constructed with RAxML using the WAG+G model from multiple alignments of protein sequences created with MUSCLE.

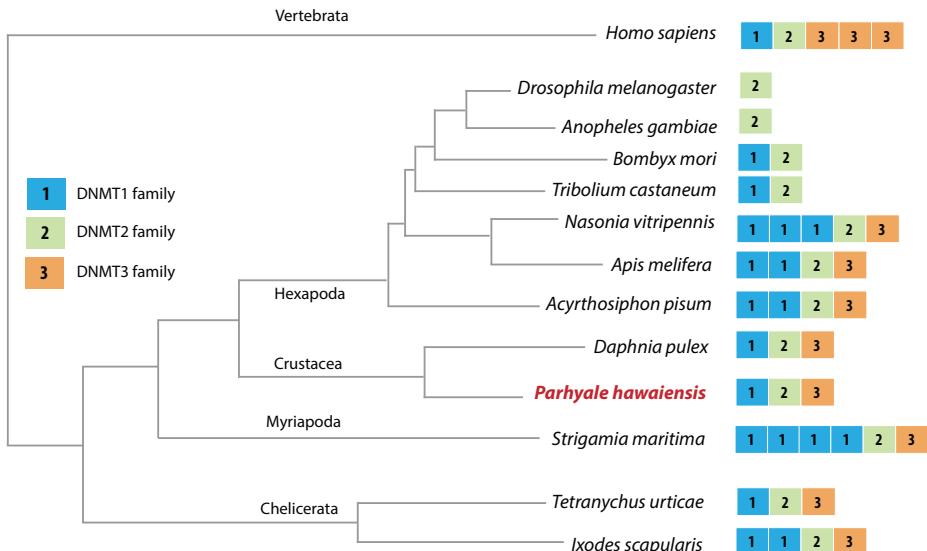
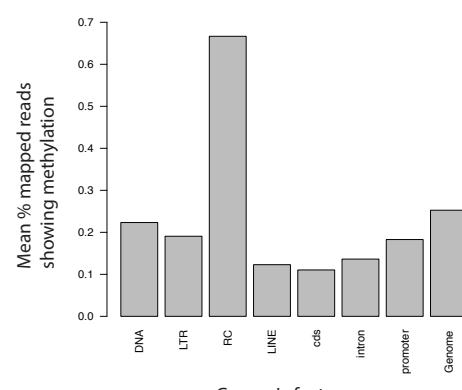
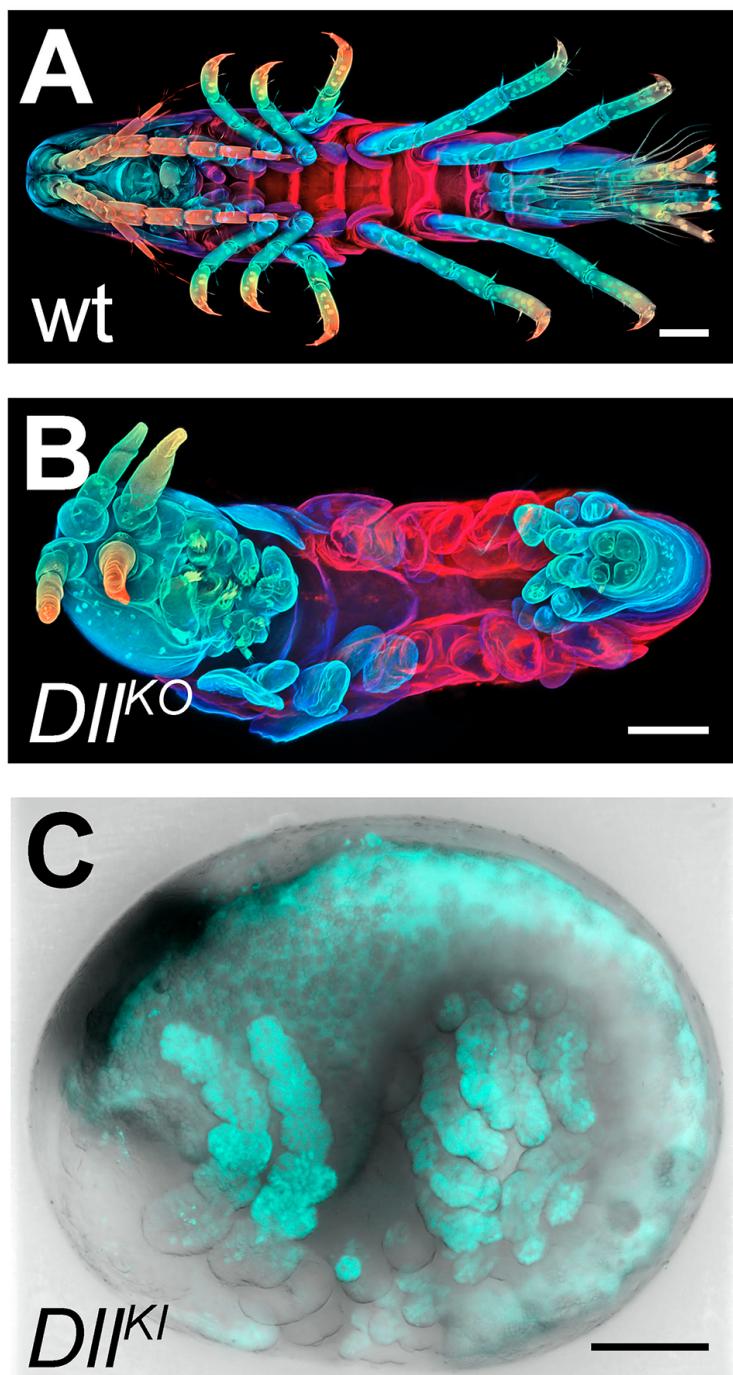


Figure 13. Comparison of innate immunity genes. (A) Phylogenetic tree of peptidoglycan recognition proteins (PGRPs). With the exception of Remipedes, PGRPs were not found in Crustaceans. PGRPs have been found in Arthropods, including insects, Myriapods and Chelicerates. (B) Phylogenetic tree of Toll-like receptors (TLRs) generated from five Crustaceans, three Hexapods, two Chelicerates, one Myriapod and one vertebrate species. (C) Genomic organization of the *Parhyale* Dscam locus showing the individual exons and exon arrays encoding the immunoglobulin (IG) and fibronectin (FN) domains of the protein. (D) Structure of the *Parhyale* Dscam locus and comparison with the (E) Dscam loci from *Daphnia pulex*, *Daphnia magna* and *Drosophila melanogaster*. The white boxes represent the number of predicted exons in each species encoding the signal peptide (red), the IGs (blue), the FNs and transmembrane (yellow) domains of the protein. The number of alternatively spliced exons in the arrays encoding the hypervariable regions IG2 (exon 4 in all species), IG3 (exon 6 in all species) and IG7 (exon 14 in *Parhyale*, 11 in *D. pulex* and 9 in *Drosophila*) are indicated under each species schematic in the purple, green and magenta boxes, respectively. Abbreviations of species used: *Parhyale hawaiensis* (Phaw), *Bombyx mori* (Bmor), *Aedes aegypti* (Aaeg), *Drosophila melanogaster* (Dmel), *Apis mellifera* (Amel), *Speleonectes tulumensis* (Stul), *Strigamia maritima* (Smar), *Stegodyphus mimosarum* (Smim), *Ixodes scapularis* (Isca), *Amblyomma americanum* (Aame), *Nephila pilipes* (Npil), *Rhipicephalus microplus* (Rmic), *Ixodes ricinus* (Iric), *Amblyomma cajennense* (Acaj), *Anopheles gambiae* (Agam), *Daphnia pulex* (Apul), *Tribolium castaneum* (Tcas), *Litopenaeus vannamei* (Lvan), *Lepeophtheirus salmonis* (Lsal), *Eucyclops serrulatus* (Eser), *Homo sapiens* (H.sap). Both trees were constructed with RAxML using the WAG+G model from multiple alignments of protein sequences created with MUSCLE.

Figure 14. Evolution of miRNA families in Eumetazoans. Phylogenetic tree showing the gains (in green) and losses (in red) of miRNA families at various taxonomic levels of the Eumetazoan tree leading to *Parhyale*. miRNAs marked with plain characters were identified by MirPara with small RNA sequencing read support. miRNAs marked with bold characters were identified by Rfam and MirPara with small RNA sequencing read support.


A


B

C

Figure 15. Analysis of *Parhyale* genome methylation. (A) Phylogenetic tree showing the families and numbers of DNA methyltransferases (DNMTs) present in the genomes of indicated species. *Parhyale* has one copy from each DNMT family. **(B)** Amounts of methylation detected in the *Parhyale* genome. Amount of methylation is presented as percentage of reads showing methylation in bisulfite sequencing data. DNA methylation was analyzed in all sequence contexts (CG shown in dark, CHG in blue and CHH in red) and was detected preferentially in CpG sites. **(C)** Histograms showing mean percentages of methylation in different fractions of the genome: DNA transposons (DNA), long terminal repeat transposable elements (LTR), rolling circle transposable elements (RC), long interspersed elements (LINE), coding sequences (cds), introns, promoters, and the rest of the genome.

Figure 16. CRISPR/Cas9-based genome editing in *Parhyale*. (A) Wild-type morphology. (B) Mutant *Parhyale* with truncated limbs after CRISPR-mediated knock-out (DIIKO) of the limb patterning gene *Distal-less* (*PhDll-e*). Panels show ventral views of juveniles stained for cuticle and color-coded by depth with anterior to the left. (C) Fluorescent tagging of *PhDll-e* expressed in most limbs (shown in cyan) by CRISPR-mediated knock-in (DIIKI) using the non-homologous-end-joining repair mechanism. Panel shows a lateral view with anterior to the left and dorsal to the top of a live embryo (stage S22) with merged bright-field and fluorescence channels. Yolk autofluorescence produces a dorsal crescent of fluorescence in the gut. Scale bars are 100 μ m.

Table 1. Experimental resources. Available experimental resources in *Parhyale* and corresponding references.

Experimental Resources	References
Embryological manipulations Cell microinjection, isolation, ablation	[36–38, 41–46]
Gene expression studies In situ hybridization, antibody staining	[39, 40]
Gene knock-down RNA interference, morpholinos	[24, 50]
Transgenesis Transposon-based, integrase-based	[45, 48, 49]
Gene trapping Exon/enhancer trapping, iTRAC (trap conversion)	[49]
Gene misexpression Heat-inducible	[25]
Gene knock-out CRISPR/Cas	[19]
Gene knock-in CRISPR/Cas homology-dependent or homology-independent	[18]
Live imaging Bright-field, confocal, light-sheet microscopy	[43, 44, 47]

Table 2. Assembly statistics. Length metrics of assembled scaffolds and contigs.

	# sequences	N90	N50	N10	Sum Length	Max Length	# Ns
scaffolds	133,035	14,799	81,190	289,705	3.63GB	1,285,385	1.10GB
unplaced contigs	259,343	304	627	1,779	146MB	40,222	23,431
hetero. contigs	584,392	265	402	1,038	240MB	24,461	627
genic scaffolds	15,160	52,952	161,819	433,836	1.49GB	1,285,385	323MB

Table 3. BAC variant statistics. Level of heterozygosity of each BAC sequence determined by mapping genomic reads to each BAC individually. Population variance rate represent additional alleles found (more than 2 alleles) from genomic reads.

BAC ID	Length	Heterozygosity	Pop.Variance
PA81-D11	140,264	1.654	0.568
PA40-O15	129,957	2.446	0.647
PA76-H18	141,844	1.824	0.199
PA120-H17	126,766	2.673	1.120
PA222-D11	128,542	1.344	1.404
PA31-H15	140,143	2.793	0.051
PA284-I07	141,390	2.046	0.450
PA221-A05	148,703	1.862	1.427
PA93-L04	139,955	2.177	0.742
PA272-M04	134,744	1.925	0.982
PA179-K23	137,239	2.671	0.990
PA92-D22	126,848	2.650	0.802
PA268-E13	135,334	1.678	1.322
PA264-B19	108,571	1.575	0.157
PA24-C06	141,446	1.946	1.488

Table 4. Small RNA processing pathway members. The *Parhyale* orthologs of small RNA processing pathway members.

Gene	Counts	Gene ID
Armitage	2	phaw_30_tra_m.006391 phaw_30_tra_m.007425
Spindle_E	3	phaw_30_tra_m.000091 phaw_30_tra_m.020806 phaw_30_tra_m.018110
rm62	7	phaw_30_tra_m.014329 phaw_30_tra_m.012297 phaw_30_tra_m.004444 phaw_30_tra_m.012605 phaw_30_tra_m.001849 phaw_30_tra_m.006468 phaw_30_tra_m.023485
Piwi/aubergine	2	phaw_30_tra_m.011247 phaw_30_tra_m.016012
Dicer 1	1	phaw_30_tra_m.001257
Dicer 2	1	phaw_30_tra_m.021619
argonaute 1	1	phaw_30_tra_m.006642
argonaute 2	3	phaw_30_tra_m.021514 phaw_30_tra_m.018276 phaw_30_tra_m.012367
Loquacious	2	phaw_30_tra_m.006389 phaw_30_tra_m.000074
Drosha	1	phaw_30_tra_m.015433

1016 **REFERENCES**

1017 [1] M Akam. Arthropods: Developmental diversity within a (super) phylum.
1018 *Proceedings of the National Academy of Sciences of the United States of America*,
1019 97(9):1–4, April 2000.

1020 [2] Graham E Budd and Maximilian J Telford. The origin and evolution of arthropods.
1021 *Nature*, 457(7231):812–817, February 2009.

1022 [3] Andrew D Peel, Ariel D Chipman, and Michael Akam. Arthropod Segmentation:
1023 beyond the *Drosophila* paradigm. *Nature reviews. Genetics*, 6(12):905–916,
1024 November 2005.

1025 [4] G Scholtz and C Wolff. Arthropod embryology: cleavage and germ band
1026 development. *Arthropod Biology and Evolution*, 2013.

1027 [5] Jon M Mallatt, James R Garey, and Jeffrey W Shultz. Ecdysozoan phylogeny and
1028 Bayesian inference: first use of nearly complete 28S and 18S rRNA gene
1029 sequences to classify the arthropods and their kin. *Molecular Phylogenetics and*
1030 *Evolution*, 31(1):178–191, April 2004.

1031 [6] C E Cook, Q Yue, and M Akam. Mitochondrial genomes suggest that hexapods
1032 and crustaceans are mutually paraphyletic. *Proceedings. Biological sciences / The*
1033 *Royal Society*, 272(1569):1295–1304, June 2005.

1034 [7] Jerome C Regier, Jeffrey W Shultz, and Robert E Kambic. Pancrustacean
1035 phylogeny: hexapods are terrestrial crustaceans and maxillopods are not
1036 monophyletic. *Proceedings. Biological sciences / The Royal Society*,
1037 272(1561):395–401, February 2005.

1038 [8] B Ertas, B M von Reumont, J W Wagele, B Misof, and T Burmester. Hemocyanin
1039 Suggests a Close Relationship of Remipedia and Hexapoda. *Molecular biology*
1040 *and evolution*, 26(12):2711–2718, November 2009.

1041 [9] S Richter. The Tetraconata concept: hexapod-crustacean relationships and the
1042 phylogeny of Crustacea. *Organisms Diversity & Evolution*, 2(3):217–237, 2002.

1043 [10] John K Colbourne, Michael E Pfrender, Donald Gilbert, W Kelley Thomas,
1044 Abraham Tucker, Todd H Oakley, Shinichi Tokishita, Andrea Aerts, Georg J

1045 Arnold, Malay Kumar Basu, Darren J Bauer, Carla E Caceres, Liran Carmel,
1046 Claudio Casola, Jeong-Hyeon Choi, John C Detter, Qunfeng Dong, Serge
1047 Dusheyko, Brian D Eads, Thomas Froehlich, Kerry A Geiler-Samerotte, Daniel
1048 Gerlach, Phil Hatcher, Sanjuro Jogdeo, Jeroen Krijgsveld, Evgenia V Kriventseva,
1049 Dietmar Kueltz, Christian Laforsch, Erika Lindquist, Jacqueline Lopez, J Robert
1050 Manak, Jean Muller, Jasmyn Pangilinan, Rupali P Patwardhan, Samuel Pitluck,
1051 Ellen J Pritham, Andreas Rechtsteiner, Mina Rho, Igor B Rogozin, Onur Sakarya,
1052 Asaf Salamov, Sarah Schaack, Harris Shapiro, Yasuhiro Shiga, Courtney Skalitzky,
1053 Zachary Smith, Alexander Souvorov, Way Sung, Zuojian Tang, Dai Tsuchiya,
1054 Hank Tu, Harmjan Vos, Mei Wang, Yuri I Wolf, Hideo Yamagata, Takuji Yamada,
1055 Yuzhen Ye, Joseph R Shaw, Justen Andrews, Teresa J Crease, Haixu Tang,
1056 Susan M Lucas, Hugh M Robertson, Peer Bork, Eugene V Koonin, Evgeny M
1057 Zdobnov, Igor V Grigoriev, Michael Lynch, and Jeffrey L Boore. The
1058 Ecoresponsive Genome of *Daphnia pulex*. *Science*, 331(6017):555–561, 2011.

1059 [11] K Meusemann, B M von Reumont, S Simon, F Roeding, S Strauss, P Kuck,
1060 I Ebersberger, M Walzl, G Pass, S Breuers, V Achter, A von Haeseler,
1061 T Burmester, H Hadrys, J W Wagele, and B Misof. A Phylogenomic Approach to
1062 Resolve the Arthropod Tree of Life. *Molecular biology and evolution*,
1063 27(11):2451–2464, October 2010.

1064 [12] Jerome C Regier, Jeffrey W Shultz, Andreas Zwick, April Hussey, Bernard Ball,
1065 Regina Wetzer, Joel W Martin, and Clifford W Cunningham. Arthropod
1066 relationships revealed by phylogenomic analysis of nuclear protein-coding
1067 sequences. *Nature*, 463(7284):1079–1083, February 2010.

1068 [13] T H Oakley, J M Wolfe, A R Lindgren, and A K Zaharoff. Phylogenomics to
1069 Bring the Understudied into the Fold: Monophyletic Ostracoda, Fossil Placement,
1070 and Pancrustacean Phylogeny. *Molecular biology and evolution*, 30(1):215–233,
1071 December 2012.

1072 [14] Bjoern M von Reumont, Ronald A Jenner, Matthew A Wills, Emiliano Dell’ampio,
1073 Günther Pass, Ingo Ebersberger, Benjamin Meyer, Stefan Koenemann, Thomas M
1074 Iliffe, Alexandros Stamatakis, Oliver Niehuis, Karen Meusemann, and Bernhard
1075 Misof. Pancrustacean phylogeny in the light of new phylogenomic data: support

1076 for Remipedia as the possible sister group of Hexapoda. *Molecular biology and*
1077 *evolution*, 29(3):1031–1045, March 2012.

1078 [15] Lorena Rivarola-Duarte, Christian Otto, Frank Jühling, Stephan Schreiber, Daria
1079 Bedulina, Lena Jakob, Anton Gurkov, Denis Axenov-Gribanov, Abdullah H.
1080 Sahyoun, Magnus Lucassen, Jörg Hackermüller, Steve Hoffmann, Franz Sartoris,
1081 Hans-Otto Pörtner, Maxim Timofeyev, Till Luckenbach, and Peter F. Stadler. A
1082 first glimpse at the genome of the baikalian amphipod *Eulimnogammarus*
1083 *verrucosus*. *Journal of Experimental Zoology Part B: Molecular and*
1084 *Developmental Evolution*, 322(3):177–189, feb 2014.

1085 [16] Nathan Kenny, Yung Sin, Xin Shen, Qu Zhe, Wei Wang, Ting Chan, Stephen Tobe,
1086 Sebastian Shimeld, Ka Chu, and Jerome Hui. Genomic sequence and experimental
1087 tractability of a new decapod shrimp model, *neocaridina denticulata*. *Marine*
1088 *Drugs*, 12(3):1419–1437, mar 2014.

1089 [17] Le Cong, F Ann Ran, David Cox, Shuailiang Lin, Robert Barretto, Naomi Habib,
1090 Patrick D Hsu, Xuebing Wu, Wenyan Jiang, Luciano A Marraffini, and Feng
1091 Zhang. Multiplex genome engineering using CRISPR/Cas systems. *Science*,
1092 339(6121):819–823, February 2013.

1093 [18] Julia M Serano, Arnaud Martin, Danielle M Liubicich, Erin Jarvis, Heather S
1094 Bruce, Konnor La, William E Browne, Jane Grimwood, and Nipam H Patel.
1095 Comprehensive analysis of Hox gene expression in the amphipod crustacean
1096 *Parhyale hawaiensis*. *Developmental Biology*, pages 1–13, November 2015.

1097 [19] Arnaud Martin, Julia M Serano, Erin Jarvis, Heather S Bruce, Jennifer Wang,
1098 Shagnik Ray, Carryn A Barker, Liam C O’Connell, and Nipam H Patel.
1099 CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean
1100 Limb Specification and Evolution. *Current biology : CB*, December 2015.

1101 [20] Prashant Mali, Luhan Yang, Kevin M Esvelt, John Aach, Marc Guell, James E
1102 DiCarlo, Julie E Norville, and George M Church. RNA-guided human genome
1103 engineering via Cas9. *Science*, 339(6121):823–826, February 2013.

1104 [21] Martin Jinek, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A
1105 Doudna, and Emmanuelle Charpentier. A programmable dual-RNA-guided DNA

1106 endonuclease in adaptive bacterial immunity. *Science*, 337(6096):816–821,
1107 August 2012.

1108 [22] Anna F Gilles and Michalis Averof. Functional genetics for all: engineered
1109 nucleases, CRISPR and the gene editing revolution. *EvoDevo*, 5(1):43–13, 2014.

1110 [23] M Averof and N H Patel. Crustacean appendage evolution associated with changes
1111 in Hox gene expression. *Nature*, 388(6643):682–686, 1997.

1112 [24] Danielle M Liubicich, Julia M Serano, Anastasios Pavlopoulos, Zacharias
1113 Kontarakis, Meredith E Protas, Elaine Kwan, Sandip Chatterjee, Khoa D Tran,
1114 Michalis Averof, and Nipam H Patel. Knockdown of Parhyale Ultrabithorax
1115 recapitulates evolutionary changes in crustacean appendage morphology.
1116 *Proceedings of the National Academy of Sciences of the United States of America*,
1117 106(33):13892–13896, August 2009.

1118 [25] Anastasios Pavlopoulos, Zacharias Kontarakis, Danielle M Liubicich, Julia M
1119 Serano, Michael Akam, Nipam H Patel, and Michalis Averof. Probing the
1120 evolution of appendage specialization by Hox gene misexpression in an emerging
1121 model crustacean. *Proceedings of the National Academy of Sciences of the United
1122 States of America*, 106(33):13897–13902, August 2009.

1123 [26] Nikolaos Konstantinides and Michalis Averof. A common cellular basis for
1124 muscle regeneration in arthropods and vertebrates. *Science*, 343(6172):788–791,
1125 February 2014.

1126 [27] Jeanne L. Benton, Rachel Kery, Jingjing Li, Chadanat Noonin, Irene Söderhäll,
1127 and Barbara S. Beltz. Cells from the Immune System Generate Adult-Born
1128 Neurons in Crayfish. *Developmental Cell*, 30(3):322–333, August 2014.

1129 [28] L Vazquez, J Alpuche, G Maldonado, C Agundis, A Pereyra-Morales, and
1130 E Zenteno. Review: Immunity mechanisms in crustaceans. *Innate Immunity*,
1131 15(3):179–188, May 2009.

1132 [29] Chris Hauton. The scope of the crustacean immune system for disease control.
1133 *Journal of Invertebrate Pathology*, 110(2):251–260, June 2012.

1134 [30] Andrew J King, Simon M Cragg, Yi Li, Jo Dymond, Matthew J Guille, Dianna J
1135 Bowles, Neil C Bruce, Ian A Graham, and Simon J McQueen-Mason. Molecular
1136 insight into lignocellulose digestion by a marine isopod in the absence of gut
1137 microbes. *Proceedings of the National Academy of Sciences*, 107(12):5345–5350,
1138 March 2010.

1139 [31] Marcelo Kern, John E. McGeehan, Simon D. Streeter, Richard N. A. Martin,
1140 Katrin Besser, Luisa Elias, Will Eborall, Graham P. Malyon, Christina M. Payne,
1141 Michael E. Himmel, Kirk Schnorr, Gregg T. Beckham, Simon M. Cragg, Neil C.
1142 Bruce, and Simon J. McQueen-Mason. Structural characterization of a unique
1143 marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt
1144 tolerance. *Proceedings of the National Academy of Sciences of the United States
1145 of America*, 110(25):10189–10194, June 2013.

1146 [32] P J Boyle and R Mitchell. Absence of Microorganisms in Crustacean Digestive
1147 Tracts. *Science*, 200(4346):1157–1159, 1978.

1148 [33] M Zimmer, J Danko, S Pennings, A Danford, and T Carefoot. Cellulose digestion
1149 and phenol oxidation in coastal isopods (Crustacea: Isopoda). *Marine Biology*,
1150 2002.

1151 [34] Carsten Wolff and Matthias Gerberding. “Crustacea”: Comparative Aspects of
1152 Early Development. In *Evolutionary Developmental Biology of Invertebrates 4*,
1153 pages 39–61. Springer Vienna, Vienna, 2015.

1154 [35] William E Browne, Alivia L Price, Matthias Gerberding, and Nipam H Patel.
1155 Stages of embryonic development in the amphipod crustacean, Parhyale
1156 hawaiensis. *Genesis (New York, N.Y. : 2000)*, 42(3):124–149, July 2005.

1157 [36] Matthias Gerberding, William E Browne, and Nipam H Patel. Cell lineage
1158 analysis of the amphipod crustacean Parhyale hawaiensis reveals an early
1159 restriction of cell fates. *Development*, 129(24):5789–5801, December 2002.

1160 [37] Cassandra G Extavour. The fate of isolated blastomeres with respect to germ cell
1161 formation in the amphipod crustacean Parhyale hawaiensis. *Developmental
1162 Biology*, 277(2):387–402, January 2005.

1163 [38] E J Rehm, R L Hannibal, R C Chaw, M A Vargas-Vila, and N H Patel. Fixation
1164 and Dissection of Parhyale hawaiensis Embryos. *Cold Spring Harbor Protocols*,
1165 2009(1):pdb.prot5127–pdb.prot5127, January 2009.

1166 [39] E J Rehm, R L Hannibal, R C Chaw, M A Vargas-Vila, and N H Patel. Antibody
1167 Staining of Parhyale hawaiensis Embryos. *Cold Spring Harbor Protocols*,
1168 2009(1):pdb.prot5129–pdb.prot5129, January 2009.

1169 [40] E J Rehm, R L Hannibal, R C Chaw, M A Vargas-Vila, and N H Patel. In Situ
1170 Hybridization of Labeled RNA Probes to Fixed Parhyale hawaiensis Embryos.
1171 *Cold Spring Harbor Protocols*, 2009(1):pdb.prot5130–pdb.prot5130, January
1172 2009.

1173 [41] E Jay Rehm, Roberta L Hannibal, R Crystal Chaw, Mario A Vargas-Vila, and
1174 Nipam H Patel. Injection of Parhyale hawaiensis blastomeres with fluorescently
1175 labeled tracers. *Cold Spring Harbor Protocols*,
1176 2009(1):pdb.prot5128–pdb.prot5128, January 2009.

1177 [42] Alivia L Price, Melinda S Modrell, Roberta L Hannibal, and Nipam H Patel.
1178 Mesoderm and ectoderm lineages in the crustacean Parhyale hawaiensis display
1179 intra-germ layer compensation. *Developmental Biology*, 341(1):256–266, May
1180 2010.

1181 [43] Frederike Alwes, Billy Hinchen, and Cassandra G Extavour. Patterns of cell
1182 lineage, movement, and migration from germ layer specification to gastrulation in
1183 the amphipod crustacean Parhyale hawaiensis. *Developmental Biology*,
1184 359(1):110–123, November 2011.

1185 [44] Roberta L Hannibal, Alivia L Price, and Nipam H Patel. The functional
1186 relationship between ectodermal and mesodermal segmentation in the crustacean,
1187 Parhyale hawaiensis. *Developmental Biology*, 361(2):427–438, January 2012.

1188 [45] Zacharias Kontarakis and Anastasios Pavlopoulos. Transgenesis in Non-model
1189 Organisms: The Case of Parhyale. In *Molecular Methods for Evolutionary*
1190 *Genetics*, pages 145–181. Springer New York, New York, NY, July 2014.

1191 [46] Anastasia R Nast and Cassandra G Extavour. Ablation of a Single Cell From
1192 Eight-cell Embryos of the Amphipod Crustacean *Parhyale hawaiensis*. *Journal of*
1193 *visualized experiments : JoVE*, (85), 2014.

1194 [47] R Crystal Chaw and Nipam H Patel. Independent migration of cell populations in
1195 the early gastrulation of the amphipod crustacean *Parhyale hawaiensis*.
1196 *Developmental Biology*, 371(1):94–109, November 2012.

1197 [48] Anastasios Pavlopoulos and Michalis Averof. Establishing genetic transformation
1198 for comparative developmental studies in the crustacean *Parhyale hawaiensis*.
1199 *Proceedings of the National Academy of Sciences of the United States of America*,
1200 102(22):7888–7893, May 2005.

1201 [49] Zacharias Kontarakis, Anastasios Pavlopoulos, Alexandros Kiupakis, Nikolaos
1202 Konstantinides, Vassilis Douris, and Michalis Averof. A versatile strategy for gene
1203 trapping and trap conversion in emerging model organisms. *Development*,
1204 138(12):2625–2630, June 2011.

1205 [50] Günes Özhan-Kizil, Johanna Havemann, and Matthias Gerberding. Germ cells in
1206 the crustacean *Parhyale hawaiensis* depend on Vasa protein for their maintenance
1207 but not for their formation. *Developmental Biology*, 327(1):230–239, March 2009.

1208 [51] Ronald J Parchem, Francis Poulin, Andrew B Stuart, Chris T Amemiya, and
1209 Nipam H Patel. BAC library for the amphipod crustacean, *Parhyale hawaiensis*.
1210 *Genomics*, 95(5):261–267, May 2010.

1211 [52] Xianhui Wang, Xiaodong Fang, Pengcheng Yang, Xuanting Jiang, Feng Jiang,
1212 Dejian Zhao, Bolei Li, Feng Cui, Jianing Wei, Chuan Ma, Yundan Wang, Jing He,
1213 Yuan Luo, Zhifeng Wang, Xiaoqiao Guo, Wei Guo, Xuesong Wang, Yi Zhang,
1214 Meiling Yang, Shuguang Hao, Bing Chen, Zongyuan Ma, Dan Yu, Zhiqiang
1215 Xiong, Yabing Zhu, Dingding Fan, Lijuan Han, Bo Wang, Yuanxin Chen, Junwen
1216 Wang, Lan Yang, Wei Zhao, Yue Feng, Guanxing Chen, Jinmin Lian, Qiye Li,
1217 Zhiyong Huang, Xiaoming Yao, Na Lv, Guojie Zhang, Yingrui Li, Jian Wang, Jun
1218 Wang, Baoli Zhu, and Le Kang. The locust genome provides insight into swarm
1219 formation and long-distance flight. *Nature communications*, 5:2957–2959, 2014.

1220 [53] J. T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using
1221 compressed data structures. *Genome Research*, 22(3):549–556, dec 2011.

1222 [54] Jared T Simpson. Exploring genome characteristics and sequence quality without
1223 a reference. *Bioinformatics*, 30(9):1228–1235, May 2014.

1224 [55] Guofan Zhang, Xiaodong Fang, Ximing Guo, Li Li, Ruibang Luo, Fei Xu,
1225 Pengcheng Yang, Linlin Zhang, Xiaotong Wang, Haigang Qi, Zhiqiang Xiong,
1226 Huayong Que, Yinlong Xie, Peter W H Holland, Jordi Paps, Yabing Zhu, Fucun
1227 Wu, Yuanxin Chen, Jiafeng Wang, Chunfang Peng, Jie Meng, Lan Yang, Jun Liu,
1228 Bo Wen, Na Zhang, Zhiyong Huang, Qihui Zhu, Yue Feng, Andrew Mount,
1229 Dennis Hedgecock, Zhe Xu, Yunjie Liu, Tomislav Domazet-Lošo, Yishuai Du,
1230 Xiaoqing Sun, Shoudi Zhang, Binghang Liu, Peizhou Cheng, Xuanting Jiang,
1231 Juan Li, Dingding Fan, Wei Wang, Wenjing Fu, Tong Wang, Bo Wang, Jibiao
1232 Zhang, Zhiyu Peng, Yingxiang Li, Na Li, Jinpeng Wang, Maoshan Chen, Yan He,
1233 Fengji Tan, Xiaorui Song, Qiumei Zheng, Ronglian Huang, Hailong Yang, Xuedi
1234 Du, Li Chen, Mei Yang, Patrick M Gaffney, Shan Wang, Longhai Luo, Zhicai She,
1235 Yao Ming, Wen Huang, Shu Zhang, Baoyu Huang, Yong Zhang, Tao Qu, Peixiang
1236 Ni, Guoying Miao, Junyi Wang, Qiang Wang, Christian E W Steinberg, Haiyan
1237 Wang, Ning Li, Lumin Qian, Guojie Zhang, Yingrui Li, Huanming Yang, Xiao Liu,
1238 Jian Wang, Ye Yin, and Jun Wang. The oyster genome reveals stress adaptation
1239 and complexity of shell formation. *Nature*, 490(7418):49–54, September 2012.

1240 [56] Rei Kajitani, Kouta Toshimoto, Hideki Noguchi, Atsushi Toyoda, Yoshitoshi
1241 Ogura, Miki Okuno, Mitsuru Yabana, Masayuki Harada, Eiji Nagayasu, Haruhiko
1242 Maruyama, Yuji Kohara, Asao Fujiyama, Tetsuya Hayashi, and Takehiko Itoh.
1243 Efficient de novo assembly of highly heterozygous genomes from whole-genome
1244 shotgun short reads. *Genome Research*, 24(8):1384–1395, apr 2014.

1245 [57] Brian J Haas, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D
1246 Blood, Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li, Matthias
1247 Lieber, Matthew D MacManes, Michael Ott, Joshua Orvis, Nathalie Pochet,
1248 Francesco Strozzi, Nathan Weeks, Rick Westerman, Thomas William, Colin N
1249 Dewey, Robert Henschel, Richard D LeDuc, Nir Friedman, and Aviv Regev. De
1250 novo transcript sequence reconstruction from RNA-seq using the Trinity platform

1251 for reference generation and analysis. *Nature Protocols*, 8(8):1494–1512, July
1252 2013.

1253 [58] G Parra, K Bradnam, and I Korf. CEGMA: a pipeline to accurately annotate core
1254 genes in eukaryotic genomes. *Bioinformatics*, 23(9):1061–1067, May 2007.

1255 [59] David M Emms and Steven Kelly. OrthoFinder: solving fundamental biases in
1256 whole genome comparisons dramatically improves orthogroup inference accuracy.
1257 *Genome biology*, 16:157, 2015.

1258 [60] Maura Strigini, Rafael Cantera, Xavier Morin, Michael J Bastiani, Michael Bate,
1259 and Domna Karagogeos. The IgLON protein Lachesin is required for the
1260 blood-brain barrier in *Drosophila*. *Molecular and cellular neurosciences*,
1261 32(1-2):91–101, May 2006.

1262 [61] Lindsey S Garver, Zhiyong Xi, and George Dimopoulos. Immunoglobulin
1263 superfamily members play an important role in the mosquito immune system.
1264 *Developmental & Comparative Immunology*, 32(5):519–531, 2008.

1265 [62] Matthias Siebert, Daniel Banovic, Bernd Goellner, and Hermann Aberle.
1266 *Drosophila* motor axons recognize and follow a Sidestep-labeled substrate pathway
1267 to reach their target fields. *Genes & development*, 23(9):1052–1062, May 2009.

1268 [63] C Deraison, I Darboux, L Duportets, T Gorjankina, Y Rahbe, and L Jouanin.
1269 Cloning and characterization of a gut-specific cathepsin L from the aphid *Aphis*
1270 *gossypii*. *Insect Molecular Biology*, 13(2):165–177, April 2004.

1271 [64] B Prud’homme, N Lartillot, G Balavoine, and A Adoutte. Phylogenetic analysis of
1272 the Wnt gene family: insights from lophotrochozoan members. *Current Biology*,
1273 12(16):1395–1400, 2002.

1274 [65] Sung-Jin Cho, Yvonne Vallès, Vincent C Giani, Elaine C Seaver, and David A
1275 Weisblat. Evolutionary dynamics of the wnt gene family: a lophotrochozoan
1276 perspective. *Molecular biology and evolution*, 27(7):1645–1658, July 2010.

1277 [66] Ralf Janssen, Martine Le Gouar, Matthias Pechmann, Francis Poulin, Renata
1278 Bolognesi, Evelyn E Schwager, Corinna Hopfen, John K Colbourne, Graham E
1279 Budd, Susan J Brown, Nikola-Michael Prpic, Carolin Kosiol, Michel Vervoort,

1280 Wim GM Damen, Guillaume Balavoine, and Alistair P McGregor. Conservation,
1281 loss, and redeployment of wnt ligands in protostomes: implications for
1282 understanding the evolution of segment formation. *BMC Evol Biol*, 10(1):374,
1283 2010.

1308 [74] Ho-Ryun Chung, Ulrich Schäfer, Herbert Jäckle, and Siegfried Böhm. Genomic
1309 expansion and clustering of ZAD-containing C2H2 zinc-finger genes in
1310 *Drosophila*. *EMBO reports*, 3(12):1158–1162, December 2002.

1311 [75] Hamed S Najafabadi, Sanie Mnaimneh, Frank W Schmitges, Michael Garton,
1312 Kathy N Lam, Ally Yang, Mihai Albu, Matthew T Weirauch, Ernest Radovani,
1313 Philip M Kim, Jack Greenblatt, Brendan J Frey, and Timothy R Hughes. C2H2
1314 zinc finger proteins greatly expand the human regulatory lexicon. *Nature
1315 Biotechnology*, 33(5):555–562, February 2015.

1316 [76] Ariel D Chipman, David E K Ferrier, Carlo Brena, Jiaxin Qu, Daniel S T Hughes,
1317 Reinhard Schröder, Montserrat Torres-Oliva, Nadia Znassi, Huaiyang Jiang,
1318 Francisca C Almeida, Claudio R Alonso, Zivkos Apostolou, Peshtewani Aqrawi,
1319 Wallace Arthur, Jennifer C J Barna, Kerstin P Blankenburg, Daniela Brites,
1320 Salvador Capella-Gutiérrez, Marcus Coyle, Peter K Dearden, Louis Du Pasquier,
1321 Elizabeth J Duncan, Dieter Ebert, Cornelius Eibner, Galina Erikson, Peter D
1322 Evans, Cassandra G Extavour, Liezl Francisco, Toni Gabaldón, William J Gillis,
1323 Elizabeth A Goodwin-Horn, Jack E Green, Sam Griffiths-Jones, Cornelis J P
1324 Grimmelikhuijzen, Sai Gubbala, Roderic Guigó, Yi Han, Frank Hauser, Paul
1325 Havlak, Luke Hayden, Sophie Helbing, Michael Holder, Jerome H L Hui, Julia P
1326 Hunn, Vera S Hunnekohl, LaRonda Jackson, Mehwish Javaid, Shalini N Jhangiani,
1327 Francis M Jiggins, Tamsin E Jones, Tobias S Kaiser, Divya Kalra, Nathan J Kenny,
1328 Viktoriya Korchina, Christie L Kovar, F Bernhard Kraus, François Lapraz,
1329 Sandra L Lee, Jie Lv, Christigale Mandapat, Gerard Manning, Marco Mariotti,
1330 Robert Mata, Tittu Mathew, Tobias Neumann, Irene Newsham, Dinh N Ngo,
1331 Maria Ninova, Geoffrey Okwuonu, Fiona Ongeri, William J Palmer, Shobha Patil,
1332 Pedro Patraquim, Christopher Pham, Ling-Ling Pu, Nicholas H Putman, Catherine
1333 Rabouille, Olivia Mendivil Ramos, Adelaide C Rhodes, Helen E Robertson,
1334 Hugh M Robertson, Matthew Ronshaugen, Julio Rozas, Nehad Saada, Alejandro
1335 Sánchez-Gracia, Steven E Scherer, Andrew M Schurko, Kenneth W Siggins,
1336 DeNard Simmons, Anna Stief, Eckart Stolle, Maximilian J Telford, Kristin
1337 Tessmar-Raible, Rebecca Thornton, Maurijn van der Zee, Arndt von Haeseler,
1338 James M Williams, Judith H Willis, Yuanqing Wu, Xiaoyan Zou, Daniel Lawson,

1339 Donna M Muzny, Kim C Worley, Richard A Gibbs, Michael Akam, and Stephen
1340 Richards. The First Myriapod Genome Sequence Reveals Conservative Arthropod
1341 Gene Content and Genome Organisation in the Centipede *Strigamia maritima*.
1342 *PLoS biology*, 12(11):e1002005–24, November 2014.

1343 [77] Y Pewzner-Jung, S Ben-Dor, and A H Futerman. When Do Lasses (Longevity
1344 Assurance Genes) Become CerS (Ceramide Synthases)?: INSIGHTS INTO THE
1345 REGULATION OF CERAMIDE SYNTHESIS. *Journal of Biological Chemistry*,
1346 281(35):25001–25005, August 2006.

1347 [78] Peter WH Holland, H Anne F Booth, and Elspeth A Bruford. Classification and
1348 nomenclature of all human homeobox genes. *BMC biology*, 5(1):47–28, 2007.

1349 [79] Ying-fu Zhong and Peter W H Holland. HomeoDB2: functional expansion of a
1350 comparative homeobox gene database for evolutionary developmental biology.
1351 *Evolution & Development*, 13(6):567–568, November 2011.

1352 [80] Dave Kosman, Claudia M Mizutani, Derek Lemons, W Gregory Cox, William
1353 McGinnis, and Ethan Bier. Multiplex detection of RNA expression in Drosophila
1354 embryos. *Science*, 305(5685):846, August 2004.

1355 [81] Matthew Ronshaugen and Mike Levine. Visualization of trans-Homolog
1356 Enhancer-Promoter Interactions at the Abd-B Hox Locus in the Drosophila
1357 Embryo. *Developmental Cell*, 7(6):925–932, December 2004.

1358 [82] M. Kmita. Organizing axes in time and space; 25 years of colinear tinkering.
1359 *Science*, 301(5631):331–333, jul 2003.

1360 [83] N M Brooke, J Garcia-Fernandez, and PWH Holland. The ParaHox gene cluster is
1361 an evolutionary sister of the Hox gene cluster. *Nature*, 392(6679):920–922, 1998.

1362 [84] S L Pollard and P W Holland. Evidence for 14 homeobox gene clusters in human
1363 genome ancestry. *Current Biology*, 10(17):1059–1062, September 2000.

1364 [85] K Jagla, M Bellard, and M Frasch. A cluster of Drosophila homeobox genes
1365 involved in mesoderm differentiation programs. *BioEssays*, 23(2):125–133,
1366 February 2001.

1367 [86] G N Luke, L F C Castro, K McLay, C Bird, A Coulson, and P W H Holland.
1368 Dispersal of NK homeobox gene clusters in amphioxus and humans. *Proceedings*
1369 *of the National Academy of Sciences of the United States of America*, 100(9):1–4,
1370 April 2003.

1371 [87] L F C Castro and P W H Holland. Chromosomal mapping of ANTP class
1372 homeobox genes in amphioxus: piecing together ancestral genomes. *Evolution &*
1373 *Development*, 5(5):1–7, August 2003.

1374 [88] Michael E Himmel, Shi-You Ding, David K Johnson, William S Adney, Mark R
1375 Nimlos, John W Brady, and Thomas D Foust. Biomass recalcitrance: Engineering
1376 plants and enzymes for biofuels production. *Science*, 315(5813):804–807, 2007.

1377 [89] David B Wilson. Microbial diversity of cellulose hydrolysis. *Current Opinion in*
1378 *Microbiology*, 14(3):259–263, June 2011.

1379 [90] Simon M Cragg, Gregg T Beckham, Neil C Bruce, Timothy DH Bugg, Daniel L
1380 Distel, Paul Dupree, Amaia Green Etxabe, Barry S Goodell, Jody Jellison, John E
1381 McGeehan, Simon J McQueen-Mason, Kirk Schnorr, Paul H Walton, Joy EM
1382 Watts, and Martin Zimmer. ScienceDirect Lignocellulose degradation mechanisms
1383 across the Tree of Life. *Current Opinion in Chemical Biology*, 29(C):108–119,
1384 December 2015.

1385 [91] C J Duan, L Xian, G C Zhao, Y Feng, H Pang, X L Bai, J L Tang, Q S Ma, and J X
1386 Feng. Isolation and partial characterization of novel genes encoding acidic
1387 cellulases from metagenomes of buffalo rumens. *Journal of Applied Microbiology*,
1388 107(1):245–256, July 2009.

1389 [92] Falk Warnecke, Peter Luginbühl, Natalia Ivanova, Majid Ghassemian, Toby H
1390 Richardson, Justin T Stege, Michelle Cayouette, Alice C McHardy, Gordana
1391 Djordjevic, Nahla Aboushadi, Rotem Sorek, Susannah G Tringe, Mircea Podar,
1392 Hector Garcia Martin, Victor Kunin, Daniel Dalevi, Julita Madejska, Edward
1393 Kirton, Darren Platt, Ernest Szeto, Asaf Salamov, Kerrie Barry, Natalia
1394 Mikhailova, Nikos C Kyrpides, Eric G Matson, Elizabeth A Ottesen, Xinning
1395 Zhang, Myriam Hernández, Catalina Murillo, Luis G Acosta, Isidore Rigoutsos,
1396 Giselle Tamayo, Brian D Green, Cathy Chang, Edward M Rubin, Eric J Mathur,

1397 Dan E Robertson, Philip Hugenholtz, and Jared R Leadbetter. Metagenomic and
1398 functional analysis of hindgut microbiota of a wood-feeding higher termite.
1399 *Nature*, 450(7169):560–565, November 2007.

1400 [93] Daniel L Distel, Mehwish Amin, Adam Burgoyne, Eric Linton, Gustaf
1401 Mamangkey, Wendy Morrill, John Nove, Nicole Wood, and Joyce Yang.
1402 Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for
1403 xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia.
1404 *Molecular Phylogenetics and Evolution*, 61(2):245–254, November 2011.

1405 [94] Amaia Green Etxabe. *The wood boring amphipod Chelura (terebra)*. PhD
1406 thesis, University of Portsmouth, 2013.

1407 [95] B L Cantarel, P M Coutinho, C Rancurel, T Bernard, V Lombard, and B Henrissat.
1408 The Carbohydrate-Active EnZymes database (CAZy): an expert resource for
1409 Glycogenomics. *Nucleic Acids Research*, 37(Database):D233–D238, January
1410 2009.

1411 [96] Robert D. Finn, Jaina Mistry, Benjamin Schuster-Böckler, Sam Griffiths-Jones,
1412 Volker Hollich, Timo Lassmann, Simon Moxon, Mhairi Marshall, Ajay Khanna,
1413 Richard Durbin, Sean R. Eddy, Erik L. L. Sonnhammer, and Alex Bateman. Pfam:
1414 clans, web tools and services. *Nucleic Acids Research*, 34(Database
1415 issue):D247–251, January 2006.

1416 [97] G D Stentiford, D M Neil, E J Peeler, J D Shields, H J Small, T W Flegel, J M
1417 Vlak, B Jones, F Morado, S Moss, J Lotz, L Bartholomay, D C Behringer,
1418 C Hauton, and D V Lightner. Disease will limit future food supply from the global
1419 crustacean fishery and aquaculture sectors. *Journal of Invertebrate Pathology*,
1420 110(2):141–157, June 2012.

1421 [98] Robert M Waterhouse, Evgenia V Kriventseva, Stephan Meister, Zhiyong Xi,
1422 Kanwal S Alvarez, Lyric C Bartholomay, Carolina Barillas-Mury, Guowu Bian,
1423 Stephanie Blandin, Bruce M Christensen, Yuemei Dong, Haobo Jiang, Michael R
1424 Kanost, Anastasios C Koutsos, Elena A Levashina, Jianyong Li, Petros
1425 Ligoxygakis, Robert M Maccallum, George F Mayhew, Antonio Mendes, Kristin
1426 Michel, Mike A Osta, Susan Paskewitz, Sang Woon Shin, Dina Vlachou, Lihui

1427 Wang, Weiqi Wei, Liangbiao Zheng, Zhen Zou, David W Severson, Alexander S
1428 Raikhel, Fotis C Kafatos, George Dimopoulos, Evgeny M Zdobnov, and George K
1429 Christophides. Evolutionary dynamics of immune-related genes and pathways in
1430 disease-vector mosquitoes. *Science*, 316(5832):1738–1743, June 2007.

1431 [99] Charles A Janeway and Ruslan Medzhitov. Innate immune recognition. *Annual
1432 review of immunology*, 20:197–216, 2002.

1433 [100] T Werner, K Borge-Renberg, P Mellroth, H Steiner, and D Hultmark. Functional
1434 Diversity of the Drosophila PGRP-LC Gene Cluster in the Response to
1435 Lipopolysaccharide and Peptidoglycan. *Journal of Biological Chemistry*,
1436 278(29):26319–26322, July 2003.

1437 [101] C Liu, Z Xu, D Gupta, and R Dziarski. Peptidoglycan Recognition Proteins: A
1438 novel family of four human innate immunity pattern recognition molecules.
1439 *Journal of Biological Chemistry*, 276(37):34686–34694, September 2001.

1440 [102] Abdur Rehman, Ping Taishi, Jidong Fang, Jeannine A Majde, and James M
1441 Krueger. The cloning of a rat peptidoglycan recognition protein (PGRP) and its
1442 induction in brain by sleep deprivation. *Cytokine*, 13(1):8–17, January 2001.

1443 [103] Haipeng Liu, Chenglin Wu, Yasuyuki Matsuda, Shun-ichiro Kawabata, Bok Luel
1444 Lee, Kenneth Söderhäll, and Irene Söderhäll. Peptidoglycan activation of the
1445 proPO-system without a peptidoglycan receptor protein (PGRP)? *Developmental
1446 & Comparative Immunology*, 35(1):51–61, January 2011.

1447 [104] Seanna J McTaggart, Claire Conlon, John K Colbourne, Mark L Blaxter, and
1448 Tom J Little. The components of the Daphnia pulex immune system as revealed by
1449 complete genome sequencing. *BMC Genomics*, 10(1):175–119, 2009.

1450 [105] Catherine Dostert, Emmanuelle Jouanguy, Phil Irving, Laurent Troxler, Delphine
1451 Galiana-Arnoux, Charles Hetru, Jules A Hoffmann, and Jean-Luc Imler. The
1452 Jak-STAT signaling pathway is required but not sufficient for the antiviral response
1453 of drosophila. *Nature Immunology*, 6(9):946–953, August 2005.

1454 [106] T Tanji, X Hu, A N R Weber, and Y T Ip. Toll and IMD Pathways Synergistically

1455 Activate an Innate Immune Response in *Drosophila melanogaster*. *Molecular and*
1456 *cellular biology*, 27(12):4578–4588, May 2007.

1457 [107] Matthew A. Benton, Matthias Pechmann, Nadine Frey, Dominik Stappert, Kai H.
1458 Conrads, Yen-Ta Chen, Evangelia Stamataki, Anastasios Pavlopoulos, and
1459 Siegfried Roth. Toll genes have an ancestral role in axis elongation. *Current*
1460 *Biology*, 26(12):1609 – 1615, 2016.

1461 [108] Natalia I Arbouzova and Martin P Zeidler. JAK/STAT signalling in *Drosophila*:
1462 insights into conserved regulatory and cellular functions. *Development*,
1463 133(14):2605–2616, July 2006.

1464 [109] E A Levashina, L F Moita, S Blandin, G Vriend, M Lagueux, and F C Kafatos.
1465 Conserved role of a complement-like protein in phagocytosis revealed by dsRNA
1466 knockout in cultured cells of the mosquito, *Anopheles gambiae*. *Cell*,
1467 104(5):709–718, 2001.

1468 [110] H Decker. Recent findings on phenoloxidase activity and antimicrobial activity of
1469 hemocyanins. *Developmental & Comparative Immunology*, 28(7-8):673–687,
1470 June 2004.

1471 [111] So Young Lee, Bok Luel Lee, and Kenneth Söderhäll. Processing of crayfish
1472 hemocyanin subunits into phenoloxidase. *Biochemical and Biophysical Research*
1473 *Communications*, 322(2):490–496, September 2004.

1474 [112] D Schmucker, J C Clemens, H Shu, C A Worby, J Xiao, M Muda, J E Dixon, and
1475 S L Zipursky. *Drosophila Dscam* is an axon guidance receptor exhibiting
1476 extraordinary molecular diversity. *Cell*, 101(6):671–684, June 2000.

1477 [113] Fiona L Watson, Roland Püttmann-Holgado, Franziska Thomas, David L Lamar,
1478 Michael Hughes, Masahiro Kondo, Vivienne I Rebel, and Dietmar Schmucker.
1479 Extensive diversity of Ig-superfamily proteins in the immune system of insects.
1480 *Science*, 309(5742):1874–1878, September 2005.

1481 [114] Daniela Brites, Seanna McTaggart, Krystalynne Morris, Jobriah Anderson, Kelley
1482 Thomas, Isabelle Colson, Thomas Fabbro, Tom J Little, Dieter Ebert, and Louis
1483 Du Pasquier. The *Dscam* homologue of the crustacean *Daphnia* is diversified by

1484 alternative splicing like in insects. *Molecular biology and evolution*,
1485 25(7):1429–1439, July 2008.

1486 [115] Stephane E Castel and Robert A Martienssen. RNA interference in the nucleus:
1487 roles for small RNAs in transcription, epigenetics and beyond. *Nature reviews.*
1488 *Genetics*, 14(2):100–112, February 2013.

1489 [116] A. A. Aravin, N. M. Naumova, A. V. Tulin, V. V. Vagin, Y. M. Rozovsky, and V. A.
1490 Gvozdev. Double-stranded RNA-mediated silencing of genomic tandem repeats
1491 and transposable elements in the *D. melanogaster* germline. *Current biology: CB*,
1492 11(13):1017–1027, July 2001.

1493 [117] N J Caplen, S Parrish, F Imani, A Fire, and R A Morgan. Specific inhibition of
1494 gene expression by small double-stranded RNAs in invertebrate and vertebrate
1495 systems. *Proceedings of the National Academy of Sciences of the United States of*
1496 *America*, 98(17):1–7, August 2001.

1497 [118] Julius Brennecke, Alexei A Aravin, Alexander Stark, Monica Dus, Manolis Kellis,
1498 Ravi Sachidanandam, and Gregory J Hannon. Discrete Small RNA-Generating
1499 Loci as Master Regulators of Transposon Activity in *Drosophila*. *Cell*,
1500 128(6):1089–1103, March 2007.

1501 [119] Weifeng Gu, Masaki Shirayama, Darryl Conte Jr, Jessica Vasale, Pedro J Batista,
1502 Julie M Claycomb, James J Moresco, Elaine M Youngman, Jennifer Keys,
1503 Matthew J Stoltz, Chun-Chieh G Chen, Daniel A Chaves, Shenghua Duan,
1504 Kristin D Kasschau, Noah Fahlgren, John R Yates III, Shohei Mitani, James C
1505 Carrington, and Craig C Mello. Distinct Argonaute-Mediated 22G-RNA Pathways
1506 Direct Genome Surveillance in the *C. elegans* Germline. *Molecular cell*,
1507 36(2):231–244, October 2009.

1508 [120] Heng-Chi Lee, Weifeng Gu, Masaki Shirayama, Elaine Youngman, Darryl Conte,
1509 and Craig C Mello. *C. elegans* piRNAs mediate the genome-wide surveillance of
1510 germline transcripts. *Cell*, 150(1):78–87, July 2012.

1511 [121] Lin He and Gregory J Hannon. MicroRNAs: small RNAs with a big role in gene
1512 regulation. *Nature reviews. Genetics*, 5(7):522–531, July 2004.

1513 [122] J Michael Thomson, Martin Newman, Joel S Parker, Elizabeth M Morin-Kensicki,
1514 Tricia Wright, and Scott M Hammond. Extensive post-transcriptional regulation of
1515 microRNAs and its implications for cancer. *Genes & development*,
1516 20(16):2202–2207, August 2006.

1517 [123] Witold Filipowicz, Suvendra N Bhattacharyya, and Nahum Sonenberg.
1518 Mechanisms of post-transcriptional regulation by microRNAs: are the answers in
1519 sight? *Nature reviews. Genetics*, 2008(2):102–114, February 2008.

1520 [124] Peter Sarkies, Murray E Selkirk, John T Jones, Vivian Blok, Thomas Boothby,
1521 Bob Goldstein, Ben Hanelt, Alex Ardila-Garcia, Naomi M Fast, Phillip M Schiffer,
1522 Christopher Kraus, Mark J Taylor, Georgios Koutsovoulos, Mark L Blaxter, and
1523 Eric A Miska. Ancient and Novel Small RNA Pathways Compensate for the Loss
1524 of piRNAs in Multiple Independent Nematode Lineages. *PLoS biology*,
1525 13(2):e1002061–20, February 2015.

1526 [125] Ying Dong and Markus Friedrich. Nymphal RNAi: systemic RNAi mediated gene
1527 knockdown in juvenile grasshopper. *BMC Biotechnology*, 5:25, 2005.

1528 [126] George M Weinstock, Gene E Robinson, Richard A Gibbs, George M Weinstock,
1529 George M Weinstock, Gene E Robinson, Kim C Worley, Hugh M Robertson,
1530 Daniel B Weaver, Martin Beye, Peer Bork, Jay D Evans, Klaus Hartfelder, Greg J
1531 Hunt, Gene E Robinson, Ryszard Maleszka, George M Weinstock, Klaus
1532 Hartfelder, Gro V Amdam, Mrcia M G Bitondi, Anita M Collins, Alexandre S
1533 Cristino, H Michael, G Lattorff, Carlos H Lobo, Robin F A Moritz, Francis M F
1534 Nunes, Robert E Page, Zil L P Simões, Diana Wheeler, Piero Carninci, Shiro
1535 Fukuda, Yoshihide Hayashizaki, Chikatoshi Kai, Jun Kawai, Naoko Sakazume,
1536 Daisuke Sasaki, Michihira Tagami, Gro V Amdam, Stefan Albert, Geert
1537 Baggerman, Kyle T Beggs, Guy Bloch, Giuseppe Cazzamali, Mira Cohen,
1538 Mark David Drapeau, Dorothea Eisenhardt, Christine Emore, Michael A Ewing,
1539 Susan E Fahrbach, Sylvain Foret, Cornelis J P Grimmelikhuijen, Frank Hauser,
1540 Amanda B Hummon, Greg J Hunt, Jurgen Huybrechts, Andrew K Jones, Noam
1541 Kaplan, Gérard Leboulle, Michal Linial, J Troy Littleton, Alison R Mercer,
1542 Robert E Page, Gene E Robinson, Timothy A Richmond, Sandra L RodriguezZas,
1543 Elad B Rubin, David B Sattelle, David Schlipalius, Liliane Schoofs, Yair Shemesh,

1544 Jonathan V Sweedler, Rodrigo Velarde, Peter Verleyen, Evy Vierstraete, Michael R
1545 Williamson, Martin Beye, Seth A Ament, Susan J Brown, Miguel Corona, Peter K
1546 Dearden, W Augustine Dunn, Michelle M Elekonich, Christine G Elsik, Tomoko
1547 Fujiyuki, Irene Gattermeier, Tanja Gempe, Martin Hasselmann, Tatsuhiko
1548 Kadowaki, Eriko Kage, Azusa Kamikouchi, Takeo Kubo, Robert Kucharski,
1549 Takekazu Kunieda, Marcé Lorenzen, Natalia V Milshina, Mizue Morioka,
1550 Kazuaki Ohashi, Ross Overbeek, Robert E Page, Gene E Robinson, Christian A
1551 Ross, Morten Schioett, Teresa Shippy, Hideaki Takeuchi, Amy L Toth, Judith H
1552 Willis, Megan J Wilson, Evgeny M Zdobnov, Karl H J Gordon, Ivica Letunic,
1553 Kevin Hackett, Jane Peterson, Adam Felsenfeld, Mark Guyer, Michel Solignac,
1554 Richa Agarwala, Jean Marie Cornuet, Christine Emore, Greg J Hunt, Monique
1555 Monnerot, Florence Mougel, Justin T Reese, David Schlipalius, Dominique
1556 Vautrin, Daniel B Weaver, Joseph J Gillespie, Jamie J Cannone, Robin R Gutell,
1557 J Spencer Johnston, Michael B Eisen, Amanda B Hummon, Venky N Iyer, Vivek
1558 Iyer, Peter Kosarev, Aaron J Mackey, Timothy A Richmond, Victor Solovyev,
1559 Alexandre Souvorov, George M Weinstock, Michael R Williamson, Katherine A
1560 Aronstein, Katarina Bilikova, Yan Ping Chen, Andrew G Clark, Laura I Decanini,
1561 William M Gelbart, Charles Hetru, Dan Hultmark, Jean-Luc Imler, Haobo Jiang,
1562 Michael Kanost, Kiyoshi Kimura, Brian P Lazzaro, Dawn L Lopez, Jozef Simuth,
1563 Graham J Thompson, Zhen Zou, Pieter De Jong, Erica Sodergren, Miklós Csűrös,
1564 Aleksandar Milosavljevic, J Spencer Johnston, Kazutoyo Osoegawa, Stephen
1565 Richards, Chung-Li Shu, George M Weinstock, Laurent Duret, Eran Elhaik, Dan
1566 Graur, Daniel B Weaver, Gro V Amdam, Juan M Anzola, Kathryn S Campbell,
1567 Kevin L Childs, Derek Collinge, Madeline A Crosby, C Michael Dickens, Karl H J
1568 Gordon, L Sian Gramates, Christina M Grozinger, Peter L Jones, Mireia Jorda,
1569 Xu Ling, Beverly B Matthews, Jonathan Miller, Natalia V Milshina, Craig Mizzen,
1570 Miguel A Peinado, Jeffrey G Reid, Gene E Robinson, Susan M Russo, Andrew J
1571 Schroeder, Susan E St Pierre, Ying Wang, Pinglei Zhou, Richa Agarwala,
1572 Natalia V Milshina, Daniel B Weaver, Kevin L Childs, C Michael Dickens,
1573 William M Gelbart, Huaiyang Jiang, Paul Kitts, Natalia V Milshina, Barbara Ruef,
1574 Susan M Russo, Anand Venkatraman, George M Weinstock, Lan Zhang, Pinglei
1575 Zhou, J Spencer Johnston, Gildardo Aquino-Perez, Jean Marie Cornuet, Monique

1576 Monnerot, Michel Solignac, Dominique Vautrin, Charles W Whitfield, Susanta K
1577 Behura, Stewart H Berlocher, Andrew G Clark, J Spencer Johnston, Walter S
1578 Sheppard, Deborah R Smith, Andrew V Suarez, Neil D Tsutsui, and Daniel
1579 B and... Weaver. Insights into social insects from the genome of the honeybee
1580 *Apis mellifera*. *Nature*, 443(7114):931–949, October 2006.

1581 [127] Weina Xu and Zhaojun Han. Cloning and phylogenetic analysis of sid-1-like
1582 genes from aphids. *Journal of insect science (Online)*, 8(30):1–6, 2008.

1583 [128] J Y Roignant, C Carre, R Mugat, D Szymczak, J A Lepesant, and C Antoniewski.
1584 Absence of transitive and systemic pathways allows cell-specific and
1585 isoform-specific RNAi in *Drosophila*. *RNA*, 9(3):299–308, March 2003.

1586 [129] Yonggan Wu, Bo Wei, Haizhou Liu, Tianxian Li, and Simon Rayner. MiRPara: a
1587 SVM-based software tool for prediction of most probable microRNA coding
1588 regions in genome scale sequences. *BMC bioinformatics*, 12(1):107, 2011.

1589 [130] Eric P Nawrocki, Sarah W Burge, Alex Bateman, Jennifer Daub, Ruth Y
1590 Eberhardt, Sean R Eddy, Evan W Floden, Paul P Gardner, Thomas A Jones, John
1591 Tate, and Robert D Finn. Rfam 12.0: updates to the RNA families database.
1592 *Nucleic Acids Research*, 43(Database issue):D130–7, January 2015.

1593 [131] W Wang, F G Brunet, E Nevo, and M Long. Origin of sphinx, a young chimeric
1594 RNA gene in *Drosophila melanogaster*. *Proceedings of the National Academy of
1595 Sciences of the United States of America*, 99(7):4448–4453, 2002.

1596 [132] Martin J. Blythe, Sunir Malla, Richard Everall, Yu-Huan H. Shih, Virginie Lemay,
1597 Joanna Moreton, Raymond Wilson, and Aziz A. Aboobaker. High Through-Put
1598 sequencing of the *parhyale hawaiensis* mRNAs and microRNAs to aid
1599 comparative developmental studies. *PloS one*, 7(3), 2012.

1600 [133] Benjamin M Wheeler, Alysha M Heimberg, Vanessa N Moy, Erik A Sperling,
1601 Thomas W Holstein, Steffen Heber, and Kevin J Peterson. The deep evolution of
1602 metazoan microRNAs. *Evolution & Development*, 11(1):50–68, January 2009.

1603 [134] Andrew Grimson, Mansi Srivastava, Bryony Fahey, Ben J Woodcroft, H Rosaria
1604 Chiang, Nicole King, Bernard M Degnan, Daniel S Rokhsar, and David P Bartel.

1605 Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals.
1606 *Nature*, 455(7217):1193–1197, October 2008.

1607 [135] Susanta K Behura. Insect microRNAs: Structure, function and evolution. *Insect
1608 Biochemistry and Molecular Biology*, 37(1):3–9, January 2007.

1609 [136] Antonio Marco, Katarzyna Hooks, and Sam Griffiths-Jones. Evolution and
1610 function of the extended miR-2 microRNA family. *RNA Biology*, 9(3):242–248,
1611 November 2014.

1612 [137] Anton J Enright, Bino John, Ulrike Gaul, Thomas Tuschl, Chris Sander, and
1613 Debora S Marks. MicroRNA targets in *Drosophila*. *Genome biology*, 5(1):R1,
1614 2003.

1615 [138] Andrea Tanzer, Chris T Amemiya, Chang-Bae Kim, and Peter F Stadler. Evolution
1616 of microRNAs located within Hox gene clusters. *Journal of Experimental Zoology
1617 Part B: Molecular and Developmental Evolution*, 304B(1):75–85, 2005.

1618 [139] Derek Lemons and William McGinnis. Genomic evolution of Hox gene clusters.
1619 *Science*, 313(5795):1918–1922, 2006.

1620 [140] A Stark, N Bushati, C H Jan, P Kheradpour, E Hodges, J Brennecke, D P Bartel,
1621 S M Cohen, and M Kellis. A single Hox locus in *Drosophila* produces functional
1622 microRNAs from opposite DNA strands. *Genes & development*, 22(1):8–13,
1623 January 2008.

1624 [141] Teresa D Shippy, Matthew Ronshaugen, Jessica Cande, JianPing He, Richard W
1625 Beeman, Michael Levine, Susan J Brown, and Robin E Denell. Analysis of the
1626 *Tribolium* homeotic complex: insights into mechanisms constraining insect Hox
1627 clusters. *Development Genes and Evolution*, 218(3-4):127–139, April 2008.

1628 [142] Anton J Enright, Bino John, Ulrike Gaul, Thomas Tuschl, Chris Sander, and
1629 Debora S Marks. MicroRNA targets in *Drosophila*. *Genome biology*, 5(1):R1–14,
1630 2003.

1631 [143] S Cumberledge, A Zaratzian, and S Sakonju. Characterization of two RNAs
1632 transcribed from the cis-regulatory region of the abd-A domain within the

1633 Drosophila bithorax complex. *Proceedings of the National Academy of Sciences of*
1634 *the United States of America*, 87(9):3259–3263, May 1990.

1635 [144] Assaf Zemach, Ivy E McDaniel, Pedro Silva, and Daniel Zilberman.
1636 Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation. *Science*,
1637 328(5980):916–919, 2010.

1638 [145] Julie A Law and Steven E Jacobsen. Establishing, maintaining and modifying
1639 DNA methylation patterns in plants and animals. *Nature reviews. Genetics*,
1640 11(3):204–220, February 2010.

1641 [146] Peter A Jones. Functions of DNA methylation: islands, start sites, gene bodies and
1642 beyond. *Nature reviews. Genetics*, 13(7):484–492, May 2012.

1643 [147] Peter A. Jones and Gangning Liang. Rethinking how DNA methylation patterns
1644 are maintained. *Nature Reviews Genetics*, 10(11):805–811, September 2009.

1645 [148] Albert Jeltsch, Ann Ehrenhofer-Murray, Tomasz P. Jurkowski, Frank Lyko, Gunter
1646 Reuter, Serge Ankri, Wolfgang Nellen, Matthias Schaefer, and Mark Helm.
1647 Mechanism and biological role of dnmt2 in nucleic acid methylation. *RNA
1648 Biology*, 0(0):1–16, 0. PMID: 27232191.

1649 [149] Mary Grace Goll, Finn Kirpekar, Keith A Maggert, Jeffrey A Yoder, Chih-Lin
1650 Hsieh, Xiaoyu Zhang, Kent G Golic, Steven E Jacobsen, and Timothy H Bestor.
1651 Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2.
1652 *Science*, 311(5759):395–398, January 2006.

1653 [150] Farah Jaber-Hijazi, Priscilla J K P Lo, Yuliana Mihaylova, Jeremy M Foster,
1654 Jack S Benner, Belen Tejada Romero, Chen Chen, Sunir Malla, Jordi Solana,
1655 Alexey Ruzov, and A Aziz Aboobaker. Planarian MBD2/3 is required for adult
1656 stem cell pluripotency independently of DNA methylation. *Developmental
1657 Biology*, 384(1):141–153, December 2013.

1658 [151] Jamie A Hackett, Roopsha Sengupta, Jan J Zlylich, Kazuhiro Murakami, Caroline
1659 Lee, Thomas A Down, and M Azim Surani. Germline DNA Demethylation
1660 Dynamics and Imprint Erasure Through 5-Hydroxymethylcytosine. *Science*,
1661 339(6118):448–452, 2013.

1662 [152] Suhua Feng, Shawn J. Cokus, Xiaoyu Zhang, Pao-Yang Chen, Magnolia Bostick,
1663 Mary G. Goll, Jonathan Hetzel, Jayati Jain, Steven H. Strauss, Marnie E. Halpern,
1664 Chinweike Ukomadu, Kirsten C. Sadler, Sriharsa Pradhan, Matteo Pellegrini, and
1665 Steven E. Jacobsen. Conservation and divergence of methylation patterning in
1666 plants and animals. *Proceedings of the National Academy of Sciences*,
1667 107(19):8689–8694, 2010.

1668 [153] Albert Jeltsch. Phylogeny of methylomes. *Science*, 328(5980):837–838, 2010.

1669 [154] G Panganiban, S M Irvine, C Lowe, H Roehl, L S Corley, B Sherbon, J K Grenier,
1670 J F Fallon, J Kimble, M Walker, G A Wray, B J Swalla, M Q Martindale, and S B
1671 Carroll. The origin and evolution of animal appendages. *Proceedings of the*
1672 *National Academy of Sciences of the United States of America*, 94(10):5162–5166,
1673 1997.

1674 [155] Evangelia Stamatakis and Anastasios Pavlopoulos. Non-insect crustacean models
1675 in developmental genetics including an encomium to *Parhyale hawaiensis*. *Current*
1676 *Opinion in Genetics & Development*, 39:149–156, August 2016.

1677 [156] Karyn N Johnson, Marielle C W van Hulsen, and Andrew C Barnes. “Vaccination”
1678 of shrimp against viral pathogens: Phenomenology and underlying mechanisms.
1679 *Vaccine*, 26(38):4885–4892, September 2008.

1680 [157] Yanan Lu, Junjun Liu, Liji Jin, Xiaoyu Li, YuHong Zhen, Hongyu Xue, Jiansong
1681 You, and Yongping Xu. Passive protection of shrimp against white spot syndrome
1682 virus (WSSV) using specific antibody from egg yolk of chickens immunized with
1683 inactivated virus or a WSSV-DNA vaccine. *Fish and Shellfish Immunology*,
1684 25(5):604–610, November 2008.

1685 [158] S Rajesh Kumar, V P Ishaq Ahamed, M Sarathi, A Nazeer Basha, and A S
1686 Sahul Hameed. Immunological responses of *Penaeus monodon* to DNA vaccine
1687 and its efficacy to protect shrimp against white spot syndrome virus (WSSV). *Fish*
1688 *and Shellfish Immunology*, 24(4):467–478, April 2008.

1689 [159] Andrew F Rowley and Edward C Pope. Vaccines and crustacean aquaculture—A
1690 mechanistic exploration. *Aquaculture*, 334-337(C):1–11, March 2012.

1691 [160] J T Simpson, K Wong, S D Jackman, J E Schein, S J M Jones, and I Birol. ABySS:
1692 A parallel assembler for short read sequence data. *Genome Research*,
1693 19(6):1117–1123, June 2009.

1694 [161] M Boetzer, C V Henkel, H J Jansen, D Butler, and W Pirovano. Scaffolding
1695 pre-assembled contigs using SSPACE. *Bioinformatics*, 27(4):578–579, February
1696 2011.

1697 [162] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient
1698 parallel counting of occurrences of k-mers. *Bioinformatics*, 27(6):764–770, March
1699 2011.

1700 [163] Marcel Martin. Cutadapt removes adapter sequences from high-throughput
1701 sequencing reads. *EMBnet*, 17(1):10–12, August 2011.

1702 [164] V. Douris, M. J. Telford, and M. Averof. Evidence for multiple independent
1703 origins of trans-splicing in metazoa. *Molecular Biology and Evolution*,
1704 27(3):684–693, nov 2009.

1705 [165] Brian J Haas, Steven L Salzberg, Wei Zhu, Mihaela Pertea, Jonathan E Allen,
1706 Joshua Orvis, Owen White, C Robin Buell, and Jennifer R Wortman. Automated
1707 eukaryotic gene structure annotation using EVidenceModeler and the Program to
1708 Assemble Spliced Alignments. *Genome biology*, 9(1):R7, 2008.

1709 [166] M Stanke and S Waack. Gene prediction with a hidden Markov model and a new
1710 intron submodel. *Bioinformatics*, 19(Suppl 2):ii215–ii225, October 2003.

1711 [167] Thomas D Wu and Colin K Watanabe. GMAP: a genomic mapping and alignment
1712 program for mRNA and EST sequences. *Bioinformatics*, 21(9):1859–1875, May
1713 2005.

1714 [168] Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan,
1715 Marijke J van Baren, Steven L Salzberg, Barbara J Wold, and Lior Pachter.
1716 Transcript assembly and quantification by RNA-Seq reveals unannotated
1717 transcripts and isoform switching during cell differentiation. *Nature
1718 Biotechnology*, 28(5):516–520, May 2010.

1719 [169] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski,
1720 Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras. STAR:
1721 ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1):15–21, January 2013.

1722 [170] Guy St C Slater and Ewan Birney. Automated generation of heuristics for
1723 biological sequence comparison. *BMC bioinformatics*, 6:31, 2005.

1724 [171] A V Lukashin and M Borodovsky. GeneMark.hmm: new solutions for gene
1725 finding. *Nucleic Acids Research*, 26(4):1107–1115, 1998.

1726 [172] A F A Smit, R Hubley, and P Green. *RepeatMasker Open-4.0.*, 2013.

1727 [173] Matthew Kearse, Richard Moir, Amy Wilson, Steven Stones-Havas, Matthew
1728 Cheung, Shane Sturrock, Simon Buxton, Alex Cooper, Sidney Markowitz, Chris
1729 Duran, Tobias Thierer, Bruce Ashton, Peter Meintjes, and Alexei Drummond.
1730 Geneious Basic: an integrated and extendable desktop software platform for the
1731 organization and analysis of sequence data. *Bioinformatics*, 28(12):1647–1649,
1732 June 2012.

1733 [174] Robert C Edgar. MUSCLE: multiple sequence alignment with high accuracy and
1734 high throughput. *Nucleic Acids Research*, 32(5):1792–1797, 2004.

1735 [175] A Stamatakis. RAxML version 8: a tool for phylogenetic analysis and
1736 post-analysis of large phylogenies. *Bioinformatics*, 2014.

1737 [176] Felix Krueger and Simon R Andrews. Bismark: a flexible aligner and methylation
1738 caller for Bisulfite-Seq applications. *Bioinformatics*, 27(11):1571–1572, June
1739 2011.

1740 [177] Pin-Hsiang Chou, Hao-Shuo Chang, I Tung Chen, Han-You Lin, Yi-Min Chen,
1741 Huey-Lang Yang, and K C Han-Ching Wang. The putative invertebrate adaptive
1742 immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported
1743 Dscam to lack a transmembrane domain and cytoplasmic tail. *Developmental &*
1744 *Comparative Immunology*, 33(12):1258–1267, December 2009.

1745 [178] E P Nawrocki and S R Eddy. Infernal 1.1: 100-fold faster RNA homology
1746 searches. *Bioinformatics*, 29(22):2933–2935, October 2013.

¹⁷⁴⁷ [179] Sam Griffiths-Jones, Harpreet Kaur Saini, Stijn van Dongen, and Anton J Enright.

¹⁷⁴⁸ miRBase: tools for microRNA genomics. *Nucleic Acids Research*, 36(Database issue):D154–8, January 2008.

¹⁷⁴⁹