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Abstract

There is accumulating evidence that some genes have originated de novo from previously non-
coding genomic sequences. However, the processes underlying de novo gene birth are still
enigmatic. In particular, the appearance of a new functional protein seems highly improbable
unless there is already a pool of neutrally evolving peptides that can at some point acquire new
functions. Here we show for the first time that such peptides do not only exist but that they are
prevalent among the translation products of mouse genes that lack homologues in rat and
human. The data suggests that the translation of these peptides is due to the chance
occurrence of open reading frames with a favorable codon composition. Our approach
combines ribosome profiling experiments, proteomics data and non-synonymous and
synonymous nucleotide polymorphism analysis. We propose that effectively neutral processes
involving the expression of thousands of transcripts all the way down to proteins provide a basis

for de novo gene evolution.
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The mammalian genome is pervasively transcribed, this includes functional genes but also
thousands of transcripts that are not conserved across species and which show weak or no
signatures of natural selection'™. Many of the latter transcripts are annotated as long non-
coding RNAs (IncRNAs) because they lack conserved long open reading frames (ORFs).
Recent studies based on the sequencing of ribosome-protected RNA fragments (ribosome
profiling) have reported that a surprisingly large fraction of these transcripts is likely to translate

small peptides4_9, although the significance of this finding has remained elusive.

Each ribosome profiling experiment generates millions of ribosome footprints that are
subsequently mapped to the genome or the transcriptome to identify open reading frames
(ORFs) that are being translated'. The codon-by-codon movement of the ribosome along the
coding sequence results in a characteristic pattern of three nucleotide periodicity of the mapped
reads, which makes ribosome profiling a very useful method to detect novel events of

411,12

translation . Given enough sequence coverage the technique can uncover low-abundant

small peptides that would be otherwise difficult to detect by standard proteomics

approaches '™,

To assess the functional relevance of novel events of translation one can use the ratio between
the number of non-synonymous and synonymous substitutions in the putative coding
sequences4‘5. However, this method requires an alignment of at least two homologous
sequences. A more general approach that can be used in the absence of homology is the ratio
between the number of non-synonymous and synonymous single nucleotide polymorphisms,
compared to the one expected under neutrality. Under no selection, non-synonymous and
synonymous polymorphisms accumulate at the same rate, whereas under purifying selection
there is a deficit of non-synonymous polymorphisms because some amino acid changes disrupt
the protein’s function'®. Single nucleotide polymorphism analysis can be performed on a gene-

by-gene basis or in pools of sequences that share certain features®®.

We previously observed that, as a whole, putatively translated IncRNAs and young protein-

coding genes share a number of similarities, such as small ORF size and weak selective
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constraints, compared with more widely conserved genese. This pointed to a link between the
translation of IncRNAs and the evolution of new proteins, but it did not solve the key question of
whether translation of new ORFs could occur in the absence of selection at the protein level.
This is a fundamental issue because for a new protein to acquire a function it first needs to be
produced in the cell at significant amounts. Here by employing a combination of ribosome
profiling data, sequence analysis and single nucleotide polymorphism information we obtain
strong evidence that the majority of mouse proteins that are not conserved in rat or human
selection evolve in a neutral manner. This study renders visible for the first time a layer of
protein expression that is not dependent on selective processes, filling a gap in our

understanding of the processes underlying de novo gene birth.

Results

First we set to identify translated open reading frames (ORFs) in mouse protein-coding genes
(codRNAs) and long non-coding RNAs (IncRNAs) using ribosome-profiling RNA-sequencing
(Ribo-Seq) data from eight different tissues and cell lines (Supplementary Table 1 and
references therein). In contrast to RNA sequencing (RNA-Seq) reads, which are expected to
cover the complete transcript, Ribo-Seq reads correspond to regions bound by ribosomes. We
mapped the RNA-Seq and Ribo-Seq reads to the mouse Ensembl gene annotations and, for the
sake of completeness, also to a set of previously obtained novel mouse transcripts that did not

correspond to annotated genes3.

We used the RibORF program4 to identify bona fide translated sequences among ORFs
covered by at least 10 Ribo-Seq reads in transcripts expressed in one or more tissues (Fig. 1a
and Supplementary Table 1). This program calculates a score for each ORF depending on the
3-nucleotide periodicity and uniformity of the mapped reads. Using a highly stringent RibORF
score cut-off of 0.7* we found that about 90% of the coding genes (15,020), and 20% of the
annotated IncRNAs (539), were predicted to be translated in at least one sample. Additionally,
we identified 286 genes that did not map to the gene annotations but contained translated

OREFs (Fig. 1b). A widely used criterion to annotate a transcript as protein-coding is the
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presence of an ORF encoding a protein of at least 100 amino acids'’. Not surprisingly, the vast
majority of ORFs translated from annotated and novel IncRNAs encoded proteins smaller than

100 amino acids (smORFs).

We hypothesized that some of the translated ORFs may evolve in a neutral manner and
constitute a reservoir for the evolution of new protein-coding genes. To test this hypothesis, we
first identified translated ORFs that were mouse-specific and then tested them for signatures of
selection. We performed exhaustive sequence similarity searches of the ORFs against high
coverage transcriptomes from human and rat as well as against the annotated proteomes of
101 different eukaryotic species (Fig. 2a, Supplementary Table 2 for a list of species, see
Methods for more details). For these searches we discarded any proteins shorter than 24 amino
acids, as the detection of homologues may be compromised in such cases due to lack of
sufficient sequence information. We identified 1,980 different translated ORFs that showed no
homology to expressed sequences in other species (class non-conserved or NC). In general,
these ORFs had lower codon usage bias than conserved ORFs, as measured by a previously

described hexamer-based coding score metric® (Fig. 2b).

To measure the strength of selection in conserved and non-conserved translated ORFs we
employed a large collection of mouse single nucleotide polymorphisms (SNPs) for the house
mouse subspecies Mus musculus castaneus '® We could map a total of 324,729 SNPs to the
set of translated ORFs. We grouped the ORFs into three different classes on the basis of
conservation and coding score (Fig. 2b), and calculated the ratio between the number of
observed non-synonymous and synonymous SNPs (PN/PS(obs)) in each class. We then
normalized it by the same ratio expected under neutrality (PN/PS(exp)). The expected PN/PS
was estimated using a table of nucleotide mutation frequencies in Mus musculus castaneus and
the observed codon frequencies in each set of sequences of interest (Supplementary Tables 3
and 4). This allowed us not only to compare the strength of selection across different sets of
sequences, as done in a previous study of ORFs translated from IncRNAs®, but also to discard
selection if the normalized PN/PS was not significantly different from 1. Specifically, we used a
chi-square test that compared the number of observed and expected non-synonymous and

synonymous SNPs in each sequence set (Supplementary Table 5). As expected, the PN/PS of
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randomly selected ORFs from introns was approximately 1. Instead, the PN/PS of conserved
ORFs was around 0.15 (Fig. 2c, chi-square test p-value < 10'5), consistent with protein

19,20

functionality. One example in this group was Stannin , a highly conserved peptide that

regulates neuronal cell apoptosis (Fig. 3).

Non-conserved ORFs with high coding scores (NC-H coding score = 0.1014, Fig. 2b and c,
Supplementary Figure 1) had weak but significant signatures of selection (p-value < 0.05),
possibly because of the existence of some functional mouse-specific genes. In contrast, the
PN/PS ratio of the remaining non-conserved ORFs was not significantly different from 1,
consistent with neutral evolution. Very similar results were obtained for non-conserved genes
annotated as coding or IncRNA (Fig. 2c) and the two sets were merged into a single group of
neutrally evolving ORFs (neutral ORFs). This set comprised about two thirds of the non-
conserved ORFs (1,291 out of 1,980 ORFs analysed), and represented ~6.8% of the total

number of mouse translated ORFs.

We used proteomics data from the PRIDE database®’ to further validate the translation of this
latter group of proteins. Despite their small size (median 44 amino acids), a limiting factor for
their detection by standard proteomics-based tecniqueszz, we found proteomics evidence for 32
of the neutral ORFs (see Methods). This represents 2.5% of the proteins in this set (compared
to less than 0.2% false positive rate, see Methods). This fraction is similar to the one obtained
for conserved proteins subsampled to have a similar size distribution as the neutral ORFs
(2.9%; in contrast, about 41% of all conserved ORFs have proteomics evidence). The test
based on the PN/PS ratio confirmed that this subset of 32 ORFs did not deviate significantly

from neutrality either (Supplementary Table 5).

The above analyses grouped the sequences into classes before computing the PN/PS ratio. In
general, ORF-by-ORF analysis was not possible because the ORFs were small and contained
too few SNPs. Nevertheless, 41 of the neutrally evolving ORFs contained 10 or more SNPs,
and we decided to compute a normalized PN/PS ratio for these individual cases. The median

PN/PS of these ORFs was around 1 and the distribution of PN/PS values was very different


https://doi.org/10.1101/064915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064915; this version posted February 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

available under aCC-BY-NC-ND 4.0 International license.

from that of conserved ORFs (Fig. 2d, Wilcoxon test, p-value < 10'5), consistent with the
previous results. Finally, we quantified the number of ORFs that contained SNPs that generated
premature stop codons, truncating more than half of the ORF, in the set of neutrally evolving
ORFs and in the set of conserved ORFs. In the first case we found 72 out of 1,282 ORFs that
contained this type of mutation (5.6%) and in the second case 296 out of 16,892 ORFs (1.75%).
Considering that neutral ORFs are in general much shorter than conserved ORFs (median
protein size 44 versus 412 amino acids), and thus less likely to accumulate ORF-truncating
mutations by chance alone, the data clearly indicates a strong excess of ORF-truncating SNPs
in neutral ORFs with respect to conserved ORFs. These analyses further support that the

selective pressures acting on both kinds of ORFs are very different.

We next inspected in more detail the ribosome profiling patterns of neutral ORFs with respect to
the rest of translated ORFs (hereafter called “functional”). Genes with a recent origin are usually

expressed at lower levels than older genes®****

, SO it was not surprising to observe that
neutrally evolving ORFs were associated with a lower number of Ribo-Seq reads per base than
the rest of translated ORFs (median 0.193 versus 0.474, respectively, Supplementary figure 2).
Consistent with translation, read periodicity in both neutral and functional ORFs was much
higher than the random expectation of 0.33 (median values 0.70 and 0.80, respectively; see
examples in Figure 3). Importantly, the results were highly reproducible across tissues (Figure
4a for hippocampus and embryonic stem cells; Supplementary Figure 3 hippocampus and
brain), a result we would not expect in the case of spurious ribosome profiling signals. In
general, the RibORF score of the translated ORFs was positively related to the number of
mapped Ribo-Seq reads (Spearman correlation R=0.408), and to the size of the ORFs
(Spearman correlation R=0.193). When we controlled for these two parameters, neutral and

functional ORFs had equivalent distributions of RibORF score, periodicity and uniformity values

(Figure 4b).

Subsequently, we compared our results to those obtained with two negative controls. The first
control contained ORFs in alternative frames of annotated protein coding sequences with

experimental protein evidence (“off-frame”). The second one contained randomly occurring
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ORFs in small nuclear and nucleolar annotated RNA sequences (“sRNA”). The latter RNAs are
sometimes detected in ribosome profiling experiments due to the formation of ribonucleoprotein
particles that protect the RNA from degradationzs. As before, we only considered ORFs with at
least 10 Ribo-Seq mapped reads. As expected, the vast majority of the ORFs in these controls
did not display significant 3-nucleotide read periodicity (Supplementary figure 2, see a specific
example in Figure 3). We found that only 234 out of 13,596 ORFs in “off-frame”, and 10 out of
304 ORFs in “sRNA”, had a RibORF score 20.7 (the threshold employed throughout our study).
This corresponds to an overall false discovery rate (FDR) of 1.75%, much lower than the

fraction of neutrally evolving proteins detected in our main analysis (6.8%).

Some transcripts contained relatively long ORFs but were not translated. One example of this
sort was the previously described de novo non-coding gene Poldi*® that lacked any evidence of
translation in the data we analysed. We next asked which factors may influence the translation
of some neutrally evolving ORFs but not of others. First, we inspected the translation initiation
sequence context but did not detect any significant differences between translated and non-
translated ORFs (Supplementary Figure 4). We then hypothesized that the ORF coding score
could affect the “translatability” of the transcript because codons that are abundant in coding
sequences are expected to be more efficiently translated than other codons. Consistent with
this hypothesis, we found that the translated neutrally evolving ORFs exhibited higher coding
scores than non-translated ORFs with otherwise similar characteristics (Fig. 5a, Translated
versus non-translated Wilcoxon test, p-value < 10'5). Importantly, we obtained a similar result
after controlling for gene expression level (Fig. 5b, Wilcoxon test, p-value < 10'5). This is
consistent with codon composition having an effect per se in ORF translation. When controlling
by coding score, expression level, but not ORF length, had an effect on the translatability of the

transcript (Fig. 5¢).

The results suggest that the neutral ORFs that are translated are enriched in codons that are
frequently found in functional protein coding sequences. This is consistent with the observation
that abundant codons enhance translation elongation27, whereas rare codons might affect the

stability of the mRNA?. It has been previously hypothesized that the distinction between
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194 translated and non-translated IncRNAs may be related to the relative amount of the IncRNA in
195 the nucleus and the cytoplasm4. However, we found evidence that some IncRNAs with nuclear
196 functions, such as Malat1 and Neat1, were translated, suggesting that the cytosolic fraction of a
197 transcript can be translated independently of its role or preferred location.

198

199

200 DISCUSSION

201

202 The molecular mechanisms underlying de novo gene evolution are still poorly understood?**3",
203 The sudden appearance of a new protein-coding gene from a genomic segment seems a priori
204 highly improbable, but the process becomes much more likely if the genome is already being
205 pervasively transcribed and translated outside functional protein-coding genes. An excess of
206 transcription was already noted in the first large-scale cDNA sequencing efforts performed in
207 human and mouse®, and more recent studies have found a high rate of transcriptional turnover
208 when comparing closely related species33. Here we have shown that many of these transcripts
209 are translated even if they only contain small ORFs, with the data currently available we have
210 been able to identify 1,291 peptides in 1,132 genes that are likely to be of recent evolutionary
211 origin and that show no signs of selection. This number is likely to be a gross underestimate
212 because many transcripts are expressed at low levels, limiting their detection, and many cell
213 types and tissues have not yet been sampled. According to recent estimates, the cost of

214 transcription and translation in multicellular organisms is probably too small to overcome genetic
215 drift**. Therefore, these activities may be effectively neutral. Our results indeed support that
216 there is no barrier for the production of peptides that do not confer an immediate selective

217  advantage.

218

219 The putative precursors of novel proteins identified here are of small size, which is consistent

233537 \We have

220  with observations for functional de novo genes identified in previous studies
221 also shown that random ORFs with a more favorable, coding-like, hexamer composition are
222  more likely to be translated than other ORFs. Codon usage bias in functional sequences is

223  related to the abundance of different tRNAs and correlates with expression level®®*. Thus, it
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224  seems logical that the translated neutral ORFs are biased towards those codons that are

225  translated more efficiently.

226

227 The process of de novo gene origination involves the gain of a useful function by a previously
228 non-functional sequence. The rate at which this happens remains to be determined but it has
229 been observed that many random peptide sequences can function as secretion signals4°, and
230  selection for ATP-binding activity in a library of randomly generated 80 amino acid polypeptides
231 successfully identified several candidates capable of binding to ATP*'. Recent experiments
232 performed in E.coli also suggest that random sequences can often affect cellular growth42. The
233 pervasive translation of the transcriptome implies that de novo gene evolution has much more
234  material at its disposal than previously thought.

235

236

237 METHODS

238

239  Transcript assembly

240

241 We used strand-specific polyA+ RNA sequencing data (RNA-Seq) data from different mouse
242 and human tissues to assembly the species transcriptomes (Gene Expression Omnibus mouse
243  GSE69241° GSE43721%, and GSE43520**; human GSE69241°). The mouse RNA samples
244 were extracted from strain Balb/C. RNA-Seq reads were filtered by length (> 25 nucleotides)
245 and by quality using Condetri (v.2.2)45 with the following settings: -hq = 30 —Ig = 10. We aligned
246 the reads to the corresponding reference species genome with Tophat (v. 2.0.8, —N 3, -a 5 and
247 -m 1)46. Multiple mapping to several locations in the genome was allowed unless otherwise
248 stated. We assembled the transcriptome with Stringtie‘”, merging the reads from all the

249  samples, with parameters -f 0.01, and -M 0.2. We used the species transcriptome as a guide
250 (Ensembl v.75), including all annotated isoforms, but permitting the assembly of annotated and
251 novel isoforms and genes (antisense, intergenic and intronic) as well. We excluded IncRNAs
252 that overlapped annotated pseudogenes or that showed significant sequence similarity to

253 known protein-coding sequences (BLASTP, e-value < 10™). In the case of rat we employed a

10
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254 previously generated transcript assembly*.

255

256  Ribosome profiling data

257

258 We used ribosome profiling data (Ribo-Seq) from 8 different mouse tissues or cell lines (see
259 Supplementary Table 1), obtained from Gene Expression Omnibus under accession numbers
260  GSE51424%°, GSE50983%°, GSE22001°', GSE62134°%, GSE72064°%, and GSE41246. Only
261 datasets corresponding to non-pathogenic conditions were considered. The reads from the
262 experimental replicates were merged before using RibORF to increase the resolution of the
263 read periodicity, as done in the original RibORF paper". For all analyses we considered only
264 genes expressed at significant levels in at least one sample (RNA-Seq fragments per kilobase
265  per Million mapped reads (FPKM) > 0.2). The expression of the genes detected in these

266 samples is expected to be highly representative of the Mus musculus species as a whole. We
267 mapped several brain RNA-Seq datasets from Mus musculus castaneus™ to the mouse

268  assembled transcriptome using NextGenMap™*. As expected, the vast majority of the genes
269 expressed in brain samples from C57BL/6 mice* also showed evidence of expression in Mus
270  musculus castaneus brain RNA samples®*(Supplementary Table 6).

271

272 We discarded anomalous reads (length < 26 or > 33 nt) and reads that mapped to annotated
273 rRNAs and tRNAs in mouse from the Ribo-Seq sequencing datasets. Next, reads were mapped
274  to the assembled mouse genome (mm10) with Bowtie (v. 0.12.7, parameters -k 1 -m 20 -n 1 --
275  best --strata). Considering that the ORFs had to be extensively covered by reads to be

276 considered translated (high uniformity), we decided to include multiple mapped reads so as not
277 to compromise the detection of paralogous proteins (Supplementary Fig. 7). We used the

278 mapping of the Ribo-Seq reads to the complete set of annotated coding sequences in mouse to
279 compute the position of the P-site (second binding site for tRNA in the ribosome) for reads of

280 different size, as previously described'®"?.

281
282  Identification of translated ORFs

283

11


https://doi.org/10.1101/064915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064915; this version posted February 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

284  We predicted all translated ORFs (ATG to STOP) with a minimum length of 9 amino acids in the
285  transcripts with RibORF (v.0.1)*. Only ORFs with a minimum of 10 mapped Ribo-Seq reads
286  were considered. The RibORF classifier is based on a support vector machine algorithm,

287 originally applied to human transcripts. The input parameters are the read periodicity and the
288  read uniformity. The first one is the fraction of reads that correspond to the correct frame and
289 the second one corresponds to the percentage of maximum entropy, a value of 1 indicates a
290  completely even distribution of reads. For each ORF the program computes a score that

291 depends on the values of these two parameters4. We used the same score cut-off as in the
292  original paper (2 0.7), which had a reported false positive rate of 0.67% and false negative rate

293  0of2.5%.

294

295 We eliminated any redundancy in the translated ORFs by taking the longest ORF when several
296 overlapping translated ORFs were detected in the same gene. The identification of translated
297 ORFs was done separately for the different tissues (Supplementary Table 1), and the data was
298 subsequently integrated, taking the tissue with the highest RibORF score as representative.
299  Differences in the number of translated ORFs in different tissues were related to the depth of
300  sequencing and the number of reads that mapped to the top 5 most highly expressed proteins
301 (Supplementary Fig. 6 and 7, respectively). For genes with no evidence of translation we

302 selected the longest ORF across all transcripts for comparative purposes. Selecting the longest
303  ORF was justified by the fact that, in translated ORFs, the ORF with the highest number of
304 mapped Ribo-Seq reads was usually the longest ORF (75.7% for codRNAs and 84% for

305 IncRNAs). We also generated a set of 4,013 randomly taken ORFs from introns, after discarding
306 ORFs that showed significant sequence similarity to known proteins from the same species
307  (BLASTP, e-value < 10™).

308

309 We generated a negative control set by combining out-of-frame ORFs in mouse coding genes
310  with experimental protein evidence according to Uniprot (“off-frame”) and randomly occurring
311 ORFs in mouse small nuclear and nucleolar RNAs (“sRNAs”). These ORFs were required to
312 have at least 10 Ribo-Seq mapped reads and were processed in the same manner as the main

313  set of ORFs under study. The total number of sequences in the negative control was 13,900.

12
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We also generated a positive control set composed of 2,163 randomly taken annotated mouse
coding sequences with protein evidence in Uniprot. With these controls we estimated a false
positive rate of 1.75% and a false negative rate of 2.54% for the above mentioned RibORF

score cut-off.

Sequence conservation

We searched for mouse translated ORF homologues in the human and rat transcriptomes using
TBLASTN (limited to one strand, e-value < 10™)*. We also performed sequence similarity
searches against the annotated proteomes of 67 mammalian-species and 34 non-mammalian
eukaryotes from a diverse range of groups compiled in a previous study48, using BLASTP (e-
value < 10'4). For these searches we only considered query proteins of size 24 amino acids or
longer, as shorter proteins may not contain sufficient information to perform homology searches.
Mouse ORFs that did not have any homology hits in other species were classified as non-
conserved, the rest as conserved. Translated non-conserved ORFs located upstream or
downstream of another longer ORF in a conserved transcript (UORFs and dORFs) were

excluded from this analysis.

We inspected the rat genomic syntenic regions of translated ORFs using LiftOver™. We
classified the ORFs in two groups depending on whether the ORF was truncated in rat or not
(the truncation had to affect more than half of the protein). For neutrally evolving ORFs the
number of cases in which the ORF was truncated was similar to the number of cases in which it
was not truncated, and in both cases the polymorphism patterns were consistent with neutrality
(Supplementary Table 5). This indicated that, for this group, the presence of a similar ORF in rat
does not imply functional conservation of the ORF. Therefore, we did not use information on rat

genomic synteny to classify the genes as conserved/non-conserved.

Single nucleotide polymorphism analysis

We obtained single nucleotide polymorphism (SNP) data from 20 individuals of the house

13


https://doi.org/10.1101/064915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064915; this version posted February 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

available under aCC-BY-NC-ND 4.0 International license.

mouse subspecies Mus musculus castaneus’®. We classified SNPs in ORFs as non-
synonymous (PN, amino acid altering) and synonymous (PS, not amino-acid altering). We
calculated the PN/PS ratio in each ORF group by using the sum of PN and PS in all the
sequences ((PN/PS)obs). We calculated the expected PN/PS under neutrality ((PN/PS)exp)
using the mutation frequencies between pairs of nucleotides in Mus musculus castaneus and
the codon composition of the different sequences or sets of sequences under study
(Supplementary Tables 2 to 5). The observed transition to transversion ratio was 4.42, very
similar to the 4.26 value obtained in early observations based on mouse-rat divergence data®’.
We tested for purifying selection by the number of observed and expected non-synonymous
and synonymous SNPs using a chi-square test with one degree of freedom. Positively selected
mutations are rapidly fixed in the population and their effect is expected to be negligible when

using SNP data.

Proteomics data

We used the proteomics database PRIDE?' to search for peptide matches in the proteins
encoded by various gene sets. For a protein to have proteomics evidence, we required at least
two distinct perfect matches of peptides that did not map to any other protein in the dataset,
allowing for up to two mismatches. These are very stringent conditions with a false positive rate

<0.2%*.

Coding score

We used a previously described metric based on hexamer frequencies to calculate the coding
score of the sequencess. The method uses a table of pre-calculated hexamer scores that
measure the relative frequency of each hexamer in coding versus non-coding sequences.
These scores are then used to evaluate the coding propensity of a sequence based on its
hexamer composition. The method has been implemented in a computational program called

CIPHER that can be accessed online (http:// http://evolutionarygenomics.upf.edu/cipher).
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Statistical tests and plots

The generation of plots and statistical tests was performed with the R package58.

Data availability

Transcript assemblies from mouse, human and rat, as well as the mouse open reading frames

(ORFs) predicted to be translated have been deposited at figshare

(http://dx.doi.org/10.6084/m9.figshare.4702375). The code and executable file to calculate the

coding score can be accessed at https://github.com/jorruior/CIPHER.
The C program to calculated the PN/PS expected under neutrality is available at

https://figshare.com/articles/computePNPS ¢/5085706. Supplementary file 1 contains

supplementary tables and figures.
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FIGURE LEGENDS

Figure 1. Detection of translated ORFs. a. Workflow to identify translated ORFs. Ribosome profiling
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522 (Ribo-Seq) reads, corresponding to ribosome-protected fragments, are mapped to all predicted canonical
523 ORFs with length = 30 nucleotides in transcripts. This is performed with single-nucleotide resolution after
524 computing the read P-site per each read length. In each ORF, reads per frame and read uniformity are
525 evaluated by RiboORF. b. Number of translated and non-translated expressed genes belonging to

526 different classes after integrating data from eight different mouse tissues (Supplementary Table 1). c.
527 Number of translated ORFs belonging to different classes. The translated ORFs have been divided into
528 small ORFs (smORF, < 100 aa) and long ORFs (= 100 aa), depending on their length.

529

530 Figure 2. Identification of selection signatures. a. Workflow to identify conserved and non-conserved
531 OREFs. Translated ORFs shorter than 24 amino acids, as well as non-conserved upstream and

532 downstream ORF in conserved transcripts (UORFs and dORFs, see Methods), were filtered out. Any ORF
533 with at least one BLAST match in another species was classified as conserved (C), otherwise it was

534 classified as non-conserved (NC). b. Coding score in conserved (C) and non-conserved ORFs (NC).

535 Conserved ORFs showed significantly higher coding score values than non-conserved ones; *** Wilcoxon
536 test, p-value < 107°. Non-conserved ORFs with a high coding score value (= 0.1014) were classified as
537 NC-H, and the rest were classified as NC-L. c¢. Analysis of selective constraints in translated ORFs. PN/PS
538 (obs/exp) refers to the normalized ratio between non-synonymous (PN) and synonymous (PS) single

539 nucleotide polymorphisms; a value of 1 is expected in the absence of selection at the protein level.

540 Conserved and NC-H ORFs showed significant purifying selection signatures. In contrast, NC-L ORFs did
541 not show evidence of purifying selection at the protein level. Many conserved ORFs in IncRNAs are likely
542 to encode functional micropeptides. Differences between observed and expected PN/PS were assessed
543 with a chi-square test, * p- value < 0.05, *** p-value < 10°. Error bars indicate the standard error of the
544 sample proportion. Numbers of ORFs for the different categories are also displayed. d. Distribution of
545  normalized PN/PS values for individual ORFs in different gene classes. Only ORFs with at least 10 SNPs
546 were considered; the NC-H group contained too few cases to be analysed. The differences between C and
547  NC-L are significant (Wilcoxon test, p-value <10%).

548

549 Figure 3. Three nucleotide periodicity of translated ORFs. The mapping of Ribo-Seq reads on different
550 types of ORFs is shown. The Y axis represents the log-number of reads, the X axis the positions in the
551 ORF. The reads show strong frame bias in the functional (conserved) and the neutral (NC-L) examples,
552 with a preponderance of in-frame reads (green) versus off-frame reads (red and blue), while the frame bias
553 is randomly distributed in the negative control (SNORA18). The exon/intron structure and the amino acid

554  sequence for translated ORFs is also shown.

555
20
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Figure 4. Properties of neutrally evolving ORFs. a. Relationship between the percentage of reads
falling in the correct frame in neural embryonic stem cells cells and hippocampus samples, for neutral and
functional ORFs having at least 10 reads in both samples and being translated in at least one sample.
Spearman correlation coefficient is R=0.4224 for the neutrat set (p-value < 10'5) and R=0.4360 for the
functional set (p-value < 10'5). b. Distribution of read periodicity, read uniformity and RibORF scores in
neutral and functional translated ORFs after controlling for the number of Ribo-Seq reads and size of
ORFs. The ‘functional normalized’ set is a randomly taken subset of the functional ORFs that has the
same number of mapped Ribo-Seq reads and ORF size distribution as the set of neutrally evolving ORFs
(n=900). Data is represented as box-plots for different number of read intervals; the box contains 50% of

the data, horizontal line is the median value.

Figure 5. Factors influencing the translation of neutrally evolving ORFs. a. Influence of coding score
in the translatability of neutrally evolving ORFs. Translated ORFs showed significantly higher coding score
than non-translated ORFs, both sets had significantly higher coding scores than introns (Wilcoxon test p-
value < 107, indicated by ***). b. Influence of coding score in the translatability of ORFs controlling for
gene expression values, the two sets have comparable maximum FPKM gene expression (median FPKM
value = 11.10). Translated ORFs showed significantly higher coding score values than non-translated
ORFs; (Wilcoxon test p-value < 10'5). c. Influence of maximum FPKM gene expression and ORF length in
the translatability of neutral ORFs normalized by coding score (median coding score value = -0.0052).
Translated ORFs showed significantly higher FPKM values than non-translated ORFs (Wilcoxon test p-

value < 10'5); differences in length were not significant.
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