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Abstract 1 

 2 

There is accumulating evidence that some genes have originated de novo from previously non-3 

coding genomic sequences. However, the processes underlying de novo gene birth are still 4 

enigmatic. In particular, the appearance of a new functional protein seems highly improbable 5 

unless there is already a pool of neutrally evolving peptides that can at some point acquire new 6 

functions. Here we show for the first time that such peptides do not only exist but that they are 7 

prevalent among the translation products of mouse genes that lack homologues in rat and 8 

human. The data suggests that the translation of these peptides is due to the chance 9 

occurrence of open reading frames with a favorable codon composition. Our approach 10 

combines ribosome profiling experiments, proteomics data and non-synonymous and 11 

synonymous nucleotide polymorphism analysis. We propose that effectively neutral processes 12 

involving the expression of thousands of transcripts all the way down to proteins provide a basis 13 

for de novo gene evolution.  14 
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The mammalian genome is pervasively transcribed, this includes functional genes but also 15 

thousands of transcripts that are not conserved across species and which show weak or no 16 

signatures of natural selection1–3. Many of the latter transcripts are annotated as long non-17 

coding RNAs (lncRNAs) because they lack conserved long open reading frames (ORFs). 18 

Recent studies based on the sequencing of ribosome-protected RNA fragments (ribosome 19 

profiling) have reported that a surprisingly large fraction of these transcripts is likely to translate 20 

small peptides4–9, although the significance of this finding has remained elusive. 21 

 22 

Each ribosome profiling experiment generates millions of ribosome footprints that are 23 

subsequently mapped to the genome or the transcriptome to identify open reading frames 24 

(ORFs) that are being translated10. The codon-by-codon movement of the ribosome along the 25 

coding sequence results in a characteristic pattern of three nucleotide periodicity of the mapped 26 

reads, which makes ribosome profiling a very useful method to detect novel events of 27 

translation4,11,12. Given enough sequence coverage the technique can uncover low-abundant 28 

small peptides that would be otherwise difficult to detect by standard proteomics 29 

approaches13,14. 30 

 31 

To assess the functional relevance of novel events of translation one can use the ratio between 32 

the number of non-synonymous and synonymous substitutions in the putative coding 33 

sequences4,5. However, this method requires an alignment of at least two homologous 34 

sequences. A more general approach that can be used in the absence of homology is the ratio 35 

between the number of non-synonymous and synonymous single nucleotide polymorphisms, 36 

compared to the one expected under neutrality. Under no selection, non-synonymous and 37 

synonymous polymorphisms accumulate at the same rate, whereas under purifying selection 38 

there is a deficit of non-synonymous polymorphisms because some amino acid changes disrupt 39 

the protein’s function15. Single nucleotide polymorphism analysis can be performed on a gene-40 

by-gene basis or in pools of sequences that share certain features2,16.  41 

 42 

We previously observed that, as a whole, putatively translated lncRNAs and young protein-43 

coding genes share a number of similarities, such as small ORF size and weak selective 44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 22, 2018. ; https://doi.org/10.1101/064915doi: bioRxiv preprint 

https://doi.org/10.1101/064915
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

constraints, compared with more widely conserved genes8. This pointed to a link between the 45 

translation of lncRNAs and the evolution of new proteins, but it did not solve the key question of 46 

whether translation of new ORFs could occur in the absence of selection at the protein level. 47 

This is a fundamental issue because for a new protein to acquire a function it first needs to be 48 

produced in the cell at significant amounts. Here by employing a combination of ribosome 49 

profiling data, sequence analysis and single nucleotide polymorphism information we obtain 50 

strong evidence that the majority of mouse proteins that are not conserved in rat or human 51 

selection evolve in a neutral manner. This study renders visible for the first time a layer of 52 

protein expression that is not dependent on selective processes, filling a gap in our 53 

understanding of the processes underlying de novo gene birth. 54 

 55 

Results 56 

 57 

First we set to identify translated open reading frames (ORFs) in mouse protein-coding genes 58 

(codRNAs) and long non-coding RNAs (lncRNAs) using ribosome-profiling RNA-sequencing 59 

(Ribo-Seq) data from eight different tissues and cell lines (Supplementary Table 1 and 60 

references therein). In contrast to RNA sequencing (RNA-Seq) reads, which are expected to 61 

cover the complete transcript, Ribo-Seq reads correspond to regions bound by ribosomes. We 62 

mapped the RNA-Seq and Ribo-Seq reads to the mouse Ensembl gene annotations and, for the 63 

sake of completeness, also to a set of previously obtained novel mouse transcripts that did not 64 

correspond to annotated genes3. 65 

We used the RibORF program4 to identify bona fide translated sequences among ORFs 66 

covered by at least 10 Ribo-Seq reads in transcripts expressed in one or more tissues (Fig. 1a 67 

and Supplementary Table 1). This program calculates a score for each ORF depending on the 68 

3-nucleotide periodicity and uniformity of the mapped reads. Using a highly stringent RibORF 69 

score cut-off of 0.74 we found that about 90% of the coding genes (15,020), and 20% of the 70 

annotated lncRNAs (539), were predicted to be translated in at least one sample. Additionally, 71 

we identified 286  genes that did not map to the gene annotations but contained translated 72 

ORFs (Fig. 1b). A widely used criterion to annotate a transcript as protein-coding is the 73 
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presence of an ORF encoding a protein of at least 100 amino acids17. Not surprisingly, the vast 74 

majority of ORFs translated from annotated and novel lncRNAs encoded proteins smaller than 75 

100 amino acids (smORFs). 76 

We hypothesized that some of the translated ORFs may evolve in a neutral manner and 77 

constitute a reservoir for the evolution of new protein-coding genes. To test this hypothesis, we 78 

first identified translated ORFs that were mouse-specific and then tested them for signatures of 79 

selection. We performed exhaustive sequence similarity searches of the ORFs against high 80 

coverage transcriptomes from human and rat as well as against the annotated proteomes of 81 

101 different eukaryotic species (Fig. 2a, Supplementary Table 2 for a list of species, see 82 

Methods for more details). For these searches we discarded any proteins shorter than 24 amino 83 

acids, as the detection of homologues may be compromised in such cases due to lack of 84 

sufficient sequence information. We identified 1,980 different translated ORFs that showed no 85 

homology to expressed sequences in other species (class non-conserved or NC). In general, 86 

these ORFs had lower codon usage bias than conserved ORFs, as measured by a previously 87 

described hexamer-based coding score metric8 (Fig. 2b).  88 

 89 

To measure the strength of selection in conserved and non-conserved translated ORFs we 90 

employed a large collection of mouse single nucleotide polymorphisms (SNPs) for the house 91 

mouse subspecies Mus musculus castaneus 18. We could map a total of 324,729 SNPs to the 92 

set of translated ORFs. We grouped the ORFs into three different classes on the basis of 93 

conservation and coding score (Fig. 2b), and calculated the ratio between the number of 94 

observed non-synonymous and synonymous SNPs (PN/PS(obs)) in each class. We then 95 

normalized it by the same ratio expected under neutrality (PN/PS(exp)). The expected PN/PS 96 

was estimated using a table of nucleotide mutation frequencies in Mus musculus castaneus and 97 

the observed codon frequencies in each set of sequences of interest (Supplementary Tables 3 98 

and 4). This allowed us not only to compare the strength of selection across different sets of 99 

sequences, as done in a previous study of ORFs translated from lncRNAs8, but also to discard 100 

selection if the normalized PN/PS was not significantly different from 1. Specifically, we used a 101 

chi-square test that compared the number of observed and expected non-synonymous and 102 

synonymous SNPs in each sequence set (Supplementary Table 5). As expected, the PN/PS of 103 
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randomly selected ORFs from introns was approximately 1.  Instead, the PN/PS of conserved 104 

ORFs was around 0.15 (Fig. 2c, chi-square test p-value < 10-5), consistent with protein 105 

functionality. One example in this group was Stannin19,20, a highly conserved peptide that 106 

regulates neuronal cell apoptosis (Fig. 3).  107 

 108 

Non-conserved ORFs with high coding scores (NC-H coding score ≥ 0.1014, Fig. 2b and c, 109 

Supplementary Figure 1) had weak but significant signatures of selection (p-value < 0.05), 110 

possibly because of the existence of some functional mouse-specific genes. In contrast, the 111 

PN/PS ratio of the remaining non-conserved ORFs was not significantly different from 1, 112 

consistent with neutral evolution. Very similar results were obtained for non-conserved genes 113 

annotated as coding or lncRNA (Fig. 2c) and the two sets were merged into a single group of 114 

neutrally evolving ORFs (neutral ORFs). This set comprised about two thirds of the non-115 

conserved ORFs (1,291 out of 1,980 ORFs analysed), and represented ~6.8% of the total 116 

number of mouse translated ORFs. 117 

 118 

We used proteomics data from the PRIDE database21 to further validate the translation of this 119 

latter group of proteins. Despite their small size (median 44 amino acids), a limiting factor for 120 

their detection by standard proteomics-based tecniques22, we found proteomics evidence for 32 121 

of the neutral ORFs (see Methods). This represents 2.5% of the proteins in this set (compared 122 

to less than 0.2% false positive rate, see Methods). This fraction is similar to the one obtained 123 

for conserved proteins subsampled to have a similar size distribution as the neutral ORFs 124 

(2.9%; in contrast, about 41% of all conserved ORFs have proteomics evidence). The test 125 

based on the PN/PS ratio confirmed that this subset of 32 ORFs did not deviate significantly 126 

from neutrality either (Supplementary Table 5).  127 

 128 

The above analyses grouped the sequences into classes before computing the PN/PS ratio. In 129 

general, ORF-by-ORF analysis was not possible because the ORFs were small and contained 130 

too few SNPs. Nevertheless, 41 of the neutrally evolving ORFs contained 10 or more SNPs, 131 

and we decided to compute a normalized PN/PS ratio for these individual cases. The median 132 

PN/PS of these ORFs was around 1 and the distribution of PN/PS values was very different 133 
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from that of conserved ORFs (Fig. 2d, Wilcoxon test, p-value < 10-5), consistent with the 134 

previous results. Finally, we quantified the number of ORFs that contained SNPs that generated 135 

premature stop codons, truncating more than half of the ORF, in the set of neutrally evolving 136 

ORFs and in the set of conserved ORFs. In the first case we found 72 out of 1,282 ORFs that 137 

contained this type of mutation (5.6%) and in the second case 296 out of 16,892 ORFs (1.75%). 138 

Considering that neutral ORFs are in general much shorter than conserved ORFs (median 139 

protein size 44 versus 412 amino acids), and thus less likely to accumulate ORF-truncating 140 

mutations by chance alone, the data clearly indicates a strong excess of ORF-truncating SNPs 141 

in neutral ORFs with respect to conserved ORFs. These analyses further support that the 142 

selective pressures acting on both kinds of ORFs are very different. 143 

 144 

We next inspected in more detail the ribosome profiling patterns of neutral ORFs with respect to 145 

the rest of translated ORFs (hereafter called “functional”). Genes with a recent origin are usually 146 

expressed at lower levels than older genes23,24,3, so it was not surprising to observe that 147 

neutrally evolving ORFs were associated with a lower number of Ribo-Seq reads per base than 148 

the rest of translated ORFs (median 0.193 versus 0.474, respectively, Supplementary figure 2). 149 

Consistent with translation, read periodicity in both neutral and functional ORFs was much 150 

higher than the random expectation of 0.33 (median values 0.70 and 0.80, respectively; see 151 

examples in Figure 3). Importantly, the results were highly reproducible across tissues (Figure 152 

4a for hippocampus and embryonic stem cells; Supplementary Figure 3 hippocampus and 153 

brain), a result we would not expect in the case of spurious ribosome profiling signals. In 154 

general, the RibORF score of the translated ORFs was positively related to the number of 155 

mapped Ribo-Seq reads (Spearman correlation R=0.408), and to the size of the ORFs 156 

(Spearman correlation R=0.193). When we controlled for these two parameters, neutral and 157 

functional ORFs had equivalent distributions of RibORF score, periodicity and uniformity values 158 

(Figure 4b). 159 

  160 

Subsequently, we compared our results to those obtained with two negative controls. The first 161 

control contained ORFs in alternative frames of annotated protein coding sequences with 162 

experimental protein evidence (“off-frame”). The second one contained randomly occurring 163 
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ORFs in small nuclear and nucleolar annotated RNA sequences (“sRNA”). The latter RNAs are 164 

sometimes detected in ribosome profiling experiments due to the formation of ribonucleoprotein 165 

particles that protect the RNA from degradation25. As before, we only considered ORFs with at 166 

least 10 Ribo-Seq mapped reads. As expected, the vast majority of the ORFs in these controls 167 

did not display significant 3-nucleotide read periodicity (Supplementary figure 2, see a specific 168 

example in Figure 3). We found that only 234 out of 13,596 ORFs in “off-frame”, and 10 out of 169 

304 ORFs in “sRNA”, had a RibORF score ≥0.7 (the threshold employed throughout our study). 170 

This corresponds to an overall false discovery rate (FDR) of 1.75%, much lower than the 171 

fraction of neutrally evolving proteins detected in our main analysis (6.8%). 172 

 173 

Some transcripts contained relatively long ORFs but were not translated. One example of this 174 

sort was the previously described de novo non-coding gene Poldi26 that lacked any evidence of 175 

translation in the data we analysed. We next asked which factors may influence the translation 176 

of some neutrally evolving ORFs but not of others. First, we inspected the translation initiation 177 

sequence context but did not detect any significant differences between translated and non-178 

translated ORFs (Supplementary Figure 4). We then hypothesized that the ORF coding score 179 

could affect the “translatability” of the transcript because codons that are abundant in coding 180 

sequences are expected to be more efficiently translated than other codons. Consistent with 181 

this hypothesis, we found that the translated neutrally evolving ORFs exhibited higher coding 182 

scores than non-translated ORFs with otherwise similar characteristics (Fig. 5a, Translated 183 

versus non-translated Wilcoxon test, p-value < 10-5). Importantly, we obtained a similar result 184 

after controlling for gene expression level (Fig. 5b, Wilcoxon test, p-value < 10-5). This is 185 

consistent with codon composition having an effect per se in ORF translation. When controlling 186 

by coding score, expression level, but not ORF length, had an effect on the translatability of the 187 

transcript (Fig. 5c).  188 

 189 

The results suggest that the neutral ORFs that are translated are enriched in codons that are 190 

frequently found in functional protein coding sequences. This is consistent with the observation 191 

that abundant codons enhance translation elongation27, whereas rare codons might affect the 192 

stability of the mRNA28. It has been previously hypothesized that the distinction between 193 
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translated and non-translated lncRNAs may be related to the relative amount of the lncRNA in 194 

the nucleus and the cytoplasm4. However, we found evidence that some lncRNAs with nuclear 195 

functions, such as Malat1 and Neat1, were translated, suggesting that the cytosolic fraction of a 196 

transcript can be translated independently of its role or preferred location.  197 

 198 

 199 

DISCUSSION 200 

 201 

The molecular mechanisms underlying de novo gene evolution are still poorly understood29,30,31. 202 

The sudden appearance of a new protein-coding gene from a genomic segment seems a priori 203 

highly improbable, but the process becomes much more likely if the genome is already being 204 

pervasively transcribed and translated outside functional protein-coding genes. An excess of 205 

transcription was already noted in the first large-scale cDNA sequencing efforts performed in 206 

human and mouse32, and more recent studies have found a high rate of transcriptional turnover 207 

when comparing closely related species33. Here we have shown that many of these transcripts 208 

are translated even if they only contain small ORFs, with the data currently available we have 209 

been able to identify 1,291 peptides in 1,132  genes that are likely to be of recent evolutionary 210 

origin and that show no signs of selection. This number is likely to be a gross underestimate 211 

because many transcripts are expressed at low levels, limiting their detection, and many cell 212 

types and tissues have not yet been sampled. According to recent estimates, the cost of 213 

transcription and translation in multicellular organisms is probably too small to overcome genetic 214 

drift34. Therefore, these activities may be effectively neutral. Our results indeed support that 215 

there is no barrier for the production of peptides that do not confer an immediate selective 216 

advantage. 217 

 218 

The putative precursors of novel proteins identified here are of small size, which is consistent 219 

with observations for functional de novo genes identified in previous studies23,35–37. We have 220 

also shown that random ORFs with a more favorable, coding-like, hexamer composition are 221 

more likely to be translated than other ORFs. Codon usage bias in functional sequences is 222 

related to the abundance of different tRNAs and correlates with expression level38,39. Thus, it 223 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 22, 2018. ; https://doi.org/10.1101/064915doi: bioRxiv preprint 

https://doi.org/10.1101/064915
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

seems logical that the translated neutral ORFs are biased towards those codons that are 224 

translated more efficiently.  225 

 226 

The process of de novo gene origination involves the gain of a useful function by a previously 227 

non-functional sequence. The rate at which this happens remains to be determined but it has 228 

been observed that many random peptide sequences can function as secretion signals40, and 229 

selection for ATP-binding activity in a library of randomly generated 80 amino acid polypeptides 230 

successfully identified several candidates capable of binding to ATP41. Recent experiments 231 

performed in E.coli also suggest that random sequences can often affect cellular growth42. The 232 

pervasive translation of the transcriptome implies that de novo gene evolution has much more 233 

material at its disposal than previously thought.  234 

 235 

 236 

METHODS 237 

 238 

Transcript assembly 239 

 240 

We used strand-specific polyA+ RNA sequencing data (RNA-Seq) data from different mouse 241 

and human tissues to assembly the species transcriptomes (Gene Expression Omnibus mouse 242 

GSE692413, GSE4372143, and GSE4352044; human GSE692413). The mouse RNA samples 243 

were extracted from strain Balb/C. RNA-Seq reads were filtered by length (> 25 nucleotides) 244 

and by quality using Condetri (v.2.2)45 with the following settings: -hq = 30 –lq = 10. We aligned 245 

the reads to the corresponding reference species genome with Tophat (v. 2.0.8, –N 3, -a 5 and 246 

–m 1)46. Multiple mapping to several locations in the genome was allowed unless otherwise 247 

stated. We assembled the transcriptome with Stringtie47, merging the reads from all the 248 

samples, with parameters -f 0.01, and -M 0.2. We used the species transcriptome as a guide 249 

(Ensembl v.75), including all annotated isoforms, but permitting the assembly of annotated and 250 

novel isoforms and genes (antisense, intergenic and intronic) as well. We excluded lncRNAs 251 

that overlapped annotated pseudogenes or that showed significant sequence similarity to 252 

known protein-coding sequences (BLASTP, e-value < 10-4). In the case of rat we employed a 253 
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previously generated transcript assembly48. 254 

 255 

Ribosome profiling data 256 

 257 

We used ribosome profiling data (Ribo-Seq) from 8 different mouse tissues or cell lines (see 258 

Supplementary Table 1), obtained from Gene Expression Omnibus under accession numbers 259 

GSE5142449, GSE5098350, GSE2200151, GSE6213452, GSE7206453, and GSE41246. Only 260 

datasets corresponding to non-pathogenic conditions were considered. The reads from the 261 

experimental replicates were merged before using RibORF to increase the resolution of the 262 

read periodicity, as done in the original RibORF paper4. For all analyses we considered only 263 

genes expressed at significant levels in at least one sample (RNA-Seq fragments per kilobase 264 

per Million mapped reads (FPKM) > 0.2). The expression of the genes detected in these 265 

samples is expected to be highly representative of the Mus musculus species as a whole. We 266 

mapped several brain RNA-Seq datasets from Mus musculus castaneus33 to the mouse 267 

assembled transcriptome using NextGenMap54. As expected, the vast majority of the genes 268 

expressed in brain samples from C57BL/6 mice49 also showed evidence of expression in Mus 269 

musculus castaneus brain RNA samples33(Supplementary Table 6). 270 

  271 

We discarded anomalous reads (length < 26 or > 33 nt) and reads that mapped to annotated 272 

rRNAs and tRNAs in mouse from the Ribo-Seq sequencing datasets. Next, reads were mapped 273 

to the assembled mouse genome (mm10) with Bowtie (v. 0.12.7, parameters -k 1 -m 20 -n 1 --274 

best --strata). Considering that the ORFs had to be extensively covered by reads to be 275 

considered translated (high uniformity), we decided to include multiple mapped reads so as not 276 

to compromise the detection of paralogous proteins (Supplementary Fig. 7). We used the 277 

mapping of the Ribo-Seq reads to the complete set of annotated coding sequences in mouse to 278 

compute the position of the P-site (second binding site for tRNA in the ribosome) for reads of 279 

different size, as previously described10,12.  280 

 281 

Identification of translated ORFs 282 

 283 
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We predicted all translated ORFs (ATG to STOP) with a minimum length of 9 amino acids in the 284 

transcripts with RibORF (v.0.1)4. Only ORFs with a minimum of 10 mapped Ribo-Seq reads 285 

were considered. The RibORF classifier is based on a support vector machine algorithm, 286 

originally applied to human transcripts. The input parameters are the read periodicity and the 287 

read uniformity. The first one is the fraction of reads that correspond to the correct frame and 288 

the second one corresponds to the percentage of maximum entropy, a value of 1 indicates a 289 

completely even distribution of reads. For each ORF the program computes a score that 290 

depends on the values of these two parameters4. We used the same score cut-off as in the 291 

original paper (≥ 0.7), which had a reported false positive rate of 0.67% and false negative rate 292 

of 2.5%.  293 

 294 

We eliminated any redundancy in the translated ORFs by taking the longest ORF when several 295 

overlapping translated ORFs were detected in the same gene. The identification of translated 296 

ORFs was done separately for the different tissues (Supplementary Table 1), and the data was 297 

subsequently integrated, taking the tissue with the highest RibORF score as representative. 298 

Differences in the number of translated ORFs in different tissues were related to the depth of 299 

sequencing and the number of reads that mapped to the top 5 most highly expressed proteins 300 

(Supplementary Fig. 6 and 7, respectively). For genes with no evidence of translation we 301 

selected the longest ORF across all transcripts for comparative purposes. Selecting the longest 302 

ORF was justified by the fact that, in translated ORFs, the ORF with the highest number of 303 

mapped Ribo-Seq reads was usually the longest ORF (75.7% for codRNAs and 84% for 304 

lncRNAs). We also generated a set of 4,013 randomly taken ORFs from introns, after discarding 305 

ORFs that showed significant sequence similarity to known proteins from the same species 306 

(BLASTP, e-value < 10-4).  307 

 308 

We generated a negative control set by combining out-of-frame ORFs in mouse coding genes 309 

with experimental protein evidence according to Uniprot (“off-frame”) and randomly occurring 310 

ORFs in mouse small nuclear and nucleolar RNAs (“sRNAs”). These ORFs were required to 311 

have at least 10 Ribo-Seq mapped reads and were processed in the same manner as the main 312 

set of ORFs under study. The total number of sequences in the negative control was 13,900. 313 
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We also generated a positive control set composed of 2,163 randomly taken annotated mouse 314 

coding sequences with protein evidence in Uniprot. With these controls we estimated a false 315 

positive rate of 1.75% and a false negative rate of 2.54% for the above mentioned RibORF 316 

score cut-off. 317 

 318 

Sequence conservation 319 

 320 

We searched for mouse translated ORF homologues in the human and rat transcriptomes using 321 

TBLASTN (limited to one strand, e-value < 10-4)55. We also performed sequence similarity 322 

searches against the annotated proteomes of 67 mammalian-species and 34 non-mammalian 323 

eukaryotes from a diverse range of groups compiled in a previous study48, using BLASTP (e-324 

value < 10-4). For these searches we only considered query proteins of size 24 amino acids or 325 

longer, as shorter proteins may not contain sufficient information to perform homology searches.  326 

Mouse ORFs that did not have any homology hits in other species were classified as non-327 

conserved, the rest as conserved. Translated non-conserved ORFs located upstream or 328 

downstream of another longer ORF in a conserved transcript (uORFs and dORFs) were 329 

excluded from this analysis.  330 

 331 

We inspected the rat genomic syntenic regions of translated ORFs using LiftOver56. We 332 

classified the ORFs in two groups depending on whether the ORF was truncated in rat or not 333 

(the truncation had to affect more than half of the protein). For neutrally evolving ORFs the 334 

number of cases in which the ORF was truncated was similar to the number of cases in which it 335 

was not truncated, and in both cases the polymorphism patterns were consistent with neutrality 336 

(Supplementary Table 5). This indicated that, for this group, the presence of a similar ORF in rat 337 

does not imply functional conservation of the ORF. Therefore, we did not use information on rat 338 

genomic synteny to classify the genes as conserved/non-conserved. 339 

 340 

Single nucleotide polymorphism analysis 341 

 342 

We obtained single nucleotide polymorphism (SNP) data from 20 individuals of the house 343 
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mouse subspecies Mus musculus castaneus18. We classified SNPs in ORFs as non-344 

synonymous (PN, amino acid altering) and synonymous (PS, not amino-acid altering). We 345 

calculated the PN/PS ratio in each ORF group by using the sum of PN and PS in all the 346 

sequences ((PN/PS)obs). We calculated the expected PN/PS under neutrality ((PN/PS)exp) 347 

using the mutation frequencies between pairs of nucleotides in Mus musculus castaneus and 348 

the codon composition of the different sequences or sets of sequences under study 349 

(Supplementary Tables 2 to 5). The observed transition to transversion ratio was 4.42, very 350 

similar to the 4.26 value obtained in early observations based on mouse-rat divergence data57. 351 

We tested for purifying selection by the number of observed and expected non-synonymous 352 

and synonymous SNPs using a chi-square test with one degree of freedom. Positively selected 353 

mutations are rapidly fixed in the population and their effect is expected to be negligible when 354 

using SNP data.  355 

 356 

Proteomics data 357 

 358 

We used the proteomics database PRIDE21  to search for peptide matches in the proteins 359 

encoded by various gene sets. For a protein to have proteomics evidence, we required at least 360 

two distinct perfect matches of peptides that did not map to any other protein in the dataset, 361 

allowing for up to two mismatches. These are very stringent conditions with a false positive rate 362 

< 0.2%48.  363 

 364 

Coding score 365 

 366 

We used a previously described metric based on hexamer frequencies to calculate the coding 367 

score of the sequences8. The method uses a table of pre-calculated hexamer scores that 368 

measure the relative frequency of each hexamer in coding versus non-coding sequences. 369 

These scores are then used to evaluate the coding propensity of a sequence based on its 370 

hexamer composition. The method has been implemented in a computational program called 371 

CIPHER that can be accessed online (http:// http://evolutionarygenomics.upf.edu/cipher). 372 

 373 
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Statistical tests and plots 374 

 375 

The generation of plots and statistical tests was performed with the R package58.  376 

 377 

Data availability 378 

 379 

Transcript assemblies from mouse, human and rat, as well as the mouse open reading frames 380 

(ORFs) predicted to be translated have been deposited at figshare 381 

(http://dx.doi.org/10.6084/m9.figshare.4702375). The code and executable file to calculate the 382 

coding score can be accessed at https://github.com/jorruior/CIPHER.  383 

The C program to calculated the PN/PS expected under neutrality is available at 384 

https://figshare.com/articles/computePNPS_c/5085706. Supplementary file 1 contains 385 

supplementary tables and figures.  386 

 387 
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 518 

FIGURE LEGENDS 519 

 520 

Figure 1. Detection of translated ORFs. a. Workflow to identify translated ORFs. Ribosome profiling 521 
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(Ribo-Seq) reads, corresponding to ribosome-protected fragments, are mapped to all predicted canonical 522 

ORFs with length ≥ 30 nucleotides in transcripts. This is performed with single-nucleotide resolution after 523 

computing the read P-site per each read length. In each ORF, reads per frame and read uniformity are 524 

evaluated by RiboORF. b. Number of translated and non-translated expressed genes belonging to 525 

different classes after integrating data from eight different mouse tissues (Supplementary Table 1). c. 526 

Number of translated ORFs belonging to different classes. The translated ORFs have been divided into 527 

small ORFs (smORF, < 100 aa) and long ORFs (≥ 100 aa), depending on their length. 528 

 529 

Figure 2. Identification of selection signatures. a. Workflow to identify conserved and non-conserved 530 

ORFs. Translated ORFs shorter than 24 amino acids, as well as non-conserved upstream and 531 

downstream ORF in conserved transcripts (uORFs and dORFs, see Methods), were filtered out. Any ORF 532 

with at least one BLAST match in another species was classified as conserved (C), otherwise it was 533 

classified as non-conserved (NC). b. Coding score in conserved (C) and non-conserved ORFs (NC). 534 

Conserved ORFs showed significantly higher coding score values than non-conserved ones; *** Wilcoxon 535 

test, p-value < 10-5. Non-conserved ORFs with a high coding score value (≥ 0.1014) were classified as 536 

NC-H, and the rest were classified as NC-L. c. Analysis of selective constraints in translated ORFs. PN/PS 537 

(obs/exp) refers to the normalized ratio between non-synonymous (PN) and synonymous (PS) single 538 

nucleotide polymorphisms; a value of 1 is expected in the absence of selection at the protein level. 539 

Conserved and NC-H ORFs showed significant purifying selection signatures. In contrast, NC-L ORFs did 540 

not show evidence of purifying selection at the protein level. Many conserved ORFs in lncRNAs are likely 541 

to encode functional micropeptides. Differences between observed and expected PN/PS were assessed 542 

with a chi-square test, * p- value < 0.05, *** p-value < 10-5. Error bars indicate the standard error of the 543 

sample proportion. Numbers of ORFs for the different categories are also displayed. d. Distribution of 544 

normalized PN/PS values for individual ORFs in different gene classes. Only ORFs with at least 10 SNPs 545 

were considered; the NC-H group contained too few cases to be analysed. The differences between C and 546 

NC-L are significant (Wilcoxon test, p-value <10-5). 547 

 548 

Figure 3. Three nucleotide periodicity of translated ORFs. The mapping of Ribo-Seq reads on different 549 

types of ORFs is shown. The Y axis represents the log-number of reads, the X axis the positions in the 550 

ORF. The reads show strong frame bias in the functional (conserved) and the neutral (NC-L) examples, 551 

with a preponderance of in-frame reads (green) versus off-frame reads (red and blue), while the frame bias 552 

is randomly distributed in the negative control (SNORA18). The exon/intron structure and the amino acid 553 

sequence for translated ORFs is also shown.  554 

 555 
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Figure 4. Properties of neutrally evolving ORFs. a. Relationship between the percentage of reads 556 

falling in the correct frame in neural embryonic stem cells cells and hippocampus samples, for neutral and 557 

functional ORFs having at least 10 reads in both samples and being translated in at least one sample. 558 

Spearman correlation coefficient is R=0.4224 for the neutrat set (p-value < 10-5) and R=0.4360 for the 559 

functional set (p-value < 10-5). b. Distribution of read periodicity, read uniformity and RibORF scores in 560 

neutral and functional translated ORFs after controlling for the number of Ribo-Seq reads and size of 561 

ORFs. The ‘functional normalized’ set is a randomly taken subset of the functional ORFs that has the 562 

same number of mapped Ribo-Seq reads and ORF size distribution as the set of neutrally evolving ORFs 563 

(n=900). Data is represented as box-plots for different number of read intervals; the box contains 50% of 564 

the data, horizontal line is the median value. 565 

 566 

Figure 5. Factors influencing the translation of neutrally evolving ORFs. a. Influence of coding score 567 

in the translatability of neutrally evolving ORFs. Translated ORFs showed significantly higher coding score 568 

than non-translated ORFs, both sets had significantly higher coding scores than introns (Wilcoxon test p-569 

value < 10-5, indicated by ***). b. Influence of coding score in the translatability of ORFs controlling for 570 

gene expression values, the two sets have comparable maximum FPKM gene expression (median FPKM 571 

value = 11.10). Translated ORFs showed significantly higher coding score values than non-translated 572 

ORFs; (Wilcoxon test p-value < 10-5). c. Influence of maximum FPKM gene expression and ORF length in 573 

the translatability of neutral ORFs normalized by coding score (median coding score value = -0.0052). 574 

Translated ORFs showed significantly higher FPKM values than non-translated ORFs (Wilcoxon test p-575 

value < 10-5); differences in length were not significant. 576 

  577 
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FIGURES 578 

Figure 1 579 

 580 

  581 
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Figure 2 583 

 584 

 585 
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Figure 3 587 

 588 
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Figure 4 591 

 592 
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Figure 5 594 
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