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Abstract 
We employed a data-driven Bayesian model to automatically identify distinct latent 

factors of overlapping atrophy patterns from voxelwise structural magnetic resonance 

imaging (MRI) of late-onset Alzheimer’s disease (AD) dementia patients.	Our approach 

estimated the extent to which multiple distinct atrophy patterns were expressed within 

each participant rather than assuming that each participant expressed a single atrophy 

factor. The model revealed a temporal atrophy factor (medial temporal cortex, 

hippocampus and amygdala), a subcortical atrophy factor (striatum, thalamus and 

cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal and lateral 

occipital cortices). To explore the influence of each factor in early AD, atrophy factor 

compositions were inferred in beta-amyloid-positive (Aβ+) mild cognitively impaired 

(MCI) and cognitively normal (CN) participants. All three factors were associated with 

memory decline across the entire clinical spectrum, whereas the cortical factor was 

associated with executive function decline in Aβ+ MCI participants and AD dementia 

patients. Direct comparison between factors revealed that the temporal factor showed the 

strongest association with memory, while the cortical factor showed the strongest 

association with executive function. The subcortical factor was associated with the 

slowest decline for both memory and executive function compared to temporal and 

cortical factors. These results suggest that distinct patterns of atrophy influence decline 

across different cognitive domains. Quantification of this heterogeneity may enable the 

computation of individual-level predictions relevant for disease monitoring and 

customized therapies. Code from this manuscript is publicly available at 

link_to_be_added. 
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 Significance 

Alzheimer’s disease (AD) is the most common form of dementia. Heterogeneity in AD 

complicates efforts for diagnosis and disease monitoring. Here we model the 

heterogeneity of atrophy in AD patients, demonstrating for the first time that most AD 

patients and at-risk nondemented participants express multiple latent atrophy factors to 

varying degrees. Furthermore, these atrophy factors are associated with distinct decline 

trajectories of memory and executive function, highlighting the relevance of these 

atrophy patterns in understanding the clinical course of AD dementia. Our results provide 

a framework by which biomarker readouts could predict disease progression at the 

individual level. Our analytic strategy could potentially be utilized to discover subtypes 

within and across other heterogeneous brain disorders, such as autism and schizophrenia.	
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Introduction 
Alzheimer’s disease (AD) dementia is a devastating neurodegenerative disease 

that affects 11% of individuals over age 65 with no disease modifying treatment available. 

Accurate in vivo biomarkers are urgently needed to assist in early detection of at-risk 

individuals, improve diagnosis, monitor disease progression, and serve as outcome 

measures in clinical trials. 

 Although AD is typically associated with an amnestic clinical presentation and 

disruption of the medial temporal lobe (Salmon & Bondi, 2009), it has become 

increasingly clear that heterogeneity exists within this disease. Specifically, heterogeneity 

has been observed in the clinical presentation of AD (Lam et al., 2013), the spatial 

distribution of neurofibrillary tangles (NFT) (Murray et al., 2011, Ossenkoppele et al., 

2016), as well as the presence of co-morbid pathologies such as vascular disease, Lewy 

bodies and TDP-43 (Schneider et al., 2009, Josephs et al., 2014). Interestingly, the spatial 

distribution of atrophy varies across AD subtypes defined on the basis of NFT 

distribution (Whitwell et al., 2012), suggesting that analyses of gray matter patterns are 

useful to characterize heterogeneity in AD. Furthermore, although distinct atrophy 

patterns have been observed in patients that clearly show atypical clinical presentations 

(Ossenkoppele et al., 2015), heterogeneity in gray matter atrophy has also been reported 

among late-onset AD cases (Dickerson & Wolk,	2011). It is therefore likely that the 

ability to quantify varying patterns of atrophy among AD patients will help inform our 

understanding of fundamental disease processes. 

 In this study, we sought to explore the heterogeneity of atrophy patterns in late-

onset AD using a data-driven Bayesian framework that accounted for and estimated 

latent AD atrophy factors derived from structural MRI data. The mathematical 

framework that we employed, latent Dirichlet allocation (LDA; Blei et al., 2003), has 

been successfully utilized to extract overlapping brain networks from functional MRI 

(Yeo et al., 2014) and meta-analytic data (Yeo et al., 2015; Bertolero et al., 2015). 

Importantly, this approach does not require the atrophy pattern of an individual to be 

determined by a single atrophy factor. Instead, the model allows the possibility that 

multiple latent factors are expressed to varying degrees within an individual. For example, 

the atrophy pattern of a patient might be 90% due to factor 1 and 10% factor 2, while the 
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atrophy pattern of another patient might be 60% due to factor 1 and 40% factor 2. Given 

that multiple contributors that are not mutually exclusive may influence heterogeneity in 

AD, such as the spatial location of NFT pathology (Murray et al., 2011, Ossenkoppele et 

al., 2016), coexisting non-AD pathologies (Schneider et al., 2009) and genetics 

(Dickerson & Wolk, 2011), we believe it is more biologically plausible that individuals 

express varying degrees of distinct atrophy factors rather than one single factor. Thus, the 

LDA approach is particularly well suited for these analyses and will provide insight into 

whether expressing multiple atrophy factors is common among late-onset AD patients. 

 Most studies investigating the heterogeneity of AD have examined patients soon 

after AD onset or at advanced AD stages (e.g., Murray et al., 2011, Whitwell et al., 2012, 

Noh et al., 2014, Byun et al., 2015, Scheltens et al., 2015). However, the 

pathophysiological processes of AD begin at least a decade before clinical diagnosis 

(Villemagne et al., 2013), suggesting that the emergence of this heterogeneity may occur 

prior to the onset of clinical dementia. In this study, we therefore examined how distinct 

atrophy factors identified in AD dementia patients were associated with longitudinal 

cognitive decline early in nondemented participants that were at risk for AD dementia 

based on elevated beta-amyloid (Sperling et al., 2011, Albert et al., 2011, Rowe et al., 

2013). 

Our study makes three significant contributions. First, we introduced an 

innovative modeling strategy where expressions of multiple atrophy patterns are 

estimated rather than assigning each participant to a single subtype. Second, our approach 

harnesses the rich multidimensional information across all gray matter voxels, avoiding 

the need for a priori selection of regions and enabling an in-depth exploration of atrophy 

patterns. Finally, application of this approach to participants spanning the clinical 

spectrum revealed that latent atrophy factors are associated with distinct memory and 

executive function trajectories, providing novel insights into the impact of disease 

heterogeneity throughout the prolonged course of AD.  
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Results 

Overall Approach 

 Our approach involved three main steps. In Step I, we performed latent Dirichlet 

allocation (a Bayesian model; Blei et al., 2003) to estimate latent atrophy factors in 188 

AD dementia patients and used this model to extract factor compositions in two 

independent samples of nondemented participants: 147 beta-amyloid-positive (Aβ+) mild 

cognitively impaired (MCI) and 43 Aβ+ cognitively normal (CN) participants. In Step II, 

we examined robustness across different analytic approaches and investigated 

characteristics of the factor compositions across participants. Finally, in Step III we 

examined the associations between atrophy factors and different cognitive domains 

(memory and executive function). The results of each step are described in detail below.  

 

I. Discovering Latent Atrophy Factors in AD Dementia Patients 

We employed the Bayesian latent Dirichlet allocation (LDA) model (Blei et al., 

2003) to encode our assumption that a patient expresses one or more latent atrophy 

factors (Fig. 1). The LDA model was applied to the structural MRI of 188 AD dementia 

patients. Given the voxelwise gray matter density values derived from structural MRI 

(FSL-VBM; Douaud et al., 2007) and a predefined number of factors K, the model is able 

to estimate the probability that a particular factor is associated with atrophy at a specific 

spatial location (i.e., Pr(Voxel | Factor) or probabilistic atrophy map of the factor) and the 

probability that an individual expresses each atrophy factor (i.e., Pr(Factor | Patient) or 

atrophy factor composition of the individual). Importantly, resulting atrophy factors were 

not predetermined, but estimated from data (see Methods). 
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An important model parameter is the number of latent atrophy factors K. 

Therefore, we first determined how factor estimation changed from K = 2 to 10. Visual 

inspection of the spatial distribution of each atrophy factor suggested that factor estimates 

from K = 2 through 10 were organized in a hierarchical fashion (Figs. 2 and S1). For 

instance, the two-factor model revealed one factor associated with atrophy in temporal 

and subcortical regions (“temporal+subcortical”; Fig. 2A1) and another factor associated 

with atrophy throughout cortex (“cortical”; Fig. 2A2). The three-factor model resulted in 

a similar cortical factor (Fig. 2B3 and Table S1C), while the temporal+subcortical factor 

split into a “temporal” factor associated with extensive atrophy in the medial temporal 

lobe (Fig. 2B1 and Table S1A) and a “subcortical” factor associated with atrophy in the 

cerebellum, striatum and thalamus (Fig. 2B2 and Table S1B). Likewise, the four-factor 

model resulted in the cortical factor splitting into “frontal cortical” and “posterior cortical” 

factors, whereas the temporal and subcortical factors remained the same (Fig. 2C). 

Sagittal and axial slices of these probabilistic atrophy maps are available in Fig. S1 in the 

Supporting Information (SI). 

Alzheimer’s
Patients

Latent
Atrophy
Factors

Brain
sMRI

Patient  2 ...

...
Pr(Factor | Patient)

Pr(Voxel | Factor)

...

Factor 2 Factor 3Factor 1

Patient 1

Voxel 1 Voxel 2 Voxel 3 Voxel 4

Fig. 1. A Bayesian model of AD dementia patients, latent atrophy factors, and brain structural 
MRI. Underpinning our approach is the premise that each participant expresses one or more 
latent factors. Each factor is associated with distinct but possibly overlapping patterns of brain 
atrophy. The framework can be instantiated with a mathematical model (latent Dirichlet 
allocation; Blei et al., 2003), whose parameters can be estimated from the structural MRI data of 
AD dementia patients. The estimated parameters are the probability that a patient expresses a 
particular factor, i.e., Pr(Factor | Patient), and the probability that a factor is associated with 
atrophy at a MRI voxel, i.e., Pr(Voxel | Factor). 
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(A1) Temporal + Subcortical(A1) Temporal + Subcortical

(A2) Cortical(A2) Cortical

(B1) Temporal(B1) Temporal

(B2) Subcortical(B2) Subcortical

(B3) Cortical(B3) Cortical

(C1) Temporal(C1) Temporal

(C2) Subcortical(C2) Subcortical

(C3) Posterior Cortical(C3) Posterior Cortical

(C4) Frontal Cortical(C4) Frontal Cortical

0.8e-50.8e-5 2.5e-52.5e-5

L              RL              R

K = 2K = 2

K = 3K = 3

K = 4K = 4

Fig. 2. Hierarchy of latent atrophy factors with distinct atrophy patterns in AD. Bright color 
indicates higher probability of atrophy at that spatial location for a particular atrophy factor, i.e., 
Pr(Voxel | Factor). Each of the (A) two, (B) three and (C) four factors was associated with a 
distinct pattern of brain atrophy and was named accordingly. A nested hierarchy of atrophy 
factors was observed even though the model did not mandate such a hierarchy. For example, 
when going from two to three factors, the temporal+subcortical factor (A1) split into temporal 
(B1) and subcortical (B2) factors, while the cortical factor remained the same (A2 and B3). This 
hierarchical phenomenon was quantified for two to ten factors (Fig. S2).  
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To quantify the hierarchical phenomenon, we employed an exhaustive search to 

assess the possibility that two unknown factors in the (K+1)-factor model were 

subdivisions of an unknown factor in the K-factor model (while the other factors 

remained the same). The exhaustive search yielded a hypothesized factor hierarchy with 

associated correlation values quantifying the subdivision quality (see Supplemental 

Methods of SI). The high correlation values (Fig. S2) confirmed that additional factors 

emerged as subdivisions of lower-order factors, corresponding to a nested hierarchy of 

atrophy factors.  

This nested hierarchy suggested that specification of different numbers of 

estimated factors might yield distinct insights into AD. In the remainder of this paper, we 

highlighted the results of three-factor model (Fig. 2B), since the emergence of the 

temporal and cortical factors were consistent with the “limbic-predominant” and 

“hippocampal-sparing” pathologically-defined AD subtypes previously reported (Murray 

et al., 2011, Whitwell et al., 2012). We additionally repeated analyses for two- and four-

factor models, which yielded behavioral insights consistent with the three-factor model. 

These additional results are reported in Supplemental Figures of SI.  

To explore the influence of atrophy factors in early AD, probabilistic atrophy 

maps Pr(Voxel | Factor) estimated from the AD dementia patients were used to infer 

factor compositions Pr(Factor | Participant) of the 190 Aβ+ nondemented participants 

using the standard variational expectation-maximization algorithm (Blei et al., 2003).  

 
II. Examining Factor Robustness and Characteristics of Factor Compositions 

 Among the 188 AD dementia patients, 100 had their cerebrospinal fluid (CSF) 

amyloid data available. 91 of the 100 patients were Aβ+ (CSF amyloid concentration < 

192 pg/ml; Shaw et al., 2009). We performed LDA on the subset of Aβ+ AD dementia 

patients (and on Aβ+ MCI participants; see Supplemental Results of SI) and compared 

atrophy patterns of the resulting factors with those derived using the larger sample (Fig. 

S3). Atrophy factors were similar across these methods, with an average correlation 

across all pairwise comparisons of r = 0.89. Given this similarity and to improve our 

estimates of the atrophy factors, we elected to use the atrophy factors derived from the 

larger sample of 188 AD dementia patients for subsequent analyses. Furthermore, 
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resulting atrophy patterns were consistent between FreeSurfer (Fischl, 2012) and FSL-

VBM, suggesting that the atrophy factors were robust to variations in image 

preprocessing software (see Supplemental Results and Supplemental Methods of SI). 

To determine whether expression of atrophy factors remained stable over time, we 

examined the subset of ADNI 1 participants that had a two-year follow-up scan available 

(N = 560 out of 810). We were specifically interested in whether atrophy factors reflected 

different disease stages rather than different atrophy subtypes (for instance, high 

expression of the temporal factor may lessen over time with greater expression of the 

cortical factor). Therefore, we compared factor compositions after two years with 

baseline compositions. The factor probabilities were positivity correlated and highly 

consistent (r > 0.85 across all three factors, Fig. 3; see Fig. S4 for results by diagnostic 

group with additional amyloid information), suggesting that these factors do not merely 

reflect a sequence of atrophy patterns.  

 

 
Examination of atrophy factor compositions among AD dementia patients 

revealed that the majority expressed multiple latent atrophy factors rather than 

predominantly expressing a single atrophy factor (Fig. 4). Examination of factor 

compositions of the 190 Aβ+ nondemented participants revealed a similar pattern, such 

that the majority of participants expressed multiple atrophy factors (Fig. S5A). Factor 

compositions for the two- and four-factor models also suggest that most participants 

expressed multiple atrophy factors (Figs. S5B and S5C). 
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Fig. 3. Stability of factor compositions over two years. Each blue dot represents a participant. For 
each plot, x-axis and y-axis represent, respectively, the probabilities of factor at baseline and two 
years after baseline. In the ideal case where factor probability estimates remain exactly the same 
after two years, one would expect a y = x linear fit as well as a r = 1 correlation. In our case, the 
linear fits were close to y = x with r > 0.85 for all three atrophy factors, suggesting that the factor 
compositions were stable despite disease progression. 
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 To understand the association between atrophy factors and demographic variables, 

general linear model (GLM; for continuous variables) and logistic regression (for binary 

variables) were conducted in the 188 AD dementia patients (Table S2). Briefly, the 

response variable was the variable of interest (e.g., age at AD onset), and the explanatory 

variables consisted of two columns encoding participants’ loading on the cortical and 

subcortical factors. The temporal factor was implicitly modeled because the factor 

probabilities summed to 1 (see Methods). 

There were no significant differences in years from AD onset, education, sex or 

APOE ε4 loadings across the three factors. Importantly, amyloid level was not 

significantly different across factors. The cortical factor was associated with significantly 

younger baseline age than the temporal factor (p = 1e-5) and subcortical factor (p = 2e-6) 

as well as younger age at AD onset than the temporal factor (p = 3e-4) and subcortical 

factor (p = 7e-6). In addition, the subcortical factor was associated with higher APOE ε2 

loading than the temporal factor (p = 0.01) and cortical factor (p = 0.04), but these were 

not significant when corrected for multiple comparisons. 

Similar analyses were conducted for the Aβ+ MCI and CN groups. The only 

significant association was that among Aβ+ MCI participants, the cortical factor was 

associated with younger age at baseline compared to the temporal factor (p = 0.05) and 

Pr(Cortical) = 1

Pr(Subcortical) = 0

Pr(Cortical) = 0
Pr

(Te
mpo

ra
l) 

= 
0

Pr(Subcortical) = 1 Pr(Temporal) = 1

Fig. 4. Factor compositions of 188 AD dementia patients. Each patient corresponds to a dot, 
whose location (in barycentric coordinates) represents the factor composition. Color indicates 
amyloid status: red for Aβ+, green for Aβ-, and blue for unknown. Corners of the triangle 
represent “pure factors”; closer distance to the respective corner indicates higher probability for 
the respective factor. Most dots are far from the corners, suggesting that most patients expressed 
multiple factors.  
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subcortical factor (p = 0.02). However, this association did not survive after correcting 

for multiple comparisons.  

 

III. Examining Associations Between Atrophy Factors and Cognition 

We first examined diagnostic group differences in memory (ADNI-Mem; Crane 

et al., 2012) and executive function (ADNI-EF; Gibbons et al., 2012) without considering 

factor compositions. As expected, cross-sectional memory was worse for AD dementia 

patients (mean = -0.84) compared to Aβ+ MCI participants (mean = -0.21; t-test p = 5e-

23). Aβ+ MCI participants had worse memory than Aβ+ CN participants (mean = 0.93; t-

test p = 2e-26). Likewise, cross-sectional executive function was worse for AD dementia 

patients (mean = -0.92) compared to Aβ+ MCI participants (mean = -0.17; t-test p = 3e-

16). Aβ+ MCI participants had worse executive function than Aβ+ CN participants (mean 

= 0.50; t-test p = 1e-7). 

We then examined a GLM predicting cross-sectional memory and executive 

function, which included both diagnosis and factor compositions as well as their 

interactions as predictors (Figs. 5A1 and 5B1; see Methods for model details). This 

analysis revealed that all factors were associated with baseline memory, and these 

associations continued to worsen across the disease spectrum (Fig. 5A1). For cross-

sectional executive function, there was only an association with the cortical factor, and 

this association also worsened across the disease spectrum (Fig. 5B1). 

Next we examined a linear mixed-effects (LME) model predicting longitudinal 

change in memory and executive function (Figs. 5A2 and 5B2). The LME model 

provides significantly improved exploitation of longitudinal measurements (Bernal-

Rusiel et al., 2012) by accounting for both intra-individual measurement correlations and 

inter-individual variability. The model setup was the same as the GLM above, except that 

time and its interactions with diagnosis and factor compositions were included as 

predictors (see Supplemental Methods of SI).  

This analysis revealed that the temporal and subcortical factors exhibited memory 

decline that began in CN and maintained similar memory decline rates in MCI and AD 

(Fig. 5A2). In contrast, the cortical factor was not associated with memory decline in CN, 

but demonstrated faster decline in MCI compared to CN and in AD compared to MCI 
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(Fig. 5A2). The cortical factor was not associated with executive function decline in CN, 

but showed faster longitudinal executive function decline in MCI compared to CN and in 

AD compared to MCI (Fig. 5B2). 

 

 
In our final set of analyses examining cognition, we directly compared the three 

factors. The GLM and LME models were exactly the same as the previous sections, but 

we instead focused on the contrasts between factors. 

For cross-sectional memory, the temporal factor was associated with worse 

performance than the subcortical (p = 3e-6) and cortical (p = 7e-3) factors among AD 

dementia patients (Fig. 6A). Similar results were found for Aβ+ MCI participants (Fig. 

S7A1). Among Aβ+ CN participants, there was no memory difference across the atrophy 

(1) Cross-Sectional (2) Longitudinal
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Fig. 5. Differences by diagnosis and atrophy factor in (1) cross-sectional baseline and (2) 
longitudinal decline rates of (A) memory and (B) executive function. Comparisons remaining 
significant after false discovery rate (FDR; q = 0.05) control are highlighted in blue. “T”, “S” 
and “C” are short for temporal, subcortical and cortical factors, respectively. For example, the 
top left cell of (A1) suggests that Aβ+ MCI participants with high loading on the temporal 
factor had worse baseline memory than Aβ+ CN participants with high loading on the same 
factor (p = 6e-4). On the other hand, the bottom left cell of (B2) suggests that Aβ+ CN 
participants expressing the cortical factor did not exhibit executive function decline (p = 
0.91), while the bottom right cell of (B2) suggests that AD dementia patients expressing the 
cortical factor showed faster executive function decline than Aβ+ MCI participants 
expressing the same factor (p = 7e-4). 
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factors (Fig. S7A1). For cross-sectional executive function, the cortical factor was 

associated with worse performance than the temporal (p = 0.01) and subcortical (p = 1e-5) 

factors among AD dementia patients (Fig. 6B). There was no executive function 

difference across the factors among Aβ+ CN and MCI participants (Fig. S7B1). 

 
For longitudinal change in memory (Fig. 7A), the cortical factor was associated 

with faster longitudinal memory decline than the temporal (p = 1e-4) and subcortical (p = 

4e-6) factors among AD dementia patients. Among Aβ+ MCI participants, the subcortical 

factor was associated with slower decline rate than the cortical (p = 8e-4) and temporal (p 

= 4e-3) factors. Finally, among Aβ+ CN participants, the cortical factor showed slower 

memory decline than the temporal (p = 1e-4) and subcortical (p = 3e-3) factors. 

For longitudinal change in executive function (Fig. 7B), the cortical factor was 

associated with faster executive function decline than temporal (p = 2e-3) and subcortical 

(p = 2e-4) factors among AD dementia patients. Among Aβ+ MCI participants, the 

subcortical factor had slower decline than the cortical (p = 8e-9) and temporal (p = 1e-8) 

−1 −0.5 0 0.5 1

(A) ADNI-Mem at Baseline
Former is worse Latter is worse

Contrast

AD

N = 188
p = 1e-5

S − T 3e-6

C − T 7e-3

C − S 0.03

p

−1 0 1

(B) ADNI-EF at Baseline
Former is worse Latter is worse

Contrast

AD

N = 188
p = 7e-5

S − T 0.09

C − T 0.01

C − S 1e-5

p

Cross-Sectional Analyses by GLM

Fig. 6. Comparisons of baseline (A) memory and (B) executive function in AD dementia patients 
across factors. Comparisons remaining significant after FDR (q = 0.05) control are highlighted in 
blue. “T”, “S” and “C” are short for the temporal, subcortical and cortical factors, respectively. 
Blue dots are estimated differences between “pure atrophy factors”, and red bars show the 
standard errors (see Methods). For example, the top row in (A) suggests that AD dementia 
patients expressing the temporal factor had worse baseline memory than AD dementia patients 
expressing the subcortical factor (p = 3e-6). 
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factors. There was no executive function decline difference across the factors among Aβ+ 

CN participants. 

 

 
All cognitive analyses were repeated using the two- and four-factor LDA atrophy 

factors (Figs. S6 and S8). The results were consistent with the three-factor model 
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Former declines faster Latter declines faster

Contrast

p

Longitudinal Analyses by LME

Fig. 7. Comparisons of (A) memory and (B) executive function decline rates across factors by 
clinical group. Comparisons remaining significant after FDR (q = 0.05) control are highlighted in 
blue. “T”, “S” and “C” are short for the temporal, subcortical and cortical factors, respectively. 
Blue dots are estimated differences between “pure atrophy factors”, and red bars show the 
standard errors (see Supplemental Methods of SI). For example, the second row in (A) suggests 
that AD dementia patients expressing the cortical factor showed faster memory decline than 
patients expressing the temporal factor (p = 1e-4). 
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(Supplemental Results of SI). In addition, associations between mini-mental state 

examination (MMSE) and the three atrophy factors are reported in Fig. S7C. 

 

  

(A) Memory
AD

NI
-M

em

Disease
Stage

Aβ+ CN Aβ+ MCI AD

T < S T < C, S

∆T, ∆S < ∆C ∆C < ∆S, ∆T
AD

NI
-E

F

Disease
Stage

Aβ+ CN Aβ+ MCI AD

C < T, S

∆T, ∆C < ∆S
(B) Executive Function

∆T, ∆C < ∆S

∆C < ∆S, ∆T

Subcortical
Cortical
Temporal

Temporal
Cortical

Subcortical

Fig. 8. Schematics of distinct (A) memory and (B) executive function trajectories for temporal, 
subcortical and cortical atrophy factors. Labels on dotted lines indicate cross-sectional 
differences. For example, “T < C, S” in (A) indicates that the temporal factor was associated 
with the worst baseline memory among AD dementia patients. Labels in the intervals indicate 
differences in longitudinal decline rates. For example, “ΔT, ΔC < ΔS” in (B) indicates that 
among Aβ+ MCI participants, the temporal and cortical factors were associated with faster 
executive function decline than the subcortical factor. The schematics summarize the behavioral 
results of Figures 5, 6 and 7 (see Supplemental Results of SI for more discussion). Within each 
cognitive domain, the atrophy factors were associated with distinct trajectories across the stages. 
The trajectories of the cortical and subcortical factors transpose between the two cognitive 
domains. Divergence in memory trajectories existed even at the asymptomatic stage of the 
disease, i.e., among Aβ+ CN participants.  
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Discussion 

In this study, we identified distinct atrophy factors within AD dementia patients 

using Bayesian LDA modeling of MRI gray matter density maps. This approach 

estimated the factor composition of multiple atrophy factors for each participant rather 

than assuming membership to a single atrophy subtype (Fig. 1). Our analysis yielded a 

nested hierarchy of atrophy factors (Fig. 2), which corresponded to distinct trajectories of 

memory and executive function decline across the disease spectrum (Fig. 8). Overall, 

these results provide evidence that heterogeneity in patterns of atrophy exists in late-onset 

AD and that these atrophy patterns are associated with distinct cognitive trajectories. 

 

Atrophy Patterns in AD Dementia 

Our model revealed a hierarchy of atrophy patterns within AD dementia patients 

(Fig. 2). As the number of estimated atrophy factors was increased from K to K+1, one 

atrophy pattern fractionated into two atrophy patterns, while the remaining patterns 

remained unchanged (Fig. S2). It is noteworthy that the atrophy patterns extracted using 

K = 3 were similar to results from other groups investigating AD subtypes (Whitwell et 

al., 2012, Noh et al., 2014, Byun et al., 2015), although notable differences did emerge.  

Specifically, our three-factor model revealed a “temporal” factor associated with 

atrophy in the temporal cortex, hippocampus and amygdala, a “cortical” pattern 

associated with atrophy in the frontal, parietal, lateral temporal and lateral occipital 

cerebral cortices, and a “subcortical” factor associated with atrophy in the cerebellum, 

striatum and thalamus (Fig. 2B). Our temporal factor was similar to the previously 

described “limbic-predominant” subtype, whereas the cortical factor was similar to the 

“hippocampal-sparing” subtype (Whitwell et al., 2012, Murray et al., 2011). More 

specifically, previous pathologically-defined subtypes were identified based on the ratio 

of NFT burden in hippocampal subregions versus association cortex, resulting in a 

limbic-predominant subtype and a hippocampal-sparing subtype. Follow-up VBM 

analyses (Whitwell et al., 2012) suggested gray matter loss in the temporoparietal cortex, 

frontal cortex, insula and precuneus in the hippocampal-sparing subtype, consistent with 

our cortical atrophy factor. On the other hand, Whitwell and colleagues identified 
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predominant atrophy in the medial temporal lobe of the limbic-predominant subtype, 

consistent with our temporal atrophy factor. 

 A benefit of our approach is that the nested hierarchy of atrophy patterns was not 

mandated by our model but completely data-driven. Thus, although not mandated, our 

results revealed a nested hierarchy in contrast with previous approaches where hierarchy 

was imposed (e.g., Noh et al., 2014). Specifically, Noh and colleagues identified three 

subtypes: a “medial temporal” subtype, a “parietal frontal-dominant” subtype, and a 

“diffuse” subtype. Our temporal atrophy factor might correspond to their medial temporal 

subtype, whereas our cortical factor might correspond to their parietal frontal-dominant 

subtype, although direct comparison was difficult since their analyses were restricted to 

the cerebral cortex.  

Our model suggests that atrophy patterns in AD patients follow a nested hierarchy 

structure. Given the nested hierarchy of cognitive functions revealed by a recent large-

scale meta-analysis of ten thousand brain imaging experiments (Yeo et al., 2015) as well 

as brain network analyses (Zhou et al., 2006, Bassett et al., 2008, Meunier et al., 2009, 

Yeo et al., 2011), one might speculate that the nested hierarchy of atrophy factors arises 

from a natural hierarchy of brain functions and networks.  

 

Atrophy Factors Reflect Subtypes Rather Than Disease Stages 

A potential pitfall of AD subtype analyses (Ritchie & Touchon, 1992) is that the 

observed heterogeneity might correspond to different disease stages (stage hypothesis), 

rather than heterogeneity in disease expression (subtype hypothesis). There are various 

reasons why the atrophy factors discussed in this manuscript likely correspond to 

subtypes rather than disease stages. First, there was not a single factor associated with the 

worst memory and executive function. Instead, decline trajectories of the temporal and 

cortical factors varied in their associations with the two cognitive domains (Fig. 8). 

Furthermore, analysis of follow-up MRI scans revealed that factor compositions were 

stable over time (Fig. 3), suggesting that individuals were not progressing from one factor 

to another, e.g., from temporal factor to cortical factor as predicted under the Braak 

staging scheme (Braak & Braak, 1991). 
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Factor-Dependent Characteristics 

 There were significant differences across the atrophy factors in baseline age (p = 

8e-7) and age at AD onset (p = 1e-5). Baseline age is dependent on study design, so 

drawing meaningful comparisons with the literature is difficult. Nevertheless, the cortical 

factor was associated with younger age at AD onset, consistent with previous studies 

describing subtypes with predominant cortical atrophy (Murray et al., 2011, Noh et al., 

2014, Ossenkoppele et al., 2015). Importantly, years from AD onset to baseline did not 

differ across the three latent factors (p = 0.29; Table S2), providing further evidence that 

these factors were not simply disease stages. The subcortical factor was associated with a 

higher prevalence of the APOE ε2 allele (p = 0.03; not significant when corrected for 

multiple comparisons). The protective effects of the ε2 allele (Corder et al., 1994) might 

potentially contribute to the observation that the subcortical factor was associated with 

the mildest decline in both memory and executive function across all stages (Fig. 8). 

Importantly, a lack of association between each factor and amyloid status suggests 

that atrophy factors do not merely reflect patterns associated with non-AD dementia 

patients that may have been “misdiagnosed” as AD dementia within the ADNI dataset 

(Lowe et al., 2013). However, even though repeating our factor estimation with Aβ+ AD 

dementia patients revealed consistent atrophy patterns with the model utilizing all AD 

patients, we are not able to determine whether atrophy patterns are a result of Aβ 

pathology or precede Aβ pathology. For instance, these atrophy patterns may emerge 

through processes not directly linked to Aβ pathology, but instead converge with AD 

pathology to influence disease progression. It is possible that factors such as co-morbid 

TDP-43 pathology, genetics, as well as development differences contribute to this 

heterogeneity. Along these lines, recent work suggests that different pathologies have 

distinct impacts on cognitive trajectories (Wilson et al., 2016). Interestingly, TDP-43 was 

shown to have a very early impact on cognitive trajectories compared to other 

pathologies such as hippocampal sclerosis and Lewy bodies. Given that TDP-43 is 

known to impact the medial temporal lobe (Josephs et al., 2014), it is possible that the 

temporal atrophy factor is influenced by the involvement of this pathology (since the 

temporal factor shows an early impact on memory among Aβ+ CN in our study).  
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A fundamental question that remains is why the expression of these atrophy 

patterns varies across individuals, especially since the spatial distribution of Aβ tends to 

be very diffuse throughout cortex. A similar dissociation is observed among AD patients 

with atypical clinical presentations, such that although the spatial pattern of Aβ is diffuse, 

the underlying pattern of NFTs and gray matter atrophy aligns with clinical symptoms 

(Ossenkoppele et al., 2016). Future work should investigate the time course of these 

atrophy patterns using longitudinal MRI as well as longitudinal assessment of Aβ and 

also investigate the prevalence of atrophy patterns among Aβ- participants to understand 

whether these patterns are specific for AD or merely converge with AD processes to 

influence disease progression.   

 

Distinct Memory and Executive Function Decline Trajectories 

The behavioral results (Figs. 5, 6 and 7) are summarized in Fig. 8. Overall, we 

found that the associations between atrophy factors and cognition varied by domain, as 

well as time course in the disease. Specifically, the temporal factor showed the greatest 

association with memory, a relationship that emerged early among Aβ+ CN participants 

and remained consistent in later disease stages. Conversely, the cortical factor was 

associated with both memory and executive function, but exerted greater impact later in 

the disease among Aβ+ MCI participants and AD patients.  

Overall, the trajectories (Fig. 8) revealed several salient points. First, memory 

decline in the context of late-onset AD occurred earlier than decline in executive function, 

which is in line with previous studies (Grober et al., 2008). Second, divergence of 

memory trajectories among atrophy factors appeared as early as the asymptomatic (CN) 

stage of the disease, whereas divergence of executive function trajectories was not 

detectable until the MCI stage (Fig. 8). Specifically, the temporal and subcortical factors 

showed faster memory decline than the cortical factor among Aβ+ CN participants, and 

by MCI, the temporal factor was already associated with worse memory at baseline than 

the subcortical factor. In contrast, there was no difference in executive function decline 

rates among Aβ+ CN participants or cross-sectional differences among Aβ+ MCI 

participants. Interestingly, AD dementia patients expressing the cortical factor exhibited 

the fastest decline rates in both executive function and memory. Finally, the subcortical 
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factor (blue curves in Fig. 8) was the mildest factor in terms of both memory and 

executive function deterioration. In both Aβ+ MCI and AD dementia participants, the 

subcortical factor was associated with the best memory and executive function scores, as 

well as the slowest decline rates.  

 

Correspondence and Extensions of AD Heterogeneity Literature  

Our results were consistent with the preponderance of literature on heterogeneity 

among AD dementia patients. For example, our atrophy factors show overlap with the 

pathologically-defined hippocampal-sparing and limbic-predominant subtypes (Whitwell 

et al., 2012), as well as the subtypes described by Noh et al. (2014). Our analyses 

suggested that the cortical factor was associated with faster decline in both memory and 

executive function than the temporal factor at the dementia stage, which is consistent 

with the hippocampal-sparing subtype exhibiting faster MMSE decline than the limbic-

predominant subtype among AD dementia patients (Murray et al., 2011). Similarly, our 

finding that the cortical factor was associated with the most rapid memory and executive 

function decline among AD dementia patients was also consistent with Byun et al. (2015). 

Among AD dementia patients, the cortical factor was associated with the worst baseline 

executive function, while the temporal factor was associated with the worst baseline 

memory. This is consistent with previous work showing that thinning of frontoparietal 

cortical regions was associated with nonamnestic presentations and dysexecutive 

phenotypes (Dickerson & Wolk,	2011) and that the “cortical atrophy-only” subtype had 

worse baseline executive function than the “hippocampal atrophy-only” subtype (Byun et 

al., 2015). Thus, our data-driven approach provides further evidence that distinct atrophy 

patterns among AD patients impact different cognitive domains. 

 In addition to characterizing heterogeneity among AD dementia patients, we 

extended our approach to participants that were presumably in very early stages of AD 

development (i.e., Aβ+ but without the clinical symptoms of dementia; Sperling et al., 

2011, Albert et al., 2011). By examining earlier stages, we found that the temporal factor 

showed the greatest association with memory decline among Aβ+ CN participants, but 

that the cortical factor was a stronger predictor of memory decline among AD dementia 

patients (Fig. S7A2). Likewise, although the cortical factor was not associated with either 
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cognitive domain among Aβ+ CN participants, this factor was associated with executive 

function decline in Aβ+ MCI participants and AD patients (Figs. 7B and 8). The impact 

of these atrophy factors at different points along the clinical spectrum has important 

implications for measuring decline and understanding the progression of AD. 

Furthermore, consideration of this heterogeneity may improve the ability to identify 

individuals most at-risk for cognitive decline as compared to approaches that measure 

atrophy using the same regional metric across all participants. 

 

Mixed Membership Modeling and Precision Medicine 

One key advantage of our modeling strategy is that individuals can express 

multiple latent atrophy factors (i.e., mixed membership) rather than being assigned to a 

single subtype. Therefore, patients classified by Murray et al. (2011) as hippocampal-

sparing (or limbic-predominant) might correspond to the few patients in our study that 

predominantly expressed the cortical (or temporal) atrophy factor. Murray et al. (2011) 

defined a third group of patients that were considered “typical” by virtue of being neither 

hippocampal-sparing nor limbic-predominant. These typical patients might correspond to 

the majority of AD dementia patients in our study that expressed multiple latent factors to 

similar degrees. 

The use of mixed membership modeling has implications for estimation of factor-

dependent atrophy maps and cognitive decline. For example, consider a hypothetical 

patient who expressed 50% subcortical, 40% temporal and 10% cortical factors. In our 

analyses, 50%, 40% and 10% of the patient’s atrophy map would contribute to the 

estimation of the probabilistic atrophy maps of the subcortical, temporal and cortical 

factors, respectively. This extends previous approaches (Whitwell et al., 2012, Noh et al., 

2014, Byun et al., 2015) that classified each patient into one single subtype and then 

performed group comparisons to obtain differential atrophy patterns, despite the fact that 

each patient might express multiple latent atrophy factors. Thus, more information about 

each participant is retained by treating factor compositions continuously rather than 

assigning participants to a single group. 

Similarly, 50%, 40% and 10% of the hypothetical patient’s cognitive decline rate 

would contribute to our estimation of the memory decline rates associated with the 
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subcortical, temporal and cortical factors, respectively. Indeed, when such a patient was 

simply assigned to a single factor based on the highest probability (i.e., assigned to a pure 

subtype), the estimated differences in cognitive decline rates across subtypes were found 

to be substantially weaker. The reason should be clear when considering the hypothetical 

patient. Since the patient expressed 50% subcortical, 40% temporal and 10% cortical 

factors, one would expect the memory decline rate to be faster than a pure subcortical 

subtype (and slower than a pure temporal factor). By assigning this patient to be a pure 

subcortical subtype, one would overestimate the decline rate of the subcortical subtype.  

Although we observe some participants with extreme probabilities of a single 

atrophy factor, these participants are infrequent. Instead, the majority of the participants 

expressed intermediate probabilities across multiple latent atrophy factors. We can 

potentially utilize the factor decomposition to predict the memory and executive function 

decline trajectories of individual participants. For example, we might predict the 

hypothetical patient who expressed 50% subcortical, 40% temporal and 10% cortical 

factors to have decline trajectories corresponding to 50% times the blue curve plus 40% 

times the green curve plus 10% times the red curve from Fig. 8. Therefore, the factor 

composition can be thought of as an individualized subtype diagnosis of the participant, 

representing a small but crucial step towards precision medicine.  

 

Limitations 

Our study has multiple limitations. First, direct comparisons with other subtype 

studies were difficult because of methodological differences, including the utilization of 

mixed membership modeling and participant selection. Another limitation is the arbitrary 

choice of the number of latent atrophy factors to estimate using LDA. Given consistency 

with previous studies and a limited sample size, we focused on K = 2 to 4 factors, but 

atrophy factors beyond K = 4 may be biologically relevant. 

 

Conclusion 

By utilizing a novel Bayesian modeling framework, our study revealed three 

latent AD atrophy factors with distinct memory and executive function trajectories. 

Across the clinical spectrum, the cortical atrophy factor was associated with the worst 
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executive function performance, while the temporal atrophy factor was associated with 

worst memory performance. The subcortical atrophy factor has not been discussed in the 

literature and was associated with the slowest memory and executive function decline. 

Our approach allowed each individual to express multiple atrophy factors to various 

degrees rather than assigning the individual to a single subtype. Therefore, each 

participant exhibited his or her own unique factor composition, which can potentially be 

exploited to predict individual-specific cognitive decline trajectories, with potential 

implications for prevention and monitoring disease progression. Finally, our 

methodological framework is general and can be utilized to discover subtypes in other 

brain disorders. Code from this manuscript is publicly available at link_to_be_added.  
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Materials and Methods 

Overview. Voxelwise atrophy of 188 AD dementia patients was derived from their 

structural MRI data (Ashburner & Friston, 2000, Douaud et al., 2007). Subsequent 

analyses proceeded in three steps. In Step I, a Bayesian model (Fig. 1; Blei et al., 2003) 

was applied to estimate the probabilistic atrophy maps of latent factors Pr(Voxel | Factor) 

and the factor composition of each patient Pr(Factor | Patient). The probabilistic atrophy 

maps were then used to infer the factor compositions of 43 Aβ+ CN participants and 147 

Aβ+ MCI participants. In Step II, stability of the factor decomposition over a period of 

two years was analyzed. In addition, characteristics (demographics, age at AD onset, 

years from AD onset to baseline, amyloid burden and APOE genotype) of all participants 

were compared across the factors. Finally, in Step III, we analyzed the atrophy factors’ 

relationships with cross-sectional baseline and longitudinal decline of memory and 

executive function. Each step is described in detail below. 

 

Data. Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (http://adni.loni.usc.edu), launched in 2003 as a public-private 

partnership and led by Principal Investigator Michael W. Weiner, MD. The primary goal 

of ADNI has been to test whether serial MRI, positron emission tomography, other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of MCI and early AD (for up-to-date information, see 

http://www.adni-info.org/). Institutional review boards approved study procedures across 

participating institutions (see SI for the complete list of the institutions). Written 

informed consent was obtained from all participants. 

This study considered the structural MRI (T1-weighted, 1.5 Tesla) of 810 

participants enrolled in ADNI 1, comprising 188 AD dementia (at baseline, same 

hereinafter) patients, 394 MCI participants and 228 CN participants. Of the 188 AD 

dementia patients, 100 had their CSF amyloid data available, and 91 of the 100 were Aβ+. 

AD onset was on average 3.6 years (std = 2.5, min = 0, max = 13) before baseline. Of the 

394 MCI participants, 197 had their CSF amyloid data available, and 147 of the 197 were 

Aβ+. Of the 228 CN participants, 114 had their CSF amyloid data available, and 43 of the 
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114 were Aβ+. The Aβ+ CN elderly participants and the Aβ+ MCI participants are 

referred to as the Aβ+ nondemented group (N = 190) in this study. 

According to the ADNI protocol, AD dementia patients had their cognition 

examined at baseline, in months 6, 12 and 24. In addition, normal participants were 

examined in month 36 and annually afterwards. MCI participants underwent another 

extra exam in month 18. Although this study only considered participants enrolled in 

ADNI 1, to increase statistical power, their neuropsychological scores (ADNI-Mem, 

ADNI-EF and MMSE) from ADNI GO and ADNI 2 were also included in the 

longitudinal analyses of cognitive decline. 

 

Voxel-Based Morphometry. Structural MRI data of all 810 participants were analyzed 

with FSL-VBM (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; Douaud et al., 2007), a 

VBM protocol (Good et al., 2001) carried out with FSL tools (Smith et al., 2004). First, 

structural images were brain-extracted and gray matter (GM) segmented before being 

registered to the MNI152 standard space using affine registration. Second, the affine-

registered images were flipped about the x-axis and averaged to create a left-right 

symmetric, study-specific affine GM template. Third, the GM images were nonlinearly 

registered to the affine GM template and were again flipped and averaged to create a final 

left-right symmetric, study-specific nonlinear GM template in MNI152 space. Fourth, all 

native GM images were nonlinearly registered to this final template and modulated to 

account for local expansion (or contraction) due to the nonlinear component of the spatial 

transformation. The resulting GM density images were smoothed with a Gaussian kernel 

of 10mm full width at half maximum (FWHM), consistent with standard VBM practices 

(e.g., Dole et al., 2013, Pardoe et al., 2008). Finally, we applied log10 to the smoothed 

GM density images and regressed out possible effects of age, sex and intracranial volume 

(ICV) with a general linear model (GLM) estimated from just the 228 CN participants.  

 

Quality Control for Voxel-Based Morphometry. The outputs of each VBM step were 

visually checked by authors XZ and NS. Details are found in Supplemental Methods of 

SI. 
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Bayesian Model. We sought a mathematical model that captured the premise that each 

AD patient expresses one or more latent atrophy factors, each of which is associated with 

distinct, but possibly overlapping atrophy patterns (Fig. 1). Among many possible models, 

the latent Dirichlet allocation (LDA) model (Blei et al., 2003) is probably the simplest 

and was applied to the ADNI data. 

The LDA model was originally developed to automatically discover latent topics 

in a collection of text documents. The model assumes that each document is an unordered 

collection of words associated with a subset of K latent topics. Each topic is represented 

by a probability distribution over a dictionary of words. Given a collection of documents, 

there exist algorithms (Blei et al., 2003) to estimate the probability of a dictionary word 

given a topic Pr(Word | Topic) and the probability that a topic is associated with a 

particular document Pr(Topic | Document). The LDA model is useful because it allows a 

document to be associated with multiple topics (which can be shared across documents) 

and each topic to be associated with multiple words (which can be shared across topics). 

To map the LDA model to the ADNI data, one can think of AD patients as text 

documents, atrophy factors as topics, and MNI152 voxels as dictionary words. 

Correspondingly, each patient expresses one or more latent atrophy factors to different 

extents (Pr(Factor | Patient)), and each factor is associated with atrophy at multiple voxels 

to different extents (Pr(Voxel | Factor)).  

LDA assumes that a document is summarized by the number of times a dictionary 

word appears in the document. Since dictionary words correspond to MNI voxels, the 

continuous log-transformed GM density images (previous section) were discretized so 

that greater atrophy corresponded to larger word counts. More specifically, for each voxel 

of the log-transformed GM density images, z-transformation (with respect to the 228 CN 

participants) was performed for each of the 810 participants. Therefore, a z-score of less 

than 0 at a given voxel of a particular individual would imply above-average atrophy at 

the voxel relative to the CN participants. Z-scores above zero were set to 0, equivalent to 

regarding the voxels as atrophy-free. Finally, the z-scores were multiplied by -10 and 

rounded to the nearest integer, so that larger positive values (greater word count) 

indicated more severe atrophy. 
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The LDA model assumes that the ordering of words within a document is 

exchangeable. In the context of our application, the corresponding assumption is that the 

ordering of atrophied voxels is exchangeable. Although word order in real documents is 

important, the ordering of atrophied regions (e.g., prefrontal vs. parietal) reported in an 

experiment is arbitrary and thus consistent with the assumption. Consequently, the LDA 

model appears particularly well suited for applications in the present context. 

Given the discretized voxelwise atrophy of the 188 AD dementia patients and the 

number of latent atrophy factors K, the variational expectation-maximization (VEM) 

algorithm (http://www.cs.princeton.edu/~blei/lda-c/; Blei et al., 2003) was applied to 

estimate Pr(Factor | Patient) and Pr(Voxel | Factor). For each K, the algorithm was rerun 

with forty different random initializations, and the solution with the highest likelihood 

(bound) was selected. The random initializations led to highly similar solutions, 

suggesting that forty random initializations were sufficient for robust factor estimations. 

 The probabilistic atrophy maps Pr(Voxel | Factor) estimated from the AD 

dementia patients were used to infer factor compositions Pr(Factor | Participant) of the 

190 Aβ+ nondemented participants using the standard VEM algorithm (Blei et al., 2003). 

 

Interpreting Pr(Voxel | Factor) and Pr(Factor | Patient). For a given latent factor, 

Pr(Voxel | Factor) is a probability distribution over all the GM voxels, which can be 

visualized as a probabilistic atrophy map overlaid on the FSL MNI152 template (each 

row of Fig. 2).  

Pr(Factor | Patient) is a probability distribution over latent atrophy factors, 

representing the factor composition of the patient, and can be visualized as a dot inside a 

“factor triangle” (for K = 3 factors) whose barycentric coordinates equal Pr(Factor | 

Patient) as shown in Figs. 4 and S5A. For example, Pr(Factor | Patient) = [0.7, 0.2, 0.1] 

implies that the patient expresses a pattern of brain atrophy due to 70% temporal, 20% 

subcortical and 10% cortical factors and that the dot representing this patient falls closer 

to the “temporal corner” of the factor triangle. This contrasts with work in the literature 

that assigns each individual to a single subtype (e.g., Murray et al., 2011, Noh et al., 2014, 

Byun et al., 2015). 
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Quantifying the Nested Hierarchy of Atrophy Factors. An important model parameter 

is the number of latent factors K. Therefore, we determined how factor estimation 

changed from K = 2 to 10 factors. See Supplemental Methods of SI for the detailed 

description. 

 

Top Anatomical Structures Associated with Each Factor. This manuscript focuses on 

three atrophy factors. To automatically identify the gray matter anatomical structures 

most associated with each atrophy factor, the MNI152 template was first processed using 

FreeSurfer 4.5.0 (Fischl, 2012). The FreeSurfer software automatically segmented the 

MNI152 template into multiple cortical (Fischl et al., 2004, Desikan et al., 2006) and 

subcortical (Fischl et al., 2002, Fischl et al., 2004) structures, such as the inferior parietal 

cortex and hippocampus. For each anatomical structure, we averaged Pr(Voxel | Factor) 

over all its voxels. The structure was assigned to the factor with the largest average 

probability. For each factor, we tabulated the assigned brain structures and ranked them 

in the descending order of average probability. The results are in Table S1. 

 

Cross-Pipeline Validation of Atrophy Patterns. To ensure the atrophy factors were 

robust to choice of VBM software (FSL), we performed posthoc analyses using 

FreeSurfer. Details are found in Supplemental Results and Supplemental Methods of 

SI. 

 

Atrophy Factor Stability. To examine the atrophy factor stability during disease 

progression, we considered all 810 participants who had their two-year follow-up scans 

available (N = 560). First, their baseline factor compositions Pr(Factor | Participant) were 

extracted using their baseline MRI data. Next, VBM was performed on the follow-up 

structural MRI data using the VBM template previously created with all 810 participants. 

Subsequent processing (e.g., z-normalization) adopted parameters used in processing the 

810 baseline scans. Factor compositions were then inferred with the processed VBM 

results (same procedure as inferring factor compositions of Aβ+ CN and MCI 

participants). The factor stability was visualized with a scatter plot for each factor (Figs. 3 

and S4). Each participant is represented by a dot whose x-coordinate is the factor 
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composition at baseline and y-coordinate is the factor composition after two years. 

Therefore, if the factor estimation is stable over disease progression, one would expect a 

close-to-one correlation coefficient and a y = x linear fit. 

 

Comparing Patient Characteristics by Atrophy Factor. We explored how patient 

characteristics (baseline age, age at AD onset, years from onset to baseline, education, 

sex, amyloid and APOE genotype) varied across the three latent factors (Table S2) using 

GLM (and logistic regression for binary variables). 

GLM was applied to baseline age, age at AD onset, years from onset to baseline, 

education, amyloid and APOE: the characteristic of interest served as response y, and the 

subcortical factor probability s and cortical factor probability c were included as 

explanatory variables. Hence, the GLM was y = β0 + βs·s + βc·c + ɛ, where β’s are the 

regression coefficients, and ɛ is the residual. The temporal factor probability t was 

implicitly modeled because t + s + c = 1. Intuitively, β0 reflected the response of the 

temporal factor, βs reflected the response difference between the subcortical and temporal 

factors, and βc reflected the difference between the cortical and temporal factors.  

Statistical tests of whether the characteristic y varied across factors involved null 

hypotheses of the form Hβ = 0, where β = [β0, βs, βc]T, and H is the linear contrast (Koch, 

1999). We first performed a statistical test of overall differences across all factors with H 

= [0, 1, 0; 0, 0, 1]. We then tested for differences between the factors. For example, H = 

[0, 1, -1] tested possible differences between the subcortical and cortical factors. H = [0, 

1, 0] compared the subcortical and temporal factors. Similarly, H = [0, 0, 1] compared the 

cortical and temporal factors. 

Since sex is a binary variable, logistic regression was applied. In this case, 

response y was sex (0 for male, 1 for female), and explanatory variables consisted of the 

subcortical factor probability s and cortical factor probability c. Therefore, the regression 

model was log(µ/(1-µ)) = β0 + βs·s + βc·c + ɛ, where µ is the probability of female, β’s 

are the regression coefficients, and ɛ is the residual. Intuitively, the linear combination β0 

+ βs·s + βc·c predicts the probability of female (y = 1). exp(β0) reflects the odds ratio for 

the temporal factor; exp(βs) reflects the ratio of odds ratio between the subcortical and 
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temporal factors; exp(βc) reflects the ratio of odds ratio between the cortical and temporal 

factors. 

Likelihood ratio test was utilized to determine whether sex varied across the latent 

atrophy factors. In short, the test involved comparing the likelihood of an appropriately 

restricted model to the original model (Koch, 1999). We first performed a statistical test 

of overall differences across factors. In this case, the restricted model log(µ/(1-µ)) = β0 + 

ɛ was fitted to the data, and the resulting likelihood was compared with the likelihood of 

the original model y = β0 + βs·s + βc·c + ɛ. We then tested for possible differences 

between atrophy factors. For example, to compare the subcortical and cortical factors, the 

restricted model was log(µ/(1-µ)) = β0 + βs·(s+c) + ɛ because βs = βc under the null 

hypothesis. To compare the subcortical and temporal factors, the restricted model became 

log(µ/(1-µ)) = β0 + βc·c + ɛ because βs = 0 under the null hypothesis. To compare the 

cortical and temporal factors, the restricted model was log(µ/(1-µ)) = β0 + βs·s + ɛ 

because βc = 0 under the null hypothesis.  

 

General Linear Modeling of Cross-sectional Cognition Among Aβ+ CN, Aβ+ MCI 

and AD Dementia Participants. A single GLM was utilized to examine cross-sectional 

differences in memory (ADNI-Mem; Crane et al., 2012) across the atrophy factors in the 

43 Aβ+ CN, 147 Aβ+ MCI, and 188 AD dementia participants. The same model was 

estimated for K = 2, 3 and 4 factors, as well as for executive function (ADNI-EF; 

Gibbons et al., 2012) and MMSE.  

For ease of explanation, we will focus on explaining the GLM for the case of 

three atrophy factors and ADNI-Mem. Response y of the GLM consisted of the 378 (= 43 

CN + 147 MCI + 188 AD) participants’ baseline ADNI-Mem. Explanatory variables 

consisted of binary MCI group indicator m, binary AD dementia group indicator d, 

subcortical factor probability s, cortical factor probability c, and interactions between 

group indicators and factor probabilities (i.e., m·s, m·c, d·s and d·c), while nuisance 

variables consisted of baseline age x1, sex x2, education x3 and total atrophy x4 (defined as 

ICV divided by total GM volume as estimated by FSL). 

Therefore, the GLM was y = β0 + βm·m + βd·d + βs·s + βc·c + βms·m·s + βmc·m·c 

+ βds·d·s + βdc·d·c + β1·x1 + β2·x2 + β3·x3 + β4·x4 + ɛ, where β’s are the regression 
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coefficients, and ɛ is the residual. Temporal factor probability t was implicitly modeled 

because t + s + c = 1. This was also the case for CN group indicator n because only one of 

n, m and d is 1 with the other two being 0. Intuitively, β0 reflected the temporal factor’s 

contribution to ADNI-Mem at the CN baseline (because m = d = s = c = 0), β0 + βm 

reflected the temporal factor’s contribution to ADNI-Mem at the MCI baseline (because 

m = 1, and d = s = c = 0), and β0 + βm + βs + βms reflected the subcortical factor’s 

contribution to ADNI-Mem at the MCI baseline (because m = 1, s = 1, and d = c = 0). 

With this model setup, variations in age, sex, education and total atrophy were controlled 

for across participants. 

Statistical tests involved null hypotheses of the form Hβ = 0, where β = [β0, βm, βd, 

βs, βc, βms, βmc, βds, βdc, β1, β2, β3, β4]T, and H is the linear contrast (Koch, 1999). First, we 

tested whether ADNI-Mem deteriorated across disease stages (i.e., from CN to MCI to 

AD) for each factor. Specifically, for each factor, we tested possible differences in 

ADNI-Mem between the CN and MCI baselines, MCI and AD baselines, and CN and 

AD baselines. For example, to test whether ADNI-Mem deteriorated significantly from 

the CN to MCI baseline for the temporal factor, H was specified such that Hβ = βm = 0. 

As another example, Hβ = βd + βdc – βm – βmc = 0 tested whether ADNI-Mem degraded 

greatly from the MCI to AD baseline for the cortical factor. The test results for both 

memory and executive function are tabulated in Figs. 5A1 and 5B1. 

To foreshadow the results, the hypothesis tests in the previous paragraph hinted at 

differences in cross-sectional ADNI-Mem across the factors. Therefore, statistical tests of 

whether cross-sectional ADNI-Mem y varied across factors at each disease stage were 

performed. For each stage baseline, we first performed a statistical test of overall 

differences across all factors and then tested for pairwise differences. Take the AD 

baseline as an example. To test whether baseline memory differed across all factors 

among AD dementia patients, H was specified such that Hβ = 0 translated to βs + βds = βc 

+ βdc = 0. For pairwise comparisons, βs + βds = 0 tested possible differences between the 

temporal and subcortical factors at the AD baseline, βc + βdc = 0 compared the temporal 

and cortical factors at the AD baseline, and βs + βds = βc + βdc tested possible differences 

between the subcortical and cortical factors at the AD baseline. 
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The results of the above statistical tests are shown in Figs. 5A1, 5B1, 6, S6A1, 

S6B1, S7A1, S7B1, S7C1, S8A1 and S8B1, where (except in Figs. 5A1 and 5B1) the 

blue dot corresponds to the estimated difference in baseline scores between two “pure 

factors” after controlling for age, sex, education and total atrophy. For example, when 

comparing subcortical and cortical factors at the MCI baseline, the estimated difference 

in baseline cognition is given by βs + βms – βc – βmc. The red bar corresponds to the 

standard error of this estimation given by std(βs + βms – βc – βmc). 

 

Linear Mixed-Effects Modeling of Longitudinal Cognitive Decline Among Aβ+ CN, 

Aβ+ MCI and AD Dementia Participants. To analyze variations in cognitive decline 

rates across atrophy factors, we utilized the linear mixed-effects (LME) model, whose 

setup was similar to the GLM setup (previous section). Details are found in 

Supplemental Methods of SI. Results of the LME statistical tests are illustrated in Figs. 

5A2, 5B2, 7, S6A2, S6B2, S7A2, S7B2, S7C2, S8A2 and S8B2. 

 

False Discovery Rate Correction for Behavioral Tests. Because of the many statistical 

tests performed in the behavioral analyses, multiple testing was corrected using false 

discovery rate (FDR; Benjamini & Hochberg, 1995) at q = 0.05 for all behavioral 

comparisons. In detail, included tests are diagnostic group comparisons in memory and 

executive function regardless of factors as well as all comparisons of baseline and 

longitudinal decline rates of memory, executive function and MMSE at all disease stages 

for K = 2, 3 and 4 factors. In total, we corrected for 240 statistical tests. P values that 

remained significant after FDR control were highlighted in blue in Figs. 5, 6, 7, S6, S7 

and S8. 
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Bayesian model reveals latent atrophy factors with dissociable cognitive 

trajectories in Alzheimer’s disease 
 

Supporting Information 
 

This supplemental material is divided into Supplemental Results, Supplemental 

Methods, Supplemental Figures and Tables, and Complete List of ADNI 

Investigators and Participating Institutions. 

 

Supplemental Results 

Similar Atrophy Factors Were Obtained from Aβ+ MCI Participants 

We confirmed that atrophy patterns estimated with our LDA approach would be 

similar during the nondemented stage compared to the resulting factors from the AD 

dementia group. Given the small number of the Aβ+ CN participants, we estimated 

atrophy factors with the 147 Aβ+ MCI participants (Fig. S3C) and confirmed that the 

obtained atrophy factors were highly similar, with an average correlation across all 

pairwise comparisons of r = 0.77. Therefore, the atrophy factors from the AD dementia 

patients were utilized for subsequent analyses.  

 

Atrophy Factors Were Robust to Choice of Software  

 Table S1 lists the anatomical structures associated with each factor based on 

overlap between the atrophy maps and anatomical structures in MNI152 space as defined 

by FreeSurfer [1] (see Supplemental Methods). The volumes of individual anatomical 

structures in all AD dementia patients were computed using FreeSurfer. Regression 

analyses confirmed that volumes of anatomical structures associated with an atrophy 

factor were lower (after controlling for intracranial volume) in participants with higher 

loading on the factor (see Supplemental Methods). For example, the temporal factor 

was associated with the most severe atrophy in the structures listed by Table S1A 

compared with the subcortical factor (p = 2e-15) and cortical factor (p = 4e-15), whereas 

there were no differences between the subcortical and cortical factors (p = 0.84). Results 

for the subcortical and cortical factors are in the captions of Tables S1B and S1C. The 
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agreement between FSL-VBM [2] and this posthoc analysis with FreeSurfer suggested 

that the factors were unlikely the results of segmentation or registration artifacts. 

 

Baseline and Longitudinal Decline of Memory and Executive Function Were 

Consistent Across Factor Hierarchy 

The behavioral (memory and executive function) analyses were repeated for two 

and four atrophy factors (Figs. S6 and S8). The results were consistent with the hierarchy 

of atrophy factors.  

 For example, the temporal and subcortical factors in the three-factor model were 

merged as a single temporal+subcortical factor in the two-factor model. Since the cortical 

factor was associated with the fastest longitudinal memory decline among the three 

factors in the AD dementia cohort (Fig. 7A), we expected the cortical factor to be 

associated with faster memory decline than the temporal+subcortical factor in the two-

factor model, which was indeed the case (p = 2e-6; Fig. S6A2).  

 On the other hand, the three-factor analysis of AD dementia patients suggested 

that the temporal factor was associated with worse memory than the cortical factor, while 

the cortical factor was associated with slightly worse memory than the subcortical factor 

(Fig. 6A). Therefore, we expected difference in baseline memory between the 

temporal+subcortical and cortical factors (in the two-factor model) to be diluted by the 

fusion of the temporal and subcortical factors, which was indeed the case (p = 0.17; Fig. 

S6A1). Therefore, additional insights into factor differences could be obtained by going 

from two factors to three factors. 

 As the number of factors was increased from three to four, the cortical factor split 

into frontal and posterior cortical factors. There was again consistency when comparing 

the four-factor results with the three-factor results. The two factors were mostly 

associated with similar behavioral trajectories, except that among Aβ+ MCI participants, 

the posterior cortical factor was associated with faster memory (p = 8e-3) and executive 

function (p = 9e-8) decline rates than the frontal cortical factor (Fig. S8).  

As the number of factors increased, the effective (average) number of participants 

per factor decreased (e.g., the effective number of Aβ+ CN participants “assigned to the 

temporal factor” is only 5.7 for the four-factor model), thus reducing our confidence in 
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larger number of factors despite the successful behavioral dissociation. Therefore, this 

work focused on interpreting the results of the three-factor model. As the ADNI database 

continues to grow, future work might re-visit the question of larger number of atrophy 

factors. 

 

Schematics of Memory and Executive Function Trajectories Based on Statistical 

Test Results 

The behavioral results (Figs. 5, 6 and 7) are summarized by the schematics of 

trajectories in Fig. 8, which were drawn based on how memory (or executive function) of 

each factor declined across disease stages and how the factors compared with each other 

in terms of memory (or executive function) decline at each stage.  

All salient features of the trajectories reflect the results of statistical tests (Figs. 5, 

6 and 7). For example, the executive function trajectories of all three atrophy factors were 

almost flat and did not diverge at the CN stage (Fig. 8B). This was based on the fact that 

there was no change in ADNI-EF [3] performance between Aβ+ CN and MCI 

participants for all three factors (Fig. 5B1), as well as no difference in ADNI-EF decline 

rates between factors among Aβ+ CN participants (Fig. 7B). From the MCI stage 

onwards, the trajectory of the cortical factor (red curve) became increasingly steep, 

reflecting the test results that executive function decline of the cortical factor accelerated 

from CN to MCI to AD (Fig. 5B2). This was also consistent with the ADNI-EF decrease 

between MCI and AD (Fig. 5B1). In contrast, trajectories of the temporal and subcortical 

factors (blue and green curves) remained almost flat from MCI to AD because there was 

no difference in ADNI-EF performance between MCI and AD for the two factors (Fig. 

S5B1). In addition, cross-sectional and longitudinal differences between the factors (Figs. 

6B and 7B) were also respected in Fig. 8B, e.g., the cortical factor was associated with 

the worst baseline ADNI-EF and the most rapid decline among AD dementia patients. 

One salient feature of the memory trajectories was the crossing of the subcortical 

and cortical factors (blue and red curves), supported by the following behavioral tests. 

Among Aβ+ CN participants, both the temporal and subcortical factors exhibited 

significant memory decline rates, but not the cortical factor (Fig. 5A2). The temporal and 

subcortical factors showed faster memory decline than the cortical factor (Fig. 7A). These 
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results implied that the cortical (red) curve should be above the subcortical (blue) and 

temporal (green) curves immediately after CN (Fig. 8A). Among Aβ+ MCI participants, 

the temporal factor was associated with worse memory than the subcortical factor, but not 

the cortical factor (Fig. S7A1). This implies that the cortical (red) curve should be lower 

than the subcortical (blue) curve, closer to the temporal (green) curve. This is also 

consistent with the statistical test showing a significant decrease in memory performance 

between MCI and CN for the cortical and temporal factors, but not for the subcortical 

factor (Fig. 5A1). Together, the results imply that the cortical (red) curve, originally 

higher than the subcortical (blue) curve at the CN stage, later crossed the subcortical 

(blue) curve before the MCI stage. 
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Supplemental Methods 
Quality Control for Voxel-Based Morphometry. The outputs of each VBM step were 

visually checked by authors XZ and NS. In practice, all the VBM steps (except for brain 

extraction) did not require any manual interventions. The brain extraction (FSL BET [4]) 

sometimes resulted in inaccurate brain extraction, e.g., part of the neck was sometimes 

included as part of the brain. For these problematic cases, the parameters were manually 

tuned until the results were satisfactory. The 810 baseline scans and 560 follow-up scans 

(see the second paragraph of II. Examining Factor Robustness and Characteristics of 

Factor Compositions) were processed jointly to avoid bias introduced by processing the 

baseline and follow-up scans separately as two independent sets. Specifically, the 810 

baseline scans and 560 follow-up scans were mixed together and randomly divided into 

two sets, such that each set contained both baseline and follow-up scans. XZ and NS each 

processed one set. To ensure common quality control standards, XZ and NS 

independently processed a small number of the participants, compared their conclusions, 

and eventually reached consensus. 

 

Quantifying the Nested Hierarchy of Atrophy Factors. An important model parameter 

is the number of latent factors K. Therefore, we determined how factor estimation 

changed from K = 2 to 10 factors. An exhaustive search was performed to quantify the 

possibility that two atrophy patterns in the (K+1)-factor model were subdivisions of a 

pattern in the K-factor model (while the remaining K-1 atrophy patterns remained similar 

across both models). This quantification is based on the following idea: suppose an 

atrophy pattern in the K-factor model divides into the i-th and j-th patterns in the (K+1)-

factor model, then the average of the i-th and j-th patterns should be similar to the 

original pattern. To quantify the presence of this phenomenon, the Pr(Voxel | Factor) of 

the i-th and j-th latent factors were averaged into a single Pr(Voxel | Factor). The 

resulting K factors of the (K+1)-factor model were matched to the K-factor model by 

reordering the factors (using the Hungarian matching algorithm) to maximize the 

correlation of Pr(Voxel | Factor) between corresponding pairs of factors. After obtaining 

the optimal correspondence, the pairwise correlations were averaged across all pairs of 

factors, resulting in an average correlation value indicating the quality of the split (with 
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higher correlation values indicating a better split). By performing an exhaustive search 

over all pairs of i and j, we found the atrophy factor of the K-factor model whose split 

best approximated the (K+1)-factor model (Fig. S2A). This procedure was independently 

repeated using Pr(Factor | Patient) (Fig. S2B). 

 

Cross-Pipeline Validation of Atrophy Patterns. To ensure the atrophy factors were 

robust to choice of VBM software (FSL [2]), we performed posthoc analyses using 

FreeSurfer. Recall from Top Anatomical Structures Associated with Each Factor, that 

we have assigned each MNI GM anatomical structure to each of the three atrophy factors 

(Table S1). The structural MRI data of the 378 (= 43 CN + 147 MCI + 188 AD) 

participants were preprocessed using FreeSurfer so as to obtain volume estimates of all 

the anatomical structures for each participant. We then verified using GLM that each 

factor had a smaller total volume of its assigned GM anatomical structures than the other 

two factors (while controlling for ICV).  

For example, Table S1A shows the top GM anatomical structures associated with 

the temporal factor. A GLM was set up where the response variable y was the total 

volume of the anatomical structures listed in Table S1A, while the explanatory variables 

included the subcortical factor probability s, cortical factor probability c, and ICV i. 

Hence, the GLM was y = β0 + βs·s + βc·c + βi·i + ɛ, where β’s are the regression 

coefficients, and ɛ is the residual. The temporal factor probability t was implicitly 

modeled because t + s + c = 1. Intuitively, β0 reflected the temporal factor’s total GM 

volume of the structures while discounting ICV, βs reflected the response difference 

between the subcortical and temporal factors, and βc reflected the response difference 

between the cortical and temporal factors.  

Statistical tests of whether total GM volume y varied across factors involved null 

hypotheses of the form Hβ = 0, where β = [β0, βs, βc, βi]T, and H is the linear contrast [5]. 

By specifying different H’s, we were able to compare different pairs of factors. For 

example, H = [0, 1, 0, 0] tested possible differences between the subcortical and temporal 

factors, and H = [0, -1, 1, 0] compared the cortical and subcortical factors.  
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The GLM and statistical tests were repeated using Table S1B (top GM anatomical 

structures associated with the subcortical factor) and Table S1C (top GM anatomical 

structures associated with the cortical factor). 

 

Linear Mixed-Effects Modeling of Longitudinal Cognition Decline Among Aβ+ CN, 

Aβ+ MCI and AD Dementia Participants. To analyze variations in cognitive decline 

rates across atrophy factors, one could first estimate the decline rate for each participant 

and then model the estimated decline rates using GLM. However, this approach is 

suboptimal because participants with one or even two time points may have to be 

discarded because the decline rate cannot be estimated with confidence (e.g., [6]).  

Here we considered the linear mixed-effects (LME) model that provides 

significantly improved exploitation of longitudinal measurements [7] by accounting for 

both intra-individual measurement correlations and inter-individual variability. Under 

this framework, the longitudinal cognitive decline rates can be easily compared across 

atrophy factors for the 188 AD dementia patients, 147 Aβ+ MCI participants, and 43 Aβ+ 

CN participants.  

A single LME model was utilized to examine longitudinal changes in memory 

(ADNI-Mem [8]) across the atrophy factors in the 43 Aβ+ CN, 147 Aβ+ MCI, and 188 

AD dementia patients. The same model was estimated for K = 2, 3 and 4 factors, as well 

as for executive function (ADNI-EF) and MMSE. 

For ease of explanation, we will focus on explaining the LME model for the case 

of three atrophy factors and ADNI-Mem. Response variable y of the LME model 

consisted of the 378 (= 43 CN + 147 MCI + 188 AD) participants’ longitudinal ADNI-

Mem. Explanatory fixed-effects variables included binary MCI group indicator m, binary 

AD group indicator d, subcortical factor probability s, cortical factor probability c, 

interactions between group indicators and factor probabilities (i.e., m·s, m·c, d·s and d·c), 

time from baseline t, interactions between group indicators and time from baseline (i.e., 

m·t and d·t), interactions between factor probabilities and time from baseline (i.e., s·t and 

c·t), and interactions among group indicators, factor probabilities and time from baseline 

(i.e., m·s·t, m·c·t, d·s·t and d·c·t), while nuisance variables consisted of baseline age x1, 

sex x2, education x3 and total atrophy x4.  
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The resulting LME model was y = (β0 + βm·m + βd·d + βs·s + βc·c + βms·m·s + 

βmc·m·c + βds·d·s + βdc·d·c + β1·x1 + β2·x2 + β3·x3 + β4·x4 + b) + (βt0 + βtm·m + βtd·d + 

βts·s + βtc·c + βtms·m·s + βtmc·m·c + βtds·d·s + βtdc·d·c)·t + ɛ, where β’s are the regression 

coefficients, b is the random intercept, and ɛ is the residual. For the same reasons 

provided in the previous section, the temporal factor probability and binary CN group 

indicator were implicitly modeled. Intuitively, βt0 reflected the temporal factor’s decline 

rate at the CN stage, βt0 + βtm reflected the temporal factor’s decline rate at the MCI stage, 

and βt0 + βtm + βts + βtms reflected the subcortical factor’s decline rate at the MCI stage. 

With this model setup, variations in age, sex, education and total atrophy were controlled 

for across participants.  

Statistical tests were performed in two stages. First, we tested whether ADNI-

Mem decline rate accelerated, decelerated or stayed the same across disease stages for 

each factor. More specifically, for each factor, we first tested whether decline in memory 

and executive function was significant at the CN stage and then examined possible 

changes in decline rates from CN to MCI as well as from MCI to AD. For example, to 

test whether ADNI-Mem decline was significant at the CN stage for the subcortical factor, 

the null hypothesis was βt + βts = 0. To test whether the decline rate changed from CN to 

MCI for the subcortical factor, the null hypothesis was βmt + βmst = 0. Finally, null 

hypothesis βdt + βdst – βmt – βmst = 0 tested whether the decline accelerated from MCI to 

AD. The test results for memory and executive function are shown in Figs. 5A2 and 5B2, 

respectively. Details on hypothesis testing in the LME model can be found in [7]. 

To foreshadow the results, the hypothesis tests in the previous paragraph hinted at 

differences in ADNI-Mem decline rates across the factors. Therefore, statistical tests of 

whether ADNI-mem decline rates varied across factors at each disease stage were 

performed. More specifically, at each disease stage, we first performed an omnibus 

statistical test on whether there were differences in memory decline rates across factors 

and then tested for pairwise differences. Take the MCI stage as an example. Rejecting the 

null hypothesis βts + βtms = βtc + βtmc = 0 would imply differences in ADNI-Mem decline 

rates across the three factors among Aβ+ MCI participants. Rejecting the null hypothesis 

that βts + βtms = 0 would suggest that the subcortical factor and temporal factor were 

associated with different ADNI-Mem decline rates. Rejecting the null hypothesis that βtc 
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+ βtmc = 0 would suggest that the cortical factor and temporal factor were associated with 

different ADNI-Mem decline rates. Finally, rejecting the null hypothesis that βts + βtms = 

βtc + βtmc would suggest that the subcortical and cortical factors were associated with 

different cognitive decline rates.  

The results of the above statistical tests are illustrated in Figs. 5A2, 5B2, 7, S6A2, 

S6B2, S7A2, S7B2, S7C2, S8A2 and S8B2, where (except in Figs. 5A2 and 5B2) the 

blue dot corresponds to the estimated difference in cognitive decline rate between two 

“pure factors” after controlling for age, sex, education and total atrophy. For example, 

when comparing temporal and subcortical factors at the AD dementia stage, the estimated 

difference in cognitive decline rate is given by βts + βtds. The red bar corresponds to the 

standard error of this estimation given by std(βts + βtds). 
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Fig. S1. Sagittal, coronal and axial slices of the probabilistic atrophy maps for K = 2, 3 and 
4 atrophy factors. Bright color indicates high probability of atrophy at that spatial location 
for a particular atrophy factor, i.e., Pr(Voxel | Factor).
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Fig. S1 (cont’d).
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Fig. S1 (cont’d).
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K = 4: Posterior Cortical
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K = 4: Frontal Cortical
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Fig. S1 (cont’d). 
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Fig. S2. Quantifying the nested hierarchy of latent atrophy factors in terms of (A) atrophy 
patterns and (B) individual factor compositions. A high correlation value at “K-(K+1)” on 
the x-axis indicates a high-quality split from the K-factor model to the (K+1)-factor model 
(see Supplemental Methods of SI). For example, the close-to-one values at “2-3” in both 
(A) and (B) suggest that the splits of both the atrophy patterns and individual factor 
compositions are high-quality from two to three atrophy factors. Overall, the high 
correlation values from 2 to 10 support a nested hierarchy of latent atrophy factors.
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Fig. S3. Probabilistic atrophy maps for K = 3 factors estimated with (A) 91 Aβ+ AD 
dementia patients, (B) all 188 AD dementia patients, and (C) 147 Aβ+ MCI participants. 
The three different cohorts yielded highly similar atrophy patterns. Bright color indicates
high probability of atrophy at that spatial location for a particular atrophy factor, i.e., 
Pr(Voxel | Factor). 
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FreeSurfer Structure Name Average 
Probability

Right-Amygdala 3.81e-5

Left-Amygdala 3.59e-5

ctx-rh-entorhinal 3.03e-5

ctx-lh-entorhinal 2.87e-5

Right-Hippocampus 2.86e-5

Left-Hippocampus 2.51e-5

ctx-rh-parahippocampal 2.24e-5

ctx-lh-temporalpole 2.06e-5

ctx-rh-temporalpole 1.95e-5

ctx-lh-parahippocampal 1.78e-5

ctx-rh-inferiortemporal 1.52e-5

ctx-lh-middletemporal 1.50e-5

ctx-rh-middletemporal 1.47e-5

ctx-rh-fusiform 1.40e-5

ctx-lh-inferiortemporal 1.32e-5

ctx-lh-fusiform 1.26e-5

ctx-rh-insula 1.26e-5

ctx-lh-insula 1.20e-5

ctx-lh-superiortemporal 1.09e-5

ctx-lh-rostralanteriorcingulate 1.03e-5

ctx-rh-superiortemporal 9.82e-6

ctx-rh-medialorbitofrontal 8.39e-6

ctx-rh-rostralanteriorcingulate 7.77e-6

ctx-rh-lateralorbitofrontal 7.71e-6

ctx-lh-medialorbitofrontal 7.71e-6

ctx-rh-transversetemporal 7.13e-6

ctx-lh-lateralorbitofrontal 6.92e-6

Right-VentralDC 5.95e-6

ctx-lh-caudalanteriorcingulate 3.71e-6

Table S1A. Top anatomical 
structures associated with the 
temporal factor (see Methods). The 
temporal factor was associated with 
significantly greater atrophy in these 
structures than the subcortical factor 
(p = 2e-15) and cortical factor (p = 
4e-15). There were no differences in 
atrophy of these structures between 
the subcortical and cortical factors (p 
= 0.84). See Supplemental Methods 
of SI. 
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FreeSurfer Structure Name Average 
Probability

Right-Accumbens-area 1.85e-5

Left-Accumbens-area 1.75e-5

Right-Putamen 1.31e-5

Left-Cerebellum-Cortex 1.16e-5

Left-Putamen 1.13e-5

Right-Cerebellum-Cortex 1.10e-5

Left-Thalamus-Proper 8.82e-6

Right-Thalamus-Proper 7.99e-6

Right-Caudate 7.62e-6

ctx-lh-lingual 7.58e-6

Left-Caudate 7.50e-6

ctx-rh-lingual 7.16e-6

ctx-lh-parstriangularis 7.10e-6

ctx-rh-parstriangularis 6.52e-6

ctx-rh-parsopercularis 6.25e-6

ctx-rh-superiorfrontal 5.81e-6

ctx-rh-parsorbitalis 5.57e-6

Left-VentralDC 5.46e-6

ctx-lh-parsorbitalis 5.26e-6

ctx-lh-superiorfrontal 5.01e-6

ctx-lh-frontalpole 4.31e-6

ctx-rh-frontalpole 3.57e-6

Brain-Stem 3.36e-6

Right-Pallidum 2.55e-6

Left-Pallidum 2.22e-6

Table S1B. Top anatomical 
structures associated with the 
subcortical factor (see Methods). 
The subcortical factor was associated 
with significantly greater atrophy in 
these structures than the temporal 
factor (p = 1e-5) and cortical factor 
(p = 2e-12). The temporal factor had 
more atrophy in these structures than 
the cortical factor (p = 0.01). See 
Supplemental Methods of SI. 
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FreeSurfer Structure Name Average 
Probability

ctx-lh-bankssts 1.15e-5

ctx-rh-inferiorparietal 1.10e-5

ctx-lh-precuneus 1.00e-5

ctx-rh-bankssts 9.92e-6

ctx-rh-precuneus 9.07e-6

ctx-lh-inferiorparietal 8.94e-6

ctx-lh-caudalmiddlefrontal 8.47e-6

ctx-rh-caudalmiddlefrontal 8.37e-6

ctx-rh-lateraloccipital 8.22e-6

ctx-lh-supramarginal 7.99e-6

ctx-lh-lateraloccipital 7.64e-6

ctx-rh-isthmuscingulate 7.32e-6

ctx-rh-cuneus 7.16e-6

ctx-lh-isthmuscingulate 7.11e-6

ctx-lh-superiorparietal 6.89e-6

ctx-rh-supramarginal 6.74e-6

ctx-lh-paracentral 6.53e-6

ctx-lh-cuneus 6.47e-6

ctx-lh-transversetemporal 6.29e-6

ctx-rh-posteriorcingulate 6.29e-6

ctx-lh-parsopercularis 6.05e-6

ctx-lh-posteriorcingulate 5.87e-6

ctx-lh-rostralmiddlefrontal 5.69e-6

ctx-rh-precentral 5.69e-6

ctx-rh-superiorparietal 5.57e-6

ctx-rh-rostralmiddlefrontal 5.41e-6

ctx-lh-precentral 5.33e-6

ctx-lh-pericalcarine 5.29e-6

ctx-lh-postcentral 5.27e-6

ctx-rh-pericalcarine 4.94e-6

ctx-rh-postcentral 4.73e-6

ctx-rh-paracentral 4.68e-6

ctx-rh-caudalanteriorcingulate 3.83e-6

Table S1C. Top anatomical 
structures associated with the cortical 
factor (see Methods). The cortical 
factor was associated with 
significantly greater atrophy in these 
structures than the temporal factor (p 
= 7e-6) and subcortical factor (p = 
4e-7). There were no differences in 
atrophy of these structures between 
the temporal and subcortical factors 
(p = 0.62). See Supplemental
Methods of SI. 
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Fig. S4. Stability of factor compositions over two years for (A) 115 AD dementia patients, 
(B) 260 MCI participants, and (C) 185 CN participants. Each participant corresponds to a 
dot, whose color indicates amyloid status: red for Aβ+, green for Aβ-, and blue for 
unknown. For each atrophy factor (plot), x-axis and y-axis represent, respectively, the 
probabilities of factor at baseline and two years after baseline. In the ideal case where 
factor probability estimations remain exactly the same after two years, one would expect a 
y = x linear fit as well as a r = 1 correlation. In our case, the linear fits were close to y = x 
with r > 0.82 for all three atrophy factors for all clinical groups, suggesting that the factor 
compositions were stable despite disease progression.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2016. ; https://doi.org/10.1101/064295doi: bioRxiv preprint 

https://doi.org/10.1101/064295
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S5A. Factor compositions of (1) 147 Aβ+ MCI participants and (2) 43 Aβ+ CN 
participants for K = 3 factors. Each participant corresponds to a dot, whose location (in 
barycentric coordinates) represents the factor composition. Corners of the triangle 
represent “pure factors”; closer distance to the respective corners indicates higher 
probabilities for the respective factors. Most dots are far from the corners, suggesting that 
most participants expressed multiple factors. 
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Fig. S5B. Factor compositions of (1) 188 AD dementia patients, (2) 147 Aβ+ MCI 
participants, and (3) 43 Aβ+ CN participants for K = 2 factors. Histograms were created 
with participants’ cortical factor probability (x-axis). Therefore the left (or right) extreme 
corresponds to the pure temporal+subcortical (or cortical) factor. In addition, colors in (1) 
indicate amyloid status: red for Aβ+, green for Aβ-, and blue for unknown. The majority of 
the population lies around the center, suggesting that most participants expressed both 
atrophy factors. 
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Fig. S5C. Factor compositions of (1) 188 AD dementia patients, (2) 147 Aβ+ MCI 
participants, and (3) 43 Aβ+ CN participants for K = 4 factors. Each participant 
corresponds to a dot, whose location represents the factor composition. Tetrahedron 
corners represent “pure factors”; closer distance to a corner corresponds to higher 
probability for the corresponding factor. Color in (1) indicates amyloid status: red for Aβ+, 
green for Aβ-, and blue for unknown. Most dots are far from the corners, suggesting that 
most participants expressed multiple factors. 
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Table S2. Characteristics of 188 AD dementia patients by factor. Data are weighted 
averages (weighted standard deviation) with weights corresponding to factor probabilities. 
Highlighted p values (blue) are characteristics significantly different across factors. 
*Computed by linear hypothesis test on GLM or likelihood ratio test on logistic regression 
for sex (see Methods). †Only available for 182 patients. ‡Only available for 100 patients. 
§The original counts were 0, 1 or 2.

Temporal Subcortical Cortical Overall p*

Baseline age (years) 76 (6.9) 76 (7.1) 74 (7.8) 8e-7

Age at AD onset (years)† 72 (7.5) 73 (7.7) 70 (8.5) 1e-5

Years from onset to 
baseline† 3.8 (2.6) 3.5 (2.4) 3.5 (2.4) 0.29

Education (years) 15 (3.1) 14 (3.1) 15 (3.2) 0.15

Sex (0 for male) 0.4 (0.5) 0.5 (0.5) 0.5 (0.5) 0.27

Amyloid (pg/mL)‡ 141 (39) 149 (51) 140 (36) 0.09

APOE ε2§ 0.03 (0.2) 0.08 (0.3) 0.04 (0.2) 0.03

APOE ε4§ 0.86 (0.7) 0.81 (0.7) 0.87 (0.7) 0.61

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2016. ; https://doi.org/10.1101/064295doi: bioRxiv preprint 

https://doi.org/10.1101/064295
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S6. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
(A) memory and (B) executive function between K = 2 factors. Comparisons remaining 
significant after FDR control (q = 0.05) are highlighted in blue. Blue dots are estimated 
differences between “pure atrophy factors”, and red bars show the standard errors (see 
Methods and Supplemental Methods of SI). 
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Fig. S7A. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
memory among K = 3 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S7B. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
executive function among K = 3 factors. Comparisons remaining significant after FDR 
control (q = 0.05) are highlighted in blue. Blue dots are estimated differences between 
“pure atrophy factors”, and red bars show the standard errors (see Methods and
Supplemental Methods of SI). 
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Fig. S7C. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
MMSE among K = 3 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S8A. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
memory among K = 4 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S8B. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
executive function among K = 4 factors. Comparisons remaining significant after FDR 
control (q = 0.05) are highlighted in blue. Blue dots are estimated differences between 
“pure atrophy factors”, and red bars show the standard errors (see Methods and
Supplemental Methods of SI). 
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