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Abstract
We employed a data-driven Bayesian model to automatically identify distinct latent
factors of overlapping atrophy patterns from voxelwise structural magnetic resonance
imaging (MRI) of late-onset Alzheimer’s disease (AD) dementia patients. Our approach
estimated the extent to which multiple distinct atrophy patterns were expressed within
each participant rather than assuming that each participant expressed a single atrophy
factor. The model revealed a temporal atrophy factor (medial temporal cortex,
hippocampus and amygdala), a subcortical atrophy factor (striatum, thalamus and
cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal and lateral
occipital cortices). To explore the influence of each factor in early AD, atrophy factor
compositions were inferred in beta-amyloid-positive (AB+) mild cognitively impaired
(MCI) and cognitively normal (CN) participants. All three factors were associated with
memory decline across the entire clinical spectrum, whereas the cortical factor was
associated with executive function decline in A+ MCI participants and AD dementia
patients. Direct comparison between factors revealed that the temporal factor showed the
strongest association with memory, while the cortical factor showed the strongest
association with executive function. The subcortical factor was associated with the
slowest decline for both memory and executive function compared to temporal and
cortical factors. These results suggest that distinct patterns of atrophy influence decline
across different cognitive domains. Quantification of this heterogeneity may enable the
computation of individual-level predictions relevant for disease monitoring and
customized therapies. Code from this manuscript is publicly available at

link to be added.
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Significance
Alzheimer’s disease (AD) is the most common form of dementia. Heterogeneity in AD
complicates efforts for diagnosis and disease monitoring. Here we model the
heterogeneity of atrophy in AD patients, demonstrating for the first time that most AD
patients and at-risk nondemented participants express multiple latent atrophy factors to
varying degrees. Furthermore, these atrophy factors are associated with distinct decline
trajectories of memory and executive function, highlighting the relevance of these
atrophy patterns in understanding the clinical course of AD dementia. Our results provide
a framework by which biomarker readouts could predict disease progression at the
individual level. Our analytic strategy could potentially be utilized to discover subtypes

within and across other heterogeneous brain disorders, such as autism and schizophrenia.
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Introduction

Alzheimer’s disease (AD) dementia is a devastating neurodegenerative disease
that affects 11% of individuals over age 65 with no disease modifying treatment available.
Accurate in vivo biomarkers are urgently needed to assist in early detection of at-risk
individuals, improve diagnosis, monitor disease progression, and serve as outcome
measures in clinical trials.

Although AD is typically associated with an amnestic clinical presentation and
disruption of the medial temporal lobe (Salmon & Bondi, 2009), it has become
increasingly clear that heterogeneity exists within this disease. Specifically, heterogeneity
has been observed in the clinical presentation of AD (Lam et al., 2013), the spatial
distribution of neurofibrillary tangles (NFT) (Murray et al., 2011, Ossenkoppele et al.,
2016), as well as the presence of co-morbid pathologies such as vascular disease, Lewy
bodies and TDP-43 (Schneider et al., 2009, Josephs et al., 2014). Interestingly, the spatial
distribution of atrophy varies across AD subtypes defined on the basis of NFT
distribution (Whitwell et al., 2012), suggesting that analyses of gray matter patterns are
useful to characterize heterogeneity in AD. Furthermore, although distinct atrophy
patterns have been observed in patients that clearly show atypical clinical presentations
(Ossenkoppele et al., 2015), heterogeneity in gray matter atrophy has also been reported
among late-onset AD cases (Dickerson & Wolk, 2011). It is therefore likely that the
ability to quantify varying patterns of atrophy among AD patients will help inform our
understanding of fundamental disease processes.

In this study, we sought to explore the heterogeneity of atrophy patterns in late-
onset AD using a data-driven Bayesian framework that accounted for and estimated
latent AD atrophy factors derived from structural MRI data. The mathematical
framework that we employed, latent Dirichlet allocation (LDA; Blei et al., 2003), has
been successfully utilized to extract overlapping brain networks from functional MRI
(Yeo et al., 2014) and meta-analytic data (Yeo et al., 2015; Bertolero et al., 2015).
Importantly, this approach does not require the atrophy pattern of an individual to be
determined by a single atrophy factor. Instead, the model allows the possibility that
multiple latent factors are expressed to varying degrees within an individual. For example,

the atrophy pattern of a patient might be 90% due to factor 1 and 10% factor 2, while the
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atrophy pattern of another patient might be 60% due to factor 1 and 40% factor 2. Given
that multiple contributors that are not mutually exclusive may influence heterogeneity in
AD, such as the spatial location of NFT pathology (Murray et al., 2011, Ossenkoppele et
al., 2016), coexisting non-AD pathologies (Schneider et al., 2009) and genetics
(Dickerson & Wolk, 2011), we believe it is more biologically plausible that individuals
express varying degrees of distinct atrophy factors rather than one single factor. Thus, the
LDA approach is particularly well suited for these analyses and will provide insight into
whether expressing multiple atrophy factors is common among late-onset AD patients.

Most studies investigating the heterogeneity of AD have examined patients soon
after AD onset or at advanced AD stages (e.g., Murray et al., 2011, Whitwell et al., 2012,
Noh et al., 2014, Byun et al., 2015, Scheltens et al., 2015). However, the
pathophysiological processes of AD begin at least a decade before clinical diagnosis
(Villemagne et al., 2013), suggesting that the emergence of this heterogeneity may occur
prior to the onset of clinical dementia. In this study, we therefore examined how distinct
atrophy factors identified in AD dementia patients were associated with longitudinal
cognitive decline early in nondemented participants that were at risk for AD dementia
based on elevated beta-amyloid (Sperling et al., 2011, Albert et al., 2011, Rowe et al.,
2013).

Our study makes three significant contributions. First, we introduced an
innovative modeling strategy where expressions of multiple atrophy patterns are
estimated rather than assigning each participant to a single subtype. Second, our approach
harnesses the rich multidimensional information across all gray matter voxels, avoiding
the need for a priori selection of regions and enabling an in-depth exploration of atrophy
patterns. Finally, application of this approach to participants spanning the clinical
spectrum revealed that latent atrophy factors are associated with distinct memory and
executive function trajectories, providing novel insights into the impact of disease

heterogeneity throughout the prolonged course of AD.
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Results

Overall Approach

Our approach involved three main steps. In Step I, we performed latent Dirichlet
allocation (a Bayesian model; Blei et al., 2003) to estimate latent atrophy factors in 188
AD dementia patients and used this model to extract factor compositions in two
independent samples of nondemented participants: 147 beta-amyloid-positive (AB+) mild
cognitively impaired (MCI) and 43 AP+ cognitively normal (CN) participants. In Step II,
we examined robustness across different analytic approaches and investigated
characteristics of the factor compositions across participants. Finally, in Step I1I we
examined the associations between atrophy factors and different cognitive domains

(memory and executive function). The results of each step are described in detail below.

I. Discovering Latent Atrophy Factors in AD Dementia Patients

We employed the Bayesian latent Dirichlet allocation (LDA) model (Blei et al.,
2003) to encode our assumption that a patient expresses one or more latent atrophy
factors (Fig. 1). The LDA model was applied to the structural MRI of 188 AD dementia
patients. Given the voxelwise gray matter density values derived from structural MRI
(FSL-VBM; Douaud et al., 2007) and a predefined number of factors K, the model is able
to estimate the probability that a particular factor is associated with atrophy at a specific
spatial location (i.e., Pr(Voxel | Factor) or probabilistic atrophy map of the factor) and the
probability that an individual expresses each atrophy factor (i.e., Pr(Factor | Patient) or
atrophy factor composition of the individual). Importantly, resulting atrophy factors were

not predetermined, but estimated from data (see Methods).
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Fig. 1. A Bayesian model of AD dementia patients, latent atrophy factors, and brain structural
MRI. Underpinning our approach is the premise that each participant expresses one or more
latent factors. Each factor is associated with distinct but possibly overlapping patterns of brain
atrophy. The framework can be instantiated with a mathematical model (latent Dirichlet
allocation; Blei et al., 2003), whose parameters can be estimated from the structural MRI data of
AD dementia patients. The estimated parameters are the probability that a patient expresses a
particular factor, i.e., Pr(Factor | Patient), and the probability that a factor is associated with
atrophy at a MRI voxel, i.e., Pr(Voxel | Factor).

An important model parameter is the number of latent atrophy factors K.
Therefore, we first determined how factor estimation changed from K =2 to 10. Visual
inspection of the spatial distribution of each atrophy factor suggested that factor estimates
from K = 2 through 10 were organized in a hierarchical fashion (Figs. 2 and S1). For
instance, the two-factor model revealed one factor associated with atrophy in temporal
and subcortical regions (“temporal+subcortical”’; Fig. 2A1) and another factor associated
with atrophy throughout cortex (“cortical”’; Fig. 2A2). The three-factor model resulted in
a similar cortical factor (Fig. 2B3 and Table S1C), while the temporal+subcortical factor
split into a “temporal” factor associated with extensive atrophy in the medial temporal
lobe (Fig. 2B1 and Table S1A) and a “subcortical” factor associated with atrophy in the
cerebellum, striatum and thalamus (Fig. 2B2 and Table S1B). Likewise, the four-factor
model resulted in the cortical factor splitting into “frontal cortical” and “posterior cortical”
factors, whereas the temporal and subcortical factors remained the same (Fig. 2C).
Sagittal and axial slices of these probabilistic atrophy maps are available in Fig. S1 in the

Supporting Information (SI).
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Fig. 2. Hierarchy of latent atrophy factors with distinct atrophy patterns in AD. Bright color
indicates higher probability of atrophy at that spatial location for a particular atrophy factor, i.e.,
Pr(Voxel | Factor). Each of the (A) two, (B) three and (C) four factors was associated with a
distinct pattern of brain atrophy and was named accordingly. A nested hierarchy of atrophy
factors was observed even though the model did not mandate such a hierarchy. For example,
when going from two to three factors, the temporal+subcortical factor (A1) split into temporal
(B1) and subcortical (B2) factors, while the cortical factor remained the same (A2 and B3). This
hierarchical phenomenon was quantified for two to ten factors (Fig. S2).
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To quantify the hierarchical phenomenon, we employed an exhaustive search to
assess the possibility that two unknown factors in the (K+1)-factor model were
subdivisions of an unknown factor in the K-factor model (while the other factors
remained the same). The exhaustive search yielded a hypothesized factor hierarchy with
associated correlation values quantifying the subdivision quality (see Supplemental
Methods of SI). The high correlation values (Fig. S2) confirmed that additional factors
emerged as subdivisions of lower-order factors, corresponding to a nested hierarchy of
atrophy factors.

This nested hierarchy suggested that specification of different numbers of
estimated factors might yield distinct insights into AD. In the remainder of this paper, we
highlighted the results of three-factor model (Fig. 2B), since the emergence of the
temporal and cortical factors were consistent with the “limbic-predominant” and
“hippocampal-sparing” pathologically-defined AD subtypes previously reported (Murray
etal., 2011, Whitwell et al., 2012). We additionally repeated analyses for two- and four-
factor models, which yielded behavioral insights consistent with the three-factor model.
These additional results are reported in Supplemental Figures of SI.

To explore the influence of atrophy factors in early AD, probabilistic atrophy
maps Pr(Voxel | Factor) estimated from the AD dementia patients were used to infer
factor compositions Pr(Factor | Participant) of the 190 AR+ nondemented participants

using the standard variational expectation-maximization algorithm (Blei et al., 2003).

II. Examining Factor Robustness and Characteristics of Factor Compositions
Among the 188 AD dementia patients, 100 had their cerebrospinal fluid (CSF)
amyloid data available. 91 of the 100 patients were AP+ (CSF amyloid concentration <
192 pg/ml; Shaw et al., 2009). We performed LDA on the subset of AR+ AD dementia
patients (and on AR+ MCI participants; see Supplemental Results of SI)) and compared
atrophy patterns of the resulting factors with those derived using the larger sample (Fig.
S3). Atrophy factors were similar across these methods, with an average correlation
across all pairwise comparisons of r = 0.89. Given this similarity and to improve our
estimates of the atrophy factors, we elected to use the atrophy factors derived from the

larger sample of 188 AD dementia patients for subsequent analyses. Furthermore,
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resulting atrophy patterns were consistent between FreeSurfer (Fischl, 2012) and FSL-
VBM, suggesting that the atrophy factors were robust to variations in image
preprocessing software (see Supplemental Results and Supplemental Methods of SI).
To determine whether expression of atrophy factors remained stable over time, we
examined the subset of ADNI 1 participants that had a two-year follow-up scan available
(N =560 out of 810). We were specifically interested in whether atrophy factors reflected
different disease stages rather than different atrophy subtypes (for instance, high
expression of the temporal factor may lessen over time with greater expression of the
cortical factor). Therefore, we compared factor compositions after two years with
baseline compositions. The factor probabilities were positivity correlated and highly
consistent (r > 0.85 across all three factors, Fig. 3; see Fig. S4 for results by diagnostic
group with additional amyloid information), suggesting that these factors do not merely

reflect a sequence of atrophy patterns.
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Fig. 3. Stability of factor compositions over two years. Each blue dot represents a participant. For
each plot, x-axis and y-axis represent, respectively, the probabilities of factor at baseline and two
years after baseline. In the ideal case where factor probability estimates remain exactly the same
after two years, one would expect a y = x linear fit as well as a r = 1 correlation. In our case, the
linear fits were close to y = x with r > 0.85 for all three atrophy factors, suggesting that the factor
compositions were stable despite disease progression.

Examination of atrophy factor compositions among AD dementia patients
revealed that the majority expressed multiple latent atrophy factors rather than
predominantly expressing a single atrophy factor (Fig. 4). Examination of factor
compositions of the 190 AB+ nondemented participants revealed a similar pattern, such
that the majority of participants expressed multiple atrophy factors (Fig. SSA). Factor
compositions for the two- and four-factor models also suggest that most participants

expressed multiple atrophy factors (Figs. S5B and S5C).
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Fig. 4. Factor compositions of 188 AD dementia patients. Each patient corresponds to a dot,
whose location (in barycentric coordinates) represents the factor composition. Color indicates
amyloid status: red for AP+, green for AB-, and blue for unknown. Corners of the triangle
represent “pure factors”; closer distance to the respective corner indicates higher probability for
the respective factor. Most dots are far from the corners, suggesting that most patients expressed
multiple factors.

To understand the association between atrophy factors and demographic variables,
general linear model (GLM; for continuous variables) and logistic regression (for binary
variables) were conducted in the 188 AD dementia patients (Table S2). Briefly, the
response variable was the variable of interest (e.g., age at AD onset), and the explanatory
variables consisted of two columns encoding participants’ loading on the cortical and
subcortical factors. The temporal factor was implicitly modeled because the factor
probabilities summed to 1 (see Methods).

There were no significant differences in years from AD onset, education, sex or
APOE &4 loadings across the three factors. Importantly, amyloid level was not
significantly different across factors. The cortical factor was associated with significantly
younger baseline age than the temporal factor (p = 1e-5) and subcortical factor (p = 2e-6)
as well as younger age at AD onset than the temporal factor (p = 3e-4) and subcortical
factor (p = 7e-6). In addition, the subcortical factor was associated with higher APOE &2
loading than the temporal factor (p = 0.01) and cortical factor (p = 0.04), but these were
not significant when corrected for multiple comparisons.

Similar analyses were conducted for the Af+ MCI and CN groups. The only
significant association was that among A+ MCI participants, the cortical factor was

associated with younger age at baseline compared to the temporal factor (p = 0.05) and
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subcortical factor (p = 0.02). However, this association did not survive after correcting

for multiple comparisons.

II1. Examining Associations Between Atrophy Factors and Cognition

We first examined diagnostic group differences in memory (ADNI-Mem; Crane
et al., 2012) and executive function (ADNI-EF; Gibbons et al., 2012) without considering
factor compositions. As expected, cross-sectional memory was worse for AD dementia
patients (mean = -0.84) compared to Ap+ MCI participants (mean = -0.21; t-test p = Se-
23). Ap+ MCI participants had worse memory than AB+ CN participants (mean = 0.93; t-
test p = 2e-26). Likewise, cross-sectional executive function was worse for AD dementia
patients (mean = -0.92) compared to Ap+ MCI participants (mean = -0.17; t-test p = 3e-
16). AB+ MCI participants had worse executive function than A+ CN participants (mean
=0.50; t-test p = 1e-7).

We then examined a GLM predicting cross-sectional memory and executive
function, which included both diagnosis and factor compositions as well as their
interactions as predictors (Figs. SA1 and 5B1; see Methods for model details). This
analysis revealed that all factors were associated with baseline memory, and these
associations continued to worsen across the disease spectrum (Fig. SA1). For cross-
sectional executive function, there was only an association with the cortical factor, and
this association also worsened across the disease spectrum (Fig. SB1).

Next we examined a linear mixed-effects (LME) model predicting longitudinal
change in memory and executive function (Figs. SA2 and 5B2). The LME model
provides significantly improved exploitation of longitudinal measurements (Bernal-
Rusiel et al., 2012) by accounting for both intra-individual measurement correlations and
inter-individual variability. The model setup was the same as the GLM above, except that
time and its interactions with diagnosis and factor compositions were included as
predictors (see Supplemental Methods of SI).

This analysis revealed that the temporal and subcortical factors exhibited memory
decline that began in CN and maintained similar memory decline rates in MCI and AD
(Fig. 5A2). In contrast, the cortical factor was not associated with memory decline in CN,

but demonstrated faster decline in MCI compared to CN and in AD compared to MCI
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(Fig. 5A2). The cortical factor was not associated with executive function decline in CN,
but showed faster longitudinal executive function decline in MCI compared to CN and in

AD compared to MCI (Fig. 5B2).

(1) Cross-Sectional (2) Longitudinal
CN-> MCI | MCI> AD | CN>AD CN CN > MCI | MCI > AD
Worse Worse Worse Slope <0 Gentler Gentler
g p =6e-4 p =0.02 p =2e-6 p =4e-6 p=0.12 p=0.11
=
E. Worse Worse Worse Slope <0 Gentler Gentler
2 p =0.07 p =0.02 p =4e-4 p =3e-5 p=0.04 p=0.68
< Worse Worse Worse Slope>0 Steeper Steeper
p =2e-4 p =2e-3 p =2e-8 p=0.14 p=1e-8 p =2e-6
Worse Worse Worse Slope<0 Steeper Gentler
w p=0.99 p=0.26 p=0.55 p=0.12 p =0.02 p=0.04
L
g Worse Worse Worse Slope <0 Gentler Steeper
< p=0.65 p=0.25 p=0.20 p = 5e-4 p=0.02 p=0.30
)
= Worse Worse Worse Slope>0 Steeper Steeper
p=0.03 p=1e-4 p =3e-6 p=0.91 p=1e-8 p=T7e-4

Fig. 5. Differences by diagnosis and atrophy factor in (1) cross-sectional baseline and (2)
longitudinal decline rates of (A) memory and (B) executive function. Comparisons remaining
significant after false discovery rate (FDR; q = 0.05) control are highlighted in blue. “T”, “S”
and “C” are short for temporal, subcortical and cortical factors, respectively. For example, the
top left cell of (A1) suggests that AR+ MCI participants with high loading on the temporal
factor had worse baseline memory than Ap+ CN participants with high loading on the same
factor (p = 6e-4). On the other hand, the bottom left cell of (B2) suggests that AB+ CN
participants expressing the cortical factor did not exhibit executive function decline (p =
0.91), while the bottom right cell of (B2) suggests that AD dementia patients expressing the
cortical factor showed faster executive function decline than AB+ MCI participants

expressing the same factor (p = 7e-4).

In our final set of analyses examining cognition, we directly compared the three

factors. The GLM and LME models were exactly the same as the previous sections, but

we instead focused on the contrasts between factors.

For cross-sectional memory, the temporal factor was associated with worse

performance than the subcortical (p = 3e-6) and cortical (p = 7e-3) factors among AD

dementia patients (Fig. 6A). Similar results were found for A+ MCI participants (Fig.
S7A1). Among AP+ CN participants, there was no memory difference across the atrophy
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factors (Fig. S7A1). For cross-sectional executive function, the cortical factor was
associated with worse performance than the temporal (p = 0.01) and subcortical (p = 1e-5)
factors among AD dementia patients (Fig. 6B). There was no executive function
difference across the factors among AB+ CN and MCI participants (Fig. S7B1).

Cross-Sectional Analyses by GLM
(A) ADNI-Mem at Baseline

Former is worse Latterisworse p
AD S-T —— | 3e-6
N=188 |[©7T — re-3
p=1e-5 [C-8 D 0.03
1 05 0 05 1
Contrast

(B) ADNI-EF at Baseline

Former is worse Latterisworse p
AD S-T — 0.09
N =188 C-T —_—1t 0.01
p=7e-5 |C-§ | =——=— 1e-5
-1 0 1
Contrast

Fig. 6. Comparisons of baseline (A) memory and (B) executive function in AD dementia patients
across factors. Comparisons remaining significant after FDR (q = 0.05) control are highlighted in
blue. “T”, “S” and “C” are short for the temporal, subcortical and cortical factors, respectively.
Blue dots are estimated differences between “pure atrophy factors”, and red bars show the
standard errors (see Methods). For example, the top row in (A) suggests that AD dementia
patients expressing the temporal factor had worse baseline memory than AD dementia patients
expressing the subcortical factor (p = 3e-6).

For longitudinal change in memory (Fig. 7A), the cortical factor was associated
with faster longitudinal memory decline than the temporal (p = 1e-4) and subcortical (p =
4e-6) factors among AD dementia patients. Among A+ MCI participants, the subcortical
factor was associated with slower decline rate than the cortical (p = 8e-4) and temporal (p
= 4e-3) factors. Finally, among AP+ CN participants, the cortical factor showed slower
memory decline than the temporal (p = 1e-4) and subcortical (p = 3e-3) factors.

For longitudinal change in executive function (Fig. 7B), the cortical factor was
associated with faster executive function decline than temporal (p = 2e-3) and subcortical
(p = 2e-4) factors among AD dementia patients. Among AR+ MCI participants, the

subcortical factor had slower decline than the cortical (p = 8e-9) and temporal (p = 1e-8)
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factors. There was no executive function decline difference across the factors among Ap+
CN participants.

Longitudinal Analyses by LME
(A) ADNI-Mem Decline

Former declines faster Latter declinesfaster p
AD S-T —_—— 0.65

- D —— -
N = 188 C-T 1e-4
p=3e6 |[C-8 |=——0— 4e-6
AB+MCI [S-T e 4e-3
N=147 |C°T - 1.00
p=9-4 |C-S --— 8e-4
AB+CN |S-T —— 0.03
N = 43 C-T —— 1e-4
p= 5e-4 C-S e 3e-3

05 0 05
Contrast
(B) ADNI-EF Decline

Former declines faster Latter declinesfaster p
AD S-T —— 0.67

—_ D — -
N = 188 C-T 2e-3
p=2e-4 |C-8 | 2e-4
AB+MCI [S-T —— 1e-8
N=147 |C°T —o— 0.50
p=1e-10|C-S o 8e-9
AB+CN |S-T —— 0.74
N=a3 |C°T —— 0.25
p=0.16 |[C-S e 0.06

05 0 05
Contrast

Fig. 7. Comparisons of (A) memory and (B) executive function decline rates across factors by
clinical group. Comparisons remaining significant after FDR (q = 0.05) control are highlighted in
blue. “T”, “S” and “C” are short for the temporal, subcortical and cortical factors, respectively.
Blue dots are estimated differences between “pure atrophy factors”, and red bars show the
standard errors (see Supplemental Methods of SI). For example, the second row in (A) suggests
that AD dementia patients expressing the cortical factor showed faster memory decline than
patients expressing the temporal factor (p = 1e-4).

All cognitive analyses were repeated using the two- and four-factor LDA atrophy

factors (Figs. S6 and S8). The results were consistent with the three-factor model
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(Supplemental Results of SI). In addition, associations between mini-mental state
examination (MMSE) and the three atrophy factors are reported in Fig. S7C.

(A) Memory
A iAT,AS<AC AT, AC<AS |AC <AS, AT

|
£ l
(] I
= |
g e Subcortical | \
< | = Cortical :
e Temporal |
| T<S T<C,S
: . : >
AR+ CN AB+ MCI AD Disease
Stage
(B) Executive Function
A ; AT, AC<AS |AC <AS, AT
| | |
| l
| |
" l : :
o :
£ == Subcortical |
< e Temporal |
e Cortical :
: : C<T,S
: ' >
AB+ CN AB+ MCI AD Disease
Stage

Fig. 8. Schematics of distinct (A) memory and (B) executive function trajectories for temporal,
subcortical and cortical atrophy factors. Labels on dotted lines indicate cross-sectional
differences. For example, “T < C, S” in (A) indicates that the temporal factor was associated
with the worst baseline memory among AD dementia patients. Labels in the intervals indicate
differences in longitudinal decline rates. For example, “AT, AC < AS” in (B) indicates that
among AB+ MCI participants, the temporal and cortical factors were associated with faster
executive function decline than the subcortical factor. The schematics summarize the behavioral
results of Figures 5, 6 and 7 (see Supplemental Results of SI for more discussion). Within each
cognitive domain, the atrophy factors were associated with distinct trajectories across the stages.
The trajectories of the cortical and subcortical factors transpose between the two cognitive
domains. Divergence in memory trajectories existed even at the asymptomatic stage of the
disease, i.e., among AP+ CN participants.
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Discussion

In this study, we identified distinct atrophy factors within AD dementia patients
using Bayesian LDA modeling of MRI gray matter density maps. This approach
estimated the factor composition of multiple atrophy factors for each participant rather
than assuming membership to a single atrophy subtype (Fig. 1). Our analysis yielded a
nested hierarchy of atrophy factors (Fig. 2), which corresponded to distinct trajectories of
memory and executive function decline across the disease spectrum (Fig. 8). Overall,
these results provide evidence that heterogeneity in patterns of atrophy exists in late-onset

AD and that these atrophy patterns are associated with distinct cognitive trajectories.

Atrophy Patterns in AD Dementia

Our model revealed a hierarchy of atrophy patterns within AD dementia patients
(Fig. 2). As the number of estimated atrophy factors was increased from K to K+1, one
atrophy pattern fractionated into two atrophy patterns, while the remaining patterns
remained unchanged (Fig. S2). It is noteworthy that the atrophy patterns extracted using
K =3 were similar to results from other groups investigating AD subtypes (Whitwell et
al., 2012, Noh et al., 2014, Byun et al., 2015), although notable differences did emerge.

Specifically, our three-factor model revealed a “temporal” factor associated with
atrophy in the temporal cortex, hippocampus and amygdala, a “cortical” pattern
associated with atrophy in the frontal, parietal, lateral temporal and lateral occipital
cerebral cortices, and a “subcortical” factor associated with atrophy in the cerebellum,
striatum and thalamus (Fig. 2B). Our temporal factor was similar to the previously
described “limbic-predominant” subtype, whereas the cortical factor was similar to the
“hippocampal-sparing” subtype (Whitwell et al., 2012, Murray et al., 2011). More
specifically, previous pathologically-defined subtypes were identified based on the ratio
of NFT burden in hippocampal subregions versus association cortex, resulting in a
limbic-predominant subtype and a hippocampal-sparing subtype. Follow-up VBM
analyses (Whitwell et al., 2012) suggested gray matter loss in the temporoparietal cortex,
frontal cortex, insula and precuneus in the hippocampal-sparing subtype, consistent with

our cortical atrophy factor. On the other hand, Whitwell and colleagues identified
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predominant atrophy in the medial temporal lobe of the limbic-predominant subtype,
consistent with our temporal atrophy factor.

A benefit of our approach is that the nested hierarchy of atrophy patterns was not
mandated by our model but completely data-driven. Thus, although not mandated, our
results revealed a nested hierarchy in contrast with previous approaches where hierarchy
was imposed (e.g., Noh et al., 2014). Specifically, Noh and colleagues identified three
subtypes: a “medial temporal” subtype, a “parietal frontal-dominant” subtype, and a
“diffuse” subtype. Our temporal atrophy factor might correspond to their medial temporal
subtype, whereas our cortical factor might correspond to their parietal frontal-dominant
subtype, although direct comparison was difficult since their analyses were restricted to
the cerebral cortex.

Our model suggests that atrophy patterns in AD patients follow a nested hierarchy
structure. Given the nested hierarchy of cognitive functions revealed by a recent large-
scale meta-analysis of ten thousand brain imaging experiments (Yeo et al., 2015) as well
as brain network analyses (Zhou et al., 2006, Bassett et al., 2008, Meunier et al., 2009,
Yeo et al., 2011), one might speculate that the nested hierarchy of atrophy factors arises

from a natural hierarchy of brain functions and networks.

Atrophy Factors Reflect Subtypes Rather Than Disease Stages

A potential pitfall of AD subtype analyses (Ritchie & Touchon, 1992) is that the
observed heterogeneity might correspond to different disease stages (stage hypothesis),
rather than heterogeneity in disease expression (subtype hypothesis). There are various
reasons why the atrophy factors discussed in this manuscript likely correspond to
subtypes rather than disease stages. First, there was not a single factor associated with the
worst memory and executive function. Instead, decline trajectories of the temporal and
cortical factors varied in their associations with the two cognitive domains (Fig. 8).
Furthermore, analysis of follow-up MRI scans revealed that factor compositions were
stable over time (Fig. 3), suggesting that individuals were not progressing from one factor
to another, e.g., from temporal factor to cortical factor as predicted under the Braak

staging scheme (Braak & Braak, 1991).
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Factor-Dependent Characteristics

There were significant differences across the atrophy factors in baseline age (p =
8e-7) and age at AD onset (p = 1e-5). Baseline age is dependent on study design, so
drawing meaningful comparisons with the literature is difficult. Nevertheless, the cortical
factor was associated with younger age at AD onset, consistent with previous studies
describing subtypes with predominant cortical atrophy (Murray et al., 2011, Noh et al.,
2014, Ossenkoppele et al., 2015). Importantly, years from AD onset to baseline did not
differ across the three latent factors (p = 0.29; Table S2), providing further evidence that
these factors were not simply disease stages. The subcortical factor was associated with a
higher prevalence of the APOE g2 allele (p = 0.03; not significant when corrected for
multiple comparisons). The protective effects of the €2 allele (Corder et al., 1994) might
potentially contribute to the observation that the subcortical factor was associated with
the mildest decline in both memory and executive function across all stages (Fig. 8).

Importantly, a lack of association between each factor and amyloid status suggests
that atrophy factors do not merely reflect patterns associated with non-AD dementia
patients that may have been “misdiagnosed” as AD dementia within the ADNI dataset
(Lowe et al., 2013). However, even though repeating our factor estimation with A+ AD
dementia patients revealed consistent atrophy patterns with the model utilizing all AD
patients, we are not able to determine whether atrophy patterns are a result of AP
pathology or precede AP pathology. For instance, these atrophy patterns may emerge
through processes not directly linked to AP pathology, but instead converge with AD
pathology to influence disease progression. It is possible that factors such as co-morbid
TDP-43 pathology, genetics, as well as development differences contribute to this
heterogeneity. Along these lines, recent work suggests that different pathologies have
distinct impacts on cognitive trajectories (Wilson et al., 2016). Interestingly, TDP-43 was
shown to have a very early impact on cognitive trajectories compared to other
pathologies such as hippocampal sclerosis and Lewy bodies. Given that TDP-43 is
known to impact the medial temporal lobe (Josephs et al., 2014), it is possible that the
temporal atrophy factor is influenced by the involvement of this pathology (since the

temporal factor shows an early impact on memory among AR+ CN in our study).
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A fundamental question that remains is why the expression of these atrophy
patterns varies across individuals, especially since the spatial distribution of AP tends to
be very diffuse throughout cortex. A similar dissociation is observed among AD patients
with atypical clinical presentations, such that although the spatial pattern of AP is diffuse,
the underlying pattern of NFTs and gray matter atrophy aligns with clinical symptoms
(Ossenkoppele et al., 2016). Future work should investigate the time course of these
atrophy patterns using longitudinal MRI as well as longitudinal assessment of A and
also investigate the prevalence of atrophy patterns among Ap- participants to understand
whether these patterns are specific for AD or merely converge with AD processes to

influence disease progression.

Distinct Memory and Executive Function Decline Trajectories

The behavioral results (Figs. 5, 6 and 7) are summarized in Fig. 8. Overall, we
found that the associations between atrophy factors and cognition varied by domain, as
well as time course in the disease. Specifically, the temporal factor showed the greatest
association with memory, a relationship that emerged early among A+ CN participants
and remained consistent in later disease stages. Conversely, the cortical factor was
associated with both memory and executive function, but exerted greater impact later in
the disease among AP+ MCI participants and AD patients.

Overall, the trajectories (Fig. 8) revealed several salient points. First, memory
decline in the context of late-onset AD occurred earlier than decline in executive function,
which is in line with previous studies (Grober et al., 2008). Second, divergence of
memory trajectories among atrophy factors appeared as early as the asymptomatic (CN)
stage of the disease, whereas divergence of executive function trajectories was not
detectable until the MCI stage (Fig. 8). Specifically, the temporal and subcortical factors
showed faster memory decline than the cortical factor among AP+ CN participants, and
by MCI, the temporal factor was already associated with worse memory at baseline than
the subcortical factor. In contrast, there was no difference in executive function decline
rates among AP+ CN participants or cross-sectional differences among AR+ MCI
participants. Interestingly, AD dementia patients expressing the cortical factor exhibited

the fastest decline rates in both executive function and memory. Finally, the subcortical
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factor (blue curves in Fig. 8) was the mildest factor in terms of both memory and
executive function deterioration. In both A+ MCI and AD dementia participants, the
subcortical factor was associated with the best memory and executive function scores, as

well as the slowest decline rates.

Correspondence and Extensions of AD Heterogeneity Literature

Our results were consistent with the preponderance of literature on heterogeneity
among AD dementia patients. For example, our atrophy factors show overlap with the
pathologically-defined hippocampal-sparing and limbic-predominant subtypes (Whitwell
et al., 2012), as well as the subtypes described by Noh et al. (2014). Our analyses
suggested that the cortical factor was associated with faster decline in both memory and
executive function than the temporal factor at the dementia stage, which is consistent
with the hippocampal-sparing subtype exhibiting faster MMSE decline than the limbic-
predominant subtype among AD dementia patients (Murray et al., 2011). Similarly, our
finding that the cortical factor was associated with the most rapid memory and executive
function decline among AD dementia patients was also consistent with Byun et al. (2015).
Among AD dementia patients, the cortical factor was associated with the worst baseline
executive function, while the temporal factor was associated with the worst baseline
memory. This is consistent with previous work showing that thinning of frontoparietal
cortical regions was associated with nonamnestic presentations and dysexecutive
phenotypes (Dickerson & Wolk, 2011) and that the “cortical atrophy-only” subtype had
worse baseline executive function than the “hippocampal atrophy-only” subtype (Byun et
al., 2015). Thus, our data-driven approach provides further evidence that distinct atrophy
patterns among AD patients impact different cognitive domains.

In addition to characterizing heterogeneity among AD dementia patients, we
extended our approach to participants that were presumably in very early stages of AD
development (i.e., AR+ but without the clinical symptoms of dementia; Sperling et al.,
2011, Albert et al., 2011). By examining earlier stages, we found that the temporal factor
showed the greatest association with memory decline among AR+ CN participants, but
that the cortical factor was a stronger predictor of memory decline among AD dementia

patients (Fig. S7A2). Likewise, although the cortical factor was not associated with either
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cognitive domain among A+ CN participants, this factor was associated with executive
function decline in AB+ MCI participants and AD patients (Figs. 7B and 8). The impact
of these atrophy factors at different points along the clinical spectrum has important
implications for measuring decline and understanding the progression of AD.
Furthermore, consideration of this heterogeneity may improve the ability to identify
individuals most at-risk for cognitive decline as compared to approaches that measure

atrophy using the same regional metric across all participants.

Mixed Membership Modeling and Precision Medicine

One key advantage of our modeling strategy is that individuals can express
multiple latent atrophy factors (i.e., mixed membership) rather than being assigned to a
single subtype. Therefore, patients classified by Murray et al. (2011) as hippocampal-
sparing (or limbic-predominant) might correspond to the few patients in our study that
predominantly expressed the cortical (or temporal) atrophy factor. Murray et al. (2011)
defined a third group of patients that were considered “typical” by virtue of being neither
hippocampal-sparing nor limbic-predominant. These typical patients might correspond to
the majority of AD dementia patients in our study that expressed multiple latent factors to
similar degrees.

The use of mixed membership modeling has implications for estimation of factor-
dependent atrophy maps and cognitive decline. For example, consider a hypothetical
patient who expressed 50% subcortical, 40% temporal and 10% cortical factors. In our
analyses, 50%, 40% and 10% of the patient’s atrophy map would contribute to the
estimation of the probabilistic atrophy maps of the subcortical, temporal and cortical
factors, respectively. This extends previous approaches (Whitwell et al., 2012, Noh et al.,
2014, Byun et al., 2015) that classified each patient into one single subtype and then
performed group comparisons to obtain differential atrophy patterns, despite the fact that
each patient might express multiple latent atrophy factors. Thus, more information about
each participant is retained by treating factor compositions continuously rather than
assigning participants to a single group.

Similarly, 50%, 40% and 10% of the hypothetical patient’s cognitive decline rate

would contribute to our estimation of the memory decline rates associated with the
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subcortical, temporal and cortical factors, respectively. Indeed, when such a patient was
simply assigned to a single factor based on the highest probability (i.e., assigned to a pure
subtype), the estimated differences in cognitive decline rates across subtypes were found
to be substantially weaker. The reason should be clear when considering the hypothetical
patient. Since the patient expressed 50% subcortical, 40% temporal and 10% cortical
factors, one would expect the memory decline rate to be faster than a pure subcortical
subtype (and slower than a pure temporal factor). By assigning this patient to be a pure
subcortical subtype, one would overestimate the decline rate of the subcortical subtype.
Although we observe some participants with extreme probabilities of a single
atrophy factor, these participants are infrequent. Instead, the majority of the participants
expressed intermediate probabilities across multiple latent atrophy factors. We can
potentially utilize the factor decomposition to predict the memory and executive function
decline trajectories of individual participants. For example, we might predict the
hypothetical patient who expressed 50% subcortical, 40% temporal and 10% cortical
factors to have decline trajectories corresponding to 50% times the blue curve plus 40%
times the green curve plus 10% times the red curve from Fig. 8. Therefore, the factor
composition can be thought of as an individualized subtype diagnosis of the participant,

representing a small but crucial step towards precision medicine.

Limitations

Our study has multiple limitations. First, direct comparisons with other subtype
studies were difficult because of methodological differences, including the utilization of
mixed membership modeling and participant selection. Another limitation is the arbitrary
choice of the number of latent atrophy factors to estimate using LDA. Given consistency
with previous studies and a limited sample size, we focused on K = 2 to 4 factors, but

atrophy factors beyond K = 4 may be biologically relevant.

Conclusion
By utilizing a novel Bayesian modeling framework, our study revealed three
latent AD atrophy factors with distinct memory and executive function trajectories.

Across the clinical spectrum, the cortical atrophy factor was associated with the worst
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executive function performance, while the temporal atrophy factor was associated with
worst memory performance. The subcortical atrophy factor has not been discussed in the
literature and was associated with the slowest memory and executive function decline.
Our approach allowed each individual to express multiple atrophy factors to various
degrees rather than assigning the individual to a single subtype. Therefore, each
participant exhibited his or her own unique factor composition, which can potentially be
exploited to predict individual-specific cognitive decline trajectories, with potential
implications for prevention and monitoring disease progression. Finally, our
methodological framework is general and can be utilized to discover subtypes in other

brain disorders. Code from this manuscript is publicly available at link to be added.
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Materials and Methods
Overview. Voxelwise atrophy of 188 AD dementia patients was derived from their
structural MRI data (Ashburner & Friston, 2000, Douaud et al., 2007). Subsequent
analyses proceeded in three steps. In Step I, a Bayesian model (Fig. 1; Blei et al., 2003)
was applied to estimate the probabilistic atrophy maps of latent factors Pr(Voxel | Factor)
and the factor composition of each patient Pr(Factor | Patient). The probabilistic atrophy
maps were then used to infer the factor compositions of 43 AP+ CN participants and 147
AP+ MCI participants. In Step 11, stability of the factor decomposition over a period of
two years was analyzed. In addition, characteristics (demographics, age at AD onset,
years from AD onset to baseline, amyloid burden and APOE genotype) of all participants
were compared across the factors. Finally, in Step III, we analyzed the atrophy factors’
relationships with cross-sectional baseline and longitudinal decline of memory and

executive function. Each step is described in detail below.

Data. Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu), launched in 2003 as a public-private
partnership and led by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI, positron emission tomography, other
biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD (for up-to-date information, see

http://www.adni-info.org/). Institutional review boards approved study procedures across

participating institutions (see SI for the complete list of the institutions). Written
informed consent was obtained from all participants.

This study considered the structural MRI (T1-weighted, 1.5 Tesla) of 810
participants enrolled in ADNI 1, comprising 188 AD dementia (at baseline, same
hereinafter) patients, 394 MCI participants and 228 CN participants. Of the 188 AD
dementia patients, 100 had their CSF amyloid data available, and 91 of the 100 were Ap+.
AD onset was on average 3.6 years (std = 2.5, min = 0, max = 13) before baseline. Of the
394 MCI participants, 197 had their CSF amyloid data available, and 147 of the 197 were
AB+. Of the 228 CN participants, 114 had their CSF amyloid data available, and 43 of the
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114 were AP+. The AB+ CN elderly participants and the AR+ MCI participants are
referred to as the AR+ nondemented group (N = 190) in this study.

According to the ADNI protocol, AD dementia patients had their cognition
examined at baseline, in months 6, 12 and 24. In addition, normal participants were
examined in month 36 and annually afterwards. MCI participants underwent another
extra exam in month 18. Although this study only considered participants enrolled in
ADNI 1, to increase statistical power, their neuropsychological scores (ADNI-Mem,
ADNI-EF and MMSE) from ADNI GO and ADNI 2 were also included in the

longitudinal analyses of cognitive decline.

Voxel-Based Morphometry. Structural MRI data of all 810 participants were analyzed
with FSL-VBM (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; Douaud et al., 2007), a
VBM protocol (Good et al., 2001) carried out with FSL tools (Smith et al., 2004). First,

structural images were brain-extracted and gray matter (GM) segmented before being
registered to the MNI152 standard space using affine registration. Second, the affine-
registered images were flipped about the x-axis and averaged to create a left-right
symmetric, study-specific affine GM template. Third, the GM images were nonlinearly
registered to the affine GM template and were again flipped and averaged to create a final
left-right symmetric, study-specific nonlinear GM template in MNI152 space. Fourth, all
native GM images were nonlinearly registered to this final template and modulated to
account for local expansion (or contraction) due to the nonlinear component of the spatial
transformation. The resulting GM density images were smoothed with a Gaussian kernel
of 10mm full width at half maximum (FWHM), consistent with standard VBM practices
(e.g., Dole et al., 2013, Pardoe et al., 2008). Finally, we applied log;o to the smoothed
GM density images and regressed out possible effects of age, sex and intracranial volume

(ICV) with a general linear model (GLM) estimated from just the 228 CN participants.
Quality Control for Voxel-Based Morphometry. The outputs of each VBM step were

visually checked by authors XZ and NS. Details are found in Supplemental Methods of
SI.
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Bayesian Model. We sought a mathematical model that captured the premise that each
AD patient expresses one or more latent atrophy factors, each of which is associated with
distinct, but possibly overlapping atrophy patterns (Fig. 1). Among many possible models,
the latent Dirichlet allocation (LDA) model (Blei et al., 2003) is probably the simplest
and was applied to the ADNI data.

The LDA model was originally developed to automatically discover latent topics
in a collection of text documents. The model assumes that each document is an unordered
collection of words associated with a subset of K latent topics. Each topic is represented
by a probability distribution over a dictionary of words. Given a collection of documents,
there exist algorithms (Blei et al., 2003) to estimate the probability of a dictionary word
given a topic Pr(Word | Topic) and the probability that a topic is associated with a
particular document Pr(Topic | Document). The LDA model is useful because it allows a
document to be associated with multiple topics (which can be shared across documents)
and each topic to be associated with multiple words (which can be shared across topics).

To map the LDA model to the ADNI data, one can think of AD patients as text
documents, atrophy factors as topics, and MNI152 voxels as dictionary words.
Correspondingly, each patient expresses one or more latent atrophy factors to different
extents (Pr(Factor | Patient)), and each factor is associated with atrophy at multiple voxels
to different extents (Pr(Voxel | Factor)).

LDA assumes that a document is summarized by the number of times a dictionary
word appears in the document. Since dictionary words correspond to MNI voxels, the
continuous log-transformed GM density images (previous section) were discretized so
that greater atrophy corresponded to larger word counts. More specifically, for each voxel
of the log-transformed GM density images, z-transformation (with respect to the 228 CN
participants) was performed for each of the 810 participants. Therefore, a z-score of less
than 0 at a given voxel of a particular individual would imply above-average atrophy at
the voxel relative to the CN participants. Z-scores above zero were set to 0, equivalent to
regarding the voxels as atrophy-free. Finally, the z-scores were multiplied by -10 and
rounded to the nearest integer, so that larger positive values (greater word count)

indicated more severe atrophy.
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The LDA model assumes that the ordering of words within a document is
exchangeable. In the context of our application, the corresponding assumption is that the
ordering of atrophied voxels is exchangeable. Although word order in real documents is
important, the ordering of atrophied regions (e.g., prefrontal vs. parietal) reported in an
experiment is arbitrary and thus consistent with the assumption. Consequently, the LDA
model appears particularly well suited for applications in the present context.

Given the discretized voxelwise atrophy of the 188 AD dementia patients and the
number of latent atrophy factors K, the variational expectation-maximization (VEM)

algorithm (http://www.cs.princeton.edu/~blei/lda-c/; Blei et al., 2003) was applied to

estimate Pr(Factor | Patient) and Pr(Voxel | Factor). For each K, the algorithm was rerun
with forty different random initializations, and the solution with the highest likelithood
(bound) was selected. The random initializations led to highly similar solutions,
suggesting that forty random initializations were sufficient for robust factor estimations.
The probabilistic atrophy maps Pr(Voxel | Factor) estimated from the AD
dementia patients were used to infer factor compositions Pr(Factor | Participant) of the

190 AB+ nondemented participants using the standard VEM algorithm (Blei et al., 2003).

Interpreting Pr(Voxel | Factor) and Pr(Factor | Patient). For a given latent factor,
Pr(Voxel | Factor) is a probability distribution over all the GM voxels, which can be
visualized as a probabilistic atrophy map overlaid on the FSL MNI152 template (each
row of Fig. 2).

Pr(Factor | Patient) is a probability distribution over latent atrophy factors,
representing the factor composition of the patient, and can be visualized as a dot inside a
“factor triangle” (for K = 3 factors) whose barycentric coordinates equal Pr(Factor |
Patient) as shown in Figs. 4 and S5A. For example, Pr(Factor | Patient) =[0.7, 0.2, 0.1]
implies that the patient expresses a pattern of brain atrophy due to 70% temporal, 20%
subcortical and 10% cortical factors and that the dot representing this patient falls closer
to the “temporal corner” of the factor triangle. This contrasts with work in the literature
that assigns each individual to a single subtype (e.g., Murray et al., 2011, Noh et al., 2014,
Byun et al., 2015).
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Quantifying the Nested Hierarchy of Atrophy Factors. An important model parameter
1s the number of latent factors K. Therefore, we determined how factor estimation
changed from K =2 to 10 factors. See Supplemental Methods of SI for the detailed

description.

Top Anatomical Structures Associated with Each Factor. This manuscript focuses on
three atrophy factors. To automatically identify the gray matter anatomical structures
most associated with each atrophy factor, the MNI152 template was first processed using
FreeSurfer 4.5.0 (Fischl, 2012). The FreeSurfer software automatically segmented the
MNI152 template into multiple cortical (Fischl et al., 2004, Desikan et al., 2006) and
subcortical (Fischl et al., 2002, Fischl et al., 2004) structures, such as the inferior parietal
cortex and hippocampus. For each anatomical structure, we averaged Pr(Voxel | Factor)
over all its voxels. The structure was assigned to the factor with the largest average
probability. For each factor, we tabulated the assigned brain structures and ranked them

in the descending order of average probability. The results are in Table S1.

Cross-Pipeline Validation of Atrophy Patterns. To ensure the atrophy factors were
robust to choice of VBM software (FSL), we performed posthoc analyses using
FreeSurfer. Details are found in Supplemental Results and Supplemental Methods of
SI.

Atrophy Factor Stability. To examine the atrophy factor stability during disease
progression, we considered all 810 participants who had their two-year follow-up scans
available (N = 560). First, their baseline factor compositions Pr(Factor | Participant) were
extracted using their baseline MRI data. Next, VBM was performed on the follow-up
structural MRI data using the VBM template previously created with all 810 participants.
Subsequent processing (e.g., z-normalization) adopted parameters used in processing the
810 baseline scans. Factor compositions were then inferred with the processed VBM
results (same procedure as inferring factor compositions of Af+ CN and MCI
participants). The factor stability was visualized with a scatter plot for each factor (Figs. 3

and S4). Each participant is represented by a dot whose x-coordinate is the factor
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composition at baseline and y-coordinate is the factor composition after two years.
Therefore, if the factor estimation is stable over disease progression, one would expect a

close-to-one correlation coefficient and a y = x linear fit.

Comparing Patient Characteristics by Atrophy Factor. We explored how patient
characteristics (baseline age, age at AD onset, years from onset to baseline, education,
sex, amyloid and APOE genotype) varied across the three latent factors (Table S2) using
GLM (and logistic regression for binary variables).

GLM was applied to baseline age, age at AD onset, years from onset to baseline,
education, amyloid and APOE: the characteristic of interest served as response y, and the
subcortical factor probability s and cortical factor probability ¢ were included as
explanatory variables. Hence, the GLM was y = o + Bs's + B¢ c + €, where ’s are the
regression coefficients, and ¢ is the residual. The temporal factor probability t was
implicitly modeled because t + s + ¢ = 1. Intuitively, By reflected the response of the
temporal factor, s reflected the response difference between the subcortical and temporal
factors, and B reflected the difference between the cortical and temporal factors.

Statistical tests of whether the characteristic y varied across factors involved null
hypotheses of the form HB = 0, where B = [Bo, Bs, Bc]", and H is the linear contrast (Koch,
1999). We first performed a statistical test of overall differences across all factors with H
=10, 1, 0; 0, 0, 1]. We then tested for differences between the factors. For example, H =
[0, 1, -1] tested possible differences between the subcortical and cortical factors. H = [0,
1, 0] compared the subcortical and temporal factors. Similarly, H = [0, 0, 1] compared the
cortical and temporal factors.

Since sex is a binary variable, logistic regression was applied. In this case,
response y was sex (0 for male, 1 for female), and explanatory variables consisted of the
subcortical factor probability s and cortical factor probability c. Therefore, the regression
model was log(u/(1-p)) = Po + Bs's + Bc-c + €, where p is the probability of female, B’s
are the regression coefficients, and ¢ is the residual. Intuitively, the linear combination [
+ Bs's + PBo-c predicts the probability of female (y = 1). exp(Bo) reflects the odds ratio for

the temporal factor; exp(p;s) reflects the ratio of odds ratio between the subcortical and

30


https://doi.org/10.1101/064295
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064295; this version posted July 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

temporal factors; exp(P.) reflects the ratio of odds ratio between the cortical and temporal
factors.

Likelihood ratio test was utilized to determine whether sex varied across the latent
atrophy factors. In short, the test involved comparing the likelihood of an appropriately
restricted model to the original model (Koch, 1999). We first performed a statistical test
of overall differences across factors. In this case, the restricted model log(u/(1-p)) = Bo +
€ was fitted to the data, and the resulting likelihood was compared with the likelihood of
the original model y = o + Bs's + Bc-c + €. We then tested for possible differences
between atrophy factors. For example, to compare the subcortical and cortical factors, the
restricted model was log(p/(1-p)) = Bo + Bs-(s+¢) + € because s = B under the null
hypothesis. To compare the subcortical and temporal factors, the restricted model became
log(u/(1-pn)) = Po + Bc-c + € because Ps = 0 under the null hypothesis. To compare the
cortical and temporal factors, the restricted model was log(u/(1-p)) =Bo + Bs's + €

because B, = 0 under the null hypothesis.

General Linear Modeling of Cross-sectional Cognition Among A+ CN, Ap+ MCI
and AD Dementia Participants. A single GLM was utilized to examine cross-sectional
differences in memory (ADNI-Mem; Crane et al., 2012) across the atrophy factors in the
43 AB+ CN, 147 AP+ MCI, and 188 AD dementia participants. The same model was
estimated for K =2, 3 and 4 factors, as well as for executive function (ADNI-EF;
Gibbons et al., 2012) and MMSE.

For ease of explanation, we will focus on explaining the GLM for the case of
three atrophy factors and ADNI-Mem. Response y of the GLM consisted of the 378 (=43
CN + 147 MCI + 188 AD) participants’ baseline ADNI-Mem. Explanatory variables
consisted of binary MCI group indicator m, binary AD dementia group indicator d,
subcortical factor probability s, cortical factor probability c, and interactions between
group indicators and factor probabilities (i.e., m's, m-c, d-s and d-c), while nuisance
variables consisted of baseline age x;, sex X;, education x3 and total atrophy x4 (defined as
ICV divided by total GM volume as estimated by FSL).

Therefore, the GLM was y = By + Bm'm + Bg-d + Bs's + BeC + PBms'm*s + Pe-m-c

+ Bas-d-s + Pac-d-c + Bi-x1 + Ba-Xa + PB3-X3 + Pa-x4 + €, where B’s are the regression
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coefficients, and ¢ is the residual. Temporal factor probability t was implicitly modeled
because t + s + ¢ = 1. This was also the case for CN group indicator n because only one of
n, m and d is 1 with the other two being 0. Intuitively, o reflected the temporal factor’s
contribution to ADNI-Mem at the CN baseline (because m=d=s=c =0), fo + Bm
reflected the temporal factor’s contribution to ADNI-Mem at the MCI baseline (because
m=1,and d=s=c=0), and By + Bm+ Bs T Pms reflected the subcortical factor’s
contribution to ADNI-Mem at the MCI baseline (because m=1,s =1, and d = ¢ =0).
With this model setup, variations in age, sex, education and total atrophy were controlled
for across participants.

Statistical tests involved null hypotheses of the form HB = 0, where B = [Bo, Bm, Bd,
Bs, Pes Pmss Pme»> Bds> Pdes P1s B2, B3, B4]T, and H is the linear contrast (Koch, 1999). First, we
tested whether ADNI-Mem deteriorated across disease stages (i.e., from CN to MCI to
AD) for each factor. Specifically, for each factor, we tested possible differences in
ADNI-Mem between the CN and MCI baselines, MCI and AD baselines, and CN and
AD baselines. For example, to test whether ADNI-Mem deteriorated significantly from
the CN to MCI baseline for the temporal factor, H was specified such that H = 3,, = 0.
As another example, HB = B4 + Bdc — Pm — Pme = O tested whether ADNI-Mem degraded
greatly from the MCI to AD baseline for the cortical factor. The test results for both
memory and executive function are tabulated in Figs. 5A1 and 5BI1.

To foreshadow the results, the hypothesis tests in the previous paragraph hinted at
differences in cross-sectional ADNI-Mem across the factors. Therefore, statistical tests of
whether cross-sectional ADNI-Mem y varied across factors at each disease stage were
performed. For each stage baseline, we first performed a statistical test of overall
differences across all factors and then tested for pairwise differences. Take the AD
baseline as an example. To test whether baseline memory differed across all factors
among AD dementia patients, H was specified such that H = 0 translated to s + Bas = P
+ Bac = 0. For pairwise comparisons, s + Bgs = 0 tested possible differences between the
temporal and subcortical factors at the AD baseline, B + Bac = 0 compared the temporal
and cortical factors at the AD baseline, and B + Bgs = Bc + Pac tested possible differences

between the subcortical and cortical factors at the AD baseline.
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The results of the above statistical tests are shown in Figs. SA1, 5B1, 6, S6AI,
S6B1, S7TA1, S7B1, S7C1, S8A1 and S8B1, where (except in Figs. SA1 and 5B1) the
blue dot corresponds to the estimated difference in baseline scores between two “pure
factors™ after controlling for age, sex, education and total atrophy. For example, when
comparing subcortical and cortical factors at the MCI baseline, the estimated difference
in baseline cognition is given by Bs + Bms — Bc — Bme- The red bar corresponds to the

standard error of this estimation given by std(Bs + Bms — Be — Pme)-

Linear Mixed-Effects Modeling of Longitudinal Cognitive Decline Among Ap+ CN,
AP+ MCI and AD Dementia Participants. To analyze variations in cognitive decline
rates across atrophy factors, we utilized the linear mixed-effects (LME) model, whose
setup was similar to the GLM setup (previous section). Details are found in
Supplemental Methods of SI. Results of the LME statistical tests are illustrated in Figs.
5A2,5B2,7,S6A2, S6B2, STA2, S7TB2, S7TC2, S§A2 and S8B2.

False Discovery Rate Correction for Behavioral Tests. Because of the many statistical
tests performed in the behavioral analyses, multiple testing was corrected using false
discovery rate (FDR; Benjamini & Hochberg, 1995) at q = 0.05 for all behavioral
comparisons. In detail, included tests are diagnostic group comparisons in memory and
executive function regardless of factors as well as all comparisons of baseline and
longitudinal decline rates of memory, executive function and MMSE at all disease stages
for K =2, 3 and 4 factors. In total, we corrected for 240 statistical tests. P values that
remained significant after FDR control were highlighted in blue in Figs. 5, 6, 7, S6, S7
and S8.
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Bayesian model reveals latent atrophy factors with dissociable cognitive

trajectories in Alzheimer’s disease

Supporting Information

This supplemental material is divided into Supplemental Results, Supplemental
Methods, Supplemental Figures and Tables, and Complete List of ADNI

Investigators and Participating Institutions.

Supplemental Results

Similar Atrophy Factors Were Obtained from Ap+ MCI Participants

We confirmed that atrophy patterns estimated with our LDA approach would be
similar during the nondemented stage compared to the resulting factors from the AD
dementia group. Given the small number of the AB+ CN participants, we estimated
atrophy factors with the 147 AP+ MCI participants (Fig. S3C) and confirmed that the
obtained atrophy factors were highly similar, with an average correlation across all
pairwise comparisons of r = 0.77. Therefore, the atrophy factors from the AD dementia

patients were utilized for subsequent analyses.

Atrophy Factors Were Robust to Choice of Software

Table S1 lists the anatomical structures associated with each factor based on
overlap between the atrophy maps and anatomical structures in MNI152 space as defined
by FreeSurfer [1] (see Supplemental Methods). The volumes of individual anatomical
structures in all AD dementia patients were computed using FreeSurfer. Regression
analyses confirmed that volumes of anatomical structures associated with an atrophy
factor were lower (after controlling for intracranial volume) in participants with higher
loading on the factor (see Supplemental Methods). For example, the temporal factor
was associated with the most severe atrophy in the structures listed by Table S1A
compared with the subcortical factor (p = 2e-15) and cortical factor (p = 4e-15), whereas
there were no differences between the subcortical and cortical factors (p = 0.84). Results

for the subcortical and cortical factors are in the captions of Tables S1B and S1C. The
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agreement between FSL-VBM [2] and this posthoc analysis with FreeSurfer suggested

that the factors were unlikely the results of segmentation or registration artifacts.

Baseline and Longitudinal Decline of Memory and Executive Function Were
Consistent Across Factor Hierarchy

The behavioral (memory and executive function) analyses were repeated for two
and four atrophy factors (Figs. S6 and S8). The results were consistent with the hierarchy
of atrophy factors.

For example, the temporal and subcortical factors in the three-factor model were
merged as a single temporal+subcortical factor in the two-factor model. Since the cortical
factor was associated with the fastest longitudinal memory decline among the three
factors in the AD dementia cohort (Fig. 7A), we expected the cortical factor to be
associated with faster memory decline than the temporal+subcortical factor in the two-
factor model, which was indeed the case (p = 2e-6; Fig. S6A2).

On the other hand, the three-factor analysis of AD dementia patients suggested
that the temporal factor was associated with worse memory than the cortical factor, while
the cortical factor was associated with slightly worse memory than the subcortical factor
(Fig. 6A). Therefore, we expected difference in baseline memory between the
temporal+subcortical and cortical factors (in the two-factor model) to be diluted by the
fusion of the temporal and subcortical factors, which was indeed the case (p = 0.17; Fig.
S6A1). Therefore, additional insights into factor differences could be obtained by going
from two factors to three factors.

As the number of factors was increased from three to four, the cortical factor split
into frontal and posterior cortical factors. There was again consistency when comparing
the four-factor results with the three-factor results. The two factors were mostly
associated with similar behavioral trajectories, except that among AB+ MCI participants,
the posterior cortical factor was associated with faster memory (p = 8e-3) and executive
function (p = 9e-8) decline rates than the frontal cortical factor (Fig. S8).

As the number of factors increased, the effective (average) number of participants
per factor decreased (e.g., the effective number of AB+ CN participants “assigned to the

temporal factor” is only 5.7 for the four-factor model), thus reducing our confidence in
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larger number of factors despite the successful behavioral dissociation. Therefore, this
work focused on interpreting the results of the three-factor model. As the ADNI database
continues to grow, future work might re-visit the question of larger number of atrophy

factors.

Schematics of Memory and Executive Function Trajectories Based on Statistical
Test Results

The behavioral results (Figs. 5, 6 and 7) are summarized by the schematics of
trajectories in Fig. 8, which were drawn based on how memory (or executive function) of
each factor declined across disease stages and how the factors compared with each other
in terms of memory (or executive function) decline at each stage.

All salient features of the trajectories reflect the results of statistical tests (Figs. 5,
6 and 7). For example, the executive function trajectories of all three atrophy factors were
almost flat and did not diverge at the CN stage (Fig. 8B). This was based on the fact that
there was no change in ADNI-EF [3] performance between A+ CN and MCI
participants for all three factors (Fig. SB1), as well as no difference in ADNI-EF decline
rates between factors among AB+ CN participants (Fig. 7B). From the MCI stage
onwards, the trajectory of the cortical factor (red curve) became increasingly steep,
reflecting the test results that executive function decline of the cortical factor accelerated
from CN to MCI to AD (Fig. 5B2). This was also consistent with the ADNI-EF decrease
between MCI and AD (Fig. 5B1). In contrast, trajectories of the temporal and subcortical
factors (blue and green curves) remained almost flat from MCI to AD because there was
no difference in ADNI-EF performance between MCI and AD for the two factors (Fig.
S5B1). In addition, cross-sectional and longitudinal differences between the factors (Figs.
6B and 7B) were also respected in Fig. 8B, e.g., the cortical factor was associated with
the worst baseline ADNI-EF and the most rapid decline among AD dementia patients.

One salient feature of the memory trajectories was the crossing of the subcortical
and cortical factors (blue and red curves), supported by the following behavioral tests.
Among AP+ CN participants, both the temporal and subcortical factors exhibited
significant memory decline rates, but not the cortical factor (Fig. 5A2). The temporal and

subcortical factors showed faster memory decline than the cortical factor (Fig. 7A). These
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results implied that the cortical (red) curve should be above the subcortical (blue) and
temporal (green) curves immediately after CN (Fig. 8A). Among A+ MCI participants,
the temporal factor was associated with worse memory than the subcortical factor, but not
the cortical factor (Fig. S7A1). This implies that the cortical (red) curve should be lower
than the subcortical (blue) curve, closer to the temporal (green) curve. This is also
consistent with the statistical test showing a significant decrease in memory performance
between MCI and CN for the cortical and temporal factors, but not for the subcortical
factor (Fig. 5A1). Together, the results imply that the cortical (red) curve, originally
higher than the subcortical (blue) curve at the CN stage, later crossed the subcortical
(blue) curve before the MCI stage.
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Supplemental Methods
Quality Control for Voxel-Based Morphometry. The outputs of each VBM step were
visually checked by authors XZ and NS. In practice, all the VBM steps (except for brain
extraction) did not require any manual interventions. The brain extraction (FSL BET [4])
sometimes resulted in inaccurate brain extraction, e.g., part of the neck was sometimes
included as part of the brain. For these problematic cases, the parameters were manually
tuned until the results were satisfactory. The 810 baseline scans and 560 follow-up scans
(see the second paragraph of II. Examining Factor Robustness and Characteristics of
Factor Compositions) were processed jointly to avoid bias introduced by processing the
baseline and follow-up scans separately as two independent sets. Specifically, the 810
baseline scans and 560 follow-up scans were mixed together and randomly divided into
two sets, such that each set contained both baseline and follow-up scans. XZ and NS each
processed one set. To ensure common quality control standards, XZ and NS
independently processed a small number of the participants, compared their conclusions,

and eventually reached consensus.

Quantifying the Nested Hierarchy of Atrophy Factors. An important model parameter
1s the number of latent factors K. Therefore, we determined how factor estimation
changed from K =2 to 10 factors. An exhaustive search was performed to quantify the
possibility that two atrophy patterns in the (K+1)-factor model were subdivisions of a
pattern in the K-factor model (while the remaining K-1 atrophy patterns remained similar
across both models). This quantification is based on the following idea: suppose an
atrophy pattern in the K-factor model divides into the i-th and j-th patterns in the (K+1)-
factor model, then the average of the i-th and j-th patterns should be similar to the
original pattern. To quantify the presence of this phenomenon, the Pr(Voxel | Factor) of
the i-th and j-th latent factors were averaged into a single Pr(Voxel | Factor). The
resulting K factors of the (K+1)-factor model were matched to the K-factor model by
reordering the factors (using the Hungarian matching algorithm) to maximize the
correlation of Pr(Voxel | Factor) between corresponding pairs of factors. After obtaining
the optimal correspondence, the pairwise correlations were averaged across all pairs of

factors, resulting in an average correlation value indicating the quality of the split (with
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higher correlation values indicating a better split). By performing an exhaustive search
over all pairs of 1 and j, we found the atrophy factor of the K-factor model whose split
best approximated the (K+1)-factor model (Fig. S2A). This procedure was independently
repeated using Pr(Factor | Patient) (Fig. S2B).

Cross-Pipeline Validation of Atrophy Patterns. To ensure the atrophy factors were
robust to choice of VBM software (FSL [2]), we performed posthoc analyses using
FreeSurfer. Recall from Top Anatomical Structures Associated with Each Factor, that
we have assigned each MNI GM anatomical structure to each of the three atrophy factors
(Table S1). The structural MRI data of the 378 (=43 CN + 147 MCI + 188 AD)
participants were preprocessed using FreeSurfer so as to obtain volume estimates of all
the anatomical structures for each participant. We then verified using GLM that each
factor had a smaller total volume of its assigned GM anatomical structures than the other
two factors (while controlling for ICV).

For example, Table S1A shows the top GM anatomical structures associated with
the temporal factor. A GLM was set up where the response variable y was the total
volume of the anatomical structures listed in Table S1A, while the explanatory variables
included the subcortical factor probability s, cortical factor probability ¢, and ICV 1.
Hence, the GLM was y = B + Bs's + Be-c + Bi-1 + €, where ’s are the regression
coefficients, and ¢ is the residual. The temporal factor probability t was implicitly
modeled because t + s + ¢ = 1. Intuitively, o reflected the temporal factor’s total GM
volume of the structures while discounting ICV, B reflected the response difference
between the subcortical and temporal factors, and . reflected the response difference
between the cortical and temporal factors.

Statistical tests of whether total GM volume y varied across factors involved null
hypotheses of the form HB = 0, where B = [Bo, Bs, Be, Bi]", and H is the linear contrast [5].
By specifying different H’s, we were able to compare different pairs of factors. For
example, H=[0, 1, 0, 0] tested possible differences between the subcortical and temporal

factors, and H = [0, -1, 1, 0] compared the cortical and subcortical factors.
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The GLM and statistical tests were repeated using Table S1B (top GM anatomical
structures associated with the subcortical factor) and Table S1C (top GM anatomical

structures associated with the cortical factor).

Linear Mixed-Effects Modeling of Longitudinal Cognition Decline Among AB+ CN,
AP+ MCI and AD Dementia Participants. To analyze variations in cognitive decline
rates across atrophy factors, one could first estimate the decline rate for each participant
and then model the estimated decline rates using GLM. However, this approach is
suboptimal because participants with one or even two time points may have to be
discarded because the decline rate cannot be estimated with confidence (e.g., [6]).

Here we considered the linear mixed-effects (LME) model that provides
significantly improved exploitation of longitudinal measurements [7] by accounting for
both intra-individual measurement correlations and inter-individual variability. Under
this framework, the longitudinal cognitive decline rates can be easily compared across
atrophy factors for the 188 AD dementia patients, 147 AR+ MCI participants, and 43 AP+
CN participants.

A single LME model was utilized to examine longitudinal changes in memory
(ADNI-Mem [8]) across the atrophy factors in the 43 AR+ CN, 147 AB+ MCI, and 188
AD dementia patients. The same model was estimated for K = 2, 3 and 4 factors, as well
as for executive function (ADNI-EF) and MMSE.

For ease of explanation, we will focus on explaining the LME model for the case
of three atrophy factors and ADNI-Mem. Response variable y of the LME model
consisted of the 378 (=43 CN + 147 MCI + 188 AD) participants’ longitudinal ADNI-
Mem. Explanatory fixed-effects variables included binary MCI group indicator m, binary
AD group indicator d, subcortical factor probability s, cortical factor probability c,
interactions between group indicators and factor probabilities (i.e., m's, m-c, d-s and d-c),
time from baseline t, interactions between group indicators and time from baseline (i.e.,
m-t and d-t), interactions between factor probabilities and time from baseline (i.e., s't and
c't), and interactions among group indicators, factor probabilities and time from baseline
(i.e., m's't, m-c-t, d-s't and d-c-t), while nuisance variables consisted of baseline age x|,

sex Xp, education x3 and total atrophy xa.
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The resulting LME model was 'y = (o + Bm'm + Bg-d + Bs's + Be-C + Pms'ms +
Bme'm-c + Bas'd's + Bacrd-c + Brxy + Barxa + P3rx3 + Parxa +b) + (Bro + Pumm+ Prgrd +
Bts's + Pie'C + Pims M'S + Prme m-C + Prgs-ds + Pige-d-c)-t + €, where B’s are the regression
coefficients, b is the random intercept, and ¢ is the residual. For the same reasons
provided in the previous section, the temporal factor probability and binary CN group
indicator were implicitly modeled. Intuitively, By reflected the temporal factor’s decline
rate at the CN stage, B + P reflected the temporal factor’s decline rate at the MCI stage,
and By + P + Pts + Pums reflected the subcortical factor’s decline rate at the MCI stage.
With this model setup, variations in age, sex, education and total atrophy were controlled
for across participants.

Statistical tests were performed in two stages. First, we tested whether ADNI-
Mem decline rate accelerated, decelerated or stayed the same across disease stages for
each factor. More specifically, for each factor, we first tested whether decline in memory
and executive function was significant at the CN stage and then examined possible
changes in decline rates from CN to MCI as well as from MCI to AD. For example, to
test whether ADNI-Mem decline was significant at the CN stage for the subcortical factor,
the null hypothesis was B + Bis = 0. To test whether the decline rate changed from CN to
MCI for the subcortical factor, the null hypothesis was B + Bmst = 0. Finally, null
hypothesis Bat + Bast — Pmt — Pmst = O tested whether the decline accelerated from MCI to
AD. The test results for memory and executive function are shown in Figs. SA2 and 5B2,
respectively. Details on hypothesis testing in the LME model can be found in [7].

To foreshadow the results, the hypothesis tests in the previous paragraph hinted at
differences in ADNI-Mem decline rates across the factors. Therefore, statistical tests of
whether ADNI-mem decline rates varied across factors at each disease stage were
performed. More specifically, at each disease stage, we first performed an omnibus
statistical test on whether there were differences in memory decline rates across factors
and then tested for pairwise differences. Take the MCI stage as an example. Rejecting the
null hypothesis Bis + Biuns = Prc + Pime = 0 would imply differences in ADNI-Mem decline
rates across the three factors among AP+ MCI participants. Rejecting the null hypothesis
that By + Pums = 0 would suggest that the subcortical factor and temporal factor were

associated with different ADNI-Mem decline rates. Rejecting the null hypothesis that By
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+ Bume = 0 would suggest that the cortical factor and temporal factor were associated with
different ADNI-Mem decline rates. Finally, rejecting the null hypothesis that B + Bms =
Bt + Pime would suggest that the subcortical and cortical factors were associated with
different cognitive decline rates.

The results of the above statistical tests are illustrated in Figs. SA2, 5B2, 7, S6A2,
S6B2, STA2, S7TB2, S7C2, S8A2 and S8B2, where (except in Figs. SA2 and 5B2) the
blue dot corresponds to the estimated difference in cognitive decline rate between two
“pure factors” after controlling for age, sex, education and total atrophy. For example,
when comparing temporal and subcortical factors at the AD dementia stage, the estimated
difference in cognitive decline rate is given by B + Pis. The red bar corresponds to the

standard error of this estimation given by std(Bs + Pras)-
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Supplemental Figures and Tables

K = 2: Temporal + Subcortical

Fig. S1. Sagittal, coronal and axial slices of the probabilistic atrophy maps for K =2, 3 and
4 atrophy factors. Bright color indicates high probability of atrophy at that spatial location
for a particular atrophy factor, i.e., Pr(Voxel | Factor).
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K = 3: Temporal

Fig. S1 (cont’d).
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K = 3: Cortical

Fig. S1 (cont’d).
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K = 4: Temporal

Fig. S1 (cont’d).
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K = 4: Posterior Cortical

K = 4: Frontal Cortical

Fig. S1 (cont’d).
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Fig. S2. Quantifying the nested hierarchy of latent atrophy factorsin terms of (A) atrophy
patterns and (B) individual factor compositions. A high correlation value at “K-(K+1)” on
the x-axis indicates a high-quality split from the K-factor model to the (K+1)-factor model
(see Supplemental Methods of SI). For example, the close-to-one valuesat “2-3” in both
(A) and (B) suggest that the splits of both the atrophy patterns and individual factor
compositions are high-quality from two to three atrophy factors. Overall, the high
correlation values from 2 to 10 supporta nested hierarchy of latent atrophy factors.
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Fig. S3. Probabilistic atrophy maps for K = 3 factors estimated with (A)91 AB+AD
dementia patients, (B) all 188 AD dementia patients, and (C) 147 A+ MCI participants.
The three different cohorts yielded highly similar atrophy patterns. Bright color indicates

high probability of atrophy at that spatial location for a particular atrophy factor, i.e.,
Pr(Voxel | Factor).
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FreeSurfer Structure Name Pﬁ)vbe:lz:ﬁiiy
Right-Amygdala 3.81e-5
Left-Amygdala 3.59¢-5
ctx-rh-entorhinal 3.03e-5
ctx-lh-entorhinal 2.87e-5
Right-Hippocampus 2.86e-5
Left-Hippocampus 2.51e-5
ctx-rh-parahippocampal 2.24e-5
ctx-lh-temporalpole 2.06e-5
ctx-rh-temporalpole 1.95e-5
ctx-lh-parahippocampal 1.78e-5
ctx-rh-inferiortemporal 1.52e-5
ctx-lh-middletemporal 1.50e-5
ctx-rh-middletemporal 1.47e-5
ctx-rh-fusiform 1.40e-5
ctx-lh-inferiortemporal 1.32e-5
ctx-lh-fusiform 1.26e-5
ctx-rh-insula 1.26e-5
ctx-lh-insula 1.20e-5
ctx-lh-superiortemporal 1.09e-5
ctx-lh-rostralanteriorcingulate 1.03e-5
ctx-rh-superiortemporal 9.82e-6
ctx-rh-medialorbitofrontal 8.39¢-6
ctx-rh-rostralanteriorcingulate 7.77e-6
ctx-rh-lateralorbitofrontal 7.71e-6
ctx-lh-medialorbitofrontal 7.71e-6
ctx-rh-transversetemporal 7.13e-6
ctx-lh-lateralorbitofrontal 6.92¢-6
Right-VentralDC 5.95e-6
ctx-lh-caudalanteriorcingulate 3.71e-6

Table S1A. Top anatomical
structures associated with the
temporal factor (see Methods). The
temporal factor was associated with
significantly greater atrophy in these
structures than the subcortical factor
(p=2e-15) and cortical factor (p=
4e-15). There were no differences in
atrophy of these structures between
the subcortical and cortical factors (p
=0.84). See Supplemental Methods
of SL
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Freesurfer Structure Name | p | (T el with he
shorsomberees | ases | el ot
Left-Accumbens-area 1.75e-5 with significantly greater atrophy in
Right-Putamen 1.31e-5 these structures than the temporal
Left-Cerebellum-Cortex 1.16e-5 factor (p = le-5) and cortical factor
(p=2e-12). The temporal factor had
Left-Putamen 1.13e-5 more atrophy in these structures than
Right-Cerebellum-Cortex 1.10e-5 the cortical factor (p =0.01). See
Left-Thalamus-Proper 8.82e-6 Supplemental Methods of SI.
Right-Thalamus-Proper 7.99e-6
Right-Caudate 7.62e-6
ctx-lh-lingual 7.58e-6
Left-Caudate 7.50e-6
ctx-rh-lingual 7.16e-6
ctx-lh-parstriangularis 7.10e-6
ctx-rh-parstriangularis 6.52e-6
ctx-rh-parsopercularis 6.25e-6
ctx-rh-superiorfrontal 5.81e-6
ctx-rh-parsorbitalis 5.57e-6
Left-VentralDC 5.46e-6
ctx-lh-parsorbitalis 5.26e-6
ctx-lh-superiorfrontal 5.01e-6
ctx-lh-frontalpole 4.31e-6
ctx-rh-frontalpole 3.57e-6
Brain-Stem 3.36e-6
Right-Pallidum 2.55e-6
Left-Pallidum 2.22e-6
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FreeSurfer Structure Name Pleonf:lz:i’o;iety :;?Eliufiscaoszsziczzt(\)}vn;tgEgle cortical
cix-Th-banksss 1 15025 factor (see Meth'ods). T.he cortical
factor was associated with
ctx-rh-inferiorparietal 1.10e-5 significantly greater atrophy in these
ctx-lh-precuneus 1.00e-5 structures than the temporal factor (p
ctx-rh-bankssts 9 9%¢-6 =7e-6)and subcortical‘ factor (p =
4e-7). There were no differences in
ctx-rh-precuneus 9.07¢-6 atrophy of these structures between
ctx-lh-inferiorparietal 8.94e-6 the temporal and subcortical factors
ctx-lh-caudalmiddlefrontal 8.47¢-6 (p=0.62). See Supplemental
ctx-rh-caudalmiddlefrontal 8.37e-6 Methods of SI.
ctx-rh-lateraloccipital 8.22e-6
ctx-lh-supramarginal 7.99e-6
ctx-lh-lateraloccipital 7.64¢-6
ctx-rh-isthmuscingulate 7.32e-6
ctx-rh-cuneus 7.16e-6
ctx-lh-isthmuscingulate 7.11e-6
ctx-lh-superiorparietal 6.89¢-6
ctx-rh-supramarginal 6.74e-6
ctx-lh-paracentral 6.53¢-6
ctx-lh-cuneus 6.47e-6
ctx-lh-transversetemporal 6.29¢-6
ctx-rh-posteriorcingulate 6.29¢-6
ctx-lh-parsopercularis 6.05¢-6
ctx-lh-posteriorcingulate 5.87e-6
ctx-lh-rostralmiddlefrontal 5.69e-6
ctx-rh-precentral 5.69¢-6
ctx-rh-superiorparietal 5.57e-6
ctx-rh-rostralmiddlefrontal 5.41e-6
ctx-lh-precentral 5.33e-6
ctx-lh-pericalcarine 5.29¢-6
ctx-lh-postcentral 5.27e-6
ctx-rh-pericalcarine 4.94¢-6
ctx-rh-postcentral 4.73e-6
ctx-rh-paracentral 4.68e¢-6
ctx-rh-caudalanteriorcingulate 3.83e-6
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Fig. S4. Stability of factor compositions over two years for (A) 115 AD dementia patients,
(B) 260 MCI participants, and (C) 185 CN participants. Each participant correspondsto a
dot, whose color indicates amyloid status: red for Ap+, green for AB-, and blue for
unknown. For each atrophy factor (plot), x-axis and y-axis represent, respectively, the
probabilities of factor at baseline and two years after baseline. In the ideal case where
factor probability estimations remain exactly the same after two years, one would expecta
y = x linear fit as well as a r = 1 correlation. In our case, the linear fits were close toy = x
with r > 0.82 for all three atrophy factors for all clinical groups, suggesting that the factor
compositions were stable despite disease progression.
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(A)K=3
(A1) 147 AB+ MCI Participants (A2) 43 AB+ CN Participants
Pr(Cortical) =1 Pr(Cortical) =1

Pr(Subcortical) =1  Pr(Cortical) = 0 Pr(Temporal) = 1 Pr(Subcortical) =1  Pr(Cortical) = 0 Pr(Temporal) =1

Fig. S5A. Factor compositionsof (1) 147 AB+MCI participants and (2) 43 AB+CN
participants for K = 3 factors. Each participant correspondsto a dot, whose location (in
barycentric coordinates) represents the factor composition. Corners of the triangle
represent “pure factors”; closer distance to the respective corners indicates higher
probabilities for the respective factors. Most dots are far from the corners, suggesting that
most participants expressed multiple factors.
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(B K=2
(B1) 188 AD Dementia Patients (B2) 147 AB+ MCI Participants
20
207
| I I 15-
] I I 101
1. I seel I I III | sninRRRRRRRARARERE. llIlI I -
Temporal+ Cortical Tempora|+ Cortical
Subcortical Subcortical
(B3) 43 AR+ CN Participants
20
151
10

Temporal+ Cortical
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Fig. S5B. Factor compositions of (1) 188 AD dementia patients, (2) 147 A+ MCI
participants, and (3) 43 AP+ CN participants for K = 2 factors. Histograms were created
with participants’ cortical factor probability (x-axis). Therefore the left (or right) extreme
corresponds to the pure temporal+subcortical (or cortical) factor. In addition, colorsin (1)
indicate amyloid status: red for Ap+, green for AB-, and blue for unknown. The majority of
the population lies around the center, suggesting that most participants expressed both
atrophy factors.
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(C)K=4
(C1) 188 AD Dementia Patients

Temporal

Frontal
Cortical

Subcortical

Posterior
Cortical

(C3) 43 AB+ CN Participants

Temporal

Frontal
Cortical

Subcortical

Posterior
Cortical

(C2) 147 AR+ MCI Participants

Temporal

Frontal
Cortical

Subcortical

Posterior
Cortical

Fig. S5C. Factor compositions of (1) 188 AD dementia patients, (2) 147 A+ MCI
participants, and (3) 43 AP+ CN participants for K = 4 factors. Each participant
correspondsto a dot, whose location represents the factor composition. Tetrahedron
corners represent “pure factors”; closer distance to a corner corresponds to higher
probability for the corresponding factor. Color in (1) indicates amyloid status: red for Ap+,
green for AB-, and blue for unknown. Most dots are far from the corners, suggesting that

most participants expressed multiple factors.
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Temporal Subcortical Cortical Overall p*
Baseline age (years) 76 (6.9) 76 (7.1) 74 (7.8) 8e-7
Age at AD onset (years)T 72 (7.5) 73 (7.7) 70 (8.5) le-5
Yearsbgsoerl?nf;set o 3.8(2.6) 3.5(2.4) 3.5(2.4) 0.29
Education (years) 15@3.1) 14 (3.1) 15(3.2) 0.15
Sex (0 for male) 0.4(0.5) 0.5(0.5) 0.5(0.5) 0.27
Amyloid (pg/mL)i 141 (39) 149 (51) 140 (36) 0.09
APOE €2§ 0.03(0.2) 0.08(0.3) 0.04 (0.2) 0.03
APOE ¢€4§ 0.86 (0.7) 0.81(0.7) 0.87(0.7) 0.61

Table S2. Characteristics of 188 AD dementia patients by factor. Data are weighted
averages (weighted standard deviation) with weights corresponding to factor probabilities.
Highlighted p values (blue) are characteristics significantly differentacross factors.
*Computed by linear hypothesistest on GLM or likelihood ratio test on logistic regression
for sex (see Methods). $Only available for 182 patients. $Only available for 100 patients.
§The original counts were 0, 1 or 2.
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(A1) ADNI-Mem at Baseline: Cross-Sectional Analyses by GLM

Former is worse Latterisworse p
AD — 0.17
AB+MCI | C-T+S ® 0.26
AB+ CN ® 0.80
05 0 0.5
Contrast
(A2) ADNI-Mem Decline: Longitudinal Analyses by LME
Former declines faster Latter declinesfaster p
AD — 2¢-6
AB+ MCI | C-T+S o 0.22
Ap+ CN — 2e-4
0.4 02 0 0.2 0.4
Contrast
(B1) ADNI-EF at Baseline: Cross-Sectional Analyses by GLM
Former is worse Latteris worse p
AD — 9e-4
AB+MCI | C-T+S e 0.38
AB+ CN © 0.53
1 -05 0 0.5 1
Contrast
(B2) ADNI-EF Decline: Longitudinal Analyses by LME
Former declines faster Latter declinesfaster p
AD — 1e-4
AB+MCI | C-T+S —— 0.05
AB+ CN —— 0.19
04 02 0 0.2 0.4
Contrast

Fig. S6. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of
(A) memory and (B) executive function between K = 2 factors. Comparisons remaining
significant after FDR control (q = 0.05) are highlighted in blue. Blue dots are estimated
differences between “pure atrophy factors”, and red bars show the standard errors (see
Methods and Supplemental Methods of SI).
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(A1) ADNI-Mem at Baseline: Cross-Sectional Analyses by GLM

Former is worse Latterisworse p
AD S-T —— | 3e.-6
- e -
N = 188 C-T 7e-3
p=1e-5 [C-8S e 0.03
AB+ MCI S-T —f—— | 0.4
- g
N = 147 C-T 0.04
p=2e-3 |C-S e 0.09
AB+CN [S-T € 0.98
N=43 |C°T * 1.00
p=1.00 |C-S i 0.97
-1 -0.5 0 0.5 1
Contrast
(A2) ADNI-Mem Decline: Longitudinal Analyses by LME
Former declines faster Latter declinesfaster p
AD S-T — 0.65
- e -
N = 188 C-T 1e-4
p=3e6 |[C-S|=——0— 4e-6
AB+MCI |S-T —— 4e-3
- ——
N = 147 C-T 1.00
p=9-4 |C-8 - 8e-4
AB+CN |S-T —— 0.03
N = 43 C-T ——— 1e-4
p=5e-4 |[C-8S e 3e-3
0.5 0 0.5
Contrast

Fig. S7TA. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of
memory among K = 3 factors. Comparisons remaining significant after FDR control (q =
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy

factors”, and red bars show the standard errors (see Methods and Supplemental Methods
of SI).
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(B1) ADNI-EF at Baseline: Cross-Sectional Analyses by GLM

Former is worse Latterisworse p
AD S-T — 0.09
—_ e —
N = 188 C-T 0.01
p=7e5 |C-S§ |=——0— 1e-5
AB+MCI [S-T ———— 0.20
- e ———
N = 147 C-T 0.63
p=0.16 [C-S ——— 0.06
AB+CN [S-T ® 0.30
N = 43 C-T ® 0.43
p=038 [C-S ¢ 0.95
-1 0 1
Contrast
(B2) ADNI-EF Decline: Longitudinal Analyses by LME
Former declines faster Latter declinesfaster p

AD S-T ——— 0.67

N = 188 c-17| ——6e—— 2e-3
p=2e4 |C-S | 2e-4
AB+MCI |S-T e 1e-8
N = 147 C-T e 0.50
p=1e-10|C-S e 8e-9
AB+CN |S-T — 0.74
N = 43 C-T — 0.25
p=0.16 [C-S —— 0.06

-0.5 0 0.5
Contrast

Fig. S7B. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of
executive function among K = 3 factors. Comparisons remaining significant after FDR
control (q= 0.05) are highlighted in blue. Blue dotsare estimated differences between
“pure atrophy factors”, and red bars show the standard errors (see Methods and
Supplemental Methods of SI).
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(C1) MMSE at Baseline: Cross-Sectional Analyses by GLM

Former is worse Latterisworse p
AD S-T e 2e-5
- — @ -
N=188 |C T 9e-3
p=1e-4 |C-S — 0.06
ABp+ MCI S-T ———— | 3a.5
- —
N = 147 C-T 0.03
p=2e-4 |C-S —— 0.03
AB+ CN S-T > 0.70
p=091 |C-S ® 0.90
-5 0 5
Contrast

(C2) MMSE Decline: Longitudinal Analyses by LME

Former declines faster Latter declinesfaster p
AD S-T — 0.19
- e .
N = 188 C-T 2e-9
p=8e-15|C-S |—o— 2e-14
AB+MCI |S-T o 2e-5
- -~
N = 147 C-T 0.1
p=9-11|C-S .- 4e-11
AB+CN |S-T —o— 0.41
p=0.07 |C-S —.— 0.04
-5 0 5
Contrast

Fig. S7C. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of
MMSE among K = 3 factors. Comparisons remaining significant after FDR control (q =
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy
factors”, and red bars show the standard errors (see Methods and Supplemental Methods
of SI).
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(A1) ADNI-Mem at Baseline: Cross-Sectional Analyses by GLM (A2) ADNI-Mem Decline: Longitudinal Analyses by LME

Fig. S8A. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of
memory among K = 4 factors. Comparisons remaining significant after FDR control (q =
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy

factors”, and red bars show the standard errors (see Methods and Supplemental Methods
of SI).

Former is worse Latteris worse  p Former declines faster Latter declinesfaster p
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AD AD
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p=1e-4 p=1e5
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(B2) ADNI-EF Decline: Longitudinal Analyses by LME

Former declines faster
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p

Fig. S8B. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of

executive function among K =4 factors. Comparisons remaining significant after FDR
control (q= 0.05) are highlighted in blue. Blue dots are estimated differences between
“pure atrophy factors”, and red bars show the standard errors (see Methods and

Supplemental Methods of SI).
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Complete List of ADNI Investigators and Participating Institutions

ADNI Investigators

The following list is also available online at http://adni.loni.usc.edu/wp-content/uploads/
how to apply/ADNI_Acknowledgement List.pdf.
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Biostatistics Core Leaders and Key Personnel

Laurel Beckett, PhD UC Davis (Core PI)
Danielle Harvey, PhD UC Davis

Michael Donohue, PhD UC San Diego

MRI Core Leaders and Key Personnel

Clifford R. Jack, Jr., MD Mayo Clinic, Rochester (Core PI)
Matthew Bernstein, PhD Mayo Clinic, Rochester
Nick Fox, MD University of London

Paul Thompson, PhD UCLA School of Medicine
Norbert Schuff, PhD UCSF MRI

Charles DeCArli, MD UC Davis

Bret Borowski, RT Mayo Clinic

Jeff Gunter, PhD Mayo Clinic

Matt Senjem, MS Mayo Clinic

Prashanthi Vemuri, PhD Mayo Clinic

David Jones, MD Mayo Clinic

Kejal Kantarci Mayo Clinic

Chad Ward Mayo Clinic

PET Core Leaders and Key Personnel

William Jagust, MD UC Berkeley (Core PI)
Robert A. Koeppe, PhD University of Michigan
Norm Foster, MD University of Utah

Eric M. Reiman, MD Banner Alzheimer’s Institute
Kewei Chen, PhD Banner Alzheimer’s Institute
Chet Mathis, MD University of Pittsburgh

Susan Landau, PhD UC Berkeley
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Neuropathology Core Leaders

John C. Morris, MD

Nigel J. Cairns, PhD, FRCPath

Erin Franklin, MS, CCRP

Lisa Taylor-Reinwald, BA, HTL
(ASCP) — Past Investigator

Washington University St. Louis
Washington University St. Louis
Washington University St. Louis
Washington University St. Louis

Biomarkers Core Leaders and Key Personnel

Leslie M. Shaw, PhD

John Q. Trojanowki, MD, PhD
Virginia Lee, PhD, MBA
Magdalena Korecka, PhD
Michal Figurski, PhD

UPenn School of Medicine
UPenn School of Medicine
UPenn School of Medicine
UPenn School of Medicine
UPenn School of Medicine

Informatics Core Leaders and Key Personnel

Arthur W. Toga, PhD
Karen Crawford
Scott Neu, PhD

USC (Core PI)
USC
USC

Genetics Core Leaders and Key Personnel

Andrew J. Saykin, PsyD
Tatiana M. Foroud, PhD
Steven Potkin, MD UC
Li Shen, PhD

Kelley Faber, MS, CCRC
Sungeun Kim, PhD
Kwangsik Nho, PhD

Initial Concept Planning & Development

Michael W. Weiner, MD
Lean Thal, MD
Zaven Khachaturian, PhD

Early Project Proposal Development

Leon Thal, MD

Neil Buckholtz

Michael W. Weiner, MD
Peter J. Snyder, PhD
William Potter, MD
Steven Paul, MD

Marilyn Albert, PhD
Richard Frank, MD, PhD
Zaven Khachaturian, PhD

NIA
John Hsiao, MD

Indiana University
Indiana University
UC Irvine

Indiana University
Indiana University
Indiana University
Indiana University

UC San Francisco
UC San Diego
Prevent Alzheimer’s Disease 2020

UC San Diego

National Institute on Aging

UC San Francisco

Brown University

National Institute of Mental Health
Cornell University

Johns Hopkins University

Richard Frank Consulting

Prevent Alzheimer’s Disease 2020

National Institute on Aging
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Part B: Investigators By Site

Oregon Health & Science University:
Jeffrey Kaye, MD

Joseph Quinn, MD

Lisa Silbert, MD

Betty Lind, BS

Raina Carter, BA — Past Investigator
Sara Dolen, BS — Past Investigator

University of Southern California:

Lon S. Schneider, MD

Sonia Pawluczyk, MD

Mauricio Becerra, BS

Liberty Teodoro, RN

Bryan M. Spann, DO, PhD — Past Investigator

University of California — San Diego:
James Brewer, MD, PhD

Helen Vanderswag, RN

Adam Fleisher, MD — Past Investigator

University of Michigan:

Judith L. Heidebrink, MD, MS

Joanne L. Lord, LPN, BA, CCRC — Past
Investigator

Mayo Clinic, Rochester:

Ronald Petersen, MD, PhD

Sara S. Mason, RN

Colleen S. Albers, RN

David Knopman, MD

Kris Johnson, RN — Past Investigator

Baylor College of Medicine:

Rachelle S. Doody, MD, PhD

Javier Villanueva-Meyer, MD

Valory Pavlik, PhD

Victoria Shibley, MS

Munir Chowdhury, MBBS, MS — Past Investigator
Susan Rountree, MD — Past Investigator

Mimi Dang, MD — Past Investigator

Columbia University Medical Center:
Yaakov Stern, PhD

Lawrence S. Honig, MD, PhD

Karen L. Bell, MD

Washington University, St. Louis:

Beau Ances, MD

John C. Morris, MD

Maria Carroll, RN, MSN

Mary L. Creech, RN, MSW

Erin Franklin, MS, CCRP

Mark A. Mintun, MD — Past Investigator

Stacy Schneider, APRN, BC, GNP — Past
Investigator

Angela Oliver, RN, BSN, MSG — Past Investigator

University of Alabama - Birmingham:

Daniel Marson, JD, PhD

David Geldmacher, MD

Marissa Natelson Love, MD

Randall Griffith, PhD, ABPP — Past Investigator
David Clark, MD — Past Investigator

John Brockington, MD — Past Investigator

Erik Roberson, MD — Past Investigator

Mount Sinai School of Medicine:
Hillel Grossman, MD
Effie Mitsis, PhD

Rush University Medical Center:
Raj C. Shah, MD
Leyla deToledo-Morrell, PhD — Past Investigator

Wien Center:

Ranjan Duara, MD

Maria T. Greig-Custo, MD
Warren Barker, MA, MS

Johns Hopkins University:

Marilyn Albert, PhD

Chiadi Onyike, MD

Daniel D’ Agostino 11, BS

Stephanie Kielb, BS — Past Investigator

New York University:
Martin Sadowski, MD, PhD
Mohammed O. Sheikh, MD
Anaztasia Ulysse

Mrunalini Gaikwad

Duke University Medical Center:
P. Murali Doraiswamy, MBBS, FRCP
Jeffrey R. Petrella, MD


https://doi.org/10.1101/064295
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064295; this version posted July 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Salvador Borges-Neto, MD
Terence Z. Wong, MD — Past Investigator
Edward Coleman — Past Investigator

University of Pennsylvania:
Steven E. Arnold, MD

Jason H. Karlawish, MD
David A. Wolk, MD
Christopher M. Clark, MD

University of Kentucky:
Charles D. Smith, MD
Greg Jicha, MD

Peter Hardy, PhD

Partha Sinha, PhD
Elizabeth Oates, MD
Gary Conrad, MD

University of Pittsburgh:

Oscar L. Lopez, MD

MaryAnn Oakley, MA

Donna M. Simpson, CRNP, MPH

University of Rochester Medical Center:

Anton P. Porsteinsson, MD

Bonnie S. Goldstein, MS, NP

Kim Martin, RN

Kelly M. Makino, BS — Past Investigator
M. Saleem Ismail, MD — Past Investigator
Connie Brand, RN — Past Investigator

University of California, Irvine:
Steven G. Potkin, MD

Adrian Preda, MD

Dana Nguyen, PhD

University of Texas Southwestern Medical

School:

Kyle Womack, MD

Dana Mathews, MD, PhD
Mary Quiceno, MD

Emory University:

Allan 1. Levey, MD, PhD

James J. Lah, MD, PhD

Janet S. Cellar, DNP, PMHCNS-BC

University of Kansas, Medical Center:
Jeffrey M. Burns, MD
Russell H. Swerdlow, MD

William M. Brooks, PhD

University of California, Los Angeles:
Liana Apostolova, MD

Kathleen Tingus, PhD

Ellen Woo, PhD

Daniel H.S. Silverman, MD, PhD

Po H. Lu, PsyD — Past Investigator
George Bartzokis, MD — Past Investigator

Mayo Clinic, Jacksonville:

Neill R Graff-Radford, MBBCH, FRCP (London)
Francine Parfitt, MSH, CCRC

Kim Poki-Walker, BA

Indiana University:

Martin R. Farlow, MD

Ann Marie Hake, MD

Brandy R. Matthews, MD — Past Investigator
Jared R. Brosch, MD

Scott Herring, RN, CCRC

Yale University School of Medicine:
Christopher H. van Dyck, MD
Richard E. Carson, PhD

Martha G. MacAvoy, PhD

Pradeep Varma, MD

McGill Univ., Montreal-Jewish General
Hospital:

Howard Chertkow, MD

Howard Bergman, MD

Chris Hosein, MEd

Sunnybrook Health Sciences, Ontario:
Sandra Black, MD, FRCPC

Bojana Stefanovic, PhD

Curtis Caldwell, PhD

U.B.C. Clinic for AD & Related Disorders:
Ging-Yuek Robin Hsiung, MD, MHSc, FRCPC
Benita Mudge, BS

Vesna Sossi, PhD

Howard Feldman, MD, FRCPC — Past Investigator
Michele Assaly, MA — Past Investigator

Cognitive Neurology - St. Joseph's, Ontario:
Elizabeth Finger, MD

Stephen Pasternack, MD, PhD

Irina Rachisky, MD

Dick Trost, PhD — Past Investigator
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Andrew Kertesz, MD — Past Investigator

Cleveland Clinic Lou Ruvo Center for Brain
Health:

Charles Bernick, MD, MPH

Donna Munic, PhD

Northwestern University:

Marek-Marsel Mesulam, MD

Emily Rogalski, PhD

Kristine Lipowski, MA

Sandra Weintraub, PhD

Borna Bonakdarpour, MD

Diana Kerwin, MD — Past Investigator
Chuang-Kuo Wu, MD, PhD — Past Investigator
Nancy Johnson, PhD — Past Investigator

Premiere Research Inst (Palm Beach
Neurology):

Carl Sadowsky, MD

Teresa Villena, MD

Georgetown University Medical Center:
Raymond Scott Turner, MD, PhD
Kathleen Johnson, NP

Brigid Reynolds, NP

Brigham and Women's Hospital:
Reisa A. Sperling, MD

Keith A. Johnson, MD

Gad Marshall, MD

Stanford University:

Jerome Yesavage, MD

Joy L. Taylor, PhD

Barton Lane, MD

Allyson Rosen, PhD — Past Investigator
Jared Tinklenberg, MD — Past Investigator

Banner Sun Health Research Institute:
Marwan N. Sabbagh, MD

Christine M. Belden, PsyD

Sandra A. Jacobson, MD

Sherye A. Sirrel, CCRC

Boston University:

Neil Kowall, MD

Ronald Killiany, PhD

Andrew E. Budson, MD

Alexander Norbash, MD — Past Investigator

Patricia Lynn Johnson, BA — Past Investigator

Howard University:

Thomas O. Obisesan, MD, MPH
Saba Wolday, MSc

Joanne Allard, PhD

Case Western Reserve University:
Alan Lerner, MD

Paula Ogrocki, PhD

Curtis Tatsuoka, PhD

Parianne Fatica, BA, CCRC

University of California, Davis — Sacramento:
Evan Fletcher, PhD

Pauline Maillard, PhD

John Olichney, MD

Charles DeCarli, MD — Past Investigator

Owen Carmichael, PhD — Past Investigator

Neurological Care of CNY:
Smita Kittur, MD — Past Investigator

Parkwood Hospital:
Michael Borrie, MB ChB
T-Y Lee, PhD

Dr Rob Bartha, PhD

University of Wisconsin:
Sterling Johnson, PhD

Sanjay Asthana, MD

Cynthia M. Carlsson, MD, MS

University of California, Irvine - BIC:
Steven G. Potkin, MD

Adrian Preda, MD

Dana Nguyen, PhD

Banner Alzheimer's Institute:

Pierre Tariot, MD

Anna Burke, MD

Ann Marie Milliken, NMD

Nadira Trncic, MD, PhD, CCRC — Past Investigator
Adam Fleisher, MD — Past Investigator

Stephanie Reeder, BA — Past Investigator

Dent Neurologic Institute:
Vernice Bates, MD

Horacio Capote, MD

Michelle Rainka, PharmD, CCRP
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Ohio State University:
Douglas W. Scharre, MD
Maria Kataki, MD, PhD
Brendan Kelley, MD

Albany Medical College:
Earl A. Zimmerman, MD
Dzintra Celmins, MD
Alice D. Brown, FNP

Hartford Hospital, Olin Neuropsychiatry
Research Center:

Godfrey D. Pearlson, MD

Karen Blank, MD

Karen Anderson, RN

Dartmouth-Hitchcock Medical Center:
Laura A. Flashman, PhD

Marc Seltzer, MD

Mary L. Hynes, RN, MPH

Robert B. Santulli, MD — Past Investigator

Wake Forest University Health Sciences:
Kaycee M. Sink, MD, MAS

Leslie Gordineer

Jeff D. Williamson, MD, MHS — Past Investigator
Pradeep Garg, PhD — Past Investigator

Franklin Watkins, MD — Past Investigator

Rhode Island Hospital:

Brian R. Ott, MD

Geoffrey Tremont, PhD

Lori A. Daiello, Pharm.D, ScM

Butler Hospital:

Stephen Salloway, MD, MS
Paul Malloy, PhD

Stephen Correia, PhD

UC San Francisco:

Howard J. Rosen, MD
Bruce L. Miller, MD
David Perry, MD

Medical University South Carolina:
Jacobo Mintzer, MD, MBA

Kenneth Spicer, MD, PhD

David Bachman, MD

St. Joseph’s Health Care:

Elizabeth Finger, MD

Stephen Pasternak, MD

Irina Rachinsky, MD

John Rogers, MD

Andrew Kertesz, MD — Past Investigator
Dick Drost, MD — Past Investigator

Nathan Kline Institute
Nunzio Pomara, MD
Raymundo Hernando, MD
Antero Sarrael, MD

University of lowa College of Medicine
Susan K. Schultz, MD

Karen Ekstam Smith, RN

Hristina Koleva, MD

Ki Won Nam, MD

Hyungsub Shim, MD- Past Investigator

Cornell University
Norman Relkin, MD, PhD
Gloria Chiang, MD
Michael Lin, MD

Lisa Ravdin, PhD

University of South Florida: USF Health Byrd
Alzheimer’s Institute

Amanda Smith, MD

Balebail Ashok Raj, MD

Kristin Fargher, MD— Past Investigator
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ADNI Participating Institutions

Johns Hopkins University; Washington University, St. Louis; University of
California, Los Angeles; University of Pennsylvania; Cleveland Clinic Lou Ruvo Center
for Brain Health; Sunnybrook Health Sciences Centre; Parkwood Hospital; University of
California, San Diego; University of Kansas; Dent Neurologic Institute; McGill
University / Jewish General Hospital Memory Clinic; Rush University Medical Center;
Baylor College of Medicine; Duke University Medical Center; Wein Center for Clinical
Research; Indiana University; St. Joseph’s Health Center — Cognitive Neurology; Banner
Alzheimer’s Institute; New York University Medical Center; Mayo Clinic, Jacksonville;
Mount Sinai School of Medicine; University of Michigan, Ann Arbor; University of
British Columbia, Clinic for AD & Related; University of Wisconsin; Oregon Health and
Science University; Northwestern University; Boston University; Case Western Reserve
University; Emory University; University of Pittsburgh; Brigham and Women’s Hospital;
University of Alabama, Birmingham; Medical University of South Carolina; University
of California, Irvine; Howard University; University of California, Davis; Rhode Island
Hospital; Mayo Clinic, Rochester; Nathan Kline Inst. for Psychiatric Rsch; University of
Rochester Medical Center; University of California, Irvine (BIC); The Weill Cornell
Memory Disorders Program; Georgetown University; University of California, San
Francisco; Banner Sun Health Research Institute; Premiere Research Institute; Butler
Hospital Memory and Aging Program; Dartmouth Medical Center; Ohio State University;
University of Southern California; University of lowa; Wake Forest University Health
Sciences; University of Kentucky; University of South Florida, Tampa; Columbia
University; Yale University School of Medicine; University of Texas, Southwestern MC;
Stanford / PAIRE; Albany Medical College.

The list is also available online at http://adni.loni.usc.edu/about/centers-

cores/study-sites/.
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