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SUMMARY

A number of high-throughput transcriptase drop-off
assays have recently been developed to probe post-
transcriptional dynamics of RNA-protein interaction,
RNA structure, and post-transcriptional modifications.
Although these assays survey a diverse set of
‘epitranscriptomic’ marks, they share methodological
similarities and as such their interpretation is predicated
on addressing similar computational challenges. Among
these, a key question is how to learn isoform-specific
chemical modification profiles in the face of complex
read multi-mapping. In this paper, we propose PROBer,
the first rigorous statistical model to handle these
challenges for a general set of sequencing-based
‘toeprinting’ assays.

INTRODUCTION

While much of the control of gene expression occurs via
transcriptional regulation, it is becoming increasingly
clear that post-transcriptional regulation also plays a key
role in modulating expression products (Schwanhdusser
et al., 2011). Several mechanisms contribute to this
phenomenon, including covalent posttranscriptional
chemical modification of RNA molecules (Roundtree
and He, 2016), protein binding and the assembly of
higher-order ribonucleoprotein complexes (Glisovic et
al., 2008), and the ability of RNA molecules to fold into
and switch between intricate 2- and 3- dimensional folds
(Mortimer et al., 2014; Schwanhéusser et al., 2011; Wan
et al., 2011). Understanding both the expression level
and the ‘meta-information’ (post-transcriptional marks)
associated with a given transcript can shed light not
only on the functions that an individual sequence
performs, but also on the cellular pathways that it
participates in and controls.

Recent advances in massively parallel DNA
sequencing have enabled the transcriptome-wide
investigation of several ‘epitranscriptomic’ layers.
Although the specific of the assays differ depending on
the specific chemicals used, there are several that share

a common theme. We term these experiments
‘toeprinting’ (Hartz et al., 1988) by high-throughput
sequencing (Figure 1A) as they share a common
workflow: chemically modifying RNAs to encode a
signal of interest, decoding these chemical signals by
reverse transcriptase drop-off, and lastly, sequencing
and mapping the resulting cDNA toeprints to recover
the chemical modification ‘signatures’.

Within this framework, the iCLIP protocol (Koénig
et al., 2010) explores RNA-protein interactions, SHAPE
and DMS probing (Ding et al., 2014; Rouskin et al.,
2014; Spitale et al., 2015; Talkish et al., 2014) explore
RNA secondary structure by using selective chemical
probes to modify and ‘mark’ unpaired flexible
nucleotides, and Pseudo-seq (Carlile et al., 2014) detects
RNA pseudouridylation by utilizing a reagent which
specifically forms adducts at pseudouridine sites (V's).
In each of these experiments, the upstream chemical
modification is widely variable, but the library
preparation and sequencing techniques are essentially
the same: reverse transcription in a manner where
cDNAs preferentially terminate at the sites of chemical
modification, adaptor ligation to the site of reverse
transcriptase drop-off, and PCR amplification followed
by sequencing of the cDNA resulting library.
Additionally, the number of characterizable
epitranscriptomic marks is ever expanding, as are the
associated chemical toolkits. As a result, ‘toeprinting’
by high-throughput sequencing is becoming an essential
tool for probing post-transcriptional regulation.

A key step in analyzing ‘toeprinting’ experiments is
to accurately learn reverse transcriptase drop-off
profiles from the sequence data. These profiles are
subsequently used to infer, for example, sequence
motifs, secondary structure predictions, or sites of
posttranscriptional ~ chemical — modification. Data
produced in the experiments potentially contain multiple
layers of valuable information: reads contain
information about both modification at sites as well as
about the identity and abundance of RNA transcripts.
The ability to make full use of this information becomes
the key for accurate estimation of drop-off profiles and
requires addressing associated bioinformatics challenges
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including the conflation of read counts by reverse
transcriptase noise, variable transcript abundances, and
read mapping ambiguity. However, to date, the
proposed solutions to these problems have mainly
consisted of ad-hoc heuristics rather than statistical
modeling.

RESULTS

Bioinformatics challenges

Accurately determining the transcript abundances and
drop-off profiles in ‘toeprinting’ experiments is
complicated by several factors (Figure 1B) (Aviran and
Pachter, 2014). Such experiments face a problem that is
fundamental in RNA-seq: reads align ambiguously to
multiple transcripts, and appropriately handling
ambiguously mapped reads (which can represent a
significant proportion of alignable reads in such
experiments, see Table S1 and S2) is imperative to
correctly learning transcript abundances (Bray et al.,
2016; Li and Dewey, 2011; Li et al., 2010; Roberts and
Pachter, 2013; Trapnell et al., 2010). Incorrectly
allocating multi-mapping reads adversely affects the
estimated abundances of not only the transcripts that the
reads were misallocated to/from, but also abundance
estimates of related transcripts.

In toeprinting experiments, the multi-mapping
problem is further exacerbated by the fact that accurate
estimation of the RNA chemical modification
probabilities depends on both correctly allocating multi-
mapped reads, and deconvolving chemical modification
profiles from adduct-independent noisy RT drop-off.
All of these factors are inter-related and poor estimation
of any one of them may significantly skew estimates of
the others. Yet all of these factors must be accounted for
to quantitative estimate modification rates.

Our solution: the PROBer software

To address the computational challenges associated to
the interpretation and analysis of toeprinting assays we
have developed a statistically rigorous approach that
serves the dual purpose of unifying these assays via a
shared computational framework, while providing an
approach to inference that is robust to small variances in
experimental protocol. Our methods are implemented in
software, termed PROBer, that is based on a statistical
model to jointly infer transcript abundance and
modification probabilities, as well as several other
parameters (see Experimental Procedures and Figure
S1A) and was developed by building on previous work
on RNA-Seq (Bray et al., 2016; Li et al., 2010; Li and
Dewey, 2011; Roberts and Pachter, 2013; Trapnell et
al.,, 2010), as well as models for simpler single-
transcript structure-probing SHAPE-seq experiments
(Aviran et al.,, 2011a; 2011b). The PROBer model
assumes that the input data consists of raw reads (either

single- or paired- end) obtained separately from a
chemically treated sample, containing information about
modification probabilities, and from a mock-treated
control, informing about noise parameters. It assumes
that cDNA fragments were generated by first selecting a
transcript from the transcriptome (according to its
abundance and length), randomly priming (or
fragmenting) that transcript, and primer extending one
nucleotide at a time. At each nucleotide encountered by
the reverse transcriptase (RT) in this process, there is
some probability of terminating the reverse
transcription, due to modification, RT noise, primer
collision, or encountering the end of the template
fragment. A cDNA fragment generated by this process
is observed as sequenced read if it passes a size-
selection filter, which is dependent on the fragment
length. From this the extent to which all the parameters
in the experiment are inter-related becomes clear.

We implemented an Expectation-Maximization
algorithm (Dempster et al., 1977) in PROBer to infer
the parameters of the model (see Experimental
Procedures). As in many cases it is of interest to have
transcript-specific modification profiles rather than
genes; indeed for structure probing experiments it is
meaningless to consider the modification profiles of a
gene, so we modeled modification at the isoform level.
The PROBer workflow, shown schematically in Figure
1C, begins with a set of reads alignments (separately for
the chemically-treated experiment and the untreated
control). Starting with initial parameter estimates, reads
are allocated to transcripts based on both abundance and
structure parameters. The allocated read ‘pseudocounts’
are then used to estimate maximum a posterior (MAP)
modification probabilities as well as RT noise, size-
selection terms and maximum-likelihood estimates
(MLEs) of transcript abundances. These steps are
repeated until convergence.

PROBer outperforms other methods in profiling
RNA structures

To test the accuracy of PROBer on structure-probing
experiments we investigated its performance on both
simulated and experimental data. In simulations, we
generated a dataset in a manner consistent with the
chemical mapping protocol (see Experimental
Procedures) and attempted to recover parameter
estimates from these simulated reads alone. As shown in
Figure 2A, at a global scale, PROBer yielded
significantly improved parameter estimates when
compared with other approaches. These results were
representative of multiple simulations (Figure S3C) and
this improvement was observed across a range of
expression levels. In addition, because PROBer takes
structure information into consideration, it also
estimates transcript abundances better than popular
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RNA-Seq quantification tools that are not aware of
RNA structures (Figure S4).

PROBer’s performance at recovering secondary
structure constraints for transcripts with moderate
expression levels (between 100 and 1000 TPM) vastly
improves on alternative methods at the highest
expression levels (greater than 10,000 TPM). This result
indicates that PROBer requires approximately 90% less
data (when compared to ad hoc methods) to produce
structural estimates of equal or better accuracy. As
transcript ~ abundances  follow an  exponential
distribution, a moderate improvement in the range of
expression levels that yields useful structural constraints
translates to a large increase in the number of transcripts
that can be probed. Thus, PROBer allows the
experimenter to access a larger fraction of the
transcriptome at the same sequencing depth and
experimental cost.

As these simulations were based on the same
generative model for structure probing experiments that
the PROBer software uses, we were concerned that our
protocol would artificially inflate the apparent
performance of PROBer. We therefore included in our
simulated transcriptome three additional transcripts for
which chemical modification profiles have been
independently measured by SHAPE-seq (Aviran et al.,
2011b; Lucks et al.,, 2011). These transcripts (see
Experimental Procedures) served as a “digital spike-in”,
allowing us to verify that our simulated experiments
were not biased by the simulation parameters. The
accuracy of PROBer was confirmed by these digital
spike-in experiments (Table S3).

We further tested whether this improvement was
also evident in real datasets by examining modification
probability estimates for ribosomal RNAs, which have
well-characterized structures (Cannone et al., 2002). We
calculated receiver operating characteristic (ROC)
curves on a variety of structure-probing data sets (Ding
et al., 2014; Spitale et al., 2015; Talkish et al., 2014)
(Figure S5). These data sets were from different
organisms (Arabidopsis, yeast, or mouse), used different
chemical agents (DMS or NAI-N3), and adopted
different priming methods (random priming or
fragmentation). While performing this analysis we
observed that all methods tested showed similar area
under ROC curve (AUROC) values, indicating that
DMS reactivity might not be captured by the consensus
secondary structure ground-truth.

PROBer identifies more true ¥'s than other methods
As the lack of other experimentally validated secondary
structures prevented us from further studying the
performance of PROBer in structure profiling, we
therefore explored whether it could be used to quantify
pseudouridylation profiles produced by CMCT
modification of RNA. As this experimental method

performs the RNA modification reaction in purified
(and likely denatured / unfolded) RNA, we did not
expect solvent accessibility to confound the chemical
modification signal. We analyzed Pseudo-seq data from
(Carlile et al., 2014) and used all known W sites in
ribosomal and small nuclear RNAs as a ground truth, to
which we compared PROBer estimated modification
profiles. Precision-recall curve analysis of these data
revealed that PROBer outperforms existing ad hoc
methods for predicting W. Importantly, PROBer was
able to detect an experimentally validated pseudo-U site
(m'acp®¥1191 in 18S rRNA) that was not detected by
ad hoc approaches (Figure S6). This indicates that
PROBer is capable of capturing biologically relevant
information that would be otherwise lost.

PROBer detects more putative protein binding sites
with canonical motifs

Next, we tested PROBer on iCLIP data. The iCLIP
experiment encodes protein binding information in a
toeprinting-type manner by crosslinking RNA to
proteins and degrading the crosslinked protein by
proteolysis. This leaves a short peptide fragment
attached to the site on the RNA where it was
crosslinked, and that can therefore cause RT drop-off.

The iCLIP protocol differs from other ‘toeprinting’
protocols in two aspects: First, the RNase degradation
process produces fragments that are only around the
crosslink sites. This results in sparse iCLIP read
alignment to the genome. Second, it does not include a
sequenced control that can help reduce background
noise. Therefore, PROBer uses a simpler model (Figure
S1B) to allocate ambiguously mapped iCLIP reads,
which compose a significant portion of iCLIP data
(Table S2).

We reanalyzed one set of iCLIP data generated by
Nostrand et al. (Van Nostrand et al., 2016), which
investigated the transcriptome-wide binding preferences
for the RNA regulating protein RBFOX2. Importantly,
the UGCAUG binding motif of this protein has been
validated in vitro, providing an independent ground
truth for our evaluation.

As expected, our analysis of this dataset with
PROBer yielded the sequence motif that was previously
reported, indicating that the PROBer model can indeed
handle iCLIP data as well. More importantly, we found
that PROBer can detect extra binding sites with the
exact sequence motif, which could not be detected if we
restrict to uniquely mapping reads. Figure 3A gives an
example in protein-coding gene NUP/33. The detected
binding site is located at the intronic region downstream
of exon 15 of NUPI33, which implies RBFOX2 may
promote the inclusion of this exon in the mature
transcripts (Yeo et al., 2009). Note that this significantly
enriched binding site cannot be detected using only
uniquely mapping reads. We compared PROBer with a
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baseline method that distributes multi-mapping reads
evenly to all aligned locations. Superior performance of
PROBer over the baseline method (Figure 3C)
demonstrated the power of PROBer’s statistically sound
iCLIP model. Our results with the RNA binding protein
RBFOX2 clearly demonstrate that multi-mapping iCLIP
reads contain valuable information and that the common
practice of restricting analysis to unique mappings is
suboptimal.

DISCUSSION

We present PROBEer, a statistically rigorous approach to
quantify chemical  reactivity  profiles from
transcriptome-wide sequencing data. We have evaluated
PROBer’s performance with three diverse chemical
modification protocols, as well as a variety of library
preparation protocols. In each of these cases, PROBer
outperformed ad hoc methods in analysis of the data. As
it is becoming clear that a systems-wide view of such
post-transcriptional regulation processes is highly
informative, we believe that multiple of these chemical
modification / toeprinting protocols will be performed
within the same study. As such a unified pipeline such
as PROBer is even more valuable.

PROBer is freely available with open-source at
http://pachterlab.github.io/PROBer. ~ All experiments
can be replicated using the snakemake scripts at
https://github.com/pachterlab/PROBer_paper_analysis.

EXPERIMENTAL PROCEDURES

Transcript and genome references

Arabidopsis thaliana. We downloaded the latest
genome and gene annotation (TAIR10) from The
Arabidopsis Information Resource. Following Ding et
al. (Ding et al., 2014), we extracted every mRNA,
rRNA, tRNA, ncRNA, snRNA, miRNA, and snoRNA
annotated in the GFF3 file. We also discovered and thus
removed 568 duplicate sequences. In addition, we found
two copies of 18S rRNA with minor differences and no
25S rRNA (but a subsequence of it, AT2G01021.1) in
the extracted sequences. Thus, we added 25S rRNA
sequence from the RNA structure database (Cannone et
al.,, 2002) and removed one copy of 18S rRNA,
AT3G41768.1, and the  25S subsequence,
AT2G01021.1. The final reference consists of 36,264
transcripts in total.

Saccharomyces cerevisiae. We downloaded the
genome (R64-1-1) and gene annotation (build R64-1-
1.84) from Ensembl. After removing duplicate
sequences, the final reference consists of 6,841
transcripts.

Mus musculus. We downloaded the genome
(GRCm38) and gene annotation (build GRCm38.74)
from Ensembl. The annotation contains no 18S or 25S

rRNAs, and 353 variants of 5S rRNA. We added 18S
sequence from the RNA structure database and removed
all but one variant of 5S rRNA. We could not add 25S
sequence because it is not included in the RNA structure
database (Cannone et al., 2002). After removing
duplicate sequences, the final reference consists of
93,362 transcripts.

Homo sapiens. We downloaded the human genome
(GRCh38) from Ensembl.

Sequencing data

Structure probing data from (Ding et al., 2014) were
downloaded  from  Sequence  Read  Archive
(SRP027216). This data set contains two biological
replicates, which were pooled together. We pre-
processed the data according to (Ding et al., 2014)
which includes removing ssDNA linker and trimming
adapter sequence using cutadapt (Martin, 2011) (v1.10).
The pre-processed data contain 117,242,295 and
81,596,350 single-end reads in modification-treated and

mock-treated experiments respectively.  Structure
probing data from (Talkish et al., 2014) were
downloaded  from  Sequence  Read  Archive

(SRP029192). Only wild-type data were used and the
two biological replicates were pooled together. Data
were pre-processed following (Talkish et al., 2014) The
pre-processed data contain 7,729,251 and 9,199,721
single-end reads in modification-treated and mock-
treated experiments respectively. Structure probing data
from (Spitale et al., 2015) were downloaded through
Gene Expression Omnibus (GSE64169). The data
volume in (Spitale et al., 2015) precluded analysis of
the entire dataset so we used only the first 100 million
reads from biological replicate 2 of v6.5 mouse ES
cells. We pre-processed these data by trimming 3’
adapters, removing PCR duplicates, and then removing
unique molecular identifiers (UMI). Only reads with the
same sequences and UMIs are considered as duplicates.
The data we used consist of three conditions: mock-
treated, in vitro modification-treated, and in vivo
modification-treated. After pre-processing, the three
conditions contain 96,120,565, 23,455,089, and
78,180,398 single-end reads respectively.

Pseudo-seq data from (Carlile et al., 2014) were
downloaded from Gene Expression Omnibus
(GSES58200). Following advice of the authors, samples
GSM 1403085 and GSM 1403086 were picked as mock-
treated experiments and samples GSM 1403087 and
GSM1403088 were picked as modification-treated
experiments. Data were pre-processed as documented in
(Carlile et al., 2014). The resulting pre-processed data
contain 31,103,632 and 39,167,224 single-end reads in
modification-treated and mock-treated experiments
respectively.

RBFOX2 iCLIP data from Nostrand et al. (Van
Nostrand et al., 2016) were downloaded at Sequence
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Read Archive. We only used one run of iCLIP data
(SRR3147675). Data were pre-processed by trimming
3’ adapters, removing PCR duplicates, and then
removing UMIs. The pre-processed data contain
18,724,388 single-end reads in total.

PROBer’s generative probabilistic model

We model sequencing-based ‘toeprinting’ experiments
using a generative probabilistic model (Figure S3A).
The key parameters that we model include the relative
abundances for the set of transcripts in the sample, as
well as modification probabilities, and RT noise
probabilities for each site on a transcript. In order to
reduce the number of parameters we have to estimate,
we assume the abundances in the modification-treated
experiment are the same as abundances in the mock-
treated experiment.

To generate a read from the modification-treated
experiment, we first pick a transcript at a rate
proportional to the product of transcript abundance and
length. We denote this rate by ;. Then we choose the
priming site uniformly across all valid priming sites in
the transcript. We denote the total number of available
priming sites by #;. Once we have the priming site,
reverse transcription starts. At each site j, there is a
probability that RT stops due to either chemical
modification (denoted by B,;) or background noises such

as RT natural drop-off, primer collision or reaching the
end of a fragment (denoted by V;j)' Once the RT stops, a

cDNA fragment is generated. Thus, the probability of
generating a cDNA fragment of length /, priming at j,
and from transcript i is

b (1=0-n)0-0)) [ o
k=j—I+1
B )X =7)

The term [, in the above equation is the random primer
length. In the Ding et al. protocol, this term is equal to
6; however if RNA fragmentation-based protocols are
used, this number would be 0.

The next step is to decide if the obtained fragment
passes the size selection. If not, this fragment will not be
sequenced and therefore considered hidden. Otherwise,
a sequence read will be produced according to our
sequencing error model. Our model can generate either
single-end or paired-end reads and allows both
substitution and indel errors to occur during the
sequencing step.

To generate a read from the mock-treated
experiment is similar, excepting that the chemical
modification probabilities are not involved. Thus the
probability of generating a similar ¢cDNA fragment
becomes

1
IF lJl 1_[ (1 1k)

! k=j—I1+1

Our generative model is applicable to fragment-based
probing protocols (Carlile et al., 2014; Rouskin et al.,
2014; Spitale et al., 2015; Talkish et al., 2014) as well.
We just need to replace the assumption of uniform
priming with the assumption of uniform fragmentation.
For more details about our generative model, please
refer to Supplemental Experimental Procedures, section
2.

Estimating PROBer parameters

Our goal is to estimate toeprinting parameters and
relative abundances in the sample. Toeprinting
parameters include both modification probabilities (fs)
and RT noise probabilities (ys) per transcript site. We
obtain maximum likelihood (ML) estimates for
transcript abundances. But for toeprinting parameters,
we seek maximum a posteriori (MAP) estimates instead,
because for most transcripts, we do not have enough
coverage per site to obtain reliable ML estimates. To
obtain MAP estimates, we introduce a Beta distribution
for each structural parameter (either § or y) as its prior.
We tie the Beta distribution parameters together for all
ps and all ys respectively, and set them to 0.0001 by
default.

We have two types of hidden data. First, due to
alignment ambiguity we cannot be sure about which
transcript a read originates from; we can only infer a set
of highly possible origins for the read using its
alignments. Second, if a cDNA fragment does not pass
the size selection, we cannot observe a read from it. For
reasons explained in Supplemental Experimental
Procedures, section 2.1, we only consider the first type
of hidden data.

We use the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) to learn above model
parameters. The workflow of our EM algorithm is
shown in Figure 1C. In the E step, we interpolate the
hidden data— the locations of multi-mapping read —
given the estimated abundances and toeprinting
parameters. In the M step, we calculate the ML and
MAP estimates based on both the observed data and
interpolated hidden data. The E and M steps are
repeated until convergence. Supplementary Section 3
provides a detailed discussion about our EM algorithm.

PROBer’s iCLIP model

Because iCLIP protocol does not have a sequenced
control and iCLIP signals are sparse in the genome,
PROBer only allocates multi-mapping reads for iCLIP
data. For this reason, PROBer uses a simpler generative
model (Figure SI1B). To generate an iCLIP read,
PROBer first picks a crosslink site and then generates
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the read sequence according to a sequencing error
model. PROBer uses an Expectation-Maximization-
Smoothing (EMS) algorithm (Silverman et al., 1990),
which is similar to Chung et al.’s work on ChIP-Seq
data (Chung et al., 2011), to infer model parameters and
allocate multi-mapping reads. Please refer to
Supplemental Experimental Procedures, Section 5 for
more details.

The PROBer software
PROBer contains five commands: prepare, estimate,
simulate, iCLIP and version.

The first step in running PROBer is to build
reference indices using the command PROBer prepare.
The command accepts either a genome or a set of
transcript sequences. If the input is a genome, users
need to specify either a GTF file using the option --gtf
or a GFF3 file using the option --gff3. Then PROBer
will automatically extract transcript sequences from the
specified annotation file. In addition, PROBer prepare
can help users to build Bowtie (Ben Langmead et al.,
2009) and Bowtie 2 (Ben Langmead and Salzberg,
2012) indices by enabling --bowtie and --bowtie2
options. For iCLIP data, --genome option should be set
to notify PROBer that genome indices, instead of
transcript indices, are required. PROBer prepare only
needs to be run once per reference.

Next, PROBer estimate is run on ‘toeprinting’ data
(except iCLIP data). PROBer accepts either raw reads in
FASTA/FASTQ format or alignments in
SAM/BAM/CRAM format as its inputs. It can handle
single-end reads, paired-end reads and indel alignments.
If inputs are raw reads, PROBer will call Bowtie to
align them by default. Users can ask PROBer to use
Bowtie 2 instead by enabling --bowtie2 option. PROBer
outputs ML estimates of transcript abundances and
MAP estimates of modification and RT noise
probabilities. If --output-bam is enabled, PROBer in
addition outputs BAM files consisting of posterior-
probability-annotated read alignments. PROBer can run
with only modification-treated data if mock-treated
control is not available. In that case, the estimated
modification probabilities might not be as accurate.

PROBer estimate options include --primer-length, -
-size-selection-min, --size-selection-max, and --read-
length. --primer-length determines the random primer
length. This option should be set to 6 if random
hexamer priming was used and to O if the protocol was
fragmentation-based. --size-selection-min and --size-
selection-max describe the minimum and maximum
cDNA fragment lengths in your library after size
selection. --read-length is only used for single-end reads
and specifies the untrimmed read length. It helps
PROBer to determine which single-end reads are
adaptor trimmed and thus can be regarded as full
fragments.

For iCLIP data, we run PROBer iCLIP. Similar to
other ‘toeprinting’ assays, PROBer accepts iCLIP data
either as raw reads in FASTA/FASTQ formator as
alignments in SAM/BAM/CRAM format. If inputs are
raw reads, either Bowtie or Bowtie 2 can be called to
align these reads. However, because of the differences
between iCLIP and other ‘toeprinting’ protocols
described in the main text, PROBer only allocate multi-
mapping reads for iCLIP data. The PROBer outputs
consist of every iCLIP crosslink site and its unique read
count & expected multi-read count.

If users want to simulate ‘toeprinting’ reads based
on parameters learned from real data, PROBer simulate
should be used. The simulation parameters can be
learned using PROBer estimate. Note that PROBer
currently cannot simulate iCLIP data.

PROBer version prints out the version information.

Methods used in structure-probing experiments
We compared PROBer with three other methods:
StructureFold (Tang et al., 2015), Mod-seq (Talkish et
al., 2014), and icSHAPE (Spitale et al., 2015). These
three methods were proposed and used in Ding et al.
(Ding et al., 2014), Talkish et al. (Talkish et al., 2014),
and Spitale et al. (Spitale et al., 2015) respectively. We
re-implemented each method according to its original
paper. Note that icSHAPE requires a parameter o for the
mock-treated experiment. We set o to 0.25, which is the
value used in (Spitale et al., 2015) for all structure-
probing data sets.

We used Bowtie (Ben Langmead et al., 2009)
(v1.1.2) to align reads for all these methods (including
PROBer). Because structure-probing protocols are
strand-specific, we only aligned reads to the forward
strand. For the (Ding et al., 2014) Arabidopsis data, we
required at most 3 mismatches for each qualified
alignment. For all other data sets, we used Bowtie’s
default setting. To allocate multi-mapping reads,
PROBer used all qualified alignments of a read. In
addition, reads with more than 200 qualified alignments
were filtered out. StructureFold and icSHAPE used all
qualified alignments in the best stratum (least number of
mismatches in either entire read or the “seed” region).
Mod-seq used only the best single qualified alignment.
These parameter settings were chosen according to the
papers describing each method.

PROBer’s protocol-specific options, such as --
primer-length, --size-selection-min, --size-selection-max,
and —read-length, were set differently according to the
characteristics of each protocol. Spitale et al. used biotin
to selectively enrich structural signals in modification-
treated experiments®. This step significantly reduces the
background noise contained in the modification-treated
channel and also makes it hard to interpret the
relationship between mock-treated and modification-
treated channels. Thus, for Spitale et al. data, we only
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used modification-treated data as PROBer’s input. For
further details, please refer to our Snakemake (Kdster
and Rahmann, 2012) workflow.

Simulation of structure-probing experiments and
digital spike-in experiments

To assess the variability of the simulation, we simulated
two sets of 30 million 37 nt single-end reads in both the
modification-treated and mock-treated experiments,
using the generative model described before. The model
parameters used in the simulation were learned from the
Ding et al. structure-probing data by running PROBer.
To access if structure information can affect RNA-Seq
quantification process (Figure S4), we in addition
simulated 30 million 37 nt single-end reads using the
RSEM simulator (Li and Dewey, 2011) (which ignores
structure information) with the same simulation
parameters.

For digital spike-in experiments, our transcriptome
was augmented with sequences of three model RNAs
from Lucks et al. (Lucks et al., 2011): 1) RNase P from
Bacillus subtilis, 198 nt; 2) pT181 long from
Staphylococcus aureus, 192 nt; 3) pT181 short from
Staphylococcus aureus, 172 nt. 2) and 3) are two
variants of the pT181 transcriptional attenuator. The
RNA structure and RT noise parameters for these
transcripts were calculated from SHAPE-seq data
according to Aviran et al. (Aviran et al., 2011b). In
order to explore the effect of expression level on
estimation accuracy, we generated 4 sets of simulated
data by varying the ground truth expression levels of the
three RNAs between 100, 1000, 10,000, and 100,000
Transcripts Per Million (TPM). Each set of simulated
data consists of 30 million 37 nt single-end reads for
both the modification-treated and mock-treated
experiments. Model parameters for the rest of the
transcriptome were set to the same values as described
above.

Comparison with other methods on simulated data
Our main simulation results are box plots comparing
PROBer with alternative methods. In these box plots,
we only focused on 1,802 transcripts that we may obtain
reasonable RNA structure estimates. These transcripts
were selected according to the following criteria: 1) its
ground truth expression level > 50 TPM; 2) its length
> 100 nt, and 3) its mappability score > 0. The
mappability score is defined as the ratio between the
number of 21 mers that can be mapped back uniquely
and the total number of 21 mers in the same transcript.
We further partitioned the 1,802 transcripts into 4
expression ranges in TPM: 887 transcripts in [50, 100],
849 transcripts in (10%,103], 60 transcripts in
(103,10%], and 6 transcripts in (10%,10°].

For each transcript and method, we calculated
Pearson’s correlation coefficient between the ground

truth modification probabilities and the estimates. In the
calculation, we only used sites containing ‘A’s or ‘C’s
because DMS only modifies ‘A’s and ‘C’s. In addition,
we excluded the last 36 nt (read length is 37 nt) of each
transcript from the analysis because there are little reads
aligned to the 3’ end.

In addition to the results shown in Figure2A, we
also investigated the effects of interpolating hidden
fragments that failed to pass size selection. We named
PROBer with this interpolation enabled as the full
model (see Supplemental Experimental Procedures,
section 3). As shown in Figure S2A, the full model
significantly increased the variance for structural
estimates in medium expression ranges, which contain
over 96% of investigated transcripts. This result
validates our decision of taking off the size selection
correction step from PROBer. To demonstrate to the
improvement in performing structure estimation and
transcript quantification at the same time, we also
compared PROBer with the RSEM + PROBer*
pipeline. RSEM (Li et al., 2010; Li and Dewey, 2011) is
a popular RNA-Seq transcript quantification software
that is not aware of RNA structure information.
PROBer* is a modified version of PROBer that only
works on a single transcript and thus is not aware of
multi-mapping reads. Figure S2B confirms our
hypothesis --- PROBer performs better at all expression
ranges than the RSEM+PROBer* pipeline.

To assess the variability introduced by simulation,
we simulated an extra data set. Boxplots for this
simulation (Figure S3), demonstrate that our results are
stable with respect to the simulation used.

Comparison with other methods using ROC curves
We compared PROBer’s MAP estimates of chemical
modification probabilities with alternative methods’
scores using previously reported ribosomal RNA
secondary structures (Cannone et al., 2002). Secondary
structures for Arabidopsis 18S and 25S rRNAs, yeast
18S and 25S rRNAs, and mouse 18S and 12S
mitochondrial rRNAs were obtained as BPSeq files.
Sites on these rRNAs that participate in a base-pairing
interaction were assigned an idealized modification rate
of 0, and unpaired sites were assigned an idealized
modification rate of 1. ROC curves comparing PROBer
estimated MAP chemical modification rate and
alternative method scores to this binary ground truth
vector were produced and the areas under the ROC
curves were calculated using PRROC (Keilwagen et al.,
2014).

Experiments on Carlile et al. Pseudo-seq data

For yeast, we have 49 known ¥ sites. However, the
rRNAs and snoRNA containing these ¥s have 1905
thymines (T). Thus, this data set is highly skewed. It is
known that when data sets are highly skewed, ROC
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curves tend to be overly optimistic (Davis and Goadrich,
2006). In fact, we can observe this phenomenon by
plotting the ROC curves of this data set (Figure S7).
Thus, in the main text, we chose Precision-Recall (PR)
curve to evaluate different methods. PR curves were
produced using PRROC (Keilwagen et al., 2014). In
addition, we have observed a strange read count pattern
at the 5° end of 25S rRNA. Normally, the 5° end base of
a transcript should have a very high read count because
of RT run-off. However, for 25S, the high read count
appears at the 3rd base. We hypothesize that this may be
due to a small amount of degradation in the input RNA.

Reproducing our experiments

We implemented a Snakemake (Koster and Rahmann,
2012) workflow which can be used to replicate all our
analyses:

https://github.com/pachterlab/PROBer paper analysis
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FIGURE LEGENDS

Figure 1. Cartoon depictions of sequencing-based "toeprinting" experiments, the associated Bioinformatics
challenges, and our solution

(A) Cartoon depiction of an idealized toeprinting experiment. The genome is transcribed and RNAs are spliced and
folded to form the structured transcriptome. This pool of RNAs is split into two, and either treated with a chemical
probe, or mock-treated without the chemical probe. These chemical adducts are detected by reverse transcriptase
(RT) drop-off, but the signal is convoluted by reverse transcriptase noise. Reverse transcription products are
collected and sequenced. (B) Potential bioinformatics challenges. The structured transcriptome that gave rise to a
given toeprinting dataset consists of known transcripts of unknown relative abundance. Reads from this dataset
might align ambiguously to one or more transcripts, and might have been generated by either RT drop-off at a
chemical modification, or by RT noise. (C) Conceptual workflow of PROBer. Sequencing data (both treatment and
control datasets) from a toeprinting experiment are used as the input. In the E- step, reads are assigned to transcripts
depending on an initial alignment, and the relative abundances & toeprinting parameters of the transcripts estimated
in the M-step. In the M- step, transcript abundances and toeprinting parameters are learned, using the read
assignments calculated in the E-step.

Figure 2. Performance of PROBer as compared to alternative approaches

(A) A simulated RNA structure-probing dataset was generated in a manner consistent with Ding et al. (Ding et al.,
2014), and used as the input for a number of structure-probing quantification methods, which include PROBer,
StructureFold (Tang et al., 2015), Mod-seq (Talkish et al., 2014), and icSHAPE (Spitale et al., 2015). Accuracy was
evaluated by comparing the results from these methods to the simulation parameters using Pearson’s correlation
coefficient. PROBer consistently outperforms all other methods across a wide range of expression levels. See also
Figure S3C and Experimental Procedures. (B) PROBer was compared to alternative methods on data for predicting
known pseudouridine (V) sites in yeast IRNAs and snoRNA (Carlile et al., 2014). Methods were evaluated by
Precision-Recall (PR) curves and area under curve (AUC) values. PROBer outperforms all other methods
significantly. See also Figure S6 and S7.

Figure 3. PROBer detected more RBFOX2 binding sites with canonical motifs by utilizing multi-mapping
iCLIP reads

(A) The canonical motif containing NUP133 binding site can only be detected by using both unique and multi-
mapping reads. This plot is generated with UCSC Genome Browser (Kent et al., 2002). Within the plot, the first
track shows the number of iCLIP reads (both unique and multi-mapping) dropped-off at each genomic position and
the second track only shows the number of unique reads dropped-off at each genomic position. The dropped-off
position is one base before the 5' end of an iCLIP read. In addition, the canonical motif is highlighted in the genomic
sequences. (B) Numbers of putative RBFOX2 binding sites and the percentage of binding sites that contain the
canonical motif UGCAUG. Only sites with at least 10 iCLIP counts are considered as putative binding sites. The
canonical motif was searched around each putative binding site using a 10 nt window. In the first row, Unique
refers to binding sites that consist of only uniquely mapped iCLIP reads. PROBer (multi) and Baseline (multi) refers
to binding sites that consist of only multi-mapping iCLIP reads and are identified by PROBer and the baseline
algorithm respectively. Similarly, PROBer (extra) and Baseline (extra) refers to binding sites that could be identified
by using all reads, but not using only uniquely mapped reads. The baseline algorithm distributes each multi-mapping
read evenly to its alignments. PROBer identified one times more multi-mapping reads only binding sites with
canonical motifs and two times more extra binding sites with canonical motifs than the baseline algorithm.
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Window Position chr1:229,470,242-229,470,387 (146 bp)

Scale 50 bases| — I thSS
---> GTAGGAGAATCACTGGAACOOGGCAACAGAGTGAGACTOCATCTCAAAAAAAAAAAAAAAGAAGATCAGE R TI€ R AAGCAAATACGT, ATTCEECGAAAAAAGTAAACACCGAGCACTTCTTAGTCAACTTT
205 _ using all reads
all
0 ) = =+ =+
205 _ using only unique reads
unique
0 =

RefSeq Genes

NUP133

Unique PROBer (multi) Baseline (multi) PROBer (extra) Baseline (extra)

Total sites 42,795 13,269 11,663 18,793 13,353

UGCAUG 13.71% 2.76% 1.58% 5.43% 2.34%
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