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Abstract 1 

Background 2 

Psychiatric disorders are multigenic diseases with complex etiology contributing 3 

significantly to human morbidity and mortality. Although clinically distinct, several 4 

disorders share many symptoms suggesting common underlying molecular changes 5 

exist that may implicate important regulators of pathogenesis and new therapeutic 6 

targets. 7 

Results 8 

We compared molecular signatures across brain regions and disorders in the 9 

transcriptomes of postmortem human brain samples. We performed RNA sequencing 10 

on tissue from the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus 11 

accumbens from three groups of 24 patients each diagnosed with schizophrenia, bipolar 12 

disorder, or major depressive disorder, and from 24 control subjects, and validated the 13 

results in an independent cohort. The most significant disease differences were in the 14 

anterior cingulate cortex of schizophrenia samples compared to controls. Transcriptional 15 

changes were assessed in an independent cohort, revealing the transcription factor 16 

EGR1 as significantly down regulated in both cohorts and as a potential regulator of 17 

broader transcription changes observed in schizophrenia patients. Additionally, broad 18 

down regulation of genes specific to neurons and concordant up regulation of genes 19 

specific to astrocytes was observed in SZ and BPD patients relative to controls. We also 20 

assessed the biochemical consequences of gene expression changes with untargeted 21 

metabolomic profiling and identified disruption of GABA levels in schizophrenia patients.  22 
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Conclusions 1 

We provide a comprehensive post-mortem transcriptome profile of three psychiatric 2 

disorders across three brain regions. We highlight a high-confidence set of 3 

independently validated genes differentially expressed between schizophrenia and 4 

control patients in the anterior cingulate cortex and integrate transcriptional changes 5 

with untargeted metabolite profiling. 6 

Keywords 7 

Schizophrenia, Bipolar Disorder, Major Depressive Disorder, RNA sequencing, 8 

metabolomics, EGR1 9 

Background 10 

Schizophrenia (SZ), bipolar disorder (BPD), and major depressive disorder (MDD) are 11 

multigenic diseases with complex etiology and are large sources of morbidity and 12 

mortality in the population. All three disorders are associated with high rates of suicide, 13 

with ~90% of the ~41,000 people who commit suicide each year in the U.S. having a 14 

diagnosable psychiatric disorder [2]. Notably, while clinically distinct, these disorders 15 

also share many symptoms, including psychosis, suicidal ideation, sleep disturbances 16 

and cognitive deficits [3–5]. This phenotypic overlap suggests potential common genetic 17 

etiology, which is supported by recent large-scale genome-wide association studies [6–18 

9]. However, this overlap has not been fully characterized with functional genomic 19 

approaches. Current therapies for these psychiatric disorders are ineffective in many 20 

patients and often only treat a subset of an individual patient’s symptoms [10]. 21 

Approaches targeting the underlying molecular pathologies within and across these 22 
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types of disorders are necessary to address the immense burden of psychiatric disease 1 

around the world and improve care for the millions of people diagnosed with these 2 

conditions. 3 

Previous studies [11–15] analyzed brain tissue with RNA sequencing (RNA-seq) in SZ 4 

and BPD, and identified altered expression of GABA-related genes in the superior 5 

temporal gyrus and hippocampus, as well as differentially expressed genes related to 6 

neuroplasticity and mammalian circadian rhythms. Our study focused on the anterior 7 

cingulate cortex (AnCg), dorsolateral prefrontal cortex (DLPFC), and nucleus 8 

accumbens (nAcc), regions which are often associated with mood alterations, cognition, 9 

impulse control, motivation, reward, and pleasure – all behaviors known to be altered in 10 

psychiatric disorders [16,17]. To assess gene expression changes associated with 11 

psychiatric disease in these three brain regions, we performed RNA-seq on macro-12 

dissected post-mortem tissues in four well-documented cohorts of 24 patients each with 13 

SZ, BPD, MDD and 24 controls (CTL) (96 individuals total). Additionally, we conducted 14 

metabolomic profiling of AnCg tissue from the same subjects. RNA-seq analysis 15 

revealed common expression profiles in SZ and BPD patients supporting the notion that 16 

these disorders share a common molecular etiology. Transcriptional changes were most 17 

pronounced in the AnCg with SZ and BPD exhibiting strongly correlated differences 18 

from CTL samples. Differentially expressed genes were associated with cell-type 19 

composition with BPD and SZ samples showing decreased expression of neuron-20 

specific transcripts. We validated this result with RNA-seq data from an independent 21 

cohort of 35 cases each of SZ, BPD, and CTL post-mortem cingulate cortex samples 22 

from the Stanley Neuropathology Consortium Integrative Database (SNCID; 23 
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http://sncid.stanleyresearch.org) Array Collection. We present a set of validated genes 1 

differentially expressed between SZ and CTL patients, perform an integrated analysis of 2 

metabolic pathway disruptions, and highlight a role for the transcription factor, EGR1, 3 

whose down-regulation in SZ patients may drive a large portion of observed 4 

transcription changes. 5 

Methods 6 

See Supplemental Methods for additional detail. 7 

Patient Sample Collection and Preparation 8 

Sample collection, including human subject recruitment and characterization, tissue 9 

dissection, and RNA extraction, was described previously [18,19] as part of the Brain 10 

Donor Program at the University of California, Irvine, Department of Psychiatry and 11 

Human Behavior (Pritzker Neuropsychiatric Disorders Research Consortium) under IRB 12 

approval. In brief, coronal slices of the brain were rapidly frozen on aluminum plates that 13 

were pre-frozen to -120oC and dissected as described previously [20]. All samples were 14 

diagnosed by psychological autopsy, which included collection and analyses of medical 15 

and psychiatric records, toxicology, medical examiners’ reports, and 141-item family 16 

interviews. Agonal state scores were assigned based on a previously published scale 17 

[21]. Controls were selected based upon absence of severe psychiatric disturbance and 18 

mental illness within first-degree relatives. 19 

We obtained fastq files from RNA-seq experiments for our validation cohort from the 20 

Stanley Neuropathology Consortium Integrative Database (SNCID; 21 

http://sncid.stanleyresearch.org) Array Collection comprising 35 cases each of SZ, BPD, 22 
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and CTL of post-mortem cingulate cortex with permission on June 30, 2015.  For our 1 

analysis, we included the 27 SZ, 26 CTL, and 25 BPD SNCID samples that were 2 

successfully downloaded and represented unique samples. SNCID RNA-seq 3 

methodology and data processing is described in detail in a previous publication that 4 

makes use of the data [11]. 5 

RNA-seq and Data Processing 6 

To extract nucleic acid, 20 mg of post-mortem brain tissue was homogenized in Qiagen 7 

RLT buffer + 1% BME using an MP FastPrep-24 and Lysing Matrix D beads for three 8 

rounds of 45 seconds at 6.5 m/s (FastPrep homogenizer, lysing matrix D, MP Bio). Total 9 

RNA was isolated from 350 μL tissue homogenate using the Norgen Animal Tissue 10 

RNA Purification Kit (Norgen Biotek Corporation). We made RNA-seq libraries from 250 11 

ng total RNA using polyA selection (Dynabeads mRNA DIRECT kit, Life Technologies) 12 

and transposase-based non-stranded library construction (Tn-RNA-seq) as described 13 

previously [22]. To mitigate potentially confounding batch affects in sample preparation 14 

we randomly assigned samples from all brain regions and disorders into batches of 24 15 

samples. We used KAPA to quantitate the library concentrations and pooled 4 samples 16 

in order to achieve equal concentration of the four libraries in each lane. Pools were 17 

determined by random from the 291 samples. Samples were also randomly selected for 18 

pooling in an effort to limit potentially confounding sequencing batch effects. The pooled 19 

libraries were sequenced on an Illumina HiSeq 2000 sequencing machine using paired-20 

end 50 bp reads and a 6 bp index read, resulting in an average of 48.2 million reads per 21 

library. To quantify the expression of each gene in both Pritzker and SNCID datasets, 22 

RNA-seq reads were processed with aRNApipe v1.1 using default settings [23]. Briefly, 23 
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reads were aligned and counted with STAR v2.4.2a to GRCh37_E75 [24]. All alignment 1 

quality metrics were obtained from the picard tools module 2 

(http://broadinstitute.github.io/picard/) available in aRNApipe. Transcripts expressed 3 

from the X and Y chromosomes were omitted from the study.  4 

Quantitative PCR (qPCR) was performed on 10 SZ and 10 CTL patients to validate 5 

EGR1 RNA-seq measurements. RNA was extracted as described above from tissue 6 

lysates a second time. Reverse transcription was performed on 250ng of input RNA with 7 

the Applied Biosystems high capacity cDNA reverse transcription kit. Validated Taqman 8 

assays for EGR1 (Hs00152928_m1) and the housekeeper genes GAPDH 9 

(Hs02758991_g1) and ACTB (Hs01060665_g1) were used for qPCR. cDNA was 10 

diluted by a factor of 10 before use as input for the Taqman assay. The qPCR 11 

reaction was performed on an Applied Biosystems Quant Studio 6 Flex system 12 

using the recommended amplification protocol for Taqman assays. 13 

Sequencing Data Analysis 14 

All data analysis in R was performed with version 3.1.2.   15 

Differential Expression Analysis and Normalization 16 

To examine gene expression changes, we employed the R package DESeq2 [1] 17 

(version 1.6.3), using default settings, but employing likelihood ratio test (LRT) 18 

hypothesis testing, and removing non-convergent transcripts from subsequent analysis. 19 

Genes differentially expressed between each disorder and CTL samples, by brain 20 

region, were identified with DESeq2 (adjusted p-value<0.05), including age, brain pH,  21 

PMI, and percentage of reads uniquely aligned (PRUA) as covariates (Full Model: 22 
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~Age+PMI+pH+PRUA+Disorder, Reduced Model: ~ Age+PMI+pH+PRUA). For 1 

downstream heatmap visualization, PCA, and cell-type analysis, transcripts were 2 

underwent a log-like normalization using DESeq2’s varianceStabilizingTransformation 3 

function and were corrected for PRUA by computing residuals to a linear model 4 

regressing PRUA on normalized transcript amount with the R lm function unless 5 

otherwise specified.   6 

PCA and Hierarchical Clustering 7 

PCA analysis was performed in R on normalized data using the prcomp() command.  8 

Hierarchical clustering of normalized transcript data was done in R with the hclust 9 

command (method=”ward”, distance=”Euclidean”) 10 

Pathway Enrichment Analysis 11 

Pathway analysis was conducted using the web-based tool LRPath [25] using all GO 12 

term annotations, adjusting to transcript read count with RNA-Enrich, including 13 

directionality and limiting maximum GO term size to 500 genes.  GO term visualization 14 

was performed using the Cytoscape Enrichment Map plug-in [26]. The Genesetfile 15 

(.gmt) GO annotations from February 1, 2017 were downloaded from 16 

http://download.baderlab.org/EM_Genesets/. The LRPath output was parsed and used 17 

as an enrichment file with all upregulated pathways colored red and all downregulated 18 

pathways colored blue, regardless of degree of upregulation. Mapping parameters 19 

were; p-value cutoff = 0.005, FDR cutoff = 0.1 and Jaccard coefficient > 0.3. Resulting 20 

networks were exported as PDFs. Summary terms were added to the plot based on the 21 

GO terms in those clusters. In order to assess overlap between significant GO terms 22 

and our analysis and the GWAS study described by the Psychiatric Genomics 23 
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Consortium, we downloaded the p-values reported for Schizophrenia hits from 1 

Supplemental Table 4, which contained 424 significant GO terms. We used a chi-2 

squared test to assess significant overlap between the two groups. Supplemental Table 3 

X reports the p-values measured in SZ based on this study along with those calculated 4 

in our analysis. 5 

EGR1 ChIP-seq peak analysis 6 

Narrow peak bed files from optimal IDR thresholded peaks were obtained from the 7 

ENCODE data portal (www.encodeproject.org) for EGR1 ChIP-seq data in GM12878, 8 

H1-hESC, and K562 cell lines (ENCODE file IDs: ENCFF002CIV, ENCFF002CGW, 9 

ENCFF002CLV). Consensus EGR1 peaks were identified by intersecting peaks from all 10 

three cell lines, which resulted in a final list of 4,121 peaks that were present in each cell 11 

line (with a minimum overlap of 1bp). The distance from each annotated transcription 12 

start site (TSS) to the nearest consensus EGR1 peak was computed using TSSs 13 

annotated in the ENSEMBL gene transfer format (GTF) file used for aligning RNA-seq 14 

reads (GRCh37_E75). 15 

Cell-Specific Enrichment Analysis 16 

Sets of transcripts uniquely expressed by several brain cell-types were obtained from 17 

figure 1B in Darmanis et. al [27]. An index for each cell-type was created by finding the 18 

median normalized expression value for each cell-type associated transcript set.  Index 19 

values were compared across patient clusters by non-parametric rank sum tests and 20 

spearman correlation with top principal components. To validate our method, we 21 

calculated cell-type specific indices from an independent cohort of previously published 22 

purified brain cells [28,29]. FPKM-normalized transcript data was obtained from 23 
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supplemental table 4 of Zhang et. al. (2014) and cell-type indexes were calculated as 1 

described above. To examine index performance in mixed cell populations, we obtained 2 

fastq files for neuron and astrocyte-purified brain samples from GEO accession 3 

GSE73721 and generated raw count files as described above. We next mixed 4 

expression profiles in silico by performing random down-sampling of neuron and 5 

astrocyte count levels and summing the results such that mixed populations containing 6 

specific proportions of counts from neuron- and astrocyte-purified tissue were 7 

generated. For example, to generate an 80/20 neuron to astrocyte mixture, neuron and 8 

astrocyte count columns (which started at an equivalent number of 5,759,178 aligned 9 

reads) were randomly down-sampled to 4,607,342 and 1,151,836 counts respectively 10 

and summed across each gene to result in a proportionately mixed population of 11 

aligned count data simulating heterogeneous tissue. Then we calculated a 12 

neuron/astrocyte index ratio capable of predicting the in silico mixing weights. Briefly, 13 

we assumed index values for mixed cell populations were directly proportional to mixing 14 

weights of their respective purified tissue, thus the predicted cell proportion for a given 15 

cell type was simply calculated as: 16 

predicted cell proportion = observed index value/purified tissue index value 17 

To insure cell-type predictive power was unique to indices derived from Darmanis et. al 18 

transcripts, we generated indices from 10,000 randomly sampled transcript sets of 19 

equivalent size and examined their performance in predicting in silico mixing weights.  20 

Mean squared prediction errors (MSE) were calculated for each of the 10,000 null 21 

indices and compared to the MSE of Darmanis et. al.-derived indices. 22 

Metabolomics 23 
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Sample preparation 1 

Sections of approximately 100mg of frozen tissue were weighed and homogenized for 2 

45 seconds at 6.5M/s with ceramic beads in 1mL of 50% methanol using the MP 3 

FastPrep-24 homogenizer (MP Biomedicals). A sample volume equivalent to 10mg of 4 

initial tissue weight was dried down at 55oC for 60 minutes using a vacuum concentrator 5 

system (Labconco). Derivatization by methoximation and trimethylsilylation was done as 6 

previously described [30].  7 

We analyzed technical replicates of each tissue sample, in randomized order. 8 

GCxGC-TOFMS analysis 9 

All derivatized samples were analyzed on a Leco Pegasus 4D system (GCxGC-10 

TOFMS), controlled by the ChromaTof software (Leco, St. Joseph, MI). Samples were 11 

analyzed as described previously [30] with minor modifications in temperature ramp. 12 

Data analysis and metabolite identification 13 

Peak calling, deconvolution and library spectral matching were done using ChromaTOF 14 

4.5 software.  Peaks were identified by spectral match using the NIST, GOLM [31], and 15 

Fiehn libraries (Leco), and confirmed by running derivatized standards (Sigma). We 16 

used Guineu for multiple sample alignment [32].  17 

Integrated Pathway Analysis 18 

Altered metabolites and transcripts were analyzed for enrichment in KEGG pathways 19 

containing both metabolite and gene features. A non-parametric, threshold free pathway 20 

analysis similar to that of a previously described method [33] was first performed on 21 

metabolite and transcript data separately. Our method builds on the principle described 22 
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by Subramanian that implements a one-tailed Wilcox test to identify pathways enriched 1 

for low p-values. Instead of just accounting for enrichment at the gene level, we use 2 

metabolite or transcript p-value ranks within each pathway compared to remaining non-3 

pathway metabolites or transcripts with a one-tailed Wilcox test to test the hypothesis 4 

that elements of a given pathway may be enriched for lower p-value ranks than 5 

background elements. Metabolite and transcript p-values were subsequently combined 6 

to provide an integrated enrichment significance p-value using Fisher’s method. 7 

Pathways had to contain greater than 5 genes and 1 metabolite measured in our 8 

dataset to be included in the analysis. Supplemental table 10 lists p-values for enriched 9 

pathways based on genes, metabolites or combined. 10 

Results 11 

Region-specific gene expression in control and psychiatric brain tissue 12 

We collected post-mortem human brain tissue, associated clinical data, including age, 13 

sex, brain pH, and post-mortem interval (PMI), and cytotoxicology results (Tables S1-2) 14 

for matched cohorts of 24 patients each diagnosed with SZ, BPD, or MDD, as well as 15 

24 control individuals with no personal history of, or first-degree relatives diagnosed 16 

with, psychiatric disorders. Importantly, to limit the effect of acute patient stress at the 17 

time of death as a potential confounder we included only patients with an agonal factor 18 

score of zero and a minimum brain pH of 6.5 [19]. Using RNA-seq [22], we profiled gene 19 

expression in three macro-dissected brain regions (AnCg, DLPFC, nAcc). After quality 20 

control, we analyzed 57,905 ENSEMBL transcripts in a total of 281 brain samples 21 

(Table S3).    22 
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To examine heterogeneity across brain regions and subjects, we performed a principal 1 

component analysis (PCA; Figure S1A) of all transcripts.  The first principal component 2 

(PC1, 21.8% of the variation) separates cortical AnCg and DLPFC samples from 3 

subcortical nAcc samples. Examination of the first and second principal components for 4 

disorder associations reveals a separation of some SZ and BPD samples from all other 5 

samples (Figures S1B and S2A-C). However, in agreement with several previously 6 

reported post-mortem brain RNA sequencing studies [15], we found several principal 7 

components to be highly correlated with quality metrics including the percentage of 8 

reads uniquely aligned and percentage of reads aligned to mitochondrial sequence 9 

(absolute Rho>0.5, FDR<1E-16, Table S4). To reduce the potentially confounding 10 

effects of sample quality, we repeated the PCA on expression data normalized to the 11 

percentage of reads uniquely aligned for each sample and found that global disease-12 

specific expression differences were significantly reduced (Figures S1C and S2D-I). 13 

Disease-specific gene expression in control and psychiatric brains 14 

We next applied DESeq2 [1], a method for differential analysis of sequence read count 15 

data, to identify genes differentially expressed across disorders within each brain region 16 

after correcting for biological and technical covariates. The largest number of significant 17 

expression changes occurred in AnCg between SZ and CTL individuals (87 transcripts, 18 

FDR<0.05, Figure 1A). Pathway enrichment analysis of differentially expressed genes 19 

between SZ and CTL patients revealed 935 gene ontology (GO) terms with an 20 

FDR<0.05 (Table S5) (122 GOCC, 159 GOMF, and. 654 GOBP). Significant GO terms 21 

fall into the broad categories of synaptic function and signaling (e.g. neurotransmitter 22 

transport, ion transport, calcium signaling) (Figure S3). These terms overlap significantly 23 
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with those identified by the Psychiatric Genomics Consortium in their analysis of GWAS 1 

implicated genes [34] with 68 GO terms meeting a p-value cutoff of <0.05 in both 2 

datasets (p<0.0001, Chi-square test). Additionally, nine genes were differentially 3 

expressed between SZ and CTL individuals in DLPFC. Three of these were also 4 

identified in AnCg: SST, PDPK2P and KLHL14. No transcripts had an FDR<0.05 when 5 

comparing BPD or MDD samples to CTLs in any brain region, or comparing SZ and 6 

CTL tissues in nAcc (Table S6). To examine potential common gene expression 7 

patterns between the psychiatric disorders, we performed pair-wise correlation 8 

calculations of all transcript log2 fold changes for each disorder versus controls in each 9 

brain region. Of the nine case-control comparisons (for three regions and three 10 

diseases), a particularly strong correlation is observed between BPD and SZ compared 11 

to either SZ or BPD and MDD in each brain region (Figure 1B). In the AnCg, BPD and 12 

SZ share 1,020 common genes differentially expressed at an uncorrected DESeq2 P-13 

value<0.05 compared to only 248 and 143 genes shared between MDD and SZ or BPD 14 

respectively (Figure 1C). This strong overlap between BPD and SZ (Fisher’s exact p-15 

value<1E-16) indicates that although expression changes are weaker in BPD they 16 

follow a trend similar to those identified in SZ. 17 

Because previous post-mortem analyses have been limited by, and are particularly 18 

vulnerable to, biases inherent to examining a single patient cohort, we sought to 19 

generate a robust set of SZ associated transcripts by validating our observed 20 

expression changes in an independent cohort.  To accomplish this, we examined gene 21 

expression differences in the AnCg between SZ and CTL samples in the SNCID RNA-22 

seq Array dataset [14], revealing 1,003 genes differentially regulated (DESeq2 23 
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uncorrected P<0.05) in both datasets (Fisher’s P<1E-16, Table S7). The magnitude and 1 

direction of change in significant transcripts in the Pritzker dataset were highly 2 

correlated with the SNCID dataset (Rho=0.202, P<1E-16), particularly in transcripts that 3 

met an FDR<0.05 cutoff (Rho=0.812, P<1E-16; Figure 1D). We performed hierarchical 4 

clustering of SZ and CTL samples in the SNCID validation cohort using the 1,003 5 

transcripts differentially expressed between SZ and CTL in the Pritzker dataset (P<0.05, 6 

Figure 1E), and found these transcripts successfully distinguished the two disease 7 

groups with only 5 out of 27 SZ and 2 out of 26 CTL samples misclassified. 8 

Of particular interest are a group of 5 genes significant at a FDR<0.05 in both cohorts 9 

that includes a nearly 2-fold decrease in expression of the transcription factor EGR1 10 

(Table S7A, Figure 2A). Quantitative PCR (qPCR) validation of the transcript confirmed 11 

reduced EGR1 expression in SZ samples (Figure 2B). EGR1, a zinc finger transcription 12 

factor, has been recently implicated in SZ by a GWAS study [6], thus we sought to 13 

investigate its role as a potential driver of the transcriptional changes observed in the 14 

AnCg of SZ patients using publicly available genome-wide occupancy data from the 15 

ENCODE consortium (https://www.encodeproject.org). To obtain high confidence EGR1 16 

binding sites we intersected chromatin immunoprecipitation sequencing (ChIP-Seq) 17 

peaks derived from the H1-hESC, K562, and GM12878 cell lines. We found that 18 

transcripts whose transcription start sites (TSSs) were within 1kb of an EGR1 binding 19 

site had significantly lower DESeq2 P-values (Wilcox P=9.68E-5) and significantly more 20 

negative log2 fold changes (SZ/CTL, Wilcox P=7.69E-15) than transcripts whose TSSs 21 

were greater than 1kb from an EGR1 binding site. A monotonic decrease in this effect 22 
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was observed as the distance threshold used for this comparison was increased from 1 

1kb to 50kb (Figure 2C).  2 

Cell type specific changes  3 

In addition to dysregulation of broadly acting transcription factors, another mechanism 4 

that can drive large-scale transcriptional changes in bulk tissue is alterations in 5 

constituent cell type proportions. Previous studies have observed decreases in neuron 6 

density and increased glial scarring in psychiatric disorders [35,36].  To test for signs of 7 

these alterations in our data set we examined the expression of cell type-specific 8 

transcripts identified using data from a single cell RNA sequencing study that identified 9 

transcripts capable of classifying individual cells into the major neuronal, glial, and 10 

vascular cell-types in the brain. We generated cell type indices using the median of 11 

normalized counts for each cell type-specific transcript set. Examining cell type indices 12 

in a previously published RNA-seq analysis of purified brain cells reveals high specificity 13 

of each index to the appropriate cell type and accurate deconvolution of transcriptomes 14 

mixed in silico [29,28] (Figure S4A-F).  Moreover, median values from 10,000 randomly 15 

sampled transcript sets are not able to deconvolute mixed cell transcriptomes, 16 

demonstrating that predictive power is relatively unique to the Darmanis et al. transcript 17 

sets (Figure S4G-I).  18 

Application of the cell type indices to patient AnCg expression data revealed a 19 

significant decrease in neuron specific expression (Wilcox P<0.05) and a significant 20 

increase in astrocyte specific expression (Wilcox P<0.05) in SZ and BPD patients 21 

compared to controls (Figures 3A-B). Other cell-type indices were not significantly 22 

different between psychiatric patients and controls (Figure S5). Further supporting a 23 
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decrease in neuronal gene expression, we found a significant negative correlation 1 

between transcript expression in patient brains relative to control brains and the degree 2 

of neuron specificity (fold enrichment of neuron expression over other cell types) in SZ 3 

and BPD (rho -0.50 and -0.41, P<1E-16, SZ shown in Figure 3C). 4 

Transcriptomic changes reflected in altered metabolomic profiles 5 

To assess the biochemical consequences of expression changes, we used 2D-GCMS 6 

to measure metabolite levels in 86 of the AnCg samples (sufficient tissue was 7 

unavailable for 10 samples). We measured and identified 141 unique metabolites (Table 8 

S8). Similar to our transcript analysis, metabolite levels (Table S9) successfully 9 

differentiated SZ and BPD patients from CTLs (Figures 4A-B), while MDD metabolite 10 

profiles were very similar to CTLs (Figure S6). Several of the most significant 11 

metabolites, including GABA, are known to be relevant to BPD and SZ [37]. 12 

Furthermore, GABA/glutamate metabolite ratios correlate strongly with average GAD1 13 

and GAD2 expression levels (Rho = 0.413, P=0.007, Figures 4C-D). This metabolite-14 

gene relationship is consistent with previous multi-level phenomic analyses [38] and 15 

demonstrates realized biochemical consequences from altered gene expression. 16 

Notably, reductions in GABA could coincide with loss of neurons suggested by the gene 17 

expression data. Integrated pathway analyses of KEGG pathways enriched for both 18 

altered metabolites and transcripts between SZ and CTL patients revealed disruption of 19 

synaptic and neurotransmitter signaling (Figure S7, Table S10). 20 

Discussion 21 
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Here, we describe a large transcriptomic dataset across three brain regions (DLPFC, 1 

AnCg, and nAcc) in SZ, BPD, and MDD patients, as well as CTL samples matched for 2 

agonal state and brain pH. In MDD, we do not identify any transcripts that meet 3 

genome-wide significance for differential expression between cases and controls in any 4 

brain region. This finding agrees with previous post-mortem RNA-seq studies [39], 5 

however sample size and the choice of brain regions examined likely contributed to our 6 

inability to replicate results from previous non-transcriptome wide sequencing based 7 

approaches comparing MDD to CTL in post-mortem brain [40]. One limitation of our 8 

study is that females are underrepresented at a rate of about 5:1. This reflects the 9 

increased chance of accidental death among males [41], but limits us in our ability to 10 

make more general conclusions about these disorders and to address known 11 

differences between the sexes as they relate to these disorders. We also do not have 12 

information on the smoking status for our cohort, which is an important covariate as 13 

smoking rates are higher among patients with psychiatric disorders and smoking has 14 

been demonstrated to effect gene expression [42,43]. Another potential limitation 15 

inherent to post-mortem cohort analyses is accounting for patient drug use.  As detailed 16 

in supplemental table 2, patient toxicology reports were positive for several prescribed 17 

and illicit drugs that were not present in CTL samples. As this is a bias inherent to 18 

psychiatric patients it is impossible to disentangle from non-treatment related disease 19 

patterns in a post-mortem analysis.  20 

Another important limitation of post-mortem RNA-sequencing studies is RNA quality. 21 

We found a significant proportion of variation in our data to be associated with multiple 22 

alignment quality metrics. Significant effort went into controlling for potential sources of 23 
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bias due to differences in RNA quality.  We only included tissue from patients with an 1 

agonal score of 0 and who had a brain pH of 6.5 or greater. We also controlled for brain 2 

pH, post-mortem interval, and alignment quality in all differential expression analyses. 3 

Our study, as well as future post-mortem studies, could be improved by directly 4 

measuring RNA quality at the time of sample preparation (e.g. RNA integrity number 5 

(RIN)). Despite these caveats, we believe our data do yield new insights that contribute 6 

to our growing understanding of these disorders. 7 

The most dramatic gene expression signals we observed were brain region-specific. 8 

The majority of disease-associated expression differences were seen in the AnCg of SZ 9 

compared to CTL patients. The AnCg has been associated with multiple disease-10 

relevant functions, including cognition, error detection, conflict resolution, motivation, 11 

and modulation of emotion [44–46]. We observed a striking overlap in SZ- and BPD-12 

associated expression changes consistent with previous findings [37,47].  13 

One of the more intriguing transcripts significantly down regulated (FDR<0.05) in both 14 

cohorts of SZ patients was the zinc finger transcription factor, EGR1. We provide 15 

evidence that this factor may be driving a large proportion of variation in SZ patients as 16 

transcripts near consensus EGR1 binding sites tend to have decreased expression in 17 

SZ patients. Down regulation of EGR1 has been previously described in the prefrontal 18 

cortex of post-mortem brain samples from SZ patients [48,49]. EGR1 has also 19 

previously been associated with several phenotypes relevant to psychiatric disorder 20 

including neural differentiation [50], emotional memory formation [51], response to 21 

antipsychotics [52], and has recently been described as part of a transcription factor-22 

miRNA co-regulatory network capable of acting as a biomarker in peripheral blood cells 23 
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(PBCs) for SZ [53]. In mice, loss of EGR1 has linked to neuronal loss in a model of 1 

Alzheimer’s Disease [54]. EGR1 is also important for regulation of the NMDA Receptor 2 

pathway, which is critical for synaptic plasticity and memory formation and has been 3 

implicated in SZ in humans [55]. We believe a more detailed examination of genome-4 

wide EGR1 occupancy in post-mortem brain tissue or cultured neurons could yield 5 

additional information and assessment of the functional consequences of EGR1 6 

perturbation is required to confirm this factor’s role in SZ pathogenesis. 7 

We also see evidence for depletion of neuron-specific transcripts and increased levels 8 

of astrocyte-specific transcripts in SZ and BPD patients. This observation is further 9 

supported by metabolomic analysis of the AnCg, which found a concordant decrease in 10 

GABA levels in BPD and SZ individuals. Neuronal depletion has been previously 11 

described in SZ [35,36]. Insufficient tissue remains from our patient cohort to validate 12 

computational cell type predictions immunohistochemically, however our data strongly 13 

suggests that future post-mortem studies should be cognizant of cell type heterogeneity 14 

across patient samples. The method for cell type composition estimation is limited in its 15 

accuracy to estimating only the major classes of cells present. Transcripts represented 16 

in cell types present at only a small minority could be over or under-represented using 17 

this technique. Based on these results, future studies should consider using robust 18 

techniques for assessing tissue composition to examine potential cell type proportion 19 

differences between disease cohorts and to identify which transcriptional changes occur 20 

in conjunction with, and independent of, those differences. 21 

We observed greatly reduced or no significant expression differences in the DLPFC and 22 

nAcc, which contradicts several previous studies [56,57]. We do not intend to claim that 23 
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no transcriptional changes occur in these brain regions as our study was designed to 1 

broadly compare transcriptional alterations across multiple brain regions in multiple 2 

psychiatric disorders, thereby sacrificing exceptional sample sizes in any single disorder 3 

in any specific brain region. However, our data does suggest that of the regions we 4 

tested, the strongest transcriptional changes occur in the AnCg of SZ patients. 5 

Moreover, this data provides a useful resource for future studies facilitating the  testing 6 

of preliminary hypotheses or validation of significant findings. 7 

Conclusions 8 

Our study provides several meaningful and novel contributions to the understanding of 9 

psychiatric disease. We provide a well-annotated data set that has the potential to act 10 

as a broadly applicable resource to investigators interested in molecular changes in 11 

multiple psychiatric disorders across multiple brain regions. We have conducted an 12 

extensive characterization of the molecular overlap between SZ and BPD at the 13 

transcript and metabolite level across multiple brain regions. We provide a high 14 

confidence set of genes differentially expressed between SZ and CTL patients utilizing 15 

two independent cohorts and highlight down regulation of EGR1 as a potential driver of 16 

broader scale transcription changes. We also establish that a significant proportion of 17 

transcriptome variation within SZ and BPD cohorts is correlated with expression 18 

changes in previously identified cell type-specific transcripts.  19 

List of abbreviations 20 

RNA-seq – RNA sequencing 21 

GABA – gamma-Aminobutyric acid 22 
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GWAS – genome-wide association study 1 

SZ – schizophrenia 2 

BPD – bipolar disorder 3 

MDD – major depression disorder 4 

CTL – control 5 

AnCg – anterior cingulate gyrus 6 

DLPFC – dorsolateral prefrontal cortex 7 

nAcc – nucleus accumbens 8 

GO – gene ontology 9 

ChIP-seq – chromatin immunoprecipitation with DNA sequencing 10 

PCA – principal component analysis 11 
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 9 

Figure Legends 10 

Figure 1. (A) Histograms of case vs. control differential expression (DESeq2 P-values) 11 

for SZ (red), BPD (blue), and MDD (green) in each brain region assayed. (B) Pairwise 12 

spearman correlations of log2 fold gene expression changes between each disorder and 13 

CTL in each brain region.  Circle sizes are scaled to reflect Spearman correlations.  (C) 14 

Venn diagram showing overlap of genes differentially expressed between SZ (red), BPD 15 

(blue), MDD (green) vs. CTL at a p-value<0.05.  (D) Log2 fold expression change 16 

correlation of 87 genes with FDR<0.05 comparing SZ and CTL (AnCg) in the Pritzker 17 

dataset with the SNCID dataset (Spearman coefficient=0.812, p-value<0.0001). 18 

Transcripts differentially expressed at an FDR<0.05 in both cohorts are identified with 19 

red circles. (E) Hierarchical clustering 27 SZ and 26 CTL tissues in the SNCID dataset 20 

using variance-stabilized expression of 87 significant genes between SZ and CTL in the 21 

AnCg identified by DESeq2 (FDR<0.05) in the Pritzker dataset. CTL (black), SZ (red), 22 

lowly expressed genes (blue pixels), highly expressed genes (yellow pixels).  23 
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Figure 2. (A) Boxplots indicating relative expression of EGR1 in the AnCg of SZ (red), 1 

BPD (blue), MDD (green), and CTL (gray). (B) Correlation plot comparing RNA-seq 2 

measured expression level of EGR1 to qPCR measured expression in 10 SZ (red) and 3 

10 CTL (black) patients. (C) Wilcoxon P-values resulting from comparing the degree of 4 

differential expression (based on DESeq2 P-values) of genes whose TSSs neighbor 5 

EGR1 binding sites to genes whose TSSs are greater than a range of distance 6 

thresholds. 7 

Figure 3.  Boxplots indicating neuron- (A) and astrocyte- (B) specific expression indices 8 

in the AnCg for SZ (red), BPD (blue), MDD (green), and CTL (gray) individuals.  (C) 9 

Correlation plot comparing the log2 expression fold change between SZ and CTL 10 

patients in the AnCg and the log2 expression fold change between dissected neurons 11 

and all other dissected brain cell types (astrocytes, oligodendrocytes, endothelial cells, 12 

and microglia). 13 

Figure 4.  Hierarchical clustering of (A) 25 metabolites that differ most between SZ (red) 14 

and CTL (black) indibiduals, and (B) 25 metabolites that differ most between BPD (blue) 15 

and CTL (black) individuals. (C) Boxplots indicating relative expression of GAD1 and 16 

GAD2 enzymes in the AnCg of SZ (red) and CTL (gray) patients. (D) Correlation plot 17 

comparing average GAD1 and GAD2 expression and the GABA/Glutamate metabolite 18 

level ratio in the AnCg of SZ (red) and CTL (black) individuals. 19 

Supplementary Figure Legends 20 

Figure S1. A) Principal components analysis of all 281 brain tissues. AnCg (red 21 

squares), DLPFC (blue triangles), nAcc (green circles). B) Principal components 22 

analysis of all 281 brain tissues. CTL (gray squares), BPD (blue triangles), MDD (green 23 
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circles), SZ (red triangles).  (C) Principal components analysis of all 281 brain tissues 1 

after correcting RNA-seq data for alignment quality. CTL (gray squares), BPD (blue 2 

triangles), MDD (green circles), SZ (red triangles). 3 

Figure S2. Principal components analysis of all AnCg (A,D), DLPFC (B,E), and nAcc 4 

(C,F) samples before and after correction for RNA-seq alignment quality. (G-I) PC1 5 

values in CTL (gray), BPD (blue), MDD (green), and SZ (red) patients pre- and post-6 

RNA-seq alignment quality correction in the AnCg (G), DLPFC (H), and nAcc (I).   7 

Figure S3.  GO-term analysis for transcripts differentially expressed in SZ vs. CTL in 8 

AnCg (FDR<0.05).  Up-regulation (red circles), down-regulation (blue circles). 9 

Figure S4. Examination of cell-type specific index in purified (A) neuron, (B) astrocytes, 10 

(C) oligodendrocytes, (D) microglia, and (E) endothelial cells from brain tissue.  (F) 11 

Neuron and astrocyte indices are capable of predicting in silico mixed cell-type 12 

proportions. (G) Mean values with standard deviation for predictions of indices 13 

generated on 10,000 randomly sampled, null transcript sets. (H, I) Histogram of mean 14 

squared error of null index cell type proportion predictions for mixed neuron and 15 

astrocyte transcriptomes with Darmanis et al. transcript performance indicated in red. 16 

Figure S5. Boxplots of endothelial (A), microglia (B), and oligodendrocyte (C) cell type 17 

indices in SZ (red), BPD (blue), MDD (green), and CTL (gray) individuals. 18 

Figure S6. Hierarchical clustering of 25 metabolites with levels that differ most between 19 

MDD (green) and CTL (black) individuals. 20 

Figure S7. Integrated KEGG pathway analysis of metabolite and RNAseq differences 21 

between SZ and CTL patients. Top 10 pathways shown for metabolite, transcript and 22 

combined analysis. 23 
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