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Abstract

Background

Psychiatric disorders are multigenic diseases with complex etiology contributing
significantly to human morbidity and mortality. Although clinically distinct, several
disorders share many symptoms suggesting common underlying molecular changes
exist that may implicate important regulators of pathogenesis and new therapeutic

targets.
Results

We compared molecular signatures across brain regions and disorders in the
transcriptomes of postmortem human brain samples. We performed RNA sequencing
on tissue from the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus
accumbens from three groups of 24 patients each diagnosed with schizophrenia, bipolar
disorder, or major depressive disorder, and from 24 control subjects, and validated the
results in an independent cohort. The most significant disease differences were in the
anterior cingulate cortex of schizophrenia samples compared to controls. Transcriptional
changes were assessed in an independent cohort, revealing the transcription factor
EGR1 as significantly down regulated in both cohorts and as a potential regulator of
broader transcription changes observed in schizophrenia patients. Additionally, broad
down regulation of genes specific to neurons and concordant up regulation of genes
specific to astrocytes was observed in SZ and BPD patients relative to controls. We also
assessed the biochemical consequences of gene expression changes with untargeted

metabolomic profiling and identified disruption of GABA levels in schizophrenia patients.
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Conclusions

We provide a comprehensive post-mortem transcriptome profile of three psychiatric
disorders across three brain regions. We highlight a high-confidence set of
independently validated genes differentially expressed between schizophrenia and
control patients in the anterior cingulate cortex and integrate transcriptional changes

with untargeted metabolite profiling.
Keywords

Schizophrenia, Bipolar Disorder, Major Depressive Disorder, RNA sequencing,

metabolomics, EGR1
Background

Schizophrenia (SZ), bipolar disorder (BPD), and major depressive disorder (MDD) are
multigenic diseases with complex etiology and are large sources of morbidity and
mortality in the population. All three disorders are associated with high rates of suicide,
with ~90% of the ~41,000 people who commit suicide each year in the U.S. having a
diagnosable psychiatric disorder [2]. Notably, while clinically distinct, these disorders
also share many symptoms, including psychosis, suicidal ideation, sleep disturbances
and cognitive deficits [3-5]. This phenotypic overlap suggests potential common genetic
etiology, which is supported by recent large-scale genome-wide association studies [6—
9]. However, this overlap has not been fully characterized with functional genomic
approaches. Current therapies for these psychiatric disorders are ineffective in many
patients and often only treat a subset of an individual patient's symptoms [10].

Approaches targeting the underlying molecular pathologies within and across these
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types of disorders are necessary to address the immense burden of psychiatric disease
around the world and improve care for the millions of people diagnosed with these

conditions.

Previous studies [11-15] analyzed brain tissue with RNA sequencing (RNA-seq) in SZ
and BPD, and identified altered expression of GABA-related genes in the superior
temporal gyrus and hippocampus, as well as differentially expressed genes related to
neuroplasticity and mammalian circadian rhythms. Our study focused on the anterior
cingulate cortex (AnCg), dorsolateral prefrontal cortex (DLPFC), and nucleus
accumbens (nAcc), regions which are often associated with mood alterations, cognition,
impulse control, motivation, reward, and pleasure — all behaviors known to be altered in
psychiatric disorders [16,17]. To assess gene expression changes associated with
psychiatric disease in these three brain regions, we performed RNA-seq on macro-
dissected post-mortem tissues in four well-documented cohorts of 24 patients each with
SZ, BPD, MDD and 24 controls (CTL) (96 individuals total). Additionally, we conducted
metabolomic profiling of AnCg tissue from the same subjects. RNA-seq analysis
revealed common expression profiles in SZ and BPD patients supporting the notion that
these disorders share a common molecular etiology. Transcriptional changes were most
pronounced in the AnCg with SZ and BPD exhibiting strongly correlated differences
from CTL samples. Differentially expressed genes were associated with cell-type
composition with BPD and SZ samples showing decreased expression of neuron-
specific transcripts. We validated this result with RNA-seq data from an independent
cohort of 35 cases each of SZ, BPD, and CTL post-mortem cingulate cortex samples

from the Stanley Neuropathology Consortium Integrative Database (SNCID;
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http://sncid.stanleyresearch.org) Array Collection. We present a set of validated genes

differentially expressed between SZ and CTL patients, perform an integrated analysis of
metabolic pathway disruptions, and highlight a role for the transcription factor, EGR1,
whose down-regulation in SZ patients may drive a large portion of observed

transcription changes.
Methods

See Supplemental Methods for additional detail.
Patient Sample Collection and Preparation

Sample collection, including human subject recruitment and characterization, tissue
dissection, and RNA extraction, was described previously [18,19] as part of the Brain
Donor Program at the University of California, Irvine, Department of Psychiatry and
Human Behavior (Pritzker Neuropsychiatric Disorders Research Consortium) under IRB
approval. In brief, coronal slices of the brain were rapidly frozen on aluminum plates that
were pre-frozen to -120°C and dissected as described previously [20]. All samples were
diagnosed by psychological autopsy, which included collection and analyses of medical
and psychiatric records, toxicology, medical examiners’ reports, and 141-item family
interviews. Agonal state scores were assigned based on a previously published scale
[21]. Controls were selected based upon absence of severe psychiatric disturbance and

mental illness within first-degree relatives.

We obtained fastq files from RNA-seq experiments for our validation cohort from the
Stanley Neuropathology Consortium Integrative Database (SNCID;

http://sncid.stanleyresearch.org) Array Collection comprising 35 cases each of SZ, BPD,
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and CTL of post-mortem cingulate cortex with permission on June 30, 2015. For our
analysis, we included the 27 SZ, 26 CTL, and 25 BPD SNCID samples that were
successfully downloaded and represented unique samples. SNCID RNA-seq
methodology and data processing is described in detail in a previous publication that

makes use of the data [11].
RNA-seq and Data Processing

To extract nucleic acid, 20 mg of post-mortem brain tissue was homogenized in Qiagen
RLT buffer + 1% BME using an MP FastPrep-24 and Lysing Matrix D beads for three
rounds of 45 seconds at 6.5 m/s (FastPrep homogenizer, lysing matrix D, MP Bio). Total
RNA was isolated from 350 yL tissue homogenate using the Norgen Animal Tissue
RNA Purification Kit (Norgen Biotek Corporation). We made RNA-seq libraries from 250
ng total RNA using polyA selection (Dynabeads mRNA DIRECT Kkit, Life Technologies)
and transposase-based non-stranded library construction (Tn-RNA-seq) as described
previously [22]. To mitigate potentially confounding batch affects in sample preparation
we randomly assigned samples from all brain regions and disorders into batches of 24
samples. We used KAPA to quantitate the library concentrations and pooled 4 samples
in order to achieve equal concentration of the four libraries in each lane. Pools were
determined by random from the 291 samples. Samples were also randomly selected for
pooling in an effort to limit potentially confounding sequencing batch effects. The pooled
libraries were sequenced on an lllumina HiSeq 2000 sequencing machine using paired-
end 50 bp reads and a 6 bp index read, resulting in an average of 48.2 million reads per
library. To quantify the expression of each gene in both Pritzker and SNCID datasets,

RNA-seq reads were processed with aRNApipe v1.1 using default settings [23]. Briefly,


https://doi.org/10.1101/061416
http://creativecommons.org/licenses/by-nc/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

bioRxiv preprint doi: https://doi.org/10.1101/061416; this version posted March 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC 4.0 International license.

reads were aligned and counted with STAR v2.4.2a to GRCh37_E75 [24]. All alignment
quality metrics were obtained from the picard tools module

(http://broadinstitute.qgithub.io/picard/) available in aRNApipe. Transcripts expressed

from the X and Y chromosomes were omitted from the study.

Quantitative PCR (qPCR) was performed on 10 SZ and 10 CTL patients to validate
EGR1 RNA-seq measurements. RNA was extracted as described above from tissue
lysates a second time. Reverse transcription was performed on 250ng of input RNA with
the Applied Biosystems high capacity cDNA reverse transcription kit. Validated Tagman
assays for EGR1 (Hs00152928 m1l1) and the housekeeper genes GAPDH
(Hs02758991 g1) and ACTB (Hs01060665 g1) were used for g°PCR. cDNA was
diluted by a factor of 10 before use as input for the Tagman assay. The gPCR
reaction was performed on an Applied Biosystems Quant Studio 6 Flex system

using the recommended amplification protocol for Tagman assays.
Sequencing Data Analysis

All data analysis in R was performed with version 3.1.2.

Differential Expression Analysis and Normalization

To examine gene expression changes, we employed the R package DESeq2 [1]
(version 1.6.3), using default settings, but employing likelihood ratio test (LRT)
hypothesis testing, and removing non-convergent transcripts from subsequent analysis.
Genes differentially expressed between each disorder and CTL samples, by brain
region, were identified with DESeq2 (adjusted p-value<0.05), including age, brain pH,

PMI, and percentage of reads uniquely aligned (PRUA) as covariates (Full Model:
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~Age+PMI+pH+PRUA+Disorder, Reduced Model: ~ Age+PMI+pH+PRUA). For
downstream heatmap visualization, PCA, and cell-type analysis, transcripts were
underwent a log-like normalization using DESeg2’s varianceStabilizingTransformation
function and were corrected for PRUA by computing residuals to a linear model
regressing PRUA on normalized transcript amount with the R Im function unless

otherwise specified.
PCA and Hierarchical Clustering

PCA analysis was performed in R on normalized data using the prcomp() command.
Hierarchical clustering of normalized transcript data was done in R with the hclust

command (method="ward”, distance="Euclidean”)
Pathway Enrichment Analysis

Pathway analysis was conducted using the web-based tool LRPath [25] using all GO
term annotations, adjusting to transcript read count with RNA-Enrich, including
directionality and limiting maximum GO term size to 500 genes. GO term visualization
was performed using the Cytoscape Enrichment Map plug-in [26]. The Genesetfile
(.gmt) GO annotations from February 1, 2017 were downloaded from

http://download.baderlab.org/EM_Genesets/. The LRPath output was parsed and used

as an enrichment file with all upregulated pathways colored red and all downregulated
pathways colored blue, regardless of degree of upregulation. Mapping parameters
were; p-value cutoff = 0.005, FDR cutoff = 0.1 and Jaccard coefficient > 0.3. Resulting
networks were exported as PDFs. Summary terms were added to the plot based on the
GO terms in those clusters. In order to assess overlap between significant GO terms

and our analysis and the GWAS study described by the Psychiatric Genomics
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Consortium, we downloaded the p-values reported for Schizophrenia hits from
Supplemental Table 4, which contained 424 significant GO terms. We used a chi-
squared test to assess significant overlap between the two groups. Supplemental Table
X reports the p-values measured in SZ based on this study along with those calculated

in our analysis.
EGR1 ChlP-seq peak analysis

Narrow peak bed files from optimal IDR thresholded peaks were obtained from the

ENCODE data portal (www.encodeproject.org) for EGR1 ChIP-seq data in GM12878,

H1-hESC, and K562 cell lines (ENCODE file IDs: ENCFF002CIV, ENCFF002CGW,
ENCFF002CLV). Consensus EGR1 peaks were identified by intersecting peaks from all
three cell lines, which resulted in a final list of 4,121 peaks that were present in each cell
line (with a minimum overlap of 1bp). The distance from each annotated transcription
start site (TSS) to the nearest consensus EGR1 peak was computed using TSSs
annotated in the ENSEMBL gene transfer format (GTF) file used for aligning RNA-seq

reads (GRCh37_ET75).
Cell-Specific Enrichment Analysis

Sets of transcripts uniquely expressed by several brain cell-types were obtained from
figure 1B in Darmanis et. al [27]. An index for each cell-type was created by finding the
median normalized expression value for each cell-type associated transcript set. Index
values were compared across patient clusters by non-parametric rank sum tests and
spearman correlation with top principal components. To validate our method, we
calculated cell-type specific indices from an independent cohort of previously published

purified brain cells [28,29]. FPKM-normalized transcript data was obtained from

10
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supplemental table 4 of Zhang et. al. (2014) and cell-type indexes were calculated as
described above. To examine index performance in mixed cell populations, we obtained
fastqg files for neuron and astrocyte-purified brain samples from GEO accession
GSE73721 and generated raw count files as described above. We next mixed
expression profiles in silico by performing random down-sampling of neuron and
astrocyte count levels and summing the results such that mixed populations containing
specific proportions of counts from neuron- and astrocyte-purified tissue were
generated. For example, to generate an 80/20 neuron to astrocyte mixture, neuron and
astrocyte count columns (which started at an equivalent number of 5,759,178 aligned
reads) were randomly down-sampled to 4,607,342 and 1,151,836 counts respectively
and summed across each gene to result in a proportionately mixed population of
aligned count data simulating heterogeneous tissue. Then we calculated a
neuron/astrocyte index ratio capable of predicting the in silico mixing weights. Briefly,
we assumed index values for mixed cell populations were directly proportional to mixing
weights of their respective purified tissue, thus the predicted cell proportion for a given

cell type was simply calculated as:
predicted cell proportion = observed index value/purified tissue index value

To insure cell-type predictive power was unique to indices derived from Darmanis et. al
transcripts, we generated indices from 10,000 randomly sampled transcript sets of
equivalent size and examined their performance in predicting in silico mixing weights.
Mean squared prediction errors (MSE) were calculated for each of the 10,000 null

indices and compared to the MSE of Darmanis et. al.-derived indices.

Metabolomics

11
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Sample preparation

Sections of approximately 100mg of frozen tissue were weighed and homogenized for
45 seconds at 6.5M/s with ceramic beads in 1mL of 50% methanol using the MP
FastPrep-24 homogenizer (MP Biomedicals). A sample volume equivalent to 10mg of
initial tissue weight was dried down at 55°C for 60 minutes using a vacuum concentrator
system (Labconco). Derivatization by methoximation and trimethylsilylation was done as

previously described [30].
We analyzed technical replicates of each tissue sample, in randomized order.
GCxGC-TOFMS analysis

All derivatized samples were analyzed on a Leco Pegasus 4D system (GCxGC-
TOFMS), controlled by the ChromaTof software (Leco, St. Joseph, MI). Samples were

analyzed as described previously [30] with minor modifications in temperature ramp.
Data analysis and metabolite identification

Peak calling, deconvolution and library spectral matching were done using ChromaTOF
4.5 software. Peaks were identified by spectral match using the NIST, GOLM [31], and
Fiehn libraries (Leco), and confirmed by running derivatized standards (Sigma). We

used Guineu for multiple sample alignment [32].
Integrated Pathway Analysis

Altered metabolites and transcripts were analyzed for enrichment in KEGG pathways
containing both metabolite and gene features. A non-parametric, threshold free pathway
analysis similar to that of a previously described method [33] was first performed on

metabolite and transcript data separately. Our method builds on the principle described

12
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by Subramanian that implements a one-tailed Wilcox test to identify pathways enriched
for low p-values. Instead of just accounting for enrichment at the gene level, we use
metabolite or transcript p-value ranks within each pathway compared to remaining non-
pathway metabolites or transcripts with a one-tailed Wilcox test to test the hypothesis
that elements of a given pathway may be enriched for lower p-value ranks than
background elements. Metabolite and transcript p-values were subsequently combined
to provide an integrated enrichment significance p-value using Fisher's method.
Pathways had to contain greater than 5 genes and 1 metabolite measured in our
dataset to be included in the analysis. Supplemental table 10 lists p-values for enriched

pathways based on genes, metabolites or combined.

Results

Region-specific gene expression in control and psychiatric brain tissue

We collected post-mortem human brain tissue, associated clinical data, including age,
sex, brain pH, and post-mortem interval (PMI), and cytotoxicology results (Tables S1-2)
for matched cohorts of 24 patients each diagnosed with SZ, BPD, or MDD, as well as
24 control individuals with no personal history of, or first-degree relatives diagnosed
with, psychiatric disorders. Importantly, to limit the effect of acute patient stress at the
time of death as a potential confounder we included only patients with an agonal factor
score of zero and a minimum brain pH of 6.5 [19]. Using RNA-seq [22], we profiled gene
expression in three macro-dissected brain regions (AnCg, DLPFC, nAcc). After quality
control, we analyzed 57,905 ENSEMBL transcripts in a total of 281 brain samples

(Table S3).

13
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To examine heterogeneity across brain regions and subjects, we performed a principal
component analysis (PCA; Figure S1A) of all transcripts. The first principal component
(PC1, 21.8% of the variation) separates cortical AnCg and DLPFC samples from
subcortical nAcc samples. Examination of the first and second principal components for
disorder associations reveals a separation of some SZ and BPD samples from all other
samples (Figures S1B and S2A-C). However, in agreement with several previously
reported post-mortem brain RNA sequencing studies [15], we found several principal
components to be highly correlated with quality metrics including the percentage of
reads uniquely aligned and percentage of reads aligned to mitochondrial sequence
(absolute Rho>0.5, FDR<1E-16, Table S4). To reduce the potentially confounding
effects of sample quality, we repeated the PCA on expression data normalized to the
percentage of reads uniquely aligned for each sample and found that global disease-

specific expression differences were significantly reduced (Figures S1C and S2D-I).
Disease-specific gene expression in control and psychiatric brains

We next applied DESeqg?2 [1], a method for differential analysis of sequence read count
data, to identify genes differentially expressed across disorders within each brain region
after correcting for biological and technical covariates. The largest number of significant
expression changes occurred in AnCg between SZ and CTL individuals (87 transcripts,
FDR<0.05, Figure 1A). Pathway enrichment analysis of differentially expressed genes
between SZ and CTL patients revealed 935 gene ontology (GO) terms with an
FDR<0.05 (Table S5) (122 GOCC, 159 GOMF, and. 654 GOBP). Significant GO terms
fall into the broad categories of synaptic function and signaling (e.g. neurotransmitter

transport, ion transport, calcium signaling) (Figure S3). These terms overlap significantly

14
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with those identified by the Psychiatric Genomics Consortium in their analysis of GWAS
implicated genes [34] with 68 GO terms meeting a p-value cutoff of <0.05 in both
datasets (p<0.0001, Chi-square test). Additionally, nine genes were differentially
expressed between SZ and CTL individuals in DLPFC. Three of these were also
identified in AnCg: SST, PDPK2P and KLHL14. No transcripts had an FDR<0.05 when
comparing BPD or MDD samples to CTLs in any brain region, or comparing SZ and
CTL tissues in nAcc (Table S6). To examine potential common gene expression
patterns between the psychiatric disorders, we performed pair-wise correlation
calculations of all transcript log, fold changes for each disorder versus controls in each
brain region. Of the nine case-control comparisons (for three regions and three
diseases), a particularly strong correlation is observed between BPD and SZ compared
to either SZ or BPD and MDD in each brain region (Figure 1B). In the AnCg, BPD and
SZ share 1,020 common genes differentially expressed at an uncorrected DESeq2 P-
value<0.05 compared to only 248 and 143 genes shared between MDD and SZ or BPD
respectively (Figure 1C). This strong overlap between BPD and SZ (Fisher’'s exact p-
value<l1E-16) indicates that although expression changes are weaker in BPD they

follow a trend similar to those identified in SZ.

Because previous post-mortem analyses have been limited by, and are particularly
vulnerable to, biases inherent to examining a single patient cohort, we sought to
generate a robust set of SZ associated transcripts by validating our observed
expression changes in an independent cohort. To accomplish this, we examined gene
expression differences in the AnCg between SZ and CTL samples in the SNCID RNA-

seq Array dataset [14], revealing 1,003 genes differentially regulated (DESeq2

15
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uncorrected P<0.05) in both datasets (Fisher's P<1E-16, Table S7). The magnitude and
direction of change in significant transcripts in the Pritzker dataset were highly
correlated with the SNCID dataset (Rho=0.202, P<1E-16), particularly in transcripts that
met an FDR<0.05 cutoff (Rho=0.812, P<1E-16; Figure 1D). We performed hierarchical
clustering of SZ and CTL samples in the SNCID validation cohort using the 1,003
transcripts differentially expressed between SZ and CTL in the Pritzker dataset (P<0.05,
Figure 1E), and found these transcripts successfully distinguished the two disease

groups with only 5 out of 27 SZ and 2 out of 26 CTL samples misclassified.

Of particular interest are a group of 5 genes significant at a FDR<0.05 in both cohorts
that includes a nearly 2-fold decrease in expression of the transcription factor EGR1
(Table S7A, Figure 2A). Quantitative PCR (qPCR) validation of the transcript confirmed
reduced EGR1 expression in SZ samples (Figure 2B). EGR1, a zinc finger transcription
factor, has been recently implicated in SZ by a GWAS study [6], thus we sought to
investigate its role as a potential driver of the transcriptional changes observed in the
AnCg of SZ patients using publicly available genome-wide occupancy data from the
ENCODE consortium (https://www.encodeproject.org). To obtain high confidence EGR1
binding sites we intersected chromatin immunoprecipitation sequencing (ChIP-Seq)
peaks derived from the H1-hESC, K562, and GM12878 cell lines. We found that
transcripts whose transcription start sites (TSSs) were within 1kb of an EGR1 binding
site had significantly lower DESeq2 P-values (Wilcox P=9.68E-5) and significantly more
negative log2 fold changes (SZ/CTL, Wilcox P=7.69E-15) than transcripts whose TSSs

were greater than 1kb from an EGR1 binding site. A monotonic decrease in this effect
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was observed as the distance threshold used for this comparison was increased from

1kb to 50kb (Figure 2C).
Cell type specific changes

In addition to dysregulation of broadly acting transcription factors, another mechanism
that can drive large-scale transcriptional changes in bulk tissue is alterations in
constituent cell type proportions. Previous studies have observed decreases in neuron
density and increased glial scarring in psychiatric disorders [35,36]. To test for signs of
these alterations in our data set we examined the expression of cell type-specific
transcripts identified using data from a single cell RNA sequencing study that identified
transcripts capable of classifying individual cells into the major neuronal, glial, and
vascular cell-types in the brain. We generated cell type indices using the median of
normalized counts for each cell type-specific transcript set. Examining cell type indices
in a previously published RNA-seq analysis of purified brain cells reveals high specificity
of each index to the appropriate cell type and accurate deconvolution of transcriptomes
mixed in silico [29,28] (Figure S4A-F). Moreover, median values from 10,000 randomly
sampled transcript sets are not able to deconvolute mixed cell transcriptomes,
demonstrating that predictive power is relatively unique to the Darmanis et al. transcript

sets (Figure S4G-I).

Application of the cell type indices to patient AnCg expression data revealed a
significant decrease in neuron specific expression (Wilcox P<0.05) and a significant
increase in astrocyte specific expression (Wilcox P<0.05) in SZ and BPD patients
compared to controls (Figures 3A-B). Other cell-type indices were not significantly

different between psychiatric patients and controls (Figure S5). Further supporting a
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decrease in neuronal gene expression, we found a significant negative correlation
between transcript expression in patient brains relative to control brains and the degree
of neuron specificity (fold enrichment of neuron expression over other cell types) in SZ

and BPD (rho -0.50 and -0.41, P<1E-16, SZ shown in Figure 3C).
Transcriptomic changes reflected in altered metabolomic profiles

To assess the biochemical consequences of expression changes, we used 2D-GCMS
to measure metabolite levels in 86 of the AnCg samples (sufficient tissue was
unavailable for 10 samples). We measured and identified 141 unique metabolites (Table
S8). Similar to our transcript analysis, metabolite levels (Table S9) successfully
differentiated SZ and BPD patients from CTLs (Figures 4A-B), while MDD metabolite
profiles were very similar to CTLs (Figure S6). Several of the most significant
metabolites, including GABA, are known to be relevant to BPD and SZ [37].
Furthermore, GABA/glutamate metabolite ratios correlate strongly with average GAD1
and GAD2 expression levels (Rho = 0.413, P=0.007, Figures 4C-D). This metabolite-
gene relationship is consistent with previous multi-level phenomic analyses [38] and
demonstrates realized biochemical consequences from altered gene expression.
Notably, reductions in GABA could coincide with loss of neurons suggested by the gene
expression data. Integrated pathway analyses of KEGG pathways enriched for both
altered metabolites and transcripts between SZ and CTL patients revealed disruption of

synaptic and neurotransmitter signaling (Figure S7, Table S10).

Discussion
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Here, we describe a large transcriptomic dataset across three brain regions (DLPFC,
AnCg, and nAcc) in SZ, BPD, and MDD patients, as well as CTL samples matched for
agonal state and brain pH. In MDD, we do not identify any transcripts that meet
genome-wide significance for differential expression between cases and controls in any
brain region. This finding agrees with previous post-mortem RNA-seq studies [39],
however sample size and the choice of brain regions examined likely contributed to our
inability to replicate results from previous non-transcriptome wide sequencing based
approaches comparing MDD to CTL in post-mortem brain [40]. One limitation of our
study is that females are underrepresented at a rate of about 5:1. This reflects the
increased chance of accidental death among males [41], but limits us in our ability to
make more general conclusions about these disorders and to address known
differences between the sexes as they relate to these disorders. We also do not have
information on the smoking status for our cohort, which is an important covariate as
smoking rates are higher among patients with psychiatric disorders and smoking has
been demonstrated to effect gene expression [42,43]. Another potential limitation
inherent to post-mortem cohort analyses is accounting for patient drug use. As detailed
in supplemental table 2, patient toxicology reports were positive for several prescribed
and illicit drugs that were not present in CTL samples. As this is a bias inherent to
psychiatric patients it is impossible to disentangle from non-treatment related disease

patterns in a post-mortem analysis.

Another important limitation of post-mortem RNA-sequencing studies is RNA quality.
We found a significant proportion of variation in our data to be associated with multiple

alignment quality metrics. Significant effort went into controlling for potential sources of
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bias due to differences in RNA quality. We only included tissue from patients with an
agonal score of 0 and who had a brain pH of 6.5 or greater. We also controlled for brain
pH, post-mortem interval, and alignment quality in all differential expression analyses.
Our study, as well as future post-mortem studies, could be improved by directly
measuring RNA quality at the time of sample preparation (e.g. RNA integrity number
(RIN)). Despite these caveats, we believe our data do yield new insights that contribute

to our growing understanding of these disorders.

The most dramatic gene expression signals we observed were brain region-specific.
The majority of disease-associated expression differences were seen in the AnCg of SZ
compared to CTL patients. The AnCg has been associated with multiple disease-
relevant functions, including cognition, error detection, conflict resolution, motivation,
and modulation of emotion [44-46]. We observed a striking overlap in SZ- and BPD-

associated expression changes consistent with previous findings [37,47].

One of the more intriguing transcripts significantly down regulated (FDR<0.05) in both
cohorts of SZ patients was the zinc finger transcription factor, EGR1. We provide
evidence that this factor may be driving a large proportion of variation in SZ patients as
transcripts near consensus EGR1 binding sites tend to have decreased expression in
SZ patients. Down regulation of EGR1 has been previously described in the prefrontal
cortex of post-mortem brain samples from SZ patients [48,49]. EGR1 has also
previously been associated with several phenotypes relevant to psychiatric disorder
including neural differentiation [50], emotional memory formation [51], response to
antipsychotics [52], and has recently been described as part of a transcription factor-

MiRNA co-regulatory network capable of acting as a biomarker in peripheral blood cells
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(PBCs) for SZ [53]. In mice, loss of EGR1 has linked to neuronal loss in a model of
Alzheimer’s Disease [54]. EGRL1 is also important for regulation of the NMDA Receptor
pathway, which is critical for synaptic plasticity and memory formation and has been
implicated in SZ in humans [55]. We believe a more detailed examination of genome-
wide EGR1 occupancy in post-mortem brain tissue or cultured neurons could yield
additional information and assessment of the functional consequences of EGRL1

perturbation is required to confirm this factor’s role in SZ pathogenesis.

We also see evidence for depletion of neuron-specific transcripts and increased levels
of astrocyte-specific transcripts in SZ and BPD patients. This observation is further
supported by metabolomic analysis of the AnCg, which found a concordant decrease in
GABA levels in BPD and SZ individuals. Neuronal depletion has been previously
described in SZ [35,36]. Insufficient tissue remains from our patient cohort to validate
computational cell type predictions immunohistochemically, however our data strongly
suggests that future post-mortem studies should be cognizant of cell type heterogeneity
across patient samples. The method for cell type composition estimation is limited in its
accuracy to estimating only the major classes of cells present. Transcripts represented
in cell types present at only a small minority could be over or under-represented using
this technique. Based on these results, future studies should consider using robust
techniques for assessing tissue composition to examine potential cell type proportion
differences between disease cohorts and to identify which transcriptional changes occur

in conjunction with, and independent of, those differences.

We observed greatly reduced or no significant expression differences in the DLPFC and

nAcc, which contradicts several previous studies [56,57]. We do not intend to claim that
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no transcriptional changes occur in these brain regions as our study was designed to
broadly compare transcriptional alterations across multiple brain regions in multiple
psychiatric disorders, thereby sacrificing exceptional sample sizes in any single disorder
in any specific brain region. However, our data does suggest that of the regions we
tested, the strongest transcriptional changes occur in the AnCg of SZ patients.
Moreover, this data provides a useful resource for future studies facilitating the testing

of preliminary hypotheses or validation of significant findings.

Conclusions

Our study provides several meaningful and novel contributions to the understanding of
psychiatric disease. We provide a well-annotated data set that has the potential to act
as a broadly applicable resource to investigators interested in molecular changes in
multiple psychiatric disorders across multiple brain regions. We have conducted an
extensive characterization of the molecular overlap between SZ and BPD at the
transcript and metabolite level across multiple brain regions. We provide a high
confidence set of genes differentially expressed between SZ and CTL patients utilizing
two independent cohorts and highlight down regulation of EGR1 as a potential driver of
broader scale transcription changes. We also establish that a significant proportion of
transcriptome variation within SZ and BPD cohorts is correlated with expression

changes in previously identified cell type-specific transcripts.
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RNA-seq — RNA sequencing

GABA — gamma-Aminobutyric acid
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GWAS — genome-wide association study
SZ — schizophrenia

BPD — bipolar disorder

MDD — major depression disorder

CTL — control

AnCg — anterior cingulate gyrus

DLPFC — dorsolateral prefrontal cortex
nAcc — nucleus accumbens

GO - gene ontology

ChIP-seq — chromatin immunoprecipitation with DNA sequencing
PCA — principal component analysis
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Figure Legends

Figure 1. (A) Histograms of case vs. control differential expression (DESeq2 P-values)
for SZ (red), BPD (blue), and MDD (green) in each brain region assayed. (B) Pairwise
spearman correlations of log, fold gene expression changes between each disorder and
CTL in each brain region. Circle sizes are scaled to reflect Spearman correlations. (C)
Venn diagram showing overlap of genes differentially expressed between SZ (red), BPD
(blue), MDD (green) vs. CTL at a p-value<0.05. (D) Log. fold expression change
correlation of 87 genes with FDR<0.05 comparing SZ and CTL (AnCg) in the Pritzker
dataset with the SNCID dataset (Spearman coefficient=0.812, p-value<0.0001).
Transcripts differentially expressed at an FDR<0.05 in both cohorts are identified with
red circles. (E) Hierarchical clustering 27 SZ and 26 CTL tissues in the SNCID dataset
using variance-stabilized expression of 87 significant genes between SZ and CTL in the
AnCg identified by DESeq2 (FDR<0.05) in the Pritzker dataset. CTL (black), SZ (red),

lowly expressed genes (blue pixels), highly expressed genes (yellow pixels).
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Figure 2. (A) Boxplots indicating relative expression of EGR1 in the AnCg of SZ (red),
BPD (blue), MDD (green), and CTL (gray). (B) Correlation plot comparing RNA-seq
measured expression level of EGR1 to gqPCR measured expression in 10 SZ (red) and
10 CTL (black) patients. (C) Wilcoxon P-values resulting from comparing the degree of
differential expression (based on DESeq2 P-values) of genes whose TSSs neighbor
EGR1 binding sites to genes whose TSSs are greater than a range of distance
thresholds.

Figure 3. Boxplots indicating neuron- (A) and astrocyte- (B) specific expression indices
in the AnCg for SZ (red), BPD (blue), MDD (green), and CTL (gray) individuals. (C)
Correlation plot comparing the log, expression fold change between SZ and CTL
patients in the AnCg and the log, expression fold change between dissected neurons
and all other dissected brain cell types (astrocytes, oligodendrocytes, endothelial cells,
and microglia).

Figure 4. Hierarchical clustering of (A) 25 metabolites that differ most between SZ (red)
and CTL (black) indibiduals, and (B) 25 metabolites that differ most between BPD (blue)
and CTL (black) individuals. (C) Boxplots indicating relative expression of GAD1 and
GAD2 enzymes in the AnCg of SZ (red) and CTL (gray) patients. (D) Correlation plot
comparing average GAD1 and GAD2 expression and the GABA/Glutamate metabolite

level ratio in the AnCg of SZ (red) and CTL (black) individuals.
Supplementary Figure Legends

Figure S1. A) Principal components analysis of all 281 brain tissues. AnCg (red
squares), DLPFC (blue triangles), nAcc (green circles). B) Principal components

analysis of all 281 brain tissues. CTL (gray squares), BPD (blue triangles), MDD (green
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circles), SZ (red triangles). (C) Principal components analysis of all 281 brain tissues
after correcting RNA-seq data for alignment quality. CTL (gray squares), BPD (blue
triangles), MDD (green circles), SZ (red triangles).

Figure S2. Principal components analysis of all AnCg (A,D), DLPFC (B,E), and nAcc
(C,F) samples before and after correction for RNA-seq alignment quality. (G-1) PC1
values in CTL (gray), BPD (blue), MDD (green), and SZ (red) patients pre- and post-

RNA-seq alignment quality correction in the AnCg (G), DLPFC (H), and nAcc (I).

Figure S3. GO-term analysis for transcripts differentially expressed in SZ vs. CTL in
AnCg (FDR<0.05). Up-regulation (red circles), down-regulation (blue circles).

Figure S4. Examination of cell-type specific index in purified (A) neuron, (B) astrocytes,
(C) oligodendrocytes, (D) microglia, and (E) endothelial cells from brain tissue. (F)
Neuron and astrocyte indices are capable of predicting in silico mixed cell-type
proportions. (G) Mean values with standard deviation for predictions of indices
generated on 10,000 randomly sampled, null transcript sets. (H, I) Histogram of mean
squared error of null index cell type proportion predictions for mixed neuron and
astrocyte transcriptomes with Darmanis et al. transcript performance indicated in red.
Figure S5. Boxplots of endothelial (A), microglia (B), and oligodendrocyte (C) cell type
indices in SZ (red), BPD (blue), MDD (green), and CTL (gray) individuals.

Figure S6. Hierarchical clustering of 25 metabolites with levels that differ most between
MDD (green) and CTL (black) individuals.

Figure S7. Integrated KEGG pathway analysis of metabolite and RNAseq differences
between SZ and CTL patients. Top 10 pathways shown for metabolite, transcript and

combined analysis.
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Scaled Metabolite Level
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Combined RNAseq and Metabolomics Pathway Enrichment
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