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ABSTRACT 14 

 15 

Bacterial traits that contribute to disease are termed ‘virulence factors’ and there is 16 

much interest in therapeutic approaches that disrupt such traits. However, ecological 17 

theory predicts disease severity to be multifactorial and context dependent, which 18 

might complicate our efforts to identify the most generally important virulence factors. 19 

Here, we use meta-analysis to quantify disease outcomes associated with one well-20 

studied virulence factor – pyoverdine, an iron-scavenging compound secreted by the 21 

opportunistic pathogen Pseudomonas aeruginosa. Consistent with ecological theory, 22 

we found that the effect of pyoverdine, albeit frequently contributing to disease, 23 

varied considerably across infection models. In many cases its effect was relatively 24 

minor, suggesting that pyoverdine is rarely essential for infections. Our work 25 

demonstrates the utility of meta-analysis as a tool to quantify variation and overall 26 

effects of purported virulence factors across different infection models. This 27 

standardised approach will help us to evaluate promising targets for anti-virulence 28 

approaches.  29 
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INTRODUCTION 30 

Understanding which bacterial characteristics contribute most to disease is a major 31 

area of research in microbiology and infection biology (1–3). Bacterial characteristics 32 

that reduce host health and/or survival are considered ‘virulence factors’. Such 33 

factors include structural features like flagella and pili that facilitate attachment to 34 

host cells (4, 5), as well as secreted products like toxins and enzymes that degrade 35 

host tissue (6, 7), or siderophores that scavenge iron from the host (8). Research on 36 

virulence factors has not only increased our fundamental understanding of the 37 

mechanisms underlying virulence, but has also identified potential novel targets for 38 

antibacterial therapy. There is indeed much current interest in developing ‘anti-39 

virulence’ drugs to disrupt virulence factor production – the idea being that by simply 40 

disarming pathogens rather than killing them outright, we could ostensibly elicit 41 

weaker selection for drug resistance (9–11). 42 

 43 

Although our understanding of different types of virulence factors and their 44 

interactions is continuously deepening, it is still unclear just how generalizable this 45 

assembled knowledge is. It is often assumed, for reasons of parsimony, that a given 46 

structure or secreted molecule central to the virulence of a particular bacterial strain 47 

in a specific host context will similarly enhance virulence in another bacterial strain, 48 

or in a different host (12). Yet, ecological theory predicts that the effects of a given 49 

trait will frequently vary in response to the environment (78). In the context of 50 

infections, this may be particularly true for opportunistic pathogens, which face very 51 

heterogeneous environments: they can live in environmental reservoirs (e.g. soil, 52 

household surfaces), as commensals of healthy hosts, or, when circumstances allow, 53 

as pathogens, causing serious infections in a range of different hosts and host 54 
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tissues (13–15). Opportunistic pathogens underlie many hospital-acquired infections, 55 

especially in immune-compromised patients (16–18), and the treatment of such 56 

infections is often challenging because, as generalists, such pathogens are pre-57 

selected to be tenacious and highly adaptable. Thus, in designing new anti-virulence 58 

drugs against opportunistic pathogens, we need to know not only whether the 59 

targeted trait is indeed associated with pathogenicity, but also the generality of this 60 

association across different pathogen strain backgrounds, host species, and infection 61 

types. 62 

 63 

Here we show how a meta-analysis approach can be used to quantify variation and 64 

overall effects of virulence factors across host environments. As a test case, we 65 

focus on pyoverdine, a siderophore secreted by the opportunistic pathogen 66 

Pseudomonas aeruginosa to scavenge iron from the host environment (19). Table 1 67 

provides an overview of the workflow of our meta-analysis, where we combined the 68 

outcomes of 76 individual virulence experiments from 23 studies (12, 20–41, see also 69 

Tables S1 and S2 in the supplemental material). Using a weighted meta-analysis 70 

approach, we were able to investigate the evidence for pyoverdine’s contribution to 71 

virulence across eight host species, including vertebrates, invertebrates and plants, 72 

five tissue infection models and various P. aeruginosa genotypes. We chose 73 

pyoverdine production as the model trait for our analysis because: (i) it has been 74 

extensively studied across a range of Pseudomonas strains (42); (ii) its virulence 75 

effects have been examined in a large number of host species; (iii) P. aeruginosa is 76 

one of the most troublesome opportunistic human pathogens, responsible for many 77 

multi-drug resistant nosocomial infections (43, 44); and (iv) multiple anti-virulence 78 

drugs have been proposed to target pyoverdine production and uptake (22, 23, 45). 79 
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The applied question here, then, is whether targeting pyoverdine could generally and 80 

effectively curb pathogenicity. 81 

 82 

RESULTS 83 

Literature search and study characteristics. We searched the literature for 84 

papers featuring infections of whole live host organisms with P. aeruginosa strains 85 

known to vary in pyoverdine phenotype. Following a set of inclusion/exclusion rules 86 

(see materials and methods for details), we were able to include data from a total of 87 

76 experiments from 23 original papers in our meta-analysis (Table 1; see also Fig. 88 

S1 and Tables S1 and S2 in the supplemental material). These experiments featured 89 

a range of host organisms, including mammals (mice and rabbits, n = 32), the 90 

nematode Caenorhabditis elegans (n = 32), insects (fruit fly, silk worm and wax 91 

worm, n = 8) and plants (wheat and alfalfa, n = 4). Experiments further differed in the 92 

way infections were established and in the organs targeted. The most common 93 

infection types were gut (n = 34), systemic (n = 16), respiratory (n = 8) and skin 94 

infections (n = 6), but we also included some other types of infections (n = 12). Each 95 

experiment compared infections with a control P. aeruginosa strain (which produced 96 

wildtype levels of pyoverdine) to infections with a mutant strain defective for 97 

pyoverdine production. The most common control strains used were PAO1 (n = 53) 98 

and PA14 (n = 19), which are both well-characterized clinical isolates. However, 99 

some experiments used less well-characterized wildtype strains, such as FRD1 (n = 100 

2) and PAO6049 (n = 2). Twenty-six experiments used mutant strains with clean 101 

deletions or transposon Tn5 insertions in genes encoding the pyoverdine 102 

biosynthesis pathway. In these cases, pleiotropic effects are expected to be relatively 103 

low – i.e. presumably only pyoverdine production was affected. The other 50 104 
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experiments used mutants where pleiotropic effects were likely or even certain. For 105 

example, some mutant strains carried mutations in pvdS, which encodes the main 106 

regulator of pyoverdine production that also regulates the production of toxins and 107 

proteases (46, 47). Others carried mutations in pvdQ, encoding an enzyme known to 108 

degrade quorum-sensing molecules in addition to its role in pyoverdine biosynthesis 109 

(27). 110 

 111 

Relationship between effect sizes and moderator variables. We combined data 112 

from the set of experiments described above in a meta-analysis to determine the 113 

extent to which pyoverdine’s effect on virulence varied across four moderator 114 

variables: (i) host taxa, (ii) tissue types, (iii) pathogen wildtype background, and (iv) 115 

pyoverdine-mutation type. To obtain a comparable measure of virulence across 116 

experiments, we extracted in each instance the number of cases where a given 117 

infection type did or did not have a virulent outcome (i.e. dead vs. alive, or with vs. 118 

without symptoms) for both the mutant (m) and the wildtype (w) strain for each 119 

experiment (see materials and methods for details). We then took as our effect size 120 

the log-odds-ratio, i.e. ln ((mvirulent / mnon-virulent) / (wvirulent / wnon-virulent)) (see Table S2 121 

in the supplemental material), a commonly-used measure especially suitable for 122 

binary response variables like survival (48). 123 

Consistent with the theoretical prediction that host-pathogen interactions and host 124 

ecology are important modulators of virulence, we found considerable variation in 125 

the effect sizes across experiments and subgroups of all moderators (Fig. 1). 126 

Pyoverdine-deficient mutants showed substantially reduced virulence in invertebrate 127 

and mammalian hosts, whereas there was little evidence for such an effect in plants 128 

(Fig. 1A). Overall, evidence for pyoverdine being an important virulence factor was 129 
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weak for taxa with a low number of experiments (i.e. for plants, and the insect models 130 

Drosophila melanogaster and Galleria mellonella). We found that pyoverdine-131 

deficient mutants exhibited reduced virulence in all organs and tissues tested, with 132 

the exception of plants (Fig. 1B). Comparing the effect sizes across wildtype strain 133 

backgrounds, we see that pyoverdine deficiency reduced virulence in experiments 134 

featuring the well-characterized PA14 and PAO1 strains (Fig. 1C) whereas the 135 

reduction was less pronounced in experiments with less well-characterized wildtype 136 

strains. This could be due to sampling error (only a few experiments used these 137 

strains) or it may be that these strains really behave differently from PA14 and PAO1. 138 

Finally, we observed that the nature of the pyoverdine-deficiency mutation matters 139 

(Fig. 1D). Infections with strains carrying well-defined mutations known to exclusively 140 

(or at least primarily) affect pyoverdine production showed a relatively consistent 141 

reduction in virulence. Conversely, where mutants were poorly-defined, or carried 142 

mutations likely to affect other traits beyond pyoverdine, here the virulence pattern 143 

was much more variable, with both reduced and increased virulence relative to 144 

wildtype infections (Fig. 1D). We posit that at least some of the differences in 145 

observed virulence between these mutants and their wildtype counterparts was likely 146 

due to pleiotropic differences in phenotypes unrelated to pyoverdine. 147 

 148 

Assessing the relative importance of moderator variables. Fig. 1 highlights 149 

that we are dealing with an extremely heterogeneous dataset (a random meta-150 

analyses of the full dataset without moderators yielded heterogeneity measures I2 151 

= 98.1% and H = 7.28). Much of the variation we observe is probably due to other 152 

factors beyond those explored in Fig 1. The issue is that (a) we do not know what 153 

all these additional factors might be, and (b) the probably patchy distribution of 154 
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experiments across the levels and ranges of these other factors would leave us 155 

with limited power to test for their effects. Accordingly, we decided to focus our 156 

attention on quantifying the impact of the four previously described moderators by 157 

using a more homogenous core dataset (n = 50), where rare and poorly 158 

characterized subgroups were removed. Specifically, we excluded experiments 159 

involving plants and / or undefined wildtype strains (n = 6), experiments reporting 160 

tissue damage as a measure of virulence (n = 12), and experiments where the hosts 161 

were likely not colonized by bacteria but died from exposure to bacterial toxins (n = 162 

8). This leaves us with a core dataset comprising only those experiments where 163 

animal host models were infected with strains from well-defined PA14 or PA01 164 

wildtype background, and survival vs. death was used as a virulence endpoint. 165 

  166 

Using this restricted dataset, we performed a series of meta-regression models to 167 

test for significant differences between subgroups of our moderator factors, and we 168 

also estimated the share of total variance in effect sizes that is explained by each 169 

moderator variable (Fig. 2). These models revealed that infection type is the 170 

variable that explains the largest share of total variance (25.6%). For instance, in 171 

systemic infection models the pyoverdine-defective mutants showed strongly 172 

reduced virulence compared to the wild-type, whereas this difference was less 173 

pronounced in gut infections. Host taxon explained only 7.9% of the total variance 174 

in effect sizes, and there was no apparent difference in the mean effect size 175 

among invertebrate vs. mammalian host models. Finally, the wildtype strain 176 

background and the likelihood of pleiotropy in the mutant strain both explained less 177 

than 1% of the overall effect size variation, and accordingly, there were no 178 

apparent differences between subgroups (Fig. 2). Note that even with the inclusion 179 
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of these moderator factors in the model, substantial heterogeneity remained in our 180 

restricted data set (I2 = 96.8%, H = 5.60). 181 

 182 

Publication bias. In any field, there is a risk that studies with negative or 183 

unanticipated results may be less likely to get published (e.g. in our case, 184 

pyoverdine-deficient mutants showing no change or increased levels of virulence) 185 

(49). Especially when negative or unanticipated results are obtained from 186 

experiments featuring low sample sizes (and thus high uncertainty), the scientists 187 

responsible may be less inclined to trust their results, and consequently opt not to 188 

publish them. This pattern could result in a publication bias, and an overestimation of 189 

the effect size. To test whether such a publication bias exists in our dataset, we 190 

plotted the effect size of each experiment against its (inverted) standard error (Fig. 191 

3). If there is no publication bias, we would expect to see an inverted funnel, with 192 

effect sizes more or less evenly distributed around the mean effect size, irrespective 193 

of the uncertainty associated with each estimate (i.e. position on the y-axis). Instead, 194 

we observed a bias in our dataset, with many lower-certainty experiments that show 195 

strongly negative effect sizes (i.e. supporting the hypothesis that pyoverdine is 196 

important for virulence; Fig. 3) but a concomitant paucity of lower-certainty 197 

experiments that show weakly negative, zero or positive effect sizes (i.e. not 198 

supporting the hypothesis).  199 
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DISCUSSION 200 

What we can conclude from this meta-analysis. Our meta-analysis reveals that 201 

pyoverdine-deficient strains of the opportunistic pathogen P. aeruginosa typically 202 

showed reduced virulence across a wide range of host species and bacterial 203 

genotypes. This confirms that iron limitation is a unifying characteristic of the host 204 

environment, making siderophores an important factor for pathogen establishment 205 

and growth within the host (50, 51). Conversely, we also saw that the extent to which 206 

pyoverdine deficiency reduced virulence varied considerably, and was quite modest 207 

in many instances. Pyoverdine-deficient mutant strains were typically more benign, 208 

owing to a reduced capacity for in vivo growth and/or a reduced capacity for inflicting 209 

damage on their host. Nonetheless, these mutants were typically still able to 210 

establish a successful infection, and, in many cases, could still kill their host (21, 22, 211 

25, 40). These results support ecological theory predicting that the effect of a certain 212 

phenotype (i.e. producing pyoverdine in our case) should vary in response to the 213 

environment (i.e. the host and infection context). Our findings have consequences for 214 

any therapeutic approaches targeting this particular virulence factor as they reveal a 215 

possible trade-off: such treatments could have wide applicability, but their (clinical) 216 

impact would likely vary across infection contexts, and be limited to attenuating rather 217 

than curing the infection. This would mean that for P. aeruginosa infections, at least, 218 

therapies targeting siderophore production could be helpful but should probably still 219 

be accompanied by other therapeutic measures (52). 220 

 221 

Our work demonstrates how meta-analyses can be used to quantitatively synthesize 222 

data from different experiments carried out at different times by different researchers 223 

using different designs. Such an analytical approach goes beyond a classical review, 224 
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where patterns are typically summarized in a qualitative manner. For instance, a 225 

recent study proposed that three different virulence factors (pyocyanin, protease, 226 

swarming) of P. aeruginosa are host-specific in their effects (12). Here we use a 227 

meta-analytic approach to quantitatively derive estimates of the overall virulence 228 

potential of a given bacterial trait and investigate variables that affect infection 229 

outcomes. We assert that such quantitative comparisons are essential to identify 230 

those virulence factors that hold greatest promise as targets for effective broad-231 

spectrum anti-virulence therapies. 232 

 233 

Our finding that effect sizes vary considerably across our assembled experiments 234 

provides a different perspective compared to that which one would obtain from a 235 

cursory reading of the literature. For instance, the first study investigating pyoverdine 236 

in the context of an experimental infection model (38) reported that pyoverdine is 237 

essential for virulence. Although this experiment and its message have been widely 238 

cited (including by ourselves), it may no longer be the strongest representative of the 239 

accumulated body of research on this topic. As we see in Figure 1, the effect size it 240 

reports is associated with a high uncertainty due to a comparatively low sample size. 241 

Moreover, the observed effect cannot unambiguously be attributed to pyoverdine 242 

because an undefined UV-mutagenized mutant was used. We highlight this example 243 

not to criticise it, but rather because it serves to demonstrate why drawing inferences 244 

from (appropriately weighted) aggregations of all available evidence is preferable to 245 

focusing solely on the results of a single study. 246 

 247 

What we could conclude with additional data. Our meta-analytic approach not 248 

only provides information on the overall importance of pyoverdine for P. aeruginosa 249 
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virulence, but it also allows us to identify specific gaps in our knowledge and potential 250 

biases in the published literature. First, most experiments in our dataset employed 251 

acute infection models, even though P. aeruginosa is well known for its persistent, 252 

hard-to-treat chronic infections. This raises the question to what extent insights on 253 

the roles of virulence factors important in acute infections can be transferred to 254 

chronic infections. In the case of pyoverdine, we know that in chronically-infected 255 

cystic fibrosis airways, pyoverdine production is often selected against (54–56). 256 

Although the selective pressure driving this evolutionary loss is still under debate 257 

(current explanations include pyoverdine disuse, competitive strain interactions 258 

and/or a switch to alternative iron-uptake systems (56–58)), this example illustrates 259 

that the role of pyoverdine might differ in acute versus chronic infections. 260 

 261 

Second, our comparative work shows that experiments were predominantly carried 262 

out with the well-characterized strains PAO1 and PA14. While these strains were 263 

initially isolated from clinical settings, they have subsequently undergone evolution in 264 

the laboratory environment (59–61), and might now substantially differ from the 265 

clinical strains actually causing acute infections in hospitals. Therefore, while we 266 

found no overall differences between the lab strains used in our data set, we argue 267 

that it would still be useful to carry out additional studies on a range of clinical 268 

isolates to be able to make firm conclusions on the general role of pyoverdine as a 269 

virulence factor. 270 

 271 

Finally, our data analysis revealed that low-certainty studies showing no or small 272 

effects of pyoverdine on virulence were under-represented in our data set, which 273 

points towards a systematic publication bias. It remains to be seen whether such 274 
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biases are common with regard to research on virulence factors, and whether they 275 

result in a general overestimation of the effect these factors have on host survival or 276 

tissue damage. With regard to pyoverdine, further studies are clearly needed to 277 

obtain a more accurate estimate of the true effect size. 278 

 279 

Guidelines for future studies. While our study demonstrates the strength of 280 

quantitative comparative approaches, it is important to realize that extracting effect 281 

sizes is one of the biggest challenges in any meta-analysis. This challenge was 282 

particularly evident for the experiments we found, which profoundly varied in the way 283 

data was collected and reported. As a consequence, we had to exclude many studies 284 

because they used measures of virulence that were only reported by a minority of 285 

studies, or because their reporting of results was unclear (for a selected list of 286 

examples, see Table S3 in the supplemental material). To amend this issue for future 287 

studies, we would like to first highlight the problems we encountered and then 288 

provide general guidelines of how data reporting could be improved and 289 

standardized. One main problem we experienced was incomplete data reporting (i.e. 290 

mean treatment values, absolute values and/or sample size was not reported), which 291 

prevents the calculation of effect sizes and uncertainty measures. Another important 292 

issue was that different studies measured virulence using very different metrics. 293 

Some measured virulence at the tissue level (i.e. the extent of damage inflicted), 294 

while others focused on the whole host organism. Others focused on the dynamics of 295 

the bacteria themselves, taking this as a proxy for the eventual damage to the host. 296 

There were both quantitative measures (e.g. extent of damage), and qualitative 297 

measures (e.g. assignments to arbitrary categories of virulence). Survival data was 298 

sometimes presented as a timecourse, sometimes as an endpoint; sometimes as raw 299 
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counts, sometimes as proportions. In most cases, the time scales over which survival 300 

was assessed were fairly arbitrary. Compiling such diverse measures of virulence is 301 

not simply time consuming, but it also generates extra sources of heterogeneity in 302 

the dataset, which might interfere with the basic assumptions of meta-analytical 303 

models (62, 63).  304 

 305 

How can these problems be prevented in future studies? We propose the following. 306 

(a) Whenever possible, time-to-event data (e.g. death, organ failure, etc.) should be 307 

recorded in a form that preserves both the outcome and the times to event per 308 

subject. (b) The number of replicates used (hosts) and a measure of variance among 309 

replicates must be provided to be able to calculate a confidence estimate for the 310 

experiment. (c) If data are scaled in some way (e.g. relative to a reference strain), the 311 

absolute values should still be reported, because these are crucial for the calculation 312 

of effect sizes. Finally, (d) studies leading to unexpected or negative results (e.g. no 313 

difference in virulence between a wildtype and a mutant) should still be published, as 314 

they are needed to estimate a true and unbiased effect size. In summary, all findings, 315 

irrespective of their magnitude or polarity, should be presented “as raw as possible” 316 

(e.g. in supplementary files or deposited in online data archives). This will make 317 

comparisons across studies much easier and will provide a useful resource for future 318 

meta-analytic studies. 319 

 320 

Conclusions. Currently, bacterial traits are subject to a binary categorisation 321 

whereby some are labelled as virulence factors while others are not. We demonstrate 322 

that traits’ effects on virulence are anything but binary. Rather, they strongly depend 323 

on the infection context. Our study affirms meta-analysis as a powerful tool to 324 
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quantitatively estimate the overall effect of a specific virulence factor and to compare 325 

its general importance in infections across different bacterial strains, hosts, and host 326 

organs. Such quantitative comparisons provide us with a more complete picture on 327 

the relative importance of specific virulence factors. Such knowledge is especially 328 

valuable for opportunistic pathogens, which have a wide range of virulence factors at 329 

their disposal, and infect a broad range of host organisms (13–15). Meta-analytical 330 

comparisons could thus inform us on which traits would be best suited as targets for 331 

anti-virulence therapies. Ideal traits would be those with high effect sizes and general 332 

importance across pathogen and host organisms.  333 
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MATERIALS AND METHODS 334 

Literature search. We conducted an extensive literature search, using a 335 

combination of two online databases: Web of Science and Google Scholar. The 336 

following terms were used to search abstracts and full texts: “aeruginosa” in 337 

combination with “pyoverdin” or “pyoverdine” and in combination with “virulence” or 338 

“infection” or “pathogen” or “disease” or ”mortality” or “lethality”. This search was first 339 

performed on May 19th 2014 and it was repeated periodically until Sep 21st 2015 in 340 

order to include more recent publications. In addition, the reference lists of all 341 

shortlisted studies were scanned for relevant publications. We further contacted the 342 

corresponding authors of several publications to ask for unpublished datasets. 343 

 344 

Inclusion criteria. The database search yielded a total of 442 studies, and we 345 

identified 10 additional records through other sources. These 452 studies were then 346 

scanned for relevant content according to the following set of inclusion criteria. 347 

Studies were considered potentially eligible for inclusion if they contained original 348 

research, were written in English and provided data that compared the virulence of a 349 

wildtype pyoverdine-producing P. aeruginosa strain with that of a mutant strain 350 

demonstrating impaired pyoverdine production. We defined virulence as a decrease 351 

in host fitness, measured as an increase in mortality or tissue damage when infected 352 

with bacteria. We defined “wildtype strains” as strains that were originally clinical 353 

isolates, have been widely used in laboratories as virulent reference strains and have 354 

not been genetically modified. Strains with impaired pyoverdine production included 355 

strains that were completely deficient in pyoverdine production and strains that were 356 

only partially deficient, i.e. that produced less than the wildtype strain under identical 357 

experimental conditions. We considered both genetically engineered knock-out 358 
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strains and clinical isolates with reduced pyoverdine production. There were 31 359 

original publications containing 115 experiments that satisfied these criteria and were 360 

thus considered appropriate for in-depth examination. 361 

 362 

We screened these 115 experiments using a second set of rules to identify those 363 

experiments that contain comparable quantitative data, which is essential for a meta-364 

analysis. Inclusion criteria were: (i) virulence was measured directly (and not inferred 365 

indirectly via genetic analysis); (ii) virulence was measured in vivo (and not in vitro via 366 

virulence factor production); (iii) virulence was measured quantitatively as direct 367 

damage to the host caused by bacterial infections, and not by indirect or qualitative 368 

measures such as bacterial growth performance in the host, threshold infective dose 369 

required to kill a host, the damage associated with virulence factor administration, or 370 

resistance to macrophage-like predation (53, 64, 65); and (iv) absolute virulence data 371 

were presented (and not only data scaled relative to the wildtype without information 372 

on the absolute risk of mortality, since effect sizes cannot be calculated from such 373 

data). This second set of rules was fulfilled by 23 original publications containing 76 374 

individual experiments (see Tables S1 and S2 in the supplemental material). For an 375 

overview of the whole selection process, see Fig. S1 in the supplemental material. 376 

 377 

Data extraction and effect size calculations.  From all of these 76 experiments, we 378 

extracted information on: (i) the host organism; (ii) the type of infection; (iii) the 379 

observation period of infected hosts; (iv) the identity of the control (wildtype) strain; 380 

(v) the identity of the pyoverdine-deficient strain; (vi) the mutated gene in the 381 

pyoverdine-defective strain; (vii) the mutation type (e.g. insertion/deletion); (viii) the 382 

sample size used for the wildtype and mutant experiments; and (ix) the relevant 383 
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virulence measure (host survival or tissue damage) for wildtype and mutant strains 384 

(see Table S1 in the supplemental material). This information was used to 385 

categorize the experiments and identify potentially important moderator variables 386 

(see below). 387 

 388 

Next, we extracted quantitative data from these experiments so we could calculate 389 

effect sizes for the virulence associated with pyoverdine production. For mortality 390 

assays, we extracted raw counts of how many individuals died and how many 391 

survived following infection with a dose of P. aeruginosa wildtype or, alternatively, a 392 

mutant strain known to be deficient for pyoverdine production. For experiments on 393 

tissue damage, we extracted information on the number of individuals with and 394 

without the symptoms related to tissue damage (e.g. a lesion in an organ). In cases 395 

with zero counts (i.e. either all or none of the individuals in a particular treatment 396 

group died or experienced tissue damage), we converted counts to 0.5 to avoid 397 

having zero denominators in the subsequent calculations of the (log-odds ratio) effect 398 

sizes (66). In cases where data from multiple time-points or survival curves were 399 

available, we concentrated on the time point with the largest difference between the 400 

wildtype and the mutant infection. 401 

 402 

Using this count data, we calculated the effect size for each experiment as the log-403 

odds-ratio = ln ((mvirulent / mnon-virulent) / (wvirulent / wnon-virulent)), where mvirulent and 404 

wvirulent are the number of individuals that died or experienced tissue damage when 405 

infected by the mutant and the wildtype strain, respectively, and mnon-virulent and 406 

wnon-virulent are the number of individuals that survived or remained unharmed by the 407 

infection. Information on the sample size was used to calculate the 95% confidence 408 
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interval for each effect size and for weighting effect sizes relative to one another (see 409 

details below). Where experiments reported a range of sample sizes, we used the 410 

arithmetic mean. Some studies reported only a minimum sample size. In those 411 

cases, we used this number. For experiments using C. elegans, infections were often 412 

carried out on replicate petri dishes in a large number of individuals. In these cases, 413 

we used the total number of individual worms used in each treatment group as 414 

sample size, and not the number of replica plates. 415 

 416 

For some experiments conducted in mammals, data on in vivo growth of a wildtype 417 

and a pyoverdine deficient strain were available in addition to virulence measures (see 418 

Table S4). We also calculated effect sizes (standardized mean differences) for this set 419 

of studies (Fig. S4). This limited dataset shows a similar pattern to the main dataset 420 

shown in Fig. 1, but was not included in the main analysis because we were primarily 421 

interested in quantifying virulence effects (i.e. host damage and/or mortality) and not 422 

pathogen growth. 423 

 424 

Moderator variables. We considered four moderator variables (host taxon, infection 425 

type, wildtype strain background, likelihood of pleiotropy associated with pyoverdine 426 

deficiency) that could potentially explain variation in virulence. In cases where 427 

information was missing for a specific moderator variable, we contacted the authors 428 

to obtain additional information. For each moderator, we defined the following 429 

relevant subgroups. 430 

Host organism – We first split experiments into broad taxonomic units (mammals, 431 

invertebrates, plants), and then classified hosts by genus. 432 
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Infection type – We classified experiments according to the organ or body region 433 

targeted by the infection. Major categories include infections of the host organisms’ 434 

respiratory tract, digestive system, skin (including burn wounds), and infections that 435 

generated a non-localized infection of the body cavity (systemic infection). 436 

Experiments that did not fit in any of these categories, such as infections of whole 437 

seedlings, were classified as ‘other infection types’. 438 

Wildtype strain background – Four different P. aeruginosa wildtypes (PAO1, PA14, 439 

FRD1 and PAO6049) were used for infection experiments. Although it is well 440 

established that even standard strains such as PAO1 can substantially differ between 441 

labs, there was not enough information available to take such strain-level variation into 442 

account. 443 

Likelihood of pleiotropy – The focal phenotype investigated in this meta-analysis is the 444 

production of pyoverdine, the main siderophore of P. aeruginosa. Mutants exhibiting 445 

reduced or no pyoverdine production can be generated either by deleting a specific 446 

pyoverdine-synthesis gene, or through untargeted mutagenesis (e.g. UV light)(67). 447 

The latter mutants are likely to have mutations in other genes unrelated to pyoverdine 448 

synthesis. These mutations are typically unknown but could also affect virulence. In 449 

principle, even single gene deletions can have pleiotropic effects on the phenotype, 450 

via disruption of interactions with other genes. Depending on the locus in question, 451 

certain genetic modifications are more likely to induce pleiotropy than others. To 452 

account for these complications, we inferred on a case-by-case basis whether the 453 

mutation used was likely to only induce a change in (or loss of) pyoverdine production 454 

(i.e. pleiotropy less likely) or was likely to induce a change in other phenotypes as well 455 

(i.e. pleiotropy more likely). In the biosynthesis of pyoverdine, multiple enzymes are 456 

involved in non-ribosomal peptide synthesis (19). Two gene clusters, the pvc operon 457 
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and the pvd locus, encode proteins involved in the synthesis of the chromophore and 458 

peptide moieties, respectively (19, 68). In most of these genes, a mutation or deletion 459 

leads to a complete loss of pyoverdine production, and most likely does not affect any 460 

other trait. Accordingly, we assigned mutants carrying mutations in these genes to the 461 

category “pleiotropy less likely”. An exception is pvdQ, a gene coding for a periplasmic 462 

hydrolase, which is required for pyoverdine production, but is also involved in the 463 

degradation of N-acyl-homoserine lactone quorum-sensing molecules (27). Strains 464 

with deletions in this gene were therefore assigned to the category “pleiotropy more 465 

likely”. Other strains falling into this category included: (i) mutants where the key 466 

regulator of pyoverdine synthesis, PvdS, was deleted, leading to deficiencies in toxin 467 

and protease production, in addition to a complete loss of pyoverdine production (69); 468 

(ii) strains that carry a deletion in a central metabolic gene and only coincidentally show 469 

no (or strongly reduced) pyoverdine production; (iii) double mutants that carry deletions 470 

in both the pyoverdine and the pyochelin synthesis pathway (pyochelin is the 471 

secondary siderophore of P. aeruginosa) (70); and (iv) pyoverdine mutants created via 472 

non-targeted (e.g. UV) mutagenesis. 473 

 474 

Core dataset. To quantify the impact of the moderator variables, we removed 475 

experiments belonging to rare or poorly characterized subgroups to generate a more 476 

homogenous core dataset. We excluded experiments involving plants and / or 477 

undefined wildtype strains (n = 6), experiments reporting tissue damage as a measure 478 

of virulence (n = 12), and experiments where the hosts were likely not colonized by 479 

bacteria but died from exposure to bacterial toxins (n = 8). This resulted in a core 480 

dataset comprising 50 experiments that was used for subsequent analyses on the 481 

influence of moderator variables. 482 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2016. ; https://doi.org/10.1101/061317doi: bioRxiv preprint 

https://doi.org/10.1101/061317
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 483 

Statistical analysis. Analyses were performed in R version 3.2.3 (71), using 484 

functions from packages ‘meta’ (72) and ‘metafor’ (73). We used the ‘metabin’ 485 

function to transform the count data into the (log-) odds ratio described above. We 486 

then weighted these values by the inverse of their respective squared standard 487 

errors, and pooled them to obtain a single distribution of effect sizes. We reasoned 488 

that the variability of the effect sizes in our dataset probably reflects more than simple 489 

sampling error around a single true mean. Rather, we assume that our effect sizes 490 

represent a random sample from a larger distribution comprising all possible true 491 

effect size estimates. As such, we inferred that a random effects meta-analysis would 492 

be more appropriate for our dataset than a fixed effects model (for further discussion, 493 

see (62, 63). In a random effects meta-analysis, we partition the total heterogeneity 494 

observed in our dataset (described by the statistic Q) into two constituent parts – 495 

within-experiment variation (ε) and between-experiment variation (ζ). The latter 496 

component, scaled appropriately to account for the weightings intrinsic to meta-497 

analysis, is quantified as the τ2 statistic. There are several different algorithms one 498 

can use to effect this partitioning of variance. We chose a restricted maximum 499 

likelihood (REML) approach. The use of a random model, rather than a simpler fixed 500 

model, affects the weights accorded to each constituent effect size, which in turn 501 

changes our estimates for pooled means and their associated errors. We further 502 

slightly broadened confidence intervals and weakened test statistics using Knapp 503 

and Hartung’s algorithm (74) – a widely-used and conservative adjustment designed 504 

to account for the inherent uncertainty associated with the partitioning of 505 

heterogeneity we perform in the course of fitting a random effects model. 506 

 507 
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We assessed the degree of residual heterogeneity in our dataset using statistics I2 508 

and H. I2 estimates the approximate proportion of total variability across experiments 509 

that is attributable to unexplained heterogeneity, as opposed to simple sampling error 510 

(chance). H reports ‘excess’ heterogeneity as a fold difference compared to the 511 

baseline amount of variability we would have expected if the sample were 512 

homogenous (75). 513 

 514 

Both metrics described above indicated considerable residual heterogeneity in our 515 

dataset, so we suspected that, beyond the random- and sampling error, some 516 

measurable characteristics of the experiments in our dataset could be contributing, in 517 

predictable ways, to the observed heterogeneity of our assembled effect sizes. We 518 

investigated four potential moderators, namely the host taxon, the type of infection, 519 

the wildtype background of the infecting strains, and the type of mutant involved (i.e. 520 

whether more or less pleiotropy was expected). In a first approach, we split the 521 

dataset into subgroups representing different levels of these moderators, and 522 

estimated pooled means within these different subgroups. For this, we again used 523 

random-effect meta-analysis (as above), but we set the level of between-experiment 524 

heterogeneity (τ2) to be common across all subgroups. 525 

 526 

In a second approach, we fitted a series of meta-regression models that extended 527 

our basic model to additionally consider the contributions of multiple moderator 528 

factors. Our models were able to estimate moderators’ additive effects only, because 529 

the distribution of data across different combinations of factor levels was too patchy 530 

to permit a proper investigation of moderators’ interactive effects. Moderators’ 531 

alterations of the expected (i.e. baseline) effect size could be quantified as 532 
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coefficients, which could, when standardized as t-statistics, be tested for significant 533 

differences from zero. In addition, we could test whether, collectively, the inclusion of 534 

moderators in our meta-analysis model significantly reduced the residual 535 

heterogeneity relative to a situation with no moderators. 536 

 537 

To estimate what share of the residual heterogeneity in our dataset could be 538 

individually attributable to each of the respective moderators, we performed a series 539 

of likelihood ratio tests comparing, in each case, a full model including all four 540 

moderators, against a reduced model that excluded one of the moderators. Variance 541 

component estimation in these models used maximum likelihood instead of REML 542 

because nested REML models cannot be compared in this way. From each pairwise 543 

comparison, we obtained a pseudo-R2 value, which reflects the difference in τ2 544 

(between-experiment heterogeneity) between the two models, scaled by the τ2 of the 545 

simpler model. 546 

 547 

To test for putative publication bias in our dataset, we compared effect sizes against 548 

their respective standard errors, the idea being that if there is no bias, there should 549 

be no link between the magnitude of the result from a given experiment, and the 550 

‘noisiness’ or uncertainty of that particular result. If there is bias, we could find an 551 

overrepresentation of noisier experiments reporting higher magnitude results. Using 552 

the ‘metabias’ function of the R package ‘meta’, we performed both (weighted) linear 553 

regressions and rank correlations to test for this pattern (76, 77).  554 
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FIG. 1 Forest plots depicting the variation in effect size across experiments on 

pyoverdine as a virulence factor in P. aeruginosa. All panels display the same effect 

sizes originating from the 76 experiments involved in the meta-analysis, but grouped 

differently according to four moderator variables, which are: (A) host taxon; (B) infection type; 

(C) wildtype strain background; and (D) the likelihood of pleiotropy in the pyoverdine-deficient 

strain. Effect sizes are given as log-odds-ratio ± 95% confidence interval. Negative and 

positive effect sizes indicate lower and higher virulence of the pyoverdine-deficient mutant 

relative to the wildtype, respectively. Diamonds represent the mean effect sizes (obtained 

from meta-regression analysis) for each subgroup of a specific moderator variable. IDs of the 

individual experiments are listed on the Y-axis (for details, see Table S1 in the supplemental 

material). The numbers in brackets on the Y-axis correspond to the citation number of the 

corresponding publication. 
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FIG. 2 Test for differences between subgroups of moderator variables with 

regard to the effect sizes for pyoverdine as a virulence factor in P. aeruginosa. 

Our baseline condition for all comparisons is the following: gut infections in 

invertebrate hosts, using the P. aeruginosa wildtype strain PA14 vs a pyoverdine-

deficient PA14 mutant with a low expected level of pleiotropy. The effect size for this 

baseline scenario is set to zero. All other scenarios had more extreme (negative) 

effect sizes, and are therefore scaled relative to this baseline condition. Comparisons 

reveal that virulence in pyoverdine-deficient strains was significantly more reduced in 

systemic compared to gut infections, and that most effect size variation is explained 

by the infection type. There were no significant effect size differences between any of 

the other subgroups. Bars show the difference in log odds-ratio (± 95% confidence 

interval) between the baseline and any of the alternate conditions. Values given in 

brackets indicate percentage of effect size heterogeneity explained by a specific 

moderator. 
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FIG. 3 Association between effect sizes and their standard errors across 76 

experiments examining the role of pyoverdine production for virulence in 

P. aeruginosa. In the absence of bias, we should see an inverted funnel-shaped 

cloud of points, more or less symmetrically distributed around the mean effect size 

(vertical dotted line). Instead, we see an over-representation of low-certainty 

experiments associated with strong (negative) effect sizes. This suggests a 

significant publication bias: experiments with low-certainty and weak or contrary 

effects presumably do exist, but are under-represented here (note the absence of 

data points in the cross-hatched triangle). Effect sizes are given as log-odds-ratio. 

Each symbol represents a single experiment. Symbol colours and shapes stand for 

different host organisms (red circles = invertebrates; blue squares = mammals; green 

diamonds = plants). Large symbols denote the experiments included in the core 

dataset. The solid shaded area represents the 95% confidence interval for the 

weighted linear regression using the complete dataset. Note that due to the stronger 

weights accorded to high certainty experiments (i.e. the points towards the top of the 

plot), many of the lower-weighted (higher-uncertainty) points towards the bottom of 

the plot lie quite far from the regression line and also outside the confidence interval. 
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TABLE 1 Meta-analysis workflow for this study 

 

In general This study Details 

1. Formulate hypothesis and 
predictions 

HYPOTHESIS: Pyoverdine is an important virulence factor for Pseudomonas aeruginosa  
PREDICTION: Pyoverdine-defective mutants cause less virulence than wildtype strains 

 

2. Systematically search for 
relevant studies 

We searched (see details in main text) for any reports of experiments featuring 
monoclonal infections of whole live host organisms with P. aeruginosa strains known to 
vary in pyoverdine phenotype, where virulence was quantified in terms of host mortality.  

 

3. Extract and standardize effect 
sizes and their standard errors 

For each case reporting host survival, we calculated the (log) ratio of mortality odds from 
pyoverdine-mutant infections vs. wildtype infections – i.e. the (log) odds-ratio.  

 

4a. Check heterogeneity across 
studies 

Our assembled effect sizes were more heterogeneous than expected from chance – even 
when we allowed that some of this variation could be due to random noise. 

 

4b. Consider putative moderator 
variables (optional) 

We tested for evidence of distinct sub-groups in our dataset, within which the effect sizes 
might be more homogeneous. We identified four putative moderators and codified each 
study for the following: (i) host taxon; (ii) infection type; (iii) strain background; and (iv) 
level of pleiotropy expected, given the particular mutation(s) involved.  

 

4c. Check for publication bias 
(optional) 

We found that smaller / lower-powered studies were more likely to report large effect 
sizes in support of the hypothesis, whereas larger / higher-powered studies tended to 
report smaller effect sizes. 

 

5. Derive mean effect size(s); 
quantify influence of moderator 
variables (if applicable) 

Despite the steps taken (see above), our dataset still showed substantial heterogeneity. 
Estimates of mean effect sizes (in / across subgroups) and moderator coefficients should 
therefore be viewed as best approximations.  
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FIG. S1 Flow diagram (PRISMA format) of the screening and selection process 

for studies investigating the association between pyoverdine production and 

virulence in P. aeruginosa. 
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FIG. S2 Forest plot depicting the variation in effect size across experiments on 

the effect of pyoverdine on the growth of P. aeruginosa in mammalian hosts. 

Effect sizes are given as standardized mean difference ± 95% confidence interval 

and are grouped by host genus. Negative and positive effect sizes indicate lower and 

higher in vivo growth of the pyoverdine-deficient mutant relative to the wildtype, 

respectively. IDs of the individual experiments are listed on the Y-axis (for details, 

see Table S4 in the supplemental material). 
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SUPPLEMENTARY FILE LEGEND 

 

TABLES S1-S4 Full dataset collected for meta-analysis, including calculated effect 

sizes and a list of excluded experiments. 
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