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Abstract	

	

Using	MRI	to	diagnose	mental	disorders	has	been	a	long-term	goal.	Despite	this,	the	vast	

majority	of	prior	neuroimaging	work	has	been	descriptive	rather	than	predictive.	The	

current	study	applies	support	vector	machine	(SVM)	learning	to	MRI	measures	of	brain	

white	matter	to	classify	adults	with	Major	Depressive	Disorder	(MDD)	and	healthy	controls.	

In	a	precisely	matched	group	of	individuals	with	MDD	(n	=	25)	and	healthy	controls	(n	=	

25),	SVM	learning	accurately	(70%)	classified	patients	and	controls	across	a	brain	map	of	

white	matter	fractional	anisotropy	values	(FA).	The	study	revealed	three	main	findings:	1)	

SVM	applied	to	DTI	derived	FA	maps	can	accurately	classify	MDD	vs.	healthy	controls;	2)	

prediction	is	strongest	when	only	right	hemisphere	white	matter	is	examined;	and	3)	

removing	FA	values	from	a	region	identified	by	univariate	contrast	as	significantly	different	

between	MDD	and	healthy	controls	does	not	change	the	SVM	accuracy.	These	results	

indicate	that	SVM	learning	applied	to	neuroimaging	data	can	classify	the	presence	versus	

absence	of	MDD	and	that	predictive	information	is	distributed	across	brain	networks	

rather	than	being	highly	localized.	Finally,	MDD	group	differences	revealed	through	typical	

univariate	contrasts	do	not	necessarily	reveal	patterns	that	provide	accurate	predictive	

information.		
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1.	Introduction	

A	method	for	objectively	identifying	the	presence	or	absence	of	psychiatric	

disorders,	such	as	major	depressive	disorder,	is	a	long	standing	need	in	psychiatry	(Kapur	

et	al.,	2012).	One	promising	approach	is	to	use	advances	in	MRI	methods	and	analytics	to	

derive	an	objective	diagnosis.	Although	mood	disorders	have	been	extensively	studied	with	

MRI	(Drevets	et	al.,	2008;	Lorenzetti	et	al.,	2009),	including	both	structural	and	functional	

neuroimaging,	few	studies	have	used	imaging	data	to	classify	MDD.	The	current	study	

examines	whether	in	vivo	diffusion	tensor	MRI	(DTI),	a	measure	of	white	matter	

microstructure	of	the	brain,	can	be	used	to	accurately	diagnose	major	depressive	disorder	

(MDD)	(Bracht	et	al.,	2015;	Versace	et	al.,	2010).	Given	the	view	that	depression	results	

from	vulnerabilities	across	interconnected	brain	networks	rather	than	specific	brain	nodes	

(Mayberg,	1997;	Wang	et	al.,	2016)	(Mulders	et	al.,	2015),	approaches	that	look	at	the	

underlying	white	matter	structure	that	connects	these	networks	could	provide	important	

diagnostic	utility.		

Diffusion	tensor	imaging	(DTI)	is	a	technique	that	utilizes	the	ability	of	MRI	to	tag	

water	molecules	and	then	wait	some	period	of	time	to	determine	the	extent	to	which	those	

molecules	are	microscopically	diffused.	By	measuring	multiple	spatial	directions,	vectors	

can	be	generated	for	each	brain	voxel	to	quantify	the	fiber	orientation	and	integrity	of	

white	matter	pathways	within	the	cerebral	cortex.	There	are	a	number	of	different	metrics	

that	can	be	generated	from	DTI,	but	scalar	measures	are	more	commonly	used	in	MDD	as	

they	can	be	correlated	with	disease	severity	and/or	symptoms.		

Scalar	measures	are	derived	from	calculations	of	one	or	more	of	the	3	principle	

directional	vectors	of	the	“diffusion	tensor”	represented	as	an	ellipsoid.	One	common	
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metric	is	fractional	anisotropy	(FA),	which	is	the	extent	to	which	diffusion	is	characterized	

as	anisotropic,	or	highly	directional	(high	FA)	vs	unrestricted	or	isotropic	(low	FA).	For	

example,	one	of	the	white	matter	pathways	with	the	highest	FA	values	is	the	corpus	

callosum,	due	to	its	highly	organized,	densely	packed	fibers	that	run	mainly	in	a	left-right	

direction.	In	addition	to	directionality,	FA	is	influenced	by	axon	size	and	density,	pathway	

geometry,	and	extent	of	fiber	intersections	(Alexander	et	al.,	2007;	Beaulieu,	2002).	

	Another	scalar	measure	is	calculated	as	the	average	of	the	3	directional	vectors	and	

is	referred	to	as	mean	diffusivity	(MD).	MD	reflects	the	extent	to	which	there	is	water	

movement	at	all	and	is	a	useful	clinical	measure	to	indicate	edema	and	restricted	liquid	

flow.	Axial	diffusivity	(AD)	is	the	strength	of	the	primary	directional	vector	and	radial	

diffusivity	(RD)	is	the	mean	of	the	2	non-principle	vectors.	While	all	these	measures	can	be	

calculated	from	DTI	imaging,	FA	is	the	most	reliably	sensitive	measure	of	between	group	

microstructural	white	matter	differences	(see	(Feldman	et	al.,	2010).		

	 A	number	of	studies	have	demonstrated	differences	in	FA	values	between	patients	

with	MDD	and	healthy	controls.	A	meta-analysis	of	11	studies	that	examined	FA	in	

individuals	with	MDD	(Liao	et	al.,	2013)	identified	4	consistent	locations	associated	with	

altered	FA	in	MDD	compared	to	healthy	controls:	right	and	left	dorsal	frontal	regions,	a	

region	of	the	right	fusiform	and	a	region	of	the	right	occipital	lobe.	A	review	paper	that	

focused	on	35	studies	of	WM	alterations	in	pathways	associated	with	the	reward	circuit	

(Bracht	et	al.,	2015),	found	reduced	FA	in	the	cingulum	bundle,	increases	and	decreases	of	

FA	in	the	uncinate	fasciculus	in	adolescents,	and	reduced	FA	in	the	uncinate	fasciculus	and	

the	anterior	thalamic	radiation/supero-lateral	medial	forebrain	bundle	during	acute	

depressive	episodes	in	adults.	Other	studies	have	focused	on	WM	microstructure	in	those	
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at	risk	for	MDD	either	by	virtue	of	family	history	(Keedwell	et	al.,	2012)	or	genetic	

polymorphisms	(Pacheco	et	al.,	2009).		

Given	the	heterogeneity	of	findings,	an	important	theme	that	emerges	from	this	

work	is	that	white	matter	microstructure	alterations	in	MDD	are	distributed	across	many	

defined	brain	networks.	Thus,	the	use	of	DTI	to	understand	underlying	WM	features	

associated	with	MDD	has	been	useful	in	characterizing	the	underlying	brain	circuits	

associated	with	the	psychiatric	disorder.	However,	despite	these	interesting	results,	it	

remains	unclear	if	and	when	DTI	might	be	implemented	as	a	promising	diagnostic	tool.	One	

of	the	steps	needed	in	order	to	accomplish	this	goal	would	be	to	quantitatively	determine	

how	well	DTI	measures	can	discriminate	people	with	and	without	MDD.		

	 One	approach	to	examine	the	diagnostic	utility	of	MRI	modalities	involves	applying	

multivariate	machine	learning	classification	algorithms	in	order	to	identify	individuals	with	

a	specific	disorder	(Orrù	et	al.,	2012).	There	has	been	increasing	interest	in	applying	

multivariate	pattern	analysis	methods	in	order	to	categorize	patients	suffering	from	

psychiatric	disorders	from	healthy	controls	(Cohen	et	al.,	2011).	The	main	advantage	of	

these	approaches	is	that	they	are	predictive.	Once	a	classifier	has	been	defined,	it	can	then	

be	tested	on	new	individuals	to	predict	group	membership.	These	approaches	have	utilized	

functional	brain	imaging	(Craddock	et	al.,	2009;	Zeng	et	al.,	2012)	and	structural	brain	

images	(Ardekani	et	al.,	2011).	This	approach	is	starting	to	be	applied	to	MDD	(for	review	

see		(Patel	et	al.,	2016)).	

	 To	date,	this	machine	learning	approach	has	been	applied	to	a	range	of	MRI	

modalities	in	an	effort	to	automate	the	diagnosis	of	a	number	of	disorders	(Magnin	et	al.,	

2009)	but	few	studies	have	been	completed	with	MDD.	One	of	the	earliest	studies	examined	
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the	application	of	SVM	to	depression	diagnosis	using	resting-state	fMRI	in	20	patients	with	

MDD	and	20	matched	controls.		While	the	purpose	of	this	work	was	to	examine	different	

feature	selection	approaches,	the	unselected	data	yielded	only	modest	classification	

accuracy	–	62.5%.	In	another	study	of	32	women	(14	with	MDD),	researchers	applied	

global	tractography-based	graph	metrics	for	the	classification	of	depression	(Sacchet,	

2015).	The	investigators	characterized	connectivity	between	34	cortical	regions	resulting	

in	9	global	graph	metrics	that	were	then	used	in	a	SVM	classification.	Combined,	the	9	

metrics	classified	MDD	and	controls	at	a	performance	level	of	71.9%	accuracy.		

	 A	second	study	applying	SVM	classification	to	DTI	in	order	to	study	depression	

applied	probabilistic	tractography	to	reconstruct	specific	WM	tracts	and	then	extracted	

anatomical	networks	(Fang	et	al.,	2012).	SVM	was	then	applied	to	determine	the	most	

discriminating	connections	within	these	networks.	The	resulting	classifications	were	highly	

accurate	(91.7%)	and	revealed	that	the	most	discriminating	connections	were	primarily	

within	the	cortical-limbic	network	where	it	was	revealed	that	young	adult	first	episode	

MDD	patients	displayed	increased	anatomical	connectivity	relative	to	healthy	controls.	In	

this	study,	a	two	sample	t-test	approach	was	taken	to	select	features	to	be	utilized	in	

classification.	An	important	limitation	of	the	use	of	feature	selection	algorithms	can	often	

produce	sample-specific	results	that	may	not	generalize	to	new	data.			

	 The	aim	of	the	current	study	is	to	continue	to	explore	the	utility	of	DTI	in	the	

classification	of	individuals	diagnosed	with	MDD.	The	previous	examinations	using	SVM	

classification	of	DTI	imaging	in	MDD	did	not	report	the	utility	of	standard	scalar	metrics	

such	as	FA,	MD,	RD	and	therefore,	those	metrics	will	be	examined	here.	Moreover,	when	

feature	selection	techniques	were	applied	(Fang	et	al.,	2012),	classification	accuracy	was	
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greatly	increased.	It	is	important	to	examine	the	predictive	power	of	classification	both	

with	and	without	feature	selection	to	understand	the	predictive	range	of	these	techniques.	

This	approach	was	applied	to	a	sample	of	treatment-seeking	participants	with	DSM-IV	

Major	Depressive	Disorder	who	were	part	of	a	study	testing	the	efficacy	of	attention	bias	

modification	(Beevers	et	al.,	2015).		

2.	Methods	

2.1	Sample	

Fifty-two	treatment-seeking	participants	with	DSM-IV	Major	Depressive	Disorder	(MDD)	

and	45	healthy	control	(HC)	participants	were	recruited	for	this	study	from	advertisements	

placed	online,	in	newspapers,	and	on	late-night	TV.	Participants	were	screened	for	medical	

or	physical	conditions	that	would	preclude	participation	in	an	fMRI	study	(e.g.,	orthodontic	

braces).	They	also	completed	an	abbreviated	Mini	International	Neuropsychiatric	

Interview	(MINI)	(Sheehan	et	al.,	1998)	to	determine	provisional	MDD	diagnosis	(MDD)	or	

absence	of	psychiatric	symptoms	(HC).	Diagnoses	were	subsequently	confirmed	in-person	

with	a	Structured	Clinical	Interview	for	the	DSM-IV	Disorders	(SCID)	administered	by	a	

trained	research	assistant.		

Participants	in	the	MDD	group	met	diagnostic	criteria	for	current	major	depressive	

disorder,	but	did	not	meet	criteria	for	substance	abuse	(past	year)	or	dependence,	current	

or	past	psychotic	disorder,	bipolar	disorder,	and/or	schizophrenia.	Participants	in	the	HC	

group	did	not	meet	criteria	for	any	current	or	past	psychiatric	disorder.	Consistent	with	

previous	research	(Amir	et	al.,	2009;	Sheehan	et	al.,	1998),	participants	receiving	

pharmacological	treatment	were	allowed	into	the	study	if	there	had	been	no	medication	

change	in	the	12	weeks	prior	to	study	entry.		
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In	order	to	increase	the	likelihood	that	groups	were	matched	for	structural	brain	

characteristics,	we	selected	from	the	larger	study	sample	a	subset	of	healthy	control	

participants	that	were	matched	for	age	and	gender	on	a	1-to-1	basis	with	individuals	from	

the	MDD	group.	To	minimize	brain	changes	associated	with	aging,	selected	participants	

were	also	between	18	and	35	years	of	age.	This	matching	algorithm	resulted	in	a	sample	

size	of	50	participants	(25	MDD,	25	healthy	controls).	This	sample	was	used	for	all	analyses	

reported	below.	

2.2	Imaging	Methods		

2.21	Acquisition	

	 All	scanning	was	performed	on	a	whole	body	3T	GE	MRI	scanner	(Excite)	with	an	8-

channel	head	coil.	The	primary	measure	of	white	matter	(WM)	was	derived	from	a	HARDI	

diffusion	MRI	that	was	collected	using	single	shot	echo	planar	imaging,	and	a	twice-

refocused	spin	echo	pulse	sequence,	optimized	to	minimize	eddy	current-induced	

distortions	(GE	3T,	TR/TE=12000/71.1,	B=1000,	128-by-128	matrix,	3mm	(0-mm	gap)	

slice	thickness,	1	T2	+	25	DWI).	Forty-one	slices	were	acquired	in	the	approximate	AC-PC	

plane.	The	25	diffusion	weighted	directions	resulted	in	a	high	signal-to-noise	diffusion	

volume	that	took	approximately	7	minutes	to	acquire.	Participant	head	motion	was	

minimized	by	instruction	and	the	use	of	foam	inserts.		

2.2.2	Diffusion	Tensor	Processing	

All	diffusion	image	analysis	was	conducted	with	the	FMRIB	Software	Library	(FSL,	

http://www.fmrib.ox.ac.uk/fsl).	First,	images	were	corrected	for	eddy	current	distortions	

and	for	motion	using	the	b=0	volume	as	a	reference.	The	registered	images	were	skull-

stripped	using	BET.	Diffusion	tensors	were	then	calculated	on	a	voxel	by	voxel	basis	using	
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conventional	reconstruction	methods	(Basser	et	al.,	1994)	and	from	these	tensors	

Fractional	Anisotropy	(FA),	Mean	Diffusivity	(MD),	Axial	Diffusivity	(AD)	and	Radial	

Diffusivity	(RD)	maps	were	calculated	on	a	voxel-by-voxel	basis.		

	 Individual	FA	maps	were	then	entered	into	the	TBSS	(Tract-Based	Spatial	Statistics)	

pipeline	(TBSS;	Smith	et	al.,	2006;	2009).	The	critical	steps	of	the	TBSS	pipeline	include:	(1)	

FA	data	were	aligned	onto	the	common	FMRIB58	FA	template	(MNI152	standard	space)	

using	a	non-linear	registration	algorithm	FNIRT;	(2)	a	mean	FA	image	was	created	for	each	

group	(MDD	and	NC	separately)	from	the	images	for	all	the	subjects	in	MNI152	space;	(3)	

images	are	then	thinned	to	generate	a	mean	FA	white	matter	skeleton	that	represented	the	

center	of	all	tracts	common	to	the	entire	group;	(4)	the	resulting	map	was	thresholded	to	

FA	values	greater	than	0.2	in	order	to	exclude	gray	matter	and	low	intensity	voxels	that	

may	reflect	partial	volume	effects	with	gray	matter;	(5)	the	aligned	FA	volume	for	each	

subject	was	then	projected	onto	the	skeleton	by	filling	the	skeleton	with	FA	values	from	the	

center	of	the	nearest	tract;	(6)	this	is	achieved	for	each	skeleton	voxel	by	searching	

perpendicular	to	the	local	skeleton	structure	for	the	maximum	value	in	the	FA	image	of	the	

subject;	(7)	for	the	purposes	of	this	analysis,	FA	values	were	used	from	each	subject	for	

both	the	total	FA	map	as	well	as	the	FA	skeleton	map;	(8)	the	remaining	scalar	measures	

(MD,	AD,	and	RD)	were	processed	using	the	alignment	parameters	from	the	FA	processing	

stream	in	order	to	generate	common	space	maps	that	are	true	to	the	white	matter	

architecture.		

2.31	TBSS	Voxel-wise	Analysis	

	 In	order	to	compare	results	from	univariate	contrasts	of	WM	maps	to	those	obtained	

through	SVM	classification	voxel-wise	comparisons	were	conducted	between	the	final	
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group	of	25	MDD	patients	and	25	healthy	controls.		Nonparametric	statistical	comparisons	

were	performed	on	the	skeletonized	FA	images	using	the	FMRIB	Software	Library	(FSL)	

randomize	algorithm	based	on	permutation	generated	statistical	thresholds,	with	

corrections	for	multiple	voxel-wise	comparisons	using	threshold-free	cluster	enhancement	

(TFCE).	Anatomic	locations	of	voxel	clusters	with	statistically	significant	differences	in	FA	

between	MDD	and	HC	at	p	<	0.05	were	determined	using	1000	permutations.	The	same	

approach	was	taken	to	examine	the	MD,	AD	and	RD	maps.		

2.3.2	Support	Vector	Machine	Classification	Analysis	

	 Classification	of	individual	subjects	was	undertaken	using	the	freely	available	

Pattern	Recognition	for	Neuroimaging	Toolbox	(PRoNTo-	

http://www.mlnl.cs.ucl.ac.uk/pronto/	(Schrouff	et	al.,	2013)).	The	Linear	Support	Vector	

Machine	(SVM)	is	conceptually	illustrated	in	Figure	1.	Each	dimension	corresponds	to	a	

feature	set	(scalar	voxel	values	reduced	through	the	kernel	process	in	this	case)	and	thus	

each	subject	is	located	in	the	space	depending	upon	its	constituent	features.	The	pluses	and	

minuses	constitute	the	two	putative	categories,	namely	MDD	and	HCs.	The	SVM	finds	what	

is	known	as	the	maximum	margin	decision	boundary,	which	is	the	hyperplane	that	is	

furthest	from	the	least	discriminating	features	of	the	to	be	discriminated	categories.		The	

hyperplane	is	also	associated	with	a	maximum	margin	that	best	separates	the	two	groups,	

where	larger	margins	are	associated	with	better	classifier	generalizability.	The	margin	is	

fully	specified	by	the	subset	of	training	samples	that	lie	on	it	and	reflect	the	support	

vectors,	since	they	represent	the	specific	cases	that	support	the	solution	(See	Figure	1).		

	 The	SVM	approach	in	PRoNTo	utilizes	LIBSVM	for	matlab,	which	is	an	

implementation	of	a	linear-kernel	SVM	for	binary	classification	(Chang	and	Lin,	2011).	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/061119doi: bioRxiv preprint 

https://doi.org/10.1101/061119
http://creativecommons.org/licenses/by-nc-nd/4.0/


Following	DTI	analysis,	the	resulting	scalar	maps	were	prepared	for	classification	using	3	

different	approaches.	First,	whole	brain	scalar	maps	were	used,	although	masked	to	include	

only	white	matter	by	thresholding	the	group	mean	FA	map	at	a	value	of	FA	>	0.2.	The	

resulting	image	was	then	used	as	a	mask	to	select	voxels	for	each	participant	as	input	to	the	

classification	analysis.		Using	this	approach,	classification	was	conducted	on	the	resulting	

whole	brain	maps,	a	right	hemisphere	map	and	a	left	hemisphere	map.	This	same	approach	

was	taken	to	examine	the	FA	skeleton	map,	namely	classification	was	conducted	on	the	

whole	brain	skeleton	and	a	left	and	right	hemisphere	only	skeleton.	Finally,	a	“feature	

selection”	approach	was	taken	only	for	the	FA	map1	in	order	to	reduce	the	number	of	

voxels	to	a	subset	most	relevant	for	classification	(Mwangi	et	al.,	2013).		

This	approach	is	a	feature-wise	t-test	filter	(TF)	to	determine	features	that	have	

different	group	means	(Mitchell	et	al.,	2004).	This	step	eliminates	non-discriminative	

voxels	that	reduce	classification	accuracy.	This	was	accomplished	by	first	removing	one	

pair	of	MDD	and	HC	participants	from	the	dataset	and	then	splitting	the	2	groups	of	

remaining	participants	in	half	randomly	and	contrasting	MDDs	vs	HCs	in	each	split	half	

data	separately.	Resulting	t-maps	were	thresholded	at	t	=	2.10	(95%	confidence	interval)	

and	then	the	2	split	half	t-maps	were	combined	to	retain	all	thresholded	voxels	in	common	

between	them	(p	<	0.0025).	SVM	classification	was	then	applied	to	this	overlap	map	and	

accuracy	was	tested	for	each	map	utilizing	the	participant	pair	left	out.		

This	procedure	produced	25	separate	TF	maps	and	the	average	accuracy	scores	

were	calculated	from	the	25	testing	folds.	This	average	number	of	voxels	across	the	25	

																																																								
1	A	feature	selection	approach	was	only	taken	with	the	FA	measure	since	none	of	the	other	

measures	resulted	in	any	significant	univariate	contrast	results,	nor	SVM	significant	

classifications.		
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separate	TF	maps	was	1232mm3	voxels	with	a	standard	deviation	of	487mm3	voxels.	In	

summary,	8	datasets	were	created;	the	FA	>	0.2	thresholded	FA,	MD,	AD	and	RD	maps	for	

the	whole	brain,	and	the	right	and	left	hemispheres,	the	whole	brain	FA	skeleton	map	and	

skeleton	right	and	left	hemispheres,	and	finally	FA	maps	that	were	feature	selected	using	

the	split-half	t-test	filtering	technique.		

	 Following	data-selection,	classification	was	then	carried	out	using	the	Support	

Vector	Machine	(SVM)	approach.	For	more	detail	of	the	processing	steps	the	reader	is	

referred	to	Schrouff	et	al.	(for	flow	chart	of	processing	steps	see	Figure	1	in	Schrouff	et	al.,	

2013).	The	first	step	is	the	generation	of	a	“similarity	matrix”	in	the	form	of	a	linear	kernel	

(Hofmann	et	al.,	2008)	that	reduces	the	dimensionality	of	the	input	data	set	to	a	matrix	the	

size	of	Nsamples	by	Nsamples.	This	kernel	matrix	is	a	similarity	measure	resulting	from	the	dot	

product	of	all	brain	voxels	reflecting	their	degree	of	similarity.	This	matrix	is	then	input	

into	the	classification	algorithm.	For	classification,	two	classes	were	defined	–	MDD	and	HC	

and	processed	using	a	soft-margin	hyper-parameter	approach.	In	order	to	examine	the	

model’s	estimation	power,	a	leave-one-subject-per-group-out	(LOSPGO)	cross-validation	

approach	was	used.	In	each	step	of	the	cross-validation,	the	individuals	are	grouped	into	

disjoint	training	and	testing	sets	such	that	there	are	no	subjects	used	for	both	training	and	

testing	in	a	single	step.	This	process	is	repeated	across	all	pairs	of	left	out	individuals	and	

the	results	from	each	step	are	averaged	to	obtain	a	final	estimate	of	classification	accuracy.	

The	model	performance	was	tested	for	significance	using	permutation	testing	where	the	

model	was	estimated	1000	times	with	randomly	permuted	class	labels	that	produces	a	p-

value	for	each	of	the	performance	values.	
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	 In	order	to	assign	classification	power	to	specific	locations	in	the	brain	WM,	PRoNTo	

takes	the	linear	SVM	models	and	recovers	model	weights	and	transforms	the	weights	

vector	into	a	map	in	the	original	image	(voxel)	space.	These	maps	contain	at	each	voxel	the	

corresponding	weight	of	the	linear	model	that	reflects	how	much	this	particular	voxel	

contributed	to	the	classification.	In	addition,	the	contribution	of	specific	regions	within	the	

ICBM-DTI-81	white-matter	atlas	(Mori	et	al.,	2008),	an	atlas	where	48	white	matter	tract	

labels	were	created	by	hand	segmentation	of	a	standard-space	average	of	diffusion	MRI	

tensor	maps	from	81	subjects.	This	is	accomplished	by	first	summing	the	absolute	values	of	

the	weights	within	each	region	divided	by	the	number	of	voxels	in	that	region.	Then	the	

contribution	of	each	region	is	divided	by	the	total	contribution	of	all	regions	resulting	in	

values	that	reflect	the	percent	contribution	of	each	region	to	the	decision	function.	These	

regions	can	then	be	ranked	by	descending	order	based	on	their	contribution	to	the	model	

and	examined	to	understand	how	regions	contribute	to	the	classification	accuracy.	

3.	Results		

3.1	Demographic	Characteristics	

Table	1	shows	the	demographic	and	depression	symptom	profile	of	the	MDD	and	HC	

groups.	The	groups	were	well	matched	on	age,	gender	and	income	but	were	marginally	

different	on	ethnic	distribution.	Given	the	MDD	diagnosis,	the	groups	were	significantly	

different	on	BDI-II	and	IDAS	(Inventory	of	Depression	and	Anxiety	Symptoms,	(Watson	et	

al.,	2008)).		

3.2	TBSS	voxel-wise	results	

	 Contrasting	the	FA	skeleton	between	MDD	and	HC	groups	revealed	only	a	single	

significant	cluster:	FA	values	were	greater	for	MDD	than	HC	in	the	right	body	of	corpus	
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callosum	(see	Figure	2).	Contrasting	the	AD	skeleton	between	MDD	and	HC	groups	revealed	

a	single	significant	cluster:	lower	AD	values	for	MDD	vs	HC	in	the	right	anterior	thalamic	

radiation	(see	Figure	3).	The	skeletonized	MD	map	revealed	a	very	similar	effect	of	lower	

MD	in	the	anterior	thalamic	radiation	in	MDD	versus	HC.	In	this	case,	the	effect	was	

bilateral.	Finally,	the	RD	skeleton	map	did	not	reveal	any	significant	depression	group	

differences	using	the	univariate	voxel-wise	contrast	approach	with	cluster	wise	

corrections.		

3.3	Support	vector	machine	classification	results	

	 Accuracy	is	the	total	number	of	correctly	classified	test	samples	from	each	leave-

one-pair-out	set	divided	by	the	total	number	of	test	samples,	irrespective	of	class.	

Classification	assessment	across	the	8	datasets	indicated	that	all	sets	classified	MDDs	

significantly	(see	Table	2).	For	the	whole	brain	FA	map	total	classification	accuracy	was	

70.0%	(permutation	p	=	0.015)	with	a	specificity	of	80.0%	and	a	sensitivity	of	60.0%.	This	

performance	was	improved	when	just	the	right	hemisphere	FA	map	was	used,	resulting	in	

total	accuracy	of	74.0%	(permutation	p	=	0.005),	with	a	corresponding	specificity	of	80.0%	

and	sensitivity	of	68.0%.	The	whole	brain	skeleton	map	was	comparable	to	whole	brain	FA,	

as	total	classification	accuracy	was	70.0%	(permutation	p	=	.011)	with	a	specificity	of	

84.0%	and	a	sensitivity	of	56.0%.	Testing	the	hemispheres	separately	did	not	improve	

performance	of	the	FA	skeleton	maps.		

	 Results	for	the	MD,	AD	and	RD	maps	were	less	promising	(see	Table	3).	For	MD,	the	

whole	brain	significantly	classified	MDD	but	not	healthy	controls.	The	left	and	right	MD	

maps	were	unsuccessful	at	significantly	classifying	either	group.	The	AD	maps	showed	a	

similar	pattern	to	the	MD	map,	namely	only	the	whole	brain	map	significantly	classified	
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MDD	but	not	HC.	Finally,	the	RD	maps	were	not	able	to	significantly	classify	any	group.	

Because	of	the	failure	of	these	3	scalar	measures	to	significantly	distinguish	between	

groups,	a	feature	selection	approach	was	not	taken.	Finally,	the	t-test	filtered	feature	

selected	FA	map	did	not	increase	the	performance	of	the	SVM	above	what	was	seen	in	with	

the	whole	brain	right	hemisphere	FA	map.	Total	classification	accuracy	was	74.0%	with	a	

specificity	of	68.0%	and	a	sensitivity	of	76.0%.		

A	prediction	plot	for	the	best	performing	dataset,	namely	the	right	hemisphere	

whole-brain	FA	map	can	be	seen	in	Figure	4.	The	plot	displays	the	output	“decision	function	

values”	where	positive	numbers	represent	the	MDD	class	and	negative	numbers	the	HCs.	

The	zero	line	is	the	decision	bound	for	this	classifier.	A	well-performing	classifier	will	show	

clear	separation	of	the	2	classes.	In	addition,	there	appears	to	be	a	wider	range	of	

variability	in	the	decision	function	values	for	HC	when	compared	to	MDD.		

	 Given	that	neuroimaging	data	contains	spatial	information	that	may	be	critical	in	

understanding	the	underlying	WM	pathways	that	contribute	to	classification	accuracy,	

PRoNTo	allows	one	to	generate	a	“weight	map”.		The	weight	map	is	a	spatial	representation	

of	the	decision	function	where	each	voxel	contributes	with	a	certain	weight	to	the	classifier	

decision	function.	A	weight	map	was	generated	for	the	right	hemisphere	FA	map	using	the	

ICBM-DTI-81	atlas.	The	results	of	this	map,	defined	in	terms	of	ICBM-DTI-81	ROIs,	can	be	

seen	in	Table	3	and	the	projections	of	these	ROIs	on	a	standard	brain	can	be	seen	in	Figure	

5.	The	table	includes	regions	ranked	by	their	total	contribution	to	the	model	in	descending	

order,	the	cumulative	percent	contribution,	the	number	of	voxels	within	that	region	and	

finally	the	ROI	WM	label.		
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The	second	largest	contributor	to	the	model,	in	terms	of	number	of	voxels,	lay	in	the	

right	body	of	the	corpus	callosum	and	overlaps	with	the	region	revealed	in	the	TBSS	

univariate	analysis.	However,	this	region	makes	a	relatively	small	contribution	to	the	

classification—an	estimated	5.1%.	In	order	to	confirm	the	contribution	of	this	region	to	

classification	accuracy	was	minimal,	a	nested	model	test	was	performed	by	removing	the	

voxels	contained	within	this	region	and	then	the	classification	was	rerun.	Removal	of	these	

7329	voxels	resulted	in	numerically	higher	classification	accuracy	-	total	classification	

accuracy	of	76.0%	with	a	specificity	of	84.0%	and	a	sensitivity	of	68.0%,	although	likely	

this	change	was	not	significant.		

4.	Discussion		

	 The	current	report	supports	using	machine	learning	algorithms	to	capture	the	

diagnostic	information	contained	in	structural	MRI	data	in	order	to	differentiate	between	

patients	diagnosed	with	MDD	and	healthy	controls.	Despite	the	relatively	small	sample	size,	

using	both	an	unselected	and	a	feature	selected	DTI	dataset,	support	vector	machine	binary	

classification	was	able	to	significantly	distinguish	between	MDD	and	HC	using	the	DTI	

metric	of	fractional	anisotropy	(FA).	While	this	approach	awaits	demonstrated	predictive	

power	when	applied	to	an	independent	dataset,	nevertheless	there	is	important	

information	that	can	be	derived	from	this	project.		

Across	multiple	DTI	metrics	–	FA,	MD	and	AD	there	were	several	findings	from	the	

univariate	between	group	contrasts	that	are	informative	and	consistent	with	previous	

reports	in	patients	with	MDD.	First,	examining	the	FA	skeleton	revealed	that	a	region	of	the	

right	body	of	the	corpus	colosum	(CC)	had	higher	FA	values	in	MDD	relative	to	HC.	While	

some	reports	have	demonstrated	that	depression	is	associated	with	decreased	FA	values	in	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/061119doi: bioRxiv preprint 

https://doi.org/10.1101/061119
http://creativecommons.org/licenses/by-nc-nd/4.0/


the	body	of	the	CC	(Cole	et	al.,	2012),	a	study	by	(Frodl	et	al.,	2012)	found	that	unaffected	

first-degree	healthy	relatives	(UHRs)	of	patients	with	MDD	revealed	increased	FA	values	in	

the	CC,	which	they	speculated	might	represent	vulnerable	characteristics	for	the	formation	

of	depression.	Finally,	a	meta-analysis	of	WM	abnormalities	in	MDD	that	examined	17	

studies	that	included	641	MDD	patients	and	581	HC	(Chen	et	al.,	2016)	found	that	the	CC	

consistently	reveals	differences	between	MDD	and	HC,	particularly	in	the	genu	and	body	

regions,	even	if	the	directionality	of	those	differences	remains	unclear.			

	 The	region	of	CC	revealed	in	the	current	study	is	right	lateralized	and	clearly	

involves	a	region	of	interface	with	the	superior	longitudinal	fasciculus	(SLF).	Greater	FA	in	

this	region	may	indicate	a	reduction	in	fiber	complexity	(Beaulieu,	2002)	in	a	location	

where	one	would	expect	increased	crossing	fibers	between	the	CC	and	SLF.		It	is	important	

to	be	careful	when	interpreting	the	directionality	of	FA	differences	between	groups	since	

FA	is	sensitive	to	different	elements	of	microstructure	depending	on	location	(Beaulieu,	

2002).	Moreover,	it	is	not	always	clear	whether	investigators	tested	the	reverse	contrast	of	

MDD	>	HC	as	many	articles	do	not	explicitly	state	whether	any	regions	showed	greater	FA	

in	MDD	relative	to	HC.	Finally,	the	right	body	of	the	CC	lies	along	the	midline	of	the	brain	

corresponding	to	a	functional	network	referred	to	as	the	default	mode	network	(DMN).	

Greater	functional	connectivity	within	the	DMN	has	been	consistently	associated	with	MDD	

(Hamilton	et	al.,	2015).	Increased	FA	in	the	body	of	the	CC	may	be	a	structural	correlate	of	

increased	functional	connectivity	in	the	DMN	observed	in	MDD.		

	 In	addition	to	the	finding	of	higher	FA	values	in	the	right	CC,	findings	in	the	anterior	

thalamic	radiation	indicated	lower	axial	diffusivity	and	lower	mean	diffusivity	in	MDD	

relative	to	HC.	This	is	consistent	with	a	number	of	previous	studies	(Lai	and	Wu,	2014)	
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(Korgaonkar	et	al.,	2014)	that	have	shown	alterations	in	the	anterior	thalamic	radiation	

associated	with	MDD.	In	a	whole-brain	examination	of	WM	structural	networks	in	MDD	

relative	to	controls,	differences	were	revealed	in	two	brain	networks	(Korgaonkar	et	al.,	

2014),	one	being	a	frontal-subcortical	network	that	included	regions	of	frontal	cortex,	the	

caudate	and	the	thalamus.	In	the	current	work,	the	anterior	thalamic	radiation	revealed	

decreases	in	the	longitudinal	component,	possibly	reflecting	reduced	myelination	in	MDD	

patients	and	therefore	lower	connectivity	between	the	thalamus	and	the	cortex.		

	 While	the	univariate	results	add	information	to	the	corpus	of	work	examining	what	

brain	structural	features	are	associated	with	depression,	it	is	inherently	an	explanatory	

approach	to	the	data	(Yarkoni	and	Westfall,	2016).	By	contrast,	the	results	of	our	machine	

learning	classification	hold	the	promise	of	predicting	who	is	depressed	or	even	potentially	

who	might	be	vulnerable	to	depression.		

Across	the	four	scalar	measures	derived	from	the	DTI	imaging,	only	the	results	from	

the	FA	maps	provided	significant	prediction	accuracy.	Using	a	whole	brain	approach,	the	

right	hemisphere	selected	FA	map	predicted	MDD	patients	with	80%	accuracy	and	healthy	

controls	with	68%	accuracy	(total	accuracy	was	75%).	Restricting	the	SVM	learning	to	just	

the	skeletal	FA	values	resulted	in	lower	prediction	accuracy	overall,	indicating	that	

restricting	the	map	to	the	highest	FA	path	through	the	brain	does	not	increase	predictive	

ability.	Finally,	using	a	TF	feature	selection	approach	using	the	voxels	which	most	clearly	

separated	the	groups	did	not	improve	prediction	accuracy	over	whole-brain	FA.		

It	is	interesting	to	note	that	of	the	four	metrics	examined,	FA	was	uniquely	

successful	at	classification.	One	possible	explanation	for	this	finding	is	that	FA	reflects	a	

composite	of	the	other	scalar	measures	and	thus	maximizes	differences	that	might	be	
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distributed	across	the	other	measures.	This	is	consistent	with	considerable	research	

showing	FA	to	be	a	highly	sensitive	but	fairly	nonspecific	measure	of	white	matter	

microstructure	and	white	matter	neuropathology	(Alexander	et	al.,	2007).		

	 A	number	of	aspects	of	the	SVM	results	are	worth	exploring.	First,	there	was	a	clear	

difference	in	the	predictive	power	of	right	hemisphere	FA	values	relative	to	left.	In	the	

unselected	data	set	it	was	the	right	hemisphere	FA	maps	that	clearly	classified	both	MDD	

and	HCs.	This	finding	is	consistent	with	work	showing	that	individual	differences	in	the	

right	hemisphere	may	be	critically	tied	to	depression	(Bruder	et	al.,	2012;	Costafreda	et	al.,	

2009;	Talarowska	et	al.,	2011)	and	depression	vulnerability	(Beevers	et	al.,	2010;	Clasen	et	

al.,	2013).	For	instance,	a	meta-analysis	of	10	whole-brain-based	FDG-PET	studies	in	MDD	

revealed	decreased	cerebral	metabolism	in	the	right	caudate,	right	insula	and	right	

cingulate	gyrus	(Su	et	al.,	2014)	and	an	older	study	found	in	a	small	group	of	moderate	to	

severely	depressed	patients,	reduced	right	hemisphere	metabolism	in	the	superior	

temporal	lobe	(Post	et	al.,	1987).	The	current	study	examines	the	predictive	ability	of	WM	

measures	across	the	whole	brain	and	the	results	point	to	the	importance	of	the	right	

hemisphere	in	that	endeavor.		

	 Another	interesting	aspect	of	the	current	work	is	the	finding	that	a	region	revealed	

in	the	univariate	examination	of	between	group	differences,	the	right	body	of	the	CC,	does	

not	appear	to	play	a	significant	role	in	SVM	classification	accuracy.	Taking	a	univariate	

approach	to	examining	the	WM	differences	between	groups	assumes	that	the	spatial	units	

of	the	WM	are	independent	entities.	As	such,	each	individual	image	element	is	tested	

separately	and	does	not	take	into	account	distributed	relationships	between	elements	

(McIntosh	and	Mišić,	2013).	The	univariate	finding	could	easily	reflect	a	subset	of	
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participants	for	whom	there	are	particularly	large	differences	in	FA	values	between	MDD	

and	controls.	However,	the	resulting	statistical	difference	is	clearly	not	helpful	in	

determining	which	group	any	given	individual	belongs	to.	This	finding	is	very	important	to	

underscore	since	the	vast	majority	of	neuroimaging	correlates	of	depression	are	never	

tested	for	their	predictive	value.		

	 An	early	demonstration	of	the	utility	of	multivariate	approaches	to	neuroimaging	

revealed	that	removing	peak	fMRI	activation	differences	between	conditions	did	not	

significantly	change	the	performance	of	a	classifier	trained	across	a	distributed	network	

(Haxby	et	al.,	2001).	This	work	was	one	of	the	first	to	reveal	the	utility	of	examining	

distributed	elements	in	order	to	best	discriminate	between	conditions	(Norman	et	al.,	

2006).	Therefore,	the	SVM	analysis,	which	is	fundamentally	a	multivariate	approach,	can	

capture	a	distributed	network	of	elements	that	contribute	to	the	summed	ability	to	

separate	MDD	patients	from	HCs.	The	greater	the	distribution	of	spatial	elements	the	more	

unique	the	solution	can	become.	This	perspective	is	supported	by	a	recent	paper	where	it	

was	shown	that	“high	value”	hubs	of	human	brain	networks	are	more	likely	to	be	

anatomically	abnormal	across	multiple	brain	disorders	including	depression	(Crossley	et	

al.,	2014).	This	approach	does	have	its	drawbacks	in	that	the	best	solution	to	separate	the	

groups	may	not	generalize	well	outside	of	a	specific	dataset.	For	this	reason,	accuracy	was	

tested	in	the	current	studying	using	a	leave-one-pair-out	approach	but	it	will	fall	on	future	

work	to	examine	the	performance	of	trained	classifiers	on	an	independent	dataset.	For	the	

time	being,	these	results	help	set	some	boundaries	for	what	might	be	expected	for	the	

predictive	power	of	DTI	with	respect	to	MDD.	
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	 While	the	distributed	nature	of	the	brain	regions	associated	with	accurate	

classification	of	MDD	patients	is	a	strength	when	applied	to	diagnostics,	it	is	also	a	

challenge	when	it	comes	to	understanding	the	contribution	of	specific	brain	nodes	to	the	

disorder.	White	matter	FA	values	in	elements	across	all	three	brain	networks	previously	

associated	with	MDD	(Mulders	et	al.,	2015)	–	the	DMN,	the	salience	network	(SN)	and	the	

central	executive	network	(CEN)	–	also	known	as	the	frontal-parietal	network	(FPN)	

contributed	to	the	accuracy	of	classification	(see	Figure	4).	Therefore,	it	is	clear	from	the	

current	study	that	the	most	accurate	prediction	of	MDD	from	white	matter	microstructure	

is	obtained	when	including	distributed	networks	across	the	brain.	It	follows	that	it	is	likely	

not	possible	to	derive	a	highly	accurate	MDD	classification	using	one	white	matter	tract	or	

network.	Fortunately,	advances	in	machine	learning	and	related	statistical	techniques	

allow	for	the	integration	of	highly	dimensional	data	into	prediction	algorithms.	These	

methods	therefore	appear	to	have	substantial	promise	for	the	development	of	diagnostic	

tools	that	can	objectively	classify	the	presence	or	absence	of	major	depressive	disorder	and	

other	psychiatric	disorders.		
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Table	1	–	

	

Table	of	participant	demographics.	MDD	and	HC	significantly	differed	only	on	depressive	symptoms.		
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Table	2	–	

		

MAP	

Voxels	
2mm	
cubic	

Classification	Accuracy																														
(permutation	p	values)	

Total	 MDD	 HC	
Whole	Brain	FA	

	
		

	
		

				All	FA	 1,083,793	 70	(0.015)	 80	(0.003)	 60	(0.23)	
				Right	Hemisphere	FA	 168,929	 74	(0.005)	 80	(0.004)	 68	(0.06)	
				Right	Hemisphere	FA	-W/O	CC	 165,035	 76	(0.002)	 84	(0.001)	 68	(0.07)	
				Left	Hemisphere	FA	 164,399	 68	(0.03)	 72	(0.022)	 64	(0.122)	
Whole	Brain	FA	Skeleton	

	
		

	
		

				All	FA	Skeleton	 111,052	 70	(0.011)	 84	(0.001)	 56	(0.363)	
				Right	Hemisphere	FA	Skeleton	 75,939	 	68	(0.020)	 72	(0.017)	 64	(0.108)		
				Left	Hemisphere	FA	Skeleton	 75,804	 	68	(0.021)	 76	(0.005)	 60	(0.219)		
Feature	Selected	

	
		

	
		

				TF	Split-Half	Selected	FA	 1231										
(SD	487)	

74	 68	 76	
		 		

	
		

	

Table	of	SVM	classification	performance	across	the	8	different	fractional	anisotropy	(FA)	mapping	profiles.	Values	in	
parenthesis	indicate	resulting	p	value	from	permutation	testing.	Given	that	only	a	single	fold	was	tested	for	each	of	the	25	TF	
selected	maps,	a	p	value	could	not	be	calculated.	 	
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Table	3	-	

MAP	

Classification	Accuracy																														
(permutation	p	values)	

Total	 MDD	 HC	
Whole	Brain	MD	 		

	
		

				All	MD	 70	(0.002)	 96	(0.057)	 44	(0.517)	
				Right	Hemisphere	MD	 68	(.006)	 88	(0.155)	 48	(0.499)	
				Left	Hemispher	MD	 58	(.095)	 92	(0.132)	 24	(0.693)	
		 		

	
		

Whole	Brain	AD	 		
	

		
				All	AD	 74	(.001)	 96	(0.048)	 52	(0.472)	
				Right	Hemisphere	AD	 72	(.001)	 88	(0.089)	 56	(0.447)	
				Left	Hemispher	AD	 62	(.056)	 88	(0.141)	 36	(0.620)	
		 		

	
		

Whole	Brain	RD	 		
	

		
				All	RD	 58	(.164)	 80	(0.350)	 36	(0.499)	
				Right	Hemisphere	RD	 52	(.609)	 84	(0.341)	 20	(0.827)	
				Left	Hemispher	RD	 52	(.612)	 84	(0.324)	 20	(0.831)	
	
	
Table	of	SVM	classification	performance	across	the	3	different	mapping	profiles	for	the	scalar	values	of	MD,	AD	and	RD.	Values	
in	parenthesis	indicate	resulting	p	value	from	permutation	testing.		 	
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Table	4	–	

	
	
Table	of	weight	map	values	generated	for	the	right	hemisphere	FA	map	defined	in	terms	of	
ICBM-DTI-81	atlas	regions.	Includes	the	percent	contribution	and	total	voxels	for	each	
region.		
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FIGURE	CAPTIONS	

	
	
Figure	1	–	A	hypothetical	graphic	of	application	of	support	vector	machine	algorithms	in	

order	to	classify	2	categories.	Two	feature	sets	can	be	plotted	against	one	another	and	a	

hyperplane	generated	that	best	separates	the	groups	based	on	the	selected	features.	The	

maximum	margin	represents	the	margin	that	maximizes	the	divide	between	groups.	Cases	

that	lie	on	this	maximum	margin	define	the	support	vectors.		

	

Figure	2	–	Region	of	right	body	of	the	corpus	callosum	that	revealed	significantly	higher	FA	

values	in	MDD	relative	to	HCs.	From	the	top	left	clockwise	–	coronal,	sagittal,	3D	render	and	

axial	projections.		

	

Figure	3	-	Region	of	anterior	thalamic	radiation	that	revealed	significantly	lower	AD	and	

MD	values	in	MDD	relative	to	HCs.	From	the	top	left	clockwise	–	coronal,	sagittal,	3D	render	

and	axial	projections.		

	

Figure	4	–	Results	of	the	leave-one-pair-out	test	of	SVM	accuracy	for	the	right-hemisphere	

FA	map.	Normalized	decision	function	values	are	plotted	for	MDD	(blue	triangles)	and	HC	

(red	squares)	participants.	The	zero	line	represents	the	decision	boundary.		

	

Figure	5	–	Regions	supporting	the	SVM	solution	for	the	right-hemisphere	FA	map	masked	

using	ICBM-DTI-81	white-matter	atlas	map	projected	onto	a	standard	T1	weighted	image.	
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The	heat	color	map	reflects	the	rank	ordering	of	the	contribution	to	the	SVM	with	hot	being	

the	region	of	greatest	contribution	(Fornix	-	column	and	body	of	fornix).		
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