bioRxiv preprint doi: https://doi.org/10.1101/061119; this version posted February 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion

tensor MRI measures in individuals with major depressive disorder

David M Schnyer?, Peter C. Clasen®, Christopher Gonzalezc and Christopher G. Beevers?2
aDepartment of Psychology, University of Texas at Austin, Austin, TX USA
bDepartment of Psychiatry and Behavioral Sciences, University of Washington School of
Medicine, Seattle, WA USA

¢Department of Psychology, University of California, San Diego, San Diego, CA USA

Word Count: 6335


https://doi.org/10.1101/061119
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/061119
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/061119
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/061119
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/061119
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/061119; this version posted February 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Abstract

Using MRI to diagnose mental disorders has been a long-term goal. Despite this, the vast
majority of prior neuroimaging work has been descriptive rather than predictive. The
current study applies support vector machine (SVM) learning to MRI measures of brain
white matter to classify adults with Major Depressive Disorder (MDD) and healthy controls.
In a precisely matched group of individuals with MDD (n = 25) and healthy controls (n =
25), SVM learning accurately (70%) classified patients and controls across a brain map of
white matter fractional anisotropy values (FA). The study revealed three main findings: 1)
SVM applied to DTI derived FA maps can accurately classify MDD vs. healthy controls; 2)
prediction is strongest when only right hemisphere white matter is examined; and 3)
removing FA values from a region identified by univariate contrast as significantly different
between MDD and healthy controls does not change the SVM accuracy. These results
indicate that SVM learning applied to neuroimaging data can classify the presence versus
absence of MDD and that predictive information is distributed across brain networks
rather than being highly localized. Finally, MDD group differences revealed through typical
univariate contrasts do not necessarily reveal patterns that provide accurate predictive

information.
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1. Introduction

A method for objectively identifying the presence or absence of psychiatric
disorders, such as major depressive disorder, is a long standing need in psychiatry (Kapur
et al.,, 2012). One promising approach is to use advances in MRI methods and analytics to
derive an objective diagnosis. Although mood disorders have been extensively studied with
MRI (Drevets et al., 2008; Lorenzetti et al., 2009), including both structural and functional
neuroimaging, few studies have used imaging data to classify MDD. The current study
examines whether in vivo diffusion tensor MRI (DTI), a measure of white matter
microstructure of the brain, can be used to accurately diagnose major depressive disorder
(MDD) (Bracht et al., 2015; Versace et al., 2010). Given the view that depression results
from vulnerabilities across interconnected brain networks rather than specific brain nodes
(Mayberg, 1997; Wang et al., 2016) (Mulders et al,, 2015), approaches that look at the
underlying white matter structure that connects these networks could provide important
diagnostic utility.

Diffusion tensor imaging (DTI) is a technique that utilizes the ability of MRI to tag
water molecules and then wait some period of time to determine the extent to which those
molecules are microscopically diffused. By measuring multiple spatial directions, vectors
can be generated for each brain voxel to quantify the fiber orientation and integrity of
white matter pathways within the cerebral cortex. There are a number of different metrics
that can be generated from DTI, but scalar measures are more commonly used in MDD as
they can be correlated with disease severity and/or symptoms.

Scalar measures are derived from calculations of one or more of the 3 principle

directional vectors of the “diffusion tensor” represented as an ellipsoid. One common
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metric is fractional anisotropy (FA), which is the extent to which diffusion is characterized
as anisotropic, or highly directional (high FA) vs unrestricted or isotropic (low FA). For
example, one of the white matter pathways with the highest FA values is the corpus
callosum, due to its highly organized, densely packed fibers that run mainly in a left-right
direction. In addition to directionality, FA is influenced by axon size and density, pathway
geometry, and extent of fiber intersections (Alexander et al.,, 2007; Beaulieu, 2002).

Another scalar measure is calculated as the average of the 3 directional vectors and
is referred to as mean diffusivity (MD). MD reflects the extent to which there is water
movement at all and is a useful clinical measure to indicate edema and restricted liquid
flow. Axial diffusivity (AD) is the strength of the primary directional vector and radial
diffusivity (RD) is the mean of the 2 non-principle vectors. While all these measures can be
calculated from DTI imaging, FA is the most reliably sensitive measure of between group
microstructural white matter differences (see (Feldman et al., 2010).

A number of studies have demonstrated differences in FA values between patients
with MDD and healthy controls. A meta-analysis of 11 studies that examined FA in
individuals with MDD (Liao et al., 2013) identified 4 consistent locations associated with
altered FA in MDD compared to healthy controls: right and left dorsal frontal regions, a
region of the right fusiform and a region of the right occipital lobe. A review paper that
focused on 35 studies of WM alterations in pathways associated with the reward circuit
(Bracht et al., 2015), found reduced FA in the cingulum bundle, increases and decreases of
FA in the uncinate fasciculus in adolescents, and reduced FA in the uncinate fasciculus and
the anterior thalamic radiation/supero-lateral medial forebrain bundle during acute

depressive episodes in adults. Other studies have focused on WM microstructure in those
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at risk for MDD either by virtue of family history (Keedwell et al., 2012) or genetic
polymorphisms (Pacheco et al., 2009).

Given the heterogeneity of findings, an important theme that emerges from this
work is that white matter microstructure alterations in MDD are distributed across many
defined brain networks. Thus, the use of DTI to understand underlying WM features
associated with MDD has been useful in characterizing the underlying brain circuits
associated with the psychiatric disorder. However, despite these interesting results, it
remains unclear if and when DTI might be implemented as a promising diagnostic tool. One
of the steps needed in order to accomplish this goal would be to quantitatively determine
how well DTI measures can discriminate people with and without MDD.

One approach to examine the diagnostic utility of MRI modalities involves applying
multivariate machine learning classification algorithms in order to identify individuals with
a specific disorder (Orru et al., 2012). There has been increasing interest in applying
multivariate pattern analysis methods in order to categorize patients suffering from
psychiatric disorders from healthy controls (Cohen et al,, 2011). The main advantage of
these approaches is that they are predictive. Once a classifier has been defined, it can then
be tested on new individuals to predict group membership. These approaches have utilized
functional brain imaging (Craddock et al., 2009; Zeng et al., 2012) and structural brain
images (Ardekani et al,, 2011). This approach is starting to be applied to MDD (for review
see (Patel etal, 2016)).

To date, this machine learning approach has been applied to a range of MRI
modalities in an effort to automate the diagnosis of a number of disorders (Magnin et al.,

2009) but few studies have been completed with MDD. One of the earliest studies examined
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the application of SVM to depression diagnosis using resting-state fMRI in 20 patients with
MDD and 20 matched controls. While the purpose of this work was to examine different
feature selection approaches, the unselected data yielded only modest classification
accuracy - 62.5%. In another study of 32 women (14 with MDD), researchers applied
global tractography-based graph metrics for the classification of depression (Sacchet,
2015). The investigators characterized connectivity between 34 cortical regions resulting
in 9 global graph metrics that were then used in a SVM classification. Combined, the 9
metrics classified MDD and controls at a performance level of 71.9% accuracy.

A second study applying SVM classification to DTI in order to study depression
applied probabilistic tractography to reconstruct specific WM tracts and then extracted
anatomical networks (Fang et al,, 2012). SVM was then applied to determine the most
discriminating connections within these networks. The resulting classifications were highly
accurate (91.7%) and revealed that the most discriminating connections were primarily
within the cortical-limbic network where it was revealed that young adult first episode
MDD patients displayed increased anatomical connectivity relative to healthy controls. In
this study, a two sample t-test approach was taken to select features to be utilized in
classification. An important limitation of the use of feature selection algorithms can often
produce sample-specific results that may not generalize to new data.

The aim of the current study is to continue to explore the utility of DTI in the
classification of individuals diagnosed with MDD. The previous examinations using SVM
classification of DTI imaging in MDD did not report the utility of standard scalar metrics
such as FA, MD, RD and therefore, those metrics will be examined here. Moreover, when

feature selection techniques were applied (Fang et al., 2012), classification accuracy was
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greatly increased. It is important to examine the predictive power of classification both
with and without feature selection to understand the predictive range of these techniques.
This approach was applied to a sample of treatment-seeking participants with DSM-IV
Major Depressive Disorder who were part of a study testing the efficacy of attention bias
modification (Beevers et al., 2015).

2. Methods

2.1 Sample

Fifty-two treatment-seeking participants with DSM-IV Major Depressive Disorder (MDD)
and 45 healthy control (HC) participants were recruited for this study from advertisements
placed online, in newspapers, and on late-night TV. Participants were screened for medical
or physical conditions that would preclude participation in an fMRI study (e.g., orthodontic
braces). They also completed an abbreviated Mini International Neuropsychiatric
Interview (MINI) (Sheehan et al,, 1998) to determine provisional MDD diagnosis (MDD) or
absence of psychiatric symptoms (HC). Diagnoses were subsequently confirmed in-person
with a Structured Clinical Interview for the DSM-1V Disorders (SCID) administered by a
trained research assistant.

Participants in the MDD group met diagnostic criteria for current major depressive
disorder, but did not meet criteria for substance abuse (past year) or dependence, current
or past psychotic disorder, bipolar disorder, and/or schizophrenia. Participants in the HC
group did not meet criteria for any current or past psychiatric disorder. Consistent with
previous research (Amir et al.,, 2009; Sheehan et al.,, 1998), participants receiving
pharmacological treatment were allowed into the study if there had been no medication

change in the 12 weeks prior to study entry.
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In order to increase the likelihood that groups were matched for structural brain
characteristics, we selected from the larger study sample a subset of healthy control
participants that were matched for age and gender on a 1-to-1 basis with individuals from
the MDD group. To minimize brain changes associated with aging, selected participants
were also between 18 and 35 years of age. This matching algorithm resulted in a sample
size of 50 participants (25 MDD, 25 healthy controls). This sample was used for all analyses
reported below.

2.2 Imaging Methods
2.21 Acquisition

All scanning was performed on a whole body 3T GE MRI scanner (Excite) with an 8-
channel head coil. The primary measure of white matter (WM) was derived from a HARDI
diffusion MRI that was collected using single shot echo planar imaging, and a twice-
refocused spin echo pulse sequence, optimized to minimize eddy current-induced
distortions (GE 3T, TR/TE=12000/71.1, B=1000, 128-by-128 matrix, 3mm (0-mm gap)
slice thickness, 1 T2 + 25 DWI). Forty-one slices were acquired in the approximate AC-PC
plane. The 25 diffusion weighted directions resulted in a high signal-to-noise diffusion
volume that took approximately 7 minutes to acquire. Participant head motion was
minimized by instruction and the use of foam inserts.

2.2.2 Diffusion Tensor Processing

All diffusion image analysis was conducted with the FMRIB Software Library (FSL,
http://www.fmrib.ox.ac.uk/fsl). First, images were corrected for eddy current distortions
and for motion using the b=0 volume as a reference. The registered images were skull-

stripped using BET. Diffusion tensors were then calculated on a voxel by voxel basis using
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conventional reconstruction methods (Basser et al., 1994) and from these tensors
Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD) and Radial
Diffusivity (RD) maps were calculated on a voxel-by-voxel basis.

Individual FA maps were then entered into the TBSS (Tract-Based Spatial Statistics)
pipeline (TBSS; Smith et al,, 2006; 2009). The critical steps of the TBSS pipeline include: (1)
FA data were aligned onto the common FMRIB58 FA template (MNI152 standard space)
using a non-linear registration algorithm FNIRT; (2) a mean FA image was created for each
group (MDD and NC separately) from the images for all the subjects in MNI152 space; (3)
images are then thinned to generate a mean FA white matter skeleton that represented the
center of all tracts common to the entire group; (4) the resulting map was thresholded to
FA values greater than 0.2 in order to exclude gray matter and low intensity voxels that
may reflect partial volume effects with gray matter; (5) the aligned FA volume for each
subject was then projected onto the skeleton by filling the skeleton with FA values from the
center of the nearest tract; (6) this is achieved for each skeleton voxel by searching
perpendicular to the local skeleton structure for the maximum value in the FA image of the
subject; (7) for the purposes of this analysis, FA values were used from each subject for
both the total FA map as well as the FA skeleton map; (8) the remaining scalar measures
(MD, AD, and RD) were processed using the alignment parameters from the FA processing
stream in order to generate common space maps that are true to the white matter
architecture.

2.31 TBSS Voxel-wise Analysis
In order to compare results from univariate contrasts of WM maps to those obtained

through SVM classification voxel-wise comparisons were conducted between the final
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group of 25 MDD patients and 25 healthy controls. Nonparametric statistical comparisons
were performed on the skeletonized FA images using the FMRIB Software Library (FSL)
randomize algorithm based on permutation generated statistical thresholds, with
corrections for multiple voxel-wise comparisons using threshold-free cluster enhancement
(TFCE). Anatomic locations of voxel clusters with statistically significant differences in FA
between MDD and HC at p < 0.05 were determined using 1000 permutations. The same
approach was taken to examine the MD, AD and RD maps.
2.3.2 Support Vector Machine Classification Analysis

Classification of individual subjects was undertaken using the freely available
Pattern Recognition for Neuroimaging Toolbox (PRoNTo-

http://www.mlnl.cs.ucl.ac.uk/pronto/ (Schrouff et al.,, 2013)). The Linear Support Vector

Machine (SVM) is conceptually illustrated in Figure 1. Each dimension corresponds to a
feature set (scalar voxel values reduced through the kernel process in this case) and thus
each subject is located in the space depending upon its constituent features. The pluses and
minuses constitute the two putative categories, namely MDD and HCs. The SVM finds what
is known as the maximum margin decision boundary, which is the hyperplane that is
furthest from the least discriminating features of the to be discriminated categories. The
hyperplane is also associated with a maximum margin that best separates the two groups,
where larger margins are associated with better classifier generalizability. The margin is
fully specified by the subset of training samples that lie on it and reflect the support
vectors, since they represent the specific cases that support the solution (See Figure 1).
The SVM approach in PRoNTo utilizes LIBSVM for matlab, which is an

implementation of a linear-kernel SVM for binary classification (Chang and Lin, 2011).
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Following DTI analysis, the resulting scalar maps were prepared for classification using 3
different approaches. First, whole brain scalar maps were used, although masked to include
only white matter by thresholding the group mean FA map at a value of FA > 0.2. The
resulting image was then used as a mask to select voxels for each participant as input to the
classification analysis. Using this approach, classification was conducted on the resulting
whole brain maps, a right hemisphere map and a left hemisphere map. This same approach
was taken to examine the FA skeleton map, namely classification was conducted on the
whole brain skeleton and a left and right hemisphere only skeleton. Finally, a “feature
selection” approach was taken only for the FA map! in order to reduce the number of
voxels to a subset most relevant for classification (Mwangi et al., 2013).

This approach is a feature-wise t-test filter (TF) to determine features that have
different group means (Mitchell et al., 2004). This step eliminates non-discriminative
voxels that reduce classification accuracy. This was accomplished by first removing one
pair of MDD and HC participants from the dataset and then splitting the 2 groups of
remaining participants in half randomly and contrasting MDDs vs HCs in each split half
data separately. Resulting t-maps were thresholded at t = 2.10 (95% confidence interval)
and then the 2 split half t-maps were combined to retain all thresholded voxels in common
between them (p < 0.0025). SVM classification was then applied to this overlap map and
accuracy was tested for each map utilizing the participant pair left out.

This procedure produced 25 separate TF maps and the average accuracy scores

were calculated from the 25 testing folds. This average number of voxels across the 25

L A feature selection approach was only taken with the FA measure since none of the other
measures resulted in any significant univariate contrast results, nor SVM significant
classifications.
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separate TF maps was 1232mm?3 voxels with a standard deviation of 487mm3 voxels. In
summary, 8 datasets were created; the FA > 0.2 thresholded FA, MD, AD and RD maps for
the whole brain, and the right and left hemispheres, the whole brain FA skeleton map and
skeleton right and left hemispheres, and finally FA maps that were feature selected using
the split-half t-test filtering technique.

Following data-selection, classification was then carried out using the Support
Vector Machine (SVM) approach. For more detail of the processing steps the reader is
referred to Schrouff et al. (for flow chart of processing steps see Figure 1 in Schrouff et al,,
2013). The first step is the generation of a “similarity matrix” in the form of a linear kernel
(Hofmann et al,, 2008) that reduces the dimensionality of the input data set to a matrix the
size of Nsamples by Nsamples. This kernel matrix is a similarity measure resulting from the dot
product of all brain voxels reflecting their degree of similarity. This matrix is then input
into the classification algorithm. For classification, two classes were defined - MDD and HC
and processed using a soft-margin hyper-parameter approach. In order to examine the
model’s estimation power, a leave-one-subject-per-group-out (LOSPGO) cross-validation
approach was used. In each step of the cross-validation, the individuals are grouped into
disjoint training and testing sets such that there are no subjects used for both training and
testing in a single step. This process is repeated across all pairs of left out individuals and
the results from each step are averaged to obtain a final estimate of classification accuracy.
The model performance was tested for significance using permutation testing where the
model was estimated 1000 times with randomly permuted class labels that produces a p-

value for each of the performance values.
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In order to assign classification power to specific locations in the brain WM, PRoNTo
takes the linear SVM models and recovers model weights and transforms the weights
vector into a map in the original image (voxel) space. These maps contain at each voxel the
corresponding weight of the linear model that reflects how much this particular voxel
contributed to the classification. In addition, the contribution of specific regions within the
ICBM-DTI-81 white-matter atlas (Mori et al., 2008), an atlas where 48 white matter tract
labels were created by hand segmentation of a standard-space average of diffusion MRI
tensor maps from 81 subjects. This is accomplished by first summing the absolute values of
the weights within each region divided by the number of voxels in that region. Then the
contribution of each region is divided by the total contribution of all regions resulting in
values that reflect the percent contribution of each region to the decision function. These
regions can then be ranked by descending order based on their contribution to the model
and examined to understand how regions contribute to the classification accuracy.
3. Results
3.1 Demographic Characteristics
Table 1 shows the demographic and depression symptom profile of the MDD and HC
groups. The groups were well matched on age, gender and income but were marginally
different on ethnic distribution. Given the MDD diagnosis, the groups were significantly
different on BDI-II and IDAS (Inventory of Depression and Anxiety Symptoms, (Watson et
al., 2008)).
3.2 TBSS voxel-wise results

Contrasting the FA skeleton between MDD and HC groups revealed only a single

significant cluster: FA values were greater for MDD than HC in the right body of corpus
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callosum (see Figure 2). Contrasting the AD skeleton between MDD and HC groups revealed
a single significant cluster: lower AD values for MDD vs HC in the right anterior thalamic
radiation (see Figure 3). The skeletonized MD map revealed a very similar effect of lower
MD in the anterior thalamic radiation in MDD versus HC. In this case, the effect was
bilateral. Finally, the RD skeleton map did not reveal any significant depression group
differences using the univariate voxel-wise contrast approach with cluster wise
corrections.
3.3 Support vector machine classification results

Accuracy is the total number of correctly classified test samples from each leave-
one-pair-out set divided by the total number of test samples, irrespective of class.
Classification assessment across the 8 datasets indicated that all sets classified MDDs
significantly (see Table 2). For the whole brain FA map total classification accuracy was
70.0% (permutation p = 0.015) with a specificity of 80.0% and a sensitivity of 60.0%. This
performance was improved when just the right hemisphere FA map was used, resulting in
total accuracy of 74.0% (permutation p = 0.005), with a corresponding specificity of 80.0%
and sensitivity of 68.0%. The whole brain skeleton map was comparable to whole brain FA,
as total classification accuracy was 70.0% (permutation p =.011) with a specificity of
84.0% and a sensitivity of 56.0%. Testing the hemispheres separately did not improve
performance of the FA skeleton maps.

Results for the MD, AD and RD maps were less promising (see Table 3). For MD, the
whole brain significantly classified MDD but not healthy controls. The left and right MD
maps were unsuccessful at significantly classifying either group. The AD maps showed a

similar pattern to the MD map, namely only the whole brain map significantly classified
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MDD but not HC. Finally, the RD maps were not able to significantly classify any group.
Because of the failure of these 3 scalar measures to significantly distinguish between
groups, a feature selection approach was not taken. Finally, the t-test filtered feature
selected FA map did not increase the performance of the SVM above what was seen in with
the whole brain right hemisphere FA map. Total classification accuracy was 74.0% with a
specificity of 68.0% and a sensitivity of 76.0%.

A prediction plot for the best performing dataset, namely the right hemisphere
whole-brain FA map can be seen in Figure 4. The plot displays the output “decision function
values” where positive numbers represent the MDD class and negative numbers the HCs.
The zero line is the decision bound for this classifier. A well-performing classifier will show
clear separation of the 2 classes. In addition, there appears to be a wider range of
variability in the decision function values for HC when compared to MDD.

Given that neuroimaging data contains spatial information that may be critical in
understanding the underlying WM pathways that contribute to classification accuracy,
PRoNTo allows one to generate a “weight map”. The weight map is a spatial representation
of the decision function where each voxel contributes with a certain weight to the classifier
decision function. A weight map was generated for the right hemisphere FA map using the
ICBM-DTI-81 atlas. The results of this map, defined in terms of ICBM-DTI-81 ROIs, can be
seen in Table 3 and the projections of these ROIs on a standard brain can be seen in Figure
5. The table includes regions ranked by their total contribution to the model in descending
order, the cumulative percent contribution, the number of voxels within that region and

finally the ROl WM label.
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The second largest contributor to the model, in terms of number of voxels, lay in the
right body of the corpus callosum and overlaps with the region revealed in the TBSS
univariate analysis. However, this region makes a relatively small contribution to the
classification—an estimated 5.1%. In order to confirm the contribution of this region to
classification accuracy was minimal, a nested model test was performed by removing the
voxels contained within this region and then the classification was rerun. Removal of these
7329 voxels resulted in numerically higher classification accuracy - total classification
accuracy of 76.0% with a specificity of 84.0% and a sensitivity of 68.0%, although likely
this change was not significant.

4. Discussion

The current report supports using machine learning algorithms to capture the
diagnostic information contained in structural MRI data in order to differentiate between
patients diagnosed with MDD and healthy controls. Despite the relatively small sample size,
using both an unselected and a feature selected DTI dataset, support vector machine binary
classification was able to significantly distinguish between MDD and HC using the DTI
metric of fractional anisotropy (FA). While this approach awaits demonstrated predictive
power when applied to an independent dataset, nevertheless there is important
information that can be derived from this project.

Across multiple DTI metrics - FA, MD and AD there were several findings from the
univariate between group contrasts that are informative and consistent with previous
reports in patients with MDD. First, examining the FA skeleton revealed that a region of the
right body of the corpus colosum (CC) had higher FA values in MDD relative to HC. While

some reports have demonstrated that depression is associated with decreased FA values in
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the body of the CC (Cole et al., 2012), a study by (Frodl et al., 2012) found that unaffected
first-degree healthy relatives (UHRs) of patients with MDD revealed increased FA values in
the CC, which they speculated might represent vulnerable characteristics for the formation
of depression. Finally, a meta-analysis of WM abnormalities in MDD that examined 17
studies that included 641 MDD patients and 581 HC (Chen et al., 2016) found that the CC
consistently reveals differences between MDD and HC, particularly in the genu and body
regions, even if the directionality of those differences remains unclear.

The region of CC revealed in the current study is right lateralized and clearly
involves a region of interface with the superior longitudinal fasciculus (SLF). Greater FA in
this region may indicate a reduction in fiber complexity (Beaulieu, 2002) in a location
where one would expect increased crossing fibers between the CC and SLF. Itis important
to be careful when interpreting the directionality of FA differences between groups since
FA is sensitive to different elements of microstructure depending on location (Beaulieu,
2002). Moreover, it is not always clear whether investigators tested the reverse contrast of
MDD > HC as many articles do not explicitly state whether any regions showed greater FA
in MDD relative to HC. Finally, the right body of the CC lies along the midline of the brain
corresponding to a functional network referred to as the default mode network (DMN).
Greater functional connectivity within the DMN has been consistently associated with MDD
(Hamilton et al,, 2015). Increased FA in the body of the CC may be a structural correlate of
increased functional connectivity in the DMN observed in MDD.

In addition to the finding of higher FA values in the right CC, findings in the anterior
thalamic radiation indicated lower axial diffusivity and lower mean diffusivity in MDD

relative to HC. This is consistent with a number of previous studies (Lai and Wu, 2014)
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(Korgaonkar et al., 2014) that have shown alterations in the anterior thalamic radiation
associated with MDD. In a whole-brain examination of WM structural networks in MDD
relative to controls, differences were revealed in two brain networks (Korgaonkar et al.,
2014), one being a frontal-subcortical network that included regions of frontal cortex, the
caudate and the thalamus. In the current work, the anterior thalamic radiation revealed
decreases in the longitudinal component, possibly reflecting reduced myelination in MDD
patients and therefore lower connectivity between the thalamus and the cortex.

While the univariate results add information to the corpus of work examining what
brain structural features are associated with depression, it is inherently an explanatory
approach to the data (Yarkoni and Westfall, 2016). By contrast, the results of our machine
learning classification hold the promise of predicting who is depressed or even potentially
who might be vulnerable to depression.

Across the four scalar measures derived from the DTI imaging, only the results from
the FA maps provided significant prediction accuracy. Using a whole brain approach, the
right hemisphere selected FA map predicted MDD patients with 80% accuracy and healthy
controls with 68% accuracy (total accuracy was 75%). Restricting the SVM learning to just
the skeletal FA values resulted in lower prediction accuracy overall, indicating that
restricting the map to the highest FA path through the brain does not increase predictive
ability. Finally, using a TF feature selection approach using the voxels which most clearly
separated the groups did not improve prediction accuracy over whole-brain FA.

It is interesting to note that of the four metrics examined, FA was uniquely
successful at classification. One possible explanation for this finding is that FA reflects a

composite of the other scalar measures and thus maximizes differences that might be
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distributed across the other measures. This is consistent with considerable research
showing FA to be a highly sensitive but fairly nonspecific measure of white matter
microstructure and white matter neuropathology (Alexander et al., 2007).

A number of aspects of the SVM results are worth exploring. First, there was a clear
difference in the predictive power of right hemisphere FA values relative to left. In the
unselected data set it was the right hemisphere FA maps that clearly classified both MDD
and HCs. This finding is consistent with work showing that individual differences in the
right hemisphere may be critically tied to depression (Bruder et al,, 2012; Costafreda et al.,
2009; Talarowska et al., 2011) and depression vulnerability (Beevers et al., 2010; Clasen et
al,, 2013). For instance, a meta-analysis of 10 whole-brain-based FDG-PET studies in MDD
revealed decreased cerebral metabolism in the right caudate, right insula and right
cingulate gyrus (Su et al.,, 2014) and an older study found in a small group of moderate to
severely depressed patients, reduced right hemisphere metabolism in the superior
temporal lobe (Post et al., 1987). The current study examines the predictive ability of WM
measures across the whole brain and the results point to the importance of the right
hemisphere in that endeavor.

Another interesting aspect of the current work is the finding that a region revealed
in the univariate examination of between group differences, the right body of the CC, does
not appear to play a significant role in SVM classification accuracy. Taking a univariate
approach to examining the WM differences between groups assumes that the spatial units
of the WM are independent entities. As such, each individual image element is tested
separately and does not take into account distributed relationships between elements

(McIntosh and Misi¢, 2013). The univariate finding could easily reflect a subset of
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participants for whom there are particularly large differences in FA values between MDD
and controls. However, the resulting statistical difference is clearly not helpful in
determining which group any given individual belongs to. This finding is very important to
underscore since the vast majority of neuroimaging correlates of depression are never
tested for their predictive value.

An early demonstration of the utility of multivariate approaches to neuroimaging
revealed that removing peak fMRI activation differences between conditions did not
significantly change the performance of a classifier trained across a distributed network
(Haxby et al., 2001). This work was one of the first to reveal the utility of examining
distributed elements in order to best discriminate between conditions (Norman et al.,
2006). Therefore, the SVM analysis, which is fundamentally a multivariate approach, can
capture a distributed network of elements that contribute to the summed ability to
separate MDD patients from HCs. The greater the distribution of spatial elements the more
unique the solution can become. This perspective is supported by a recent paper where it
was shown that “high value” hubs of human brain networks are more likely to be
anatomically abnormal across multiple brain disorders including depression (Crossley et
al., 2014). This approach does have its drawbacks in that the best solution to separate the
groups may not generalize well outside of a specific dataset. For this reason, accuracy was
tested in the current studying using a leave-one-pair-out approach but it will fall on future
work to examine the performance of trained classifiers on an independent dataset. For the
time being, these results help set some boundaries for what might be expected for the

predictive power of DTI with respect to MDD.
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While the distributed nature of the brain regions associated with accurate
classification of MDD patients is a strength when applied to diagnostics, it is also a
challenge when it comes to understanding the contribution of specific brain nodes to the
disorder. White matter FA values in elements across all three brain networks previously
associated with MDD (Mulders et al.,, 2015) - the DMN, the salience network (SN) and the
central executive network (CEN) - also known as the frontal-parietal network (FPN)
contributed to the accuracy of classification (see Figure 4). Therefore, it is clear from the
current study that the most accurate prediction of MDD from white matter microstructure
is obtained when including distributed networks across the brain. It follows that it is likely
not possible to derive a highly accurate MDD classification using one white matter tract or
network. Fortunately, advances in machine learning and related statistical techniques
allow for the integration of highly dimensional data into prediction algorithms. These
methods therefore appear to have substantial promise for the development of diagnostic
tools that can objectively classify the presence or absence of major depressive disorder and

other psychiatric disorders.
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Table 1 -

Test
MDD HC Statistic p-value
Age 23.4(3.6) 23.5(4.0) t =0.12 0.91
Age Range 18-31 19-33
Gender 12 female 12 female X=0 1
Ethnicity 17 Caucasian 11 Caucasian X =2.92 0.09
Income 46614 (36K) 54640 (25K) t =0.88 0.38
Income Range 5K-150K 12K-100K
BDI 35.1(8.1) 2.4 (3.0) t =18.86 <0.001
BDI range 21-47 0-12
IDAS 74.0 (8.8) 28.8 (5.0) t =2250 <0.001
IDAS range 61-90 22-38

BDI-1l - Beck Depression Inventory-Il
IDAS - Inventory of Depression and Anxiety Symptoms (Watson et al., 2008).

Table of participant demographics. MDD and HC significantly differed only on depressive symptoms.
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Table 2 -

Voxels Classification Accuracy
2mm (permutation p values)
MAP cubic Total MDD HC
Whole Brain FA
All FA 1,083,793 | 70(0.015) 80 (0.003) 60 (0.23)
Right Hemisphere FA 168,929 | 74(0.005) 80 (0.004) 68 (0.06)
Right Hemisphere FA -W/O CC | 165,035 | 76(0.002) 84 (0.001) 68 (0.07)
Left Hemisphere FA 164,399 68 (0.03) 72 (0.022) 64 (0.122)
Whole Brain FA Skeleton
All FA Skeleton 111,052 70 (0.011) 84 (0.001) 56 (0.363)
Right Hemisphere FA Skeleton 75,939 68 (0.020) 72 (0.017) 64 (0.108)
Left Hemisphere FA Skeleton 75,804 68 (0.021) 76 (0.005) 60 (0.219)
Feature Selected
TF Split-Half Selected FA 1231 74 68 76
(SD 487)

Table of SVM classification performance across the 8 different fractional anisotropy (FA) mapping profiles. Values in
parenthesis indicate resulting p value from permutation testing. Given that only a single fold was tested for each of the 25 TF
selected maps, a p value could not be calculated.
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Table 3 -

Classification Accuracy
(permutation p values)
MAP Total MDD HC
Whole Brain MD
All MD 70(0.002) 96 (0.057) 44 (0.517)
Right Hemisphere MD 68 (.006) 88 (0.155) 48 (0.499)
Left Hemispher MD 58 (.095) 92(0.132) 24 (0.693)
Whole Brain AD
All AD 74 (.001) 96 (0.048) 52 (0.472)
Right Hemisphere AD 72 (.001)  88(0.089) 56 (0.447)
Left Hemispher AD 62 (.056) 88 (0.141) 36 (0.620)
Whole Brain RD
All RD 58 (.164) 80 (0.350) 36 (0.499)
Right Hemisphere RD 52 (.609) 84 (0.341) 20 (0.827)
Left Hemispher RD 52(.612) 84(0.324) 20 (0.831)

Table of SVM classification performance across the 3 different mapping profiles for the scalar values of MD, AD and RD. Values

in parenthesis indicate resulting p value from permutation testing.
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Table 4 -
Cumulative
Percent Percent
Contribution Contribution Voxels |Location
8.8 8.8 508 |Fornix (column and body of fornix)
6.1 15.0 1111 |Cingulum (hippocampus)
5.6 20.6 2127 |Cingulum (cingulate gyrus)
5.6 26.1 3971 |Posterior thalamic radiation (include optic radiation)
5.1 31.3 1285 |Cerebral peduncle
5.1 36.4 545 |Tapetum
5.1 41.5 7329 |Body of corpus callosum
5.0 46.5 6496 |Superior longitudinal fasciculus R
49 51.3 477 |Superior fronto-occipital fasciculus
4.7 56.0 3134 |Anterior limb of internal capsule
4.7 60.7 2228 |Sagittal stratum
4.6 65.3 1101 |Fornix (cres) / Stria terminalis
4.5 69.7 354 |Uncinate fasciculus
4.2 73.9 6608 |[Anterior corona radiata
4.1 78.1 3692 |Posterior corona radiata
4.0 82.1 4588 |Genu of corpus callosum
3.9 86.0 6553 |Splenium of corpus callosum
3.6 89.6 3754 |Posterior limb of internal capsule
3.5 93.1 5417 |External capsule
3.5 96.6 2514 |Retrolenticular part of internal capsule
3.4 100.0 7374 |Superior corona radiata

Table of weight map values generated for the right hemisphere FA map defined in terms of
ICBM-DTI-81 atlas regions. Includes the percent contribution and total voxels for each
region.
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FIGURE CAPTIONS

Figure 1 - A hypothetical graphic of application of support vector machine algorithms in
order to classify 2 categories. Two feature sets can be plotted against one another and a
hyperplane generated that best separates the groups based on the selected features. The
maximum margin represents the margin that maximizes the divide between groups. Cases

that lie on this maximum margin define the support vectors.

Figure 2 - Region of right body of the corpus callosum that revealed significantly higher FA
values in MDD relative to HCs. From the top left clockwise - coronal, sagittal, 3D render and

axial projections.

Figure 3 - Region of anterior thalamic radiation that revealed significantly lower AD and
MD values in MDD relative to HCs. From the top left clockwise - coronal, sagittal, 3D render

and axial projections.

Figure 4 - Results of the leave-one-pair-out test of SVM accuracy for the right-hemisphere
FA map. Normalized decision function values are plotted for MDD (blue triangles) and HC

(red squares) participants. The zero line represents the decision boundary.

Figure 5 - Regions supporting the SVM solution for the right-hemisphere FA map masked

using ICBM-DTI-81 white-matter atlas map projected onto a standard T1 weighted image.
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The heat color map reflects the rank ordering of the contribution to the SVM with hot being

the region of greatest contribution (Fornix - column and body of fornix).
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