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Abstract

Pseudotime estimation from single-cell gene expression allows the recovery of temporal information from
otherwise static profiles of individual cells. This pseudotemporal information can be used to characterise
transient events in temporally evolving biological systems. Conventional algorithms typically emphasise an
unsupervised transcriptome-wide approach and use retrospective analysis to evaluate the behaviour of in-
dividual genes. Here we introduce an orthogonal approach termed “Ouija” that learns pseudotimes from a
small set of marker genes that might ordinarily be used to retrospectively confirm the accuracy of unsuper-
vised pseudotime algorithms. Crucially, we model these genes in terms of switch-like or transient behaviour
along the trajectory, allowing us to understand why the pseudotimes have been inferred and learn informa-
tive parameters about the behaviour of each gene. Since each gene is associated with a switch or peak
time the genes are effectively ordered along with the cells, allowing each part of the trajectory to be un-
derstood in terms of the behaviour of certain genes. In the following we introduce our model and demon-
strate that in many instances a small panel of marker genes can recover pseudotimes that are consistent
with those obtained using the entire transcriptome. Furthermore, we show that our method can detect dif-
ferences in the regulation timings between two genes and identify “metastable” states - discrete cell types
along the continuous trajectories - that recapitulate known cell types. Ouija therefore provides a powerful
complimentary approach to existing whole transcriptome based pseudotime estimation methods. An open
source implementation is available at http://www.github.com/kieranrcampbell/ouija as an R package and
at http://www.github.com/kieranrcampbell/ouijaflow as a Python/TensorFlow package.

Introduction

The advent of high-throughput single-cell technologies has revolutionised single-cell biology by allowing dense
molecular profiling for studies involving 100-10,000s of cells [1-6]. The increased availability of single-cell data
has driven the development of novel analytical methods specifically tailored to single cell properties [7, 8]. The
difficulties in conducting genuine time-series experiments at the single-cell level has led to the development
of computational techniques known as pseudotime ordering algorithms that extract temporal information from
shapshot molecular profiles of individual cells. These algorithms exploit studies in which the captured cells
behave asynchronously and therefore each is at a different stage of some underlying temporal biological pro-
cess such as cell differentiation. In sufficient numbers, it is possible to infer an ordering of the cellular profiles
that correlates with actual temporal dynamics and these approaches have promoted insights into a number of
time-evolving biological systems [9-19].

A predominant feature of current pseudotime algorithms is that they emphasise an “unsupervised” ap-
proach. The high-dimensional molecular profiles for each cell are projected on to a reduced dimensional
space by using a (non)linear transformation of the molecular features. In this reduced dimensional space, it
is hoped that any temporal variation is sufficiently strong to cause the cells to align against a trajectory along
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which pseudotime can be measured. This approach is therefore subject to a number of analysis choices
including gene selection, dimensionality reduction technique, and cell ordering algorithm, all of which could
lead to considerable variation in the pseudotime estimates obtained. In order to verify that any specific set of
pseudotime estimates are biologically plausible, it is typical for investigators to retrospectively examine specific
marker genes or proteins to confirm that the predicted (pseudo)temporal behaviour matches a priori beliefs.
An iterative “semi-supervised” process maybe therefore be required to concentrate pseudotime algorithms on
behaviours that are both consistent with the measured data and compliant with a limited amount of known
gene behaviour.

In this paper we present an orthogonal approach implemented within a Bayesian latent variable statistical
framework called ‘Ouija’ that learns pseudotimes from small panels of putative or known marker genes (Figure
1A). Our model focuses on switch-like and transient expression behaviour along pseudotime trajectories, ex-
plicitly modelling when a gene turns on or off along a trajectory or at which point its expression peaks. Crucially,
this allows the pseudotime inference procedure to be understood in terms of descriptive gene regulation events
along the trajectory (Figure 1B). As each gene is associated with a particular switch or peak time, it allows us to
order the genes along the trajectory as well as the cells and discover which parts of the trajectory are governed
by the behaviour of which genes. For example, if the pseudotimes for a set of differentiating cells run from 0
(stem cell like) to 1 (differentiated) and only two genes have switch times less than 0.25 then a researcher
would conclude that the beginning of differentiation is regulated by those two genes. We further formulate a
Bayesian hypothesis test as to whether a given gene is regulated before another along the pseudotemporal
trajectory (Figure 1C) for all pairwise combinations of genes. Furthermore, by using such a probabilistic model
we can identify discrete cell types or “metastable states” along continuous developmental trajectories (Figure
1D) that correspond to known cell types.

In the following we introduce our model and demonstrate that it allows pseudotimes equivalent to those in-
ferred using transcriptome-wide models to be learned from only small panel of marker genes. We demonstrate
that our model is robust to departures from the prior specification of gene behaviour and that it can identify
metastable states along continuous pseudotemporal trajectories consistent with experimentally validated cell
types. Finally, we show through simulations that informative Bayesian priors on behaviour parameters may
increase the accuracy of pseudotime orderings. An open source implementation of our model is available
at http://www.github.com/kieranrcampbell/ouija as an R package and as a Python/TensorFlow package
http://www.github.com/kieranrcampbell/ouijaflow.

Results

Pseudotime inference from small marker gene panels

The transcriptomes of both single cells and bulk samples exhibit remarkable correlations across genes and
transcripts. Such concerted regulation of expression is thought to be due to pathway-dependent transcription
[21, 22] and is necessary for the field of network inference from gene expression data [23]. An example of
such transcriptome wide correlations can be seen in Figure 2A for the Trapnell et al. [12] dataset, where
hierarchical clustering of gene-gene correlations reveals a block-diagonal structure of genes organised into
distinct transcriptional pathways. These large correlations across genes imply an intrinsic low-dimensionality
of the data meaning it can be efficiently compressed, using techniques such as principal components analysis
(PCA). For the Trapnell et al. [12] dataset thousands of genes across the transcriptome exhibit high correlations
with the first two principal components (Supplementary Figure 1A) which explain around 20% of the variance
(Supplementary Figure 1B).

This redundancy of expression is often exploited by statistical models of single-cell RNA-seq data. He-
imberg et al. [24] use the intrinsic low-dimensionality of the data to reconstruct transcriptome-wide gene
expression from ultra-shallow read depths. Cleary et al. [25] apply compressed sensing techniques from the
field of signal processing to demonstrate that low-dimensional random projections can efficiently reconstruct
high-dimensional gene expression profiles. Rather than explicitly reduce the dimensionality of the data, Mc-
Curdy et al. [26] propose a column subset selection procedure whereby a small number of genes are chosen
to represent the full transcriptome and demonstrate that this allows clustering of the cells in a similar manner
to using the full transcriptomes.

The compressibility of transcriptome data is likewise exploited by many single-cell pseudotime inference
algorithms via initial dimensionality reduction steps. For example, Monocle [12] begins by reducing the expres-
sion data down to 2 dimensions using independent component analysis, while both TSCAN [18] and Waterfall
[16] apply PCA to reduce the data down to 2 dimensions. The implication behind such an approach is that there
is sufficient information in just two dimensions of the data via a linear projection to learn “transcriptome-wide”
pseudotime and that the majority of expression is redundant given the low-dimensional projection. Nonlinear di-
mensionality reduction techniques underpin alternative pseudotime approaches such as diffusion components
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Figure 1: Learning single-cell pseudotimes with parametric models. A Ouija infers pseudotimes using
Bayesian nonlinear factor analysis by decomposing the input gene expression matrix through a parametric
mapping function (sigmoidal or transient). The latent variables become the pseudotimes of the cells while the
factor loading matrix is informative of different types of gene behaviour. A heteroskedastic dispersed noise
model with dropout is used to accurately model scRNA-seq data. B Each gene’s expression over pseudotime
is modelled either as a sigmoidal shape (capturing both linear and switch-like behaviour) or through a Gaus-
sian shape (capturing transient expression patterns). These models include several interpretable parameters
including the pseudotime at which the gene is switched on and the pseudotime at which a gene peaks. C The
posterior distributions over the switch and peak times can be inferred leading to a Bayesian statistical test of
whether the regulation of a given gene occurs before another in the pseudotemporal trajectory. D Ouija can
identify discrete cell types that exist along continuous trajectories by clustering the matrix formed by consider-
ing the empirical probability one cell is before another in pseudotime.

in DPT [27] or reverse graph embedding in Monocle 2 [8].

In Ouija, we exploit the high gene-gene correlations by modelling a small number of marker genes that
are representative of the whole transcriptome. Such an approach is advantageous as by modelling the data
directly rather than a reduced-dimension representation we can understand the pseudotimes for each cell in
terms of the behaviour of genes through time rather than abstract notions of manifolds embedded in high-
dimensional space. This takes the form of a nonlinear factor analysis model, departing from previous models
that have relied upon linear factor analysis [28, 29] by introducing sigmoidal nonlinearities (successfully applied
previously to single-cell data [30, 31]) and through transient expression functions.

We then turn to the question of how to choose the small number of marker genes in order to fit the pseu-
dotimes. In single-cell pseudotime studies, the cells under examination undergo a known biological process
such as differentiation or cell cycle. Importantly, key marker genes associated with these processes are usu-
ally known a priori by investigators. These marker genes act as positive controls whose behaviour is used
post-hoc to confirm the validity of the transcriptome-wide pseudotime fit. For example, in [12] the cells undergo
myogenesis and the validity of the pseudotime is confirmed by upregulation of markers of myoblast differenti-
ation such as MYH3, MEF2C, and MYOG, along with down-regulation of markers of actively proliferating cells
such as CDK1 and ID1. In [16], the cells undergo neurogenesis and the validity of the transcriptome-wide fit is
confirmed via the upregulation of several markers of neural stem cells including Gfap and Sox2. Further, in [32]
the authors tabulate the marker genes they expect to be involved in the process along with their expected be-
haviour along the differentiation trajectory. Given both the widespread a priori knowledge of such markers and
their requirement to validate transcriptome-wide pseudotime fits, we therefore propose to derive pseudotimes
directly from such markers using our proposed model below.

We first sought to test whether our model applied to small panels of marker genes could accurately reca-
pitulate the transcriptome-wide pseudotimes inferred by popular pseudotime methods. We applied Monocle 2,
DPT, and TSCAN to five publicly available single-cell RNA-seq datasets [12, 16, 33—-35] using the 500 most
variable genes as input (the default in packages such as Scater [36] for PCA representations). For each
dataset, we then inferred pseudotimes using Ouija based only on a small number of marker genes reported in
each paper (ranging from 5 to 12), and compared the Pearson correlation between the Ouija pseudotimes and
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Figure 2: Transcriptome-wide pseudotimes can be inferred from small marker gene panels. A A gene-
by-gene correlation matrix for the Trapnell et al. [12] dataset reveals similarities in the transcriptional response
of hundreds of genes. The redundancy of expression implies the information content of the transcriptome
may be compressed through techniques such as principal components analysis (PCA) or by picking informa-
tive marker genes. B Comparison of pseudotimes fitted using Ouija on a small panel of marker genes to
transcriptome-wide fits (using the 500 most variable genes) across five datasets using the algorithms Monocle
2, DPT, and TSCAN. The marker gene fits show high correlation to the transcriptome-wide fits with the excep-
tion of the Shin et al. [20] dataset. C Gene expression profiles for two marker genes /D71 and MYOG from the
Trapnell et al. [12] dataset. The solid red line denotes the maximum a posteriori (MAP) Ouija fit while the grey
lines show draws from the posterior mean function. D Gene expression profiles for the same genes for the al-
gorithms DPT, Monocle 2, and TSCAN show similar expression fits, demonstrating equivalent pseudotemporal
trajectories have been inferred. The solid red line denotes a LOESS fit.

the pseudotimes reported for each dataset (Figure 2B). There was good agreement between the marker-based
pseudotimes inferred using Ouija and the transcriptome-wide pseudotimes inferred using existing algorithms,
with the correlation exceeding 0.75 in the majority of comparisons.

Noting that the correlation will not be 1 unless the algorithms are identical, we sought to compare Ouija’s
correlation to transcriptome-wide pseudotime to the agreement of the transcriptome-wide pseudotimes with
each other. We found large variability in the agreement between existing algorithms using transcriptome-wide
pseudotimes, with correlations as high as 0.93 but as low as 0.61 (Supplementary Figure 2). We found the
marker-based Ouija pseudotimes have higher correlations to one of the transcriptome-wide algorithms than
they have amongst each other in all but one of the datasets studied. On average, the correlation between
Ouija’s marker based pseudotime with the transcriptome-wide pseudotimes was around 0.1 lower than the
correlation amongst the transcriptome-wide pseudotimes, though given Ouija uses around 1-2% the number
of input genes we believe this is a positive result that represents transcriptome-wide pseudotimes may be
inferred using interpretable, parametric models on a small number of marker genes chosen a priori.

This equivalence of transcriptome-wide and marker-based pseudotimes is further confirmed by examining
the qualitative fit of the marker genes across the different algorithms. For example, Figure 2C shows the
posterior fit of the marker-based pseudotime for two marker genes from [12], correctly inferring the switch-like
downregulation of /D71 and the upregulation of MYOG. Near identical behaviour is found using transcriptome-
wide pseudotimes derived from DPT, Monocle, and TSCAN (Figure 2D). We note the low correlations of the
marker-based Ouija pseudotimes with the transcriptome-wide fits for the Shin et al. dataset. Upon close


https://doi.org/10.1101/060442
http://creativecommons.org/licenses/by/4.0/

149

150

151

152

153

154

155

156

157

159

160

161

162

163

164

165

166

167

168

169

170

17

172

173

174

175

176

177

178

179

180

bioRxiv preprint doi: https://doi.org/10.1101/060442; this version posted November 2, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

B D
DKK4 DKK4 °
MYCT1 ‘H “\Ml‘” .l\ ‘ MYCT1 4 ® Significant difference [ Faise [ Trve
PRDM1 - )
PROMT p— ° EOMES -DKK4  MYCT1 - PRDM1
W'\ M ll'l l l, -
' ‘ g éz, GATA4 o °
GATAS ; POUSF1 A o 2007
§ oo SN HN\“‘”‘ | ® sonf . g 1007
SOX2 ‘ EOMES | ° % o4
i i i i »
EOMES (il 000 NANOG{ ° 5 DKK4-MYCT1  DKK4 - CDX1
NANOG - ‘ 0.00 0.25 0.50 0.75 100 & 300
i Switch point g
2001
MSX2 S
w % reaseien - l ]
CcDX1 e 2010 0 10 20 30
200 400 600 ¢ o
) 1 0402 00 02 -04-02 00 02
Pseudotime order — § Hexz ® Posterior difference in regulation times
CDX14 °

Relative expression m

0.00 0.25 0.50 0.75 1.00

0.50 075 1.00

Peak time

0.00 0.25

Figure 3: Parametric models lead to pseudotimes centred around gene regulation timing. A An expres-
sion heatmap for the 9 switch-like genes and 2 transient genes in the Chu et al. dataset, with genes ordered by
the posterior mean of the switch time. B-C Posterior distributions over the switch times and peak times for the
11 genes, coloured by their up or down regulation along pseudotime. The horizontal error bars show the 95%
highest probability density credible intervals. D A Bayesian hypothesis test can quantify whether the posterior
difference between two regulation timings (either switch or peak time) is significantly different from 0, allowing
us to determine whether a given gene is regulated before or after another along pseudotime.

inspection of the marker genes (Supplementary Figure 3) we found that the expression of four of the marker
genes (Aldoc, Apoe, Eomes, Sox11) were highly correlated (the switch times are similar) whilst Gfap and
Stmn1 showed little variation over pseudotime. This meant that there was effectively only a single marker gene
for this data set - too few for reliable marker gene-based pseudotime inference.

Gene regulation timing from marker gene-based pseudotime

Having demonstrated Ouija can accurately recapitulate transcriptome-wide pseudotimes using just small marker
gene panels, we next sought to show how it allows for marker-driven inference of such trajectories. Most pseu-
dotime inference algorithms (such as Monocle 2, DPT, TSCAN, Slicer [37]) emphasise that cells occupy a
low-dimensional manifold embedded in high-dimensional space and traversing this manifold corresponds to
following the cells over pseudotime. While such an approach is theoretically well grounded it is difficult to un-
derstand why the procedures result in a particular pseudotime trajectory, leading to the post-hoc marker gene
examination procedures discussed above as validation and to add interpretability.

To demonstrate that Ouija allows for feature-driven inference of single-cell pseudotime we applied it to a
single-cell time-series dataset of human embryonic stem cells differentiating into definitive endoderm cells.
The authors examined the expression of key marker genes over time and found 9 to exhibit approximately
switch-like behaviour (POU5F1, NANOG, SOX2, EOMES, CER1, GATA4, DKK4, MYCT1, and PRDM1) with a
further two exhibiting transient expression (CDX71 and MSX2). We applied Ouija using noninformative priors
over the behaviour parameters with no information about the capture times of the cells included.

The resulting pseudotime fit demonstrates we can understand single-cell pseudotime in terms of the be-
haviour of particular genes. Figure 3A shows a heatmap of the 9 switch-like genes (top) and 2 transient genes
(bottom), ordered by the posterior switch time of each gene. It can be seen that the early trajectory is char-
acterised by the expression of NANOG, SOX2, and POUF51, which then leads to a cascade of switch-like
activation of the remaining genes as the cells differentiate.

While transcriptome-wide pseudotime algorithms could provide similar heatmaps if the marker genes were
known in advance, the key departure of Ouija is that we can quantitatively associate each gene with a region of
pseudotime at which its regulation (switch time or peak time) occurs. This is illustrated in Figure 3B-C showing
the posterior values for the regulation timing along with the associated uncertainty. In essence, Ouija allows
us to order genes along trajectories as well as being able to order the cells, which provides insight into gene
regulation relationships.

To approach such questions of gene regulation timings in a quantitative and rigorous manner we con-
structed a Bayesian hypothesis test to find out whether one gene is regulated before another given the noise

in the data. If tg)eneA and t(GOe)ne g are the regulation timings of genes A and B respectively, we calculate the
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Figure 4: Ouija is robust to gene behaviour misspecification. A The genes Mef2c and Pik3r2 show
the expected behaviour in a marker-based pseudotime fitted to the Li et al. (2016) [32] dataset (“constant
upregulation” and “transient upregulation” respectively). However, the gene Scd7? (B) was claimed to have
“tide wave” regulation (transient expression), but a LOESS fit over pseudotime (black line) shows effectively
constant expression over pseudotime. C We found very low agreement between the different pseudotime
inference algorithms for this dataset. Curiously, the largest agreement was reported between Ouija using
only markers and Monocle 2 using the 500 most variable genes. D We simulated datasets with genes either
exhibiting switch-like expression over pseudotime or transient expression, with an overdispersed, zero-inflated
noise model to mimic real data. E Ouija was benchmarked assuming all genes were switch-like when a certain
proportion were actually transient across a range of geneset sizes. Even at only 8 genes, half of which are
actually transient, Ouija still recovers a median correlation of greater than 0.9 with the true pseudotime, which
only increases with increasing number of genes and switch-like behaviour.

posterior distribution p(tg)gne A tg)e)ne g/Y), and if both the lower and upper bounds of the 95% posterior cred-

ible interval fall outside 0 we say the two genes are regulated at significantly different times. We applied this
to the pseudotime fit in the Chu et. al. dataset, the results of which can be seen in Figure 3D for a subset of
genes. The model suggests that EOMES is downregulated before DKK4 and MYCT1 is downregulated after
PRDM1. Furthermore, it suggests the switch-like downregulation of DKK4 occurs after the transient peak-time
of CDX1. However, it suggests the difference in regulation timings of DKK4 and MYCTT are not significantly
different from zero, which could imply co-regulation.

Ouija is robust to gene behaviour misspecification

A potential disadvantage of our model is the requirement to pre-specify genes as having switch-like or transient
behaviour over pseudotime, which may result in biased or erroneous pseudotimes. We noticed such an effect
in the Li et al. (2016) [32] dataset, where the authors pre-specified how they expected several marker genes to
behave over pseudotime. Upon fitting the pseudotimes using Ouija, we noted that the genes Mef2c and Pik3r2
exhibited the correct upregulation over pseudotime (Figure 4A), but that Scd7 that was supposed to exhibit
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transient, peaking expression was effectively constant along the trajectory (Figure 4B).

We first sought to discover whether this was a particular failing of Ouija or a result common to all pseu-
dotime algorithms. To do so, we fitted transcriptome-wide pseudotimes using TSCAN, Monocle 2 and DPT,
and compared both the correlation among the different algorithms and the behaviour of the specified marker
genes. We found remarkably low correlations between the different pseudotime algorithms (Figure 4C), with
the highest correlations reported between Ouija using markers only and Monocle 2 using the full transcrip-
tome. Furthermore, none of the pseudotime fits displays consistent nor expected behaviour for the set of
marker genes (Supplementary Figure 4). For example, the gene FoxaZ2 is seemingly dowregulated under DPT,
upregulated under Monocle 2 and Ouija, and exhibits transient expression under TSCAN.

Next, we performed extensive simulations to discover the extent to which Ouija is in general robust to gene
behaviour misspecification. We simulated datasets where either 75% or 50% of the genes were switch-like
(Figure 4D) for 8, 12, 16 & 24 genes with 100 replications for each situation, and re-inferred the pseudotimes
using Ouija assuming all genes were switch-like. The results can be seen in Figure 4D. Even with 4 switch-like
and 4 transient genes Ouija still achieves a median correlation greater than 0.9 with the true pseudotimes, a
result that only increases with more switch-like genes. We believe this shows that Ouija is highly robust to
misspecification of prior knowledge of gene behaviour.

It is further possible to identify errors in the prior belief of gene behaviour without having to explicitly fit a
pseudotemporal trajectory. If a dataset contains a number of switch-like and transient genes, the switch-like
genes will have high absolute correlation with themselves but low absolute correlation with the transient genes,
which will in turn have high absolute correlation with themselves. This effect is exemplified in the Chu et al.
dataset that contains 9 switch-like and 2 transient genes. A hierarchical clustering of the absolute correlations
across the genes reveals the transient genes clustering separately from the switch-like genes (Supplementary
Figure 5). Therefore, an investigator could corroborate their prior expectations through similar investigations.

Identifying discrete cell types along continuous developmental trajectories

We further investigated the single cell expression data from a study tracking the differentiation of embryonic
precursor cells into haematopoietic stem cells (HSCs) [33]. The cells begin as haemogenic endothelial cells
(ECs) before successively transforming into pre-HSC and finally HSC cells. The authors identified six marker
genes that would be down-regulated along the differentiation trajectory, with early down-regulation of Nrp2
and Nr2f2 as the cells transform from ECs into pre-HSCs, and late down-regulation of Nrp1, Hey1, Efnb2 and
Ephb4 as the cells emerge from pre-HSCs to become HSCs. The study investigated a number of distinct
cell types at different stages of differentiation: EC cells, T1 cells (CDK45~ pre-HSCs), T2 cells (CDK45"
pre-HSCs) and HSC cells at the E12 and E14 developmental stages.

We therefore sought to identify the existence of these discrete cell types along the continuous developmen-
tal trajectory. As Ouija uses a probabilistic model and inference we were able to obtain a posterior ordering
“consistency” matrix (Figure 5A) where an entry in row i column j denotes the empirical probability that cell
1 is ordered before cell j. Performing PCA on this matrix gives a rank-one representation of cell-cell continu-
ity, which is then clustered using a Gaussian mixture model to find discrete cell states along the continuous
trajectory (where the number of states is chosen such that the Bayesian information criterion is maximised).

Applying this methodology to the Zhou et. al. dataset uncovered three metastable groups of cells cor-
responding to endothelial, pre-HSCs and HSCs respectively (Figure. 5B). Misclassifications within cell types
(T1/T2 and E12/E14 cells) could be explained by examining a principal components analysis of the global
expression profiles (Supplementary Figure 6) which suggests that these cell types are not completely distinct
in terms of expression. When examining the inferred pseudotime progression of each marker gene (Figure
5C), these three metastable states corresponded to the activation of all genes at the beginning of pseudotime
time, the complete inactivation of all the marker genes at the end of the pseudotime and a intervening tran-
sitory period as each marker gene turns off. Each metastable state clearly associates with a particular cell
type with Nrp2 and Nr2f2 exhibiting early down-regulation and Nrp1, Hey1, Efnb2 and Ephb4 all exhibiting late
down-regulation. Using this HSC formation system as a proof-of-principle it is evident that, if a small number
of switch-like marker genes are known, it is possible to recover signatures of temporal progression using Ouija
and that these trajectories are compatible with real biology.

To show the widespread applicability of this method we applied it to two further publically available datasets.
Dulken et. al. [34] examined the trajectory of quiescent neural stem cells (QNSCs) as they differentiate into
activated neural stem cells (aNSCs) and neural progenitor cells (NPCs). Applying Ouija’s clustering-along-
pseudotime revealed seven distinct clusters (Supplementary Figure 7; Supplementary Table 1) with clusters
1-2 corresponding to early and late qNSCs, cluster 3 defining the gNSC to aNSC transition, clusters 4-6 cor-
responding to early to late aNSCs and cluster 7 defining the aNSC to NPC transition. We similarly applied this
method to the Chu et al. dataset of time-series scRNA-seq that identified 8 distinct clusters along pseudotime
(Supplementary Figure 8; Supplementary Table 2). Clusters 1-4 track the cells as the progress through the
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Figure 5: Pseudotime ordering and cell type identification of haematopoeietic stem cell differentiation
A Consistency matrix of pseudotime ordering. Entry in the i** row and j** column is the proportion of times
cell ¢ was ordered before cell j in the MCMC posterior traces. Gaussian mixture modelling on the first prin-
cipal component of the matrix identified three clusters that are evident in the heatmap. B Confusion matrix
for cell types identified in original study (columns) and Ouija inferred (rows). Ouija inferred cluster 1 largely
corresponds to EC cells, cluster 2 corresponds to pre-HSC cells while cluster 3 corresponds to HSC cells. C
HSC gene expression as a function of pseudotime ordering for six marker genes. Background colour denotes
the maximum likelihood estimate for the Ouija inferred cell type in that region of pseudotime.

4 stages from 0 hours to 36 hours, while clusters 5-8 track the 3 stages from 36 hours to 96h hours but with
much more heterogeneity within each cluster, which is expected due to the longer time-scales considered.

Incorporating prior information can improve pseudotime inference

A particular advantage of using Bayesian models with interpretable parameters is that we may express any prior
knowledge about the gene behaviour as informative priors. For example, for each gene we model as switch-
like there is the switch strength parameter k£ that models how quickly a gene is upregulated if & is positive or
how quickly it is downregulated if it is negative. A researcher may have a firm prior belief that a gene will be
up or downregulated along the trajectory and thus can place a prior p(k) on the particular parameters. Using
Bayes’ rule, the posterior distribution of both the pseudotimes and gene-specific parameters is then calculated
by combining this informative prior with the data likelihood. The crucial observation here is that the posterior
distribution of the pseudotimes is affected by priors on the gene behaviour parameters, meaning incorporating
prior information about gene behaviours may improve pseudotime inference. Such informative priors may be
placed on any of the parameters that govern interpretable gene behaviour. For example, if a researcher expects
a particular transient gene to peak early in the trajectory then they may encode this using a prior distribution
on the peak time.

We sought to test the extent to which incorporating knowledge of gene behaviours through informative
Bayesian priors aids pseudotime inference. To do so we performed extensive simulations of single-cell pseu-
dotime under monotonic changes in expression and reinferred using Ouija with both noninformative and infor-
mative priors, as well as DPT and TSCAN. In order to emulate the fact that the data will not truly come from
a sigmoidal link function, we simulated data from various link functions used in logistic regression including
probit and complementary log-log (Figure 6) along with a “threshold” model where the expression is on or off
with a particular probability that changes along the trajectory (see supplementary text for full details).

The results can be seen in Figure 6, with similar characteristics across the four mean functions considered.
In all cases Ouija performs substatially better than DPT and TSCAN, but we note that this is likely due to the


https://doi.org/10.1101/060442
http://creativecommons.org/licenses/by/4.0/

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

bioRxiv preprint doi: https://doi.org/10.1101/060442; this version posted November 2, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Pseudotime —

VAV avESE

Sigmoidal Complementary log-log Probit Threshold

HWW gt " f o rww

Mean expression

o o =
oo © o
X

©
3

o
o

Pearson p to true pseudotime

o
3
"

6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15
Number of genes modelled

Algorithm il DPT Il TSCAN Ml Ouija noninformative Il Ouija informative

Figure 6: Incorporating prior information can improve pseudotime inference. We sought to identify
the benefits of incorporating prior information about the behaviour of genes to the accuracy of pseudotime
inference. We simulated data according to four different mean functions (sigmoidal, complementary log-log,
probit, and threshold) under identical noise model and reinferred using DPT, TSCAN, Ouija with noninformative
priors, and Ouija with informative priors. The results show a marginal though significant gain in inference when
incorporating prior knowledge.

data generating model more closely matching the likelihood model of Ouija though could also be explained
by the fact that DPT and TSCAN are not designed for small panels of genes. In each case the gain from
incorporating prior information is statistically significant (Supplementary Table 3), but we note that the effect
sizes are in practice quite small. Since to infer a consistent pseudotime, sufficient correlations must exist in the
data, prior knowledge may only make a relatively minor contribution. However, researchers dealing with data
with low biological signal to noise ratio may find it advantageous to incorporate such constraints to improve the
quality of their inferences.

Scalable pseudotime inference using TensorFlow

Finally, we wanted to consider a study composed of a large panel of putative marker genes to determine if Ouija
could automatically identify genes satisfying its behavioural constraints. We identified a single-cell RNA-seq
study [38] that examined variation between individual hematopoietic stem and progenitor cells from two mouse
strains (C57BL/6 and DBA/2) as they age. Principal component analysis for each cell type and age showed
a striking association of the top principal components with cell cycle-related genes (Figure 7A), indicating that
transcriptional heterogeneity was dominated by cell cycle status. They scored each cell for its likely cell cycle
phase using signatures based on functional annotations [39] and profiles from synchronized Hela cells [40]
for the G1/S, S, G2, and G2/M phases.

We investigated if Ouija could be used to identify cell cycle phase, treating the inferential problem as a con-
tinuous pseudotime process and assuming all genes as candidate switch genes. We applied Ouija to 1,008
C57Bl/6 HSCs using 374 GO cell cycle genes that satisfied gene selection criteria used in the original study.
This large number of genes and cells makes inference using Hamiltonian Monte Carlo (HMC) slow so we imple-
mented a second version of QOuija (termed Ouijaflow) using the probabilistic programming language Edward
[41] based on TensorFlow [42]. This performs fast approximate Bayesian inference using reparametrization
gradient variational inference.

The estimated pseudotime progression given by Ouija recapitulates the trajectory observed in principal
component space (Figure 7A). The estimated pseudotime distribution correlates well with the cell cycle phase
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Figure 7: Cell cycle phase prediction. Principal component representation of hematopoietic stem cells
coloured according to (A) the original cell cycle progression score [38] and (B) Ouija - cell cycle classes
indicated are based on original study classifications. (C) Distribution of Ouija inferred pseudotime versus the
original cell cycle classifications. (D) Estimated activation strengths for the 374 cell cycle gene panels. (E)
Gene expression profile for 88 switch-like genes with cells ordered by pseudotime and (F) genes ordered by
activation time.

categorisation given in the original study (Figure 7C). Furthermore, we identified 88 genes with large acti-
vation strengths indicating strong switching-on behaviour (Figure 7D). Ordering the genes by activation time
demonstrates a cascade of expression activation across these 88 genes over cell cycle progression with the
quiescent (Gy) indicated by complete inactivation of all 88 genes (Figure 7E,F). The explicit parametric model
assumed by Ouija makes this gene selection and ordering process simple and quantitative compared to a
non-parametric approach that would require some retrospective analysis or visual inspection.

Conclusions

We have developed a novel approach for pseudotime estimation based on modelling switch-like and transient
expression behaviour for a small panel of marker genes chosen a priori. Our strategy provides an orthogonal
and complimentary approach to unsupervised whole-transcriptome methods that do not explicitly model any
gene-specific behaviours and do not readily permit the inclusion of prior knowledge.

We demonstrate that the selection of a few marker genes allows comparable pseudotime estimates to whole
transcriptome methods on real single cell data sets. Furthermore, using a parametric gene behaviour model
and full Bayesian inference we are able to recover posterior uncertainty information about key parameters,
such as the gene activation time, allowing us to explicitly determine a potential ordering of gene (de)activation
and peaking events over (pseudo)time. The posterior ordering uncertainty can also be used to identify ho-
mogeneous metastable phases of transcriptional activity that might correspond to transient, but discrete, cell
states.

Furthermore, whilst we do not explicitly address branching processes in this work, our framework provides
a natural and simple extension to allow for multiple lineages and cell fates using a sparse mixture of factor
analyzers in which each lineage is denoted by a separate mixture component and the factors loadings are
shrunk to common values to denote shared branches. This has been explored in work elsewhere [43].

In summary, Ouija provides a novel contribution to the increasing plethora of pseudotime estimation meth-
ods available for single cell gene expression data.
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Methods

Overview

We give a high-level overview of our pseudotime inference framework here and provide more technical details
in the following sub-sections. The aim of pseudotime ordering is to associate a p-dimensional expression mea-
surement (the data) to a latent unobserved pseudotime. Mathematically we can express this as the following:

~—~ ~— ~—~ ~—
Expression Mapping Pseudotime Noise

where the function f maps the one-dimensional pseudotime ¢,, for cell n to the p-dimensional observation space
in which the data lies. The challenge lies in the fact that both the mapping function f and the pseudotimes are
unknown. Our objective here is to use parametric forms for the mapping function f that will enable relatively
fast computations whilst characterising certain gene expression temporal behaviours. The specification of a
statistical pseudotime algorithm therefore comes down to the choice of the mean function f and the noise
model on e that we detail below.

The approach we adopt is therefore a form of latent variable model implemented as non-linear parametric
factor analysis where the factors correspond to the pseudo-times and the factor loadings correspond to the
interpretable parameters of the sigmoidal or transient mean functions that provide the non-linearity. In addition,
we model dropouts and a strict empirically motivated mean-variance relationship which is required to provide
constraints on the latent variable model since nothing on the right hand side of equation 1 is actually measured
or observed.

Statistical model
Input data normalisation

We index N celsbyn €1,...,Nand Ggenesby g € 1,...,G. Let y,, = [Y],, denote the log-transformed
non-negative observed cell-by-gene expression matrix. In order to make the strength parameters comparable
between genes we normalise the gene expression so the approximate half-peak expression is 1 through the
transformation

Yg — Yg/sg~ (2)
where s, is a gene-specific size factor defined by
1 *
Sg = IBS ™ Z ycg (3)
|yg | Y EV

and V; = {Yeg : Yeg > 0}

Noise model

Our statistical model can be specified as a Bayesian hierarchical model where the likelihood is given by a
bimodal distribution formed from a mixture of zero-component (dropout) and an non-zero expressing cell pop-
ulation. If u(t,, ©,) is the mean for cell n and gene g (evaluated at pseudotime ¢,, with gene-specific parameters
©,) then

, {eng + (1 = Og)Student(u(tn, ©g),02,)  if yng = 0
ng ™

(1 = Ong)Student(p(tn, Og),02,) if Yy >0
0,y ~ Bernoulli(logit ™ (8o + B1pu(tn, ©4))), (5)
B ~ Normal(0,0.1). (6)

The relationship between dropout rate and expression level is expressed as a logistic regression model
[44]. Furthermore, we impose a mean-variance relationship of the form:

ong =1+ ¢)u(tn,04) + ¢ (7)

where ¢ is the dispersion parameter with prior ¢ ~ Gamma(a,, 8,), Which is motivated by empirical obser-
vations of marker gene behaviour (see supplementary text).
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Mean functions

We then need to specify the form of the mean functions p(t,,©,), for which we consider both sigmoidal and
transient genes.
For the sigmoidal case we have

0
2"

1+ exp (—kg(t t(o)))

(1(tn, ©g) = fsigmoidal (tn; kg, tg ) ,U_E; )) = (8)

where k, and tg denote the activation strength and activation time parameters for each gene and pyq4 ) the
average peak expression with default priors

) ~ Gamma(§/2,1/2), 9)
kg ~ Normal(ué’“), 1/Tg(k)), (10)
tgo) ~ TruncNorm[O’l)(u!(]t), 1/7'15"‘))7 (11)

If available, user-supplied prior beliefs can be encoded in these priors by specifying the parameters ug ), (k)
Otherwise, inference can be performed using uninformative hyperpriors on these parameters. Specifying ug
encodes a prior belief in the strength and direction of the activation of gene g along the trajectory with T;’”
(inversely-) representing the strength of this belief. Similarly, specifying ug ) encodes a prior belief of where in

the trajectory gene g exhibits behaviour (either turning on or off) with Tg encodmg the strength of this belief.
For the transient case we have

,U/(tna ®g) = fTransient (tn;pg7 bg7 MéO)) = 2/14(90) €xXp (_)\bg(tn - pg)Q) ) (12)

where we take ) to be a constant A = 10 and with a prior structure

1 ~ Gamma(6/2,1/2), (13)
~ TruncNormyg, 1)(,u(p) 1/T(p)) (14)
by ~ TruncNormig o) (u(p) 1/T(p)) (15)

where informative priors may be placed on p and b as before.

Note that if the mapping functions f are restricted to a linear form then the model reduces to Factor Anal-
ysis. In other words, performing factor analysis on single-cell RNA-seq data is entirely equivalent to finding
a trajectory where gene expression is linear over time with no prior expectations on how the genes behave.
If we model a common precision across all genes so 7, = 7 then then model reduces further to probabilistic
principal components analysis [45], providing an explicit interpretation for the results of principal component
analysis on single-cell data.

Inference

We performed posterior inference using Markov Chain Monte Carlo (MCMC) stochastic simulation algorithms,
specifically the No U-Turn Hamiltonian Monte Carlo approach [46] implemented in the STAN probabilistic pro-
gramming language [47] which we use to implement our model. The parameter ¢ = 0.01 is used to avoid
numerical issues in MCMC computation. For larger marker gene panels, such as in the cell cycle analysis
section, we used the reparametrization gradient variational inference methods implemented in Edward [41] to
perform approximate Bayesian inference.
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