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Abstract

Noncoding regulatory variants play a central role in the genetics of human diseases and in
evolution. Here we measure alele-specific transcription factor binding occupancy of three

5  liver-specific transcription factors between crosses of two inbred mouse strains to elucidate
the regulatory mechanisms underlying transcription factor binding variations in mammals.
Our results highlight the pre-eminence of cis-acting variants on transcription factor occupancy
divergence. Transcription factor binding differences linked to cis-acting variants generally
exhibit additive inheritance, while those linked to trans-acting variants are most often

10  dominantly inherited. Cis-acting variants lead to local coordination of transcription factor
occupancies that decay with distance; distal coordination is also observed and may be
modulated by long-range chromatin contacts. Our results reveal the regulatory mechanisms
that interplay to drive transcription factor occupancy, chromatin state, and gene expression in
complex mammalian cell states.
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INTRODUCTION

Understanding how genetic variation propagates into differences in complex traits and disease
susceptibility isamajor challenge. Evolutionary studies have revealed examples of regulatory

5 variants linked to different organismal phenotypes’. Genome-wide studies have also found
that many common disease-associated genetic variants lie in regulatory segquences?-* with
genetic changes at local-regulatory elements leading to coordinated chromatin changes within
constrained genomic domains®e.

10 A key determinant of transcriptional activation and spatiotemporal specificity is the affinity
with which collections of transcription factors (TFs) bind to gene regulatory regions’-. How
TF binding specificity and strength is shaped by cis- and trans-acting variation remains poorly
understood!?, and understanding the interplay between TF binding and the surrounding
chromatin state is critical for determining phenotypic diversity.

15
Cis-acting sequence changes substantially modulate TF occupancy'®12, but direct disruption
of TF-DNA binding motifs is relatively rare®**°. This seemingly conflicting observation may
be potentially explained by changes to surrounding chromatin state, long range TF-TF
connectivity® or cis-acting binding determinants near but outside the core binding motif20,

20

Strategies used to dissect cis- and trans-acting mechanisms include quantitative trait loci
(QTL)-based analyses and F1 crosses of geneticaly inbred organisms. QTL analysis
correlates a measured molecular trait, such as gene expression or TF binding intensity with
genetic variation. However, fully distinguishing between regulatory divergence in cis and in

25 trans in expresson quantitative trait loci (eQTL) and chromatin immunoprecipitation
quantitative trait loci (ChIP-QTL) studies! requires large numbers of genetically diverse
samples to achieve statistical power22-25, In addition, trans-effects are extremely difficult to
identify and then validate®?’.

30  Alternatively, regulatory mechanisms can be revealed by analysis of the patterns of
divergence occurring in F1 genetic hybrids; this approach has been widely used to analyze
gene expression in yeast2829, maize3?, fruit flies?1-33 and mouse3435. By placing two allelesin
a shared trans environment and comparing their allelic occupancy, the relative cis and trans
contributions to a measured molecular trait can be evaluated3s. Any variance from the

35  occupancy observed in the parent FO mice can be assigned to the influence of trans-acting
variation. Like QTL-based approaches, analysis of F1 data results in a probabilistic
description of the role of cis and trans effects. However, the use of F1 crosses classifies
mechanisms underlying regulatory changes as either cis- or trans-acting more accurately than
eQTL approaches, because the functional differences in vivo between the two alleles are

40  directly evaluated in F1 mice®, rather than distance restricted searching between causative
variants and TF occupancy differences as is common in eQTL approaches and which make
distant eQTLs impossible to discover’’. Formally, this system analyses the correlation
between specific variants and observed functional effects, i.e. the effect of a variant on either
cis- or trans-regulation. Although it is generally not possible to unambiguously assign

45  causality from a specific variant to a functional effect, for simplicity in this study we will use
the term *regulatory mechanism’ to refer to this connection.

Here we employ F1 hybrids to comprehensively dissect TF binding differences in mammals.
We created first-generation genetic hybrids from divergent mouse sub-species to dissect
50  trans-acting mechanisms that affect both chromosomes equally due to a shared nuclear
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environment, from the allele-specific differences caused by cis-directed mechanisms?32-33.38,39,
We leveraged this strategy to interrogate the inheritance of TF binding occupancy*%41. We
find that changes to TF binding occupancy is predominately mediated by variation that actsin
cis, and is thus additively inherited. In addition, cis-acting variation is able to influence

5  multiple transcription factor binding sites (TFBS). Finally, we observe coordination in the
regulatory mechanisms between TF binding occupancy, chromatin state and gene expression
by incorporating matched transcriptomic data from RNA-seg®. Our results provide a
comprehensive and quantitative overview of how different layers of regulatory variation
create tissue-specific transcriptional regulation.

10
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RESULTS
Transcription factor binding in mouse reciprocal crosses

5 In order to dissect the extent of cis and trans variation in TF occupancy variation, TFBS
occupancy was mapped with six biological replicates using chromatin immunoprecipitation
followed by sequencing (ChiP-seq) against three liver TFs (HNF4A, FOXA1L, CEBPA) in
inbred mouse sub-species C57BL/6J (BL6) and CAST/EiJ (CAST) and their F1 crosses
(BL6XCAST and CASTXBL6) (Figure 1a, Supplementary Figures 1-3, Supplementary

10 Tables 1-2, Methods); all data are in ArrayExpress (E-MTAB-4089). The large number
(~19M) of single nucleotide variants (SNVs) between two parental strains, which are
estimated to have less than 1 million years divergence®, is comparable to that found in human
populations*3, and permits a substantial proportion of allele-specific TF binding to be
measured.

15
Approximately 60-70,000 regions in the genome are bound by each TF (Methods), and
approximately 20% had one or more SNVs with sufficient sequencing coverage to permit
quantitative alelic resolution of TF binding (Figure 1b). Of these TFBS, in ~3-6% of these
cases, SNVs directly disrupt a binding motif. Most (ca 62%) SNVs are found in regions

20 bound by only one TF, 34% are found in regions bound by exactly two TFs, and 5% by all
three TFs, and are highly reproducible (Figur e 1c, Supplementary Figure 2).

Cis and trans effects can be distinguished by the differences in binding affinities among FO
parents and their F1 offspring, as cis-acting variation must remain allele-specific2829,32,33,35

25  (Supplementary Figure 4a, Supplementary Figure 5). TFBS that had informative SNVs for
allelic resolution were classified into four regulatory categories — conserved (non-differential),
cis, trans, and cistrans (affected by variants acting both in cis and in trans) (Supplementary
Figure 4b) (Methods).

30  Differences in TF binding occupancies between the two mouse strains were most frequently
affected by cis-acting variation (44-49%), followed by cistrans (14-17%) and trans (8-13%);
23-30% of TF binding was conserved despite the presence of one or more variants near the
site of binding (Supplementary Figure 4c). Proportions of TFBSs belonging to each of the
four categories were similar between al TFs. As expected, there are fewer conserved

35  locations when SNV s directly disrupt the bound motif (Supplementary Figur e 4c)19.

We confirmed the accuracy of the class assignment by visualising the difference in occupancy
ratio between parental alleles and F1 alleles. By subtracting the F1 BL6:CAST ratio from the
corresponding FO ratio we found little difference in the allelic ratios from the parent and

40  offspring in cis and conserved categories (Figure 1d). In contrast, trans and cistrans
categories show appreciable genotype specific signal. We validated our ChlP-seq measures of
binding by performing allele-specific pyrosequencing (Supplementary Figure 6), confirming
that approximately 40% of genetic variations that affect TFBS are cis-acting, compared with
only 14% for liver-transcribed genes?®>.

45

Characterization of TF binding occupancy

To quantitate the effect size of cis-acting variation on TF occupancy, we compared TF
50 binding between FO and F1 individuas using Pearson’'s correlation (Figure 2,

5
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Supplementary Figure 7, Methods). In the absence of noise, a correlation coefficient of zero
indicates that cis and trans contributions are equal, whereas a correlation coefficient of one
indicates the absence of trans effects. We find Pearson’s r for TF binding to be significantly
larger, and therefore cis dominated, compared to gene expression (TF binding: r=0.92, 95%
5  CI (0.915, 0.919), P<2.2e-16; expression: r=0.62, 95% CI (0.607, 0.631), P<2.2e-16). Indeed,
in 80% of instances when we compared any randomly chosen TFBS to any randomly chosen
expressed gene, the magnitude of the cis effect was greater for TF occupancy than for gene
expression (magnitude measured by the distance between F1 alleles over 10,000 random
comparisons).
10
For lineage-specific TF binding locations, determined using Mus spretus as an outgroup™®, we
constructed statistical models to test the extent of variation acting in cis versus in cistrans to
determine if variation that acts in cis or in trans is primarily responsibly for the creation of
new TFBS. If the divergence was only due to variants acting in cis, the binding strength in the
15 Flalelewill be half that in the FO mouse. If TF binding in the F1 mouse were aso influenced
by variants in trans, then these binding intensities would be either greater or less than half the
level found in the parent (M ethods). The vast majority (87%, 1056/1217) of lineage-specific
TFBS were affected by variation acting in cis (Figure 2c-d), while only 13% (161/1217)
showed evidence of the influence of trans-acting variation. Overall, lineage-specific sites are
20 up to two times less likely to have contributions from trans variants. Furthermore, we
observed no lineage-specific TFBS were affected only by trans-acting variants (i.e. strain-
specific in FO but equally bound in F1). Our results strongly suggest that cis-directed variation
either directly (e.g. modification of the binding motif) or indirectly (e.g. through remodelling
of surrounding chromatin) play arequired rolein birth of TFBSs.
25
Next, we examined selective forces acting on TFBSs affected by variation in both cis and
trans. Binding sites that show increased or decreased occupancy in the F1 due to cistrans-
acting variation can have their effects decomposed into cis-acting variation that are either
compensated by, or further changed by, trans-acting variation. We call changes compensatory
30  when the difference in binding intensities in F1 < FO, whereas we call changes diversifying
when the difference in F1 > FO. Under complete neutrality, both compensatory and
diversifying trans effects should be equally favored?8. Indeed, the frequency of compensatory
versus diversifying effects is not significantly different at lineage-specific TFBSs (binomial
test, P=0.6) (Supplementary Figure 8a, Supplementary Table 3), suggesting many alele-
35 gpecific TF binding events are neutral. However, of the 2,563 CEPBA binding sites affected
by variation in both cis and trans found on both alleles, 64% show compensatory changes
(binomia test, P<2.2e-16), suggesting that shared TFBSs are more frequently subject to
purifying or stabilizing selection (Supplementary Figure 8a, Supplementary Table 3).
These numbers closely mirror the proportion of compensatory versus diversifying effects
40  reported for gene expression in liver (68% compensatory, 32% diverging)®®. No strain-
specific TFBS affected only by variation in trans were observed (i.e. strain-specific in FO but
equally bound in F1). These results suggest that variation occurring is cis may either directly
(e.g. by modification of the binding motif) or indirectly (e.g. through the opening up of
chromatin by altering the shape of the DNA) play arequired role in birth of TFBSs.
45
Additionally, we found little difference in selection pressure between strain-specific TFBSs
that were gained and those that were lost in either BL6 or CAST lineages in the less than one
million years* since their divergence. Lineage-specific TFBS can be caused by: 1) lineage-
specific loss of a TFBS that existed in the common ancestor of BL6 and CAST
50  (plesiomorphic), or 2) lineage-specific gain since the most recent common ancestor in one

6
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strain (apomorphic) (Supplementary Figure 8b). To identify gained versus lost TFBS, we

compared our lineage-specific TFBS with matched TFBS data obtained from livers of Mus

Soretus (SPR)™, amouse species of equal evolutionary distance (ca. ~1.5-2 MY) to both BL6

and CAST*. We distinguished between BL6 versus CAST lineage-specific binding sites that

5  are apomorphic (present in BL6 not CAST or SPR and present in CAST not in BL6 or SPR)

and plesiomorphic (shared between BL6 and SPR and between CAST and SPR but not BL6

and CAST). Around 35% of TFBSs strain-specific between BL6 and CAST were aso found

in SPR, placing a lower bound on the number of plesiomorphic TFBSs. Proportions of TF

binding locations influenced by cis- or trans-acting variation were evenly distributed between

10  apomorphic and plesiomorphic (binomial test, P>0.01) suggesting that there is little difference
in selection pressure between strain-specific TFBS that are gained versus those that are lost.

We evaluated the potential regulatory activity of the TF binding by mapping the genome-wide
locations of H3K4me3 (marking transcription initiation sites) and H3K27ac (marking

15  potential enhancer activity)*> in F1 mouse livers (Methods). At promoters, TF occupancy
changes affected by variation acting in cis and in both cis and trans were underrepresented
(All TFs; binomial test; cis: P=1.1e-6, odds ratio (OR)=0.8; cistrans: P=1.2e-8, OR=0.6), and
conserved sites were overrepresented (P<2.2e-16, OR=1.7) (Figure 2b). Regions showing
enhancer activity were enriched for conserved TFBSs, and depleted for TFBSs that were

20  directed by cis and cistrans variants (cis: P=3.4e-3, OR=0.8; cistrans. P=1.6e-6, OR=0.6;
conserved: P=3.3e-8, OR=1.5).

The stability of genomic occupancy at TFBSs was assessed by evaluating the TF occupancy
in BL6 mice with a single allele deletion of Cepba or Hnf4a, which can reveal regulatory

25 activity and gene expression with more direct TF dependency*s. When TF expression was
reduced, the change in TF occupancy level was greater for binding sites influenced by cis-
directed variation compared to those with a conserved binding pattern (Supplementary
Figure 9). This suggests that TFBSs affected by variation acting in cis are more sensitive to
changesin TF expression while non-differentially bound TFBSs are buffered.

30
TFBSs can be inherited in an additive or non-additive manner for variation that acts in cis or
in trans*l. Additive inheritance occurs when the combined occupancy of the F1 alleles is
equal to the sum of the two parental (BL6 and CAST) FO alleles’14147, Recall that cis and
trans categories are defined by the occupancy ratio between parental alleles and F1 alleles

35 (Methods), while inheritance concerns the total signal from both alleles. Dominant inheritance
occurs when the total allelic occupancy in the F1 offspring is equal to that of either parent
(Figure 2e). We fitted statistical models for both scenarios and evaluated them using
Bayesian Information Criteria (BIC) (M ethods).

40  Of the 2,382 TFBSs influenced by cis-acting variation (Methods), 72% (1,720) showed
additive inheritance (of which 1,215 had BIC>2), whereas 28% (662) appeared dominant,
which may partly reflect assignment errors (see Discussion). In contrast, of 341 TFBSs
influenced by trans-acting variation 74% (280) exhibit dominant inheritance, whereas only
26% (61) were additive. Similar trends were observed for FOXA1l and HNF4A

45  (Supplementary Table4).

We searched for evidence of over- and under- dominant patterns of occupancy inheritance
that may correspond, respectively, to stronger or weaker F1 occupancy levels compared to
parental measurements. In gene expression, this pattern of imbalance can be associated with
50 hybrid incompatibilities™, and comprises approximately 27% and 8% (under- and over-

7
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dominant, respectively) of expressed genes between two strains of fruit flies™. In mice, we
found that 6% and 11% of liver expressed genes showed under- and over- dominant modes of
expression inheritance (Supplementary Figure 10). In contrast, less than 1% of sites in
mouse tissues were determined as under- or over- dominant across all TFBSs (where BIC>1)

5 (Supplementary Table 5). Thus, under- or over-dominant TFBS inheritance appears rarely if
at all.

In summary, variation in TF occupancy is strongly influenced by variaion acting in cis,
whereas TFBS affected by variation in trans are uncommon. In contrast to gene expression*!,

10 TFBSs are largely inherited additively, and TFBSs affected by variation acting in trans are
mostly dominantly inherited (Supplementary Figure 10).

I nfluence of cis-acting variation rapidly decays with distance

15
We asked what impact cis-acting variation have on TF occupancy at varying genomic
distances because chromatin state can depend on distal functional elements>6. For example, in
humans eQTLs are considered local if they are within 2 Mb of the gene they influence*® and
many distant eQTLs are known to exist™.

20
We first confirmed that overlapping binding events from different TFs share cis-acting
variation more often than expected by chance (Supplementary Figure 11). We quantitated
the affinity with which cis-acting variation influence distant TF binding occupancies using a
complementary strategy to Waszak et a.6. Although the exact location of each causal variant

25 is unknown, the genomic span (or effect distance) of a cis-acting variant can be inferred by
examining co-variation in binding occupancies between neighbouring TFBSs (M ethods,
Figure 3a, Supplementary Figure 12).

The correspondence between TF binding occupancies decreases at a logarithmic rate, with

30  similar trends observed across all three TFs (Figur e 3b). For example, the correspondence is
2-3 times lower at 50kb than at 3kb, but we nevertheless detected correspondence affected by
variation acting in cis dlightly above genomic background levels up to 400kb away
(Rho=0.01-0.02, linear regression). We estimated using vector projection that the observed
correspondence between TFBSs falls off relatively quickly for approximately 13kb and more

35  slowly thereafter (M ethods) suggesting that the genomic scope of a cis-acting variant on TF
binding is on the order of 10kb. Our results were consistent across several bin sizes grouping
nearby SNVs (Supplementary Table 6). Different TF binding locations appear to be
similarly correlated, as shown recently for chromatin domains>.

40  Long-range coordination of TF occupancy could be affected by cis-variation via three-
dimensional interactions, and we therefore searched for direct evidence that spatially distinct
TFBSs interact (Figure 3c). We analyzed Hi-C data from BL6 mice* to identify the
interaction endpoints that overlap CEBPA binding locations (Methods). As expected,
conserved sites were more likely to overlap long-range interaction endpoints (logistic

45  regression: P<0.05, OR=1.14-1.20) (Supplementary Table 7). Chromatin interactions
anchored on a cis-associated location were strongly enriched over the any-versus-any
background (binomial test; P-value: cons versus cons=2.0e-8, cis versus trans=1.8e-9, cis
versus cons=4.0e-10, cis versus cis=5.7e-6, cis versus cistrans=4.5e-4). Significant
enrichment over the any-versus-any background set was observed for all categories of TFBS.

50
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Our data support a model where the cis-acting variants causal for differences in TF binding

occupancy are mostly proximal to the TFBS they affect. However, regions with TF

occupancy, including TFBSs affected by variation that acts in cis, are disproportionately

found at interaction endpoints for genomic domains, providing a possible mechanism for the
5  observed long-range correlations.

Coordination of regulatory mechanisms

10  The connection between genetic variation with TF binding, chromatin state and gene
expression has recently been studied in human cell lines'4#1517, However, how genetic
variants affect the interplay and temporal ordering of these regulatory layers remains poorly
understood.

15 As above for transcription factor binding, we classified the regulatory mechanisms of
variation underlying the allelic changes in chromatin state and transcription based on whether
these differences are influenced by variation acting in cis, conserved, influenced by variation
acting in trans, or by variation acting in both cis and trans (Figure 4, M ethods). We then used
logistic regression to establish whether the mechanisms responsible for regulating TF binding

20  differences are enriched or depleted within the corresponding chromatin and gene expression
categories.

We found similar variant classes underlying TF binding occupancy, chromatin state, and gene
expression at the same locus as represented by the darker red circles on the diagonal in Figure

25 4a-b. For example, the genetic variants that influence TF binding in a cis-acting manner are
more likely to be collocated with H3K4me3 regions also showing changes influenced by cis-
acting variation (top left red circle in Figur e 4a). Thisis compatible with models proposed by
Kilpinen et al.15.

30  Furthermore, there is a positive, albeit modest, correlation between the direction of effect
between allelic changes in TFBS occupancy and gene expression (Supplementary Figure
13). In other words, when a TFBS increases its occupancy, then nearby gene transcription
often increases (binomial test, P=2.9e-4) and with similar magnitude (Spearman’s rank
correlation, rho=0.29, P=6.3e-12).

35
We controlled for the possibility that these effects are caused by differences in expression
levels by using an alternative strategy that subsampled genes with least one TF binding event
in the region 20kb upstream and 10 kb downstream of the TSS so that they had matched
expression levels between regulatory classes. We found that genes showing conserved

40  expression levels were depleted for TFBSs with occupancy affected by variation in cis
(Mann-Whitney U test on a per gene basis comparing the numbers of different TFBSs near
conserved regulated genes against genes where expression is influenced by variation in cis or
cistrans, P=9.8e-11 and 2.2e-16, respectively). Hence, genes whose expression variation is
influenced by variation in both cis and cistrans possessed a higher than expected number of

45  TFBSs proximal to the TSS that were influenced by variation in cis. Analysis of genes with
expression affected by trans variants was uninformative due to the small number of genes (14)
in this category.

We also confirmed previously observed correlations between promoter chromatin state and
50  gene expression*. We identified a subtle but significant correspondence between the types of

9
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regulatory variation underlying promoter activity differences and gene expression differences
(binomial test; cis P=0.04, cistrans P=0.03, conserved P=0.02, trans P=0.25) (Figure 4c).
These results suggest robustness to our overall analysis.

5  Finaly, TFBSs often act in concert with one another. Using Shannon’s entropy, we compared
the mechanistic diversity of TF binding variants with the regulatory mechanisms of variation
affecting nearby gene expression (Methods). In effect, this analysis asks whether the
collective effect of the cis- and trans-acting variation underlying changes to occupancy levels
of multiple TFBSs can propagate to gene expression. Expression influenced by variation in

10  cisor both cis and trans was significantly more likely to be associated proximally to TFBSs
that are themselves affected by variation acting through diverse mechanisms (Mann Whitney
U test) (Figure 4d). In contrast, conserved expression was likely to be associated with TFBSs
directed by a similar type of variant. We controlled for the possibility that the association
between the diversity of TFBS and the category of gene expression might be due to

15  differences in gene expression levels within each category by repeating the analysis using
expression matched subsets of genes from each regulatory category. We observed little
difference on our core results (Mann Whitney U test; cistrans versus conserved: P=1.4e-7, cis
versus conserved: P=1.4e-3). Our results therefore suggest that genes affected by variation
that is cis-acting and cistrans-acting are more likely to be proxima to TFBS of high

20 mechanistic diversity.

25  DISCUSSION

Directly connecting genome-wide observations of transcription factor binding with functional
outputs in gene expression is challenging because of what appears to be two conflicting
observations. On the one hand, most variation in the human genome associated with complex

30 disease and other phenotypes is non-coding*. Even for Mendelian disorders, exome
sequencing can suggest causative sequence changes in only a minority of cases (~25%)51.
Both point to a major role for functional sequence changes in the regulatory regions of the
genome, which subsequently lead to changes in gene expression. On the other hand, TF
binding demonstrates both variability between even genetically identical individuals and such

35 strikingly rapid evolutionary change®2 that it is tempting to conclude that the vast majority of
TF binding is non-functional "biological noise"s3.

Here, we have undertaken a detailed and comprehensive dissection of the genetic mechanisms

driving TF binding occupancy differences in mammals and integrated these results with
40  chromatin and gene expression information. Our initia findings regarding how genetic

seguence variation associates with TF binding differences between alleles are consistent with

previous reports a a more limited set of locations in murine immune cells*4, human

lymphoblast cells!418, and using computational simulations>56, Specifically, aimost three-

quarters of assayed quantitative differencesin TF binding occupancy appear to be the result of
45 nearby genetic differences that actsin cis.

However, our integrated analysis extending from TF binding to output gene expression using
F1 inter-strain mouse crosses revealed a number of novel insights. First, the vast majority of
trans-directed TF binding differences are dominantly inherited. Although most binding
50 influenced by cis-acting variation is inherited additively, as expected, a small proportion

10
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appears to show dominance/recessive inheritance. One plausible biological explanation is the
presence of variation acting in trans that does not interact with cis-acting variation at each
alele. Despite this, cis and trans-acting variation driving TF occupancy change show clear
differences in their mode of inheritance. Second, alelic differences in TF binding are
5 correlated at kilobase distances above the genomic background, likely influenced by
neighbouring cis-acting variation. A minor fraction of TFBSs show long-range coordination,
which may be driven by enrichment of TFBS at chromatin contacts. Such long-range
correspondence is similar to recently described coordination of chromatin states within
topological domains®>7. Third, we demonstrate interplay between the different mechanisms of
10  variation that underlie transcription factor binding and tissue-specific gene expression in vivo.
Aspects of the regulatory interplay between chromatin and gene expression has been reported

in human cell lines and mouse species!s58-61,

The F1 genetic cross analysis is very effective at disambiguating cis- and trans-acting

15  regulation overal. Our data shows that genetic variants can (simultaneously) direct TF
binding, chromatin, and gene expression changes using a similar combination of regulatory
variation that acts in cis and trans. However, the full temporal order of regulatory events
cannot be determined from our data. For instance, our results do not reveal whether genetic
variants first affect TF binding which then affects chromatin - or vice versa. However, the

20  presence of an additional trans component in gene expression suggests that it is downstream
of both TF binding and chromatin modifications.

The independently determined categories of regulatory variation correspond well between TF
occupancy and gene expression. This is potentialy surprising given the difference in the
25 overall regulatory repertoire between TF binding and gene expression. Namely, protein-DNA
interactions are shaped by a comparatively simple combination of DNA sequences, chromatin
context, and (in some cases) noncoding RNA associations. In contrast, a multitude of
regulatory processes influence gene expression, including TF binding as well as post-
transcription processing, translation rate and mRNA degradation. Our results support a model
30  whereby the variation underlying gene expression differences arise substantialy from a
composite of the variation that modulate TF binding differences in multiple individual TFBSs.

Our analysis has specific limitations. Our approach cannot analyse the majority of TFBSs
where no informative SNV is present, and these unclassified TFBSs are more likely to be
35  conserved. However, a change in the relative proportion of regulatory categories is not
expected to influence our key findings, which were focused on the regulatory mechanism
effect size. Our analysis ignores structural variants, and we have not directly measured fitness
in the F1 animals. We also cannot preclude the possibility that tissues other than liver may
demonstrate a greater affect of trans-acting variation on TF binding differences. Although
40  most tissue-specific gene expression appears to be driven by combinatorial TF binding of
dozens of TFs', we have profiled only a subset of three. However, analysis of the occupancy
of over a hundred TFs in one tissue strongly suggest that our data will reflect the typical
mechanistic contributions influencing the evolution of all tissue-specific TFs2. Finally, our
technical definition of the binding sites affected by both cis and trans variation will include
45  TFBSswith high biological and/or technical heterogeneity.

Our work builds upon previous findings of genomic coordination among TF binding,
chromatin marks and transcription>61563 and highlights the key role played by the basal
variation that underlie TF binding in directing regulatory change.

50
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METHODS:
Sample collection and preparation
All mice were housed in the same husbandry conditions within the Biological Resources Unit
5 in the Cancer Research UK-Cambridge Institute under a Home Office Licence. C57BL/6J
(stock Number 000664, imported from Charles River Labs) and CAST/EiJ (stock number
000928, imported from The Jackson Laboratory (www.jax.com)) mouse strains were used in
experiments as parental strains (FO) as well as for breeding of reciprocal crosses of F1 mice.
All mice used in the experiments were males between eight and 12 weeks of age, and
10 harvested at the same time of day (between 8 and 11am). Liver perfusion was performed on
mice post mortem, prior to tissue dissection. Harvested tissues were formaldehyde cross-
linked for ChiP-seq experiments. Before cross-linking, dissected tissue was immediately
chopped post mortem and added to a cross-linking solution containing 1% formaldehyde.
Tissue was incubated for 20 min prior to quenching with 1/20th volume of 2.5 M glycine.
15  Samples were incubated for a further 10 min before washing with PBS and flash-freezing and
storage at -80°C.

Generation of HNF4A and CEBPA heter ozygous mice
To create HNF4A and CEBPA heterozygous knockout mice, we acquired mice with targeted
20 alleles from The Jackson Laboratory (HNF4A stock number: 004665¢4; CEBPA stock
number: 006230%). Heterozygous knockouts were generated via the Cre-loxP system66 using
the germline deleter strain PgkCre®?, obtained from The Jackson Laboratory, and crossing it
to Cebpa™ %% and Hnf4a """ mice. Ear biopsies were taken at the time of weaning for
genotyping to confirm deletion via PCR (Supplementary Table 8).
25
ChI P-seq experimental procedure
The ChiIP-seq protocol used was as described by Schmidt et al.¢8. Briefly, livers were
isolated from 10 to 12 weeks old mice and liver tissue was post-mortem cross-linked using
1% formaldehyde (v/v), lysed and sonicated. Protein-bound DNA was immunoprecipitated
30 using 10pug of an antibody against CEBPA (Santa Cruz, sc-9314), HNF4A (ARP
31946 P050), FOXA1l (ab5089, Abcam), H3K27ac (ab4729, Abcam), or H3K4me3
(Millipore 05-1339). Immunoprecipitated DNA was end-repaired at 20°C for 30 min,
Adenine overhang was added at 37°C for 30 min, and Illumina sequencing adapters ligated at
room temperature for 15 min before 16 cycles of PCR amplification. PCR conditions: 1) 98°C
35  —30sec; 2) 98°C — 30 sec, 65°C — 30 sec, 72°C — 30sec, 16 cycles; 3) 72°C — 5 min. DNA
fragments ranging from 200- to 300-bp in size were selected on a 2% agarose gel for 50-bp
single-end read sequencing on an Illumina HiSeq 2000 according to the manufacturer’s
instructions.

40  Validation of allele-specific TF binding with pyrosequencing
We performed pyroseguencing to confirm the allele-specific occupancy of CEBPA in livers
from F1 mice in both genetic cross directions. The assays and primers (Supplementary
Table 9) for pyrosequencing were designed using PyroMark Assay Design Software. The
annealing temperature for PCR primers was optimized by gradient PCR. Primers’ efficiency

45  was confirmed using quality controls with different proportion of BL6 and CAST DNA
(0/100%, 30/70%, 50/50%, 70/30%, 100/0%). PCR conditions. 1) 95°C —5 min; 2) 94°C — 30
sec, optimized t°C — 30 sec, 72°C — 55sec, 40 cycles; 3) 72°C — 5 min. PCR product was
mixed with streptavidin beads dissolved in binding buffer and gently shaken for 20 min.
Sequencing primers were dissolved in annealing buffer and aliquoted into PSQ plate. DNA-

50 Beads were cleaned on the PyroMark vacuum workstation and then mixed with PSQ
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Primer/Annealing Buffer. The samples were incubated at 85°C for 3 min, centrifuged for 3-4
minutes at 2500 rpm and then loaded to the pyrosequencer. PyroMark Gold Q96 SQA
Reagents were used to load the pyrosequencer.

5  Estimation of allele-specific binding level
We constructed the Mus musculus castaneus genome assembly using CAST/EiJ SNV calls
(ENA accession: ERS076381) against the Mus musculus reference assembly (C57BL/6J)%°.
Single nucleotide variants (SNV's) were mapped from their original calls on NCBI37/mm9 to
the latest version of the mouse assembly, GRCm38.p2/mm10, and nucleotides at each base
10  position were changed to reflect point mutations in CAST. SNV calls were available for all
autosomes and the X chromosome.

To assess allele-specific binding and histone enrichment, we aligned reads to an alignment
index comprising of both GRCm38.p2/mm10 (BL6) and CAST assemblies. Indexing of the
15 genomes was performed using BWA (Version 0.7.3a)7°. Raw sequencing reads were first
filtered and trimmed using Trimmomatic (Version 0.3)7:. We required a minimum phred
score of 30 using a sliding window of 20 bps, and only kept aread if it matched these criteria
while maintaining a minimal overall length of 40bp. We aligned filtered reads using BWA
with a maximum of 2 mismatches per read (-n 2). Reads that mapped equally well to multiple
20 locations were discarded by filtering based on the ‘XT:A:U’ alignment tag. Our alignment
statistics showed our approach assigned reads to each strain with high specificity (see
Supplementary Figure 3). The proportion of F1 reads aligning to the combined BL6 and
CAST genomes was roughly 51:49, respectively. Proportions of BL6 TFBSs versus CAST
TFBSs called from these alignments were similar.
25
The mpileup program from the SAMtools package’ was used to count the number of reads
that overlapped each base of the joint assembly. We then filtered these counts to retain only
those genomic locations where it was possible to distinguish between BL6 and CAST
backgrounds. We only retained sites for analysis where a minimum of 10 reads mapped to
30  either FO CAST or FO BL6 across replicates. For F1 crosses, we retained sites overlapping at
least 10 reads for at least 10 alele-specific replicates. We repeated these steps on a site-
specific manner for each TFhistone mark, irrespective of whether multiple SNVs existed at
each ChlP-seq peak.

35  Prior to fitting statistical models and further downstream analyses, we normalized for
sequencing depth by adjusting for differences in library sizes across biological replicates in
FO and F1 populations for each TF/histone mark. A constant scaling factor was estimated for
each library based on the median of the ratio of reads at each SNV over its geometric mean
across al libraries tested. This normalization constant was then applied to each library under
40  the assumption that count differences attributable to biological effects only exists in a small
proportion of the total number of sites. This procedure was performed using R Bioconductor

package ‘ DESeq'73.

To assess overall peak counts and determine the quality of each ChIP experiment, we also
45  aligned reads from each library (FO and F1) to the GRCm38.p2/mm10 genome using
GSNAP7+ with a less stringent mapping criteria. We used a less conservative mismatch
threshold (maximum mismatch of 3 bases per read) to allow F1 reads derived from the CAST
allele to map against the BL6 genome. Based on overall SNV numbers between the strains, a
rough estimation suggests that there are approximately 1 SNV every 100 bps, which
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distinguishes the strains. Regions bound by both TFs and covalently modified histones were
called using MACSL.475 using default parameters.

To mitigate the impact of potential batch effects, biological replicates for each TF for each
5  genetic background were prepared and sequenced in three independent flowcells.

We estimated TF occupancy levels for the histone modification H3K4me3 by taking into
account the fact that histone marks typically localize over a broader genomic region than do
TFBSs. Wider regions cause a dilution in the number of reads overlapping SNV, relative to
10  binding site numbers and sequencing depth. Hence, to increase our ability to resolve binding
differences at H3K4me3 loci, we summed the counts of al SNVs overlapping the same
region. To ensure background-specific peaks were captured, we constructed a summary peak
file comprised of the union of genomic intervals from peak calls from individuals of different
genetic backgrounds (BL6, CAST and BL6xCAST) (library reference: do3342, do3337,
15 do3411).

We identified between 6,000-8,000 TF bound regions per TF where two or more SNVs lie
within close (<250 bp) proximity; ~85% of these co-located SNV's showed the same allelic
direction of TF binding between BL6 and CAST. To avoid multiple counting of TF binding

20  events, we only used one SNV in any 250 bp region in further analyses. Our results were
highly reproducible among replicates (Supplementary Figure 2) with similar numbers of
reads mapping to each genome (Supplementary Figure 3).

Statistical modés for identifying regulatory mechanisms
25 ChiP-seq read counts were used as a proxy for the binding intensities of a TF to the DNA?.
Sites were classified into regulatory categories using the method of Goncalves et al.3>.

We defined as conserved those regions with equal TF binding occupancy between BL6 and
CAST in both FO and F1 individuals, despite the presence of one or more variants near the

30  site of binding; these types of sites could aso be described as non-differentially bound?8. We
defined TFBSs influenced by cis-acting variation as sites where the TF occupancy ratios
between BL6 and CAST genomes found in the FO parents is the same as that observed
between alleles in the F1 offspring, meaning that binding occupancy differences between
strains were determined by locally acting genetic sequences. We defined TF binding

35 influenced by trans-acting variation based on TF binding occupancy differences between
parents, but not between alleles in the F1 offspring. Finally, we defined binding sites
influenced by cistrans-acting variation as showing a complex mixture of cis and trans acting
variation.

40  For each TF or histone mark, FO counts from each strain were modelled as a negative
binomial marginal distribution, while F1 counts were modelled using a beta-binomial
distribution where the parameters of the beta distribution modelled the proportional
contribution from each alele. For each TF and histone mark, there were 6 replicates (i) for
each FO strain and 12 replicates (j) for F1 samples. FO counts for each strain (x;, and y;) were

45 assumed to follow negative binomial distributions while F1 counts (n;), were modeled on an

allele-specific basis (z;) using a beta-binomial distribution:

x; ~ Po(uy), y; ~ Po(vy), z; ~ Bi(n, pj)
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where x; is formally defined as the binding intensity of the variant in the ith C57BL/6J FO
mouse, y; is the binding intensity of the variant in the ith CAST/EiJ FO mousg, n; is the

5 number of reads mapping across both alelic variantsin the jth F1 hybrid and z; is the number
of reads mapping to the C57BL/6J alele in the jth F1 hybrid.

We estimate the dispersion parameter r for FO samples using the ‘estimateDispersions’
function within ‘DESeq’ with local regression fit. r was used as the reciprocal of the fitted
10  dispersion value from ‘DESeq'.

We constrained parameter estimation for each distribution based on four different regulatory
scenarios and derived maximum likelihood values for each hypothetical case on a site-by-site
basis. The four models are described below:

15

Conserved:p, = p,and a = 8

Pu
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Trans: Py * Dy anda =f

Cistrans:p, # py, anda # 8

20

To identify the most probable model at each variant we used the Bayesian information
Criterion (BIC).

25 To avoid confounding results from the analysis of variants derived from the same binding site,
downstream analyses only used variants spaced at least 250 bps apart. Hence, where two or
more variants were found spaced within 250bps of one another, only one variant was chosen
for subsequent analyses.

30
I dentification of motif-disrupting variants
MEME’¢ was used to perform de novo search for enriched motifs for each TF using one
randomly chosen ChiP-seq library per TF (library identifiers do3488, do3463 and do3483).
Sequences +/-50bp from all peak summits were extracted for analysis, where multiple motifs
35 existinapeak, the motif sequence with the best score was retained.

Regional enrichment of mechanismsdriving TF occupancy
Enrichment for TF regulatory categories that overlapped the location of histone marks was
40  assessed using the exact binomial test. Colocation was defined using an overlap of 1bp. The

15
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probability of successin the Bernoulli trial was defined for each TF based on its proportion of
binding categories.

To assess whether co-locating TFs (i.e. binding at the same SNV) share the same regulatory
5 category (i.e. cis, cistrans, conserved, trans) more often than expected by chance, we
calculated the expected probability of Bernoulli success as follows:

Pi = broxa1i X bunraai X bceppai

where b is the proportion of TFBSs in regulatory category i at TFBSs where al three TFs co-
10 locate.

Differential binding analysis of heter ozygous versusWT mice
The genome-wide binding of CEBPA, HNF4A and was assessed in Cepba ™% and
Hnf4a™°*" mice. Three biological replicates per condition (HET or WT) per antibody were
15 compared to quantify changes in TF binding intensity after heterozygous TF deletion. We
then sorted the TFBSs based on whether their occupancy was conserved, or affected by
variation in cis or both cis and trans. Binding intensities were considered as the number of
reads at the summit of peaks that were called by MACSL1.475. The same WT input libraries
were used for peak calling in both HET and WT samples. We filtered out peaks with a read
20  count cut-off of less than 11 reads in less than 5 libraries. Prior to differential binding
comparisons, upper quantile normalization’? was used to adjust for differences in sequencing
depth between libraries. For each TF, ‘edgeR’78 was used to identify peaks with different
binding intensities between HET and WT samples, using a significance cut-off of FDR<0.1.

25 Assigning modes of TF occupancy inheritance
To identify the mode of inheritance of TF binding intensities at non-conserved TFBSs, FO and
F1 libraries were first adjusted for differences in sequencing depth using the median of the
ratio of reads at each SNV over its geometric mean across al libraries as a constant
normalization factor for each library”3. Next, data from each SNV was fitted to statistical

30  models reflecting either additive or dominant/recessive inheritance patterns. Models were
constructed based the following premise: if offspring binding intensities were inherited via an
additive mode of inheritance, we would expect the combined offspring binding intensity from
both alleles to equal the summed binding intensity of parental alleles; on the other hand, if
inherited through a dominant/recessive mode of inheritance, we would expect the combined

35  binding intensity in the offspring across both alleles to equal the total intensity of one but not
the other of its parents. We assumed read counts followed negative binomial distributions.
Here, we formally define the models:

Xmax,i ~ Po(p[ax,i):xmin,i ~ Po (pmin,i)» Yi~ PO(Oi)

40 Xpmay,i 1S defined as the normalized read count binding intensity of the variant in the ith FO
mouse from the parental strain showing the higher median binding intensity among replicates,
Xmin,i 1S the normalized read count binding intensity of the variant in the ith FO mouse from
the parental strain with the lower median binding intensity among replicates. y; is the binding
intensity of the variant in the ith F1 mouse summed across both alleles.

S Spmi S
o~ G , pmax , . G : pmin ,0;~ G ( g o )
pmax,l a <r 1 _ Spmax pmln‘l alr 1 _ Spmm Ol a\r 1 _ SO
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As above, the dispersion parameter, r, was estimated using ‘DESeq’. We used maximum
likelihood estimation to fit the counts to the models below and used BIC to assess which of
5  thefollowing two models best fit counts from each site affected by variation in cis or trans.

Dominant: Sppmax = So 0T Spmin = S,
Additive: Spmax # S, and Spmin # S,

10 We excluded those sites from our results where the parameter estimated for the offspring, S,,,
was indistinguishable from the parameters estimated for both parent, i.e. if S, = S, 4, and
So = Spmin- SuUch sites were determined by comparing the dominant and additive models
separately for p,,4, ; ad Py, i aNd excluding sites found to fit the dominant model in both. It
is possible that additively inherited TFBSs may be misclassified if the difference in binding

15 intensities between the parental measurements is small enough that the F1 measurement is
statistically indistinguishable from either parent due to measurement noise. To minimize this
potential source of error, we restricted tested sites to those TFBSs where the difference
between the means of B6ryand CA ST across biological replicates was equal or greater than
twice the standard deviation of the average binding intensity across biological replicates (this

20  was set at 19 normalized counts or more). To further increase confidence in our results, we
only used sites assigned to their regulatory category with BIC>1.

Over- and under-dominant TFBSs were identified by first restricting al TFBSs to those
classified to aregulatory class with BIC>1. Normalized count data at each TFBS was fitted to

25 the models described above. For each TFBS where the binding occupancy of each parent did
not equalled to that of the offspring (i.€. Syimax # So» Spmin # So), TFBSs were classified as
under-dominant if the mean F1 occupancy level among replicates was less than that of both
parents. On the other hand, TFBSs were classified as over-dominant when the mean F1
occupancy level was greater than that of both parents.

30
Distinguishing influences at lineage-specific TFBSs
Described below are the statistica methods used to distinguish between cis and cistrans
influences at lineage-specific TFBSs. Read counts were normalized between FO and F1
libraries as described in the previous section”3. Lineage-specific binding sites were defined as

35  those sites meeting these criteria: (ratiop<0.05 and ratior<0.05) or (ratiop>0.95 and
ratios;>0.95). ratiorg = B6ro/(B6r/CASTrg) and ratiop=B6r1/(B6r1/CASTE1), Where ratios
were determined between mean levels of binding among biological replicates. We expect that
a lineage-specific site that is influenced only by cis-acting variation would possess F1 count
levels that are half of that in FO. Significant deviation from this 2:1 ratio would indicate

40  variation acting in trans. We constructed the following statistical models to test the likelihood
of these scenarios for each lineage-specific site and used maximum likelihood estimation and
BIC to choose the model of best fit. At each TFBS, reads across replicates were modelled
using the negative binomial distribution.

x; ~ Po(p;),2y; ~ Po(o;)

S S
~Galr—2Pmex ) oG ( 0 )
D a<r1_spmax 0;~ Ga rl—SO
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x ; is defined as the normalized read count binding intensity of the variant in the ith FO mouse

from the strain of lineage-specific binding. y; is the binding intensity of the variant in the ith

F1 mouse summed across both aleles. The dispersion parameter, r, was estimated using
5 ‘DESeq, asdescribed above. We tested the two following scenarios:

Cis: Spymax = So
Cistrans: Spmax * So

Comparison of regulatory mechanisms underlying variation

10  We compared regulatory mechanisms underlying variation in gene expression, chromatin
state and TF binding. Logistic regressions were used to examine the relationship between
gene expression and TF binding. For each gene where expression variation was classified as
affected by variation acting in cis, both cis and trans, conserved and in trans, we determined
the transcriptional context by counting the numbers of each TFBSs, in each TF regulatory

15  category, located in the window 20kb upstream and 10kb downstream of the TSS. Counts of
TFBSs in each regulatory category (i.e. number of TFBSs where occupancy levels were
affected by cis-acting variation, etc) were then used as four independent predictive variables.
Separate regressions were performed using each of the four expression regulatory classes in
turn as the dependent variable. The binary nature of the dependent variable was defined using

20  remaining regulatory categories.

We used the same strategy to study the relationship between TF binding and chromatin state

(H3k4me3), that is, the mechanistic relationship between TFBSs proximal to the histone mark

was assessed using logistic regression. The size of the genomic regions used for the grouping
25 of TFBSswas +/- 2kb from each histone mark location.

To test for shared regulatory mechanisms between H3K4me3 and gene expression, the

histone marks were assigned to genes when they were located within 5 kb upstream of a TSS..

Binomial tests were then used to calculate the statistical enrichment of shared regulatory
30 mechanisms between gene expression and the associated histone marks.

We computed the diversity of TF regulatory mechanisms for genes grouped by expression
mechanisms using Shannon’s diversity index (H')79, which was calculated for each gene as
follows:

35
4

H = —Zailnai

i=1

where g is the proportion of binding sites belonging to the ith TF binding regulatory category
within 20kb upstream or 10kb downstream of a liver-expressed protein-coding gene.

40  Gene expression levels show correlation with TFBS abundance, and highly expressed genes
are expected to be proximal to a more diverse set of mechanisms underlying TF occupancy
change than by chance alone. Hence, to control for differences in expression levels, we
subsampled genes to obtain matched gene expression levels between comparison sets. Gene
expression levels were compared based on the average expression value among biological

45  replicates of the more highly expressed parent. Mean expression levels were first log
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transformed, then separated into 20 bins of equal consecutive intervals. Each gene affected by

variation acting in both cis and trans was then matched to a conserved regulated gene

assigned to the same expression bin. In the same way, genes affected by variation acting in cis

were matched in expression values to conserved genes. All subsampling was done with
5  replacement.

M easuring inter -peak coor dination of TF binding occupancy
To determine the genomic region under the influence of any set of cis-acting regulatory
variants, we calculated correlation coefficients for binding intensities of TFBS pairs at
10  successive genomic intervals away from each cis-directed TFBS. To capture the coordination
of TF occupancies between TFBSs, we calculated Spearman’s correlation coefficient of
alelic proportions (BL6/(BL6+CAST)) between binding sites at consecutive distance bins
centred upon variants acting in cis. Spearman’s Rho was calculated for each mutualy
exclusive bin with their ‘anchor’ peak. Each succeeding bin was increased in interval width
15 by one additional kb (1 kb) from the cis-acting variant. We performed linear regression using
log-transformed distances as the predictor variable with Spearman’s Rho estimates as the
outcome variable to quantify the decay in correlation signal (M ethods, Figur es 4a-b, S10).

In order for meaningful inference, we generated a null distribution of the correlation of
20  binding strengths by comparing occupancy levels of anchor TFBSs with the occupancies of
other TFBS locations sampled randomly from across the genome. Null values were calculated
using TFBSs that were randomly sampled from the total pool (without replacement) to
simulate a set of binned peaks for each anchor peak (anchor peaks were kept constant). The
total number of binned peak simulated was equal to the total number of anchored—binned
25 peak pairings observed. Spearman’s Rho was then calculated as described for the observed set.

To estimate the genomic distance at which the ‘elbow’ or maximum curvature of the curve
occurs, we used a vector projection method on the fitted regression curves?. First, we drew a
line connecting the points from x = 1kb to where x = 50000. Next, for every point on this

30  line at values of x we extended perpendicular lines to intersect with our regression line. We
then measured the lengths of each of these lines and selected the point with the longest length
as the estimate of the elbow.

Hi-C data processing and analysis

35  Hi-C libraries were generated from pooled liver samples from two 2-4 week old mice*9. Raw
data files were quality filtered using Trimmomatic’* using identical parameters to those
described above. We used the Homer Hi-C software
(http://homer.salk.edu/homer/interactions/) to process Hi-C reads and to identify significant
interactions. Restriction sites (fAAGCTT’) were trimmed from our reads prior to mapping to

40  the GRCm38.p2/mm10 genome using GSNAP74 at a maximum of two mismatches per read.
Only reads mapping to unique locations in the genome were retained. Paired reads that likely
represent continuous genomic fragments or re-ligation events were removed if the reads are
separated by less than 1.5x the sequencing insert fragment length (-removePEbg). Paired ends
that originate from areas of unusually high read density were also removed by scanning 10kb

45 regions in the genome and removing reads containing greater than five times the average
number of reads (-removeSpikes 10000 5). Only reads where both ends of the paired read
have a restriction site within the fragment length 3’ to the read were kept (-both). We also
filtered readsif their ends self-ligated with adjacent restriction sites (-removeSelfLigation).
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To detect significant interactions between two genomic locations, we created a background
model to account for the primary sources of technical biases. For example, closely spaced loci
are inevitably enriched for interactions due to their close proximity. We used Homer to
normalize both for linear distance and read depth. We normalized our reads at 10 kb regions

5  across the genome and examined the number of interactions occurring between these regions.
Enrichment for significant interactions were identified using a binomial test against the
expected number of interactions based on the background model that also accounts for the
total number of reads mapping to each locus being tested. The parameters for the binomial
test includes (i) the probability of success is the expected interaction frequency (which vary

10  depending on restriction site locations), (ii) the number of success is the number of reads
mapping between the loci, and (iii) the number of trials is the overall number of significantly
interacting reads.

Data availability:
15  Raw data have been deposited under ArrayExpress accession E-M TAB-4089. Processed data
are available from http://www.ebi .ac.uk/research/flicek/publications/FOG19.
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Figure 1. F1 mice were used to interrogate theregulation of TFBSvariation

(A) In vivo binding of liver-specific TFs FOXA1, HNF4A and CEBPA were profiled in the
5  livers of male mice from inbred strains C57BL/6J (BL6), CAST/EiJ (CAST) and their F1

crosses: C57BL/6J x CAST/EiJ (BL6XCAST) and CAST/EiJ x C57BL/6J (CASTXBL6). Six

biological replicates were generated for each TF and genetic background combination. (B)

The number of TFBS that could be classified with associated number of SNVs. (C) Venn
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diagram illustrates the numbers of classifiable SNVs that overlap between TFs. Each variant
is at least 250bp from any other SNV. Numbers shown are the final numbers of regulatory
loci used for downstream analyses. (D) Heatmap confirming overall accuracy of regulatory
class assignments. BL6 (black) versus CAST (brown) binding intensity ratios for different

5  regulatory categories for CEBPA. A subset of variants from each class was randomly sampled
to match the overall distribution. Sparkline in key shows the number of observations at each
color category where density is increasing from left to right.
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Figure 2. Differencesin TF binding intensities strongly affected by variation actingin cis
and are additively inherited

5 (A) Mean FO versus F1 TF binding intensity ratios (BL6 versus CAST) for CEBPA are
plotted in the left panel. The right panel shows mean FO versus F1 gene expression ratios for
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liver-expressed protein-coding genes™. The correlation coefficient reflects the extent of cis-
directed regulatory mechanisms. (B) Proportion of CEBPA binding locations at promoters
and enhancers. The width of the bar is proportional to the overall number of TFBSsin the *All’
category. Binomial tests were used to test for enrichment at promoters and enhancers for each
5  regulatory class based on the overall numbers of TFBSs (‘All’). ***P<0.0001 **P<0.001*
P<0.05. (C) Most alele-specific TFBSs are affected by variation acting in cis. Lineage-
specific TFBSs were defined as TFBSs where binding occurs either in BL6 or CAST in FO
individuals and in an allele-specific manner in F1 individuals based on a cut-off
(FOgs/(g6+cast)>0.95, Flgess+casn>0.95, FOgg(ss+cast < 0.05, Flgg/ses+casn < 0.05). These
10  TFBSs can be sorted into the three categories described. (D) Mean CEBPA log2 FO total read
counts were plotted against mean log2 F1 read count (BL6 + CAST allele) multiplied by 2.
For the scatterplot, we used averages across biological replicates. TFBSs affected by variation
acting in cis are thus expected to fall along the diagonal and these have been colored blue (see
C). Categories shown were determined by maximal likelihood estimation. (E) The magjority of
15  cis-directed TFBSs are inherited additively. TFBSs affected by variation acting in trans may
show additive or dominant inheritance patterns in TF binding intensities. Different modes of
inheritance were defined by comparing overall peak binding intensities between FO and F1
individuals. Total F1 counts were individually scaled to 1 (yellow). Red indicates TFBSs
where F1 > FO; blue indicates TFBSs where F1 < FO. CEBPA data is shown.
20
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Figure 3. Effect of genomic distance on cis-acting inter-peak correspondence
(A) Strategy for measuring the span of cis regulatory effects. Successive 1kb bins were taken
5  from each TFBS affected by variation acting in cis starting 400bps from the location of the
SNV and extending in both directions. For each bin, Spearman’s p was calculated using the
BL6:CAST dlélic ratio between queried TFBSs against TFBSs assigned as anchorages for the
analysis. (B) Spearman’s p values for each bin were plotted for each TF. The linear regression
line (solid red) calculated from these values is shown. Red dashed lines mark the 90%
10  confidence intervals of the true slope of the line. Grey dots represent the null background
distribution of correlation values constructed by the random subsampling of TFBSs to anchor
TFBSs (see Methods). The numbers of TFBSs in each randomly sampled bin were matched
to those in the observed bins. The grey line is the linear regression line for the correlation
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values derived from sampled points. (C) TFBSs are enriched at regions of chromatin contact.
Enrichment values were calculated compared with expected rate of chromatin contact given
the general enrichment for contact in each regulatory dataset (i.e. cons, trans, cis, cistrans).
‘Any’ denotes the null background set of randomly chosen locations in the genome
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Figure 4. Genetic and epigenetic influences that change TF binding have paralld
consequences for gene expression and chromatin
(A-B) Coordination between the regulatory categories of variation in TF binding occupancy
variation and chromatin (A) and gene expression (B). Locations of the considered TFBSs are
5 noted in the cartoons on the left. Separate logistic regressions were performed for each
chromatin regulatory class (see Methods). Odds ratios were mean-centred for comparison
across chromatin regulatory classes. Absolute values of Z-scores greater than two (a<0.05)
are denoted by a black border. (C) Direct association between chromatin and gene expression.
Genes were linked to H3K4me3 modifications if the mark was located within 5kb upstream of
10 the TSS. Binomia tests were performed based on the expected background probability of
observing the same regulatory mechanism underlying both expression and histone enrichment
change. (D) High diversity in regulatory mechanisms of TF binding variation is associated
with gene expression influenced by cistrans-acting variation. Calculations are on a gene-by-
gene basis for TFBSs 20kb upstream and 10kb downstream of TSSs. These scores were
15 compared between genes grouped by transcriptional regulatory class. Significant P-values for
Mann-Whitney U tests are shown. The surface area of the violin plot is proportional to the
number of genesin each class.
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