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Abstract 
 
Noncoding regulatory variants play a central role in the genetics of human diseases and in 
evolution. Here we measure allele-specific transcription factor binding occupancy of three 
liver-specific transcription factors  between crosses of two inbred mouse strains to elucidate 5 

the regulatory mechanisms underlying transcription factor  binding variations in mammals. 
Our results highlight the pre-eminence of cis-acting variants on transcription factor occupancy 
divergence. Transcription factor binding differences linked to cis-acting variants generally 
exhibit additive inheritance, while those linked to trans-acting variants are most often 
dominantly inherited. Cis-acting variants lead to local coordination of transcription factor 10 

occupancies that decay with distance; distal coordination is also observed and may be 
modulated by long-range chromatin contacts. Our results reveal the regulatory mechanisms 
that interplay to drive transcription factor occupancy, chromatin state, and gene expression in 
complex mammalian cell states.  
  15 
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INTRODUCTION 
 
Understanding how genetic variation propagates into differences in complex traits and disease 
susceptibility is a major challenge. Evolutionary studies have revealed examples of regulatory 
variants linked to different organismal phenotypes1. Genome-wide studies have also found 5 

that many common disease-associated genetic variants lie in regulatory sequences2–4 with 
genetic changes at local-regulatory elements leading to coordinated chromatin changes within 
constrained genomic domains5,6.  
 
A key determinant of transcriptional activation and spatiotemporal specificity is the affinity 10 

with which collections of transcription factors (TFs) bind to gene regulatory regions7–9. How 
TF binding specificity and strength is shaped by cis- and trans-acting variation remains poorly 
understood10, and understanding the interplay between TF binding and the surrounding 
chromatin state is critical for determining phenotypic diversity. 
 15 

Cis-acting sequence changes substantially modulate TF occupancy11,12, but direct disruption 
of TF-DNA binding motifs is relatively rare13–19. This seemingly conflicting observation may 
be potentially explained by changes to surrounding chromatin state, long range TF-TF 
connectivity6 or cis-acting binding determinants near but outside the core binding motif20. 
 20 

Strategies used to dissect cis- and trans-acting mechanisms include quantitative trait loci 
(QTL)-based analyses and F1 crosses of genetically inbred organisms. QTL analysis 
correlates a measured molecular trait, such as gene expression or TF binding intensity with 
genetic variation. However, fully distinguishing between regulatory divergence in cis and in 
trans in expression quantitative trait loci (eQTL) and chromatin immunoprecipitation 25 

quantitative trait loci (ChIP-QTL) studies21 requires large numbers of genetically diverse 
samples to achieve statistical power22–25. In addition, trans-effects are extremely difficult to 
identify and then validate26,27.  
 
Alternatively, regulatory mechanisms can be revealed by analysis of the patterns of 30 

divergence occurring in F1 genetic hybrids; this approach has been widely used to analyze 
gene expression in yeast28,29, maize30, fruit flies31–33 and mouse34,35. By placing two alleles in 
a shared trans environment and comparing their allelic occupancy, the relative cis and trans 
contributions to a measured molecular trait can be evaluated36. Any variance from the 
occupancy observed in the parent F0 mice can be assigned to the influence of trans-acting 35 

variation. Like QTL-based approaches, analysis of F1 data results in a probabilistic 
description of the role of cis and trans effects. However, the use of F1 crosses classifies 
mechanisms underlying regulatory changes as either cis- or trans-acting more accurately than 
eQTL approaches, because the functional differences in vivo between the two alleles are 
directly evaluated in F1 mice36, rather than distance restricted searching between causative 40 

variants and TF occupancy differences as is common in eQTL approaches and which make 
distant eQTLs impossible to discover37. Formally, this system analyses the correlation 
between specific variants and observed functional effects, i.e. the effect of a variant on either 
cis- or trans-regulation. Although it is generally not possible to unambiguously assign 
causality from a specific variant to a functional effect, for simplicity in this study we will use 45 

the term ‘regulatory mechanism’ to refer to this connection.  
 
Here we employ F1 hybrids to comprehensively dissect TF binding differences in mammals. 
We created first-generation genetic hybrids from divergent mouse sub-species to dissect 
trans-acting mechanisms that affect both chromosomes equally due to a shared nuclear 50 
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environment, from the allele-specific differences caused by cis-directed mechanisms32,33,38,39. 
We leveraged this strategy to interrogate the inheritance of TF binding occupancy40,41. We 
find that changes to TF binding occupancy is predominately mediated by variation that acts in 
cis, and is thus additively inherited. In addition, cis-acting variation is able to influence 
multiple transcription factor binding sites (TFBS). Finally, we observe coordination in the 5 

regulatory mechanisms between TF binding occupancy, chromatin state and gene expression 
by incorporating matched transcriptomic data from RNA-seq35. Our results provide a 
comprehensive and quantitative overview of how different layers of regulatory variation 
create tissue-specific transcriptional regulation. 
 10 
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RESULTS 
 
Transcription factor binding in mouse reciprocal crosses  
 
In order to dissect the extent of cis and trans variation in TF occupancy variation, TFBS 5 

occupancy was mapped with six biological replicates using chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) against three liver TFs (HNF4A, FOXA1, CEBPA) in 
inbred mouse sub-species C57BL/6J (BL6) and CAST/EiJ (CAST) and their F1 crosses 
(BL6xCAST and CASTxBL6) (Figure 1a, Supplementary Figures 1-3, Supplementary 
Tables 1-2, Methods); all data are in ArrayExpress (E-MTAB-4089). The large number 10 

(~19M) of single nucleotide variants (SNVs) between two parental strains, which are 
estimated to have less than 1 million years divergence42, is comparable to that found in human 
populations43, and permits a substantial proportion of allele-specific TF binding to be 
measured.  
 15 

Approximately 60-70,000 regions in the genome are bound by each TF (Methods), and 
approximately 20% had one or more SNVs with sufficient sequencing coverage to permit 
quantitative allelic resolution of TF binding (Figure 1b). Of these TFBS, in ~3-6% of these 
cases, SNVs directly disrupt a binding motif. Most (ca. 62%) SNVs are found in regions 
bound by only one TF, 34% are found in regions bound by exactly two TFs, and 5% by all 20 

three TFs, and are highly reproducible (Figure 1c, Supplementary Figure 2).  
 
Cis and trans effects can be distinguished by the differences in binding affinities among F0 
parents and their F1 offspring, as cis-acting variation must remain allele-specific28,29,32,33,35 
(Supplementary Figure 4a, Supplementary Figure 5). TFBS that had informative SNVs for 25 

allelic resolution were classified into four regulatory categories – conserved (non-differential), 
cis, trans, and cistrans (affected by variants acting both in cis and in trans) (Supplementary 
Figure 4b) (Methods).  
 
Differences in TF binding occupancies between the two mouse strains were most frequently 30 

affected by cis-acting variation (44-49%), followed by cistrans (14-17%) and trans (8-13%); 
23-30% of TF binding was conserved despite the presence of one or more variants near the 
site of binding (Supplementary Figure 4c). Proportions of TFBSs belonging to each of the 
four categories were similar between all TFs. As expected, there are fewer conserved 
locations when SNVs directly disrupt the bound motif (Supplementary Figure 4c)19.  35 

 
We confirmed the accuracy of the class assignment by visualising the difference in occupancy 
ratio between parental alleles and F1 alleles. By subtracting the F1 BL6:CAST ratio from the 
corresponding F0 ratio we found little difference in the allelic ratios from the parent and 
offspring in cis and conserved categories (Figure 1d). In contrast, trans and cistrans 40 

categories show appreciable genotype specific signal. We validated our ChIP-seq measures of 
binding by performing allele-specific pyrosequencing (Supplementary Figure 6), confirming 
that approximately 40% of genetic variations that affect TFBS are cis-acting, compared with 
only 14% for liver-transcribed genes35.  
 45 

 
Characterization of TF binding occupancy  
 
To quantitate the effect size of cis-acting variation on TF occupancy, we compared TF 
binding between F0 and F1 individuals using Pearson’s correlation (Figure 2, 50 
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Supplementary Figure 7, Methods). In the absence of noise, a correlation coefficient of zero 
indicates that cis and trans contributions are equal, whereas a correlation coefficient of one 
indicates the absence of trans effects. We find Pearson’s r for TF binding to be significantly 
larger, and therefore cis dominated, compared to gene expression (TF binding: r=0.92, 95% 
CI (0.915, 0.919), P<2.2e-16; expression: r=0.62, 95% CI (0.607, 0.631), P<2.2e-16). Indeed, 5 

in 80% of instances when we compared any randomly chosen TFBS to any randomly chosen 
expressed gene, the magnitude of the cis effect was greater for TF occupancy than for gene 
expression (magnitude measured by the distance between F1 alleles over 10,000 random 
comparisons). 
 10 

For lineage-specific TF binding locations, determined using Mus spretus as an outgroup44, we 
constructed statistical models to test the extent of variation acting in cis versus in cistrans to 
determine if variation that acts in cis or in trans is primarily responsibly for the creation of 
new TFBS. If the divergence was only due to variants acting in cis, the binding strength in the 
F1 allele will be half that in the F0 mouse. If TF binding in the F1 mouse were also influenced 15 

by variants in trans, then these binding intensities would be either greater or less than half the 
level found in the parent (Methods). The vast majority (87%, 1056/1217) of lineage-specific 
TFBS were affected by variation acting in cis (Figure 2c-d), while only 13% (161/1217) 
showed evidence of the influence of trans-acting variation. Overall, lineage-specific sites are 
up to two times less likely to have contributions from trans variants. Furthermore, we 20 

observed no lineage-specific TFBS were affected only by trans-acting variants (i.e. strain-
specific in F0 but equally bound in F1). Our results strongly suggest that cis-directed variation 
either directly (e.g. modification of the binding motif) or indirectly (e.g. through remodelling 
of surrounding chromatin) play a required role in birth of TFBSs.  
 25 

Next, we examined selective forces acting on TFBSs affected by variation in both cis and 
trans. Binding sites that show increased or decreased occupancy in the F1 due to cistrans-
acting variation can have their effects decomposed into cis-acting variation that are either 
compensated by, or further changed by, trans-acting variation. We call changes compensatory 
when the difference in binding intensities in F1 < F0, whereas we call changes diversifying 30 

when the difference in F1 > F0. Under complete neutrality, both compensatory and 
diversifying trans effects should be equally favored28. Indeed, the frequency of compensatory 
versus diversifying effects is not significantly different at lineage-specific TFBSs (binomial 
test, P=0.6) (Supplementary Figure 8a, Supplementary Table 3), suggesting many allele-
specific TF binding events are neutral. However, of the 2,563 CEPBA binding sites affected 35 

by variation in both cis and trans found on both alleles, 64% show compensatory changes 
(binomial test, P<2.2e-16), suggesting that shared TFBSs are more frequently subject to 
purifying or stabilizing selection (Supplementary Figure 8a, Supplementary Table 3). 
These numbers closely mirror the proportion of compensatory versus diversifying effects 
reported for gene expression in liver (68% compensatory, 32% diverging)35. No strain-40 

specific TFBS affected only by variation in trans were observed (i.e. strain-specific in F0 but 
equally bound in F1). These results suggest that variation occurring is cis may either directly 
(e.g. by modification of the binding motif) or indirectly (e.g. through the opening up of 
chromatin by altering the shape of the DNA) play a required role in birth of TFBSs. 
 45 

Additionally, we found little difference in selection pressure between strain-specific TFBSs 
that were gained and those that were lost in either BL6 or CAST lineages in the less than one 
million years42 since their divergence. Lineage-specific TFBS can be caused by: 1) lineage-
specific loss of a TFBS that existed in the common ancestor of BL6 and CAST 
(plesiomorphic), or 2) lineage-specific gain since the most recent common ancestor in one 50 
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strain (apomorphic) (Supplementary Figure 8b). To identify gained versus lost TFBS, we 
compared our lineage-specific TFBS with matched TFBS data obtained from livers of Mus 
Spretus (SPR)19, a mouse species of equal evolutionary distance (ca. ~1.5–2 MY) to both BL6 
and CAST44. We distinguished between BL6 versus CAST lineage-specific binding sites that 
are apomorphic (present in BL6 not CAST or SPR and present in CAST not in BL6 or SPR) 5 

and plesiomorphic (shared between BL6 and SPR and between CAST and SPR but not BL6 
and CAST). Around 35% of TFBSs strain-specific between BL6 and CAST were also found 
in SPR, placing a lower bound on the number of plesiomorphic TFBSs. Proportions of TF 
binding locations influenced by cis- or trans-acting variation were evenly distributed between 
apomorphic and plesiomorphic (binomial test, P>0.01) suggesting that there is little difference 10 

in selection pressure between strain-specific TFBS that are gained versus those that are lost. 
 
We evaluated the potential regulatory activity of the TF binding by mapping the genome-wide 
locations of H3K4me3 (marking transcription initiation sites) and H3K27ac (marking 
potential enhancer activity)45 in F1 mouse livers (Methods). At promoters, TF occupancy 15 

changes affected by variation acting in cis and in both cis and trans were underrepresented 
(All TFs; binomial test; cis: P=1.1e-6, odds ratio (OR)=0.8; cistrans: P=1.2e-8, OR=0.6), and 
conserved sites were overrepresented (P<2.2e-16, OR=1.7) (Figure 2b). Regions showing 
enhancer activity were enriched for conserved TFBSs, and depleted for TFBSs that were 
directed by cis and cistrans variants (cis: P=3.4e-3, OR=0.8; cistrans: P=1.6e-6, OR=0.6; 20 

conserved: P=3.3e-8, OR=1.5).  
 
The stability of genomic occupancy at TFBSs was assessed by evaluating the TF occupancy 
in BL6 mice with a single allele deletion of Cepba or Hnf4a, which can reveal regulatory 
activity and gene expression with more direct TF dependency46. When TF expression was 25 

reduced, the change in TF occupancy level was greater for binding sites influenced by cis-
directed variation compared to those with a conserved binding pattern (Supplementary 
Figure 9). This suggests that TFBSs affected by variation acting in cis are more sensitive to 
changes in TF expression while non-differentially bound TFBSs are buffered.  
 30 

TFBSs can be inherited in an additive or non-additive manner for variation that acts in cis or 
in trans41. Additive inheritance occurs when the combined occupancy of the F1 alleles is 
equal to the sum of the two parental (BL6 and CAST) F0 alleles31,41,47. Recall that cis and 
trans categories are defined by the occupancy ratio between parental alleles and F1 alleles 
(Methods), while inheritance concerns the total signal from both alleles. Dominant inheritance 35 

occurs when the total allelic occupancy in the F1 offspring is equal to that of either parent 
(Figure 2e). We fitted statistical models for both scenarios and evaluated them using 
Bayesian Information Criteria (BIC) (Methods).  
 
Of the 2,382 TFBSs influenced by cis-acting variation (Methods), 72% (1,720) showed 40 

additive inheritance (of which 1,215 had BIC>2), whereas 28% (662) appeared dominant, 
which may partly reflect assignment errors (see Discussion). In contrast, of 341 TFBSs 
influenced by trans-acting variation 74% (280) exhibit dominant inheritance, whereas only 
26% (61) were additive. Similar trends were observed for FOXA1 and HNF4A 
(Supplementary Table 4).  45 

 
We searched for evidence of over- and under- dominant patterns of occupancy inheritance 
that may correspond, respectively, to stronger or weaker F1 occupancy levels compared to 
parental measurements. In gene expression, this pattern of imbalance can be associated with 
hybrid incompatibilities41, and comprises approximately 27% and 8% (under- and over-50 
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dominant, respectively) of expressed genes between two strains of fruit flies41. In mice, we 
found that 6% and 11% of liver expressed genes showed under- and over- dominant modes of 
expression inheritance (Supplementary Figure 10). In contrast, less than 1% of sites in 
mouse tissues were determined as under- or over- dominant across all TFBSs (where BIC>1) 
(Supplementary Table 5). Thus, under- or over-dominant TFBS inheritance appears rarely if 5 

at all.  
 
In summary, variation in TF occupancy is strongly influenced by variation acting in cis, 
whereas TFBS affected by variation in trans are uncommon. In contrast to gene expression41, 
TFBSs are largely inherited additively, and TFBSs affected by variation acting in trans are 10 

mostly dominantly inherited (Supplementary Figure 10).  
 
 
Influence of cis-acting variation rapidly decays with distance 
 15 

We asked what impact cis-acting variation have on TF occupancy at varying genomic 
distances because chromatin state can depend on distal functional elements5,6. For example, in 
humans eQTLs are considered local if they are within 2 Mb of the gene they influence48 and 
many distant eQTLs are known to exist37. 
 20 

We first confirmed that overlapping binding events from different TFs share cis-acting 
variation more often than expected by chance (Supplementary Figure 11). We quantitated 
the affinity with which cis-acting variation influence distant TF binding occupancies using a 
complementary strategy to Waszak et al.6. Although the exact location of each causal variant 
is unknown, the genomic span (or effect distance) of a cis-acting variant can be inferred by 25 

examining co-variation in binding occupancies between neighbouring TFBSs (Methods, 
Figure 3a, Supplementary Figure 12).  
 
The correspondence between TF binding occupancies decreases at a logarithmic rate, with 
similar trends observed across all three TFs (Figure 3b). For example, the correspondence is 30 

2-3 times lower at 50kb than at 3kb, but we nevertheless detected correspondence affected by 
variation acting in cis slightly above genomic background levels up to 400kb away 
(Rho=0.01–0.02, linear regression). We estimated using vector projection that the observed 
correspondence between TFBSs falls off relatively quickly for approximately 13kb and more 
slowly thereafter (Methods) suggesting that the genomic scope of a cis-acting variant on TF 35 

binding is on the order of 10kb. Our results were consistent across several bin sizes grouping 
nearby SNVs (Supplementary Table 6). Different TF binding locations appear to be 
similarly correlated, as shown recently for chromatin domains5,6. 
 
Long-range coordination of TF occupancy could be affected by cis-variation via three-40 

dimensional interactions, and we therefore searched for direct evidence that spatially distinct 
TFBSs interact (Figure 3c). We analyzed Hi-C data from BL6 mice49 to identify the 
interaction endpoints that overlap CEBPA binding locations (Methods). As expected, 
conserved sites were more likely to overlap long-range interaction endpoints (logistic 
regression: P<0.05, OR=1.14–1.20) (Supplementary Table 7). Chromatin interactions 45 

anchored on a cis-associated location were strongly enriched over the any-versus-any 
background (binomial test; P-value: cons versus cons=2.0e-8, cis versus trans=1.8e-9, cis 
versus cons=4.0e-10, cis versus cis=5.7e-6, cis versus cistrans=4.5e-4). Significant 
enrichment over the any-versus-any background set was observed for all categories of TFBS.  
 50 
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Our data support a model where the cis-acting variants causal for differences in TF binding 
occupancy are mostly proximal to the TFBS they affect. However, regions with TF 
occupancy, including TFBSs affected by variation that acts in cis, are disproportionately 
found at interaction endpoints for genomic domains, providing a possible mechanism for the 
observed long-range correlations. 5 

 
 
Coordination of regulatory mechanisms  
 
The connection between genetic variation with TF binding, chromatin state and gene 10 

expression has recently been studied in human cell lines14,15,17. However, how genetic 
variants affect the interplay and temporal ordering of these regulatory layers remains poorly 
understood.  
 
As above for transcription factor binding, we classified the regulatory mechanisms of 15 

variation underlying the allelic changes in chromatin state and transcription based on whether 
these differences are influenced by variation acting in cis, conserved, influenced by variation 
acting in trans, or by variation acting in both cis and trans (Figure 4, Methods). We then used 
logistic regression to establish whether the mechanisms responsible for regulating TF binding 
differences are enriched or depleted within the corresponding chromatin and gene expression 20 

categories.  
 
We found similar variant classes underlying TF binding occupancy, chromatin state, and gene 
expression at the same locus as represented by the darker red circles on the diagonal in Figure 
4a-b. For example, the genetic variants that influence TF binding in a cis-acting manner are 25 

more likely to be collocated with H3K4me3 regions also showing changes influenced by cis-
acting variation (top left red circle in Figure 4a). This is compatible with models proposed by 
Kilpinen et al.15.  
 
Furthermore, there is a positive, albeit modest, correlation between the direction of effect 30 

between allelic changes in TFBS occupancy and gene expression (Supplementary Figure 
13). In other words, when a TFBS increases its occupancy, then nearby gene transcription 
often increases (binomial test, P=2.9e-4) and with similar magnitude (Spearman’s rank 
correlation, rho=0.29, P=6.3e-12).  
 35 

We controlled for the possibility that these effects are caused by differences in expression 
levels by using an alternative strategy that subsampled genes with least one TF binding event 
in the region 20kb upstream and 10 kb downstream of the TSS so that they had matched 
expression levels between regulatory classes. We found that genes showing conserved 
expression levels were depleted for TFBSs with occupancy affected by variation in cis 40 

(Mann-Whitney U test on a per gene basis comparing the numbers of different TFBSs near 
conserved regulated genes against genes where expression is influenced by variation in cis or 
cistrans, P=9.8e-11 and 2.2e-16, respectively). Hence, genes whose expression variation is 
influenced by variation in both cis and cistrans possessed a higher than expected number of 
TFBSs proximal to the TSS that were influenced by variation in cis. Analysis of genes with 45 

expression affected by trans variants was uninformative due to the small number of genes (14) 
in this category. 
 
We also confirmed previously observed correlations between promoter chromatin state and 
gene expression48. We identified a subtle but significant correspondence between the types of 50 
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regulatory variation underlying promoter activity differences and gene expression differences 
(binomial test; cis P=0.04, cistrans P=0.03, conserved P=0.02, trans P=0.25) (Figure 4c). 
These results suggest robustness to our overall analysis. 
 
Finally, TFBSs often act in concert with one another. Using Shannon’s entropy, we compared 5 

the mechanistic diversity of TF binding variants with the regulatory mechanisms of variation 
affecting nearby gene expression (Methods). In effect, this analysis asks whether the 
collective effect of the cis- and trans-acting variation underlying changes to occupancy levels 
of multiple TFBSs can propagate to gene expression. Expression influenced by variation in 
cis or both cis and trans was significantly more likely to be associated proximally to TFBSs 10 

that are themselves affected by variation acting through diverse mechanisms (Mann Whitney 
U test) (Figure 4d). In contrast, conserved expression was likely to be associated with TFBSs 
directed by a similar type of variant. We controlled for the possibility that the association 
between the diversity of TFBS and the category of gene expression might be due to 
differences in gene expression levels within each category by repeating the analysis using 15 

expression matched subsets of genes from each regulatory category. We observed little 
difference on our core results (Mann Whitney U test; cistrans versus conserved: P=1.4e-7, cis 
versus conserved: P=1.4e-3). Our results therefore suggest that genes affected by variation 
that is cis-acting and cistrans-acting are more likely to be proximal to TFBS of high 
mechanistic diversity. 20 

 
 
 
 
DISCUSSION 25 

 
Directly connecting genome-wide observations of transcription factor binding with functional 
outputs in gene expression is challenging because of what appears to be two conflicting 
observations. On the one hand, most variation in the human genome associated with complex 
disease and other phenotypes is non-coding4. Even for Mendelian disorders, exome 30 

sequencing can suggest causative sequence changes in only a minority of cases (~25%)51. 
Both point to a major role for functional sequence changes in the regulatory regions of the 
genome, which subsequently lead to changes in gene expression. On the other hand, TF 
binding demonstrates both variability between even genetically identical individuals and such 
strikingly rapid evolutionary change52 that it is tempting to conclude that the vast majority of 35 

TF binding is non-functional "biological noise"53.  
 
Here, we have undertaken a detailed and comprehensive dissection of the genetic mechanisms 
driving TF binding occupancy differences in mammals and integrated these results with 
chromatin and gene expression information. Our initial findings regarding how genetic 40 

sequence variation associates with TF binding differences between alleles are consistent with 
previous reports at a more limited set of locations in murine immune cells54, human 
lymphoblast cells14,18, and using computational simulations55,56. Specifically, almost three-
quarters of assayed quantitative differences in TF binding occupancy appear to be the result of 
nearby genetic differences that acts in cis.  45 

 
However, our integrated analysis extending from TF binding to output gene expression using 
F1 inter-strain mouse crosses revealed a number of novel insights. First, the vast majority of 
trans-directed TF binding differences are dominantly inherited. Although most binding 
influenced by cis-acting variation is inherited additively, as expected, a small proportion 50 
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appears to show dominance/recessive inheritance. One plausible biological explanation is the 
presence of variation acting in trans that does not interact with cis-acting variation at each 
allele. Despite this, cis and trans-acting variation driving TF occupancy change show clear 
differences in their mode of inheritance. Second, allelic differences in TF binding are 
correlated at kilobase distances above the genomic background, likely influenced by 5 

neighbouring cis-acting variation. A minor fraction of TFBSs show long-range coordination, 
which may be driven by enrichment of TFBS at chromatin contacts. Such long-range 
correspondence is similar to recently described coordination of chromatin states within 
topological domains6,57. Third, we demonstrate interplay between the different mechanisms of 
variation that underlie transcription factor binding and tissue-specific gene expression in vivo. 10 

Aspects of the regulatory interplay between chromatin and gene expression has been reported 
in human cell lines and mouse species15,58–61.  
 
The F1 genetic cross analysis is very effective at disambiguating cis- and trans-acting 
regulation overall. Our data shows that genetic variants can (simultaneously) direct TF 15 

binding, chromatin, and gene expression changes using a similar combination of regulatory 
variation that acts in cis and trans. However, the full temporal order of regulatory events 
cannot be determined from our data. For instance, our results do not reveal whether genetic 
variants first affect TF binding which then affects chromatin - or vice versa. However, the 
presence of an additional trans component in gene expression suggests that it is downstream 20 

of both TF binding and chromatin modifications.  
 
The independently determined categories of regulatory variation correspond well between TF 
occupancy and gene expression. This is potentially surprising given the difference in the 
overall regulatory repertoire between TF binding and gene expression. Namely, protein-DNA 25 

interactions are shaped by a comparatively simple combination of DNA sequences, chromatin 
context, and (in some cases) noncoding RNA associations. In contrast, a multitude of 
regulatory processes influence gene expression, including TF binding as well as post-
transcription processing, translation rate and mRNA degradation. Our results support a model 
whereby the variation underlying gene expression differences arise substantially from a 30 

composite of the variation that modulate TF binding differences in multiple individual TFBSs.  
 
Our analysis has specific limitations. Our approach cannot analyse the majority of TFBSs 
where no informative SNV is present, and these unclassified TFBSs are more likely to be 
conserved. However, a change in the relative proportion of regulatory categories is not 35 

expected to influence our key findings, which were focused on the regulatory mechanism 
effect size. Our analysis ignores structural variants, and we have not directly measured fitness 
in the F1 animals. We also cannot preclude the possibility that tissues other than liver may 
demonstrate a greater affect of trans-acting variation on TF binding differences. Although 
most tissue-specific gene expression appears to be driven by combinatorial TF binding of 40 

dozens of TFs10, we have profiled only a subset of three. However, analysis of the occupancy 
of over a hundred TFs in one tissue strongly suggest that our data will reflect the typical 
mechanistic contributions influencing the evolution of all tissue-specific TFs62. Finally, our 
technical definition of the binding sites affected by both cis and trans variation will include 
TFBSs with high biological and/or technical heterogeneity.  45 

 
Our work builds upon previous findings of genomic coordination among TF binding, 
chromatin marks and transcription5,6,15,63 and highlights the key role played by the basal 
variation that underlie TF binding in directing regulatory change.  
 50 
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METHODS: 
Sample collection and preparation 
All mice were housed in the same husbandry conditions within the Biological Resources Unit 
in the Cancer Research UK-Cambridge Institute under a Home Office Licence. C57BL/6J 5 

(stock Number 000664, imported from Charles River Labs) and CAST/EiJ (stock number 
000928, imported from The Jackson Laboratory (www.jax.com)) mouse strains were used in 
experiments as parental strains (F0) as well as for breeding of reciprocal crosses of F1 mice. 
All mice used in the experiments were males between eight and 12 weeks of age, and 
harvested at the same time of day (between 8 and 11am). Liver perfusion was performed on 10 

mice post mortem, prior to tissue dissection. Harvested tissues were formaldehyde cross-
linked for ChIP-seq experiments. Before cross-linking, dissected tissue was immediately 
chopped post mortem and added to a cross-linking solution containing 1% formaldehyde. 
Tissue was incubated for 20 min prior to quenching with 1/20th volume of 2.5 M glycine. 
Samples were incubated for a further 10 min before washing with PBS and flash-freezing and 15 

storage at -80oC. 
 
Generation of HNF4A and CEBPA heterozygous mice 
To create HNF4A and CEBPA heterozygous knockout mice, we acquired mice with targeted 
alleles from The Jackson Laboratory (HNF4A stock number: 00466564; CEBPA stock 20 

number: 00623065). Heterozygous knockouts were generated via the Cre-loxP system66 using 
the germline deleter strain PgkCre67, obtained from The Jackson Laboratory, and crossing it 
to CebpaFLOX/FLOX and Hnf4aFLOX/WT mice. Ear biopsies were taken at the time of weaning for 
genotyping to confirm deletion via PCR (Supplementary Table 8).  
 25 

ChIP-seq experimental procedure 
The ChIP-seq protocol used was as described by Schmidt et al.68.  Briefly, livers were 
isolated from 10 to 12 weeks old mice and liver tissue was post-mortem cross-linked using 
1% formaldehyde (v/v), lysed and sonicated. Protein-bound DNA was immunoprecipitated 
using 10µg of an antibody against CEBPA (Santa Cruz, sc-9314), HNF4A (ARP 30 

31946_P050), FOXA1 (ab5089, Abcam), H3K27ac (ab4729, Abcam), or H3K4me3 
(Millipore 05-1339). Immunoprecipitated DNA was end-repaired at 20°C for 30 min, 
Adenine overhang was added at 37°C for 30 min, and Illumina sequencing adapters ligated at 
room temperature for 15 min before 16 cycles of PCR amplification. PCR conditions: 1) 98°C 
– 30 sec; 2) 98°C – 30 sec, 65°C – 30 sec, 72°C – 30sec, 16 cycles; 3) 72°C – 5 min. DNA 35 

fragments ranging from 200- to 300-bp in size were selected on a 2% agarose gel for 50-bp 
single-end read sequencing on an Illumina HiSeq 2000 according to the manufacturer’s 
instructions. 
 
Validation of allele-specific TF binding with pyrosequencing 40 

We performed pyrosequencing to confirm the allele-specific occupancy of CEBPA in livers 
from F1 mice in both genetic cross directions. The assays and primers (Supplementary 
Table 9) for pyrosequencing were designed using PyroMark Assay Design Software. The 
annealing temperature for PCR primers was optimized by gradient PCR. Primers’ efficiency 
was confirmed using quality controls with different proportion of BL6 and CAST DNA 45 

(0/100%, 30/70%, 50/50%, 70/30%, 100/0%). PCR conditions: 1) 95°C – 5 min; 2) 94°C – 30 
sec, optimized t°C – 30 sec, 72°C – 55sec, 40 cycles; 3) 72°C – 5 min. PCR product was 
mixed with streptavidin beads dissolved in binding buffer and gently shaken for 20 min. 
Sequencing primers were dissolved in annealing buffer and aliquoted into PSQ plate. DNA-
Beads were cleaned on the PyroMark vacuum workstation and then mixed with PSQ 50 
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Primer/Annealing Buffer. The samples were incubated at 85°C for 3 min, centrifuged for 3-4 
minutes at 2500 rpm and then loaded to the pyrosequencer. PyroMark Gold Q96 SQA 
Reagents were used to load the pyrosequencer. 
 
Estimation of allele-specific binding level 5 

We constructed the Mus musculus castaneus genome assembly using CAST/EiJ SNV calls 
(ENA accession: ERS076381) against the Mus musculus reference assembly (C57BL/6J)69. 
Single nucleotide variants (SNVs) were mapped from their original calls on NCBI37/mm9 to 
the latest version of the mouse assembly, GRCm38.p2/mm10, and nucleotides at each base 
position were changed to reflect point mutations in CAST. SNV calls were available for all 10 

autosomes and the X chromosome.  
 
To assess allele-specific binding and histone enrichment, we aligned reads to an alignment 
index comprising of both GRCm38.p2/mm10 (BL6) and CAST assemblies. Indexing of the 
genomes was performed using BWA (Version 0.7.3a)70. Raw sequencing reads were first 15 

filtered and trimmed using Trimmomatic (Version 0.3)71. We required a minimum phred 
score of 30 using a sliding window of 20 bps, and only kept a read if it matched these criteria 
while maintaining a minimal overall length of 40bp. We aligned filtered reads using BWA 
with a maximum of 2 mismatches per read (-n 2). Reads that mapped equally well to multiple 
locations were discarded by filtering based on the ‘XT:A:U’ alignment tag. Our alignment 20 

statistics showed our approach assigned reads to each strain with high specificity (see 
Supplementary Figure 3). The proportion of F1 reads aligning to the combined BL6 and 
CAST genomes was roughly 51:49, respectively. Proportions of BL6 TFBSs versus CAST 
TFBSs called from these alignments were similar. 
 25 

The mpileup program from the SAMtools package72 was used to count the number of reads 
that overlapped each base of the joint assembly. We then filtered these counts to retain only 
those genomic locations where it was possible to distinguish between BL6 and CAST 
backgrounds. We only retained sites for analysis where a minimum of 10 reads mapped to 
either F0 CAST or F0 BL6 across replicates. For F1 crosses, we retained sites overlapping at 30 

least 10 reads for at least 10 allele-specific replicates. We repeated these steps on a site-
specific manner for each TF/histone mark, irrespective of whether multiple SNVs existed at 
each ChIP-seq peak. 
 
Prior to fitting statistical models and further downstream analyses, we normalized for 35 

sequencing depth by adjusting for differences in library sizes across biological replicates in 
F0 and F1 populations for each TF/histone mark. A constant scaling factor was estimated for 
each library based on the median of the ratio of reads at each SNV over its geometric mean 
across all libraries tested. This normalization constant was then applied to each library under 
the assumption that count differences attributable to biological effects only exists in a small 40 

proportion of the total number of sites. This procedure was performed using R Bioconductor 
package ‘DESeq’73. 
 
To assess overall peak counts and determine the quality of each ChIP experiment, we also 
aligned reads from each library (F0 and F1) to the GRCm38.p2/mm10 genome using 45 

GSNAP74 with a less stringent mapping criteria. We used a less conservative mismatch 
threshold (maximum mismatch of 3 bases per read) to allow F1 reads derived from the CAST 
allele to map against the BL6 genome. Based on overall SNV numbers between the strains, a 
rough estimation suggests that there are approximately 1 SNV every 100 bps, which 
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distinguishes the strains. Regions bound by both TFs and covalently modified histones were 
called using MACS1.475 using default parameters. 
 
To mitigate the impact of potential batch effects, biological replicates for each TF for each 
genetic background were prepared and sequenced in three independent flowcells. 5 

 
We estimated TF occupancy levels for the histone modification H3K4me3 by taking into 
account the fact that histone marks typically localize over a broader genomic region than do 
TFBSs. Wider regions cause a dilution in the number of reads overlapping SNVs, relative to 
binding site numbers and sequencing depth. Hence, to increase our ability to resolve binding 10 

differences at H3K4me3 loci, we summed the counts of all SNVs overlapping the same 
region. To ensure background-specific peaks were captured, we constructed a summary peak 
file comprised of the union of genomic intervals from peak calls from individuals of different 
genetic backgrounds (BL6, CAST and BL6xCAST) (library reference: do3342, do3337, 
do3411). 15 

 
We identified between 6,000-8,000 TF bound regions per TF where two or more SNVs lie 
within close (<250 bp) proximity; ~85% of these co-located SNVs showed the same allelic 
direction of TF binding between BL6 and CAST. To avoid multiple counting of TF binding 
events, we only used one SNV in any 250 bp region in further analyses. Our results were 20 

highly reproducible among replicates (Supplementary Figure 2) with similar numbers of 
reads mapping to each genome (Supplementary Figure 3). 
 
Statistical models for identifying regulatory mechanisms 
ChIP-seq read counts were used as a proxy for the binding intensities of a TF to the DNA7. 25 

Sites were classified into regulatory categories using the method of Goncalves et al.35.  
 
We defined as conserved those regions with equal TF binding occupancy between BL6 and 
CAST in both F0 and F1 individuals, despite the presence of one or more variants near the 
site of binding; these types of sites could also be described as non-differentially bound28. We 30 

defined TFBSs influenced by cis-acting variation as sites where the TF occupancy ratios 
between BL6 and CAST genomes found in the F0 parents is the same as that observed 
between alleles in the F1 offspring, meaning that binding occupancy differences between 
strains were determined by locally acting genetic sequences. We defined TF binding 
influenced by trans-acting variation based on TF binding occupancy differences between 35 

parents, but not between alleles in the F1 offspring. Finally, we defined binding sites 
influenced by cistrans-acting variation as showing a complex mixture of cis and trans acting 
variation.  
 
For each TF or histone mark, F0 counts from each strain were modelled as a negative 40 

binomial marginal distribution, while F1 counts were modelled using a beta-binomial 
distribution where the parameters of the beta distribution modelled the proportional 
contribution from each allele. For each TF and histone mark, there were 6 replicates (i) for 
each F0 strain and 12 replicates (j) for F1 samples. F0 counts for each strain (�� , and ��) were 
assumed to follow negative binomial distributions while F1 counts (��	, were modeled on an 45 

allele-specific basis (
�) using a beta-binomial distribution: 
 
 �� ~ �
���	,  ��  ~ �
���	, 
� ~ ����� , ��	 
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 ��~ �� ��, ��1 � ��

� , ��~ �� ��, ��1 � ��

� , ��  ~ ����,  	 

 
 
where �� is formally defined as the binding intensity of the variant in the ith C57BL/6J F0 
mouse, ��  is the binding intensity of the variant in the ith CAST/EiJ F0 mouse, ��  is the 
number of reads mapping across both allelic variants in the jth F1 hybrid and 
� is the number 5 

of reads mapping to the C57BL/6J allele in the jth F1 hybrid. 
 
We estimate the dispersion parameter r for F0 samples using the ‘estimateDispersions’ 
function within ‘DESeq’ with local regression fit. r was used as the reciprocal of the fitted 
dispersion value from ‘DESeq’. 10 

 
We constrained parameter estimation for each distribution based on four different regulatory 
scenarios and derived maximum likelihood values for each hypothetical case on a site-by-site 
basis. The four models are described below: 
 15 

 !
�"����#: �� %  ��  ��# � %   
 

!�": �� &  �� ��# �
� '  %  

��1 � ����1 � ��
' ��1 � ��

 

 (���": �� &  ��   ��# � %   
 !�")���": �� &  ��   ��# � &   
 20 

 
To identify the most probable model at each variant we used the Bayesian information 
Criterion (BIC). 
 
To avoid confounding results from the analysis of variants derived from the same binding site, 25 

downstream analyses only used variants spaced at least 250 bps apart. Hence, where two or 
more variants were found spaced within 250bps of one another, only one variant was chosen 
for subsequent analyses. 
 
 30 

Identification of motif-disrupting variants 
MEME76 was used to perform de novo search for enriched motifs for each TF using one 
randomly chosen ChIP-seq library per TF (library identifiers do3488, do3463 and do3483). 
Sequences +/-50bp from all peak summits were extracted for analysis; where multiple motifs 
exist in a peak, the motif sequence with the best score was retained.  35 

 
 
Regional enrichment of mechanisms driving TF occupancy  
Enrichment for TF regulatory categories that overlapped the location of histone marks was 
assessed using the exact binomial test. Colocation was defined using an overlap of 1bp. The 40 
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probability of success in the Bernoulli trial was defined for each TF based on its proportion of 
binding categories.   
 
To assess whether co-locating TFs (i.e. binding at the same SNV) share the same regulatory 
category (i.e. cis, cistrans, conserved, trans) more often than expected by chance, we 5 

calculated the expected probability of Bernoulli success as follows: 
 �� % * ��	
�,� +  *
���
,� +  *����
,�  
 
where b is the proportion of TFBSs in regulatory category i at TFBSs where all three TFs co-
locate. 10 

 
Differential binding analysis of heterozygous versus WT mice 
The genome-wide binding of CEBPA, HNF4A and was assessed in CepbaFLOX/- and 
Hnf4aFLOX/- mice. Three biological replicates per condition (HET or WT) per antibody were 
compared to quantify changes in TF binding intensity after heterozygous TF deletion. We 15 

then sorted the TFBSs based on whether their occupancy was conserved, or affected by 
variation in cis or both cis and trans. Binding intensities were considered as the number of 
reads at the summit of peaks that were called by MACS1.475. The same WT input libraries 
were used for peak calling in both HET and WT samples. We filtered out peaks with a read 
count cut-off of less than 11 reads in less than 5 libraries. Prior to differential binding 20 

comparisons, upper quantile normalization77 was used to adjust for differences in sequencing 
depth between libraries. For each TF, ‘edgeR’78 was used to identify peaks with different 
binding intensities between HET and WT samples, using a significance cut-off of FDR<0.1.  
 
Assigning modes of TF occupancy inheritance  25 

To identify the mode of inheritance of TF binding intensities at non-conserved TFBSs, F0 and 
F1 libraries were first adjusted for differences in sequencing depth using the median of the 
ratio of reads at each SNV over its geometric mean across all libraries as a constant 
normalization factor for each library73. Next, data from each SNV was fitted to statistical 
models reflecting either additive or dominant/recessive inheritance patterns. Models were 30 

constructed based the following premise: if offspring binding intensities were inherited via an 
additive mode of inheritance, we would expect the combined offspring binding intensity from 
both alleles to equal the summed binding intensity of parental alleles; on the other hand, if 
inherited through a dominant/recessive mode of inheritance, we would expect the combined 
binding intensity in the offspring across both alleles to equal the total intensity of one but not 35 

the other of its parents. We assumed read counts followed negative binomial distributions. 
Here, we formally define the models:  
 ����,�  ~ �
,����,�-, ����,�  ~ �
,����,�-, �� ~ �
�
�	 
 ����,� is defined as the normalized read count binding intensity of the variant in the ith F0 40 

mouse from the parental strain showing the higher median binding intensity among replicates, ����,�  is the normalized read count binding intensity of the variant in the ith F0 mouse from 
the parental strain with the lower median binding intensity among replicates. �� is the binding 
intensity of the variant in the ith F1 mouse summed across both alleles. 
 45 

����,�~ �� ��, .����1 � .����

� , ����,�~ �� ��, .����1 � .����

� , 
�~ �� ��, .�1 � .�
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As above, the dispersion parameter, r, was estimated using ‘DESeq’. We used maximum 
likelihood estimation to fit the counts to the models below and used BIC to assess which of 
the following two models best fit counts from each site affected by variation in cis or trans. 5 

 /
0����): .���� % .� 
�  .���� % .�  
 1##�)���: .���� & .�   ��#  .���� & .� 

 
We excluded those sites from our results where the parameter estimated for the offspring, .�, 10 

was indistinguishable from the parameters estimated for both parent, i.e. if .� % .���� and 
.� % .���� . Such sites were determined by comparing the dominant and additive models 
separately for ����,� and ����,� and excluding sites found to fit the dominant model in both. It 
is possible that additively inherited TFBSs may be misclassified if the difference in binding 
intensities between the parental measurements is small enough that the F1 measurement is 15 

statistically indistinguishable from either parent due to measurement noise. To minimize this 
potential source of error, we restricted tested sites to those TFBSs where the difference 
between the means of B6F0 and CASTF0 across biological replicates was equal or greater than 
twice the standard deviation of the average binding intensity across biological replicates (this 
was set at 19 normalized counts or more). To further increase confidence in our results, we 20 

only used sites assigned to their regulatory category with BIC>1. 
 
Over- and under-dominant TFBSs were identified by first restricting all TFBSs to those 
classified to a regulatory class with BIC>1. Normalized count data at each TFBS was fitted to 
the models described above. For each TFBS where the binding occupancy of each parent did 25 

not equalled to that of the offspring  (i.e. .���� & .�, .���� & .�), TFBSs were classified as 
under-dominant if the mean F1 occupancy level among replicates was less than that of both 
parents. On the other hand, TFBSs were classified as over-dominant when the mean F1 
occupancy level was greater than that of both parents. 
 30 

Distinguishing influences at lineage-specific TFBSs 
Described below are the statistical methods used to distinguish between cis and cistrans 
influences at lineage-specific TFBSs. Read counts were normalized between F0 and F1 
libraries as described in the previous section73. Lineage-specific binding sites were defined as 
those sites meeting these criteria: (ratioF0<0.05 and ratioF1<0.05) or (ratioF0>0.95 and 35 

ratioF1>0.95). ratioF0 = B6F0/(B6F0/CASTF0) and ratioF1=B6F1/(B6F1/CASTF1), where ratios 
were determined between mean levels of binding among biological replicates. We expect that 
a lineage-specific site that is influenced only by cis-acting variation would possess F1 count 
levels that are half of that in F0. Significant deviation from this 2:1 ratio would indicate 
variation acting in trans. We constructed the following statistical models to test the likelihood 40 

of these scenarios for each lineage-specific site and used maximum likelihood estimation and 
BIC to choose the model of best fit. At each TFBS, reads across replicates were modelled 
using the negative binomial distribution. 
 � � ~ �
���	, 2��  ~ �
�
�	 
 45 
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 � � is defined as the normalized read count binding intensity of the variant in the ith F0 mouse 
from the strain of lineage-specific binding. �� is the binding intensity of the variant in the ith 
F1 mouse summed across both alleles. The dispersion parameter, r, was estimated using 
‘DESeq’, as described above. We tested the two following scenarios: 5 

 !�": .���� % .�  
 !�")���": .���� & .� 
 
Comparison of regulatory mechanisms underlying variation 
We compared regulatory mechanisms underlying variation in gene expression, chromatin 10 

state and TF binding. Logistic regressions were used to examine the relationship between 
gene expression and TF binding. For each gene where expression variation was classified as 
affected by variation acting in cis, both cis and trans, conserved and in trans, we determined 
the transcriptional context by counting the numbers of each TFBSs, in each TF regulatory 
category, located in the window 20kb upstream and 10kb downstream of the TSS. Counts of 15 

TFBSs in each regulatory category (i.e. number of TFBSs where occupancy levels were 
affected by cis-acting variation, etc) were then used as four independent predictive variables. 
Separate regressions were performed using each of the four expression regulatory classes in 
turn as the dependent variable. The binary nature of the dependent variable was defined using 
remaining regulatory categories.  20 

 
We used the same strategy to study the relationship between TF binding and chromatin state 
(H3k4me3), that is, the mechanistic relationship between TFBSs proximal to the histone mark 
was assessed using logistic regression. The size of the genomic regions used for the grouping 
of TFBSs was +/- 2kb from each histone mark location.  25 

 
To test for shared regulatory mechanisms between H3K4me3 and gene expression, the 
histone marks were assigned to genes when they were located within 5 kb upstream of a TSS.. 
Binomial tests were then used to calculate the statistical enrichment of shared regulatory 
mechanisms between gene expression and the associated histone marks. 30 

 
We computed the diversity of TF regulatory mechanisms for genes grouped by expression 
mechanisms using Shannon’s diversity index (H’)79, which was calculated for each gene as 
follows: 
 35 

3′ %  � 4 �� ln ��

�

���

 

 
where ai is the proportion of binding sites belonging to the ith TF binding regulatory category 
within 20kb upstream or 10kb downstream of a liver-expressed protein-coding gene.  
 
Gene expression levels show correlation with TFBS abundance, and highly expressed genes 40 

are expected to be proximal to a more diverse set of mechanisms underlying TF occupancy 
change than by chance alone. Hence, to control for differences in expression levels, we 
subsampled genes to obtain matched gene expression levels between comparison sets. Gene 
expression levels were compared based on the average expression value among biological 
replicates of the more highly expressed parent. Mean expression levels were first log 45 
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transformed, then separated into 20 bins of equal consecutive intervals. Each gene affected by 
variation acting in both cis and trans was then matched to a conserved regulated gene 
assigned to the same expression bin. In the same way, genes affected by variation acting in cis 
were matched in expression values to conserved genes. All subsampling was done with 
replacement. 5 

 
Measuring inter-peak coordination of TF binding occupancy 
To determine the genomic region under the influence of any set of cis-acting regulatory 
variants, we calculated correlation coefficients for binding intensities of TFBS pairs at 
successive genomic intervals away from each cis-directed TFBS. To capture the coordination 10 

of TF occupancies between TFBSs, we calculated Spearman’s correlation coefficient of 
allelic proportions (BL6/(BL6+CAST)) between binding sites at consecutive distance bins 
centred upon variants acting in cis. Spearman’s Rho was calculated for each mutually 
exclusive bin with their ‘anchor’ peak. Each succeeding bin was increased in interval width 
by one additional kb (1 kb) from the cis-acting variant. We performed linear regression using 15 

log-transformed distances as the predictor variable with Spearman’s Rho estimates as the 
outcome variable to quantify the decay in correlation signal (Methods, Figures 4a-b, S10).  
 
In order for meaningful inference, we generated a null distribution of the correlation of 
binding strengths by comparing occupancy levels of anchor TFBSs with the occupancies of 20 

other TFBS locations sampled randomly from across the genome. Null values were calculated 
using TFBSs that were randomly sampled from the total pool (without replacement) to 
simulate a set of binned peaks for each anchor peak (anchor peaks were kept constant). The 
total number of binned peak simulated was equal to the total number of anchored–binned 
peak pairings observed. Spearman’s Rho was then calculated as described for the observed set. 25 

 
To estimate the genomic distance at which the ‘elbow’ or maximum curvature of the curve 
occurs, we used a vector projection method on the fitted regression curve80. First, we drew a 
line connecting the points from � % 1kb to where � % 50000. Next, for every point on this 
line at values of � we extended perpendicular lines to intersect with our regression line. We 30 

then measured the lengths of each of these lines and selected the point with the longest length 
as the estimate of the elbow. 
 
Hi-C data processing and analysis 
Hi-C libraries were generated from pooled liver samples from two 2-4 week old mice49. Raw 35 

data files were quality filtered using Trimmomatic71 using identical parameters to those 
described above. We used the Homer Hi-C software 
(http://homer.salk.edu/homer/interactions/) to process Hi-C reads and to identify significant 
interactions. Restriction sites (‘AAGCTT’) were trimmed from our reads prior to mapping to 
the GRCm38.p2/mm10 genome using GSNAP74 at a maximum of two mismatches per read. 40 

Only reads mapping to unique locations in the genome were retained. Paired reads that likely 
represent continuous genomic fragments or re-ligation events were removed if the reads are 
separated by less than 1.5x the sequencing insert fragment length (-removePEbg). Paired ends 
that originate from areas of unusually high read density were also removed by scanning 10kb 
regions in the genome and removing reads containing greater than five times the average 45 

number of reads (-removeSpikes 10000 5). Only reads where both ends of the paired read 
have a restriction site within the fragment length 3’ to the read were kept (-both). We also 
filtered reads if their ends self-ligated with adjacent restriction sites (-removeSelfLigation). 
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To detect significant interactions between two genomic locations, we created a background 
model to account for the primary sources of technical biases. For example, closely spaced loci 
are inevitably enriched for interactions due to their close proximity. We used Homer to 
normalize both for linear distance and read depth. We normalized our reads at 10 kb regions 
across the genome and examined the number of interactions occurring between these regions. 5 

Enrichment for significant interactions were identified using a binomial test against the 
expected number of interactions based on the background model that also accounts for the 
total number of reads mapping to each locus being tested. The parameters for the binomial 
test includes (i) the probability of success is the expected interaction frequency (which vary 
depending on restriction site locations), (ii) the number of success is the number of reads 10 

mapping between the loci, and (iii) the number of trials is the overall number of significantly 
interacting reads. 
 
Data availability: 
Raw data have been deposited under ArrayExpress accession E-MTAB-4089. Processed data 15 

are available from http://www.ebi.ac.uk/research/flicek/publications/FOG19. 
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Figure 1. F1 mice were used to interrogate the regulation of TFBS variation 
(A) In vivo binding of liver-specific TFs FOXA1, HNF4A and CEBPA were profiled in the 
livers of male mice from inbred strains C57BL/6J (BL6), CAST/EiJ (CAST) and their F1 5 

crosses: C57BL/6J x CAST/EiJ (BL6xCAST) and CAST/EiJ x C57BL/6J (CASTxBL6). Six 
biological replicates were generated for each TF and genetic background combination. (B) 
The number of TFBS that could be classified with associated number of SNVs. (C) Venn 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2017. ; https://doi.org/10.1101/059873doi: bioRxiv preprint 

https://doi.org/10.1101/059873
http://creativecommons.org/licenses/by/4.0/


 

 

22

diagram illustrates the numbers of classifiable SNVs that overlap between TFs. Each variant 
is at least 250bp from any other SNV. Numbers shown are the final numbers of regulatory 
loci used for downstream analyses. (D) Heatmap confirming overall accuracy of regulatory 
class assignments. BL6 (black) versus CAST (brown) binding intensity ratios for different 
regulatory categories for CEBPA. A subset of variants from each class was randomly sampled 5 

to match the overall distribution. Sparkline in key shows the number of observations at each 
color category where density is increasing from left to right.  
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Figure 2. Differences in TF binding intensities strongly affected by variation acting in cis 
and are additively inherited  
(A) Mean F0 versus F1 TF binding intensity ratios (BL6 versus CAST) for CEBPA are 5 

plotted in the left panel. The right panel shows mean F0 versus F1 gene expression ratios for 
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liver-expressed protein-coding genes35. The correlation coefficient reflects the extent of cis-
directed regulatory mechanisms. (B) Proportion of CEBPA binding locations at promoters 
and enhancers. The width of the bar is proportional to the overall number of TFBSs in the ‘All’ 
category. Binomial tests were used to test for enrichment at promoters and enhancers for each 
regulatory class based on the overall numbers of TFBSs (‘All’). ***P<0.0001 **P<0.001* 5 

P<0.05. (C) Most allele-specific TFBSs are affected by variation acting in cis. Lineage-
specific TFBSs were defined as TFBSs where binding occurs either in BL6 or CAST in F0 
individuals and in an allele-specific manner in F1 individuals based on a cut-off 
(F0B6/(B6+CAST)>0.95, F1B6/(B6+CAST)>0.95, F0B6/(B6+CAST) < 0.05, F1B6/(B6+CAST) < 0.05). These 
TFBSs can be sorted into the three categories described. (D) Mean CEBPA log2 F0 total read 10 

counts were plotted against mean log2 F1 read count (BL6 + CAST allele) multiplied by 2. 
For the scatterplot, we used averages across biological replicates. TFBSs affected by variation 
acting in cis are thus expected to fall along the diagonal and these have been colored blue (see 
C). Categories shown were determined by maximal likelihood estimation. (E) The majority of 
cis-directed TFBSs are inherited additively. TFBSs affected by variation acting in trans may 15 

show additive or dominant inheritance patterns in TF binding intensities. Different modes of 
inheritance were defined by comparing overall peak binding intensities between F0 and F1 
individuals. Total F1 counts were individually scaled to 1 (yellow). Red indicates TFBSs 
where F1 > F0; blue indicates TFBSs where F1 < F0. CEBPA data is shown. 
  20 
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Figure 3. Effect of genomic distance on cis-acting inter-peak correspondence  
 (A) Strategy for measuring the span of cis regulatory effects. Successive 1kb bins were taken 
from each TFBS affected by variation acting in cis starting 400bps from the location of the 5 

SNV and extending in both directions. For each bin, Spearman’s ρ was calculated using the 
BL6:CAST allelic ratio between queried TFBSs against TFBSs assigned as anchorages for the 
analysis. (B) Spearman’s ρ values for each bin were plotted for each TF. The linear regression 
line (solid red) calculated from these values is shown. Red dashed lines mark the 90% 
confidence intervals of the true slope of the line. Grey dots represent the null background 10 

distribution of correlation values constructed by the random subsampling of TFBSs to anchor 
TFBSs (see Methods). The numbers of TFBSs in each randomly sampled bin were matched 
to those in the observed bins. The grey line is the linear regression line for the correlation 
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values derived from sampled points. (C) TFBSs are enriched at regions of chromatin contact. 
Enrichment values were calculated compared with expected rate of chromatin contact given 
the general enrichment for contact in each regulatory dataset (i.e. cons, trans, cis, cistrans). 
‘Any’ denotes the null background set of randomly chosen locations in the genome 
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Figure 4. Genetic and epigenetic influences that change TF binding have parallel 
consequences for gene expression and chromatin 
(A-B) Coordination between the regulatory categories of variation in TF binding occupancy 
variation and chromatin (A) and gene expression (B). Locations of the considered TFBSs are 
noted in the cartoons on the left. Separate logistic regressions were performed for each 5 

chromatin regulatory class (see Methods). Odds ratios were mean-centred for comparison 
across chromatin regulatory classes. Absolute values of Z-scores greater than two (α<0.05) 
are denoted by a black border. (C) Direct association between chromatin and gene expression. 
Genes were linked to H3K4me3 modifications if the mark was located within 5kb upstream of 
the TSS. Binomial tests were performed based on the expected background probability of 10 

observing the same regulatory mechanism underlying both expression and histone enrichment 
change. (D) High diversity in regulatory mechanisms of TF binding variation is associated 
with gene expression influenced by cistrans-acting variation. Calculations are on a gene-by-
gene basis for TFBSs 20kb upstream and 10kb downstream of TSSs. These scores were 
compared between genes grouped by transcriptional regulatory class. Significant P-values for 15 

Mann-Whitney U tests are shown. The surface area of the violin plot is proportional to the 
number of genes in each class. 
 
 
  20 
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