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Abstract

Phylogenetic inference is an attractive mean to reconstruct trans-

mission histories and epidemics. As the interest lies in how HIV-1

spread in a human population, many previous studies have ignored

details about the evolutionary process of the pathogen. Because phy-

logenetics investigates the evolutionary history of the pathogen rather

than the spread between hosts per se, we �rst investigated the e�ects

of including a within-host evolutionary model in epidemiological simu-

lations. In particular, we investigated if the resulting phylogeny could

recover di�erent types of contact networks. To further improve real-

ism, we also introduced patient-speci�c di�erences in infectivity across

disease stages, and on the epidemic level we considered incomplete

sampling and the age of the epidemic. Second, we implemented an

inference method based on approximate Bayesian computation (ABC)
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to discriminate among three well-studied network models and jointly

estimate both network parameters and key epidemiological quantities

such as the infection rate. Our ABC framework used both topolog-

ical and distance-based tree statistics for comparison between simu-

lated and observed trees. Overall, our simulations showed that a virus

time-scaled phylogeny (genealogy) may be substantially di�erent from

the between-host transmission tree. This has important implications

for the interpretation of what a phylogeny reveals about the underly-

ing epidemic contact network. In particular, we found that while the

within-host evolutionary process obscures the transmission tree, the di-

versi�cation process and infectivity dynamics also add discriminatory

power to di�erentiate between di�erent types of contact networks. We

also found that the possibility to di�erentiate contact networks de-

pends on how far an epidemic has progressed, where distance-based

tree statistics have more power early in an epidemic. Finally, we ap-

plied our ABC inference on two di�erent outbreaks from the Swedish

HIV-1 epidemic.
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Introduction

Infectious diseases that are directly transmitted spread over contact net-
works; each individual or host can be represented by a node with a �nite
set of contacts/edges to whom they can pass the infection. The structure of
these networks is a major determinant of the pathogen transmission dynam-
ics and possible control strategies [1]. For example, it has been suggested
that human sexual contact networks are characterized by a power-law degree
distribution [2] which, in a speci�c range of the scaling exponent, results in
an in�nite variance of the network's degree distribution. This implies the
absence of an epidemic threshold which makes prophylactic strategies for
sexual transmitted diseases very challenging.

The main issue in contact network epidemiology has been the di�culty of
collecting individual and population-level data needed to develop an accurate
representation of the underlying host population's contact structure. This
has led to an interest in methods to infer information about host contact
networks from epidemic data. Previously, Britton and O'Neill [3] estimated
the parameters of an Erd®s-Rényi network and a stochastic epidemic pro-
cess on it using epidemic data consisting of recovery times of infected hosts
and Groendyke et al. extended the approach to exponential-family random
graph models [4] using covariate information [5]. The use of other common
epidemiological measures such as the basic reproduction number (R0), epi-
demic peak size, duration and �nal size, has been shown to be e�ective in
classifying the degree of heterogeneity in a population's unobserved contact
structure [6].

During the course of a given epidemic, the disease spreads over a subset
of edges in the social network forming a subgraph that is the realized trans-
mission history. Keeping track of who transmits to whom and assuming that
every individual may be infected only once and by only one other individual,
such a transmission history can be represented as a rooted tree (transmis-

sion tree) [7]. However, full transmission histories are rarely observed and
commonly available epidemiological data such as infected people diagnosis-
recovery times may provide information on who was infected, when, and for
how long, but it cannot provide information on who acquired infection from
whom.

Since pathogens evolve over a transmission history, the analysis of pathogen
genetic sequences taken from di�erent hosts provides a way to infer the most
likely donor and recipient [8] introducing constraints on the space of pos-
sible transmission trees, which are a trace of the underlying contact net-
work. Phylodynamics [9] focuses on linking methods of phylogenetic analysis
with epidemiological models under the assumption that if the evolution of a
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pathogen occurs su�ciently fast, transmission histories become recorded in
the phylogeny of the pathogen population (phylogenetic tree).

Phylodynamic analyses on HIV have shown that asymmetry in viral
phylogenies may be indicative of heterogeneity in transmission [10]. Net-
works with more heterogeneous degree distributions yield transmission trees
with smaller mean cluster sizes, shorter mean branch lengths, and somewhat
higher tree imbalance than networks with relatively homogeneous degree dis-
tributions. However, it has been argued that these direct e�ects are relatively
modest for dynamic networks [11] or if only a small fraction of infected in-
dividuals is sampled [12]. Also, factors other than contact rate, such as high
infectiousness during acute infection, may have a more dramatic impact on
asymmetry [12].

However, previous studies as well as more recent papers [13�15], all as-
sume that the HIV unobserved transmission tree is identical to the recon-
structed time-scaled phylogeny (virus genealogy), i.e. the internal nodes of
the genealogy correspond to transmission events between hosts over time and
within-host diversity is fundamentally ignorable. This is unrealistic since all
the coalescent events in a pathogen phylogeny occur within hosts, push-
ing the genealogy node heights further back in time than the nodes of the
transmission tree [16]. In addition, the order of coalescent events may not
correspond to the order of transmission events but re�ect instead within-host
dynamics [17].

The objective of this study was to include within-host evolution, disease
stage and individual speci�c transmission rates to improve the realism of so-
cial network reconstruction. We simulated epidemic spread on three network
types and investigated the behavior of several tree statistics, including both
topological imbalance measures and tree-based distance measures. In addi-
tion, we investigated the e�ect of varying epidemic size, varying sampling
proportion as well as heterochronous sampling on the tree statistics. Finally,
we analyzed data from two di�erent epidemiological sets of spread among
injecting drug users (IDU) in the Swedish HIV epidemic using approximate
Bayesian computation (ABC) for network model choice and parameter infer-
ence following the algorithm de�ned in [18]. We found that virus geneaolo-
gies can di�er from the underlying transmission tree in both topology and
branch length and, therefore, meaningful inference of social networks needs
to include within-host evolution.
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Materials and Methods

Simulation of transmission history

Networks We considered three di�erent network models to represent pop-
ulation structure: the Erd®s-Rényi (ER) random graph [19], the Barabási-
Albert (BA) graph [20] and the Watts-Strogatz (WS) graph [21] with low
rewiring probability (Figure 1). These three networks are characterized by
di�erent degree distributions and amount of clustering. The degree of a
node in a network is the number of connections to other nodes it has and the
degree distribution is the probability distribution of these degrees over the
whole network.

The ER model generates networks with Poisson degree distributions, i.e.
p(k) = e−θθ−k

k!
. The BA model is generated by using a linear preferential

attachment algorithm that produces scale-free networks with a power-law
degree distribution p(k) ∝ k−α with α = 3. The WS model has a Dirac
degree distribution centered at K (all nodes have the same degree) when
the rewiring probability tends to 0. If the rewiring probability tends to 1,
the degree distribution is Poisson. For intermediate values, the shape of the
degree distribution has a pronounced peak at k = K and decays exponentially
for large |k−K|. A WS network is characterized by a relatively homogeneous
structure, as all nodes have more or less the same degree, and by a high degree
of local clustering as opposed to ER and BA networks.

Figure 1: Prototypic network structures. A. Erd®s-Rényi network (ER),
B. Barabási-Albert network (BA), C. Watts-Strogatz network (WS). To il-
lustrate the typical con�gurations, all networks are generated with the same
mean degree (6) in this example.

Epidemic model We simulated outbreaks from a susceptible-infected-
removed (SIR) type dynamic [22] of HIV spread in the susceptible popu-
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lation of each social network. We compared di�erences among the trans-
mission trees obtained by simulated epidemic spread under four increasingly
more realistic transmission (Figure S1) and evolutionary model speci�cations
(Figure S2).

The �rst model speci�cation assumed that the rate of transmission per
contact between a susceptible and an infected individual, λ, is constant over
time. The removal rate of infected individuals γ is also constant over time and
include both diagnosis or death events. We denoted with p the probability
of being sampled at the moment of diagnosis (DNA sequences obtained from
the virus of the diagnosed patient). We assumed that:

1. diagnosis coincides with treatment start,

2. the rate of transmission after treatment start is negligible, and

3. nobody goes o� treatment.

We believe these assumptions to be reasonable for our analysis since Swe-
den has already achieved the 90-90-90 target set by UNAIDS in 2014 [23]
according to which:

1. 90% of all people leaving with HIV will know their HIV status,

2. 90% of all people with diagnosed HIV infection will receive sustained
antiretroviral therapy, and

3. 90% of all people receiving antiretroviral therapy will have viral sup-
pression [24].

In the second model speci�cation we considered three stages of HIV infec-
tion (acute, chronic, and pre-AIDS). The transmission rates are dependent
on the disease stage of the infected individual and denoted with λ1, λ2, and
λ3 (Figure S1). We assumed the removal rate to be independent on the
disease stage. The acute stage was assumed to last for a constant period
of 30 days for each individual [25], the chronic stage had variable length de-
scribed by an exponential random variable T2 with a mean of 8 years [26] and
the pre-AIDS stage lasted until death or diagnosis. The three transmission
rates were calculated to preserve the individual total infectivity during their
infectious period in order to make results comparable with the �rst model
speci�cation. This derivation is shown in Text S1.

In the third model speci�cation we modeled individual variability of trans-
mission rates. We did that by multiplying the constant transmission rate λ
(as in the �rst model speci�cation) with a log-normal variable Zi for each i
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individual (node) with mean −σ2/2 and variance σ in order to preserve the
mean of λ (i.e. E(λi) = λ since E(Zi) = 1).

The fourth model speci�cation combines stage-speci�c infectivity with
individual heterogeneity. The sampling process is modeled explicitly in each
model speci�cation.

We used Gillespie's next-reaction method [27, 28] to simulate disease
spread according to the above outlined model speci�cations until there are
no more infectives or until a prede�ned number of samples. Keeping track of
who-infects-whom, each epidemic simulation yields a transmission history.

Within-host evolution model

Pathogens such as HIV record in their phylogenies a considerable amount
of information about the transmission histories since mutations are typically
accumulated faster than transmission occurs. The common assumption that
the internal nodes of a phylogeny correspond to transmission events between
hosts over time is unrealistic because transmitted lineages must already exist
in the donor at the time of transmission. Thus, neglecting the time dif-
ference between the common ancestor and the transmission event (i.e. the
pre-transmission interval, [16]) will bias the estimated time of transmission
backwards in time.

Furthermore, new infections may come from HIV variants derived from a
latent reservoir (lineages can persist for long time in the host [29,30]), and the
order of coalescent events may not correspond to the order of transmission
events but re�ect instead within-host dynamics [17].

To address these issues, we used a two-phase coalescent model including
a linear growth from a single transmitted variant (transmission bottleneck)
to a maximum population size followed by either stabilization or decline of
the e�ective population size [17].

Let N(t) denote the population size at time t since seroconversion (ex-
pressed in days), such that

N(t) =

{
α1 + β1t, t ≤ tx

α1 + β1tx + β2(t− tx), t > tx

where α1 is the population size (i.e. the number of virus variants in a given
host) at the moment of infection, β1 is the rate of population size increase
until tx (time at maximum diversity), and β2 the rate of decline after the
maximum. We assume α1 = 1, β1 = 3, tx uniformly distributed between ta =
2 and tb = 8 (years) and β2 ∼ U(φ, 0) where φ = (Nmin−α1−β1ta)/(tM− ta)
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with Nmin being the minimum population size, (assumed to be 100) and tM
the maximum sampling time (20 years) (Figure S2).

Virus genealogies conditional on a transmission history are simulated by
generating random coalescence times for each person in the tree. Random
coalescence times are generated from the inverse cumulative density function
(derivation in [17])

F−1(u) = 1− (1− u)
b

(k2) (a+ bt)b−1

where u is a uniform random variate on (0, 1), t is the current time along
the forward time axis, b is the linear rate of change (β1 or β2 depending on
the phase), a is the starting population size (1 in the �rst phase and β1tx
in the second phase) and k is the number of extant sampled lineages in a
given host. For each host we draw random values of tx and β2 from the
prior distributions. Starting at the last transmission or sampling event, we
�rst move to the next event along the reverse time axis, which is either a
transmission event, a phase transition, or the time at which the current host
was infected. If the event is a transmission event, then k is incremented and
a random coalescence time is generated. If that time occurs before (along
the reverse time axis) the next event, then two random extant lineages in
the sample are selected to coalesce; if not, then time is moved to the time
of the next event. At the phase transition, tx, the parameters of the inverse
cumulative density function are changed to correspond to the �rst phase
and the process continues until the transmission time of the current host is
reached. In the rare instance where more than one sampled lineage exist at
the time of infection, the existing lineages are randomly coalesced with zero
length branches. Finally, each individual sub-tree is jointed into a single viral
genealogy according to the transmission history.

The 4 model speci�cations introduced in the previous section were used
for simulations until the �end� of each outbreak, i.e. when there are no
infectives left. We compared outbreaks of similar �nal size and multiple
realizations of virus genealogies for each transmission history. All simulations
were implemented using the statistical software R [31].

Tree statistics

To evaluate the resulting trees from our simulations we used several tree
statistics. To assess how balanced trees were, we used:

1. Sackin's Index [32], which is the average number of splits or ancestors
from a tip to the root of the tree. It can be normalized according to a

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2016. ; https://doi.org/10.1101/059865doi: bioRxiv preprint 

https://doi.org/10.1101/059865
http://creativecommons.org/licenses/by-nc-nd/4.0/


reference model in order to obtain a statistic that does not depend on
the tree size.

2. Colless Index [33], which inspects the internal nodes, partitioning the
tips that descend from them into groups of sizes r (on the right) and l
(on the left of the tree), and computes the sum of absolute values |r− l|
for all nodes.

Both Sackin's index and Colless index depend only on the topology
of the tree, and they are invariant under isomorphisms and relabeling
of leaves. They reach their maximum value at caterpillars (ladder-like
trees), and their minimum on the maximally balanced trees. A binary
tree is considered to be perfectly balanced if each internal node in the
tree divides the leaves descending from it into two equally sized groups.

3. Cherries, which are de�ned as the number of clades with two taxa.
The expected number of cherries in a tree with n taxa under a Yule
or coalescent model is n/3. In an asymmetric tree (more ladder-like
trees), tips tend to coalesce with branches deeper in the tree, and there
are fewer cherries than expected.

The number of cherries and Sackin's index complement each other well,
as the number of cherries captures asymmetry in the recent evolution-
ary past, while Sackin's index captures asymmetry over the entire evo-
lutionary history of the sample. These two measures are only weakly
correlated [12].

4. The ratio between external and internal branch lengths. It has been
shown that a high ratio of internal branch to external branch length
occurs in 'star-like' trees.

5. The tree height in a virus genealogy represents the time from the �rst
infection to the last sampling event. Since epidemics progress at dif-
ferent speed on di�erent networks, heterogeneities in tree heights are
expected.

6. Topological distance, obtained as twice the number of internal branches
de�ning di�erent bipartitions of the tips. A topological distance that
takes branch lengths into account was also considered (the sum of the
branch lengths that need be erased to have two similar trees.)

7. The number of lineages through time normalized both in time and in
number of lineages. [34]

8. The rate of branch length growth as a function of tree height (time).
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We used the package R package ape (Analyses of Phylogenetics and Evolu-
tion) [35] to create and plot the phylogenies and the package apTreeshape [36]
for the evaluation of some tree statistics.

Approximate Bayesian Computation for network model

selection

To further investigate how well time-scaled phylogenies can estimate the epi-
demic process and identify the underlying contact networks, we applied an
inference framework for model selection and parameter estimation based on
approximate Bayesian computation (ABC). ABC is a methodology to esti-
mate model parameters replacing the likelihood function with a simulation-
based procedure and a distance function to measure the similarity between
simulated and observed data. Various ABC algorithms have been proposed,
from the simple ABC-rejection [37] to ABC Markov chain Monte Carlo
(MCMC) [38] and ABC based on sequential Monte Carlo (SMC) meth-
ods [18,39].

Here, we use ABC-SMC as proposed by Toni et al. [18] because it ad-
dresses some of the potential drawbacks of previous ABC algorithms, such
as slow convergence rate, by sampling from a sequence of intermediate dis-
tributions. The SMC sampler introduces a number of intermediate steps
decreasing iteratively the tolerance threshold ε for samples acceptance. At
the �rst iteration, N particles θ′ (representing the parameters of interest) are
generated form the prior distribution and data are simulated from the model
based on θ′. The proposed parameters are accepted if the di�erence between
the summary statistics of the simulated data D′ and the observed data D
is below the threshold ε1. At iteration t > 1, the particles are drawn from
the previous population of the accepted samples at the iteration t− 1 (with
threshold εt−1) with slight perturbations. In our work, data (observed virus
genealogy) and simulated trees are compared through the use of summary
statistics which correspond to the above listed tree statistics.

The three network models M = {WS,ER,BA} were used to simulate
outbreaks using the stage-varying infectivity pro�le with ratio 10:1 acute:chronic
and patient infectivity variation (σ = 3). We assumed that network model
and one network parameter were unknown. For ER, the network parame-
ter of interest was the probability of drawing an edge between two arbitrary
vertices; for BA it was the number of edges to add in each time step of the
generating algorithm, and for WS it was the neighborhood within which the
vertices of the lattice are connected. We also estimated the removal rate γ
and the infection rate in the acute phase λ1 (infection rates in the chronic and
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immuno-compromised stage can be obtained deterministically from the acute
phase infection rate). Therefore, θ consists of 3 parameters for each type of
network and they are model speci�c. All remaining parameters character-
izing both the network structure and the epidemic process were considered
known.

The output of the algorithm were the approximations of the model M
marginal posterior distributions P (M |D) which is the proportion of times
that each model is selected in N samples, and the marginal posterior dis-
tributions of parameters P (θ|D,M) for the candidate models. We used a
discrete uniform distribution from 1 to 3 as model prior π(M).

We chose to decrease the tolerance values following an exponential de-
cay such that εt = ε0 exp(−0.5t) where t is the current sequential step, as
proposed in [40]. A pilot run of 100 simulations for each model in M was
used to de�ne the initial thresholds. We found that converge was achieved
with T = 10 iterations and N = 1000 particles per iteration. The prior
distributions on the parameters λ1 and γ were Uniform (0.0001, 0.1) and
(0.00025, 0.1), respectively. Further details of the algorithm can be found in
Text S2.

Real epidemiological data and genealogical reconstruc-

tion

We applied the ABC inference method to the analysis of two HIV-1 sets of
transmission among IDU in Sweden [41, 42]. To reconstruct the time-scaled
virus phylogenies from DNA sequences in both chains of transmission we
used a Bayesian Skyline coalescent model in BEAST 1.8 [43]. The general
time reversible nucleotide substitution model was used with an uncorrelated
log-normal relaxed clock and a discretised gamma distribution with four cat-
egories was used to model rate heterogeneity across the sequence. For the
log-normal relaxed clock parameters, a uniform prior on the positive axis was
assumed for the mean, and an exponential with mean 1/3 for the standard
deviation. A Uniform prior on (0,1) was used for the nucleotide frequencies.
The MCMC was run for 10 million iterations, with a 10% burn-in period and
samples saved every 10000 iterations. We selected the maximum credibility
tree and the negative branches were set equal to zero.
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Results

Within-host evolution a�ects inference of contact net-

works

The within-host model generates virus genealogies that are consistent with
a given transmission history. An example of the within-host evolutionary
impact in a small size network/epidemic is shown in Fig 2. Clearly, many
virus trees are possible under any transmission history. Therefore, it is im-
portant to evaluate the additional variation within-host diversity in�icts on
the epidemiological inference.

An epidemic can spread faster on ER and BA networks, thus the resulting
transmission tree from a WS network includes longer times resulting in taller
trees (Fig 3A). Both the unobservable transmission tree and the observable
virus genealogy show the same tree height information. Other tree statistics,
however, show di�erent patterns of network discrimination based on trans-
mission tree or virus genealogy. The proportion of cherries per taxa is slightly
less informative on virus genealogies than on transmission trees (Fig 3A). In
particular, while there is a decrease for ER and WS (less balanced in virus
genealogies than transmission trees), it increases for BA (more balanced in
virus genealogies than transmission trees). A similar pattern is seen using
Sackin's Index or Colless' Index (ER and WS less balanced in virus geneal-
ogy, BA more balanced (Fig 3D-E)). Overall, di�erences between BA and
WS become more evident in virus genealogies. Because Sackin's Index and
Colless' Index are highly correlated we will only report Sackin's Index from
now on.

The ratio of the mean internal to external branch lengths is informative
about the type of network (smallest for BA, higher for ER, highest for WS).
While the trends were similar in transmission trees and virus genealogies,
the expected ranges overlapped for ER and WS in transmission trees, and
virus genealogies showed generally smaller ratios (Fig 3C). Branch lengths
increase linearly as a function of tree height during epidemic spread on both
ER and BA networks. Deviations from linearity are observed for epidemic
spread on WS. At the end of an epidemic, the mean branch length is constant
among networks but longer in virus genealogies rather then in transmission
trees (Fig 3F).

Overall, trees from ER and WS networks are more imbalanced based
on virus genealogies, and because epidemic spread is much faster in a BA
network the resulting virus genealogy will instead become more balanced as
the virus does not have time to evolve time structure between transmission
events.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2016. ; https://doi.org/10.1101/059865doi: bioRxiv preprint 

https://doi.org/10.1101/059865
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Relationship among transmission history, transmission
tree and virus genealogy. For a given transmission history between hosts
(A), we can construct a binary representation, i.e. the transmission history
(B). The lower panels (C) show 4 possible virus genealogies of this transmis-
sion history invoking our within-host population model.

Contact network heterogeneity becomes less evident un-

der stage varying infectivity

Infectivity is known to vary across pathogenesis [44, 45]. Thus, rather than
assuming a constant transmission rate throughout an infected person's dis-
ease stages, we tested 7 di�erent infectivity pro�les varying the ratio between
the acute and chronic transmission rates and measured how they a�ected net-
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Figure 3: Box plots of tree statistics on transmission trees (red) and
reconstructed virus genealogies (light blue). Tree height (A), number
of cherries per taxa (B), mean internal/external branch lengths ratio (C),
Colless Index (D), Sackin's Index (E), mean branch length (F). The boxes
correspond to the �rst and third quartiles. The upper/lower whisker extends
from the third/�rst quartile to the highest/lowest value which is within 1.5
IQR from the box, where IQR is the inter-quartile range.

work model discrimination. The transmission rate in the pre-AIDS stage was
held constant.

Tree height becomes much less informative of network type the big-
ger the di�erence is between acute and chronic stage infectivity (Figure
4A). This is because higher acute stage infectivity causes more infections
in the acute phase and consequently the epidemic spread is faster. Simi-
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larly, mean internal over external branch lengths, which was an important
index when constant infectivity was assumed, is less informative if we assume
high acute/chronic phase infectivity ratios. Di�erences observed between ER
and BA assuming a constant infectivity pro�le diminish (Figure 4D). Hence,
branch length and tree height measures are less informative of network type
when di�erences in acute-chronic infectivity are considered.

Topological tree measures, i.e., cherries per taxa, and Sackin's Index, were
less a�ected by di�erences in acute-chronic infectivities (Figure 4B-C). Both
these measures, calculated on the possible virus genealogies, still informed
about the underlying contact network structure that HIV spread upon.

Figure 4: Box plots of tree statistics on virus genealogies under
varying infectivity pro�les. Tree height (A), number of cherries per taxa
(B), Sackin's index (C), mean internal/external branch lengths ratio (D).
Box plots limits are as in Figure 3.

Individual variability improves network inference

The next stage of introducing realistic host evolutionary dynamics is to model
patient speci�c di�erences. We did that by introducing variability in the
overall infectivity level while keeping the acute-chronic ratio at 10:1 (sigma
0, 3, 10).

Interestingly, while introducing a non-constant infectivity pro�le dimin-
ished genealogical di�erences between underlying contact network structures,
introducing patient variability recovered some of the discriminatory power
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(Figure 5). While tree height remained with no power to discriminate be-
tween networks, internal to external branch length ratios became more dis-
criminative (BA had lowest ratio, ER intermediary, and WS high). Further-
more, both cherries per taxa and Sackin's Index improved their power to
discriminate between contact network structures, and Sackin's Index could
di�erentiate WS from BA and ER networks.

Figure 5: Box plots of tree statistics on virus genealogies for di�erent
assumptions on individual heterogeneity. Tree height (A), number of
cherries per taxa (B), Sackin's index (C), mean internal/external branch
lengths ratio (D). Box plots limits are as in Figure 3.

Tree statistics change as epidemics develop

If no in�ux of susceptibles occurs, the mean branch length increases as trees
grow taller because it takes longer time to �nd uninfected hosts later in an
epidemic (Figure 6A). Correspondingly, at 100% sampling of infecteds at any
time during an epidemic, the mean branch length increases as a function of
total number of sampled infecteds (number of taxa). BA typically produces
shorter tree branches than ER and WS as more individuals are sampled
(Figure 6B). Thus, if it was possible to sample everyone at time of infection,
then the trend of adding longer tips towards the end of the epidemic becomes
more pronounced (Figure 6C). The internal to external branch length ratios
typically decrease as the epidemic progresses (Figure 6D). This is explained
by the fact that branches added later in the epidemic, resulting from chronic
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donors, divide already existing branches into shorter segments. BA trees
show lower ratios than ER and WS throughout the epidemic, but WS and
ER are less distinguishable during an epidemic.

On the topological level, the Sackin's Index typically decreases as an
epidemic matures (Figure 7A). At the end of an epidemic (Figure 3), BA
and ER show more unbalanced trees throughout an epidemic and the most
imbalanced trees come from WS networks (Figure 7).

Simulations on networks of size 5000 show similar results, for comparison
see Figure 6 with Figure S3 and Figure 7 with Figure S4.

Thus, while these statistics are indicative of the underlying contact net-
work, they are confounded by epidemic stage and the size of the susceptible
population. Consequently, to be able to infer the underlying contact network
from genealogies we must also know what stage an epidemic has reached and
the number of susceptibles.

Figure 6: Distance based tree statistics on virus genealogies as epi-
demic progresses on a network of size 1000. Mean branch length
(MBL) as function of tree height (A) and number of infected individuals (B)
for simulated outbreaks on networks of size 1000 as epidemics progress. MBL
(C) and internal/external branch length ratio (D) as function of the number
of taxa for simulated outbreaks on networks of size 1000. The envelopes rep-
resent 95% con�dence intervals around the medians. The curves are obtained
using local regression (LOESS). WS (red), ER (green), BA (blue).
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Figure 7: Topological tree statistics on virus genealogies as epidemic
progresses on a network of size 1000. Sackin's index (A) and number
of cherries per taxa (B) as function of the number of taxa in networks of size
1000. The envelopes represent 95% con�dence intervals around the medi-
ans. The curves are obtained using local regression (LOESS). WS (red), ER
(green), BA (blue).

Sample fraction a�ects tree statistics

While a genealogical tree grows as an epidemic matures, the sampling frac-
tion has no real e�ect on mean branch length, albeit with smaller sample
fractions the estimation becomes somewhat more uncertain due to stochas-
tic e�ects (Figure 8). Interestingly, lower sampling fraction increases mean
branch lengths derived from any underlying contact network (Figure 8). This
happens because the remaining branches in the genealogy represent increased
numbers of infected hosts. However, this e�ect does not cause additional con-
fusion over that caused by epidemic stage, as the di�erences between BA,
ER, and WS networks are distinct at all epidemic stages and number of in-
fected. On the other hand, we do not usually know at what stage an epidemic
is (i.e., number of actually infected) but only the number of sampled hosts.
The mean branch length as a function of number of taxa (Figure 9) could mis-
lead the inference of underlying contact network, especially for small sample
fractions. In fact, any branch length or tree height index would be a�ected
by mistaking number of sampled hosts with stage of the epidemic because
the number of infected grows faster than the number of sampled early in an
epidemic.

The topological indices were also a�ected by sampling fraction. While
general trends (Figure 3) remain constant through the accumulative number
of samples over an epidemic, it is again important to know at what stage an
epidemic is at time of sampling. Similar to branch length indices, topological
indices can be misleading if sampling faction and stage of the epidemic are
unknown.
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Figure 8: Mean branch length as epidemic progresses varying sam-
pling fraction. The mean branch length as function of number of infecteds,
with varying sampling fraction (p=1-0.25). The envelopes represent 95% con-
�dence intervals around the medians. The curves are obtained using local
regression (LOESS). WS (red), ER (green), BA (blue).
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Figure 9: Mean branch length as function of the number of taxa
varying sampling fraction. Mean branch length as function of sampled
hosts, with varying sampling fraction (p=1-0.25). The envelopes represent
95% con�dence intervals around the medians. The curves are obtained us-
ing local regression (LOESS). Note that for smaller sampling fractions the
envelopes include fewer taxa. WS (red), ER (green), BA (blue).
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ABC inference of transmission network type

We illustrate the performance of the ABC inference on 100 simulated viral
genealogies for each network type of size 1000. The parameters were chosen
so that the mean degree of each network type was 8, the diagnosis rate was
2.8 years−1 (derived from the average time from seroconversion to diagnosis
in Sweden estimated in [46]), and infection rate in the acute phase was λ1 =
0.005. The sampling probability p was set at 0.5 because the data from the
general HIV Swedish epidemic have coverage of around 50% [46�48].

To investigate model selection performance of the ABC algorithm, we
record the number of times that the true model has the highest posterior
model probability P (M |D) among the three models for the 100 simulated
datasets. The algorithm was able to discriminate among the network models
quite well. For the �rst network model (ER), in 78 out of the 100 simulated
datasets, the true model had the highest posterior probability among the
3 di�erent network types. For the second model (BA), similar results were
obtained; 76 out of the 100 simulated datasets identi�ed BA. Outbreaks on
the WS network were misclassi�ed only 1 time out of 100. The corresponding
network parameters were estimated reasonably well in most cases (Table 1).
An example of obtained parameter estimates is shown in Table 1, where we
report mean degree, diagnosis and infection rate for an outbreak on an ER
network. The estimation of the removal (i.e. diagnosis) rate was sometimes
skewed towards the upper bound, which probably is due to branch elongation
induced by the within-host evolution model.

Table 1: Parameter estimation for one epidemic spread on an ER
network.

Parameter Median 95%CI True value
Network parameter, Np 8.5 (7.8,8.7) 8

Removal rate, γ 0.25 (0.19,0.37) 0.35
Acute stage infection rate, λ1 0.008 (0.002,0.01) 0.005

Application to data from real epidemics

Inference of epidemic parameters as well as network type becomes more com-
plex in real outbreaks. We consider two genealogies from separate IDU-
associated HIV-1 CRF01 and subtype B epidemics in Sweden, respectively.
The CRF01 tree was sampled from a rapid outbreak that was imported from
Finland [42] around 2003, which was quiescent until the outbreak started in
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2006. The subtype B tree was sampled from the more slowly, and typical,
spreading IDU epidemic in Sweden [41].

While tree indices were di�erent between the trees from the Swedish HIV-
epidemic (Figure 10), and super�cially in line with what one might expect
comparing an outbreak scenario to a more endemic situation, e.g., mean
branch lengths were 279 and 913, and tree height 4176 and 10527, respec-
tively, they cannot be directly compared because these trees represent dif-
ferent stages in the respective epidemic. Furthermore, real data is rarely
sampled at 100% of all infected or even diagnosed, so comparisons to our
simulated overall network di�erences are di�cult to evaluate. Thus, to eval-
uate genealogies from real epidemics we must consider epidemic stage and
sampling fraction (Figure 6 - Figure 9)

Figure 10: Time-scaled HIV-1 phylogenies from the Swedish epi-
demic among IDU. A. The genealogy from a rapid CRF01 outbreak, and
B the genealogy from a slower spreading subtype B epidemics. Trees were
inferred by a Bayesian skyline coalescent model using BEAST 1.8 [43].

In the ABC analysis of the two IDU HIV-1 transmission chains among
IDU we have assumed the same epidemiological model as in the simulations
(stage-varying infectivity pro�le with ratio 10:1 acute:chronic, patient infec-
tivity variation (σ = 3)) and a sampling fraction of 50%. For the CRF01
IDU outbreak, the susceptible population was assumed to be 200 and in the
Swedish subtype B ongoing epidemic it was set to 3000. Results are shown
in Table 2.

Overall, convergence was more di�cult to achieve in the analysis of the
real data and the tolerance levels ε had to be set to higher values than in
the simulation studies. However, the posterior model probabilities seem to
indicate that the two outbreaks display di�erent associations to the three
network models considered even though there is no single model (among the
three network models considered) that can be used to appropriately describe
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Table 2: Network type posterior probability for the two Swedish
outbreaks.

WS ER BA
CRF01 0.16 0.39 0.45

subtype B 0.34 0.57 0.09

each outbreak.
For the CRF01 outbreak, there is a weak evidence in favor of the BA

network type although the ER was also selected with a posterior probability
of 39%, with small di�erences in the parameter estimates. The infection rate
in the acute phase was λ1 = 0.018(0.009, 0.031) vs λ1 = 0.023(0.0015, 0.036),
γ = 0.001(0.0006, 0.002) vs γ = 0.001(0.0005, 0.002) and the mean degree
was 3.2(2.4, 3.6) vs 3.7(2.2, 4.1) in the BA and ER respectively. The HIV-
1 subtype B outbreak was mostly (57%) associated with an ER network
type. However, there was considerable uncertainty in the parameter esti-
mates: λ1 = 0.0025(0.001, 0.004), γ = 0.0003(0.0003, 0.001) and the mean
degree 1.4(1.3, 2.1).
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Discussion

In this study we addressed several outstanding factors that could a�ect HIV
phylogenetic tree shape in addition to the underlying contact network upon
which HIV spreads. While previous studies have evaluated how contact net-
works a�ect the resulting tree [10, 11, 13], they ignored di�erences between
transmission trees and virus phylogenies, varying infectivity over disease pro-
gression, among patient infectivity variation, sampling fraction, and epidemic
stage. Here, we show that all these factors put further restrictions on what
type of phylogeny one can expect, but also that these additional factors may
confound the inference of contact network.

Transmission histories are not perfectly reconstructed by virus phyloge-
nies. In fact, it has been previously shown that virus phylogenies have a time
bias that elongates external branches, shifts internal nodes backwards, and
may cause lineage disordering relative to the transmission history [16]. In
this study we account for these factors by sampling (many) possible virus ge-
nealogies from a transmission history using a recently developed within-host
coalescent model [17]. Because many virus genealogies may be consistent
with one single transmission history, one would expect this factor to add
uncertainty to the network inference. However, there is also added signal
about transmission times because the within-host diversity changes over the
time of infection. Thus, because the degree distributions are di�erent for
each network type (Figure 1), transmissions happen after di�erent lengths of
infection time, which a�ects the phylogenetic tree shape. Indeed, we show
that the contact network inference from virus genealogies can be quite dif-
ferent than that from transmission trees, and that tree balance di�erences
in fact may be more informative using virus phylogenies. Besides, trans-
mission histories or trees can never be observed, or only partially and then
with great uncertainty, which is the main reason for turning to phylogenetic
reconstruction in the �rst place.

It is well known that infectivity is not constant over disease progression,
albeit the literature is uncertain about how big the di�erence is between acute
and chronic stage infectivity [45,49]. Indeed, we �nd that varying infectivity
a�ects the expected phylogeny under di�erent contact networks. In fact,
this factor alone seems to diminish phylogenetic di�erences between contact
networks. Somewhat surprisingly, patient variation in infectivity works in
the opposite direction, i.e., it ampli�es di�erences in the contact network
structures. The result is that virus genealogies do carry a signal of what
type of contact network HIV spread upon, but the expectations are di�erent
than what one would expect from a naive model where no virus diversity
exists and all hosts are described by an identical constant infectivity over
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their pathogenesis.
We show that any tree index that one would measure is a�ected by sam-

pling fraction and the stage of the epidemic. We show that phylogenies can-
not be meaningfully interpreted without this additional knowledge, as tree
statistics otherwise may mislead the inference of contact network. While our
results relate to epidemic situations relevant to HIV epidemics, they may
also be relevant to other measurably evolving pathogens such as hepatitis C
and in�uenza.

The developed ABC inference framework for network identi�cation and
parameter estimation showed discriminatory power and ability to recover epi-
demiological parameters when applied to simulated data. The model used for
validating the ABC algorithm included stage varying infectivity, individual,
and within-host variability. For complex models such as epidemic spreads on
networks the likelihood function is computationally costly to evaluate and
ABC o�ered a way to perform likelihood-free statistical inference. Further-
more, the use of summary statistics allowed us to study the relationship be-
tween readily measurable tree statistics and complex transmission dynamics.
The analysis of the two outbreaks from the Swedish HIV epidemic showed
that inference on real datasets is typically much harder. As is to be expected,
real world networks do not match perfectly with the simpli�ed models con-
sidered in this study. In fact, in the ABC algorithm, the proposed parameters
values are accepted if the simulated data based on them are close enough to
the observed data. If the observed data were generated from a rather dif-
ferent or more complex model, then the simulated data from the candidate
model probably will be far away from the observed data. Hence, very few
proposed parameter values will be accepted. More realistic models, such as
dynamic networks, may be able to better capture the features of the out-
breaks, especially those occurring over a long period of time.
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Supporting Information

Appendix S1

Text S1 Probability to escape infection.
We calculated the probability to escape infection,π, as the exponential of

the total infectious pressure. Let X denote the time to diagnosis (or death
from AIDS if never diagnosed) and assume that X follows an exponential
distribution with rate parameter γ, i.e. X ∼ Exp(γ). In the �rst model
speci�cation (constant infectivity) π can be written as π = E[Exp(−λX)]
where λ is the constant transmission rate. Therefore, π = E[Exp(−λX)] =∫ +∞
0

γe−γx(e−λx)dx = γ
γ+λ

.
In the second model speci�cation, which included stage-varying infectiv-

ity, let t1 denote the deterministic time spent in the �rst stage (acute phase),
T2 the random time spent in the second stage (chronic phase), represented
by an exponential random variable with rate parameter β, i.e. T2 ∼ Exp(β),
and t3 the time spent in the pre-AIDS stage. Here, the transmission rates
in each of the three infection stages are λ1, λ2 and λ3, respectively. Thus,
the infectious pressure has a di�erent expression depending on when the di-
agnosis occurs (in the acute, chronic or pre-AIDS stage). The probability π
is the mean of the infectious pressure calculated over Xand T2. We have:
π = E[Exp(−λ11X<t1 − (λ1t1 + λ2(X − t1))1t1<X<t1+T2 − (λ1t1 + λ2T2 +
λ3(X − t1 − T2)1X>t1+T2)] = =

∫ t1
0
γe−γx(e−λ1x)dx +

∫∞
0

∫ t1+t2
t1

βe−βt2γe−γx

e−(λ1t1+λ2(x−t1))dt2dx+
∫∞
0

∫∞
t1+t2

βe−βt2γe−γxe−(λ1t1+λ2t2+λ3(x−t1−t2))dt2dx

= − γ
γ+λ1

(e−t1(γ+λ1) − 1) + γ
β+γ+λ2

e−t1(γ+λ1) + β
β+γ+λ2

γ
γ+λ3

e−t1(γ+λ1)

= −γe−t1(γ+λ1)
(

1−et1(γ+λ1)
γ+λ1

− 1
β+γ+λ2

− β
(β+γ+λ2)(γ+λ3)

)
Equating the two expressions of π under the two di�erent model spec-

i�cations, we can calculate the three stage dependent transmission rates
λ1, λ2 and λ3 corresponding to a given λ. For example, let us assume:
t1 = 30, β = 1/(365 ∗ 8), γ = 1/(2.8 ∗ 365), λ1 = 100λ2, λ3 = 100λ2, λ = 0.1%.
We obtain: λ2 = 0.0121%
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Figure S1 Infectivity pro�les. The �rst two model speci�cations repre-
sented: (i) constant rate (red line) and (ii) stage dependent infectivity (black
lines). The length of the acute phase was assumed constant , i.e. t1 = 30
days while β was assumed to be 1/8.

Figure S2 Within-host evolution model. The e�ective population size
is modelled as a two phase linear function: �rst, it grows at rate β1 until a
random peak time tx, after which it decreases or stabilizes. This �gure is
part of [17].
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Figure S3 Distance based tree statistics on virus genealogies as
epidemic progresses on a network of size 5000. Mean branch length
(MBL) as function of tree height (A) and number of infected individuals (B)
for simulated outbreaks on networks of size 5000 as epidemics progress. MBL
(C) and internal/external branch length ratio (D) as function of the number
of taxa for simulated outbreaks on networks of size 5000. The envelopes rep-
resent 95% con�dence intervals around the medians. The curves are obtained
using local regression (LOESS). WS (red), ER (green), BA (blue).
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Figure S4 Topological tree statistics on virus genealogies as epi-
demic progresses on a network of size 5000. Sackin's index (A) and
number of cherries per taxa (B) as function of the number of taxa in networks
of size 1000. The envelopes represent 95% con�dence intervals around the
medians. The curves are obtained using local regression (LOESS). WS (red),
ER (green), BA (blue).
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Appendix S2

Text S2 Approximate Bayesian Computation for model choice
Within the ABC-SMC approach [18], particles are �rst generated from the

prior distribution. Particles are then resampled from the obtained sample,
and slightly perturbed. From these resampled particles, a new sample is
formed, from which again particles are resampled, etc.

The threshold value ε for the summary statistic � below which new parti-
cles are accepted � is lowered with every newly obtained sample. As a result,
the acceptance rate decreases and the acceptance threshold approaches zero
with an increase in the number of iterations (resamplings).

Initial ε-values were estimated as follows. We generated 100 trees and we
calculated the summary statistics (indices) and used the standard deviation
of this distribution as the initial ε values. The ε-values were decreased in an
exponential fashion as the sequential ABC scheme progresses.

• Initilize ε

• Set the population indicator t = 1

• Set the particle indicator i = 1

• If t = 1, sample (m′′, θ′′) from the prior π(m, θ) = π(m)π(θ|m)

• If t > 1 samplem′ with probability πt−1(m′) and perturbm′′ ∼ Kmt(m|m′)
Sample θ′ from the previous population {θ(m′′)t−1} with weights wt−1.
Perturb the particle, θ ∼ KPt,m′′(θ|θ′) where KPt,m′′ is the particle
perturbation kernel. If π(m′′, θ′′) = 0, repeat this step. Simulate a
candidate dataset x′ ∼ f(x|m′′, θ′′) If ρ(x′, y) > ε repeat this step.

• Set (m
(i)
t , θ

(i)
t ) = (m′′, θ′′) and d

(i)
t = ρ(x′, y), calculate the weight as

w
(i)
t (m

(i)
t , θ

(i)
t ) =

{
1 if t = 1
π(m

(i)
t ,θ

(i)
t )

S1S2
if t > 0

where

S1 =
∑
j∈M

Pt−1(m
(j)
t−1)Kmt(m

(i)
t |m

(j)
t−1),

and

S2 =
∑

k|m(i)
t =mt−1

w
(k)
t−1KPt,m(i)

t
(θ

(i)
t |θ

(k)
t−1)

Pt−1(m
(i)
t = mt−1)

• if i < N set i = i+ 1 and repeat the previous steps
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• Normalize the weights. Obtain the marginal model probabilities given
by

Pt(mt = m) =
∑

i|m(i)
t =mt−1

w
(i)
t (m

(i)
t , θ

(i)
t )

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2016. ; https://doi.org/10.1101/059865doi: bioRxiv preprint 

https://doi.org/10.1101/059865
http://creativecommons.org/licenses/by-nc-nd/4.0/

