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ABSTRACT

Epigenetics is defined as genomic modifications carrying information independent of DNA
sequence heritable through cell division. In 1940, Waddington coined the term “epigenetic
landscape” as a metaphor for pluripotency and differentiation, but epigenetic potential energy
landscapes have not yet been rigorously defined. Using well-grounded biological assumptions
and principles of statistical physics and information theory, we derive potential energy
landscapes from whole genome bisulfite sequencing data that allow us to quantify methylation
stochasticity genome-wide and discern epigenetic differences using Shannon’s entropy and the
Jensen-Shannon distance. We discover a “developmental wheel” of germ cell lineages and an
association between entropy and chromatin structure. Viewing methylation maintenance as a
communications system, we introduce methylation channels and show that higher-order
chromatin organization can be predicted from their informational properties. Our results provide
a fundamental understanding of the information-theoretic nature of the epigenome and a

powerful methodology for studying its role in disease and aging.

INTRODUCTION

The classical definition of epigenetics by Waddington is the emergence of a phenotype that can
be perturbed by the environment but whose endpoints are predetermined by genes'. Waddington
used the language of ordinary differential equations, including the notion of an “attractor”, to
describe the robustness of deterministic phenotypic endpoints to environmental perturbations,
which he believed to be entirely governed by DNA sequence and genes. However, a growing
appreciation for the role that stochasticity and uncertainty play in development and epi geneticsz'4
has led to relatively simple probabilistic models that take into account epigenetic uncertainty by

adding a “noise” term to deterministic models™®. Although some authors have recognized the



importance of entropy in DNA methylation, it has so far been defined in an ad hoc manner with
limited resolution and requiring extensive cell culture expansion and even molecular tagging for
its measurement>™*’. Here, we have taken a foundational approach to understanding the nature of
epigenetic information by using principles of statistical physics and information theory to
organically incorporate stochasticity into the mathematical framework and applying it on
primary whole genome bisulfite sequencing (WGBS) datasets. The results allow us to
conceptually combine “hard-wired” mechanistic principles of epigenetic biology with the Ising
model of statistical physics and, in contrast to metaphorical “Waddingtonian” landscapes,
rigorously derive epigenetic potential energy landscapes that can be computed genome-wide.
These landscapes encapsulate the higher-order statistical behavior of methylation in a
biologically relevant manner, and not just its mean as it has been customary. We quantify
methylation uncertainty genome-wide using Shannon’s entropy and provide a powerful
information-theoretic methodology for distinguishing epigenomes using the Jensen-Shannon
distance between sample-specific potential energy landscapes associated with stem cells, tissue
lineages and cancer. Moreover, we establish a relationship between entropy and topologically
associating domains (TADs), which allows us to efficiently predict their boundaries from
individual WGBS samples. In addition, we demonstrate that methylation can be subject to (non-
critical) phase transition that may be associated with important biological functions, such as
genomic imprinting. We also introduce methylation channels as models of DNA methylation
maintenance and show that their informational properties can be effectively used to predict
higher-order chromatin organization using machine learning. Lastly, we introduce a sensitivity
index that quantifies the rate by which environmental or external perturbations influence

methylation uncertainty along the genome, suggesting that genomic loci associated with high



sensitivity are those most affected by such perturbations. This merger of epigenetic biology,
statistical physics and information theory yields many fundamental insights into the relationship
between information-theoretic properties of the epigenome and nuclear organization in normal
development and disease, and demonstrate that we can precisely identify informational
properties of individual WGBS samples and their chromatin structure, as well as their differences

among tissue lineages, aging, and cancer.

RESULTS
Stochastic epigenetic variation and potential energy landscapes
Despite it being well known that stochastic variation is a fundamental property of the DNA
methylome™”, genome-wide modeling and analysis of the methylation state continues to focus on
individual CpG dinucleotides and ignores statistical dependence among these sites. However,
DNA methylation is correlated, at least over small distances, due to the processivity of the
DNMT enzymes. Therefore, one cannot adequately analyze methylation with methods that do
not take into account such correlation. To this end, and to better understand the relationship
between stochastic epigenetic fluctuation and phenotypic variability, we took a different and
more general path to methylation modeling and analysis by developing an information-theoretic
approach based on the Ising model of statistical physics. This approach leads to a rigorous
definition of a potential energy landscape which associates each methylation state with a
potential that quantifies the information content of that state. Notably, the Ising model provides a
natural way of modeling statistically dependent binary methylation data that is consistent with
observed means and pairwise correlations.

Here, DNA methylation is viewed as a process that reliably transmits linear strings of binary

(0-1) data from a cell to its progeny in a manner that is robust to intrinsic and extrinsic stochastic



biochemical fluctuations. First, the methylation state within a given genomic region containing N
CpG sites is modeled by an N-dimensional binary-valued random vector X whose n-th element
X, takes value 0 or 1 depending on whether or not the n-th CpG site is unmethylated or
methylated, respectively. Then, the potential energy landscape (PEL) of methylation is defined
by

Vx(x) = ¢o — In Px(x), (1)

for some constant ¢y, where Px(X) is the joint probability of a methylation state x. As a

consequence, Px(x) is the Boltzmann-Gibbs distribution of statistical physics®, given by
1
P (x)= EGXP{_VX (X)} , 2)

with state energy Vx(x) and partition function

Z = exp{-Vx(x)}. (3)

Notably, the potential V'x(x) — ¢o quantifies the amount of information associated with the
methylation state x, which is known to be given by — In Px(x)’.

By using the well-known maximum-entropy principle, we determined that the PEL which
maximizes our uncertainty about the particular choice of the Boltzmann-Gibbs distribution that is

consistent with the methylation means and pairwise correlations is given by

V== a,2x, ~1)- e (2x, ~1)(2x,, ~1). )

for some parameters a, and c,. This leads to a methylation probability Px(x) that is modeled by
the 1D nearest-neighbor Ising model®. Notably, parameter a, influences the propensity of the n-

th CpG site to be methylated due to non-cooperative factors, with positive a, promoting



methylation and negative a, inhibiting methylation, whereas parameter ¢, influences the
correlation between the methylation states of two consecutive CpG sites n and n — 1 due to
cooperative factors, with positive ¢, promoting positive correlation and negative ¢, promoting
negative correlation (anti-correlation).

We estimated the methylation PEL Vx(x) from WGBS data corresponding to 35 samples,
including stem cells, normal cells from colon, liver, lung, and brain tissues, matched cancers
from three of these tissues, cultured fibroblasts at 5 passage numbers, CD4 " lymphocytes and
skin keratinocytes from younger and older individuals, and EBV-immortalized lymphoblasts (see
Methods & Supplementary Table 1). To this end, we partitioned the genome into consecutive
non-overlapping regions and developed a method for estimating the PEL parameters within each
region using a maximum-likelihood approach (see Methods). Our strategy capitalizes on
appropriately combining the full information available in multiple methylation reads, especially
the correlation between methylation at CpG sites, as opposed to the customary approach of
estimating marginal probabilities at each individual CpG site (Fig. 1a).

For reliable estimation, we reduced the 2N — 1 PEL parameters within a genomic region that
contains N CpG sites to three parameters, o, 3, and vy, characteristic to that region. We did so by

setting a, = o + Bp, and ¢, = y/d,, where p is the CpG density associated with the n-th CpG site

and d, is the CpG distance of the n-th CpG site from its “nearest-neighbor” site n — 1
(Supplementary Method 1). We used parameter o to account for intrinsic factors that uniformly
affect CpG methylation and parameter B to modulate the influence of CpG density on
methylation. Moreover, we set ¢, = y/d, to reflect our expectation that correlation between the
methylation states of two consecutive CpG sites decays as the distance between the sites

Increases.



The resulting PEL encapsulates our view that methylation within a genomic region depends
on two distinct factors: the underlying CpG architecture of the genome at that location,
quantified by the CpG density p,, and distance d,, whose values can be readily determined from
the DNA sequence itself, as well as by the current biochemical environment in the nucleus
provided by the methylation machinery, quantified by parameters a, B, and y whose values must
be estimated from available methylation data. Due to its dependence on a small number of
parameters, this model allows us to estimate the joint probability distribution of methylation
from low coverage WGBS data (as low as 7x in the data used in this study). In turn, this allows
one to reliably calculate marginal probabilities at individual CpG sites, compute PELs, and
produce a number of novel methylation measures that have not been considered before. We
calculated PELs on all 35 samples comprehensively across the entire genome, which can be
visualized locally by a 3D representation using Gray’s code (see Methods). For example,
computed PELs demonstrate that most methylation states associated with the CpG island (CGI)
of WNT1 in colon normal exhibit high potential (Fig. 1b, 3D and violin plots), implying that
significant energy is required to leave the fully unmethylated state, which, in this case, is the
state of lowest potential (ground state). Any deviation from this state will be rapidly “funneled”
back, leading to low uncertainty in methylation. Notably, the methylation states of WNT in
colon cancer demonstrate low potential (Fig. 1b, 3D and violin plots), implying that relatively
little energy is required to leave the fully unmethylated ground state. In this case, deviations from
this state will be frequent and long lasting, leading to uncertainty in methylation. Similarly, the
methylation states associated with the CGI of EPHA4, a key developmental gene, exhibit low
potential in stem cells (Fig. 1b, 3D and violin plots), suggesting that low energy is needed to

leave the fully unmethylated state, which is again the ground state, thus leading to uncertainty in



methylation. In contrast, EPHA4 shows high potential in the brain (Fig. 1b, 3D and violin plots),
implying that substantial energy is required to leave the fully unmethylated ground state thus
leading to low uncertainty in methylation. Lastly, global distributions of the PEL parameters a
and c (Fig. 1¢) show that our motivation for using the Ising model is well founded. Specifically,
more than 75% of the ¢ parameters along the genome are positive, showing extensive
cooperativity in methylation (Fig. 1c). Interestingly, a global increase in the values of the ¢
parameters is consistently observed in cancer, implying an overall increase in methylation
cooperativity in tumors. In addition, most samples demonstrate positive median a values,
indicating that methylation is more common than nonmethylation, except in two liver cancer
samples which were subject to extended extreme hypomethylation. Even in those cases, however,

¢ 1s increased in the tumors.

Epigenetic entropy quantifies methylation uncertainty in biological states

Due to their first-order marginal nature, means and variances produce a narrow view of
methylation and its uncertainty. Previous methods of methylation analysis have attempted to
provide a more comprehensive approach by using the notions of epipolymorphism and
combinatorial (Boltzmann) entropy3’4’7, which are based on empirically estimating the
probabilities of specific methylation patterns (epialleles). We have demonstrated that, in contrast
to the model-based estimation of joint probabilities and Shannon entropy employed here,
empirical estimation of epiallelic probabilities, epipolymorphisms and combinatorial entropies,
requires much higher coverage than routinely available from WGBS data (Supplementary Note
1). With regards to a previous study*, we often found that the 95% confidence intervals of
empirically estimated epipolymorphisms will not include the true values resulting in potentially

large errors.



In order to account for variation of the statistical properties of methylation within the
estimation regions and perform methylation analysis at a higher resolution, we further partitioned
the genome into genomic units (GUs) of 150bp each and characterized methylation within each
GU with the probability distribution P;(/) of the methylation level L (see Methods). We then
quantified methylation uncertainty within a GU containing N CpG sites by defining the
normalized methylation entropy (NME)

H

" o (VA ©)

where

H==)"P,())log,P,() (6)

is the informational (Shannon) entropy’ of the methylation level within the GU that provides an
average assessment of the amount of epigenetic information conveyed by any given GU. When
all methylation levels are equally likely (fully disordered state), the NME takes its maximum
value of 1 regardless of the number of CpG sites, whereas it achieves its minimum value of 0
only when a single methylation level is observed (perfectly ordered state).

The NME is an effective measure of methylation uncertainty that we can reliably compute
genome-wide from low coverage WGBS data using our Ising model, together with the mean
methylation level (MML) E[L], which is the average of the methylation means at individual CpG
sites within a GU. We therefore compared the genome-wide distributions of MML and NME
values among samples. Consistent with previous reports, the MML was globally higher in stem
cells and brain tissues than in normal colon, liver, and lung and that the same was true for CD4"

lymphocytes and skin keratinocytes (Fig. 1¢). In addition, the MML was reduced in all seven
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cancers studied compared to their matched normal tissues, and was also progressively lost in cell
culture (Fig. 1c,d). We also observed low NME in stem and brain cells, as well as in CD4"
lymphocytes and skin keratinocytes associated with young subjects, and a global increase of
NME in most cancers except for liver cancer, which exhibited profound hypomethylation leading
to a less entropic methylation state (Fig. 1c,d & Extended Data Fig. 1). While changes of NME
in cancer were often associated with changes in MML (Extended Data Fig. 1a), this was often
not the case (Extended Data Fig. 1b,c,d), indicating that changes in stochasticity are not
necessarily related to changes in mean methylation and demanding that both be assessed when
interrogating biological samples. Lastly, we computed MML and NME distributions over
selected genomic features and provided a genome-wide breakdown showing lower and more
variable methylation levels and entropy values within CGIs and TSSs compared to other
genomic features, such as shores, exons, introns, etc. (Extended Data Fig. 2a,b).

Global hypomethylation and gain in entropy was found in all three CD4 " lymphocyte
samples from older people compared to three from younger individuals and in both skin
keratinocyte samples compared to younger samples (Fig. 1c,e), with the percentage change in
entropy being more pronounced. For example, we found an average 23% increase (11 —38%
range) in median NME genome-wide between young and old CD4 samples but only an average
5.6% decrease (3.2 — 8.5% range) in median MML. Note that, for genome-wide comparisons, the
95% confidence intervals for the median are too small to visualize and direct statistical
comparisons of the medians are contraindicated. However, to account for biological and
statistical variability, we constructed an empirical null distribution amongst the young samples
(see Methods) and statistically estimated that up to 34% of the GUs were differentially entropic,

demonstrating that profound changes in entropy can result in old individuals. Notably, striking
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differences were observed between true aging and cell culture. Although passage number in
fibroblasts was also associated with progressive global hypomethylation, the entropy distribution
was relatively stable (Fig. 1c & Extended Data Fig. 3a). For example, the promoters of CYP2E1
and FLNB, two genes with are known to be downregulated with age'’, exhibited noticeable gain
in methylation level and entropy in old CD4 " lymphocytes, which was in stark contrast to the
lack of changes with passage in CYP2E] and the noticeable loss of entropy in FLNB (Extended
Data Fig. 3b,c) in cultured fibroblasts. Therefore, age-related PELs in multiple tissues do not
seem to be well characterized by increasing fibroblast passage number, and aging appears to be

associated with a gain in entropy.

Informational distances delineate lineages and identify developmentally critical genes

In order to understand the relationship between epigenetic information and phenotypic variation,
we sought to precisely quantify epigenetic discordance between pairs of samples using the
Jensen-Shannon distance (JSD), which measures the dissimilarity between the probability
distributions of the methylation level within a GU across the two samples (see Methods). We
then asked if we could use this distance to distinguish colon, lung, and liver from each other and
from matched cancers, as well as from stem, brain, and CD4 " lymphocytes. For computational
feasibility, we limited our study to 17 representative cell and tissue samples and computed all
136 pairwise epigenetic distances genome-wide. We then visualized the results by performing
multidimensional scaling (see Methods). The samples fell into clear categories based on
developmental germ layers (Fig. 2a), with clusters of ectoderm (brain), mesoderm (CD4), and
endoderm (normal colon, lung, and liver) derived tissues located roughly equidistant from stem
cells (Fig. 2a, dashed circle). On the other hand, cancerous tissues were far removed from their

normal matched tissues as well as from the stem cells (Fig. 2a).
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Given the interesting relationship between the stem cell sample and the three germ layers, we
examined genes that exhibited noticeable differential methylation level (AMML) and/or JSD in
stem cells compared to differential tissues. To this end, we ranked genes based on the magnitude
of AMML as well as on the JSD within their promoters (see Methods & Supplementary Data 1)
and were surprised to find that many genes known to be involved in development and
differentiation showed relatively small changes in AMML yet very high JSD, indicating that the
probability distributions of methylation level within their promoters were different, despite little
difference in mean methylation level. To explore this further, we asked whether non-mean
related methylation differences could identify genes between sample groups that would have
previously been occult to mean-based analyses by employing a relative JSD-based ranking
scheme (RJSD) that assigned a higher score to genes with higher JSD but smaller IMML (see
Methods). For example, in the stem cell to brain comparison, we found many key genes at the
top of the RJSD list, such as IGF2BP1, FOXD3, NKX6-2, SALLI, EPHA4, and OTX1, with
RJISD-based GO annotation ranking analysis'', revealing key categories associated with stem cell
maintenance and brain cell development (Supplementary Data 1 & 2). Similarly, 30 GO
categories showed 10-fold or greater enrichment in the RJSD list, compared to 5 categories in the
MML list (FDR q values < 0.05). We obtained similar results when we compared stem cells to
normal lung, with RISD-based GO annotation analysis revealing key developmental categories
and genes in both mesodermal and stem cell categories (Supplementary Data 1 & 2).
Comparison of stem cells to CD4" lymphocytes showed enrichment for immune-related
functions driven by dAMML and many developmental and morphogenesis categories driven by

RISD (Supplementary Data 2).
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In contrast, when we compared differentiated tissues, we noticed that AMML-based GO
annotation analysis resulted in a higher number of significant categories than RISD-based
analysis, and these were closely related to differentiated functions, such as immune regulation
and neuronal signaling in the case of brain and CD4, 16 GO categories with 10-fold or greater
enrichment for MML compared to 3 categories for RISD (Supplementary Data 2; FDR q values
<0.05). Interestingly, when we compared lung normal to cancer, we noticed that RISD-based
GO annotation analysis produced a higher number of significant categories than dMML-based
analysis, and these were again related to developmental morphogenesis categories. There were
40 GO categories with 10-fold or greater enrichment for RISD compared to 7 categories for
MML (Supplementary Data 2; FDR q values < 0.05). Taken together, these results show that
PEL computation reveals major changes in the probability distributions of DNA methylation
associated with developmentally critical genes, and that the shape of these distributions, rather
than their means per se, may often be closely related to pluripotency and fate lineage
determination in development and cancer.

We next explored the link between changes in the probability state, as reflected by the JSD
and the values of the PEL parameters a, and c,. For example, a CGI near the promoter of EPH4A
shows high JSD when comparing stem cells with brain (Fig. 2b). Although this region exhibits
comparable mean methylation levels, it displays high JSD over the entire CGI and especially
over its shores. Notably, the JSD is not driven by methylation propensity, since the PEL
parameters a, are strongly negative in both stem and brain, in which case the fully unmethylated
state is the PEL’s ground state (Fig. 1b, lower panel), resulting in low methylation level within
the CGI. However, it is driven by methylation cooperativity at the CGI shores in brain, since the

PEL parameters c, are strongly positive, compared to low methylation cooperativity in stem
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(almost zero c,’s) that flattens the PEL (Fig. 1b, lower panel) and results in higher entropy than
in brain (Fig. 2b). Intriguingly, the region shows binding of EZH2 and SUZ12, functional
enzymatic components of the polycomb repressive complex 2 (PRC2) which regulates
heterochromatin formation'?. Likewise, SIM2, a master regulator of neurogenesis, is associated
with high JSD regions with similar EZH2/SUZ12 binding, which span several CGls located near
its promoter (Extended Data Fig. 4a). In this case, a gain of entropy is observed in brain,
corresponding to a simultaneous loss in methylation propensity (through reduced a,’s) and a gain
in methylation cooperativity (through increased c¢,’s). Similar remarks hold for other
developmental genes, such as ASCL2, SALLI, and FOXD3 (Extended Data Fig. 4b,c,d; see figure
legend for details).

We repeatedly observed the presence of EZH2 and SUZ12 binding sites in areas of high JSD,
suggesting that they may play a critical role in generating increased entropy with minimal change
in mean methylation. In order to determine whether this association was significant, we used
Fisher’s exact test and compared promoters and enhancers with high dAMML to those with low
dMML as well as promoters and enhancers with high JSD to those with low JSD. We observed
several-fold greater enrichments for both EZH2 and SUZ12 binding sites at promoters and
enhancers with high JSD vs. low JSD, which provided further evidence of the importance of the
JSD (Supplementary Table 2). We then performed binomial logistic regression of EZH2/SUZ12
binding data on JSD scores at promoters and enhancers and found significant positive association
(EZH2: score = 5.6 for promoters & 18.1 for enhancers, P value <2.2 x 10'16; SUZ12: score =
6.2 for promoters & 23 for enhancers, P value < 2.2 x 10™'%; see Supplementary Table 2). Taken
together, these results show a significant association of EZH2 and SUZ12 with promoters and

enhancers at high JSD regions of the genome, suggesting the intriguing possibility that the PRC2
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complex controls stochastic variability in DNA methylation at selected genomic loci by

regulating the methylation PEL.

Methylation energy landscapes uncover bistable behavior associated to genomic imprinting
As a direct consequence of known results of statistical physics that relate the magnetization and
covariance of the 1D Ising model with its underlying parameters®, we postulated that methylation
can be subject to (non-critical) phase transition and, in particular , to a bistable behavior that
manifests itself as a coexistence of two distinct epigenetic phases: a fully methylated and a fully
unmethylated phase (Extended Data Fig. 5a,b & Supplementary Method 2).

To investigate whether bistability in methylation might be associated with important
biological functions, we examined its possible enrichment in several genomic features (see
Methods). We found (Supplementary Table 3) that bistable GUs are in general enriched in CpG
island shores (ORs > 1 in 29/34 phenotypes, P values < 2.2 x 10"'®) and promoters (ORs > 1 in
26/34 phenotypes, P values < 1.68 x 10™), but depleted in CGIs (ORs < 1 in 26/34 phenotypes, P
values < 2.2 x 107°) and gene bodies (ORs < 1 in 29/34 phenotypes, P values < 3.06 x 10™%).
Moreover, we noticed that bistable GUs were associated with higher NME than the rest of the
genome (Fig. 3a; comparing the bistable regions (yellow) to the rest of the genome (purple)).

In order to investigate whether methylation bistability is associated with specific genes, we
rank-ordered each gene in the genome using a bistability score, which we calculated as the
average frequency of methylation bistability within the gene’s promoter in 17 normal samples
(see Methods). We found a substantial number of highly ranked genes to be imprinted
(Supplementary Data 3). This is attributed to the fact that imprinting has been associated with
allele-specific methylation comprising full methylation on one chromosome and complete

unmethylation on the other giving rise to bistable methylation"*. In fact, 82 curated imprinted
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genes from the Catalogue of Parent of Origin Effects (CPOE) were much more highly ranked in
our list than would be expected by chance (P value 2.89 x 10™'°), with notable overrepresentation
of imprinted genes near the top of the list. Interestingly, more than 8% of imprinted genes in
CPOE appeared in the top 25 bistable genes (SNRPN, SNURF, MEST, MESTIT1, ZIM2, PEG3,
MIMT1), raising the possibility that imprinting of these genes may be associated with allele-
specific methylation of selective loci near their promoters.

We also investigated the possibility that genes subject to monoallelic expression (MAE) are
associated with bistability. By using a recently created data set of 4,227 MAE genes, we detected
only a slight enrichment of bistability in these genes, likely because MAE is not a result of
silenced expression from one of the two alleles'®. We noticed, however, that 10 MAE genes, not
classified in CPOE as being imprinted, exhibited methylation bistability (score > 0.1), raising the
possibility that these genes might be imprinted, and one of these, C/1/ORF21, lies within the
BWS domain but is not known to be imprinted. Additionally, some of the genes highly ranked in
the bistability list that are not imprinted/MAE may be methylated in some cells and not in others.

Considerable effort has been previously expended to identify imprinted genes in the 11p15.5
chromosomal region related to Beckwith-Wiedemann syndrome and loss of imprinting in
cancer'~ . We therefore assessed the position of bistable marks in this well-studied imprinted
locus and revealed a correspondence with known imprinting control regions (ICRs) and CTCF
binding sites just upstream of H179, as well as near the promoter of KCNQIOT1 (Fig. 3b,c).
Bistable marks were also found near the SNURF/SNRPN promoter, which matched the location

of a known ICR (Fig. 3d), as well as near the PEG3/ZIM?2 and MEST/MESTITI promoter regions

(Extended Data Fig. 6).
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Entropy blocks predict TAD boundaries

Topologically associating domains (TADs) are structural features of the genome that are highly
conserved across tissue types and species.'?'. Their importance stems from the fact that loci
within these domains tend to frequently interact with each other, with much less

frequent interactions being observed between loci within adjacent domains. Genome-wide
detection of TAD boundaries is an essential but experimentally challenging task. However, a
recent method has demonstrated that TAD boundaries can be reasonably predicted from histone
mark ChIP-seq data (CTCF, H3k4mel) using a computational approachzz. We therefore
examined the possibility of using the NME to computationally locate TAD boundaries using
WGBS data.

We observed that, in many samples, known TAD boundary annotations were visually proximal
to boundaries of entropy blocks (EBs), i.e., genomic blocks of consistently low or high NME
values (Fig. 4a & Extended Data Fig. 7, see Methods), which suggests that TAD boundaries may
be located within genomic regions that separate successive EBs. To determine whether this is
true, we computed EBs in the WGBS stem data and identified 404 regions predictive of TAD
boundaries (see Methods). We then found that 5,862 annotated TAD boundaries in H1 stem
cells® were located within these predictive regions or were close in a statistically significant
manner and correctly identified 6% of the annotated TAD boundaries (362 out of 5,862) derived
from 90% of computed predictive regions (see Methods & Supplementary Note 2 for details and
P values). We then extended our analysis by combining the TAD boundary annotations for H1
stem cells with available annotations for IMR90 lung fibroblasts* (a total of 10,276 annotations).
Since TADs are largely thought to be cell-type invariant®*?', we realized that we can predict the

location of more TAD boundaries by combining information from EBs derived from additional
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phenotypes (Fig. 4b). We therefore employed WGBS data from 17 different cell types, computed
the corresponding EBs, determined predictive regions for each cell type, and appropriately
combined these regions to form a single list that encompasses information (6,632 predictive
regions) from all cell types (see Methods). Our analysis produced results similar to those
obtained in the case of stem cells and demonstrated that TAD boundaries that fell within
identified predictive regions did so significantly more often than expected by chance, resulting in
62% correct identification of the annotated TAD boundaries (6,408 out of 10,276) derived from
97% of computed predictive regions (see Methods & Supplementary Note 2 for details and P
values), a performance that can be further improved by including additional phenotypes in our
analysis.

To further assess our predictions, we noted that a TAD boundary can be naturally located at
the center of the associated predictive region in the absence of prior information. We then found
that errors of locating TAD boundaries in this manner were small when compared to the TAD
sizes, as demonstrated by estimating the probability density and the corresponding cumulative
probability distribution of the location errors as well as of the TAD sizes using a kernel density
estimator (Fig. 4c). Computed cumulative probability distributions implied that the probability
that the location error is smaller than N bp’s was larger than the probability that the TAD size is
smaller than V, for every N. We therefore concluded that the location error was smaller than the
TAD size in a well-defined statistical sense (stochastic ordering). We also observed that the
median location error was an order of magnitude smaller than the median TAD size (94-kb vs.
760-kb). Taken together, these observations provide strong statistical evidence that there is an
underlying relationship between EBs and TADs, and that this relationship can be easily

harnessed to effectively predict TAD boundaries from WGBS data.
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Methylation channels explain epigenetic memory maintenance

Stable conservation of the DNA methylation state is essential for epigenetic memory
maintenance. In order to quantify this process, we employed a noisy binary communication
channel’, which dynamically updates the methylation state and leads to an information-theoretic
perspective that enables a fundamental understanding of the relationship between reliability of
methylation maintenance, energy availability, and methylation uncertainty. We reasoned that
stable maintenance of the methylation state at a CpG site can be approximately modeled by a
stochastic methylation channel (MC) near equilibrium, quantified by the transmission
probabilities p and v of demethylation and de novo methylation, respectively (Fig. 5a &
Supplementary Method 3). These probabilities are thought to be regulated by the maintenance
and de novo methyltransferases (DNMT1, DNMT3A, and DNMT3B), by active (TET) and
passive demethylation processes, as well as by other potential mechanisms, which are anticipated
to be constrained by the free energy available for methylation maintenance.

The amount of methylation uncertainty associated with a MC at a particular CpG site is given
by the CG entropy (CGE) § =— (1 — p) log2(1 — p) — p log,p, where p is the probability of
methylation at that site. Notably, only a certain amount of methylation information can be
transmitted by a MC, with the maximum possible amount given, on the average, by the
information capacity’ (IC) (see Supplementary Method 3). Moreover, a MC may drift towards
imperfect transmission, which reduces reliability of methylation maintenance by increasing the
probability of error. We therefore sought to study the relationship between CGE, IC and
reliability of transmission in order to better understand how MCs influence epigenetic memory.

We first reasoned that increased reliability in transmission can be achieved only by a MC that

consumes an appreciable amount of free energy, which must be dissipated to the surroundings in
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the form of heat, in agreement with the first law of thermodynamics. We therefore chose to
measure reliability of transmission by computing the amount of dissipated heat. Consistently
with general engineering principles®, we postulated that the (minimum) energy E dissipated
during maintenance of the methylation state is approximately related to the probability of
transmission error T by E ~ — kg T Inmt, where kg is Boltzmann’s constant and 7' is the absolute
temperature. Since the proportionality factor is not known in this relationship, we used the

relative dissipated energy (RDE)

E Inm
e=——=———=-log, 7
E_ ™) g, (7
as a measure of reliability in methylation transmission, where Epi, ~ — kg 7' In2 is the least

possible energy dissipation (Supplementary Method 3). This implies that higher reliability (lower
probability of error) can only be achieved by increasing the amount of free energy available for
methylation maintenance, whereas reduction in free energy can lead to lower reliability (higher
probability of error). Notably, it is not physically possible for a MC to achieve exact
transmission of the methylation state (zero probability of error) since this would require an
unlimited amount of available free energy.

We then recognized that calculating ICs and RDEs genome-wide requires computation of the
probabilities p and v of demethylation and de novo methylation at each CpG site of the genome,
which is not currently possible. To remedy this, we estimated the turnover ratio A = v/pu at each
CpG site from WGBS data, derived approximate formulas for the average IC and RDE within a
cell population in terms of A, and showed that the CGE can be directly computed from A
(Supplementary Method 3). We found that a high capacity MC leads to a less entropic
methylation state at the expense of higher energy consumption than a low capacity MC (Fig. 5b,

green), which consumes less energy but leads to a highly entropic methylation state (Fig. 5b, red),
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thus establishing an important relationship between information-theoretic properties of MCs and
the nature of epigenetic memory maintenance.

Lastly, we approximately computed ICs, RDEs, and CGEs in individual samples and
comparative studies genome-wide (Fig. 5¢ & Extended Data Fig. 2¢,d).We observed a global
pattern of IC and RDE loss in colon and lung cancer, accompanied by a global gain in CGE (Fig.
5¢), although this was not true in liver cancer (Fig. 5¢). Moreover, stem cells demonstrated a
narrow range of relatively high IC and RDE values, whereas brain cells, CD4" lymphocytes, and
skin keratinocytes exhibited high levels of IC and RDE, with noticeable loss in old individuals
(Fig. 5¢). Notably, the methylation state within CGIs and TSSs is maintained by MCs whose
capacities are overall higher than within shores, shelves, open seas, exons, introns and intergenic
regions, and this is accomplished by significantly higher energy consumption (Extended Data
Fig. 2¢,d). These results reveal an information-theoretic view of genome organization, according
to which methylation within certain regions of the genome is reliably transmitted by high
capacity MCs leading to low uncertainty in the methylation state at the expense of high energy
consumption, while methylation within other regions of the genome is transmitted by low

capacity MCs that consume less energy but leading to high uncertainty in the methylation state.

Information-theoretic prediction of chromatin changes in development and cancer

The 3D spatial organization of the genome allows for regions that are linearly located far from
each other to come into proximity and reside in the same regulatory environment. Recent work
seeking to understand this organization has demonstrated the existence of cell-type specific

20,21,24
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compartments A and , which are known to be associated with gene-rich transcriptionally

active open chromatin and gene-poor transcriptionally inactive closed chromatin, respectively.
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Despite the fact that identifying compartments A/B is becoming an increasingly important
aspect of fully characterizing the epigenome of a given sample, the availability of such data is
limited by cost, technical difficulties, and the need for sizable amounts of input material with
intact nuclei required by conformation capture technologies such as Hi-C**. Computational
prediction methods using data obtained by more routine experimental methods, such as a large
number of replicated Illumina 450k DNA methylation microarrays or measures of DNA
accessibility, show promise in addressing this problem®. In this regard, we sought to predict
compartments A and B from local information-theoretic properties of the methylome in
individual WGBS samples.

Comparing known Hi-C data from EBV cells to calculated MCs from WGBS data, we
observed enrichment of low IC, high NME, and low RDE within compartment B, and the
opposite was globally true for compartment A (Fig. 5d,e). These observations led us to
hypothesize that information-theoretic properties of methylation maintenance can be effectively
used to predict the locations of compartments A and B. To test this prediction, we employed a
random forest regression model to learn the informational structure of A/B compartments from
available “ground-truth” data. To build this model, we used a feature vector that included the
information capacity (IC) and relative dissipated energy (RDE) of a MC, as well as the
normalized methylation entropy (NME) and mean methylation level (MML). Random forest
regression was capable of reliably predicting A/B compartments from single WGBS samples
(Extended Data Fig. 8a), resulting in cross-validated average correlation of 0.74 and an average
agreement of 81% between predicted and true A/B signals when using a calling margin of zero,
which increased to 0.82 and 91% when the calling margin was set equal to 0.2 (see Methods for

details). These results suggest that a small number of local information-theoretic properties of
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methylation maintenance can be highly predictive of large scale chromatin organization, such as
compartments A and B. Once properly trained, the random forest A/B predictor can be applied
robustly on any WGBS sample.

Consistent with the fact that compartments A and B are cell-type specific, and in agreement
with results of a previous study that demonstrated extensive A/B compartment reorganization
during early stages of development'?, we observed many differences between predicted
compartments A/B (Extended Data Fig. 8b,c,d,e). We also found from methylation data alone
that the predicted compartment transitions often corresponded to TAD boundaries identified
from Hi-C data by Dixon ez. al.'* (Extended Data Fig. 8b). In order to comprehensively quantify
observed differences in compartments A and B, we computed percentages of A to B and B to A
switching in all sample pairs (Supplementary Data 4). We observed high levels (> 20%) of A to
B and B to A switching between stem and most of the remaining samples, > 10% switching
between brain and most of the remaining samples, and low levels (< 10%) of switching between
most normal colon, liver and lung samples. We also noticed > 10% B to A switching between
colon, liver and lung normal and most cancer samples.

We subsequently noticed that the net percentage of A/B compartment switching can be
employed as a dissimilarity measure between two samples, and used this measure to cluster our
samples (Fig. 5f & Methods). The clusters reflect a notable distinction of A/B switching among
samples, with 31/34 samples being clustered in a biologically meaningful manner, despite the
fact that the random forest model was trained using limited data, and provide evidence that a
substantial portion of the observed levels of A/B switching can be attributed to epigenetic
differences between the samples. Notably, stem cell differentiation is associated with high levels

of chromatin reorganization (Fig. 5f). In particular, differentiated lineages and cancer are cluster
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together but they are distinguished from each other, while the brain is clustered closest to stem
cells, as it also suggested by biochemical studies*®. Moreover, young CD4 samples form one
cluster, whereas old CD4 samples form another, and the same is true for skin.

Intriguingly, normal lung showed strikingly different chromatin organization from lung
cancer, as did colon normal from colon cancer (Fig. 5f), so we attempted to relate these changes
to known chromatin or methylation structures. Previous studies have demonstrated the presence
of large hypomethylated blocks in cancer that are remarkably consistent across tumor types.>’
These blocks have been shown to correspond closely to large-scale regions of chromatin
organization, such as lamin-associated domains (LADs) and large organized chromatin K9-
modifications (LOCKs)*?®. Consistent with our observations on the information-theoretic
properties of compartment B and of carcinogenesis (Fig. 5c,d,e), we asked whether
hypomethylated blocks are associated mainly with compartment B (see Methods). We found
(Extended Data Fig. 8f) significant overlap with compartment B in normal lung (OR = 3.3, P
value < 2.2 x 10'%), and the same was true for LADs (OR = 4, P value < 2.2 x 10™"°) and LOCKs
(OR = 5.3, P value < 2.2 x 10™'%). Interestingly, compartment B in normal tissue may exhibit
regions of large JSD values (Fig. 5g), suggesting that considerable epigenetic changes may occur
within this compartment during carcinogenesis. We further supported this observation by
computing the genome-wide distributions of JSD values between normal/cancer within
compartments A and B in normal (Extended Data Fig. 8f). For example, B to A switching in
colon cancer included the HOXA and HOXD gene clusters, whereas B to A switching in lung
cancer included the HOXD gene cluster but not HOXA (Extended Data Fig. 8g,h). Moreover, it
included SOX9 in colon cancer and the tyrosine kinase SYK in both colon and lung cancer

(Extended Data Fig. 8i). Fewer regions showed A to B switching in cancer, consistent with the
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directionality of LAD and LOCKSs changes in cancer. Interestingly, this included MGMT in
colon but not lung, a gene implicated in the repair of alkylation DNA damage that is known to be
methylated and silenced in colorectal cancer, and the mismatch repair gene MSH4 (Extended
Data Fig. 8j). Together with our previous observation of significant B to A switching between
normal/cancer samples, these results suggest that compartment B demarcates genomic regions in

which it is more likely for methylation information to be degraded during carcinogenesis.

Entropic sensitivity quantifies environmental influences on epigenetic stochasticity
Epigenetic changes, such as altered DNA methylation and post-translational modifications of
chromatin, integrate external and internal environmental signals with genetic variation to
modulate phenotype. In this regard, we sought to investigate the influence of environmental
exposure on methylation stochasticity by following a sensitivity analysis approach, which
enabled us to quantify the effect of environmental variability on methylation entropy. To this
end, we viewed environmental variability as a process that directly influences the methylation
PEL parameters and built a stochastic approach that allowed us to approximately relate the
amount o, of NME variation with the amount ¢ of parameter variation by ¢, = nc;, where 1
measures the absolute rate of NME change due to this variation (see Supplementary Method 4).
This suggests using 1 to quantify entropic sensitivity to environmental conditions, since larger
values of n imply larger variation in methylation entropy. We named 1 the entropic sensitivity
index (ES]) and developed a method to estimate its values genome-wide from single WGBS
data, which quantifies the influence of environmental fluctuations on epigenetic uncertainty in
individual samples and comparative studies (Fig. 6, Extended Data Figs. 2e & 9). For example,
in colon normal, entropic sensitivity was observed within the CGI associated with WNT'I, with

part of it exhibiting gain in entropy and loss of sensitivity in colon cancer (Fig. 6a).
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Globally, we observed differences in ESI among tissues (Fig. 6b & Extended Data Fig. 9a),
with stem and brain cells exhibiting higher levels of entropic sensitivity than the rest of the
samples. Together with the fact that brain cells are highly methylated (Fig. 1c), high levels of
entropic sensitivity would predict that brain can show high rates of demethylation in response to
environmental stimuli, consistent with recent data showing that the DNA demethylase 7et3 acts
as a synaptic activity sensor that epigenetically regulates neural plasticity by means of active
demethylation”, and a similar observation could be true for stem cells and CD4 " lymphocytes.
Colon and lung cancer exhibited global loss of entropic sensitivity, whereas gain was noted in
liver cancer. Moreover, CD4" lymphocytes and skin keratinocytes exhibited global loss of
entropic sensitivity in older individuals (Fig. 6b), while cultured fibroblasts showed noticeably
lower ESI. Higher and more variable ESI values were observed within CGIs and at TSSs
compared to other genomic features, such as shores, exons, and introns (Extended Data Fig. 2e).
However, some unmethylated CGls exhibited low entropic sensitivity (Extended Data Fig. 9b),
whereas gain or loss of entropic sensitivity within CGIs was observed between normal and
cancer (Extended Data Fig. 9¢,d) as well as in older individuals (Extended Data Fig. 9e,f).
Notably, differences in ESI were not simply due to entropy itself, as many regions of low
entropy showed small ESI values (Extended Data Fig. 9b,c,d), while other such regions exhibited
noticeable ESI values (Extended Data Fig. 9c,e,f), indicating sensitivity to environmental
perturbations.

We also examined the relationship of entropic sensitivity to higher-order chromatin structure.
We found that entropic sensitivity within compartment A was noticeably higher than in
compartment B in all samples except stem cells (Fig. 6c¢), consistent with the notion that

transcriptionally active compartment A would be more responsive to stimuli. Moreover,
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observed differences among normal tissues and between normal and cancer were largely
confined to compartment B (Fig. 6¢). One could notice substantial loss of entropic sensitivity in
compartment B in older CD4" lymphocytes and skin keratinocytes, but not in compartment A.
This is in contrast to cell culture that showed a sensitivity gain in compartment B (Fig. 6c).

To further investigate entropic sensitivity changes between tissues, we ranked genes
according to their differential ESI (dESI) within their promoters between colon normal and colon
cancer (Supplementary Data 5). Colon cancer showed several LIM-domain proteins, including
LIMD? (ranked 4™), which transduce environmental signals regulating cell motility and tumor
progression30, as well as genes implicated in colon and other types of cancer, such as QKI
(ranked 1*), a critical regulator of colon epithelial differentiation and suppressor of colon
cancer’' that was recently discovered to be a fusion partner with MYB in glioma leading to an
autoregulatory feedback loop™, HOXA9 (ranked 8™), a canonical rearranged homeobox gene
that is dysregulated in cancer, and FOXQI (ranked 9™), which is overexpressed and enhances
tumorigenicity of colorectal cancer”. Together, these results suggest that environmental
exposure may influence epigenetic uncertainty in cells with a level of sensitivity that varies along
the genome and between compartments in a cell-type specific manner, and present the intriguing
possibility that disease, environmental exposure, and aging are associated with substantial loss or
gain of entropic sensitivity that could compromise the integration of environmental cues

regulating cell growth and function.

DISCUSSION
In this study, we employed the Ising model of statistical physics to derive, from whole genome
bisulfite sequencing, epigenetic potential energy landscapes (PELs) representing intrinsic

epigenetic stochasticity. Rather than epigenetic landscapes with external “noise” terms™, we
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employed biologically sound principles of methylation processivity, distance-dependent
cooperativity, and CpG density to build a rigorous approach to modeling DNA methylation
landscapes. This approach was not only capable of modeling stochasticity in DNA methylation
from low coverage data, but also allowed genome-wide analysis of Shannon entropy at high
resolution and uncovered new properties of the epigenome, such as a relationship between TADs
and informational entropy. By incorporating fundamental principles of information theory into a
framework of methylation channels, we could also predict in detail high-order chromatin
organization from single WGBS samples without performing Hi-C experiments.

Several novel insights ensued from this analysis. We found that Shannon entropy varied
markedly among tissues, across the genome and across features of the genome. We consistently
observed loss of methylation and entropy gain in cells from older individuals, in contrast to cell
culture which exhibited large losses of methylation level and a relatively stable entropy
distribution with passage. Genes associated with entropy gain appeared to be highly relevant to
aging, although the full implications of this observation require further investigation. In some
instances, we observed that high entropy was due to a bistable behavior in methylation level
characterized by the coexistence of a fully methylated and a fully unmethylated state. We
associated this behavior to many known imprinted regions, in agreement with the fact that
imprinting is mostly related to allele-specific methylation.

Rather than identifying differentially methylated regions (DMRs) among compared samples
using marginal statistics, we employed the Jensen-Shannon distance (JSD) to compute
information-theoretic epigenetic differences genome-wide. This approach allowed us to
determine epigenetic differences between individual samples with the potential clinical

advantage of identifying specific epigenetic differences which are unique to that sample
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compared to a matched normal tissue. Analysis of a panel of tissues of diverse origins revealed a
“developmental wheel” of the three germ cell lineages around a stem cell hub. Consistently,
cancers were extremely divergent and most importantly not intermediate in their methylation
properties between stem cells and normal tissue.

We investigated whether the JSD simply embodies mean differences that have been
characterized in the past, or if it reveals new insights independent of the mean. To address this
question, we identified genomic regions with high JSD but low mean differences between
sample pairs, with greater enrichment for many categories of stem cell maintenance or lineage
development than found for regions with mean differences per se, suggesting a key role of
stochasticity in development. In turn, this type of stochasticity appeared to be driven by localized
regions of high cooperativity, which tends to flatten the PEL with little change in mean
methylation. We found regions with high JSD and low mean methylation differences to be
enriched in Polycomb repressive complex (PRC2) binding sites, suggesting a possible role for
PRC2 in stochastic switching during development. Intriguingly, PRC2 components are critical
for stochastic epigenetic silencing in an early area of the field of epigenetics, position effect
variegation®>~°, which also involves stochasticity. We suggest that PRC2 is important not only
for gene silencing but also for regulating epigenetic stochasticity in general.

A new insight of this work is a relationship between TAD boundaries and entropy blocks.
We demonstrated that TAD boundaries can be located within transition domains between high
and low entropy in one or more cell types. This suggests a model in which TAD boundaries,
which are relatively invariant across cell type and are associated with CTCF binding sites, are

potential transition points at which high and low entropy blocks can be demarcated in the
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genome, and the particular combination of TAD boundaries that transition between high and low
entropy define, in large part, the A/B compartments distinguishing tissue types.

We also introduced an information-theoretic approach to epigenetics by means of
methylation channels, which allowed us to estimate the information capacity of the methylation
machinery to reliably maintain the methylation state. We found a close relationship between
information capacity, CG entropy, and relative dissipated energy, as well as between regional
localization of high information capacity and attendant high energy consumption (e.g., within
shores and compartment A). We realized that informational properties of methylation channels
could be used to predict A/B compartments and designed a machine learning algorithm to
perform such predictions on widely available WGBS samples from individual tissues and cell
culture. This method can be used to predict large scale chromatin organization from DNA
methylation data on individual samples. Single paired WGBS data sets of normal and cancer
were used to predict A/B compartment transitions. Both colon and lung cancers showed marked
compartment switching, most often from B to A, with regions of B to A switching corresponding
closely to LADs and LOCKSs. Domains of B to A and A to B switching included many genes
which are activated or silenced in cancer, suggesting that compartment switching could
contribute to cancer.

Lastly, by viewing environmental variability as a process that directly influences the
methylation PEL parameters, we introduced the concept of entropic sensitivity, identifying
genomic loci where external factors are likely to influence the methylation PEL. While we have
only begun to explore the epigenetic implications of entropic sensitivity, it appears that aging
and some cancers are associated with global loss of entropic sensitivity and thus to less

responsive PELs. If this observation holds true on further study, it could be related to the well-
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known reduced physiological plasticity of aging, as well as with the autonomous nature of tumor
cells.

Although the present study was exploratory and discovery-based in nature, it allowed us to
establish a novel modeled-based paradigm for the analysis of epigenetic information that can
substantially increase resolution and dramatically reduce the cost of genome-wide epigenetic
investigations using small numbers of samples or even individual patient paired-samples, a task
that could be crucial in personalized medicine. We however note that biological variability
makes broad generalization of results a difficult prospect in human biology. For example, we
previously predicted that stochasticity in cancer would increase compared to normal states’, but
here we observed the unexpected result that certain liver cancer samples have such extreme
hypomethylation that they actually experience a reduction in entropy because the methylation
state is very likely to be unmethylated. As with all modeling frameworks, the model is only as
useful as the data it is built on; contamination, sampling biases and other effects are concerns in
this study, just as they are in all other WGBS studies over limited samples. However, the
approach presented here should motivate further development of strategies and methods for
studying the informational properties of the epigenome and their relationship to disease, and its
utility will increase as more WGBS data sets become available for application of this high-
resolution methodology.

This study demonstrates a potential relationship between epigenetic information, entropy and
energy that may maximize efficiency in information storage in the nucleus. Pluripotent stem cells
require a high degree of energy to maintain methylation channels, with certain regions of the
genome containing highly deformable PELs corresponding to differentiation branch points, as

suggested metaphorically by Waddington, which we can now identify and map the parameters
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responsible for plasticity. In differentiated cells, large portions of the genome (compartment B,
LADs, LOCKs) need not maintain high information capacity and attendant high energy
consumption, with their relative sequestration thus providing increased efficiency. However,
when domains within compartment B switch to compartment A, previously accumulated
epigenetic errors become deleterious and, compounded with reduced entropic sensitivity, may
decrease the chance for homeostatic correction.

Finally, the stochastic nature of DNA methylation and the close relationship between
methylation entropy, channel capacity, dissipated energy and chromatin structure demonstrated
in this paper raises the intriguing possibility that DNA methylation in a given tissue may carry
information about both the current state and the possibility of stochastic switching. This
information could then be propagated in part through methylation channels over many cycles of
DNA replication, even for higher order chromatin organization where the chromatin post-
translational modifications themselves may be lost during cell division. This could imply that
epigenetic information is carried by a population of cells as a whole, and that this information
not only helps to maintain a differentiated state but to also help mediate developmental plasticity

throughout the life of an organism.

METHODS

Samples for whole genome bisulfite sequencing. We used previously published WGBS data
corresponding to 10 samples, which included H1 human embryonic stem cells®’, normal and
matched cancer cells from colon normal and cancer cells from liver*®, keratinocytes from skin
biopsies of sun protected sites from younger and older individuals®’, and EBV-immortalized
lymphoblasts*’. We also generated WGBS data corresponding to 25 samples that included

normal and matched cancer cells from liver and lung, pre-frontal cortex, cultured HNF
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fibroblasts at 5 passage numbers, and sorted CD4" T-cells from younger and older individuals,
all with IRB approval. Pre-frontal cortex samples were obtained from the University of Maryland
Brain and Tissue Bank, which is a Brain and Tissue Repository of the NIH NeuroBioBank.
Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood collected from
healthy subjects and separated by using a Ficoll density gradient separation method (Sigma-
Aldrich). CD4" T-cells were subsequently isolated from PBMCs by positive selection with
MACS magnetic bead technology (Miltenyi). Post-separation flow cytometry assessed the purity
of CD4" T-cells to be at 97%. Primary neonatal dermal fibroblasts were acquired from Lonza
and cultured in Gibco's DMEM supplemented with 15% FBS (Gemini BioProducts).
DNA isolation. Genomic DNA was extracted from samples using the Masterpure DNA
Purification Kit (Epicentre). High molecular weight of the extracted DNA was verified by
running a 1% agarose gel and by assessing the 260/280 and 260/230 ratios of samples on
Nanodrop. Concentration was quantified using Qubit 2.0 Fluorometer (Invitrogen).
Generation of WGBS libraries. For every sample, 1% unmethylated Lambda DNA (Promega,
cat # D1521) was spiked-in to monitor bisulfite conversion efficiency. Genomic DNA was
fragmented to an average size of 350bp using a Covaris S2 sonicator (Woburn, MA). Bisulfite
sequencing libraries were constructed using the Illumina TruSeq DNA Library Preparation kit
protocol (primers included) or NEBNext Ultra (NEBNext Multiplex Oligos for Illumina module,
New England BioLabs, cat # E7535L) according to the manufacturer's instructions. Both
protocols use a Kapa HiFi Uracil+ PCR system (Kapa Biosystems, cat # KK2801).

For Illumina TruSeq DNA libraries, gel-based size selection was performed to enrich for
fragments in the 300-400bp range. For NEBNext libraries, size selection was performed using

modified AMPure XP bead ratios of 0.4x and 0.2x, aiming also for an insert size of 300—400bp.
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After size-selection, the samples were bisulfite converted and purified using the EZ DNA
Methylation Gold Kit (Zymo Research, cat # D5005). PCR-enriched products were cleaned up
using 0.9X AMPure XP beads (Beckman Coulter, cat # A63881).

Final libraries were run on the 2100 Bioanalyzer (Agilent, Santa Clare, CA, USA) using the
High-Sensitivity DNA assay for quality control purposes. Libraries were then quantified by
qPCR using the Library Quantification Kit for Illumina sequencing platforms (cat # KK4824,
KAPA Biosystems, Boston, USA), using 7900HT Real Time PCR System (Applied Biosystems)
and sequenced on the Illumina HiSeq2000 (2x100bp read length, v3 chemistry according to the
manufacturer’s protocol with 10x PhiX spike-in) and HiSeq2500 (2x125bp read length, v4
chemistry according to the manufacturer’s protocol with 10x PhiX spike-in).

Quality control and alignment. FASTQ files were processed using Trim Galore! v0.3.6
(Babraham Institute) to perform single-pass adapter- and quality-trimming of reads, as well as
running FastQC v0.11.2 for general quality check of sequencing data. Reads were then aligned to
the hg19/GRCh37 genome using Bismark v0.12.3 and Bowtie2 v2.1.0. Separate mbias plots for
read 1 and read 2 were generated by running the Bismark methylation extractor using the
“mbias_only” flag. These plots were used to determine how many bases to remove from the 5'
end of reads. The number was generally higher for read 2, which is known to have poorer quality.
The amount of 5' trimming ranged from 4bp to 25bp, with most common values being around
10bp. BAM files were subsequently processed with Samtools v0.1.19 for sorting, merging,
duplicate removal and indexing.

FASTAQ files associated with the EBV sample were processed using the same pipeline
described for the in-house samples. BAM files associated with the normal colon and liver

samples, obtained from Ziller et al*®, could not be assessed using the Bismark methylation
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extractor due to incompatibility of the original alignment tool (MAQ) used on these samples. We
therefore followed the advice of the authors and trimmed 4bp from all reads for those files.
Genomic features and annotations. Files and tracks bear genomic coordinates for hg19. CGIs
were obtained from Wu ez al*'. CGI shores were defined as sequences flanking 2-kb on either
side of islands, shelves as sequences flanking 2-kb on either side of shores, and open seas as
everything else. The R Bioconductor package “TxDb.Hsapiens.UCSC.hg19.knownGene” was
used for defining exons, introns and TSSs. Promoter regions were defined as sequences flanking
2-kb on either side of TSSs. A curated list of enhancers was obtained from the VISTA enhancer
browser (http://enhancer.Ibl.gov)** by downloading all human (hg19) positive enhancers that
show reproducible expression in at least three independent transgenic embryos. Hypomethylated
blocks (colon and lung cancer) were obtained from Timp et al”’. H1 stem cell LOCKs and
Human Pulmonary Fibroblast (HPF) LOCKs were obtained from Wen et al®. LAD tracks
associated with Tig3 cells derived from embryonic lung fibroblasts were obtained from Guelen
et al**. Gene bodies were obtained from the UCSC genome browser (https://genome.ucsc.edu).
H1 and IMR90 TAD boundaries were obtained from http://chromosome.sdsc.edu/mouse/hi-
c/download.html. BED files for Hi-C data processed into compartments A and B were provided
by Fortin and Hansen (https://github.com/Jfortinl/HiC_AB_Compartments). CTCF and
EZH2/SUZ12 binding data were obtained from the UCSC genome browser (Transcription Factor
ChIP-seq track (161 factors) from ENCODE).

Computation and display of potential energy landscapes. To compute the PEL within a
genomic region of interest, we estimated parameters a, and ¢, from WGBS data and used

Eq. 4 of the Main Text. Since the size of the methylation state space within a genomic region

with N CpG sites grows geometrically in terms of N, we limited PEL computation within regions
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of the CGIs near the promoters of WINTI and EPHA4 containing 12 CpG sites. To plot the PEL,
we distributed the 2'* computed values over a 64x 64 square grid using a 2D version of Gray’s
code®, so that methylation states located adjacent to each other in the east/west and north/south
directions differ in only one bit.

Estimation of PEL parameters. By partitioning the genome into regions of equal size, we

estimated the PEL parameters a, 8, and y within a region by maximizing the average log-

M
likelihood ﬁZln[P(xm |o,B,v)], where xi, X, ..., X)s are M independent observations of the

m=1
methylation state within the region. To take into account partially observable methylation states,
we replaced P(x,, | a, B, y) by the joint probability distribution over only those sites at which
methylation information is available, which we calculated by marginalizing P(x,,| a, B, y) over
these sites. After extensive experimentation, we considered 3-kb estimation regions by striking a
balance between estimation and computational performance. To avoid statistical overfitting, we
did not model regions with less than 10 CpG sites, as we would had to estimate three parameters
from a small number < 10 of variates. We also ignored regions with not enough data for which
less than 2/3 of the CpG sites were observed or the average depth of coverage was less than 2.5
observations per CpG site. We finally performed optimization using the multilevel coordinate
search (MCS) algorithm46.
Genomic units and methylation level. Since the Ising model depends on the CpG density and
distance, its statistical properties may vary within each 3-kb region used for parameter estimation,
suggesting that a smaller genomic region must be employed for high resolution methylation
analysis. In this regard, and consistent with the length of DNA within a nucleosome, we

partitioned the genome into non-overlapping genomic units (GUs) of 150bp each and performed
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methylation analysis at a resolution of one GU. We subsequently quantified methylation within a

N
GU that contains N CpG sites using the methylation level L = Z X,/ N and calculated its

nel
probability distribution P;(/) genome-wide directly from the Ising probability distribution of the
methylation state.

Statistical evaluation of differential entropy in aging. Using the three young CD4 samples, we
first computed the absolute NME differences (AINMEs) at each GU associated with all three
pairwise comparisons and, by pooling these values, we constructed an empirical null distribution
that accounted for biological and statistical variability of differential entropy in the young
samples. We then computed the absolute AINME values corresponding to a young-old pair (CD4-
Y3,CD4-01) and performed multiple hypotheses testing to reject the null hypothesis that the
observed NME difference is due to biological or statistical variability. By using Bioconductor’s
“qvalue” package with default parameters, we performed FDR* and estimated the probability
that the null hypothesis is rejected at a randomly chosen GU, thus approximately computing the
fraction of GUs which were found to be differentially entropic for reasons other than biological
or statistical variability among the young samples.

Epigenetic distances, multidimensional scaling, and gene ranking. To quantify methylation
differences between two samples within a GU, we employed the Jensen-Shannon distance

(JSD)*
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where P,V and P,? are the probability distributions of the methylation level within the GU in
the two epigenotypes, P, =[P, + P,”]/2 s the average distribution of the methylation level,

and

P(l)
Dy (P,0)= P(l)log,| —2
i (P,0) Zl: (7)log {Q(l)}

is the relative entropy or Kullback-Leibler divergence’. Given a sample taken from one of the
two probability distributions P and Q, the JSD is a normalized distance metric that takes values
between 0 and 1, whereas the square JSD is the average information the sample provides about
the identity of the distribution: it equals 0 only when the two distributions are identical and
reaches its maximum value of 1 if the two distributions do not overlap and can, therefore, be
perfectly distinguished from a single sample.

To quantify the epigenetic distance between two samples, we computed the JSDs between all
corresponding pairs of GUs genome-wide, sorted these values in increasing order, and
determined the smallest value in the list such that 90% of the distances is less than or equal to
that value (90-th percentile). To visualize epigenetic similarities or dissimilarities between
samples, we computed the epigenetic distances between all pairs of samples, formed the
corresponding dissimilarity matrix, and employed a two-dimensional representation using
multidimensional scaling (MDS) based on Kruskal’s non-metric method, to find a two-
dimensional configuration of points whose inter-point distances correspond to the epigenetic
dissimilarities among the samples.

To rank genes in terms of the magnitude of AMML, or the JSD, within their promoters, we
centered a 4-kb window at the TSS of each gene in the genome, computed the absolute IMML or

JSD value within each GU that “touches” this window, and scored the gene by averaging these
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values. To rank genes using a relative JSD scheme that assigns a higher score to genes with
higher JSD but smaller AIMML, we scored a gene by the ratio of its ranking in the dAMML-ranked
list to that in the JSD-ranked list.

Methylation bistability and imprinting. To identify bistable GUs in a given WGBS sample, we
detected bimodality in the probability distribution P;(/) of the methylation level within a GU. To
evaluate enrichment of bistability in a particular genomic feature, we defined two binary (0-1)
random variables R and B for each GU, such that R = 1, if the GU overlaps the genomic feature,
and B = 1, if the GU is bistable. We then tested against the null hypothesis that R and B are
statistically independent by applying the y*-test on the 2x2 contingency table for R and B and
calculated the odds ratio (OR) as a measure of enrichment. We evaluated bistability enrichment
within CGls, shores, promoters, and gene bodies. To evaluate possible association between
bistability and gene imprinting, we calculated the fraction of bp’s within the promoter region of a
gene that overlapped bistable GUs. Consistent with our expectation that genomic imprinting is
highly conserved across tissue types, we assigned a bistability score at each gene by averaging
the fractions of bistable bp’s calculated from the normal samples. We then used these scores to
rank the genes in order of decreasing bistability. To calculate a P value for the CPOE set of 82
imprinted human to be ranked higher in the bistability list than by chance, we computed the P
value of each imprinted gene by testing against the null hypothesis that the gene appears at a
random location in the bistability list. We then used the gene’s rank as the test statistic and
noticed that, under the null hypothesis, its distribution is uniform, which implies that we can
calculate the P value by dividing the gene’s ranking in the bistability list by the total number of
genes in the list. Since the number of imprinted genes identified in the bistability list (68 genes)

is much smaller than the total number of genes (15,820 genes), we assumed statistical
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independence of the individual hypothesis tests and combined the resulting P values by using
Fisher’s method.

Computation of entropic blocks. Computation of EBs requires detection of ordered and
disordered blocks; i.e., large genomic regions of consistently low or high NME values. To
effectively summarize the genome-wide status of NME in a single sample, we computed the
NME value /2 within each GU and classified it into one of three classes: ordered (0 < 4 < 0.44),
weakly ordered/disordered (0.44 </ <0.92), and disordered (0.92 </ < 1). We determined the
threshold values by investigating the relationship between the NME within a GU that contains
one CpG site and the ratio of the probability p of methylation to the probability 1 — p of
unmethylation at that site. To this end, we focused on the odds ratio » = p/(1 — p) and considered
the methylation level to be “ordered” if » > 10 or » < 1/10 (i.e., if the probability of methylation
is at least 10x larger than the probability of unmethylation, and likewise for the probability of
unmethylation), in which case, p > 0.9091 or p < 0.0909, which correspond to a maximum NME
value of 0.44. Moreover, we considered the methylation level to be “disordered” if 1/2 <r <2
(i.e., if the probability of methylation is no more than 2x the probability of unmethylation, and
likewise for the probability of unmethylation), in which case, 0.3333 < p < 0.6667, which
corresponds to a minimum NME value of 0.92.

To compute EBs, we slid a window of 500 GUs (75-kb) along the genome and labeled the
window as being ordered or disordered if at least 75% of its GUs were effectively classified as
being ordered or disordered, respectively. We then determined ordered or disordered blocks by
taking the union of all ordered or disordered windows and by removing discordant overlappings.
Prediction of TAD boundaries. Using EBs computed for a given epigenotype, we identified

predictive regions of the genome that might contain TAD boundaries by detecting the space
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between successive EBs with distinct labels (ordered or disordered). For example, if an ordered
EB located at chrl: 1-1000 were followed by a disordered EB at chrl: 1501-2500, then chrl:
1001-1500 was deemed to be a predictive region. To reduce false identification of predictive
regions, we did not consider successive EBs of the same type, since the genomic space between
two such EBs may be due to missing data or other unpredictable factors. To control the
resolution of locating a TAD boundary, we only considered gaps smaller than 50-kb. This
resulted in a resolution of an order of magnitude smaller than the mean TAD size (~900-kb). To
combine predictive regions obtained from methylation analysis of several distinct epigenotypes,
we computed the “predictive coverage” of each bp by counting the number of predictive regions
that contained the bp. We then combined predictive regions by grouping consecutive bp’s whose
predictive coverage was at least 4. We subsequently applied this method on WGBS data
corresponding to 17 distinct cell and tissue types (stem, colonnormal, coloncancer, livernormal-
1, livercancer-1, livernormal-2, livercancer-2, livernormal-3, livercancer-3, lungnormal-1,
lungcancer-1, lungnormal-2, lungcancer-2, lungnormal-3, lungcancer-3, brain-1, brain-2), and
analyzed our results using ‘GenometriCorr’*, a statistical package for evaluating the correlation
of genome-wide data with given genomic features. Finally, we considered a boundary prediction
to be “correct” when the distance of a “true” TAD boundary from the center of a predictive
region was less than the first quartile of the “true” TAD width distribution (Fig. 4c insert —
green).

A/B compartment prediction and analysis. Genome-wide prediction of A/B compartments
was performed by a random forest regression model. We trained this model using a small
number of available Hi-C data associated with EBV and IMR90 samples™, as well as A/B tracks

produced by the method of Fortin and Hansen (FH) using long-range correlations computed from
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pooled 450k array data associated with colon cancer, liver cancer, and lung cancer samples®.
Due to the paucity of currently available Hi-C data, we included the FH data in order to increase
the number of training samples and improve the accuracy of performance evaluation. We first
paired the Hi-C and FH data with WGBS EBV, fibro-P10, and colon cancer samples, as well as
with samples obtained by pooling WGBS liver cancer (livercancer-1, livercancer-2, livercancer-3)
and lung cancer (lungcancer-1, luncancer-2, lungcancer-3) data. We subsequently partitioned the
entire genome into 100-kb bins (to match the available Hi-C and FH data), and computed eight
information-theoretic features of methylation maintenance within each bin (median values and
interquartile ranges of IC, RDE, NME and MML). By using all feature/output pairs, we trained a
random forest model using the R package ‘randomForest” with its default settings, except that we
increased the number of trees to 1,000. We then applied the trained random forest model on each
WGBS sample and produced A/B tracks that approximately identified A/B compartments
associated with the samples. Since regression takes into account only information within a 100-
kb bin, we averaged the predicted A/B values using a three-bin smoothing window and removed
from the overall A/B signal its genome-wide median value, as suggested by Fortin and Hansen®.
To test the accuracy of the resulting predictions, we employed 5-fold cross validation, which
involved training using four sample pairs and testing on the remaining pair for all five
combinations. We evaluated performance by computing the average correlation as well as the
average percentage agreement between the predicted and each of the “ground-truth” A/B signals
within 100-kb bins at which the absolute values of the predicted and “ground-truth” signals were
both greater than a calling margin, where we used a non-zero calling margin to remove
unreliable predictions. We finally calculated agreement by testing whether the predicted and the

“ground-truth” A/B values within a 100-kb bin had the same sign.
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For each pair of WGBS samples, we computed the percentage of A to B compartment
switching by dividing the number of 100-kb bin pairs for which an A prediction is made in the
first sample and a B prediction is made in the second sample by the total number of bins for
which A/B predictions were available in both samples, and similarly for the case of B to A
switching. We summed these percentages and formed a matrix of dissimilarity measures, which
we then used as an input to a Ward error sum of squares hierarchical clustering scheme’', which
we implemented using the R package ‘hclust’ by setting the method variable to ‘ward.D2’.

To test the significance of overlapping of hypomethylated blocks, LADs, and LOCKs with
compartment B, we used available hypomethylated blocks, LOCKSs, and LADs, and predicted
compartment B data for the lungnormal-1, lungnormal-2, and lungnormal-3 samples, which best
match the previous tracks. To evaluate enrichment of hypomethylated blocks (and similarly for
LADs and LOCKs) within compartment B, we defined two binary (0-1) random variables R and
B for each GU, such that R = 1 if the GU overlaps a block, and B = 1 if the GU overlaps
compartment B. We then tested against the null hypothesis that R and B are statistically
independent by applying the x’-test on the 2 x 2 contingency table for R and B and calculated the

odds ratio (OR) as a measure of enrichment.
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Figure 1 | Potential energy landscapes, mean methylation level, and Shannon entropy. a,
Multiple WGBS reads of the methylation state within a genomic locus are used to form a
methylation matrix whose entries represent the methylation status of each CpG site (1:
methylated, 0: unmethylated, ND: no data). Most methods for methylation analysis estimate
marginal methylation probabilities and means at individual CpG sites by using the methylation
information only within each column associated with a CpG site. Our statistical physics approach
computes the most likely PEL by determining the likelihood of each row of the methylation
matrix, combining this information across rows into an average likelihood, and maximizing this
likelihood with respect to the PEL parameters. b, PELs associated with the CGIs of WNT! in
colon normal and colon cancer and EPHA4 in stem and brain. Point (m,7) marks a methylation
state, with (0,0) indicating the fully unmethylated state, which turns-out to be the ground state in
both examples. ¢, Boxplots of the Ising PEL parameter distributions, as well as the mean
methylation level (MML) and normalized methylation entropy (NME) distributions for all
samples used in this study. The boxes show the 25% quantile, the median, and the 75% quantile,
whereas each whisker has a length of 1.5x the interquartile range. d, Genome-wide MML and
NME densities associated with two normal/cancer samples show global MML loss in colon and
lung cancer, accompanied by a gain in entropy. e, Genome-wide MML and NME densities
associated with young/old CD4" lymphocytes and skin keratinocytes show global MML in old
individuals, accompanied by a gain in entropy.
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Figure 4 | Entropy blocks and TAD boundaries. a, In the normal/cancer panel, a subset of
known TAD boundary annotations in HI stem cells appeared to be correlated with boundaries of
entropic blocks (green: ordered, red: disordered), suggesting that TADs may maintain a
consistent level of methylation entropy within themselves. b, Regions of entopic transitions can
be effectively used to identify the location of some TAD boundaries (black squares). Since
TADs are cell-type invariant, the location of more TAD boundaries can be identified using
additional WGBS data corresponding to distinct phenotypes. ¢, Probability densities and
cumulative probability distributions (insert) of the TAD boundary location error and TAD sizes.
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Figure 5 | Information theoretic properties of methylation channels predict large scale
chromatin organization. a, A methylation channel (MC) transmits the methylation state at a
CpG site of the genome (1: methylated; 0: unmethylated) using four conditional probabilities (u:
demethylation probability; v: de novo methylation probability). b, Derived formulas predict that
methylation maintenance by a high capacity MC (IC = 0.89) will dissipate significant energy
(RDE =7.125), achieving a low probability of error (= 0.0073) and resulting in an ordered
methylation state (CGE = 0.44), whereas methylation maintenance by a low capacity MC (IC =
0.81) will dissipate a smaller amount of energy (RDE = 5.25), reaching a higher probability of
error (= 0.026) and resulting in a disordered methylation state (CGE = 0.92). The thresholds
correspond to entropy levels of 0.44 and 0.92 used to identify ordered and disordered genomic
units and compute entropic blocks (see Methods). ¢, Boxplots of genome-wide ICs, RDEs and
CGEs at individual CpG sites show global differences among cell types. The boxes show the 25
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5x the
interquartile range. d, Analysis of Hi-C and WGBS data reveals that maintenance of the
methylation state within compartment B (blue) in EBV cells is mainly performed by MCs with
low information capacity (IC) that dissipate low amounts of energy (RDE) resulting in a
relatively disordered (NME) and less methylated (MML) state than in compartment A (brown).
e, Notched-boxplots of genome-wide distributions of IC, RDE, NME and MML demonstrate
their attractiveness as features for predicting compartments A/B using WGBS data from single
samples, where the notches represent 95% confidence intervals (too small to be visible) around
the median. f, Net percentage of A/B compartment switching was used as a dissimilarity measure
in hierarchical agglomerative clustering. At a given height, a cluster is characterized by lower
overall compartment switching than an alternative grouping of samples. g, UCSC genome
browser images of two chromosomal regions show significant overlap of compartment B in
normal lung (blue) with hypomethylated blocks, LADs, and LOCKSs. Gain in JSD is observed
within compartment B (blue) in normal lung during carcinogenesis.
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Figure 6 | Entropic sensitivity distributions in single samples and comparative studies.

a, Gain of entropy and loss in ESI is observed within a portion of the CGI associated with WNT1.
b, Boxplots of genome-wide ESI distributions corresponding to the samples used in this study
reveal global differences in entropic sensitivity across cell types. The boxes show the 25%
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5x the
interquartile range. ¢, Boxplots of genome-wide ESI distributions within compartment A (brown)
and compartment B (blue) show that entropic sensitivity is appreciably higher within
compartment A than within compartment B.
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Extended Data Figure 1 | Changes in methylation entropy in cancer. a, UCSC genome browser image

showing significant loss in mean methylation level (AIMML) in colon and lung cancer, accompanied by
gain in methylation entropy (AINME). Liver cancer exhibits loss of methylation entropy within large
regions of the genome due to profound hypomethylation. b, The CGI near the promoter of CDH1I, a
tumor suppressor gene, exhibits entropy loss in colon cancer. ¢, The CGI near the promoter of NEU!
shows gain of methylation entropy in lung cancer. NEUI sialidase is required for normal lung
development and function, whereas its expression has been implicated in tumorigenesis and metastatic
potential. d, Noticeable loss of methylation entropy is observed in liver cancer at the shores of the CGI
near the promoter of NS4, a gene that is known to be hypomethylated in liver cancer.
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Extended Data Figure 2 | Breakdown of genome-wide distributions of methylation measures.
Boxplots of genome-wide distributions of methylation measures for all samples used in this study within
CGls, shores, shelves, open seas, TSSs, exons, introns, and intergenic regions. The boxes show the 25%
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5x the interquartile
range. a, Mean methylation level (MML). b, Normalized methylation entropy (NME). ¢, Information
capacity (IC). d, Relative dissipated energy (RDE). e, Entropic sensitivity index (ESI).
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Extended Data Figure 3 | Fibroblasts may not be appropriate for modeling aging. a, Unmethylated
blocks (MB-green) progressively form with passage in HNF fibroblasts and this process is similar to the
one observed during carcinogenesis in liver cells. However, entropic blocks (EB-red) remain relatively
stable. b, An example of the potentially misleading nature of HNF fibroblasts as a model for aging is
CYP2E]I, a gene that has been found to be downregulated with age. The differential mean methylation
level (AMML) track shows methylation gain in old CD4" lymphocytes near the promoter of this gene,
whereas no appreciable change in methylation level is observed with passage. Similarly, the CYP2E1
promoter demonstrates large entropy differential (ANME) in old CD4" lymphocytes, but virtually no
entropy change with passage in HNF fibroblasts. ¢, Noticeable gain in methylation entropy is also
observed near the promoter of FLNB in old CD4" lymphocytes, a gene found to be downregulated with
age. However, the FLNB promoter exhibits loss of entropy with passage in fibroblasts.
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Extended Data Figure 4 | Differential regulation within genomic regions of high JSD but low
dMML near promoters. a, The promoter of S/IM2, a master regulation of neurogenesis, exhibits low
level of differential methylation (AIMML) but high JSD between stem cells and brain, demonstrating large
epigenetic distance. Regulation of the PEL parameters results in low methylation level in both stem and
brain but in an entropy gain in brain. This region shows binding of EZH2 and SUZ12, key components of
the histone methyltransferase PRC2. b, A similar behavior is observed within a 14-kb region that contains
FOXD3, a transcription factor associated with pluripotency. ¢, The promoter of SALLI, a key
developmental gene, exhibits differential behavior between stem and brain that is similar to the one
exhibited by SIM2. d, The promoter of ASCL?2, a developmental gene involved in the determination of the
neuronal precursors in the peripheral and central nervous systems, exhibits a similar behavior as the
promoters of SIM2 and SALLI but shows entropy loss in brain.
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Extended Data Figure 5 | Reallocation of ground states due to PEL deformation explains (non-
critical) phase transition and bistability in methylation level. a, Potential energy landscapes (left
column) and probability distributions (right column) of methylation level within a genomic unit (GU) that
contains 7 CpG sites, obtained by simulation when the PEL parameter ¢ equals 1 and for five values of
parameter a. The red arrows indicate ground states. For values of parameter a that are sufficiently below 0
the PEL has only one potential well, which is located at methylation level 0 (fully unmethylated state).
However, as a approaches 0, and for sufficiently large ¢ > 0, a new potential well forms at methylation
level 1 (fully methylated state), which eventually achieves the same depth as the potential well at 0 and
results in a bimodal probability distribution, with modes located at 0 and 1, demonstrating bistable
behavior. As a increases away from zero, the potential well at 1 becomes deeper, whereas the potential
well at 0 becomes shallower and eventually disappears. b, Potential energy landscapes (left column) and
probability distributions (right column) of methylation level when a = 0 and for five values of parameter c.
When a = ¢ =0, the PEL has only one ground state, since methylation of the CpG sites will be statistically
independent and equiprobable in this case and the methylation level will follow a binomial distribution.
However, as ¢ increases away from zero, this ground state eventually disappears and two new ground
states form at 0 and 1 resulting in a bimodal probability distribution, with modes located at 0 and 1,
demonstrating bistable behavior.
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Extended Data Figure 6 | Additional examples of methylation bistability. a, UCSC genome browser
image displaying part of the 19q13.43 chromosomal region around the PEG3/ZIM?2 promoter. Bistable
methylation marks, shown for a number of normal tissues, coincide with the location of the PEG3/ZIM2
ICR that exhibits CTCF binding. Note that the ICR also includes the transcriptional start site of the
imprinted gene MIMTI. b, UCSC genome browser image displaying part of the 7q32.2 chromosomal
region around the MEST/MESTIT! promoter. Bistable methylation marks, shown for a number of normal

tissues, coincide with areas rich in CTCF binding sites.
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Extended Data Figure 7 | Entropy blocks and TAD boundaries. Examples of two genomic regions in
chr7 and chr21 showing that the location of TAD boundaries may correlate with boundaries of ordered
(green) or disordered (red) blocks.
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Extended Data Figure 8 | A/B compartment switching. a, Random forest based prediction of A/B
compartments (AB) in EBV cells using information-theoretic properties of methylation maintenance.

b, Differences in compartments A and B are observed when comparing EBV and IMR90 Hi-C data.
Compartments A (brown) and B (blue), obtained from random forest based predictions of the Hi-C signal
using a zero calling margin, demonstrate a similar behavior across samples. Dashed lines indicate
predicted TAD boundaries with the red dashed lines corresponding to compartment transitions. c,
Switching between predicted compartments A (brown) and B (blue) is observed in cancer, with B to A
switching being more frequent than A to B switching. d, Although ESR/ is located within compartment
A (brown) in normal colon, liver and lung, it is relocated to compartment B (blue) in colon cancer but not
in liver and lung cancer. This reorganization is accompanied by appreciable hypermethylation and
entropy gain within the CGI near the gene’s promoter. ESR has been implicated in colon cancer.

e, CYP2E] is within compartment B (blue) in normal colon, liver and lung but it is relocated to
compartment A (brown) in liver cancer. This reorganization is accompanied by hypomethylation and loss
of entropy within the shores of the CGI near the gene’s promoter. CYP2E1 has been associated with liver
cancer susceptibility. f, Boxplots of genome-wide JSD distributions within compartments A (brown) and
B (blue) in normal colon, liver and lung demonstrate gain in JSD within compartment B in cancer. The
boxes show the 25% quantile, the median, and the 75% quantile, whereas each whisker has a length of
1.5x the interquartile range. g, The HOXA cluster of developmental genes is within compartment B in
normal colon, liver and lung. It is however relocated to compartment A in colon and liver cancer but not
in lung cancer. Compartmental reorganization of the HOXA genes is accompanied by marked
hypomethylation and entropy loss within selected loci, implicating a role of chromatin reorganization in
altered HOXA gene expression within tumors. h, The HOXD genes are within compartment B in normal
colon, liver and lung and are relocated to compartment A in all three cancers. i, SOX9 is within
compartment B in colon and lung normal and is relocated to compartment B only in colon cancer. This is
accompanied by marked hypomethylation and entropy loss. SYK is within compartment B in colon and
lung normal and it is relocated to compartment B both in colon and lung cancer. j, MGMT and MSH4 are
within compartment A in colon and lung normal and they are relocated to compartment B only in colon
cancer. Compartmental reorganization is accompanied mostly by hypomethylation and a marked gain in
entropy.



Scale 20 Mbf { hg19
chri: 10,000,000/ 15,000,000/ 20,000,000/ 25,000,000/  30,000,0001 35,000,000/  40,000,000] 45,000,000/ 50,000,000] 55,000,000 |

6 ESI-colonnormal

M\ O ..o o AN il

ESlI-coloncancer

M .0 M. ... .00 . ..

dESI-coloncancer-VS-colonnormal

TR [ A ‘lui TR AT T | .Mm HIH by .]\ il

m\)HM L HMWMhHMW

- ESI-lungnormal-1

T T T T p——

6

ESI-lungcancer-1

MWW

dESI-lungcancer-1-VS-lungnormal-1

O_Mhhﬂwmhwhl mummmmmmMMWWMmmmwlﬂmm, L O T L T Y T (X N T

Scale 10 kb| { hg19
chri: 6,655,000 6,660,000 6,665,000 6,670,000 6,675,000/ 6,680,000/ 6,685,000| 6,690,000|

MML-colonnormal

Tl 1"!!!!! i
ikt | allle l
bbb b Doitaabboh ool (ALARLRN

ESI-colonnorma

CGl
U TN
UCSC Genegs (RefSeq, GenBank, CCDS, Rfam,[tRNAs & Cdmparative Genomics)
THAP3|H————
— PHF13 THAP3| bt
THAP3 aass




Scale 10 kb | { hg19
chr1: 150,590,000 150,595,000 150,600,000 150,605,000

'y Ty
j““& S II‘I‘ il ek 1 s e
ESl-livercancer-1

T — b Lolo uldwdl JIH Iiu Il

1 NME-livernormal-1

; NME-livercancer-1
el LM ) em

ESl-livernormal-1

o

dESlI-livercancer-1-VS-livernormal-
0 ot —— -l b B .0 = ully B -—,*‘ —
3
cel i
UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparatjve Genomics)
ENSA | aan )
ENSA — o
ENSA HBBBA -
ENSA H y
ENSA ) |
ENSA DD i
ENSA - T H
ENSA ey | 1
ENSA =il

Scale 10 kb f
chr6 31,830,000/ 31,835,000 31,840,000 31 845,000

NME-lungnormal-1

NME-lungcancer-
O-I il.' ..I'l.'l
4

ESI-lungnormal-1

J_.Hll..L_..jﬂ.l-uI. [T RT| R | T

ESI-lungcancer-1

, il AT TH O S PR MY

dESI-lungcancer-1-VS-lungnormal-1

- e cel n
UCSC Genes [(RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)

NEU1




Scale 5 kbl { hg19

chr10:  135,340,000! 135,342,000 135,344,000 135,346,000 135,348,000/ 135,350,000 135,352,000 135,354,000
1_ NME-CD4-Y2

1_ NME-CD4-02

1 T TR

- ESI-CD4-Y2

ld Ak _ . ad

ESI-CD4-02
O mm J ulll L—_-‘_—___L
3_

.llll-ill-l-l..l. N

dESI-CD4-02-VS-CD4-Y2

0- — - —_— NS . — -
-3
CGl
T
UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)
CYP2E1|l i | jeee nass | i —1 -
cYyr2etp—————-— 4 ——R B B8 =
HD5>555555555555555555555-1555555555 5 - 5 HISS 5 55555555555555555555 s i s m
CYP2E | mn} - i} ] -1
Scale 10 kb | { hg19
chr3: 57,995,000| 58,000,000 58,005,000 58,010,0001
- NME-CD4-Y2

—-O

il |.II:' et bt Bt I o

wo

wo

wo

NME-CD4-02

ol Ul o i il |I||I|H Il'

ESI-CD4-Y2

d'“.hﬂl J dll 10 uliih'* 1T k Il ™

ESI-CD4-02

““.‘l‘l ‘ e oo bl il L l nia

dESI-CD4-02-VS-CD4-Y2
- _.._.k._,,.h_ el 0. . w

U CcaGl
UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)

mm
-
zZZ
os]us]
(1] ]




Extended Data Figure 9 | ESI distributions reveal wide behavior in entropic sensitivity. a, Large
differences in entropic sensitivity (dESIT) may be observed genome-wide between normal and cancer
tissues, exhibiting alternate bands of hyposensitivity and hypersensitivity. b, An example of ESI values
in colon normal tissue shows wide-spread entropic sensitivity along the genome. However, unmethylated
CGIs may exhibit low entropic sensitivity. KLHL2] is a substrate-specific adapter of a BCR (BTB-CUL3-
RBX1) E3 ubiquitin-protein ligase complex required for efficient chromosome alignment and cytokinesis.
PHF 13 regulates chromatin structure. THAP3 is required for regulation of RRMI that may play a role in
malignancies and disease. ¢, In liver normal cells, substantial entropic sensitivity is observed within the
CGI near the promoter of the polycomb target gene ENSA, which is significantly reduced in liver cancer.
ENSA is known to be hypomethylated in liver cancer. d, In lung normal cells, the CGI near the promoter
of NEUI exhibits low entropic sensitivity, which is significantly increased in lung cancer. NEU/ sialidase
is required for normal lung development and function, whereas its expression has been implicated in
tumorigenesis and metastatic potential. e, In young CD4" lymphocytes, substantial entropic sensitivity is
observed within the CGI near the promoter of CYP2E 1, which is lost in old individuals. CYP2E] is
known to be downregulated with age. f, The CGI near the promoter of FLNB exhibits gain in entropic
sensitivity in old CD4" lymphocytes. FLNB is known to be downregulated with age.



Supplementary Table 1. WGBS data samples.

[ I [ I
Stem Cells
stem | |H1 human embryonic stem cell line | [1], SRP0721412| 24
Normal / Cancer
colonnormal 1 colon normal [2] 30
coloncancer 1 colon cancer [2] 30
livernormal-1 2 liver normal SRP072078 9
livercancer-1 2 liver cancer SRP072078 8
livernormal-2 3 liver normal SRP072078 7
livercancer-2 3 liver cancer SRP072078 8
livernormal-3 4 liver normal SRP072078 18
livercancer-3 4 liver cancer SRP072078 18
livernormal-4 liver normal [2] 60
livernormal-5 liver normal [2] 41
lungnormal-1 5 lung normal SRP072078 14
lungcancer-1 5 lung cancer SRP072078 15
lungnormal-2 6 lung normal SRP072078 10
lungcancer-2 6 lung cancer SRP072078 10
lungnormal-3 7 lung normal SRP072078 19
lungcancer-3 7 lung cancer SRP072078 18
brain-1 post-mortem brain, pre-frontal cortex, normal SRP072071 11
brain-2 post-mortem brain, pre-frontal cortex, normal SRP072071 12
HNF Fibroblasts
fibro-P4 human neonatal fibroblasts, passage 4 SRP072075 12
fibro-P7 human neonatal fibroblasts, passage 7 SRP072075 11
fibro-P10 human neonatal fibroblasts, passage 10 SRP072075 11
fibro-P31 human neonatal fibroblasts, passage 31 SRP072075 11
fibro-P33 human neonatal fibroblasts, passage 33. senescent SRP072075 11
CD4 T-Cells
CD4-Y1 flow-sorted peripheral CD4 T-cells from an 18 year old female SRP072075 8
CD4-Y2 flow-sorted peripheral CD4 T-cells from a 25 year old female SRP072075 8
CD4-Y3 flow-sorted peripheral CD4 T-cells from a 25 year old female SRP072075 7
CD4-0O1 flow-sorted peripheral CD4 T-cells from an 82 year old female SRP072075 7
CD4-02 flow-sorted peripheral CD4 T-cells from an 82 year old female SRP072075 8
CD4-03 flow-sorted peripheral CD4 T-cells from an 86 year old female SRP072075 7
Keratinocytes
ker-Y1 keratinocytes from a skin biopsy of a sun-protected site on a young individug [3] 8
ker-Y2 keratinocytes from a skin biopsy of a sun-protected site on a young individug [3] 8
ker-O1 keratinocytes from a skin biopsy of a sun-exposed site on an older individuall [3] 7
ker-O2 keratinocytes from a skin biopsy of a sun-exposed site on an older individuall [3] 7
EBV
EBV [ [EBV-immortalized lymphoblasts [ 14] [ 9

'SRP accessions correspond to NCBI Sequencing Read Archive (SRA).
ZOriginal sequence along with additional coverage have been deposited in the reference SRP accession.
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Supplementary Table 2. Statistical analysis results for EZH2/SUZ12 binding association with promoters and enhancers at high JSD genomic loci.

FISHER'S EXACT TEST FOR COUNT DATA

PROMOTERS
EZH2 suz12
criterion # genes present absent frequency P value odds ratio present absent frequency P value odds ratio
1 19 4 Y
dMML top1000] 305 695 S1% <2.2E-16 2.69 9 906 9% 2.05E-05 2.20
bottom 1000 140 860 14% 45 955 5%
1 457 4. 469 191 199
JSD top 1000 S 543 6% <2.2E-16 7.57 9 809 9% <2.2E-16 8.84
bottom 1000 100 900 10% 26 974 3%
ENHANCERS
EZH2 SUzZ12
criterion # genes present absent frequency P value odds ratio present absent frequency P value odds ratio
dMML top 100 42 8 42% 7.24E-13 34.95 29 LA 29% 6.20E-09 39.92
bottom 100 2 98 2% 1 99 1%
JSD top 100 53 47 53% <22E-16 | 109.49 40 €0 40% 134E-14 | infinite
bottom 100 1 99 1% 0 100 0%
BINOMIAL LOGISTIC REGRESSION
PROMOTERS
EZH2 SUZ12
coefficient | std error P value holdout accuracy* coefficient | std error P value holdout accuracy*
i < 2.2E-16 -3.9217 0.0638 2.2E-16
JSD intercept 2.4030 0.0395 < 829% < 95%
score 5.5511 0.1991 <2.2E-16 6.1825 0.2760 <2.2E-16
ENHANCERS
EZH2 Suz12
coefficient | std error P value holdout accuracy* coefficient | std error P value holdout accuracy*
intercept -4.3962 0.2914 2.2E-16 -6.4587 0.5133 2.2E-16
JSD B < 88% = 93%
score 18.1070 1.7861 <2.2E-16 23.0143 2.4591 <2.2E-16

*90% of data was randomly selected for training, while the remaining was used for estimating performance.




Supplementary Table 3. Odds ratio analysis results of bistability enrichment in CGls, shores, promoters, and gene bodies.

CGls SHORES PROMOTERS GENE BODIES
SAMPLE

OR P value OR P value OR P value OR P value
stem 1.03 5.19E-01 4.34 0.00E+00 4.22 0.00E+00 0.90 3.06E-14
colonnormal 0.41 4.26E-190 1.54 0.00E+00 1.69 0.00E+00 0.72 0.00E+00
coloncancer 0.26 0.00E+00 0.94 1.21E-21 0.90 9.45E-42 0.63 0.00E+00
livernormal-1 0.25 0.00E+00 1.19 1.22E-78 1.17 3.74E-51 0.67 0.00E+00
livercancer-1 0.23 0.00E+00 1.30 4.20E-166 1.21 1.34E-62 0.84 1.43E-158
livernormal-2 0.24 0.00E+00 1.17 2.12E-58 1.11 5.08E-21 0.68 0.00E+00
livercancer-2 0.30 0.00E+00 1.28 1.01E-214 1.06 1.68E-09 0.74 0.00E+00
livernormal-3 0.26 0.00E+00 1.28 1.73E-143 1.24 1.66E-83 0.71 0.00E+00
livercancer-3 0.38 1.03E-249 1.42 1.58E-306 1.43 1.57E-253 0.76 0.00E+00
livernormal-4 0.44 1.25E-145 1.64 0.00E+00 1.92 0.00E+00 0.81 9.69E-172
livernormal-5 0.49 3.51E-120 2.01 0.00E+00 2.24 0.00E+00 0.89 1.46E-59
lungnormal-1 0.35 9.42E-219 1.77 0.00E+00 1.70 0.00E+00 0.83 3.26E-153
lungcancer-1 0.25 0.00E+00 1.10 5.33E-50 0.78 2.70E-189 0.60 0.00E+00
lungnormal-2 0.34 1.47E-219 1.68 0.00E+00 1.64 0.00E+00 0.84 2.50E-125
lungcancer-2 0.21 0.00E+00 1.15 3.64E-57 1.10 2.17E-19 0.70 0.00E+00
lungnormal-3 0.39 2.38E-176 1.80 0.00E+00 1.73 0.00E+00 0.89 2.47E-54
lungcancer-3 0.23 0.00E+00 0.97 9.14E-07 0.70 0.00E+00 0.62 0.00E+00
brain-1 1.06 7.62E-02 3.46 0.00E+00 3.27 0.00E+00 1.45 6.95E-293
brain-1 1.07 3.36E-02 3.48 0.00E+00 3.39 0.00E+00 1.38 7.61E-217
fibro-P4 0.20 0.00E+00 0.89 3.23E-41 0.84 6.04E-67 0.59 0.00E+00
fibro-P7 0.19 0.00E+00 0.81 1.15E-147 0.76 2.39E-184 0.57 0.00E+00
fibro-P10 0.18 0.00E+00 0.81 2.02E-151 0.74 9.99E-218 0.57 0.00E+00
fibro-P31 0.27 0.00E+00 1.15 3.15E-93 0.89 1.19E-39 0.68 0.00E+00
fibro-P33 0.27 0.00E+00 1.18 1.46E-114 0.91 3.21E-24 0.68 0.00E+00
CD4-Y1 1.26 6.01E-10 2.84 0.00E+00 2.93 0.00E+00 1.04 1.43E-03
CD4-Y2 1.17 2.62E-05 2.71 0.00E+00 2.74 0.00E+00 1.00 9.26E-01
CD4-Y3 0.89 1.50E-03 2.50 0.00E+00 2.52 0.00E+00 1.11 2.82E-27
CD4-01 0.68 1.46E-25 1.68 0.00E+00 1.83 0.00E+00 0.77 4.72E-200
CD4-02 0.94 1.41E-01 2.18 0.00E+00 2.25 0.00E+00 0.85 4.23E-61
CD4-03 0.93 8.54E-02 2.01 0.00E+00 2.11 0.00E+00 0.84 1.76E-76
ker-Y1 0.63 3.54E-48 2.04 0.00E+00 1.93 0.00E+00 0.94 1.90E-15
ker-Y2 0.66 4.17E-36 2.05 0.00E+00 1.90 0.00E+00 0.94 3.53E-16
ker-O1 0.61 6.39E-53 1.82 0.00E+00 1.65 0.00E+00 0.86 2.62E-112
ker-02 0.40 1.92E-212 1.39 0.00E+00 1.22 5.98E-84 0.72 0.00E+00
depletion: OR < 1
enrichment: OR > 1




Supplementary Methods

1 The parameters of the methylation potential energy landscape

Determining the methylation PEL, given by Eq. 4 in the Main Text, requires that we compute
appropriate values for the 2N — 1 Ising parameters a, and ¢, from WGBS data, which can be
a prohibitively large number of parameters for reliable estimation. To address this issue, we set

5

an, =a+ Bp, and cn:d—
mn

where p,, is the CpG density (CGD) within a symmetric neighborhood of 1,000 nucleotides
centered at a CpG site n, given by

1
1,000

Pn = X [# of CpG sites within 4500 nucleotides downstream and upstream of n]

and d,, is the distance of CpG site n from its “nearest-neighbor” CpG site n — 1, defined by!

dn, = [# of base-pair steps between the cytosines of CpG sites n and n — 1 ]

Parameter o accounts for intrinsic factors that uniformly affect CpG methylation over a given
genomic region, whereas parameter 8 modulates the influence of CGD on methylation.?2 The
expression for ¢, accounts for our expectation that the correlation between the methylation
states of two consecutive CpG sites will decay as the distance between these two sites increases,
since the longer a DNMT enzyme must move along the DNA the higher is the probability of
disassociating from the DNA before reaching the next CpG site.

2 Phase transition and methylation bistability

The ground state * of the PEL Vi () within a genomic unit (GU) is the state at which the
potential energy attains its minimum value and represents the most likely methylation state
within the GU. Interestingly, Vi (x) can be characterized by co-existing ground states, depending
on the values of the parameters a,, and ¢, of the Ising model.

To see why this true, let us assume for simplicity that the Ising model within a GU will not
be significantly affected if we replace the parameters a,, and ¢, with their average values; i.e., if
we set a, = a and ¢, = ¢, for all n, where

1 Y 1 Y
a:NZan and C:Nch.
n=1 n=1

'For biochemical interactions with the methylation machinery, the most relevant distance between two suc-
cessive CpG sites is the physical distance among their cytosines. For example, if the DNA sequence under
consideration is TCGACCG, then d2 = 4, whereas d2 = 2 for the sequence TCGCG.

2It is known that DNA methylation depends on the CpG density. For example, DNA regions with high CpG
content are often protected from methylation, whereas DNA regions with low CpG content are often highly
methylated [4, 10, 16].




In this case, the PEL is approximately given by

N N
Vi(@) =—a) (2zn—1)—cY (2w, — 1)(2w,-1 — 1).
n=1 n=2

We can verify that, when a < 0 and ¢ > 0, the PEL’Ss minimum value will be N(a — ¢) and this
value will be reached only at state * = 0 (fully unmethylated state). On the other hand, when
a > 0 and ¢ > 0, the PEL’s minimum value will be —N(a+¢) and this value will be reached only
at state * = 1 (fully methylated state). However, when a = 0 and ¢ > 0, the PEL’s minimum
value will be —N¢, and this value will be reached at two different states, 7 = 0 and 3 = 1. This
means that the GU will most likely be in the fully unmethylated or the fully methylated state
with equal probability. Taken together, these observations lead to an important result: when
¢ > 0, the most likely state of the Ising model will experience (non-critical) phase transition as
parameter a increases from negative to positive values with the transition occurring at a = 0.3

In addition to the above, and as a direct consequence of well-known formulas of statistical
mechanics that relate the magnetization of the 1D Ising model with its underlying parameters
(e.g., see [1, pp. 33-36]), we can show that, in the limit as N — 400, the mean methylation level
(MML) E[L] is given by

e sinh(a)

\/620 sinh?(a) + e~2¢

1

Although this is an asymptotic formula, it helps us gain a valuable insight into the behavior of
methylation within a GU, even if the number of CpG sites is small. In particular, methylation
within a GU can be subject to a (non-critical) phase transition that is reminiscent to the one
that has been extensively studied in statistical mechanics; see Fig. M1. It turns-out that this
behavior is directly related to the potential wells of the PEL associated with the methylation
level L, given by

(1) = In[max{F,(u)}] ~ nE,(0)

and leads to the observation that, for sufficiently large ¢ > 0, the methylation level can be subject
to bistability when the parameter a is close to the “critical” value 0; see Extended Data Fig. 6.
We attribute this property of the methylation system to a reallocation of the ground states of
the PEL V] (1), caused by a biochemically-induced deformation of its topographic surface.

GUs exhibiting methylation bistability may be very important from a biological perspective.
Under normal circumstances, bistability may be viewed as an efficient way to move from a fully
unmethylated to a fully methylated state or vice versa. In other circumstances, this may be
viewed as a biological aberration that may lead to disease. This fundamental epigenetic charac-
teristic can be dynamically controlled by the methylation machinery, as well as by environmental
factors, which may influence the particular values of parameters «, 3, and . Detecting bistable
regions is possible due to the Ising model, which considers correlation in methylation in terms
of parameter c.

3Note, however, that this phase transition will be critical only in the limit as ¢ — co and N — oo, since the
1D Ising model does not experience criticality for finite values of ¢ and N [1].
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Figure M1. Mean methylation level (MML) of the Ising model within a genomic unit (GU) as a
function of the PEL parameter a and for various values of the PEL parameter c. Note that a 50% MML
is achieved if and only if a = 0. In addition, positive values of a are associated with MMLs above 50%,
whereas negative values of a are associated with MMLs below 50%. For small values of ¢, low MML can
be achieved only with a value of a that is appreciably below zero, whereas high MML requires a value
of a that is appreciably above zero. This however is not necessarily true for large values of c¢. In this
case, low and high MMLs can be achieved even with values of a close to zero. Although the transition
from MMLs below 50% to levels above 50% is smooth for small values of ¢, this transition becomes
sharper for larger values. In the latter cases, a small deviation in the value of a from zero can result in a
sharp decrease of MML to 0 (fully unmethylated state) or a sharp increase to 1 (fully methylated state)
demonstrating the presence of bistable behavior, a form of phase transition.

3 Maintenance of methylation information

In this paper, we use a noisy binary communication channel to model the transmission of the
DNA methylation state during maintenance. We view this process as one that transmits methy-
lation marks in the form of binary (0-1) bits of information at successive time points. We focus
here on the fundamental notion of “methylation channels” and present information-theoretic
tools that allow us to quantify the behavior of these channels. For related work on the mainte-
nance of methylation marks, see [7-9, 12, 17].

3.1 The methylation channel

We view the dynamic maintenance of the methylation state at the n-th CpG site of the genome
as a multi-step transmission process modeled by a Markov chain X, (0) — X,(1) — --- —
Xp(k—1) - X,(k) — ---, where X,(0) is the initial methylation state and X, (k) is the



methylation state after the k-th step. In this case,

Pr(X, (k) = /] =) Pr[Xn(k) =2/, Xn(k — 1) =z
z=0,1
= Z Pr[X, (k) =2 | Xp(k — 1) = 2] Pr[X,(k — 1) = 2], for 2/ = 0,1, (M1)
z=0,1

where Pr[X (k) = 2’ | X(k — 1) = 2] is the probability of transmitting the methylation state x
to the methylation state ' during the k-th step.

The probabilities P, (2’ | ) = Pr[X, (k) = 2’ | X,,(k—1) = ] model the influence of intrinsic
and eztrinsic fluctuations to the process of methylation maintenance. These probabilities define
an information transmission system, which we refer to as a methylation channel (MC).? Clearly,
we can specify the MC associated with the n-th CpG site by using two parameters, u, and vy,
such that

P,(0]1)=Pr[X,=0|X,=1] = uy, (demethylation)

P,(1|1)=Pr[X =1|X,=1=1—p, (maintenance methylation) (M)
P,(110)=Pr[X],=1|X,=0]=1, (de novo methylation)

P,(0]0)=Pr[X] =0|X,=0=1—1, (lack of de novo methylation).

Parameter u, quantifies the net rate of demethylation, which includes passive demethylation
(due to lack of DNMT1 activity) as well as active demethylation (e.g., due to TET-mediated
oxidation of methylated CpGs), whereas parameter v, quantifies the net rate of methylation,
which includes non-specific DNMT1 activity (usually very low), as well as de novo DNMT3-
driven methylation — see [3, 11] for details.

Two special cases of the previous channel have been extensively studied in information
theory: the binary symmetric channel, for which u,, = v,,, and the Z-channel, for which v, = 0.
Our treatment here is associated with the general case, which is known in information theory
as the binary asymmetric channel. Note that we must limit the range of possible values for the
demethylation and de novo methylation probabilities to 0 < u, < 1/2 and 0 < v, < 1/2. These
inequalities are imposed by two factors: (a) demethylation and de novo methylation always
occur in real cells and, therefore, u,,v, > 0, and (b) we expect demethylation to occur less
frequently than maintenance methylation, in which case p, < 1 — u,, and the same is expected
to be true for de novo methylation.

3.2 Estimation of methylation channels

To estimate a MC from WGBS data, we need to determine appropriate values for its parameters
tn and v,. In general, the probabilities of demethylation and de novo methylation may vary
during regulation of the methylation state. As a result, estimating a MC from data is a very
difficult problem. However, we expect that stable conservation of the methylation state requires
that the probabilities puy, v, of demethylation and de novo methylation, as well as the proba-
bilities P, (1) of CG methylation, do not appreciably change with time [7, 9, 18], in which case

“In information theory, this system is known as noisy binary channel [5].



the MC will operate near equilibrium. As a consequence, and by virtue of Eq. M1, we expect
to approximately have

Pn(fnl) = Pn(x/ | 0)P,(0) + Pn(fnl | 1) P (1),

where P,(z) = Pr[X, (k) = z] is the probability distribution of methylation at the n-th CpG
site. This, together with Eq. M2, leads to

PTL(O) = (1 - Vn)Pn(O) + ,unPn(l)
Pr(1) = vnPn(0) + (1 — pin) Po(1),
where P,(0) + P,(1) = 1. Therefore,

Hn Un
P,(0) = d P,(1)= , M3
T T (M)
which implies that
Un P,(1)
= — J M4
A fn 1= Pa(1) (M4)

In this case, knowledge of the probability of methylation P, (1) allows us to compute the ratio
An between the de novo and demethylation probabilities, which we refer to as the turnover ratio.
It turns out that we can use WGBS data to estimate the value of the turnover ratio A\, at a CpG
site n. To do so, we can use our maximum likelihood approach to estimate the Ising probability
P (z) and then marginalize this probability to obtain an estimate of P, (1).

3.3 The average input/output information

The average information required to characterize the methylation state X at the input of a MC
is given by the GpG entropy (CGE), defined by

Sp(X) := =P,(0)logy P, (0) — P,(1)logy P,(1) Dits, (M5)

and likewise for the average information associated with the output X’. For the MCs considered
here, we have S,(X) = S,(X’), since the input and output methylation probabilities are the
same. It turns out that

0< Sn(X) = Sn(X,) <1,

where the lower bound is achieved when X and X’ take value 0 or 1 with probability 1, and
the upper bound is achieved when X and X’ take value 0 or 1 with equal probability. From
Egs. M3 — M5, the input/output CGEs are given by

52(6) = 8,(X") = v (1220) (n16)
where
[4(p) = —plogy(p) — (1 — p)logy(1 —p) | (M)

We can therefore compute these entropies from the turnover ratio A,, without specific knowledge
of the probabilities u,, v, of demethylation and de novo methylation. Note that the CGE tends
to zero as A\, — 0 or A, — oo and monotonically increases to its maximum value of 1 as A\, — 1.



3.4 The information capacity of a methylation channel

The information capacity (IC) of a MC expresses the maximum average information that can
be conveyed during transmission. Mathematically speaking, the IC of a MC associated with the
n-th CpG site is defined by
Cp :=max {I,(X";1 X bits,
» = s U (X5 X))

where I,(X’; X) is the mutual information between the output X’ and the input X of the MC.
The mutual information quantifies (in bits) the reduction in the average information required
to characterize the output X’ of the MC due to knowledge of its input X. It turns out that

e WY G N W) 1
(X X) = 0(7550) — T ) = T ), (M8)
where v is given by Eq. M7. Moreover, the IC is given by
Co = ([ 42707 ) = PO (va) = Py (1)), (M9)

which is achieved by the input probability distribution
1— a1+ Qw(un,Vn)]
[1— (1 + M) [1 + 260mrn)]

Pr(1)=1-P0)=1—

where $(m) = (i)
. Up) — P\HUn
Finally,
0<Cp <1,

where the lower bound is achieved when p,, = v, = 1/2, whereas the upper bound is achieved
in the limit as u, — 0 and v, — 0.

Unfortunately, we cannot compute the IC from the turnover ratio A,, since we also need
to know the probability u, of demethylation or the probability of de movo methylation v,.
However, we will shortly show that we can compute a reasonable approximation to this value.

3.5 The probability of transmission error

A way to quantify the accuracy of methylation transmission through a MC is to calculate the
probability of erroneously transmitting the input methylation state to the output. If the input X
of a MC takes a value x, whereas its output X’ takes a value 2’ # x, then a transmission error
occurs. In this case, the probability of error is given by

Tn = Po(1]0)P,(0) + Po(0 | 1)Py(1)

-y Hn Ty Up
nﬂn + vp nﬂn + vp
_ 2pinn
pn + Un
2
In_ <), (M10)

- 1+ M\, —



by virtue of Eqs. M2, M3 & M4. Note that the inequality is due to the fact that u,, v, < 1/2,
where equality holds if and only if p, = v, = 1/2.

3.6 Enmergy dissipation

Information processing by a MC and, as a matter of fact, by any biological system, requires
consumption of free energy. An amount of work is needed to correctly transmit the methylation
state at a CpG site, and this consumes energy that is dissipated to the surroundings in the form
of heat [2, 13]. Due to stochastic fluctuations in the underlying biochemistry, the methylation
system always drifts towards imperfect transmission, characterized by a non-negligible proba-
bility of error. Under certain assumptions, it has been shown for some systems [6, 14] that the
minimum energy F dissipated to the surroundings is related to the probability of error 7 by the
following simple formula:

E~—kgTInm, (M11)

where ky is Boltzmann’s constant (ks = 1.3806488 x 10722 JK~!) and T is the absolute temper-
ature. We postulate that this relationship is also valid in the case of methylation transmission
at a given CpG site, at least approximately.
Since the proportionality factor in Eq. M11 is not known, we define the relative dissipated
energy (RDE) g, by
E, In 7y,
£, 1= = — = — lO , M12
" Bpm | In2 82 (M12)
where Epin ~ ksT In2 is the least possible energy dissipation (recall that m, < 1/2). Note that
€n IS a unitless quantity such that 1 < e, < co. Moreover, Eqs. M10 & M12 imply that

en = —logy — logy V. (M13)

2
+ A\
As a consequence, the RDE becomes infinitely large as A\, — 0 or A\, — oo, whereas it takes
value —log, v, when A = 1. Notably, we cannot compute the RDE value from the turnover
ratio A, — for this calculation, we also need to know the probability of de novo methylation.

3.7 Approximate computation of ICs and RDEs

We now discuss a method that allows us to approximately compute the ICs and RDEs genome-
wide from the turnover ratios A,. Despite its approximative nature, the method leads to a
number of fundamental insights into the information-theoretic properties of methylation main-
tenance. Our approach can become more precise once methods for estimating the probabilities
of demethylation and de novo methylation become available.

The probabilities of demethylation and de novo methylation are expected to be small [7—-
9, 15]. For this reason, we assume that 0 < p, < 0.1 and 0 < v, < 0.1 at each CpG site.
In addition, since it is not possible to determine the exact values of the demethylation and de
novo methylation probabilities within a cell population, we may consider via the principle of
maximum entropy that these probabilities are random variables that follow a uniform distribu-
tion within the closed interval [0,0.1]. In this case, the mean values of yi,, and v, within the cell
population will be given by 7,, = 0.05 and 7,, = 0.05.



We can now derive a formula for approximately calculating the IC values within the cell
population, which we can use instead of the true values. To do so, we approximate the function
Y(p), given by Eq. M7, using the following linear approximation:®

¥(p) ~5.19 x p, for p <0.1. (M14)

Let us consider a CpG site for which A, < 1. Figure M2 shows that the capacity C,, is almost
identical to the ratio I,,(X’; X)/S,(X), known as channel transmissibility. This leads to

1= C(pn) ~ [w(l i")\n)]_l [1 i‘")\n P(pn) +

1
m V(Anpin) |

by virtue of Egs. M6 — M9, where we now explicitly denote the dependence of the IC on p,. As
a consequence of Eq. M14, we obtain

n
14+ M\, 1+>\n”"’

since uy < 0.1 and Ay, < 0.1 in this case. On the other hand, when A, > 1, we have that

~1
1—C(un)f:5.19><[1/1< A )} 2n for Ap < 1,

Y(vn)|

N D 1
1_C(Nn) = |:1/}<1+)\n)] |:1+)\n w(Vn/)‘n)"’_m

which implies

PN
1—C'(,un):5.19><[¢(1+)\ >] T Vp, for A, >1,

since v, < 0.1 and v, /A, < 0.1 in this case. By taking expectations, and since f,, = 7,, = 0.05,
the previous results lead to

Cpn~1-0(\)
with
0.52 x ¢< An )_1 An for A, < 1
’ 14+ M\, 1+ X\, oF An =
#0n) = PN R
) n >
052><[¢(1+An)} o Tzl

where C,, is the mean value of the IC within the cell population. Since these formulas depend
only on the turnover ratio \,, they allow us to approximately compute the IC values genome-
wide from WGBS data.

We can also derive a formula for approximately calculating the RDE values within the cell
population. From Eq. M13, we can show that the mean value g, of the RDE at a CpG site with
turnover ratio A, is given by

En = QS()\n) + Vn,

SIf we assume that 0 < p < 0.1, then we can set 9(p) ~ kp. It turns out that x = 5.19 minimizes the square
error between ¢ (p) and kp.
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Figure M2. CpG entropy S(X), mutual information I(X’; X), channel transmissibility
I(X',X)/S(X), and channel capacity C' of a MC as a function of the demethylation and de

novo methylation probabilities p and v. Note that the channel capacity is almost identical to the
transmissibility.

where
1+ A\,
<
o log2< . >, for A\, <1
" 1+ M\,
log, 5 , for A\, >1,
and

—logy pin, for A, <1
Yn = -
—logy vy, for A, >1,

with logs 1, and log,y v, being the mean values of the logarithms of the probabilities of demethy-
lation and de novo methylation. It turns out that, since we assume that u, follows a uniform
distribution within the closed interval [0,0.1], we have —logy p, = —logy 0.1 + 1.44 x € =
3.32 + 1.44 x ¢, where € follows an exponential distribution with unit rate. As a consequence,
—logy pt, = 4.76 and, the same is true for —log, v,,. We therefore obtain

(20 = 6(Mn) +4.76)




where

1L+ A,
log2< 2—; ), for A\, <1

1+ A\,
10g2< +2 >, for A\, >1

Since these formulas depend only on the turnover ratio A,, they allow us to to approximately
compute the RDE values genome-wide from WGBS data.

gb()\n) =

4 The Entropic Sensitivity Index

To investigate the influence of environmental conditions on methylation uncertainty, we postulate
that changes in environmental conditions affect the parameters «a, £, and v of the Ising model
and derive a measure that allows us to quantify the effect of parameter variation on the NME. We
consider the case for which the Ising parameters «, 3, and « fluctuate around their true values by
random amounts aGG, G, and vG, respectively. We model G as a random variable that follows a
zero-mean normal distribution with small standard deviation o. Moreover, we hypothesize that
the NME h(g), produced by the perturbed Ising model with parameters (1+ g)«, (1+¢)53, and
(14 g)7, is a sufficiently smooth function of g so that it can be approximated by the following
second-order Taylor series expansion:

Oh(0) 0?h(0) o
h(G) ~ h(0 G G- M15
(@)= h(0)+ 5 e+ 5 (M15)
Since o is small and A is thought to be a sufficiently smooth function of g, we expect that
2
h
? (0)02 ~ (0,

0g?

whereas, since G follows a normal distribution, we have that E[G®] = 0. As a consequence, we
can show from Eq. M15 that the standard deviation ¢, of the entropy is approximately given by

0, 1N X 0o

where

Oh(0)
8—g| ’
which we refer to as the entropic sensitivity index (ESI).

Evaluating the ESI requires approximating the derivative. Using a finite-difference approxi-
mation, we set

for some small €. In turn, this requires that we compute the NME h(0) from the “true” Ising
model with parameters @, £, and 7, which we estimate from given WGBS data, as well as the
NME h(e) from the “perturbed” Ising model with parameters (1 + €)@, (1 + €)3, and (1 + €)7.
In our calculations, we set € = 0.01.
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Supplementary Notes

1 Critique of empirically estimating epiallelic probabilities

A number of methylation analysis methods have been recently proposed in [2-4] using the notions
of epipolymorphism as well as combinatorial and informational entropies. These statistics are
defined by the probability distribution of 2% possible methylation patterns, known as epialleles,
observed within a window of K > 4 contiguous CpG sites. However, we question the legitimacy of
these methods on the ground that they rely on empirically estimating the epiallelic probabilities
by using the ratio N;/N, where N; is the number of times the i-th pattern is observed (epiallelic
occurrence) in N methylation reads (coverage). This practice is highly questionable from a
statistical point of view as we show next.

Let us consider the occurrence number NN; of the i-the epiallele in N methylation reads to be
the number of positive outcomes of N independent and identically distributed Bernoulli trials
with probability of success p;, where p; is the true probability of occurrence of the i-th epiallele.
In this case, the distribution of IV; when p; is known is given by

N . N
In(Ni | pi) = (N) pYi(1 — py)N N
(2
By assuming a uniform prior for the true epiallelic probability p;, we obtain

Ju (Ni | pi) f(pi)
JIv(Ni | p) f(p)dp

N Ni _ . N—Ni
<Nz> [ (1 pl)

) /<JJ\\,Z> pNi(1—p)NNidp

_(N+1) (j}’) PN —p) NN for0 < p <1,

I (pi ‘ N;) =

for the posterior distribution fy(p; | NV;), which is a beta distribution with parameters N; + 1
and N — N; + 1.

To evaluate the uncertainty associated with the true value p; of the i-th epiallelic probability
when it is empirically estimated by the ratio N;/N, we can compute the 95% (highest posterior
density) credible interval associated with the conditional distribution of p; given Nj;, which
contains the true value of the epiallelic probability with 95% likelihood. We can calculate this
interval by setting

I={pi: fv(pi | Ni) > t},

where t satisfies the following equation:

/ fu(p | Niydp = 0.95.
p:fv (p|Ng ) >t



We can then use the width of the credible interval to measure uncertainty about the true epiallelic
probability, with a wider interval indicating higher uncertainty:.

In [4], the authors combined unique molecular identifiers with reduced representation bisul-
phite sequencing and constructed methylation data within selected regions of the genome ex-
hibiting 20 x coverage, which they included for downstream analysis. Moreover, by using WGBS
data from human somatic tissues, they identified genomic regions with at least 14x coverage
and used these regions to demonstrate heterogeneity in methylation. In Fig. N1(a,b), we depict
the credible intervals that correspond to these two cases. The results clearly demonstrate the
flawed nature of empirically estimating epiallelic probabilities from a small number of methy-
lation reads. For example, an epiallelic occurrence of 2 in data with 14x coverage implies an
empirically estimated probability value of 0.14. However, Fig. N1(a) shows that, with 95%
likelihood, the value of the true epiallelic probability can be anywhere between 0.03 and 0.38,
which demonstrates the large uncertainty and low accuracy of the empirically estimated value.
This can be a major problem, since an epiallelic pattern is defined in [4] as being “noise” if the
probability of occurrence is less than 0.2. It turns out that, by using this method, it may not
be possible to statistically distinguish “noise” from “signal.” Likewise, an epiallelic occurrence
of 7 in data with 14x coverage implies an empirically estimated probability value of 0.5 and a
credible interval that would span a wide range of true probability values from 0.26 to 0.73.

We expect that the geometric growth of the number of epiallelic patterns containing an
increasing number of CpG sites will worsen the previous problem. A good example is the
genomic locus chrll: 2,021,946-2,022,065 depicted in Fig. 4b of [4], which comprises 10 CpG
sites. In this case, 1,024 epiallelic probabilities are empirically estimated from 20 observations.
Due to insufficient data, however, the value of at least 1,004 of these probabilities must be set
equal to zero, even if the true values of these probabilities are not zero.

With such uncertain and inaccurate estimates, the previous problem extends well beyond
the issue of defining epiallelic patterns that constitute “noise,” since the error incurred may
significantly affect downstream analysis when using epipolymorphisms or entropies. To demon-
strate the significance of this issue, we used the method in [4] and estimated these quantities in a
clonal population under varying levels of pattern heterogeneity. By following [4], we considered a
clonal population that included two main epiallelic patterns, each with probability of occurrence
(1 —m)/2, where 7 is the net probability of occurrence of the remaining “noise” patterns, which
we assume to occur with equal probability. We then used 7 to quantify the level of pattern
heterogeneity in the population.

We considered a genomic region with 10 CpG sites, such as the one depicted in Fig. 4b of [4],
within a clonal population that includes two main epiallelic patterns, each with probability of oc-
currence (1—m)/2, as well as 1,022 “noisy” patterns, each with probability of occurrence 7/1,022.
We then analytically calculated, for a given level of pattern heterogeneity, its epipolymorphism
@ and informational entropy H by

1,024 ) 2

Q ; p; 2=~ 155 (N1)

H = —(1-1)log o — rlog —" (N2)
- 108 T8 1 022
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Figure N1. a, Empirically estimated probabilities (14x coverage) of an epiallelic pattern for
different epiallelic occurrences (green circles) and the corresponding 95% high posterior density credible
intervals (red error bars). b, Empirically estimated probabilities (20x coverage) of an epiallelic pattern
for different epiallelic occurrences (green circles) and the corresponding 95% high posterior density
credible intervals (red error bars). The widths of the credible intervals in a & b indicate appreciable
uncertainty in the empirically estimated probability values, with maximum uncertainty occurring when
the epiallelic pattern is observed in half of the available methylation reads. ¢, True values of the
epipolymorphism (yellow circles) of a genomic region within a clonal population that contains 10 CpG
sites with different levels of pattern heterogeneity and the corresponding 95% confidence intervals (red
error bars) associated with empirically estimating the epipolymorphism. Although empirical estimation
of the epipolymorphism leads, on the average, to values (red crosses) that are relatively close to the true
values, the estimator is associated with confidence intervals that may extend below this example’s
allowable minimum value of 0.5 (dotted line), or with confidence intervals that do not include the true
value at high levels of pattern heterogeneity. d, True values of the entropy (yellow circles) of the same
genomic region as in ¢ and the corresponding 95% confidence intervals (red error bars). The empirical
entropy estimator leads to completely inaccurate results since, in the absence of pattern heterogeneity,
the resulting confidence interval extends below this example’s allowable minimum value of 0.8115
(dotted line), whereas, in the presence of pattern heterogeneity, the confidence intervals do not contain
the true entropy values.



which imply that 0.5 < @ < 0.9990 and 0.8115 < H < 6.9295. For a given value of 7, we
subsequently employed Monte Carlo sampling and independently generated 2,000,000 epiallelic
patterns, which we grouped into sets of 20. We then empirically estimated the epiallelic prob-
abilities within each set and calculated the epipolymorphism and entropy values using Eqgs. N1
& N2. We finally used these values to compute the 95% confidence intervals associated with
the underlying empirical estimators by finding the 2.5-th and 97.5-th percentiles of the resulting
100,000 samples of the epipolymorphism and of the 100,000 samples of the entropy. The loca-
tions and widths of these confidence intervals can serve as measures of estimation accuracy. The
results depicted in Fig. N1(c,d) clearly demonstrate that empirical estimation of epipolymor-
phisms and entropies is prone to large errors and strongly support our view that this practice is
highly questionable and not appropriate for reliable downstream analysis of methylation data.

Empirical estimation of epiallelic probabilities was originally proposed in [2] together with
an experimental method producing methylation data with an extraordinary coverage of about
10,000, which alleviates the previous problem. Unfortunately, this method can only be used to
probe a very small number of genomic regions and is associated with a separate host of issues,
such as the inability to distinguish PCR duplicates from truly replicated data [5]. To address
the PCR duplication problem, UMI filtering was used in [4] but did not consider sufficient depth
for meaningful epiallelic analysis.

In conclusion, extensive use of empirically estimating epiallelic probabilities and of other
quantities defined from these probabilities, such as epipolymorphisms and entropies, call into
question many analysis results and biological conclusions presented in [2, 4]. In particular, a
number of predictions in [4] based on epiallelic patterns classified as “noise” should be retracted
until statistically significant results can be presented in support of these conclusions, since we
have convincingly demonstrated in this section that “noise” cannot be statistically distinguished
from “signal” when using an empirical approach on small sample sizes. This turns out to be a
much lesser problem when using the Ising model proposed in this paper, since the underlying
parametric assumptions reduce the burden of statistical estimation from 2% parameters [i.e., the
2K probabilities P(zp, Tpt1, -+ Tntk—1)] in the case of epipolymorphism, to the three a, 3,y
parameters in the case of our model. In addition, our method can estimate joint probability dis-
tributions over regions that contain many more than 4 contiguous CpG sites, using methylation
data of lower coverage than the one considered in [2, 4].

2 Estimation of TAD boundaries (additional results)

We now provide additional results regarding our method for estimating TAD boundaries. Un-
derstanding these results requires familiarity with the GenometriCorr package [1].

2.1 H1 stem predictive regions vs. H1 stem TAD boundaries

GeometriCorr employs a number of output measures for evaluating the correlation of genome-
wide data with given genomic features. Our analysis produced the following values for these
measures:



GenometriCorr Output

reference.population 5,862
query.population 404
relative.distances.ks.p.value 4.83 x 1078
relative.distances.ecdf.area.correlation 1.82 x 107!
projection.test.p.value 0
projection.test.lower.tail FALSE
relative.distances.ecdf.deviation.area.p.value < 2 x 1074
scaled.absolute.min.distance.sum.p.value <2x107*
jaccard.measure.p.value <2x107
scaled.absolute.min.distance.sum.lower.tail ~ TRUE
jaccard.measure.lower.tail FALSE

The value of “reference.population” in the table above indicated that there were 5,862 annotated
TAD boundaries in available TAD annotations for H1 stem cells. The value of “query.population”
indicated that there were 404 predictive regions that may contain TAD boundaries. The very
low P value calculated in “relative.distances.ks.p.value,” together with the observation that “rel-
ative.distances.ecdf.area.correlation” was positive, showed that, in general, the TAD boundaries
and the predictive regions were closer to each other than expected by chance. The “projec-
tion.test.p.value” was zero, indicating either significant overlap or significant lack of overlap.
The “projection.test.lower.tail” was FALSE, meaning that there was significantly more overlap
between the predictive regions and the TAD boundaries than by chance. The P values given
by “relative.distances.ecdf.deviation.area.p.value,” “scaled.absolute.min.distance.sum.p.value,”
and “jaccard.measure.p.value’ indicated that the observed spatial relationships (absolute or rel-
ative distance apart) were significantly different than what was expected by chance. From these
P values we could tell whether the predictive regions and the TAD boundaries were significantly
close or significantly far apart. Since the value of the “scaled.absolute.min.distance.sum.lower.tail”
was TRUE, we knew that the absolute distances between the predictive regions and the TAD
boundaries were consistent and small. On the other hand, the “jaccard.measure.lower.tail”
was FALSE, indicating an unexpectedly high overlap, as defined by the Jaccard measure. We
should finally mention that the relative distance test of GenometriCorr revealed that true TAD
boundaries that fell outside predictive regions were significantly more likely to be closer to these
regions than expected by chance. We therefore concluded that all tests in this analysis indicated
that TAD boundaries were located within predictive regions or were close to these regions in a
statistically significant manner.

2.2 Combined predictive regions vs. combined TAD boundaries

In this case, our analysis produced the following values for GeometriCorr measures discussed
above:



GenometriCorr Output

reference.population 10,276
query.population 6,632
relative.distances.ks.p.value 0
relative.distances.ecdf.area.correlation 1.28 x 107!
projection.test.p.value 0
projection.test.lower.tail FALSE
relative.distances.ecdf.deviation.area.p.value < 2 x 1074
scaled.absolute.min.distance.sum.p.value <2x1074
jaccard.measure.p.value <2x1074
scaled.absolute.min.distance.sum.lower.tail ~ TRUE
jaccard.measure.lower.tail FALSE

These values were similar to the ones obtained when using only H1 stem cells, thus leading to the
same conclusion as before. However, 6,632 predictive regions were correlated with 10,276 anno-
tated TAD boundaries, as compared to correlating 404 predictive regions with 5,862 annotated
TAD boundaries in the case of H1 stem cells.
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