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ABSTRACT 
Epigenetics is defined as genomic modifications carrying information independent of DNA 
sequence heritable through cell division. In 1940, Waddington coined the term “epigenetic 
landscape” as a metaphor for pluripotency and differentiation, but epigenetic potential energy 
landscapes have not yet been rigorously defined. Using well-grounded biological assumptions 
and principles of statistical physics and information theory, we derive potential energy 
landscapes from whole genome bisulfite sequencing data that allow us to quantify methylation 
stochasticity genome-wide and discern epigenetic differences using Shannon’s entropy and the 
Jensen-Shannon distance. We discover a “developmental wheel” of germ cell lineages and an 
association between entropy and chromatin structure. Viewing methylation maintenance as a 
communications system, we introduce methylation channels and show that higher-order 
chromatin organization can be predicted from their informational properties. Our results provide 
a fundamental understanding of the information-theoretic nature of the epigenome and a 
powerful methodology for studying its role in disease and aging.  

INTRODUCTION  
The classical definition of epigenetics by Waddington is the emergence of a phenotype that can 
be perturbed by the environment but whose endpoints are predetermined by genes1. Waddington 
used the language of ordinary differential equations, including the notion of an “attractor”, to 
describe the robustness of deterministic phenotypic endpoints to environmental perturbations, 
which he believed to be entirely governed by DNA sequence and genes. However, a growing 
appreciation for the role that stochasticity and uncertainty play in development and epigenetics2-4 
has led to relatively simple probabilistic models that take into account epigenetic uncertainty by 
adding a “noise” term to deterministic models5,6. Although some authors have recognized the 
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importance of entropy in DNA methylation, it has so far been defined in an ad hoc manner with 
limited resolution and requiring extensive cell culture expansion and even molecular tagging for 
its measurement3,4,7. Here, we have taken a foundational approach to understanding the nature of 
epigenetic information by using principles of statistical physics and information theory to 
organically incorporate stochasticity into the mathematical framework and applying it on 
primary whole genome bisulfite sequencing (WGBS) datasets. The results allow us to 
conceptually combine “hard-wired” mechanistic principles of epigenetic biology with the Ising 
model of statistical physics and, in contrast to metaphorical “Waddingtonian” landscapes, 
rigorously derive epigenetic potential energy landscapes that can be computed genome-wide. 
These landscapes encapsulate the higher-order statistical behavior of methylation in a 
biologically relevant manner, and not just its mean as it has been customary. We quantify 
methylation uncertainty genome-wide using Shannon’s entropy and provide a powerful 
information-theoretic methodology for distinguishing epigenomes using the Jensen-Shannon 
distance between sample-specific potential energy landscapes associated with stem cells, tissue 
lineages and cancer. Moreover, we establish a relationship between entropy and topologically 
associating domains (TADs), which allows us to efficiently predict their boundaries from 
individual WGBS samples. In addition, we demonstrate that methylation can be subject to (non-
critical) phase transition that may be associated with important biological functions, such as 
genomic imprinting. We also introduce methylation channels as models of DNA methylation 
maintenance and show that their informational properties can be effectively used to predict 
higher-order chromatin organization using machine learning. Lastly, we introduce a sensitivity 
index that quantifies the rate by which environmental or external perturbations influence 
methylation uncertainty along the genome, suggesting that genomic loci associated with high 
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sensitivity are those most affected by such perturbations. This merger of epigenetic biology, 
statistical physics and information theory yields many fundamental insights into the relationship 
between information-theoretic properties of the epigenome and nuclear organization in normal 
development and disease, and demonstrate that we can precisely identify informational 
properties of individual WGBS samples and their chromatin structure, as well as their differences 
among tissue lineages, aging, and cancer. 

RESULTS 
Stochastic epigenetic variation and potential energy landscapes 
Despite it being well known that stochastic variation is a fundamental property of the DNA 
methylome2,3, genome-wide modeling and analysis of the methylation state continues to focus on 
individual CpG dinucleotides and ignores statistical dependence among these sites. However, 
DNA methylation is correlated, at least over small distances, due to the processivity of the 
DNMT enzymes. Therefore, one cannot adequately analyze methylation with methods that do 
not take into account such correlation.  To this end, and to better understand the relationship 
between stochastic epigenetic fluctuation and phenotypic variability, we took a different and 
more general path to methylation modeling and analysis by developing an information-theoretic 
approach based on the Ising model of statistical physics. This approach leads to a rigorous 
definition of a potential energy landscape which associates each methylation state with a 
potential that quantifies the information content of that state. Notably, the Ising model provides a 
natural way of modeling statistically dependent binary methylation data that is consistent with 
observed means and pairwise correlations. 

Here, DNA methylation is viewed as a process that reliably transmits linear strings of binary 
(0-1) data from a cell to its progeny in a manner that is robust to intrinsic and extrinsic stochastic 
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biochemical fluctuations. First, the methylation state within a given genomic region containing N 
CpG sites is modeled by an N-dimensional binary-valued random vector X whose n-th element 
Xn takes value 0 or 1 depending on whether or not the n-th CpG site is unmethylated or 
methylated, respectively. Then, the potential energy landscape (PEL) of methylation is defined 
by   
 VX(x) = ϕ0 – ln PX(x), (1) 
for some constant ϕ0, where PX(x) is the joint probability of a methylation state x. As a 
consequence, PX(x) is the Boltzmann-Gibbs distribution of statistical physics8, given by  

  1( ) exp ( )VZP  X Xx x , (2) 

with state energy VX(x) and partition function  

  exp ( )Z V  X
x

x . (3) 

Notably, the potential VX(x) – ϕ0 quantifies the amount of information associated with the 
methylation state x, which is known to be given by – ln PX(x)9. 

By using the well-known maximum-entropy principle, we determined that the PEL which 
maximizes our uncertainty about the particular choice of the Boltzmann-Gibbs distribution that is 
consistent with the methylation means and pairwise correlations is given by 

 1
1 2
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n n n n n

n n
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for some parameters an and cn. This leads to a methylation probability PX(x)  that is modeled by 
the 1D nearest-neighbor Ising model8. Notably, parameter an influences the propensity of the n-
th CpG site to be methylated due to non-cooperative factors, with positive an promoting 
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methylation and negative an inhibiting methylation, whereas parameter cn influences the 
correlation between the methylation states of two consecutive CpG sites n and n – 1 due to 
cooperative factors, with positive cn  promoting positive correlation and negative cn  promoting 
negative correlation (anti-correlation).  

We estimated the methylation PEL VX(x)  from WGBS data corresponding to 35 samples, 
including stem cells, normal cells from colon, liver, lung, and brain tissues, matched cancers 
from three of these tissues, cultured fibroblasts at 5 passage numbers, CD4+ lymphocytes and 
skin keratinocytes from younger and older individuals, and EBV-immortalized lymphoblasts (see 
Methods & Supplementary Table 1). To this end, we partitioned the genome into consecutive 
non-overlapping regions and developed a method for estimating the PEL parameters within each 
region using a maximum-likelihood approach (see Methods). Our strategy capitalizes on 
appropriately combining the full information available in multiple methylation reads, especially 
the correlation between methylation at CpG sites, as opposed to the customary approach of 
estimating marginal probabilities at each individual CpG site (Fig. 1a).  

For reliable estimation, we reduced the 2N – 1 PEL parameters within a genomic region that 
contains N CpG sites to three parameters, α, β, and γ, characteristic to that region. We did so by 
setting an = α + βρn and cn = γ/dn,  where n  is the CpG density associated with the n-th CpG site 
and dn is the CpG distance of the n-th CpG site from its “nearest-neighbor” site n – 1 
(Supplementary Method 1). We used parameter α to account for intrinsic factors that uniformly 
affect CpG methylation and parameter β to modulate the influence of CpG density on 
methylation. Moreover, we set cn = γ/dn to reflect our expectation that correlation between the 
methylation states of two consecutive CpG sites decays as the distance between the sites 
increases.  
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The  resulting PEL encapsulates our view that methylation within a genomic region depends 
on two distinct factors: the underlying CpG architecture of the genome at that location, 
quantified by the CpG density ρn and distance dn whose values can be readily determined from 
the DNA sequence itself, as well as by the current biochemical environment in the nucleus 
provided by the methylation machinery, quantified by parameters α, β, and γ whose values must 
be estimated from available methylation data. Due to its dependence on a small number of 
parameters, this model allows us to estimate the joint probability distribution of methylation 
from low coverage WGBS data (as low as 7x in the data used in this study). In turn, this allows 
one to reliably calculate marginal probabilities at individual CpG sites, compute PELs, and 
produce a number of novel methylation measures that have not been considered before. We 
calculated PELs on all 35 samples comprehensively across the entire genome, which can be 
visualized locally by a 3D representation using Gray’s code (see Methods). For example, 
computed PELs demonstrate that most methylation states associated with the CpG island (CGI) 
of WNT1 in colon normal exhibit high potential (Fig. 1b, 3D and violin plots), implying that 
significant energy is required to leave the fully unmethylated state, which, in this case, is the 
state of lowest potential (ground state). Any deviation from this state will be rapidly “funneled” 
back, leading to low uncertainty in methylation. Notably, the methylation states of WNT1 in 
colon cancer demonstrate low potential (Fig. 1b, 3D and violin plots), implying that relatively 
little energy is required to leave the fully unmethylated ground state. In this case, deviations from 
this state will be frequent and long lasting, leading to uncertainty in methylation. Similarly, the 
methylation states associated with the CGI of EPHA4, a key developmental gene, exhibit low 
potential in stem cells (Fig. 1b, 3D and violin plots), suggesting that low energy is needed to 
leave the fully unmethylated state, which is again the ground state, thus leading to uncertainty in 
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methylation. In contrast, EPHA4 shows high potential in the brain (Fig. 1b, 3D and violin plots), 
implying that substantial energy is required to leave the fully unmethylated ground state thus 
leading to low uncertainty in methylation. Lastly, global distributions of the PEL parameters a 
and c (Fig. 1c) show that our motivation for using the Ising model is well founded. Specifically, 
more than 75% of the c parameters along the genome are positive, showing extensive 
cooperativity in methylation (Fig. 1c). Interestingly, a global increase in the values of the c 
parameters is consistently observed in cancer, implying an overall increase in methylation 
cooperativity in tumors. In addition, most samples demonstrate positive median a values, 
indicating that methylation is more common than nonmethylation, except in two liver cancer 
samples which were subject to extended extreme hypomethylation. Even in those cases, however, 
c is increased in the tumors.  
Epigenetic entropy quantifies methylation uncertainty in biological states 
Due to their first-order marginal nature, means and variances produce a narrow view of 
methylation and its uncertainty. Previous methods of methylation analysis have attempted to 
provide a more comprehensive approach by using the notions of epipolymorphism and 
combinatorial (Boltzmann) entropy3,4,7, which are based on empirically estimating the 
probabilities of specific methylation patterns (epialleles). We have demonstrated that, in contrast 
to the model-based estimation of joint probabilities and Shannon entropy employed here, 
empirical estimation of epiallelic probabilities, epipolymorphisms and combinatorial entropies, 
requires much higher coverage than routinely available from WGBS data (Supplementary Note 
1). With regards to a previous study4, we often found that the 95% confidence intervals of 
empirically estimated epipolymorphisms will not include the true values resulting in potentially 
large errors.  
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In order to account for variation of the statistical properties of methylation within the 
estimation regions and perform methylation analysis at a higher resolution, we further partitioned 
the genome into genomic units (GUs) of 150bp each and characterized methylation within each 
GU with the probability distribution PL(l) of the methylation level L (see Methods). We then 
quantified methylation uncertainty within a GU containing N CpG sites by defining the 
normalized methylation entropy (NME) 

 
2log ( 1)

Hh N  ,  (5) 

where  

 2( ) log ( )L L
l

l PH P l   (6) 

is the informational (Shannon) entropy9 of the methylation level within the GU that provides an 
average assessment of the amount of epigenetic information conveyed by any given GU. When 
all methylation levels are equally likely (fully disordered state), the NME takes its maximum 
value of 1 regardless of the number of CpG sites, whereas it achieves its minimum value of 0 
only when a single methylation level is observed (perfectly ordered state).  

The NME is an effective measure of methylation uncertainty that we can reliably compute 
genome-wide from low coverage WGBS data using our Ising model, together with the mean 
methylation level (MML) E[L], which is the average of the methylation means at individual CpG 
sites within a GU. We therefore compared the genome-wide distributions of MML and NME 
values among samples. Consistent with previous reports, the MML was globally higher in stem 
cells and brain tissues than in normal colon, liver, and lung and that the same was true for CD4+ 

lymphocytes and skin keratinocytes (Fig. 1c). In addition, the MML was reduced in all seven 



10 
 

cancers studied compared to their matched normal tissues, and was also progressively lost in cell 
culture (Fig. 1c,d). We also observed low NME in stem and brain cells, as well as in CD4+ 
lymphocytes and skin keratinocytes associated with young subjects, and a global increase of 
NME in most cancers except for liver cancer, which exhibited profound hypomethylation leading 
to a less entropic methylation state (Fig. 1c,d & Extended Data Fig. 1). While changes of NME 
in cancer were often associated with changes in MML (Extended Data Fig. 1a), this was often 
not the case (Extended Data Fig. 1b,c,d), indicating that changes in stochasticity are not 
necessarily related to changes in mean methylation and demanding that both be assessed when 
interrogating biological samples. Lastly, we computed MML and NME distributions over 
selected genomic features and provided  a genome-wide breakdown showing lower and more 
variable methylation levels and entropy values within CGIs and TSSs compared to other 
genomic features, such as shores, exons, introns, etc. (Extended Data Fig. 2a,b).  

Global hypomethylation and gain in entropy was found in all three CD4+ lymphocyte 
samples from older people compared to three from younger individuals and in both skin 
keratinocyte samples compared to younger samples (Fig. 1c,e), with the percentage change in 
entropy being more pronounced. For example, we found an average 23% increase (11 – 38% 
range) in median NME genome-wide between young and old CD4 samples but only an average 
5.6% decrease (3.2 – 8.5% range) in median MML. Note that, for genome-wide comparisons, the 
95% confidence intervals for the median are too small to visualize and direct statistical 
comparisons of the medians are contraindicated. However, to account for biological and 
statistical variability, we constructed an empirical null distribution amongst the young samples 
(see Methods) and statistically estimated that up to 34% of the GUs were differentially entropic, 
demonstrating that profound changes in entropy can result in old individuals. Notably, striking 
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differences were observed between true aging and cell culture. Although passage number in 
fibroblasts was also associated with progressive global hypomethylation, the entropy distribution 
was relatively stable (Fig. 1c & Extended Data Fig. 3a). For example, the promoters of CYP2E1 
and FLNB, two genes with are known to be downregulated with age10, exhibited noticeable gain 
in methylation level and entropy in old CD4+ lymphocytes, which was in stark contrast to the 
lack of changes with passage in CYP2E1 and the noticeable loss of entropy in FLNB (Extended 
Data Fig. 3b,c) in cultured fibroblasts. Therefore, age-related PELs in multiple tissues do not 
seem to be well characterized by increasing fibroblast passage number, and aging appears to be 
associated with a gain in entropy. 
Informational distances delineate lineages and identify developmentally critical genes 
In order to understand the relationship between epigenetic information and phenotypic variation, 
we sought to precisely quantify epigenetic discordance between pairs of samples using the 
Jensen-Shannon distance (JSD), which measures the dissimilarity between the probability 
distributions of the methylation level within a GU across the two samples (see Methods). We 
then asked if we could use this distance to distinguish colon, lung, and liver from each other and 
from matched cancers, as well as from stem, brain, and CD4+ lymphocytes. For computational 
feasibility, we limited our study to 17 representative cell and tissue samples and computed all 
136 pairwise epigenetic distances genome-wide. We then visualized the results by performing 
multidimensional scaling (see Methods). The samples fell into clear categories based on 
developmental germ layers (Fig. 2a), with clusters of ectoderm (brain), mesoderm (CD4), and 
endoderm (normal colon, lung, and liver) derived tissues located roughly equidistant from stem 
cells (Fig. 2a, dashed circle). On the other hand, cancerous tissues were far removed from their 
normal matched tissues as well as from the stem cells (Fig. 2a). 
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Given the interesting relationship between the stem cell sample and the three germ layers, we 
examined genes that exhibited noticeable differential methylation level (dMML) and/or JSD in 
stem cells compared to differential tissues. To this end, we ranked genes based on the magnitude 
of dMML as well as on the JSD within their promoters (see Methods & Supplementary Data 1) 
and were surprised to find that many genes known to be involved in development and 
differentiation showed relatively small changes in dMML yet very high JSD, indicating that the 
probability distributions of methylation level within their promoters were different, despite little 
difference in mean methylation level. To explore this further, we asked whether non-mean 
related methylation differences could identify genes between sample groups that would have 
previously been occult to mean-based analyses by employing a relative JSD-based ranking 
scheme (RJSD) that assigned a higher score to genes with higher JSD but smaller dMML (see 
Methods). For example, in the stem cell to brain comparison, we found many key genes at the 
top of the RJSD list, such as IGF2BP1, FOXD3, NKX6-2, SALL1, EPHA4, and OTX1, with 
RJSD-based GO annotation ranking analysis11, revealing key categories associated with stem cell 
maintenance and brain cell development (Supplementary Data 1 & 2). Similarly, 30 GO 
categories showed 10-fold or greater enrichment in the RJSD list, compared to 5 categories in the 
MML list (FDR q values ≤ 0.05). We obtained similar results when we compared stem cells to 
normal lung, with RJSD-based GO annotation analysis revealing key developmental categories 
and genes in both mesodermal and stem cell categories (Supplementary Data 1 & 2). 
Comparison of stem cells to CD4+ lymphocytes showed enrichment for immune-related 
functions driven by dMML and many developmental and morphogenesis categories driven by 
RJSD (Supplementary Data 2).  
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In contrast, when we compared differentiated tissues, we noticed that dMML-based GO 
annotation analysis resulted in a higher number of significant categories than RJSD-based 
analysis, and these were closely related to differentiated functions, such as immune regulation 
and neuronal signaling in the case of brain and CD4, 16 GO categories with 10-fold or greater 
enrichment for MML compared to 3 categories for RJSD (Supplementary Data 2; FDR q values 
≤ 0.05). Interestingly, when we compared lung normal to cancer, we noticed that RJSD-based 
GO annotation analysis produced a higher number of significant categories than dMML-based 
analysis, and these were again related to developmental morphogenesis categories. There were 
40 GO categories with 10-fold or greater enrichment for RJSD compared to 7 categories for 
MML (Supplementary Data 2; FDR q values ≤ 0.05). Taken together, these results show that 
PEL computation reveals major changes in the probability distributions of DNA methylation 
associated with developmentally critical genes, and that the shape of these distributions, rather 
than their means per se, may often be closely related to pluripotency and fate lineage 
determination in development and cancer.  

We next explored the link between changes in the probability state, as reflected by the JSD 
and the values of the PEL parameters an and cn. For example, a CGI near the promoter of EPH4A 
shows high JSD when comparing stem cells with brain (Fig. 2b). Although this region exhibits 
comparable mean methylation levels, it displays high JSD over the entire CGI and especially 
over its shores. Notably, the JSD is not driven by methylation propensity, since the PEL 
parameters an are strongly negative in both stem and brain, in which case the fully unmethylated 
state is the PEL’s ground state (Fig. 1b, lower panel), resulting in low methylation level within 
the CGI. However, it is driven by methylation cooperativity at the CGI shores in brain, since the 
PEL parameters cn are strongly positive, compared to low methylation cooperativity in stem 
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(almost zero cn’s) that flattens the PEL (Fig. 1b, lower panel) and results in higher  entropy than 
in brain (Fig. 2b).  Intriguingly, the region shows binding of EZH2 and SUZ12, functional 
enzymatic components of the polycomb repressive complex 2 (PRC2) which regulates 
heterochromatin formation12. Likewise, SIM2, a master regulator of neurogenesis, is associated 
with high JSD regions with similar EZH2/SUZ12 binding, which span several CGIs located near 
its promoter (Extended Data Fig. 4a). In this case, a gain of entropy is observed in brain, 
corresponding to a simultaneous loss in methylation propensity (through reduced an’s) and a gain 
in methylation cooperativity (through increased cn’s). Similar remarks hold for other 
developmental genes, such as ASCL2, SALL1, and FOXD3 (Extended Data Fig. 4b,c,d; see figure 
legend for details).  

We repeatedly observed the presence of EZH2 and SUZ12 binding sites in areas of high JSD, 
suggesting that they may play a critical role in generating increased entropy with minimal change 
in mean methylation. In order to determine whether this association was significant, we used 
Fisher’s exact test and compared promoters and enhancers with high dMML to those with low 
dMML as well as promoters and enhancers with high JSD to those with low JSD. We observed 
several-fold greater enrichments for both EZH2 and SUZ12 binding sites at promoters and 
enhancers with high JSD vs. low JSD, which provided further evidence of the importance of the 
JSD (Supplementary Table 2). We then performed binomial logistic regression of EZH2/SUZ12 
binding data on JSD scores at promoters and enhancers and found significant positive association 
(EZH2: score = 5.6 for promoters & 18.1 for enhancers, P value < 2.2 x 10-16; SUZ12: score = 
6.2 for promoters & 23 for enhancers, P value < 2.2 x 10-16; see Supplementary Table 2). Taken 
together, these results show a significant association of EZH2 and SUZ12 with promoters and 
enhancers at high JSD regions of the genome, suggesting the intriguing possibility that the PRC2 
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complex controls stochastic variability in DNA methylation at selected genomic loci by 
regulating the methylation PEL. 
Methylation energy landscapes uncover bistable behavior associated to genomic imprinting  
As a direct consequence of known results of statistical physics that relate the magnetization and 
covariance of the 1D Ising model with its underlying parameters8, we postulated that methylation 
can be subject to (non-critical) phase transition and, in particular , to a bistable behavior that 
manifests itself as a coexistence of two distinct epigenetic phases: a fully methylated and a fully 
unmethylated phase (Extended Data Fig. 5a,b & Supplementary Method 2).  

To investigate whether bistability in methylation might be associated with important 
biological functions, we examined its possible enrichment in several genomic features (see 
Methods). We found (Supplementary Table 3) that bistable GUs are in general enriched in CpG 
island shores (ORs > 1 in 29/34 phenotypes, P values < 2.2 x 10-16) and promoters (ORs > 1 in 
26/34 phenotypes, P values ≤ 1.68 x 10-9), but depleted in CGIs (ORs < 1 in 26/34 phenotypes, P 
values < 2.2 x 10-16) and gene bodies (ORs < 1 in 29/34 phenotypes, P values ≤ 3.06 x 10-14). 
Moreover, we noticed that bistable GUs were associated with higher NME than the rest of the 
genome (Fig. 3a; comparing the bistable regions (yellow) to the rest of the genome (purple)). 

In order to investigate whether methylation bistability is associated with specific genes, we 
rank-ordered each gene in the genome using a bistability score, which we calculated as the 
average frequency of methylation bistability within the gene’s promoter in 17 normal samples 
(see Methods). We found a substantial number of highly ranked genes to be imprinted 
(Supplementary Data 3). This is attributed to the fact that imprinting has been associated with 
allele-specific methylation comprising full methylation on one chromosome and complete 
unmethylation on the other giving rise to bistable methylation13. In fact, 82 curated imprinted 
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genes from the Catalogue of Parent of Origin Effects (CPOE) were much more highly ranked in 
our list than would be expected by chance (P value 2.89 x 10-16), with notable overrepresentation 
of imprinted genes near the top of the list. Interestingly, more than 8% of imprinted genes in 
CPOE appeared in the top 25 bistable genes (SNRPN, SNURF, MEST, MESTIT1, ZIM2, PEG3, 
MIMT1), raising the possibility that imprinting of these genes may be associated with allele-
specific methylation of selective loci near their promoters.  

We also investigated the possibility that genes subject to monoallelic expression (MAE) are 
associated with bistability. By using a recently created data set of 4,227 MAE genes, we detected 
only a slight enrichment of bistability in these genes, likely because MAE is not a result of 
silenced expression from one of the two alleles14. We noticed, however, that 10 MAE genes, not 
classified in CPOE as being imprinted, exhibited methylation bistability (score > 0.1), raising the 
possibility that these genes might be imprinted, and one of these, C11ORF21, lies within the 
BWS domain but is not known to be imprinted. Additionally, some of the genes highly ranked in 
the bistability list that are not imprinted/MAE may be methylated in some cells and not in others. 

Considerable effort has been previously expended to identify imprinted genes in the 11p15.5 
chromosomal region related to Beckwith-Wiedemann syndrome and loss of imprinting in 
cancer15-18. We therefore assessed the position of bistable marks in this well-studied imprinted 
locus and revealed a correspondence with known imprinting control regions (ICRs) and CTCF 
binding sites just upstream of H19, as well as near the promoter of KCNQ1OT1 (Fig. 3b,c). 
Bistable marks were also found near the SNURF/SNRPN promoter, which matched the location 
of a known ICR (Fig. 3d), as well as near the PEG3/ZIM2 and MEST/MESTIT1 promoter regions 
(Extended Data Fig. 6).  
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Entropy blocks predict TAD boundaries  
Topologically associating domains (TADs) are structural features of the genome that are highly 
conserved across tissue types and species.19-21. Their importance stems from the fact that loci 
within these domains tend to frequently interact with each other, with much less 
frequent interactions being observed between loci within adjacent domains. Genome-wide 
detection of TAD boundaries is an essential but experimentally challenging task. However, a 
recent method has demonstrated that TAD boundaries can be reasonably predicted from histone 
mark ChIP-seq data (CTCF, H3k4me1) using a computational approach22.  We therefore 
examined the possibility of using the NME to computationally locate TAD boundaries using 
WGBS data. 

We observed that, in many samples, known TAD boundary annotations were visually proximal 
to boundaries of entropy blocks (EBs), i.e., genomic blocks of consistently low or high NME 
values (Fig. 4a & Extended Data Fig. 7, see Methods), which suggests that TAD boundaries may 
be located within genomic regions that separate successive EBs. To determine whether this is 
true, we computed EBs in the WGBS stem data and identified 404 regions predictive of TAD 
boundaries (see Methods). We then found that 5,862 annotated TAD boundaries in H1 stem 
cells20 were located within these predictive regions or were close in a statistically significant 
manner and correctly identified 6% of the annotated TAD boundaries (362 out of 5,862) derived 
from 90% of computed predictive regions (see Methods & Supplementary Note 2 for details and 
P values). We then extended our analysis by combining the TAD boundary annotations for H1 
stem cells with available annotations for IMR90 lung fibroblasts20 (a total of 10,276 annotations). 
Since TADs are largely thought to be cell-type invariant20,21, we realized that we can predict the 
location of more TAD boundaries by combining information from EBs derived from additional 
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phenotypes (Fig. 4b). We therefore employed WGBS data from 17 different cell types, computed 
the corresponding EBs, determined predictive regions for each cell type, and appropriately 
combined these regions to form a single list that encompasses information (6,632 predictive 
regions) from all cell types (see Methods). Our analysis produced results similar to those 
obtained in the case of stem cells and demonstrated that TAD boundaries that fell within 
identified predictive regions did so significantly more often than expected by chance, resulting in 
62% correct identification of the annotated TAD boundaries (6,408 out of 10,276) derived from 
97% of computed predictive regions (see Methods & Supplementary Note 2 for details and P 
values), a performance that can be further improved by including additional phenotypes in our 
analysis.  

To further assess our predictions, we noted that a TAD boundary can be naturally located at 
the center of the associated predictive region in the absence of prior information. We then found 
that errors of locating TAD boundaries in this manner were small when compared to the TAD 
sizes, as demonstrated by estimating the probability density and the corresponding cumulative 
probability distribution of the location errors as well as of the TAD sizes using a kernel density 
estimator (Fig. 4c). Computed cumulative probability distributions implied that the probability 
that the location error is smaller than N bp’s was larger than the probability that the TAD size is 
smaller than N, for every N. We therefore concluded that the location error was smaller than the 
TAD size in a well-defined statistical sense (stochastic ordering). We also observed that the 
median location error was an order of magnitude smaller than the median TAD size (94-kb vs. 
760-kb). Taken together, these observations provide strong statistical evidence that there is an 
underlying relationship between EBs and TADs, and that this relationship can be easily 
harnessed to effectively predict TAD boundaries from WGBS data. 
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Methylation channels explain epigenetic memory maintenance 
Stable conservation of the DNA methylation state is essential for epigenetic memory 
maintenance. In order to quantify this process, we employed a noisy binary communication 
channel9, which dynamically updates the methylation state and leads to an information-theoretic 
perspective that enables a fundamental understanding of the relationship between reliability of 
methylation maintenance, energy availability, and methylation uncertainty. We reasoned that 
stable maintenance of the methylation state at a CpG site can be approximately modeled by a 
stochastic methylation channel (MC) near equilibrium, quantified by the transmission 
probabilities μ and ν of demethylation and de novo methylation, respectively (Fig. 5a & 
Supplementary Method 3). These probabilities are thought to be regulated by the maintenance 
and de novo methyltransferases (DNMT1, DNMT3A, and DNMT3B), by active (TET) and 
passive demethylation processes, as well as by other potential mechanisms, which are anticipated 
to be constrained by the free energy available for methylation maintenance.  

The amount of methylation uncertainty associated with a MC at a particular CpG site is given 
by the CG entropy (CGE) S = – (1 – p) log2(1 – p) – p log2p, where p is the probability of 
methylation at that site. Notably, only a certain amount of methylation information can be 
transmitted by a MC, with the maximum possible amount given, on the average, by the 
information capacity9 (IC) (see Supplementary Method 3). Moreover, a MC may drift towards 
imperfect transmission, which reduces reliability of methylation maintenance by increasing the 
probability of error. We therefore sought to study the relationship between CGE, IC and 
reliability of transmission in order to better understand how MCs influence epigenetic memory.  

We first reasoned that increased reliability in transmission can be achieved only by a MC that 
consumes an appreciable amount of free energy, which must be dissipated to the surroundings in 
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the form of heat, in agreement with the first law of thermodynamics. We therefore chose to 
measure reliability of transmission by computing the amount of dissipated heat. Consistently 
with general engineering principles23, we postulated that the (minimum) energy E dissipated 
during maintenance of the methylation state is approximately related to the probability of 
transmission error π by E ~  – kB T lnπ, where kB is Boltzmann’s constant and T is the absolute 
temperature. Since the proportionality factor is not known in this relationship, we used the 
relative dissipated energy (RDE)  

 2
min

ln logln 2
E

E
       (7) 

as a measure of reliability in methylation transmission, where Emin ~  – kB T ln2 is the least 
possible energy dissipation (Supplementary Method 3). This implies that higher reliability (lower 
probability of error) can only be achieved by increasing the amount of free energy available for 
methylation maintenance, whereas reduction in free energy can lead to lower reliability (higher 
probability of error). Notably, it is not physically possible for a MC to achieve exact 
transmission of the methylation state (zero probability of error) since this would require an 
unlimited amount of available free energy. 

We then recognized that calculating ICs and RDEs genome-wide requires computation of the 
probabilities µ and ν of demethylation and de novo methylation at each CpG site of the genome, 
which is not currently possible. To remedy this, we estimated the turnover ratio λ = ν/µ at each 
CpG site from WGBS data, derived approximate formulas for the average IC and RDE within a 
cell population in terms of λ, and showed that the CGE can be directly computed from λ 
(Supplementary Method 3). We found that a high capacity MC leads to a less entropic 
methylation state at the expense of higher energy consumption than a low capacity MC (Fig. 5b, 
green), which consumes less energy but leads to a highly entropic methylation state (Fig. 5b, red), 
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thus establishing an important relationship between information-theoretic properties of MCs and 
the nature of epigenetic memory maintenance.    

Lastly, we approximately computed ICs, RDEs, and CGEs in individual samples and 
comparative studies genome-wide (Fig. 5c & Extended Data Fig. 2c,d).We observed a global 
pattern of IC and RDE loss in colon and lung cancer, accompanied by a global gain in CGE (Fig. 
5c), although this was not true in liver cancer (Fig. 5c). Moreover, stem cells demonstrated a 
narrow range of relatively high IC and RDE values, whereas brain cells, CD4+ lymphocytes, and 
skin keratinocytes exhibited high levels of IC and RDE, with noticeable loss in old individuals 
(Fig. 5c). Notably, the methylation state within CGIs and TSSs is maintained by MCs whose 
capacities are overall higher than within shores, shelves, open seas, exons, introns and intergenic 
regions, and this is accomplished by significantly higher energy consumption (Extended Data 
Fig. 2c,d). These results reveal an information-theoretic view of genome organization, according 
to which methylation within certain regions of the genome is reliably transmitted by high 
capacity MCs leading to low uncertainty in the methylation state at the expense of high energy 
consumption, while methylation within other regions of the genome is transmitted by low 
capacity MCs that consume less energy but leading to high uncertainty in the methylation state.  

Information-theoretic prediction of chromatin changes in development and cancer 
The 3D spatial organization of the genome allows for regions that are linearly located far from 
each other to come into proximity and reside in the same regulatory environment. Recent work 
seeking to understand this organization has demonstrated the existence of cell-type specific 
compartments A and B20,21,24, which are known to be associated with gene-rich transcriptionally 
active open chromatin and gene-poor transcriptionally inactive closed chromatin, respectively.  
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Despite the fact that identifying compartments A/B is becoming an increasingly important 
aspect of fully characterizing the epigenome of a given sample, the availability of such data is 
limited by cost, technical difficulties, and the need for sizable amounts of input material with 
intact nuclei required by conformation capture technologies such as Hi-C24. Computational 
prediction methods using data obtained by more routine experimental methods, such as a large 
number of replicated Illumina 450k DNA methylation microarrays or measures of DNA 
accessibility, show promise in addressing this problem25. In this regard, we sought to predict 
compartments A and B from local information-theoretic properties of the methylome in 
individual WGBS samples.  

Comparing known Hi-C data from EBV cells to calculated MCs from WGBS data, we 
observed enrichment of low IC, high NME, and low RDE within compartment B, and the 
opposite was globally true for compartment A (Fig. 5d,e). These observations led us to 
hypothesize that information-theoretic properties of methylation maintenance can be effectively 
used to predict the locations of compartments A and B. To test this prediction, we employed a 
random forest regression model to learn the informational structure of A/B compartments from 
available “ground-truth” data. To build this model, we used a feature vector that included the 
information capacity (IC) and relative dissipated energy (RDE) of a MC, as well as the 
normalized methylation entropy (NME) and mean methylation level (MML). Random forest 
regression was capable of reliably predicting A/B compartments from single WGBS samples 
(Extended Data Fig. 8a), resulting in cross-validated average correlation of 0.74 and an average 
agreement of 81% between predicted and true A/B signals when using a calling margin of zero, 
which increased to 0.82 and 91% when the calling margin was set equal to 0.2 (see Methods for 
details). These results suggest that a small number of local information-theoretic properties of 
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methylation maintenance can be highly predictive of large scale chromatin organization, such as 
compartments A and B. Once properly trained, the random forest A/B predictor can be applied 
robustly on any WGBS sample.  

Consistent with the fact that compartments A and B are cell-type specific, and in agreement 
with results of a previous study that demonstrated extensive A/B compartment reorganization 
during early stages of development14, we observed many differences between predicted 
compartments A/B (Extended Data Fig. 8b,c,d,e). We also found from methylation data alone 
that the predicted compartment transitions often corresponded to TAD boundaries identified 
from Hi-C data by Dixon et. al.14 (Extended Data Fig. 8b). In order to comprehensively quantify 
observed differences in compartments A and B, we computed percentages of A to B and B to A 
switching in all sample pairs (Supplementary Data 4). We observed high levels (≥ 20%) of A to 
B and B to A switching between stem and most of the remaining samples, > 10% switching 
between brain and most of the remaining samples, and low levels (< 10%) of switching between 
most normal colon, liver and lung samples. We also noticed > 10% B to A switching between 
colon, liver and lung normal and most cancer samples. 

We subsequently noticed that the net percentage of A/B compartment switching can be 
employed as a dissimilarity measure between two samples, and used this measure to cluster our 
samples (Fig. 5f & Methods). The clusters reflect a notable distinction of A/B switching among 
samples, with 31/34 samples being clustered in a biologically meaningful manner, despite the 
fact that the random forest model was trained using limited data, and provide evidence that a 
substantial portion of the observed levels of A/B switching can be attributed to epigenetic 
differences between the samples. Notably, stem cell differentiation is associated with high levels 
of chromatin reorganization (Fig. 5f). In particular, differentiated lineages and cancer are cluster 
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together but they are distinguished from each other, while the brain is clustered closest to stem 
cells, as it also suggested by biochemical studies26. Moreover, young CD4 samples form one 
cluster, whereas old CD4 samples form another, and the same is true for skin. 

Intriguingly, normal lung showed strikingly different chromatin organization from lung 
cancer, as did colon normal from colon cancer (Fig. 5f), so we attempted to relate these changes 
to known chromatin or methylation structures. Previous studies have demonstrated the presence 
of large hypomethylated blocks in cancer that are remarkably consistent across tumor types.27 
These blocks have been shown to correspond closely to large-scale regions of chromatin 
organization, such as lamin-associated domains (LADs) and large organized chromatin K9-
modifications (LOCKs)2,28. Consistent with our observations on the information-theoretic 
properties of compartment B and of carcinogenesis (Fig. 5c,d,e), we asked whether 
hypomethylated blocks are associated mainly with compartment B (see Methods). We found 
(Extended Data Fig. 8f) significant overlap with compartment B in normal lung (OR ≈ 3.3, P 
value < 2.2 x 10-16), and the same was true for LADs (OR ≈ 4, P value < 2.2 x 10-16) and LOCKs 
(OR ≈ 5.3, P value < 2.2 x 10-16). Interestingly, compartment B in normal tissue may exhibit 
regions of large JSD values (Fig. 5g), suggesting that considerable epigenetic changes may occur 
within this compartment during carcinogenesis. We further supported this observation by 
computing the genome-wide distributions of JSD values between normal/cancer within 
compartments A and B in normal (Extended Data Fig. 8f). For example, B to A switching in 
colon cancer included the HOXA and HOXD gene clusters, whereas B to A switching in lung 
cancer included the HOXD gene cluster but not HOXA (Extended Data Fig. 8g,h). Moreover, it 
included SOX9 in colon cancer and the tyrosine kinase SYK in both colon and lung cancer 
(Extended Data Fig. 8i). Fewer regions showed A to B switching in cancer, consistent with the 
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directionality of LAD and LOCKs changes in cancer. Interestingly, this included MGMT in 
colon but not lung, a gene implicated in the repair of alkylation DNA damage that is known to be 
methylated and silenced in colorectal cancer, and the mismatch repair gene MSH4 (Extended 
Data Fig. 8j). Together with our previous observation of significant B to A switching between 
normal/cancer samples, these results suggest that compartment B demarcates genomic regions in 
which it is more likely for methylation information to be degraded during carcinogenesis. 
Entropic sensitivity quantifies environmental influences on epigenetic stochasticity 
Epigenetic changes, such as altered DNA methylation and post-translational modifications of 
chromatin, integrate external and internal environmental signals with genetic variation to 
modulate phenotype. In this regard, we sought to investigate the influence of environmental 
exposure on methylation stochasticity by following a sensitivity analysis approach, which 
enabled us to quantify the effect of environmental variability on methylation entropy. To this 
end, we viewed environmental variability as a process that directly influences the methylation 
PEL parameters and built a stochastic approach that allowed us to approximately relate the 
amount σh of NME variation with the amount σ of parameter variation by σh ≈ ησh, where η 
measures the absolute rate of NME change due to this variation (see Supplementary Method 4). 
This suggests using η to quantify entropic sensitivity to environmental conditions, since larger 
values of η imply larger variation in methylation entropy. We named η the entropic sensitivity 
index (ESI) and developed a method to estimate its values genome-wide from single WGBS 
data, which quantifies the influence of environmental fluctuations on epigenetic uncertainty in 
individual samples and comparative studies (Fig. 6, Extended Data Figs. 2e & 9). For example, 
in colon normal, entropic sensitivity was observed within the CGI associated with WNT1, with 
part of it exhibiting gain in entropy and loss of sensitivity in colon cancer (Fig. 6a). 
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Globally, we observed differences in ESI among tissues (Fig. 6b & Extended Data Fig. 9a), 
with stem and brain cells exhibiting higher levels of entropic sensitivity than the rest of the 
samples. Together with the fact that brain cells are highly methylated (Fig. 1c), high levels of 
entropic sensitivity would predict that brain can show high rates of demethylation in response to 
environmental stimuli, consistent with recent data showing that the DNA demethylase Tet3 acts 
as a synaptic activity sensor that epigenetically regulates neural plasticity by means of active 
demethylation29, and a similar observation could be true for stem cells and CD4+ lymphocytes. 
Colon and lung cancer exhibited global loss of entropic sensitivity, whereas gain was noted in 
liver cancer. Moreover, CD4+ lymphocytes and skin keratinocytes exhibited global loss of 
entropic sensitivity in older individuals (Fig. 6b), while cultured fibroblasts showed noticeably 
lower ESI. Higher and more variable ESI values were observed within CGIs and at TSSs 
compared to other genomic features, such as shores, exons, and introns (Extended Data Fig. 2e). 
However, some unmethylated CGIs exhibited low entropic sensitivity (Extended Data Fig. 9b), 
whereas gain or loss of entropic sensitivity within CGIs was observed between normal and 
cancer (Extended Data Fig. 9c,d) as well as in older individuals  (Extended Data Fig. 9e,f). 
Notably, differences in ESI were not simply due to entropy itself, as many regions of low 
entropy showed small ESI values (Extended Data Fig. 9b,c,d), while other such regions exhibited 
noticeable ESI values (Extended Data Fig. 9c,e,f), indicating sensitivity to environmental 
perturbations.  

We also examined the relationship of entropic sensitivity to higher-order chromatin structure. 
We found that entropic sensitivity within compartment A was noticeably higher than in 
compartment B in all samples except stem cells (Fig. 6c), consistent with the notion that 
transcriptionally active compartment A would be more responsive to stimuli. Moreover, 
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observed differences among normal tissues and between normal and cancer were largely 
confined to compartment B (Fig. 6c). One could notice substantial loss of entropic sensitivity in 
compartment B in older CD4+ lymphocytes and skin keratinocytes, but not in compartment A. 
This is in contrast to cell culture that showed a sensitivity gain in compartment B (Fig. 6c).  

To further investigate entropic sensitivity changes between tissues, we ranked genes 
according to their differential ESI (dESI) within their promoters between colon normal and colon 
cancer (Supplementary Data 5). Colon cancer showed several LIM-domain proteins, including 
LIMD2 (ranked 4th), which transduce environmental signals regulating cell motility and tumor 
progression30, as well as genes implicated in colon and other types of cancer, such as QKI 
(ranked 1st), a critical regulator of colon epithelial differentiation and suppressor of colon 
cancer31 that was recently discovered to be a fusion partner with MYB in glioma leading to an 
autoregulatory feedback loop32, HOXA9 (ranked 8th), a canonical rearranged homeobox gene33 
that is dysregulated in cancer, and FOXQ1 (ranked 9th), which is overexpressed and enhances 
tumorigenicity of colorectal cancer34. Together, these results suggest that environmental 
exposure may influence epigenetic uncertainty in cells with a level of sensitivity that varies along 
the genome and between compartments in a cell-type specific manner, and present the intriguing 
possibility that disease, environmental exposure, and aging are associated with substantial loss or 
gain of entropic sensitivity that could compromise the integration of environmental cues 
regulating cell growth and function.   

DISCUSSION 
In this study, we employed the Ising model of statistical physics to derive, from whole genome 
bisulfite sequencing, epigenetic potential energy landscapes (PELs) representing intrinsic 
epigenetic stochasticity. Rather than epigenetic landscapes with external “noise” terms5,6, we 
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employed biologically sound principles of methylation processivity, distance-dependent 
cooperativity, and CpG density to build a rigorous approach to modeling DNA methylation 
landscapes. This approach was not only capable of modeling stochasticity in DNA methylation 
from low coverage data, but also allowed genome-wide analysis of Shannon entropy at high 
resolution and uncovered new properties of the epigenome, such as a relationship between TADs 
and informational entropy. By incorporating fundamental principles of information theory into a 
framework of methylation channels, we could also predict in detail high-order chromatin 
organization from single WGBS samples without performing Hi-C experiments.  

Several novel insights ensued from this analysis. We found that Shannon entropy varied 
markedly among tissues, across the genome and across features of the genome. We consistently 
observed loss of methylation and entropy gain in cells from older individuals, in contrast to cell 
culture which exhibited large losses of methylation level and a relatively stable entropy 
distribution with passage. Genes associated with entropy gain appeared to be highly relevant to 
aging, although the full implications of this observation require further investigation. In some 
instances, we observed that high entropy was due to a bistable behavior in methylation level 
characterized by the coexistence of a fully methylated and a fully unmethylated state. We 
associated this behavior to many known imprinted regions, in agreement with the fact that 
imprinting is mostly related to allele-specific methylation.  

Rather than identifying differentially methylated regions (DMRs) among compared samples 
using marginal statistics, we employed the Jensen-Shannon distance (JSD) to compute 
information-theoretic epigenetic differences genome-wide. This approach allowed us to 
determine epigenetic differences between individual samples with the potential clinical 
advantage of identifying specific epigenetic differences which are unique to that sample 
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compared to a matched normal tissue. Analysis of a panel of tissues of diverse origins revealed a 
“developmental wheel” of the three germ cell lineages around a stem cell hub. Consistently, 
cancers were extremely divergent and most importantly not intermediate in their methylation 
properties between stem cells and normal tissue. 

We investigated whether the JSD simply embodies mean differences that have been 
characterized in the past, or if it reveals new insights independent of the mean. To address this 
question, we identified genomic regions with high JSD but low mean differences between 
sample pairs, with greater enrichment for many categories of stem cell maintenance or lineage 
development than found for regions with mean differences per se, suggesting a key role of 
stochasticity in development. In turn, this type of stochasticity appeared to be driven by localized 
regions of high cooperativity, which tends to flatten the PEL with little change in mean 
methylation. We found regions with high JSD and low mean methylation differences to be 
enriched in Polycomb repressive complex (PRC2) binding sites, suggesting a possible role for 
PRC2 in stochastic switching during development. Intriguingly, PRC2 components are critical 
for stochastic epigenetic silencing in an early area of the field of epigenetics, position effect 
variegation35,36, which also involves stochasticity. We suggest that PRC2 is important not only 
for gene silencing but also for regulating epigenetic stochasticity in general. 

A new insight of this work is a relationship between TAD boundaries and entropy blocks. 
We demonstrated that TAD boundaries can be located within transition domains between high 
and low entropy in one or more cell types. This suggests a model in which TAD boundaries, 
which are relatively invariant across cell type and are associated with CTCF binding sites, are 
potential transition points at which high and low entropy blocks can be demarcated in the 
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genome, and the particular combination of TAD boundaries that transition between high and low 
entropy define, in large part, the A/B compartments distinguishing tissue types.   

We also introduced an information-theoretic approach to epigenetics by means of 
methylation channels, which allowed us to estimate the information capacity of the methylation 
machinery to reliably maintain the methylation state. We found a close relationship between 
information capacity, CG entropy, and relative dissipated energy, as well as between regional 
localization of high information capacity and attendant high energy consumption (e.g., within 
shores and compartment A). We realized that informational properties of methylation channels 
could be used to predict A/B compartments and designed a machine learning algorithm to 
perform such predictions on widely available WGBS samples from individual tissues and cell 
culture. This method can be used to predict large scale chromatin organization from DNA 
methylation data on individual samples. Single paired WGBS data sets of normal and cancer 
were used to predict A/B compartment transitions. Both colon and lung cancers showed marked 
compartment switching, most often from B to A, with regions of B to A switching corresponding 
closely to LADs and LOCKs. Domains of B to A and A to B switching included many genes 
which are activated or silenced in cancer, suggesting that compartment switching could 
contribute to cancer.  

Lastly, by viewing environmental variability as a process that directly influences the 
methylation PEL parameters, we introduced the concept of entropic sensitivity, identifying 
genomic loci where external factors are likely to influence the methylation PEL. While we have 
only begun to explore the epigenetic implications of entropic sensitivity, it appears that aging 
and some cancers are associated with global loss of entropic sensitivity and thus to less 
responsive PELs. If this observation holds true on further study, it could be related to the well-
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known reduced physiological plasticity of aging, as well as with the autonomous nature of tumor 
cells. 

Although the present study was exploratory and discovery-based in nature, it allowed us to 
establish a novel modeled-based paradigm for the analysis of epigenetic information that can 
substantially increase resolution and dramatically reduce the cost of genome-wide epigenetic 
investigations using small numbers of samples or even individual patient paired-samples, a task 
that could be crucial in personalized medicine. We however note that biological variability 
makes broad generalization of results a difficult prospect in human biology. For example, we 
previously predicted that stochasticity in cancer would increase compared to normal states5, but 
here we observed the unexpected result that certain liver cancer samples have such extreme 
hypomethylation that they actually experience a reduction in entropy because the methylation 
state is very likely to be unmethylated. As with all modeling frameworks, the model is only as 
useful as the data it is built on; contamination, sampling biases and other effects are concerns in 
this study, just as they are in all other WGBS studies over limited samples. However, the 
approach presented here should motivate further development of strategies and methods for 
studying the informational properties of the epigenome and their relationship to disease, and its 
utility will increase as more WGBS data sets become available for application of this high-
resolution methodology. 

This study demonstrates a potential relationship between epigenetic information, entropy and 
energy that may maximize efficiency in information storage in the nucleus. Pluripotent stem cells 
require a high degree of energy to maintain methylation channels, with certain regions of the 
genome containing highly deformable PELs corresponding to differentiation branch points, as 
suggested metaphorically by Waddington, which we can now identify and map the parameters 
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responsible for plasticity. In differentiated cells, large portions of the genome (compartment B, 
LADs, LOCKs) need not maintain high information capacity and attendant high energy 
consumption, with their relative sequestration thus providing increased efficiency. However, 
when domains within compartment B switch to compartment A, previously accumulated 
epigenetic errors become deleterious and, compounded with reduced entropic sensitivity, may 
decrease the chance for homeostatic correction.  

Finally, the stochastic nature of DNA methylation and the close relationship between 
methylation entropy, channel capacity, dissipated energy and chromatin structure demonstrated 
in this paper raises the intriguing possibility that DNA methylation in a given tissue may carry 
information about both the current state and the possibility of stochastic switching. This 
information could then be propagated in part through methylation channels over many cycles of 
DNA replication, even for higher order chromatin organization where the chromatin post-
translational modifications themselves may be lost during cell division. This could imply that 
epigenetic information is carried by a population of cells as a whole, and that this information 
not only helps to maintain a differentiated state but to also help mediate developmental plasticity 
throughout the life of an organism. 

METHODS 
Samples for whole genome bisulfite sequencing. We used previously published WGBS data 
corresponding to 10 samples, which included H1 human embryonic stem cells37, normal and 
matched cancer cells from colon normal and cancer cells from liver38, keratinocytes from skin 
biopsies of sun protected sites from younger and older individuals39, and EBV-immortalized 
lymphoblasts40. We also generated WGBS data corresponding to 25 samples that included 
normal and matched cancer cells from liver and lung, pre-frontal cortex, cultured HNF 
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fibroblasts at 5 passage numbers, and sorted CD4+ T-cells from younger and older individuals, 
all with IRB approval. Pre-frontal cortex samples were obtained from the University of Maryland 
Brain and Tissue Bank, which is a Brain and Tissue Repository of the NIH NeuroBioBank. 
Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood collected from 
healthy subjects and separated by using a Ficoll density gradient separation method (Sigma-
Aldrich). CD4+ T-cells were subsequently isolated from PBMCs by positive selection with 
MACS magnetic bead technology (Miltenyi). Post-separation flow cytometry assessed the purity 
of CD4+ T-cells to be at 97%. Primary neonatal dermal fibroblasts were acquired from Lonza 
and cultured in Gibco's DMEM supplemented with 15% FBS (Gemini BioProducts).  
DNA isolation. Genomic DNA was extracted from samples using the Masterpure DNA 
Purification Kit (Epicentre). High molecular weight of the extracted DNA was verified by 
running a 1% agarose gel and by assessing the 260/280 and 260/230 ratios of samples on 
Nanodrop. Concentration was quantified using Qubit 2.0 Fluorometer (Invitrogen). 
Generation of WGBS libraries. For every sample, 1% unmethylated Lambda DNA (Promega, 
cat # D1521) was spiked-in to monitor bisulfite conversion efficiency. Genomic DNA was 
fragmented to an average size of 350bp using a Covaris S2 sonicator (Woburn, MA). Bisulfite 
sequencing libraries were constructed using the Illumina TruSeq DNA Library Preparation kit 
protocol (primers included) or NEBNext Ultra (NEBNext Multiplex Oligos for Illumina module, 
New England BioLabs, cat # E7535L) according to the manufacturer's instructions. Both 
protocols use a Kapa HiFi Uracil+ PCR system (Kapa Biosystems, cat # KK2801). 

For Illumina TruSeq DNA libraries, gel-based size selection was performed to enrich for 
fragments in the 300-400bp range. For NEBNext libraries, size selection was performed using 
modified AMPure XP bead ratios of 0.4x and 0.2x, aiming also for an insert size of 300–400bp. 
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After size-selection, the samples were bisulfite converted and purified using the EZ DNA 
Methylation Gold Kit (Zymo Research, cat # D5005). PCR-enriched products were cleaned up 
using 0.9X AMPure XP beads (Beckman Coulter, cat # A63881). 

Final libraries were run on the 2100 Bioanalyzer (Agilent, Santa Clare, CA, USA) using the 
High-Sensitivity DNA assay for quality control purposes. Libraries were then quantified by 
qPCR using the Library Quantification Kit for Illumina sequencing platforms (cat # KK4824, 
KAPA Biosystems, Boston, USA), using 7900HT Real Time PCR System (Applied Biosystems) 
and sequenced on the Illumina HiSeq2000 (2x100bp read length, v3 chemistry according to the 
manufacturer’s protocol with 10x PhiX spike-in) and HiSeq2500 (2x125bp read length, v4 
chemistry according to the manufacturer’s protocol with 10x PhiX spike-in). 
Quality control and alignment. FASTQ files were processed using Trim Galore! v0.3.6 
(Babraham Institute) to perform single-pass adapter- and quality-trimming of reads, as well as 
running FastQC v0.11.2 for general quality check of sequencing data. Reads were then aligned to 
the hg19/GRCh37 genome using Bismark v0.12.3 and Bowtie2 v2.1.0. Separate mbias plots for 
read 1 and read 2 were generated by running the Bismark methylation extractor using the 
“mbias_only” flag. These plots were used to determine how many bases to remove from the 5' 
end of reads. The number was generally higher for read 2, which is known to have poorer quality. 
The amount of 5' trimming ranged from 4bp to 25bp, with most common values being around 
10bp. BAM files were subsequently processed with Samtools v0.1.19 for sorting, merging, 
duplicate removal and indexing. 

FASTQ files associated with the EBV sample were processed using the same pipeline 
described for the in-house samples. BAM files associated with the normal colon and liver 
samples, obtained from Ziller et al38, could not be assessed using the Bismark methylation 
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extractor due to incompatibility of the original alignment tool (MAQ) used on these samples. We 
therefore followed the advice of the authors and trimmed 4bp from all reads for those files. 
Genomic features and annotations. Files and tracks bear genomic coordinates for hg19. CGIs 
were obtained from Wu et al41. CGI shores were defined as sequences flanking 2-kb on either 
side of islands, shelves as sequences flanking 2-kb on either side of shores, and open seas as 
everything else. The R Bioconductor package “TxDb.Hsapiens.UCSC.hg19.knownGene” was 
used for defining exons, introns and TSSs. Promoter regions were defined as sequences flanking 
2-kb on either side of TSSs. A curated list of enhancers was obtained from the VISTA enhancer 
browser (http://enhancer.lbl.gov)42 by downloading all human (hg19) positive enhancers that 
show reproducible expression in at least three independent transgenic embryos. Hypomethylated 
blocks (colon and lung cancer) were obtained from Timp et al27. H1 stem cell LOCKs and 
Human Pulmonary Fibroblast (HPF) LOCKs were obtained from Wen et al43. LAD tracks 
associated with Tig3 cells derived from embryonic lung fibroblasts were obtained from Guelen 
et al44. Gene bodies were obtained from the UCSC genome browser (https://genome.ucsc.edu). 
H1 and IMR90 TAD boundaries were obtained from http://chromosome.sdsc.edu/mouse/hi-
c/download.html. BED files for Hi-C data processed into compartments A and B were provided 
by Fortin and Hansen (https://github.com/Jfortin1/HiC_AB_Compartments). CTCF and 
EZH2/SUZ12 binding data were obtained from the UCSC genome browser (Transcription Factor 
ChIP-seq track (161 factors) from ENCODE).  
Computation and display of potential energy landscapes. To compute the PEL within a 
genomic region of interest, we estimated parameters an and cn from WGBS data and used        
Eq. 4 of the Main Text. Since the size of the methylation state space within a genomic region 
with N CpG sites grows geometrically in terms of N, we limited PEL computation within regions 
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of the CGIs near the promoters of WINT1 and EPHA4 containing 12 CpG sites. To plot the PEL, 
we distributed the 212 computed values over a 64 64 square grid using a 2D version of Gray’s 
code45, so that methylation states located adjacent to each other in the east/west and north/south 
directions differ in only one bit.  
Estimation of PEL parameters. By partitioning the genome into regions of equal size, we 
estimated the PEL parameters α, β, and γ within a region by maximizing the average log-

likelihood 
1
ln[ ( | , ,1 )]M
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
   x , where x1, x2, …, xM are M independent observations of the 

methylation state within the region. To take into account partially observable methylation states, 
we replaced P(xm | α, β, γ) by the joint probability distribution over only those sites at which 
methylation information is available, which we calculated by marginalizing P(xm | α, β, γ) over 
these sites. After extensive experimentation, we considered 3-kb estimation regions by striking a 
balance between estimation and computational performance. To avoid statistical overfitting, we 
did not model regions with less than 10 CpG sites, as we would had to estimate three parameters 
from a small number < 10 of variates. We also ignored regions with not enough data for which 
less than 2/3 of the CpG sites were observed or the average depth of coverage was less than 2.5 
observations per CpG site. We finally performed optimization using the multilevel coordinate 
search (MCS) algorithm46. 
Genomic units and methylation level. Since the Ising model depends on the CpG density and 
distance, its statistical properties may vary within each 3-kb region used for parameter estimation, 
suggesting that a smaller genomic region must be employed for high resolution methylation 
analysis. In this regard, and consistent with the length of DNA within a nucleosome, we 
partitioned the genome into non-overlapping genomic units (GUs) of 150bp each and performed 
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methylation analysis at a resolution of one GU. We subsequently quantified methylation within a 

GU that contains N CpG sites using the methylation level 
1

/N
n

n
X NL


  and calculated its 

probability distribution PL(l) genome-wide directly from the Ising probability distribution of the 
methylation state. 
Statistical evaluation of differential entropy in aging. Using the three young CD4 samples, we 
first computed the absolute NME differences (dNMEs) at each GU associated with all three 
pairwise comparisons and, by pooling these values, we constructed an empirical null distribution 
that accounted for biological and statistical variability of differential entropy in the young 
samples. We then computed the absolute dNME values corresponding to a young-old pair (CD4-
Y3,CD4-O1) and performed multiple hypotheses testing to reject the null hypothesis that the 
observed NME difference is due to biological or statistical variability. By using Bioconductor’s 
“qvalue” package with default parameters, we performed FDR47 and estimated the probability 
that the null hypothesis is rejected at a randomly chosen GU, thus approximately computing the 
fraction of GUs which were found to be differentially entropic for reasons other than biological 
or statistical variability among the young samples.  
Epigenetic distances, multidimensional scaling, and gene ranking. To quantify methylation 
differences between two samples within a GU, we employed the Jensen-Shannon distance 
(JSD)48 

 (1) (2)
KJ LS KL

1 ( , ) ( , )2 L L L LD D DP P P P   ,  
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where PL(1) and PL(2) are the probability distributions of the methylation level within the GU in 
the two epigenotypes, (1) (2)[ / 2]L L LP PP   is the average distribution of the methylation level, 
and  

 KL 2
( )( ) log, ( )( )

l
P lP l Q lD P Q        

is the relative entropy or Kullback-Leibler divergence9. Given a sample taken from one of the 
two probability distributions P and Q, the JSD is a normalized distance metric that takes values 
between 0 and 1, whereas the square JSD is the average information the sample provides about 
the identity of the distribution: it equals 0 only when the two distributions are identical and 
reaches its maximum value of 1 if the two distributions do not overlap and can, therefore, be 
perfectly distinguished from a single sample.  

To quantify the epigenetic distance between two samples, we computed the JSDs between all 
corresponding pairs of GUs genome-wide, sorted these values in increasing order, and 
determined the smallest value in the list such that 90% of the distances is less than or equal to 
that value (90-th percentile). To visualize epigenetic similarities or dissimilarities between 
samples, we computed the epigenetic distances between all pairs of samples, formed the 
corresponding dissimilarity matrix, and employed a two-dimensional representation using 
multidimensional scaling (MDS) based on Kruskal’s non-metric method, to find a two-
dimensional configuration of points whose inter-point distances correspond to the epigenetic 
dissimilarities among the samples.  

To rank genes in terms of the magnitude of dMML, or the JSD, within their promoters, we 
centered a 4-kb window at the TSS of each gene in the genome, computed the absolute dMML or 
JSD value within each GU that “touches” this window, and scored the gene by averaging these 
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values. To rank genes using a relative JSD scheme that assigns a higher score to genes with 
higher JSD but smaller dMML, we scored a gene by the ratio of its ranking in the dMML-ranked 
list to that in the JSD-ranked list.  
Methylation bistability and imprinting. To identify bistable GUs in a given WGBS sample, we 
detected bimodality in the probability distribution PL(l) of the methylation level within a GU. To 
evaluate enrichment of bistability in a particular genomic feature, we defined two binary (0-1) 
random variables R and B for each GU, such that R = 1, if the GU overlaps the genomic feature, 
and B = 1, if the GU is bistable. We then tested against the null hypothesis that R and B are 
statistically independent by applying the χ2-test on the 2x2 contingency table for R and B and 
calculated the odds ratio (OR) as a measure of enrichment. We evaluated bistability enrichment 
within CGIs, shores, promoters, and gene bodies. To evaluate possible association between 
bistability and gene imprinting, we calculated the fraction of bp’s within the promoter region of a 
gene that overlapped bistable GUs. Consistent with our expectation that genomic imprinting is 
highly conserved across tissue types, we assigned a bistability score at each gene by averaging 
the fractions of bistable bp’s calculated from the normal samples. We then used these scores to 
rank the genes in order of decreasing bistability. To calculate a P value for the CPOE set of 82 
imprinted human to be ranked higher in the bistability list than by chance, we computed the P 
value of each imprinted gene by testing against the null hypothesis that the gene appears at a 
random location in the bistability list. We then used the gene’s rank as the test statistic and 
noticed that, under the null hypothesis, its distribution is uniform, which implies that we can 
calculate the P value by dividing the gene’s ranking in the bistability list by the total number of 
genes in the list. Since the number of imprinted genes identified in the bistability list (68 genes) 
is much smaller than the total number of genes (15,820 genes), we assumed statistical 
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independence of the individual hypothesis tests and combined the resulting P values by using 
Fisher’s method. 
Computation of entropic blocks. Computation of EBs requires detection of ordered and 
disordered blocks; i.e., large genomic regions of consistently low or high NME values. To 
effectively summarize the genome-wide status of NME in a single sample, we computed the 
NME value h  within each GU and classified it into one of three classes: ordered (0 ≤ h ≤ 0.44), 
weakly ordered/disordered (0.44 ≤ h ≤ 0.92), and disordered (0.92 ≤ h ≤ 1). We determined the 
threshold values by investigating the relationship between the NME within a GU that contains 
one CpG site and the ratio of the probability p of methylation to the probability 1 – p of 
unmethylation at that site. To this end, we focused on the odds ratio r = p/(1 – p) and considered 
the methylation level to be “ordered” if r ≥ 10 or r ≤ 1/10 (i.e., if the probability of methylation 
is at least 10x larger than the probability of unmethylation, and likewise for the probability of 
unmethylation), in which case, p ≥ 0.9091 or p ≤ 0.0909, which correspond to a maximum NME 
value of 0.44. Moreover, we considered the methylation level to be “disordered” if 1/2 ≤ r ≤ 2 
(i.e., if the probability of methylation is no more than 2x the probability of unmethylation, and 
likewise for the probability of unmethylation), in which case, 0.3333 ≤ p ≤ 0.6667, which 
corresponds to a minimum NME value of 0.92. 

To compute EBs, we slid a window of 500 GUs (75-kb) along the genome and labeled the 
window as being ordered or disordered if at least 75% of its GUs were effectively classified as 
being ordered or disordered, respectively. We then determined ordered or disordered blocks by 
taking the union of all ordered or disordered windows and by removing discordant overlappings.     
Prediction of TAD boundaries. Using EBs computed for a given epigenotype, we identified 
predictive regions of the genome that might contain TAD boundaries by detecting the space 
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between successive EBs with distinct labels (ordered or disordered). For example, if an ordered 
EB located at chr1: 1-1000 were followed by a disordered EB at chr1: 1501-2500, then chr1: 
1001-1500 was deemed to be a predictive region. To reduce false identification of predictive 
regions, we did not consider successive EBs of the same type, since the genomic space between 
two such EBs may be due to missing data or other unpredictable factors. To control the 
resolution of locating a TAD boundary, we only considered gaps smaller than 50-kb. This 
resulted in a resolution of an order of magnitude smaller than the mean TAD size (~900-kb). To 
combine predictive regions obtained from methylation analysis of several distinct epigenotypes, 
we computed the “predictive coverage” of each bp by counting the number of predictive regions 
that contained the bp. We then combined predictive regions by grouping consecutive bp’s whose 
predictive coverage was at least 4. We subsequently applied this method on WGBS data 
corresponding to 17 distinct cell and tissue types (stem, colonnormal, coloncancer,  livernormal-
1, livercancer-1, livernormal-2, livercancer-2, livernormal-3, livercancer-3, lungnormal-1, 
lungcancer-1, lungnormal-2, lungcancer-2, lungnormal-3, lungcancer-3, brain-1, brain-2), and 
analyzed our results using ‘GenometriCorr’49, a statistical package for evaluating the correlation 
of genome-wide data with given genomic features. Finally, we considered a boundary prediction 
to be “correct” when the distance of a “true” TAD boundary from the center of a predictive 
region was less than the first quartile of the “true” TAD width distribution (Fig. 4c insert – 
green). 
A/B compartment prediction and analysis. Genome-wide prediction of A/B compartments 
was performed by a random forest regression model. We trained this model using a small 
number of available Hi-C data associated with EBV and IMR90 samples50, as well as A/B tracks 
produced by the method of Fortin and Hansen (FH) using long-range correlations computed from 
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pooled 450k array data associated with colon cancer, liver cancer, and lung cancer samples25. 
Due to the paucity of currently available Hi-C data, we included the FH data in order to increase 
the number of training samples and improve the accuracy of performance evaluation. We first 
paired the Hi-C and FH data with WGBS EBV, fibro-P10, and colon cancer samples, as well as 
with samples obtained by pooling WGBS liver cancer (livercancer-1, livercancer-2, livercancer-3) 
and lung cancer (lungcancer-1, luncancer-2, lungcancer-3) data. We subsequently partitioned the 
entire genome into 100-kb bins (to match the available Hi-C and FH data), and computed eight 
information-theoretic features of methylation maintenance within each bin (median values and 
interquartile ranges of IC, RDE, NME and MML). By using all feature/output pairs, we trained a 
random forest model using the R package ‘randomForest’ with its default settings, except that we 
increased the number of trees to 1,000. We then applied the trained random forest model on each 
WGBS sample and produced A/B tracks that approximately identified A/B compartments 
associated with the samples. Since regression takes into account only information within a 100-
kb bin, we averaged the predicted A/B values using a three-bin smoothing window and removed 
from the overall A/B signal its genome-wide median value, as suggested by Fortin and Hansen25.  

To test the accuracy of the resulting predictions, we employed 5-fold cross validation, which 
involved training using four sample pairs and testing on the remaining pair for all five 
combinations. We evaluated performance by computing the average correlation as well as the 
average percentage agreement between the predicted and each of the “ground-truth” A/B signals 
within 100-kb bins at which the absolute values of the predicted and “ground-truth” signals were 
both greater than a calling margin, where we used a non-zero calling margin to remove 
unreliable predictions. We finally calculated agreement by testing whether the predicted and the 
“ground-truth” A/B values within a 100-kb bin had the same sign. 
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For each pair of WGBS samples, we computed the percentage of A to B compartment 
switching by dividing the number of 100-kb bin pairs for which an A prediction is made in the 
first sample and a B prediction is made in the second sample by the total number of bins for 
which A/B predictions were available in both samples, and similarly for the case of B to A 
switching. We summed these percentages and formed a matrix of dissimilarity measures, which 
we then used as an input to a Ward error sum of squares hierarchical clustering scheme51, which  
we implemented using the R package ‘hclust’ by setting the method variable to ‘ward.D2’. 

To test the significance of overlapping of hypomethylated blocks, LADs, and LOCKs with 
compartment B, we used available hypomethylated blocks, LOCKs, and LADs, and predicted 
compartment B data for the lungnormal-1, lungnormal-2, and lungnormal-3 samples, which best 
match the previous tracks. To evaluate enrichment of hypomethylated blocks (and similarly for 
LADs and LOCKs) within compartment B, we defined two binary (0-1) random variables R and 
B for each GU, such that R = 1 if the GU overlaps a block, and B = 1 if the GU overlaps 
compartment B. We then tested against the null hypothesis that R and B are statistically 
independent by applying the χ2-test on the 2 x 2 contingency table for R and B and calculated the 
odds ratio (OR) as a measure of enrichment. 
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Figure 1 | Potential energy landscapes, mean methylation level, and Shannon entropy. a, 
Multiple WGBS reads of the methylation state within a genomic locus are used to form a 
methylation matrix whose entries represent the methylation status of each CpG site (1: 
methylated, 0: unmethylated, ND: no data). Most methods for methylation analysis estimate 
marginal methylation probabilities and means at individual CpG sites by using the methylation 
information only within each column associated with a CpG site. Our statistical physics approach 
computes the most likely PEL by determining the likelihood of each row of the methylation 
matrix, combining this information across rows into an average likelihood, and maximizing this 
likelihood with respect to the PEL parameters. b, PELs associated with the CGIs of WNT1 in 
colon normal and colon cancer and EPHA4 in stem and brain. Point (m,n) marks a methylation 
state, with (0,0) indicating the fully unmethylated state, which turns-out to be the ground state in 
both examples. c, Boxplots of the Ising PEL parameter distributions, as well as the mean 
methylation level (MML) and normalized methylation entropy (NME) distributions for all 
samples used in this study. The boxes show the 25% quantile, the median, and the 75% quantile, 
whereas each whisker has a length of 1.5x the interquartile range. d, Genome-wide MML and 
NME densities associated with two normal/cancer samples show global MML loss in colon and 
lung cancer, accompanied by a gain in entropy. e, Genome-wide MML and NME densities 
associated with young/old CD4+ lymphocytes and skin keratinocytes show global MML in old 
individuals, accompanied by a gain in entropy.  



a

b
Scale
chr2:

10 kb hg19

222,430,000 222,435,000 222,440,000 222,445,000 222,450,000

An-stem

An-brain-1

Cn-stem

Cn-brain-1

MML-stem

MML-brain-1

dMML-brain1-VS-stem

NME-stem

NME-brain-1

dNME-brain-1-VS-stem

JSD-brain-1-VS-stem

CGI

UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)EPHA4

EZH2

2 _

-5 _

0 -

2 _

-5 _

0 -

-0.4 _

2 _

-0.4 _

1 _

0 _

1 _

0 _

1 _

-1 _

0 -

1 _

0 _

1 _

-1 _

0 -

1 _

0 _

0 _

1 _

SUZ12

2 _

lungcancer-1

lungcancer-3

coloncancer livercancer-1

stem

MESODERM

ENDODERM

ECTODERM
carcinogenesis

differentiation

brain-2

brain-1

CD4-O2

livernormal-1

livernormal-2

lungnormal-1

lungnormal-3

colonnormal

livercancer-2

CD4-Y2

CD4-Y3

CD4-O1

Figure 2 | Epigenetic distances delineate lineages and reveal locations of differential PEL 
regulation. a, MDS visualization of genomic dissimilarity between 17 diverse cell and tissue 
samples, evaluated using the Jensen-Shannon distance (JSD), reveals grouping of samples into 
clear categories based on lineage. b, The promoter of EPHA4 shows binding of EZH2 and 
SUZ12 and demonstrates negligible differential methylation between stem cells and brain but 
high JSD that is driven by the PEL parameters, which leads to gain of entropy in brain. 



c d

a

Scale

chr15:

10 kb hg19

25,200,000 25,205,000 25,210,000

stem

colonnormal

livernormal-2

lungnormal-3

brain-1

CD4-Y1

ker-Y1

RefSeq Genes

CTCF

15q11.2

SNRPN

SNURF

SNRPN

ICR

ICR

Scale

chr11:

10 kb hg19

2,010,000 2,020,000 2,030,000

stem

colonnormal

livernormal-2

lungnormal-3

brain-1

CD4-Y1

ker-Y1

RefSeq Genes

CTCF

11p15.5

MRPL23-AS1

LINC01219
HOTS

H19

H19
H19

MIR675

ICR

Scale

chr11:

100 kb hg19

2,650,000 2,700,000 2,750,000

stem

colonnormal

livernormal-2

lungnormal-3

brain-1

CD4-Y1

ker-Y1

RefSeq Genes

CTCF

11p15.5

KCNQ1

KCNQ1OT1

b

0.00

0.25

0.50

0.75

1.00

s
te
m

c
o
lo
n
n
o
rm

a
l

c
o
lo
n
c
a
n
c
e
r

li
v
e
rn

o
rm

a
l-
1

li
v
e
rc
a
n
c
e
r-
1

li
v
e
rn

o
rm

a
l-
2

li
v
e
rc
a
n
c
e
r-
2

li
v
e
rn

o
rm

a
l-
3

li
v
e
rc
a
n
c
e
r-
3

lu
n
g
n
o
rm

a
l-
1

lu
n
g
c
a
n
c
e
r-
1

lu
n
g
n
o
rm

a
l-
2

lu
n
g
c
a
n
c
e
r-
2

lu
n
g
n
o
rm

a
l-
3

lu
n
g
c
a
n
c
e
r-
3

b
ra
in
-1

b
ra
in
-2

fi
b
ro
-P
4

fi
b
ro
-P
7

fi
b
ro
-P
1
0

fi
b
ro
-P
3
1

fi
b
ro
-P
3
3

C
D
4
−
Y
1

C
D
4
−
Y
2

C
D
4
−
Y
3

C
D
4
-O

1
C
D
4
−
O
2

C
D
4
−
O
3

k
e
r-
Y
1

k
e
r-
Y
2

k
e
r-
O
1

k
e
r-
O
2

N
M

E

li
v
e
rn

o
rm

a
l-
4

li
v
e
rn

o
rm

a
l-
5

Figure 3 | Methylation bistability and imprinting. a, Boxplots of NME distributions within 
bistable GUs (yellow) as compared to the rest of the genome (purple). The boxes show the 25% 
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5x the 
interquartile range. b, UCSC genome browser image displaying part of the 11p15.5 
chromosomal region associated with H19. c, A portion of the 11p15.5 chromosomal region 
associated with KCNQ1OT1. d, The 15q11.2 chromosomal region near the SNURF promoter.  
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Figure 5 | Information theoretic properties of methylation channels predict large scale 
chromatin organization. a, A methylation channel (MC) transmits the methylation state at a 
CpG site of the genome (1: methylated; 0: unmethylated) using four conditional probabilities (µ: 
demethylation probability; ν: de novo methylation probability). b, Derived formulas predict that 
methylation maintenance by a high capacity MC (IC = 0.89) will dissipate significant energy 
(RDE = 7.125), achieving a low  probability of error (= 0.0073) and resulting in an ordered 
methylation state (CGE = 0.44), whereas methylation maintenance by a low capacity MC (IC = 
0.81) will dissipate a smaller amount of energy (RDE = 5.25), reaching a higher probability of 
error (= 0.026) and resulting in a disordered methylation state (CGE  = 0.92). The thresholds 
correspond to entropy levels of 0.44 and 0.92 used to identify ordered and disordered genomic 
units and compute entropic blocks (see Methods).  c, Boxplots of genome-wide ICs, RDEs and 
CGEs at individual CpG sites show global differences among cell types. The boxes show the 25% 
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5x the 
interquartile range. d, Analysis of Hi-C and WGBS data reveals that maintenance of the 
methylation state within compartment B (blue) in EBV cells is mainly performed by MCs with 
low information capacity (IC) that dissipate low amounts of energy (RDE) resulting in a 
relatively disordered (NME) and less methylated (MML) state than in compartment A (brown). 
e, Notched-boxplots of genome-wide distributions of IC, RDE, NME and MML demonstrate 
their attractiveness as features for predicting compartments A/B using WGBS data from single 
samples, where the notches represent 95% confidence intervals (too small to be visible) around 
the median. f, Net percentage of A/B compartment switching was used as a dissimilarity measure 
in hierarchical agglomerative clustering. At a given height, a cluster is characterized by lower 
overall compartment switching than an alternative grouping of samples. g, UCSC genome 
browser images of two chromosomal regions show significant overlap of compartment B in 
normal lung (blue) with hypomethylated blocks, LADs, and LOCKs. Gain in JSD is observed 
within compartment B (blue) in normal lung during carcinogenesis. 
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Figure 6 | Entropic sensitivity distributions in single samples and comparative studies.        
a, Gain of entropy and loss in ESI is observed within a portion of the CGI associated with WNT1.      
b, Boxplots of genome-wide ESI distributions corresponding to the samples used in this study 
reveal global differences in entropic sensitivity across cell types. The boxes show the 25% 
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5x the 
interquartile range. c, Boxplots of genome-wide ESI distributions within compartment A (brown) 
and compartment B (blue) show that entropic sensitivity is appreciably higher within 
compartment A than within compartment B.  
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Extended Data Figure 1 | Changes in methylation entropy in cancer. a, UCSC genome browser image 
showing significant loss in mean methylation level (dMML) in colon and lung cancer, accompanied by 
gain in methylation entropy (dNME). Liver cancer exhibits loss of methylation entropy within large 
regions of the genome due to profound hypomethylation. b, The CGI near the promoter of CDH1, a 
tumor suppressor gene, exhibits entropy loss in colon cancer. c, The CGI near the promoter of NEU1 
shows gain of methylation entropy in lung cancer. NEU1 sialidase is required for normal lung 
development and function, whereas its expression has been implicated in tumorigenesis and metastatic 
potential. d, Noticeable loss of methylation entropy is observed in liver cancer at the shores of the CGI 
near the promoter of ENSA, a gene that is known to be hypomethylated in liver cancer. 
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Extended Data Figure 2 | Breakdown of genome-wide distributions of methylation measures. 
Boxplots of genome-wide distributions of methylation measures for all samples used in this study within 
CGIs, shores, shelves, open seas, TSSs, exons, introns, and intergenic regions. The boxes show the 25% 
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5x the interquartile 
range. a, Mean methylation level (MML). b, Normalized methylation entropy (NME). c, Information 
capacity (IC). d, Relative dissipated energy (RDE). e, Entropic sensitivity index (ESI). 
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Extended Data Figure 3 | Fibroblasts may not be appropriate for modeling aging. a, Unmethylated 
blocks (MB-green) progressively form with passage in HNF fibroblasts and this process is similar to the 
one observed during carcinogenesis in liver cells. However, entropic blocks (EB-red) remain relatively 
stable. b, An example of the potentially misleading nature of HNF fibroblasts as a model for aging is 
CYP2E1, a gene that has been found to be downregulated with age. The differential mean methylation 
level (dMML) track shows methylation gain in old CD4+ lymphocytes near the promoter of this gene, 
whereas no appreciable change in methylation level is observed with passage. Similarly, the CYP2E1 
promoter demonstrates large entropy differential (dNME) in old CD4+ lymphocytes, but virtually no 
entropy change with passage in HNF fibroblasts. c, Noticeable gain in methylation entropy is also 
observed near the promoter of FLNB in old CD4+ lymphocytes, a gene found to be downregulated with 
age. However, the FLNB promoter exhibits loss of entropy with passage in fibroblasts.  
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Extended Data Figure 4 | Differential regulation within genomic regions of high JSD but low 
dMML near promoters. a, The promoter of SIM2, a master regulation of neurogenesis, exhibits low 
level of differential methylation (dMML) but high JSD between stem cells and brain, demonstrating large 
epigenetic distance. Regulation of the PEL parameters results in low methylation level in both stem and 
brain but in an entropy gain in brain. This region shows binding of EZH2 and SUZ12, key components of 
the histone methyltransferase PRC2. b, A similar behavior is observed within a 14-kb region that contains 
FOXD3, a transcription factor associated with pluripotency. c, The promoter of SALL1, a key 
developmental gene, exhibits differential behavior between stem and brain that is similar to the one 
exhibited by SIM2. d, The promoter of ASCL2, a developmental gene involved in the determination of the 
neuronal precursors in the peripheral and central nervous systems, exhibits a similar behavior as the 
promoters of SIM2 and SALL1 but shows entropy loss in brain. 
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Extended Data Figure 5 | Reallocation of ground states due to PEL deformation explains (non-
critical) phase transition and bistability in methylation level. a, Potential energy landscapes (left 
column) and probability distributions (right column) of methylation level within a genomic unit (GU) that 
contains 7 CpG sites, obtained by simulation when the PEL parameter c equals 1  and for five values of 
parameter a. The red arrows indicate ground states. For values of parameter a that are sufficiently below 0 
the PEL has only one potential well, which is located at methylation level 0 (fully unmethylated state). 
However, as a  approaches 0, and for sufficiently large c > 0, a new potential well forms at methylation 
level 1 (fully methylated state), which eventually achieves the same depth as the potential well at 0 and 
results in a bimodal probability distribution, with modes located at 0 and 1, demonstrating bistable 
behavior. As a increases away from zero, the potential well at 1 becomes deeper, whereas the potential 
well at 0 becomes shallower and eventually disappears. b, Potential energy landscapes (left column) and 
probability distributions (right column) of methylation level when a = 0 and for five values of parameter c. 
When a = c = 0, the PEL has only one ground state, since methylation of the CpG sites will be statistically 
independent and equiprobable in this case and the methylation level will follow a binomial distribution. 
However, as c increases away from zero, this ground state eventually disappears and two new ground 
states form at 0 and 1 resulting in a bimodal probability distribution, with modes located at 0 and 1, 
demonstrating bistable behavior.  
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Extended Data Figure 6 | Additional examples of methylation bistability. a, UCSC genome browser 
image displaying part of the 19q13.43 chromosomal region around the PEG3/ZIM2 promoter. Bistable 
methylation marks, shown for a number of normal tissues, coincide with the location of the PEG3/ZIM2 
ICR that exhibits CTCF binding. Note that the ICR also includes the transcriptional start site of the 
imprinted gene MIMT1. b, UCSC genome browser image displaying part of the 7q32.2 chromosomal 
region around the MEST/MESTIT1 promoter. Bistable methylation marks, shown for a number of normal 
tissues, coincide with areas rich in CTCF binding sites. 
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Extended Data Figure 8 | A/B compartment switching. a, Random forest based prediction of A/B 
compartments (AB) in EBV cells using information-theoretic properties of methylation maintenance.      
b, Differences in compartments A and B are observed when comparing EBV and IMR90 Hi-C data. 
Compartments A (brown) and B (blue), obtained from random forest based predictions of the Hi-C signal 
using a zero calling margin, demonstrate a similar behavior across samples. Dashed lines indicate 
predicted TAD boundaries with the red dashed lines corresponding to compartment transitions. c, 
Switching between predicted compartments A (brown) and B (blue) is observed in cancer, with B to A 
switching being more frequent than A to B  switching. d, Although ESR1 is located within compartment 
A (brown) in normal colon, liver and lung, it is relocated to compartment B (blue) in colon cancer but not 
in liver and lung cancer. This reorganization is accompanied by appreciable hypermethylation and 
entropy gain within the CGI near the gene’s promoter. ESR1 has been implicated in colon cancer.            
e, CYP2E1 is within compartment B (blue) in normal colon, liver and lung but it is relocated to 
compartment A (brown) in liver cancer. This reorganization is accompanied by hypomethylation and loss 
of entropy within the shores of the CGI near the gene’s promoter. CYP2E1 has been associated with liver 
cancer susceptibility. f, Boxplots of genome-wide JSD distributions within compartments A (brown) and 
B (blue) in normal colon, liver and lung  demonstrate gain in JSD within compartment B in cancer. The 
boxes show the 25% quantile, the median, and the 75% quantile, whereas each whisker has a length of 
1.5x the interquartile range. g, The HOXA cluster of developmental genes is within compartment B in 
normal colon, liver and lung. It is however relocated to compartment A in colon and liver cancer but not 
in lung cancer. Compartmental reorganization of the HOXA genes is accompanied by marked 
hypomethylation and entropy loss within selected loci, implicating a role of chromatin reorganization in 
altered HOXA gene expression within tumors. h, The HOXD genes are within compartment B in normal 
colon, liver and lung and are relocated to compartment A in all three cancers. i, SOX9 is within 
compartment B in colon and lung normal and is relocated to compartment B only in colon cancer. This is 
accompanied by marked hypomethylation and entropy loss. SYK is within compartment B in colon and 
lung normal and it is relocated to compartment B both in colon and lung cancer. j, MGMT and MSH4 are 
within compartment A in colon and lung normal and they are relocated to compartment B only in colon 
cancer. Compartmental reorganization is accompanied mostly by hypomethylation and a marked gain in 
entropy. 
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Extended Data Figure 9 | ESI distributions reveal wide behavior in entropic sensitivity.  a, Large 
differences in entropic sensitivity (dESI) may be observed genome-wide between normal and cancer 
tissues, exhibiting alternate bands of hyposensitivity and hypersensitivity.  b, An example of ESI values 
in colon normal tissue shows wide-spread entropic sensitivity along the genome. However, unmethylated 
CGIs may exhibit low entropic sensitivity. KLHL21 is a substrate-specific adapter of a BCR (BTB-CUL3-
RBX1) E3 ubiquitin-protein ligase complex required for efficient chromosome alignment and cytokinesis. 
PHF13 regulates chromatin structure. THAP3 is required for regulation of RRM1 that may play a role in 
malignancies and disease. c, In liver normal cells, substantial entropic sensitivity is observed within the 
CGI near  the promoter of the polycomb target gene ENSA, which is significantly reduced in liver cancer. 
ENSA is known to be hypomethylated in liver cancer. d, In lung normal cells, the CGI near the promoter 
of NEU1 exhibits low entropic sensitivity, which is significantly increased in lung cancer. NEU1 sialidase 
is required for normal lung development and function, whereas its expression has been implicated in 
tumorigenesis and metastatic potential. e, In young CD4+ lymphocytes, substantial entropic sensitivity is 
observed within the CGI near the promoter of CYP2E1, which is lost in old individuals. CYP2E1 is 
known to be downregulated with age. f, The CGI near the promoter of FLNB exhibits gain in entropic 
sensitivity in old CD4+ lymphocytes. FLNB is known to be downregulated with age. 



NICKNAME MATCHED SAMPLE TYPE SOURCE
1 COVERAGE

Stem Cells

stem H1 human embryonic stem cell line [1], SRP072141
2

24

Normal / Cancer

colonnormal 1 colon normal [2] 30

coloncancer 1 colon cancer [2] 30

livernormal-1 2 liver normal SRP072078 9

livercancer-1 2 liver cancer SRP072078 8

livernormal-2 3 liver normal SRP072078 7

livercancer-2 3 liver cancer SRP072078 8

livernormal-3 4 liver normal SRP072078 18

livercancer-3 4 liver cancer SRP072078 18

livernormal-4 liver normal [2] 60

livernormal-5 liver normal [2] 41

lungnormal-1 5 lung normal SRP072078 14

lungcancer-1 5 lung cancer SRP072078 15

lungnormal-2 6 lung normal SRP072078 10

lungcancer-2 6 lung cancer SRP072078 10

lungnormal-3 7 lung normal SRP072078 19

lungcancer-3 7 lung cancer SRP072078 18

brain-1 post-mortem brain, pre-frontal cortex, normal SRP072071 11

brain-2 post-mortem brain, pre-frontal cortex, normal SRP072071 12

HNF Fibroblasts

fibro-P4 human neonatal fibroblasts, passage 4 SRP072075 12

fibro-P7 human neonatal fibroblasts, passage 7 SRP072075 11

fibro-P10 human neonatal fibroblasts, passage 10 SRP072075 11

fibro-P31 human neonatal fibroblasts, passage 31 SRP072075 11

fibro-P33 human neonatal fibroblasts, passage 33. senescent SRP072075 11

CD4 T-Cells

CD4-Y1 flow-sorted peripheral CD4 T-cells from an 18 year old female SRP072075 8

CD4-Y2 flow-sorted peripheral CD4 T-cells from a 25 year old female SRP072075 8

CD4-Y3 flow-sorted peripheral CD4 T-cells from a 25 year old female SRP072075 7

CD4-O1 flow-sorted peripheral CD4 T-cells from an 82 year old female SRP072075 7

CD4-O2 flow-sorted peripheral CD4 T-cells from an 82 year old female SRP072075 8

CD4-O3 flow-sorted peripheral CD4 T-cells from an 86 year old female SRP072075 7

Keratinocytes

ker-Y1 keratinocytes from a skin biopsy of a sun-protected site on a young individual [3] 8

ker-Y2 keratinocytes from a skin biopsy of a sun-protected site on a young individual [3] 8

ker-O1 keratinocytes from a skin biopsy of a sun-exposed site on an older individual [3] 7

ker-O2 keratinocytes from a skin biopsy of a sun-exposed site on an older individual [3] 7

EBV

EBV EBV-immortalized lymphoblasts [4] 9
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[4] Hansen KD, Sabunciyan S, Langmead B, et al. Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization. Genome Res. 24(2):177-84 (2014)

[3] Vandiver AR, Irizarry RA, Hansen KD, et al. Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biol. 16:80 (2015)

Supplementary Table 1. WGBS data samples.

1
SRP accessions correspond to NCBI Sequencing Read Archive (SRA).

2
Original sequence along with additional coverage have been deposited in the reference SRP accession.
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[2] Ziller MJ, Gu H, Müller F, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477-81 (2013).



criterion # genes present absent frequency P value odds ratio present absent frequency P value odds ratio

top 1000 305 695 31% 94 906 9%

bottom 1000 140 860 14% 45 955 5%

top 1000 457 543 46% 191 809 19%

bottom 1000 100 900 10% 26 974 3%

criterion # genes present absent frequency P value odds ratio present absent frequency P value odds ratio

top 100 42 58 42% 29 71 29%

bottom 100 2 98 2% 1 99 1%

top 100 53 47 53% 40 60 40%

bottom 100 1 99 1% 0 100 0%

coefficient std error P value coefficient std error P value

intercept -2.4030 0.0395 < 2.2E-16 -3.9217 0.0638 < 2.2E-16

score 5.5511 0.1991 < 2.2E-16 6.1825 0.2760 < 2.2E-16

coefficient std error P value coefficient std error P value

intercept -4.3962 0.2914 < 2.2E-16 -6.4587 0.5133 < 2.2E-16

score 18.1070 1.7861 < 2.2E-16 23.0143 2.4591 < 2.2E-16

*90% of data was randomly selected for training, while the remaining was used for estimating performance.

JSD 88% 93%

ENHANCERS

EZH2 SUZ12

holdout accuracy* holdout accuracy*

PROMOTERS

holdout accuracy*

EZH2

JSD

SUZ12

holdout accuracy*

82% 95%

BINOMIAL LOGISTIC REGRESSION

PROMOTERS

ENHANCERS

EZH2 SUZ12

SUZ12EZH2

dMML < 2.2E-16 2.69 2.05E-05

< 2.2E-16

2.20

8.84

Supplementary Table 2. Statistical analysis results for EZH2/SUZ12 binding association with promoters and enhancers at high JSD genomic loci.

39.92

< 2.2E-16 7.57

JSD < 2.2E-16 109.49 1.34E-14 infinite

JSD

dMML 7.24E-13 34.95 6.20E-09

FISHER'S EXACT TEST FOR COUNT DATA



OR P value OR P value OR P value OR P value

stem 1.03 5.19E-01 4.34 0.00E+00 4.22 0.00E+00 0.90 3.06E-14

colonnormal 0.41 4.26E-190 1.54 0.00E+00 1.69 0.00E+00 0.72 0.00E+00

coloncancer 0.26 0.00E+00 0.94 1.21E-21 0.90 9.45E-42 0.63 0.00E+00

livernormal-1 0.25 0.00E+00 1.19 1.22E-78 1.17 3.74E-51 0.67 0.00E+00

livercancer-1 0.23 0.00E+00 1.30 4.20E-166 1.21 1.34E-62 0.84 1.43E-158

livernormal-2 0.24 0.00E+00 1.17 2.12E-58 1.11 5.08E-21 0.68 0.00E+00

livercancer-2 0.30 0.00E+00 1.28 1.01E-214 1.06 1.68E-09 0.74 0.00E+00

livernormal-3 0.26 0.00E+00 1.28 1.73E-143 1.24 1.66E-83 0.71 0.00E+00

livercancer-3 0.38 1.03E-249 1.42 1.58E-306 1.43 1.57E-253 0.76 0.00E+00

livernormal-4 0.44 1.25E-145 1.64 0.00E+00 1.92 0.00E+00 0.81 9.69E-172

livernormal-5 0.49 3.51E-120 2.01 0.00E+00 2.24 0.00E+00 0.89 1.46E-59

lungnormal-1 0.35 9.42E-219 1.77 0.00E+00 1.70 0.00E+00 0.83 3.26E-153

lungcancer-1 0.25 0.00E+00 1.10 5.33E-50 0.78 2.70E-189 0.60 0.00E+00

lungnormal-2 0.34 1.47E-219 1.68 0.00E+00 1.64 0.00E+00 0.84 2.50E-125

lungcancer-2 0.21 0.00E+00 1.15 3.64E-57 1.10 2.17E-19 0.70 0.00E+00

lungnormal-3 0.39 2.38E-176 1.80 0.00E+00 1.73 0.00E+00 0.89 2.47E-54

lungcancer-3 0.23 0.00E+00 0.97 9.14E-07 0.70 0.00E+00 0.62 0.00E+00

brain-1 1.06 7.62E-02 3.46 0.00E+00 3.27 0.00E+00 1.45 6.95E-293

brain-1 1.07 3.36E-02 3.48 0.00E+00 3.39 0.00E+00 1.38 7.61E-217

fibro-P4 0.20 0.00E+00 0.89 3.23E-41 0.84 6.04E-67 0.59 0.00E+00

fibro-P7 0.19 0.00E+00 0.81 1.15E-147 0.76 2.39E-184 0.57 0.00E+00

fibro-P10 0.18 0.00E+00 0.81 2.02E-151 0.74 9.99E-218 0.57 0.00E+00

fibro-P31 0.27 0.00E+00 1.15 3.15E-93 0.89 1.19E-39 0.68 0.00E+00

fibro-P33 0.27 0.00E+00 1.18 1.46E-114 0.91 3.21E-24 0.68 0.00E+00

CD4-Y1 1.26 6.01E-10 2.84 0.00E+00 2.93 0.00E+00 1.04 1.43E-03

CD4-Y2 1.17 2.62E-05 2.71 0.00E+00 2.74 0.00E+00 1.00 9.26E-01

CD4-Y3 0.89 1.50E-03 2.50 0.00E+00 2.52 0.00E+00 1.11 2.82E-27

CD4-O1 0.68 1.46E-25 1.68 0.00E+00 1.83 0.00E+00 0.77 4.72E-200

CD4-O2 0.94 1.41E-01 2.18 0.00E+00 2.25 0.00E+00 0.85 4.23E-61

CD4-O3 0.93 8.54E-02 2.01 0.00E+00 2.11 0.00E+00 0.84 1.76E-76

ker-Y1 0.63 3.54E-48 2.04 0.00E+00 1.93 0.00E+00 0.94 1.90E-15

ker-Y2 0.66 4.17E-36 2.05 0.00E+00 1.90 0.00E+00 0.94 3.53E-16

ker-O1 0.61 6.39E-53 1.82 0.00E+00 1.65 0.00E+00 0.86 2.62E-112

ker-O2 0.40 1.92E-212 1.39 0.00E+00 1.22 5.98E-84 0.72 0.00E+00

PROMOTERS GENE BODIES

Supplementary Table 3. Odds ratio analysis results of bistability enrichment in CGIs, shores, promoters, and gene bodies.

depletion: OR < 1

enrichment: OR > 1

CGIs
SAMPLE

SHORES






































	main-figure-1.pdf
	Page 1

	main-figure-2.pdf
	Page 1

	main-figure-3.pdf
	Page 1

	main-figure-4.pdf
	Page 1

	main-figure-5a.pdf
	Page 1

	main-figure-5b.pdf
	Page 1

	main-figure-6.pdf
	Page 1

	extended-figure-1-1.pdf
	Page 1

	extended-figure-1-2.pdf
	Page 1

	extended-figure-2-1.pdf
	Page 1

	extended-figure-2-2.pdf
	Page 1

	extended-figure-2-3.pdf
	Page 1

	extended-figure-2-4.pdf
	Page 1

	extended-figure-2-5.pdf
	Page 1

	extended-figure-3-1.pdf
	Page 1

	extended-figure-3-2.pdf
	Page 1

	extended-figure-4-1.pdf
	Page 1

	extended-figure-4-2.pdf
	Page 1

	extended-figure-4-3.pdf
	Page 1

	extended-figure-4-4.pdf
	Page 1

	extended-figure-1-1.pdf
	Page 1

	extended-figure-1-1.pdf
	Page 1

	extended-figure-2-1.pdf
	Page 1

	extended-figure-2-2.pdf
	Page 1

	extended-figure-2-3.pdf
	Page 1

	extended-figure-2-4.pdf
	Page 1

	extended-figure-2-5.pdf
	Page 1

	extended-figure-2-1.pdf
	Page 1

	extended-figure-2-2.pdf
	Page 1

	extended-figure-2-3.pdf
	Page 1

	extended-figure-2-4.pdf
	Page 1

	extended-figure-2-5.pdf
	Page 1

	extended-figure-2-1.pdf
	Page 1

	extended-figure-2-2.pdf
	Page 1

	extended-figure-2-3.pdf
	Page 1

	extended-figure-2-4.pdf
	Page 1

	extended-figure-2-5.pdf
	Page 1

	extended-figure-3-1.pdf
	Page 1

	extended-figure-3-2.pdf
	Page 1

	extended-figure-4-1.pdf
	Page 1

	extended-figure-4-2.pdf
	Page 1

	extended-figure-4-3.pdf
	Page 1

	extended-figure-4-4.pdf
	Page 1

	extended-figure-5.pdf
	Page 1

	extended-figure-6.pdf
	Page 1

	extended-figure-7.pdf
	Page 1

	extended-figure-8-1.pdf
	Page 1

	extended-figure-8-2.pdf
	Page 1

	extended-figure-8-3.pdf
	Page 1

	extended-figure-8-4.pdf
	Page 1

	extended-figure-8-6.pdf
	Page 1

	extended-figure-8-5.pdf
	Page 1

	extended-figure-8-4.pdf
	Page 1

	extended-figure-8-5.pdf
	Page 1

	extended-figure-8-6.pdf
	Page 1

	extended-figure-8-7.pdf
	Page 1

	extended-figure-8-8.pdf
	Page 1

	extended-figure-9-1.pdf
	Page 1

	extended-figure-9-2.pdf
	Page 1

	extended-figure-9-3.pdf
	Page 1

	extended-figure-9-4.pdf
	Page 1


