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Abstract 

Background: The Illumina 450K array has been widely used in epigenetic association studies. 

Current quality-control (QC) pipelines typically remove certain sets of probes, such as those 

containing a SNP or with multiple mapping locations. An additional set of potentially 

problematic probes are those with DNA methylation (DNAm) distributions characterized by two 

or more distinct clusters separated by gaps. Data-driven identification of such probes may offer 

additional insights for downstream analyses.  

Results: We developed a procedure, termed “gap hunting”, to identify probes showing clustered 

distributions. Among 590 peripheral blood samples from the Study to Explore Early 

Development, we identified 11,007 “gap probes”. The vast majority (9,199) are likely attributed 

to an underlying SNP(s) or other variant in the probe, although SNP-affected probes exist that do 

not produce a gap signals.  Specific factors predict which SNPs lead to gap signals, including 

type of nucleotide change, probe type, DNA strand, and overall methylation state. These 

expected effects are demonstrated in paired genotype and 450k data on the same samples. Gap 

probes can also serve as a surrogate for the local genetic sequence on a haplotype scale and can 

be used to adjust for population stratification.  

Conclusions: The characteristics of gap probes reflect potentially informative biology. QC 

pipelines may benefit from an efficient data-driven approach that “flags” gap probes, rather than 

filtering such probes, followed by careful interpretation of downstream association analyses. Our 

results should translate directly to the recently released Illumina 850K EPIC array given the 

similar chemistry and content design. 
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Background 

DNA methylation (DNAm) is a type of epigenetic mark and term commonly used to 

denote the covalent addition of a methyl or hydroxymethyl group to a cytosine nucleotide base in 

the DNA sequence, typically at cytosine-guanine dinucleotide sequences, or CpG sites. DNAm is 

a necessary component to cellular differentiation during development, and is a leading 

mechanism for the plasticity of the genome in response to various environmental stimuli during 

the life course [1]. There is an ever-increasing focus on various studies of DNAm, which can be 

broadly classified into three main domains: those seeking to discover the relationship between 

DNAm and various adverse health outcomes [2–4], those seeking to find DNAm changes 

associated with environmental exposures [5–7], and those screening for genetic loci that control 

states of DNAm (methylation quantitative trait loci, meQTLs) [3, 8]. These three groups of 

studies constitute the now burgeoning field of epigenetic epidemiology.  

The Illumina HumanMethylation450 BeadChip (450k) has largely enabled the fast 

growth of epigenetic epidemiology because it effectively balances sample throughput and cost 

with epigenome coverage. Specifically, the 450k allows for the efficient interrogation of roughly 

485,000 CpG sites in the human genome, covering 99% of RefSeq genes, CpG islands, lower-

density CpG regions, termed shores and shelves, shown to be associated with differentiation and 

disease [9, 10], and other high value content such as microRNA promoter regions and DNase 

hypersensitive sites [11]. Probes are characterized by 3 distinct features: a CpG site of interest, a 

single-base extension (SBE) that incorporates a fluorescently labeled nucleotide for detection, 

and an additional 48 or 49 base pairs.  The chemistry involves two probe types. Type I uses  two 

probes per interrogated CpG site, one for  a methylated sequence and one for unmethylated 

sequence, with measurement based on signal from a single color channel (red or green) 
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determined by the nucleotide base incorporated via SBE. Type II probes use a single probe with 

measurement based on the ratio of red and green signal intensities (a two-color array rather than 

one-color) [11]. In this design the C base of the CpG site overlaps with the SBE site.  

As use of the 450k has become increasingly widespread, there have been several 

contributions that have increased our general understanding of probe behavior on the 450k. One 

frequently cited example is that of ambiguously mapping probes, or probes that can hybridize to 

multiple places in the genome. A list of these probes has been made publicly available, and they 

are often removed prior to association analysis [12]. Several studies have also noted the 

existence of probes in which genetic polymorphisms may be present at the target CpG site, at the 

SBE, and/or elsewhere in the probe [13, 14]. Estimates of the proportion of polymorphic CpG 

sites out of all those interrogated by the 450k Array have ranged from 4.3% [13] to 13.8% [12]. 

Typically, 450k Array-based studies account for the presence of polymorphisms by using various 

reference annotation schemes; examples include those developed from the Database for Single 

Nucleotide Polymorphisms (dbSNP) [3], from the 1000 Genomes Project [8], or from the 

Illumina-provided manifest [15]. A recent report recommended removal of 190,672 probes (39% 

of the 450k Array) prior to association analysis [16] based on concordance between whole 

genome bisulfite sequencing  data and 450k data in several potentially problematic groups of 

probes compared to a “high quality” group, each defined via reference annotation. However 

screening for potentially problematic probes based solely on pre-defined reference annotation 

tables can be problematic because they can vary according to the database chosen (dbSNP, 1000 

Genomes, etc.), contain very rare variants, or may not be relevant to the population being 

investigated in a particular study. These factors could result in the misclassification of probes as 
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being polymorphism-affected or not, and suggest against the blind removal of problematic 

probes classified in any part by the reference annotation method. 

Recently, Daca-Roszak et al. overcame these reference annotation limitations on a small 

scale through the analysis of combined study-specific genotype and 450K array data on 96 

probes that distinguished European and Chinese populations. 69% of these probes contained 

study-specific SNPs that were ancestry informative. They specifically note the existence of tri- 

and bi-modal beta value distributions at many of these 96 probes, and carefully delimit, through 

consideration of bisulfite conversion and probe chemistry, how each possible SNP at the C and G 

sites of interest (C/T, C/G, C/A or G/T, G/C, G/A) can affect methylated and unmethylated 

signal and the subsequent beta value calculated. Ultimately, the authors recommend a careful 

consideration of the potential influence of genetic polymorphism on DNAm signal when 

interpreting epigenome-wide association study (EWAS) results [17]. 

The clustered distributions for some probes had been addressed previously with lesser 

detail [13, 14], but the Daca-Roszak study underscored the need to better characterize these 

probes more broadly.  In that endeavor, several challenges need to be addressed. First, it would 

be useful to have a method to efficiently find these probes in a particular data set, rather than 

relying on reference data; the Daca-Roszak probe-by-probe approach [17] is not feasible for 

empirically assessing all 450k probes. Second, it will be useful to attribute methylation clusters 

to underlying genetic polymorphism where appropriate, again in a study population-specific 

manner. Assessing this phenomenon will require not only a careful consideration of C and G site 

SNPs as done previously [17], but a similarly precise examination of SBE (for Type I probes) 

and probe-mapping SNPs as well. Finally, it is crucial to develop a standard practice for the use 
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or accommodation of these probes in an EWAS pipeline, since this will ultimately impact the 

interpretation of any DNAm association.  

In our exploration of 450K data, we first noticed such clustered distributions by the “gap” 

pattern apparent when methylation signals per mode clustered into non-overlapping groups.  In 

this paper, we present a method, termed ‘gap hunting’ to identify 450k probes that result in such 

a distributional “gap”. Identification of 450k probes with clustered methylation values using the 

empirical approach we propose here overcomes previous limitations with other probe removal 

approaches [16, 17] because it examines all measured sites, is specific to the study sample rather 

than relying on external annotation, which may or may not be appropriate for a particular 

population, and provides flexibility for the user to determine whether flagging or filtering these 

probes is appropriate based on their particular study design. We apply this method in a peripheral 

blood DNA study population from the Study to Explore Early Development, report the extent of 

gap signals in this dataset, and explore the sources of gap signals, with a particular focus on the 

various kinds (C/G sites, SBE, and probe-mapping) of SNPs and the mechanism by which they 

can result in a gap signal. We also describe various cases in which a probe may be affected by a 

SNP, but not result in a gap signal. We explore different applications of gap signals, such as their 

utility to be used for population stratification adjustment and their potential to enhance 

association analysis through discovery of methylation sites mediating genetic signal. Finally, we 

describe our recommendations for the role of gap hunting in the current 450k analysis pipeline.  

 

Results 

Identification of gap signals using gap hunting 
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We developed a simple, computationally fast algorithm, called ‘gap hunting’, to flag probes on 

the 450k exhibiting distributions of percent DNAm that cluster into discrete groups. We applied 

this to DNAm data from 590 whole-blood derived samples from the Study to Explore Early 

Development I (SEED I) at various combinations of user-supplied arguments to this procedure 

termed ‘threshold’ and ‘outCutoff’ (Additional File 1, see Methods for a detailed description of 

the approach and these arguments). Of the 473,864 autosomal probes we measured in SEED I 

participants on the 450k, we identified 11,007 (2.3%) with clustered distributions of DNAm 

values which we term ‘gap signals’. These results were generated using a ‘threshold’ value of 

0.05 and an ‘outCutoff’ value of 0.01; the following analyses were all conducted considering 

these arguments and this list of gap signals. The vast majority of gap signals were composed of 2 

or 3 clusters of DNAm values (Additional Files 2 and 3). For example, the distribution of 

percent DNAm for cg01802772 clusters into 3 distinct groups (Figure 1, top panel). Using 

genotyping data, available from the same SEED individuals, we found that these 3 methylation 

clusters correspond to genotype for SNP rs299872; this SNP is located at the interrogated C site 

(Figure 1, top panel). For this particular probe, we also queried the dbSNP138 database and 

found that a C/T SNP is annotated as overlapping the interrogated C site (Figure 1, bottom 

panel). 

Based on our initial gap signal observations, we decided to perform an in-depth analysis of all 

11,007 gap signals to characterize the underlying source of these DNAm distributions. Using 

paired genotype (GWAS) and methylation data, we found that 5,453 gap probes (49.5%) contain 

a SNP from our SEED GWAS dataset, and thus direct evidence for SNP influence. Of the 

remaining gap probes, 3,746 (34.0%) have an (dbSNP13) annotated SNP, in-del, microsatellite, 

or multi-nucleotide polymorphism or map to a University of California, Santa Cruz (UCSC)-
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annotated repeat (and thus have indirect evidence for SNP/variant influence), and 1,808 gap 

probes (16.4%) did not contain a SNP from our SEED GWAS dataset and also were not 

annotated as containing a variant from the dbSNP138 database or a UCSC repeat. Given the 

large proportion of SNP-associated gap probes, we first sought to examine the role of SNPs in 

producing gap signals. Our approach to understanding the role of SNPs in producing gap signals 

consisted of two main elements. First, we theoretically conceptualized how various types of 

SNPs located at different locations in the probe, including the measured C and corresponding G 

loci, the SBE site, as well as elsewhere in the probe would affect 450k signal based on our 

knowledge of the measurement chemistry. Second, we performed empirical analyses using our 

joint GWAS and 450k DNAm data from SEED. We also examined the remaining ~16% of gap 

probes that do not have an associated SNP or variant, according to the SEED GWAS data and 

reference annotations.  

 

Predicted influence of SNPs on 450k DNAm signals 

Based on the underlying 450k probe chemistry, we predicted how SNPs influence 450k signal. 

Our predictions are summarized in Figure 2. We first predicted the influence on signal of 

nucleotide changes for SNPs that overlap the C nucleotide of the measured locus. For Type I 

forward strand probes containing a T/C SNP at the interrogated C site, we predict the no signal in 

the methylated channel and signal in the unmethylated channel. Thus, the signal readout would 

be the same as for an unmethylated CpG state. For all other possible SNPs, including A/C and 

C/G, we would expect no signal to be reported by either the methylated or unmethylated 

channels for Type I forward strand probes, resulting in no overall signal; these are likely to be 
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detected as failed probes. We predict Type II forward strand probes containing a T/C or A/C 

SNP at the interrogated C site to result in cyanin5 (Cy5) signal, thus, mimicking an unmethylated 

state. Type II forward strand probes containing a C/G SNP are predicted to result in cyanin3 

(Cy3) signal, thus, mimicking a methylated state. For all reverse strand probes, including Type I 

and II, any SNP at the interrogated C position results in no signal from either channel, and these 

probes are also likely to be detected as failures.  

 

Next we predicted the influence of nucleotide changes for SNPs that overlap the G nucleotide of 

the measured CpG site on signal detection (Figure 2). For Type I reverse strand probes, we 

predict an A/G SNP will result in a signal in the unmethylated channel and no signal in the 

methylated channel, resulting in a similar methylation readout as an unmethylated cytosine 

nucleotide. Other SNPs, including C/G and T/G, are predicted to result in no detectable signal in 

either the methylated or unmethylated channels. For Type II reverse strand probes, we would 

expect a C/G SNP present at the interrogated G site to result in a green signal, the readout for 

probes with these SNPs thus matches the readout for a methylated state. The presence of an A/G 

or T/G SNP at the G nucleotide position should result in detection of a red signal; the readout 

from probes with these SNPs would match the readout for an unmethylated states. Forward 

strand probes with any type of G-site SNP are not predicted to mask methylation states, but 

instead they should produce no overall signal.  

 

Finally, we predict the influence of SNPs that overlap the SBE site on signal. For Type II probes, 

the SBE site overlaps with the interrogated C site; therefore, the influence of SNPs is the same as 
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for C site SNPs, as described above and shown in Figure 2. In the Type I probe design, the SBE 

site is immediately adjacent to the interrogated C site; it is one base upstream of forward strand 

probes and one base downstream for reverse strand probes. The Illumina detection software is 

programmed to read a pre-defined color channel, which is based on the nucleotide that is 

expected to be incorporated (defined a priori using a reference sequence). For example, if the 

base upstream of the interrogated C site is defined as an A nucleotide in the reference sequence, 

the detection software will only detect signal in the red channel and will not query for a signal in 

the green channel. Therefore, any SBE-associated SNPs will result in a loss of signal when the 

incorporated nucleotide is tagged in the opposite color to that dictated by the reference sequence. 

As shown in Figure 3, C/G, A/G and T/G genotypes at an SBE associated SNP will result in loss 

of signal on forward strand probes. Note that the fluorescence still occurs upon SBE, but the 

software does not read the signal because it is in a different color channel than what is expected, 

based on the pre-defined reference sequence. Similarly, C/G, A/C, and T/C SNPs at SBE sites 

for reverse strand probes are predicted to result in loss of signal (Figure 3). Several SBE 

associated SNPs are also predicted to have no impact on the methylation readout. These include 

T/A, A/C, and T/C variants for forward strand probes and T/A, A/G, and T/G variants for reverse 

strand probes (Figure 3). 

 

SNPs can also occur elsewhere in the probe length, however, it is less straightforward to develop 

theoretical rules or principles guiding how these may affect probe signal.  Similarly, it is unclear 

how probes with multiple SNPs may behave with respect to methylation signal. Therefore, we do 

not provide a theoretical framework for these types of probes, but instead provide the results 

from our empirical analyses below. 
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Empirical evidence shows SNPs at the interrogated CpG site are related to gap signals 

We performed empirical analyses to determine the relationship between DNAm levels reported 

by 450k and SNPs present at the CpG site using our unified SEED DNAm and genotyping data 

and compared them to our theoretical expectations, shown in Figure 2. We identified all of the 

450k probes with a measured or imputed SNP present at the interrogated C or corresponding G 

loci in our SEED sample (n=5,129) (Additional File 4). To ensure we were only assessing the 

influence of our SEED SNPs at CpG sites, we limited our analysis to include only probes with a 

SNP at the CpG site itself and not elsewhere in the probe length. We found that our empirical 

SNP results coincided with our predicted results for the SNP scenarios shown in Figure 2 

(Additional File 5). For example, we observed a positive correlation between percent DNAm 

and dosage of the G allele across the set of 94 probes, including 23 Type I and 71 Type II probes, 

containing a C/G SNP at the interrogated C locus (Figure 4A and Additional File 4). This 

appears to be a direct consequence of the positive correlation with methylated probe signal and 

negative correlation with unmethylated probe signal (Figure 4B-C). This observation coincides 

with our prediction for this scenario (Figure 2) because the addition of the non-reference (G) 

nucleotide is expected to increase methylated (green) signal at the expense of unmethylated (red) 

signal. To better conceptualize the effect of a SNP on the total produced signal, i.e. combined 

methylated and unmethylated signals, we computed a copy number metric (see Methods) and 

found, in general, it decreased with dosage of the G allele (Figure 4D). However, the mean copy 

number metric of the heterozygous group does not lie exactly intermediate between the two 

homozygous groups, thus highlighting the importance of also considering the methylation state 

in the interpretation of SNP-influenced 450k probes. For example, in Figure 1 (top panel), 
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individuals with the ‘TT’ genotype have low methylation values because of their low ratios of 

methylated to unmethylated intensities dictated by their T allele. Individuals containing one or 

two copies of the C allele at this SNP can have varying degrees of methylation. In the example 

shown in Figure 1, the C alleles are completely methylated for all samples, resulting in discrete 

DNAm groups. If however, the C alleles were unmethylated, the groups would be largely 

indistinguishable and form one cluster instead of three. The lack of an explicitly intermediate 

mean in the heterozygous group for the copy number metric, then, is a consequence of the 

heterogeneity in methylation at the ‘C’ base at these sites and heterogeneity amongst samples in 

their methylation state. Additional File 5 contains plots for the remaining SNP scenarios 

delimited in Figure 2, and all showed similar relationships. 

 

Empirical evidence shows SBE site SNPs are related to gap signals 

We identified all of the 450k probes in SEED with a measured or imputed SNP located at the 

SBE site (n=118) (Additional File 4). We specifically limited our analyses to probes that 

contained an SBE-associated SNP exclusively, i.e. there were no SNPs elsewhere in the probe. 

We found that, overall, our empirical results correspond to our predicted signal for the SNP 

scenarios shown in Figure 3 (Additional File 6). For example, we observed an inverse 

relationship between dosage of the T allele and overall signal across all probes (n=2) that have a 

T/G SNP at the SBE site, where G is the a priori defined base at the SBE according to the 

genome reference sequence (Figure 5). This observation coincides with our prediction for this 

scenario (Figure 3) because a SNP changing the nucleotide at the SBE position from ‘G’ 

(detected in the green channel) to ‘T’ (detected in the red channel) should result in no signal 
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because the software is programmed, a priori based on reference genome sequence, to report 

methylation solely as a function of the signal being generated in the green channel. Note that 

similar to CpG associated SNPs, the mean copy number metric of the heterozygous group does 

not lie exactly intermediate between the two homozygous groups. This is likely reflecting the 

heterogeneity in DNA methylation across CpG sites and samples. Overall, our findings using 

SEED measured and imputed genotypes are consistent with our predictions shown in Figure 3. 

However, in certain cases the relationship is less clear. There are a number of potential 

explanations for non-linear relationships. First, since the overall signal is a measure of both the 

ability to detect signal, which as we’ve shown above can be influenced by SBE site SNPs, and 

the actual methylation state itself, it is possible that deviations from the expected relationship are 

related to actual differences in DNAm. These DNAm influences may be exacerbated by the 

relatively small number of probes examined in each scenario shown in Figure 3 (all scenarios 

have ≤ 17 probes and some scenarios have ≤ 7 probes; see Additional File 4). It is also possible 

that these non-linear genotype signal shifts could be related to uncertainty around imputed 

genotypes.  

  

Probe SNPs up to 20 base pairs from the CpG site are associated with gap signals 

Next we sought to specifically assess the relationship between the gap signals we detected via 

gap hunting and probe SNPs using our unified SEED GWAS and DNAm data. We identified all 

of the 450k probes in SEED with a measured or imputed SNP located in the probe, excluding 

those with SNPs at the SBE or CpG sites (n=33,317). We limited our analysis to probes that 

contained a single SNP to determine the relationship between SNP distance to the interrogated C 
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site and gap signal. The probes were binned by SNP distance to the interrogated C site and 

samples were grouped by genotype: homozygous for the reference allele, heterozygous, and 

minor allele homozygous.  When we plotted the signal intensities, for both the methylated and 

unmethylated channels, which represent the mean intensity for all probes with a SNP at that 

particular distance to C-site, we observed differences in mean signal intensities, and inter-

quartile ranges (25th – 75th percentiles), between heterozygotes and homozygotes that were 

consistent with allelic dosage (Figure 6). For the Type II probe design, mean intensity 

differences between the genotype groups are observed up to a SNP distance of about 7-8 base 

pairs (bp) from the interrogated C-site. We also observed that these probe SNP-related 

differences in signal intensity are less pronounced in the methylated channel compared to the 

unmethylated channel, where differences in intensity can persist for up to an approximately 20 

bp distance. Thus, the unmethylated signal channel appears to be less robust to probe SNPs. 

Type I probes exhibit a similar behavior, but appear to show greater differences in signal 

intensity with SNPs and across larger probe distances (Additional File 7). One explanation for 

this behavior could be that Type I probes are more susceptible to probe SNPs because they were 

designed under the assumption that the interrogated CpG site and any CpG sites throughout the 

remainder of the probe length have the same methylation state (Additional File 7).  

 

SNP-affected probes do not always result in gap signals 

Our analyses above focus on identifying potential sources of gap signals and show that SNPs can 

lead to gap signals. Therefore, we also wanted to determine whether probe-associated SNPs 

always lead to gap signals. We found that not all polymorphism-affected probes result in gap 

signals (Additional File 4). There are 3 main classes of beta distributions in which a probe may 
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be affected by a SNP, but not result in a ‘gap-like’ distribution (Figure 7). The first occurs when 

there is a correlation between percent methylation and genotype, but no discrete clusters are 

observed (Figure 7A). The second occurs when there are outlier signals, i.e. samples. The gap 

hunting algorithm was designed to exclude probes from the gap signal list if they likely 

contained an outlier sample. As a result if the smallest group of samples driving SNP-related 

gaps is less than the proportion of samples determined by the ‘outCutoff’ argument, these probes 

will not be flagged as gap signal probes. Figure 7B illustrates this point; it shows that at 

cg15013523, gap hunting would not identify the group with the ‘TT’ genotype as a discrete 

cluster, i.e. gap signal, because it is comprised of a single sample. These types of probes could be 

identified as a gap signal if the option to retain ‘outlier-driven’ probes is selected. Finally, beta 

distributions with an associated SNP in the probe may show no DNAm variability at the site or 

no correlation with genotype and, therefore, will not result in a ‘gap-like’ distribution (Figure 

7C); this lack of clear genotype correlation was also observed by Daca-Roszak et al [17] and 

referred to as a ‘cloud-like’ distribution. Therefore the potential for a polymorphism-affected 

probe to be classified as a gap signal is related both to the presence of discrete separation in 

groups, as well as the overall methylation state at the site. 

 

Approximately 16% of gap signals identified in SEED cannot be attributed to an 

underlying SNP 

 Finally, among all autosomal probes, we compared the standard deviation distribution between 

gap and non-gap probes, both with and without an associated SNPs, to better characterize gap 

signals that could not be attributed to an underlying SNP. The 6 mutually exclusive classes of 
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probes we examined include (1) non-gaps with measured or imputed SEED SNPs, (2) non-gaps 

with annotated variants or repeat elements, (3) non-gaps with no associated variants, (4) gaps 

with measured or imputed SEED SNPs, (5) gaps with annotated variants or repeat elements, and 

(6) gaps with no associated variants. As shown in Figure 8, all non-gap probe distributions, 

including those with and without an associated SNP, are highly overlapping for both the Type I 

and Type II designs, suggesting that the majority of non-gap probes have no or low variability in 

DNAm values similar to the example in Figure 7C. The gap probe distributions are distinct from 

the non-gap distributions and show interesting within-group differences (Figure 8). The gap 

signals with reference database annotated SNPs exhibit a higher proportion of probes with larger 

standard deviations than those with SEED measured or imputed SNPs. This is likely due to 

higher minor allele frequencies of annotated SNPs, generally, compared to the minor allele 

frequencies of the SEED SNPs (Additional File 8). Another interesting feature of the overall 

standard deviations is the distinct curve of the 1,808 gap signals that lacked any of a 

measured/imputed SNP, reference database annotated variant, or a UCSC repeat in the probe. As 

clearly seen in the Type II probe design, there is a high proportion of gap probes without an 

associated SNP or annotated variant/repeat at low standard deviation values, relative to gap 

probes containing SNPs (Figure 8). We also show that gap probes without a SNP or annotated 

variant/repeat tend to have a higher proportion of 2-cluster probes than gap probes with a SNP 

(Additional File 9).  

We were interested in quantifying the degree to which other factors, aside from a 

measured/annotated SNP or annotated repeat element, could lead to gap-like behavior.  For 

example, it is possible that some of these 2-cluster gap signals ambiguously mapped to sex 

chromosomes and clustered according to sex; however, we only observed sex-specific clusters in 
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6 (0.3%) of these probes. 161 of these 1,808 probes in total were previously defined as 

ambiguously mapping [12], 14 were determined to have failed via detection p-value, and 210 

were found to discriminate blood cell types [18]. These 3 factors account for 379 (21.0%) unique 

probes of the 1,808 gap signals not attributed to an underlying genetic variant.    

 

Other methods to identify clustered DNAm distributions are not as robust as gap hunting 

We assessed the potential for other methods to identify clustered DNAm distributions with 

respect to detection sensitivity and the specific types of sample clusters they identify. We tested 

these methods against a set of 5,000 probes made up of gap signals (which functioned as positive 

controls) and 5,000 probes which were not gap signals, had no measured, imputed, or annotated 

SNP, and had very low variability (and thus functioned as negative controls). First, using the beta 

values for these probes, we applied a Gaussian mixture model clustering algorithm, which selects 

the optimal number of clusters based on the Bayesian information criterion (BIC), and found that 

it had 100% sensitivity, but only 50% specificity, to distinguish between the gap and non-gap 

probes. Additionally, in cases where the mixture model predicted a gap signal to (correctly) have 

more than 1 cluster, it was only able to identify the correct number of clusters 43% of the time. 

We also examined the utility of the dip test, in which the null hypothesis is that the data are 

unimodal [19], and found the area under the receiver operating characteristic curve to be 0.73. 

These methods performed similarly using M-values, with a 100% sensitivity, 67% specificity 

and 41% correct determination of cluster number using the mixture model, and an area under the 

curve determined by dip test p-values of 0.73. We were then interested in examining the 

performance of these methods at specific scenarios (Figure 7) to which gap hunting was 
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insensitive (Additional File 10). The mixture model approach was unable to correctly identify 

that there were 3 relevant clusters in any of these 3 probes, while using the dip test we could only 

reject the null hypothesis of uni-modality at cg14613402 (Figure 7A); however, this would not 

be the case if we used a more stringent p-value to account for multiple comparisons. Finally, 

these 2 alternative methods did identify probe cg01802272 (Figure 1) as a multimodal (dip test 

p-value ≈ 0) as well as having 3 discrete clusters, consistent with our gap hunting approach. 

 

Gap hunting can be useful in addressing population stratification in epigenome-wide 

association studies 

After gaining an understanding of gap signal properties, we were interested in highlighting the 

potential utility of gap hunting in EWA studies. A recent paper by Barfield et al. demonstrated 

the ability of principal components (PCs) derived from probes annotated with 1000 Genomes-

identified SNPs to correct for population stratification [20]. This method functions under the 

principal that methylation at these sites will be enriched for genotype-influenced signal, and thus 

serve as a suitable alternative to or surrogate for gold standard correction via genotype-derived 

PCs [21] in studies where genotype data is unavailable. Given the strong SNP influence on gap 

signals, we hypothesized that PCs derived from gap signals could be utilized in a similar manner 

to the Barfield method. Similar to Barfield et al, our gap signal based PCs we able to clearly 

separate ancestry groups (Figure 9). This result is expected since most (~85%) gap signals can 

be attributed to an empirical or reference database annotated SNP/variant, most of which are 

present in the 1000 Genomes Project that was used by Barfield et al. Additionally, most of the 96 
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probes identified by Daca-Roszak et al. because they differentiated two ancestral groups [17] 

exhibit ‘gap-like’ distributions. 

 

Gap signals are enriched in common EWA probe filtering strategies 

One approach used in EWA studies to address multiple testing burden is to subset the dataset to 

only those probes that are variably methylated. We sought to define the proportion of probes in 

the post-variably methylated filtering dataset that had gap signals identified using gap hunting. 

As expected, due to our gap signals having inherently high variability, we observed gap signal 

probe enrichment in the filtered dataset as we increased our standard deviation threshold for 

filtering (Additional File 11). Enrichment was consistent at various percentile cutoffs of 

standard deviation across samples. This result emphasizes that researchers should be aware that 

applying filtering criteria related to probe variability can increase the proportion of gap signals. 

 

Common EWA probe filtering strategies that remove all SNP-associated probes may miss 

disease-relevant loci 

Currently, most EWA studies explicitly remove polymorphism-affected probes that are a priori 

defined using a reference SNP database or in the Illumina manifest, prior to association analyses. 

However, based on our findings there are two main concerns with this removal approach. First, it 

is possible that the SNPs present in reference databases, gathered from many ancestral 

populations and often includes rare SNPs, may not reflect the genetic architecture among the 

samples examined in a particular EWA. Second, we have shown that gap signals can be 
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influenced by SNPs and, therefore, gap signals may represent the local genetic structure 

underlying the interrogated CpG site; thus, they could still be biologically relevant to the 

outcome of interest, but should be interpreted with caution. This local genetic structure extends 

beyond that of the interrogated CpG site and 50-mer probe and includes the entire haplotype on 

which the CpG site exists. For example, cg12162195 exhibits a three-group gap signal, with 

three SNPs annotated in the probe body (Figure 10). The samples in each group represent 

distinct groups of haplotypes; therefore, these methylation groups serve as a surrogate for their 

respective collections of haplotypes. This is true for all 450k probes that are not located within 

recombination hotspots. Given our findings that many gap signals have a strong genetic basis 

underlying the observed differences in methylation, we would expect methylation values at gap 

probes will capture a larger degree of haplotype diversity than non-gap probes. Therefore, we 

propose that instead of removing reference database SNP or gap hunting-defined gap signal 

probes before association analyses, they be included, but flagged, and carefully investigated and 

interpreted after analyses should they be associated with the outcome of interest.  

To examine the difference between our “flag” based gap hunting approach versus a “remove” 

reference SNP annotation based approach in downstream interpretation of EWAS, we ran our 

EWAS pipeline on publicly available data to evaluate the relationship between placenta 

methylation and newborn neurobehavior.  We identified a total of 11,286 gap signals among 

443,825 probes.  Using our EWAS pipeline, 56 probes showed suggestive statistical significance 

(p < 1E-4) for infant arousal. Of these significant probes, 5 were gap signals (Figure 11), 15 

were annotated as SNP-affected, and 3 of these were both SNP-annotated and gap identified. 

Thus, an analysis with gap hunting results in 56 hits, 5 of which are flagged as gaps for further 

investigation and interpretation. Using SNP annotation filtering without gap hunting resulted in 
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41 hits, 2 of which have suspicious gap-like distributions. Inclusion of all probes in EWAS, with 

flags for gaps via gap hunting and for SNP annotation, rather than explicitly filtering probes, 

allows broader consideration of biologically-relevant associations and user-specific choices 

regarding interpretation, rather than omitting potentially relevant findings. 

  

Discussion 

We demonstrate a procedure called ‘gap hunting’ to identify CpGs with clustered methylation 

distributions and discover 11,007 ‘gap signals’ in a 450k dataset from the Study to Explore Early 

Development. The vast majority (~85%) can likely be attributed to an underlying SNP(s) or 

other variant in the C site, G site, SBE site, or elsewhere in the probe length. We document the 

specific mechanisms by which SNPs at the C, G, and SBE sites lead to gap signals, which 

involve a consideration of the type of nucleotide change occurring, as well as the probe type, 

DNA strand of interrogation, and overall methylation state, and demonstrated that expected 

effects are met using paired genotype and 450k data on the same samples. We additionally 

demonstrate that distance between a probe SNP and the C site of the probe is a relevant factor 

influencing methylation distributions. Finally, we delimit the situations in which a SNP-affected 

probe does not produce a gap signal, highlight a subset of gap signals that cannot be attributed to 

an underlying SNP, and discuss various utilities of gap signal identification in an EWAS 

framework.  We recommend using gap hunting to ‘flag’ probes for special consideration when 

interpreting EWAS findings, rather than the common practice of removing probes annotated with 

SNPs (using reference annotations) prior to EWAS.  
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The focus of this manuscript was to characterize sources of clustered distributions, and highlight 

implications of their removal or inclusion in an EWAS framework as opposed to developing an 

optimized statistical method to identify these probes per se.  In light of this conceptual 

framework, we selected a ‘threshold’ argument of 0.05 and a ‘outCutoff’ argument of 0.01 for 

our analyses because it balanced detecting too many probes vs. too few probes for downstream 

characterization and provided good face validity to capture the distributions of interest when we 

visually observed the data. 

 

We recognize that changes to these parameters may influence the total number of gaps detected, 

indeed for our SEED dataset, the number of gap signals varied with different combinations of 

these parameters (Additional File 1), with the ‘outCutoff’ argument having the most pronounced 

effects at lower ‘threshold’ values. While the parameters utilized here may be a good starting 

point, we encourage users of the gap hunting approach to modulate this argument while 

understanding that reported gaps are simultaneously a function of factors such as sample size 

(more samples can lead to ‘denser’ DNAm distributions), disease status, or other factors that 

contribute to DNAm variability.   

Our results highlight the importance of taking a “flag” versus removal approach. Typically, there 

are two main concerns motivating a removal approach: that SNP-affected probes can lead to 

technical failure of array measurement, and that they are redundant with genotype signal.  Our 

work does show that C, G, and SBE site SNPs impact methylation signal, based on various 

factors, including bisulfite conversion and probe chemistry, as expected. This could be 

reinterpreted not as probe ‘failure’ of measurement, but as methylation signal that is a reliable 
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surrogate for true underlying biology. This interpretation is, in fact, the second argument for 

removal often cited, but flagging for subsequent interpretation rather than removal can shed light 

on genome-epigenome interactions that may be relevant to the EWAS question, and would be 

missed via a removal strategy. These biologically illuminating relationships can relate a single 

SNP to a single CpG site (Figure 1), or can extend to multiple SNP haplotypes (Figure 10). In 

the latter context, grouping haplotypes according to the methylation state they produce may serve 

as a collapsing strategy that overcomes the typical power limitations of haplotype-based genetic 

analyses due to high dimensionality resulting from haplotype diversity. We implemented our 

suggested flag strategy on a publicly available dataset and observed it to be useful in order to 

identify additional probes of interest to the phenotype, many of which would have been removed 

by applying a typical SNP annotation removal strategy.  

This gap hunting approach does not identify all SNP-affected probes, since it relies on detection 

of discrete clusters of percent methylation. SNP-affected probes may simply not have enough 

methylation variability to detect multiple modes even when they exist, or genotype-specific 

distributions may be so overlapping that discrete clusters cannot be detected.  For the purposes of 

EWAS, methylation at CpGs related to the first scenario is not likely to be of interest since 

effects sizes with outcome will also be difficult to detect at low-variability CpGs.  Probes 

characterized by the latter scenario would in theory be of interest in EWAS, but approaches for 

reliable identification of tightly overlapping distributions (but with distinct clusters) are limited.  

For example probes of this nature, we applied Gaussian mixture models with BIC and dip 

statistics, but could not consistently identify them as multi-modal and could not estimate the 

proper number of clusters.  These methods show similar (limited) performance on both the beta 

value and M-value scales; the advantage of using beta values in gap hunting, however, is that the 
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‘threshold’ argument can be more easily informed by biological intuition. These alternative 

approaches could potentially be used to classify probes as having 1 versus more than 1 cluster, 

but this would result in many false positives, likely including many probes unaffected by SNPs, 

as described by Daca-Roszak et al. This is an unnecessary price to pay, considering that probes 

of these sorts of distributions do not seem to be prevalent to such a large degree, at least in SEED 

(Figure 8).  To partially capture such probes, one could titrate the ‘threshold’ or ‘outCutoff’ 

input arguments to gap hunting to allow more liberal classification of gap probes.  

Our work also emphasizes the utility of visual inspection of methylation distributions when 

considering the potential influence of SNPs on probe signals. Methylated and unmethylated 

signal intensities can be inspected with consideration of expected SNP effects (as in Figures 2 

and 3).  Such expectations are clear for C, G, and SBE SNPs, but less so for SNPs in the 

remainder of the probe.   Some reference annotations specifically emphasize probes with SNPs 

less than 10bp away from the C site [22], but previous studies, based on SNP annotations, have 

found little [13] to no [16] effect of SNPs in the probe body. Yet, our results using study-specific 

genotype and 450k data, rather than reference data, found that SNPs at least up 7-8 bp away from 

the C site, and potentially up to 20 bp away, affect subsequent signal (Figure 6). While we 

focused on the distance to the C site of a single probe SNP, the multiplicity of SNPs in a single 

probe, and the specific number of base pairs affected, may also be influential. The complexity of 

analyzing this question with paired genotype and 450k data increases with the number of probe 

SNPs, as one needs to consider each combination of genotypes that could be encountered at all 

SNPs and compare the resulting signal from each of these groups. 

We also note gap signals that are not due to an underlying SNP or variant. It is possible that a 

SNP could be influencing at least a fraction of these probes, as annotation schemes are imperfect 
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in their lack of study specificity and may not account for rare variants. We did observed that 

among the gap probes not containing a known SNP, there was a greater proportion of 2-group 

gap signals compared to the gap probes likely attributed to SNPs. This is consistent with the 

signal expected if it were driven by rare variants. Other explanations for non-SNP-affected gap 

probes could include cell type heterogeneity specific to a genomic region, ambiguously mapping 

probes, or probes that fail via detection p-value; we found that approximately 21% of probes 

could be attributed to these factors. An additional explanation for these gap signals could be 

exposure or outcome associations for specific regions.  This should be the focus of future work. 

Notably, this is also the goal of EWAS, further arguing for a “flag and consider” approach rather 

than removal.  

The MethylationEPIC BeadChip, the next iteration of the 450k which queries over 850,000 CpG 

sites, is now being utilized for EWAS. Given that the Type I and Type II probe designs are 

retained in this new array, the gap hunting approach and influences of SNPs we have described 

will still be of importance. As a new subset of probes that merit special consideration in EWA 

studies, gap signals can help advance the field by providing insight into methylation signals 

mediating genetic signal, both locally and in a broader context. 

Conclusions 

We demonstrate a new method, called ‘gap hunting’ to identify clustered distributions of 

methylation signal measured by the Illumina 450k platform. We apply this method in a 

peripheral blood DNAm data set, find that the identified ‘gap signals’ are mostly attributed to 

underlying SNPs, and demonstrate how specific SNP scenarios can lead to gap signal behavior. 

We also describe several implications of gap signals in EWA studies and emphasize their ability 
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to serve as surrogates for the genetic background of the interrogated CpG site. We argue for gap 

signals as a new, study-specific, subset of 450k probes that merit special consideration in the 

EWAS pipeline.  

Methods 

All analyses were carried out using R version 3.2.2 and minfi version 1.16.  

Study sample 

The Study to Explore Early Development (SEED) is a multi-site case-control study of 3-5-year-

old children with autism spectrum disorder (ASD), conducted in localities within 6 U.S. states. 

Approximately 2,600 families participated in SEED phase I, and the children were classified into 

three groups according to neurodevelopmental outcomes, as previously described. [23].  SEED 

participants consist of the case group with ASD and 2 control groups without ASD: a general 

population group and a developmental disabilities group. DNA methylation was measured on 

610 children enrolled in SEED phase I. Genome-wide genotyping data were available on a 

subset (n=590) of children on whom the DNA methylation was measured (see Genotype 

Measurement section). 

DNA methylation measurement and quality control 

Genomic DNA (gDNA) was isolated from whole blood samples using the QIAsymphony midi 

kit (Qiagen). For each of 610 gDNA SEED samples, 500 ng of DNA was bisulfite treated using 

the 96-well EZ DNA methylation kit (Zymo Research). Samples were then processed on the 

450K Array, randomized across and within plates to minimize potential confounding effects 

introduced by batch. Illumina .idat files generated from the array were processed using the minfi 

R package for 450k Array data [24].  Standard pre-processing and QC measurements were 

performed, including the removal of bad arrays, replicate samples, and sex-discrepant samples, 
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defined as those in which the predicted sex based on the minfi function ‘getSex’ was discordant 

with self-reported sex. Cell composition estimates were obtained via the ‘estimateCellCounts’ 

function, also in the minfi package. Additional samples with outlying cell composition estimates 

were removed. We did not perform any probe-level QC on these data, such as detection p-value 

or ambiguously mapping probe filtering [12], because we were interested in quantifying the 

degree to which they contributed to gap signal behavior. Finally, quantile normalization was 

performed as implemented in the ‘preprocessQuantile’ function in minfi. These processing steps 

resulted in 607 samples for use in the downstream analysis. Beta values (methylated 

signal/(methylated + unmethylated signal) +100) were calculated and implemented in 

downstream analyses.  

 

Genotype measurement, imputation, and quality control 

Of the 607 samples in our DNAm dataset, 590 had whole-genome genotyping data available, 

which was measured using the Illumina HumanOmni1-Quad BeadChip. Standard QC measures 

were applied: removing samples with less than 95% SNP call rate, sex discrepancies, relatedness 

(Pi-hat > 0.2), or excess hetero- or homozygosity. Markers with less than a 98.5% call rate, or are 

monomorphic were removed. Phasing was performed using SHAPEIT [25] followed by SNP 

imputation via the IMPUTE2 software [26], and all individuals in the 1000 Genomes Project as a 

reference sample. Genetic ancestry was determined using EigenStrat program [21] and 

eigenvectors were utilized in statistical analyses, as described in detail below. Given our interest 

in the role of SNPs in producing gap signals, we limited all of our analyses to the 590 samples 

that had both genotype and 450k data. We also limited our analysis to those SNPs with a minor 

allele frequency ≥ 0.5%, as this value corresponded to the same number of individuals that 
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would be allowed in the smallest gap signal group according to the default input arguments (see 

‘gap hunting’ algorithm section).  

 

Identification of gap signals  

We identified gap signals using a function we developed, called gaphunter(), that can be 

implemented using the minfi package [24].  

A matrix of beta values (rows = probes, columns = samples) is input to or calculated by the 

function. The method incorporates two user-defined arguments: ‘threshold’, and ‘outCutoff’. For 

each row in this matrix:  

1) Order beta values sequentially 

2) Calculate consecutive pairwise differences for these values.  

3) Determine the number of difference values calculated in 2) that are greater than the 

‘threshold’ argument, defined herein as gaps. If one or more gaps exist, classify probe as 

gap signal and define the number of groups as the number of gaps plus one. If zero gaps 

exist, define probe as non-gap signal.  

4) For all gap signals, use location of gaps to classify individuals into distinct groups.  

5) (Optional) For all probes defined as gap signals, sum the number of samples in all groups 

except that of the largest count. Define ‘outlier-driven gap signals’ as those in which this 

sum does not exceed the user-defined ‘outCutoff’ parameter, which is the proportion of 

the total sample size (default value = 1%). Remove these outlier-driven gap signals from 

output. 

We report the number of gap signals detected at all possible combinations of a series of threshold 

(0.025, 0.05, 0.10, 0.2) and outCutoff (0.005, 0.01, 0.05, 0.1) values. We chose to complete all 
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subsequent analyses with results from setting the threshold argument to 0.05 and the outCutoff 

argument to 0.01. We also elected to implement this method on the Beta value scale because this 

allows for the threshold argument to be informed by biological intuition. In the case where a user 

only has M-values available, a simple transformation to the Beta scale can be performed [27].  

 

dbSNP138 and repeat element annotation 

We developed an annotation of all polymorphisms that mapped to probes on the 450k Array in 

order to have available flexible information on the site(s) to which a polymorphism mapped 

(CpG site, SBE site, etc.) and on the polymorphisms themselves (minor allele frequency, etc.). 

The Database for Single Nucleotide Polymorphisms version 138 (dbSNP138), was downloaded 

from the UCSC Genome Browser [28]. All classes of polymorphisms in dbSNP138 were 

incorporated downstream: “single” (SNPs), “mnp” (multi nucleotide polymorphism), 

“microsatellite”, “insertion”, “deletion” and “in-del”. The latter three categories were grouped 

together to form a single “in-del” group. A final class of polymorphisms, called ‘range’, was 

created to lump together remaining dbSNP138 descriptions (“unknown”, “named”, “mixed”, 

etc.). We also downloaded a list of repeat elements from the UCSC Genome Browser generated 

via RepeatMasker [28]. We filtered this list to only include short and long interspersed nuclear 

elements, long terminal repeat elements, and simple repeats (micro-satellites). The 

‘findOverlaps’ function in the R package ‘GenomicRanges’ was used to map the location of all 

annotated polymorphisms or repeat elements to the C, G, SBE, and probe locations of all 450k 

Array probes [29]. 

Defining SNPs associated with C, G, and SBE sites 

We were interested in analyzing the impact of specific SNPs (i.e. specific nucleotide changes) at 

specific locations in the probe (C, G, and SBE sites) through joint analysis of our SEED 
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genotype and 450k data. We again used the ‘findOverlaps’ function in the ‘GenomicRanges’ R 

package to find which of our measured SNPs overlapped to the C, G, SBE and probe length sites 

of all 450k probes. We performed these overlaps separately for all 4 probe locations, and then 

pooled the overlap results together. We then removed probes that had more than 1 type of SNP 

mapping to them. For example, if in our overlap results we found that a probe had a mapping C 

site SNP and a probe-length mapping SNP, that probe was not considered in these analyses.  

Once we defined a ‘clean’ set of probes with respect to the location at which they overlapped a 

SNP, we grouped together probes of similar relevant characteristics. For the C and G site SNP 

analyses, we grouped probes based on if they had the same: nucleotide change (C/T SNP, for 

example), probe design (Type I or Type II), SNP mapping location (C site or G site), and strand 

on which the CpG of interest is designed to be interrogated. All probe level information was 

found via the Illumina 450k manifest. For the SBE site SNP analyses, we grouped probes based 

on all of these criteria as well as the reference nucleotide of the SNP. This step was necessary in 

order to more easily understand in which genotypes to expect a loss of signal. Our groupings 

were done for all of the scenarios delimited in Figures 2 and 3.   

For each of these scenarios, we collected 4 metrics across all probes that fell into that scenario, 

grouping samples by their genotypes at each probe. The 4 metrics were: percent methylation, 

methylated signal, unmethylated signal, and a copy number metric. The methylated and 

unmethylated signals were derived from the minfi function ‘getMeth’ and ‘getUnmeth’, which 

we performed on an un-normalized (output of minfi function ‘preprocessRaw’) R object. The 

copy number metric was defined as: 

𝐶𝑁𝑖 = 𝑙𝑜𝑔 (
𝑀𝑒𝑡ℎ𝑖

𝑀𝑒𝑡ℎ̅̅ ̅̅ ̅̅ ̅
𝑅𝐸𝐹

) + 𝑙𝑜𝑔 (
𝑈𝑛𝑚𝑒𝑡ℎ𝑖

𝑈𝑛𝑚𝑒𝑡ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑅𝐸𝐹

) 
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In this equation, ‘i’ refers to each individual and ‘Meth’ and ‘Unmeth’ to the methylated and 

unmethylated signals, respectively. At each probe the intensities are scaled by the mean values of 

the reference genotype of the SNP affecting that probe. This copy number metric therefore 

serves as way to jointly consider methylated and unmethylated signal, and more explicitly 

evaluate the difference between genotypes in terms of overall signal.  

Defining probe-associated SNPs  

We were interested in evaluating the effect of distance from the C site to the SNP for situations 

in which a SNP was located in the probe but outside of the interrogated CpG and SBE positions. 

We first performed a similar overlap evaluation and filtering process as described above. Once 

we were limited to probes that had only overlapped measured probe-length mapping SNPs, we 

further filtered to probes that only had a single SNP in the probe length. This step was done in 

order to control for the potential effect of total amount of the probe length affected by SNPs. 

Next we grouped probes into bins of equal distance from the C site to the SNP, which was from 

1 to 50 base pairs for the Type II design and 1 to 49 base pairs for the Type I design. At each 

probe, we identified the reference homozygote, heterozygote, and non-reference homozygote 

genotypes and group samples accordingly. We performed this grouping across probes within a 

specified distance value. Next we plotted the means and inter-quartile ranges (IQR; 25th to 75th 

percentiles) of the methylated and unmethylated signals as a function of distance, separately for 

the three genotype groups. The greater the discordance between the means and IQRs of the three 

groups indicated a greater effect of the mapping SNP.  

Defining probe categories 

We were interested in comparing the overall standard deviation distributions of non-gap and gap 

signals. Moreover, we were further interested in within group differences relating to probe 
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having an underlying SNP (measured or annotated) or not. For both non-gap and gap signals, we 

first identified probes that had at least one measured SNP anywhere in the probe body (through 

the same overlap analysis described above). From the remaining probes in each group, we 

identified which probes that overlapped at least one polymorphism in the dbSNP138 annotation 

described above, or a repeat element as defined by UCSC [28]. Again, overlap analysis in this 

case was also undertaken as described above. The remaining probes in each group were 

classified as having no underlying variant. This classification resulted in all 473,864 autosomal 

probes into 6 mutually exclusive categories: non-gap signals with no underlying (measured or 

annotated) SNP, non-gap signals with an annotated variant or repeat element, non-gaps signals 

with a measured SNP, gap signals with no underlying (measured or annotated) SNP, gap signals 

with an annotated variant or repeat element, and gap signals with a measured SNP. The 

distinction between a measured an annotated SNP underlying a probe is that of a SNP that we 

have complete certainty of existing in the SEED study population (as we imposed a MAF 

threshold of 0.5% in our 590 samples) compared to the existence of a SNP with some probability 

that is a function of MAF.  

Investigating additional sources of gap-like behavior 

We were also interested in quantifying the role of additional factors in producing gap-like 

behavior in the gap signals that did not have a measured/imputed SNP or a mapping annotated 

variant via dbSNP138 or a mapping repeat element. We determined the proportion of these 

probes that were known to be ambiguously mapping, were determined to fail via detection p-

value, or were previously determined to be cell-type distinguishing probes in whole blood. To 

define ambiguously mapping probes we used a previously defined list [12]. We defined a probe 

as a technical failure if more than 10% of samples had a detection p-value of greater than 0.01, as 
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determined via the detectionP() function in the minfi package [24]. We defined a probe as 

distinguishing cell type if it had a p-value < 1E-8 reported from a previous study investigating 

differential methylation according to blood cell types [18].    

Comparing gap hunting to other methods to identify multi-modal distributions 

We sought to investigate whether other methods that specifically identify multimodal 

distributions could overcome gap hunting’s insensitivity to distributions that appeared 

multimodal but did not cluster into discrete groups, but still retain the ability to identify 

methylation distributions that did have discrete groups. One key complication to this question is 

the fact that the ‘true’ status of methylation distributions at every measured probe is not known, 

which hampers the ability to assess the classification properties of alternative methods. To 

overcome this problem, we constructed a subset of 10,000 probes in which half were classified 

as gap signals by gap hunting (and were thus positive controls) and the other half were non-gap 

signals, did not have a measured/imputed or annotated SNP, and whose standard deviation was 

in the lowest decile of standard deviations across all autosomal probes (and were thus negative 

controls). In this way we could maximize our understanding of the true status of the probes we 

were testing as having a clustered distribution or not. The first method we tested was a Gaussian 

mixture model implemented via the ‘Mclust’ function in the mclust R package [30]. We allowed 

the function to select the best number of clusters (choice of 1 to 6) for each of the 10,000 probes 

based on a Bayesian information criterion. The second method we tested was the dip test in 

which the null hypothesis is that the data come from a unimodal distribution [19]; we 

implemented this test using the ‘dip.test’ function in the diptest R package [31]. We recorded the 

dip test p-value for each of the 10,000 probes and calculated the area under a receiver operating 

characteristic curve using the ‘auc’ function in the MESS R package [32] and generating dip test 
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classifications at various p-value thresholds against the ‘true’ status of the 10,000 probes. We 

performed the mixture model and dip test experiments on both beta values and M-values (logit 

transform of beta values) to examine if the performances of these methods were affected by the 

scale of the methylation values.  

Population stratification 

Upon confirming that gap signals were largely due to underlying SNPs, we were interested in 

exploring their potential to correct for population stratification. We calculated principal 

components (PCs) from gap signals and compared them to eigenvectors derived from GWAS, 

via the EIGENSTRAT method [21], and PCs derived from probes annotated with 1000 Genomes 

SNPs as described by Barfield et al. [20]. In the Barfield method, we used the option to include 

probes that directly overlapped with SNPs at the C site.  

Identification of variably methylated probes 

We were interested in exploring gap signals in the context of a typical step in the EWAS pipeline 

to filter out probes that are of low variability. We calculated the standard deviation of all 473, 

864 autosomal probes and calculated the percentages of gap and non-gap signals in the 

remaining probe set after imposing various standard deviation filters. Our cutoffs were ranged 

from the 5th to the 99th percentile of standard deviation across all probes.  

Relating gap signals to underlying haplotypes 

We sought to demonstrate the potential for gap signals to serve as a surrogate for the local 

genetic sequence, on a haplotype scale. We phased our genotype data using the SHAPEIT 

software [25]. After downloading a list of recombination hotspots from the 1000 Genomes 

Project combined panel, we defined the locations between them as linkage disequilibrium (LD) 
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blocks [33] and defined haplotypes from all of the measured SNPs within these LD block 

regions.  

Implementing gap hunting in an EWAS pipeline 

We sought to illustrate the utility of incorporating gap hunting into a typical EWAS pipeline. We 

downloaded 450k data from a previous study examining placenta methylation and newborn 

neurobehavioral outcomes in 335 samples [34] from the Gene Expression Omnibus (GSE 75248) 

[35].  We performed functional normalization [36], and then removed samples according the 

following criteria: if the predicted sex via the getSex() function in the minfi package did not 

match the self-reported sex (N = 4),  and samples with a detection p-value greater than 0.01 in 

more than 1% of probes (N =7). We removed probes at which more than 10% of samples had a 

detection p-value greater than 0.01 (n = 1,959), and if they were previously identified as being 

ambiguously mapping (n = 29,233) [12]. The resulting data included data on 454,502 probes and 

324 samples. We performed ComBat to adjust for a known batch variable [37], and performed 

surrogate variable analysis to remove additional confounding due to cell type heterogeneity [38], 

in the absence of a reference panel of sorted placenta cell types. We did not remove probes that 

map to SNPs identified via reference annotation, in order to apply gap hunting on all cleaned 

probes. Finally, we removed probes mapping to sex chromosomes (as this was done in the 

previous study), identified gap signals via gaphunter(), and used the limma R package [39] to 

perform single-site association analyses relating DNAm to infant arousal, adjusting for gender 

and birthweight. We then noted the number of suggestively significant (p-value < 1E-4) hits, the 

number of these flagged as gap signals, and the number that would have been removed via SNP 

annotation, using a dbSNP137 annotation included in the minfi package.  
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BIC: Bayesian information criterion, dbSNP138: Database for single nucleotide polymorphisms, 

version 138, DNAm: DNA methylation, EWAS: epigenome-wide association study, MAF: 

minor allele frequency, PCs: principal components, SBE: single base extension, SEED: Study to 

Explore Early Development, SNP: single nucleotide polymorphism 
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Figure 1: An example of a gap signal detected in SEED at cg01802772 via gap hunting. Top 

panel: Gap hunting identified groups are shown in black, red, and green and correspond to 

measured SEED genotypes TT, TC, and CC, respectively at rs299872. Bottom panel: Depiction 

of variant locations relative to probe orientation. Blue color denotes the single base extension site 

which also corresponds to the interrogated CpG site for this probe type (Type II); black color 

denotes 50 bp probe length. Y-axis lists variants present in the dbSNP138 database with a 

frequency greater than 0.5% and validated in more than 200 people. 
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Figure 2: Predicted 450k signal for SNPs present at the interrogated CpG site. On the left, 

in the ‘DNAm state’ column, we show the expected signal for methylated and unmethylated 

CpG states, when no SNP is present, for both Type I and II probe designs. Middle (‘C site SNP’) 

and right columns (‘G site SNP’) provide expected signals for SNPs in the C and G nucleotide 

positions, respectively. For all columns, S denotes signal, NS denotes no signal, G and R denote 

red and green channel signals, respectively. mCG represents methylated cytosine. IM and IU 

denote probe design type I methylated and unmethylated probe types, respectively; II denotes 

probe type II. For type I design, methylated probes fluoresce and unmethylated probes yield no 

signal when methylation is present. The type II design fluoresces in the green and red channels 

for methylated and unmethylated states, respectively. For forward strand interrogated CpG sites 

(top), a C to G SNP mimics the methylated state; C to A and C to T SNPs mimic the 

unmethylated state for Type II probes but result in no signal for the Type I design. One exception 

is for a C to T SNP because it mimics post-bisulfite converted unmethylated Cs. G site SNPs on 

the forward strand produce no signal for both probe designs because they inhibit single-base 

extension. Reverse strand probes (bottom), are defined relative to the top strand, so the expected 

signal scenarios are the converse of what is expected for the forward strand (i.e. G site with some 

signal, C site with comprehensively no signal). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/059659doi: bioRxiv preprint 

https://doi.org/10.1101/059659
http://creativecommons.org/licenses/by/4.0/


Figure 3: Predicted type I probe signal for individuals with a SBE site-associated SNP. For 

Type I probes, the SBE is located 1 bp upstream of the C site for interrogations on the forward 

strand, and 2 bp downstream of the C site for interrogations on the reverse strand (defining the C 

site location using the forward strand). Enumerating signal expectations requires consideration of 

bisulfite conversion, complementary bases, the expected color channel for fluorescence, and if 

those latter two factors change in the presence of SNP. Of note is that C and G bases are labeled 

to fluoresce green signal while A and T bases are labeled to fluoresce red signal (hence the 

existence of ‘Type I Red’ and ‘Type I Green’ probes). For example, consider a forward strand 

type I probe with a C nucleotide at the SBE position, based on a reference genome sequence (top 

row). After bisulfite conversion this base will change to a T, the complementary SBE base is an 

A, which fluoresces in the red channel. If instead of a C there is a G at the SBE due to a C/G 

SNP, the SBE incorporated nucleotide would be a C and fluoresce in the green channel. Because 

the software is programmed to read only the red channel, no fluorescent signal will be detected 

when a G SNP is present. Inferring the scenarios for interrogating a CpG site on the reverse 

strand requires similar reasoning but with the added consideration of complementary bases. 

Abbreviations: N/A – not applicable (that SNP cannot exist there), S – signal, NS – no signal.  
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Figure 4: The influence of a C/G SNP located at the interrogated cytosine on reported 

methylation signal in Type II forward strand probes. (A) Percent methylation vs. genotype 

plot shows a positive correlation between percent methylation and dosage of the G allele. (B) 

Methylated signal vs genotype plot shows a positive correlation between methylated signal and 

dosage of the G allele. (C) Unmethylated signal vs genotype plot shows a negative correlation 

between methylated signal and dosage of the G allele (D) Copy number metric vs genotype plot 

shows a negative correlation between copy number and dosage of the G allele. 
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Figure 5: The effect of a G/T SNP at the SBE site of Type I probes on percent methylation, 

methylated signal, unmethylated signal, and a copy number metric. Percent methylation 

(beta value), methylated signal, unmethylated signal, and a copy number metric plotted against 

genotype for Type I probes interrogating a CpG site on the forward strand, when the G is the 

reference genotype. Information was collected across 2 probes. There is an inverse association 

between dosage of the T allele and signal produced, as predicted in Figure 3. 
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Figure 6: The effect of probe SNPs on methylated signal and unmethylated signal in Type 

II probes. We isolated specific probes that met the following conditions: it contained a measured 

SNP in the 50bp probe length outside of the C, G and/or SBE sites, and it contained only a single 

SNP in the probe length. The probes that met our criteria varied in distance from 1-50 base pairs 

from the interrogated CpG site. At each distance value, we plotted the mean  (shown by dotted 

lines) and inter-quartile range (greyed area) of the people who were homozygous for the 

reference allele (shown in red), heterozygous (shown in green) or homozygous for the minor 

allele (shown in blue). Lack of signal concordance across these 3 groups indicates stronger SNP 

influences on signal. For both methylated (Panel A) and unmethylated signals (Panel B), 

polymorphisms closer to the C site show stronger influences on signal. The influence is strongest 

up to approximately 10 bp but is observed up to roughly 20 bp from the measured C-site. 
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Figure 7: Examples of probes with a polymorphism that do not result in a gap signal. Most 

probes that overlap with SEED SNPs are not classified as gap signals. These probes can 

generally be grouped into 3 categories: Panel A: In SEED, cg14613402 overlaps with a C/T SNP 

at the interrogated C site and displays a negative correlation with dosage of the T allele. 

However, a discrete difference in the groups is not achieved. Panel B: cg15012523 overlaps with 

a C/T SNP at the interrogated C site and also displays a negative correlation with dosage of the T 

allele. Here, a discrete difference does existence between the TT genotype and others and thus 

would be identified via gap hunting; it would be classified as an outlier-driven signal with the 

default algorithm arguments, however (see Methods). Panel C: cg15283160 overlaps with a C/T 

SNP at the interrogated C site but displays no variability in beta value.  
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Figure 8: Distributions of standard deviations among 6 categories of 450K probes. All 

autosomal probes (n = 473,864) were classified into one of six groups: (1) non-gap probes that 

lack a SEED SNP, dbSNP-annotated polymorphism, or UCSC-annotated repeat that map to the 

probe (n = 301,590; shown in black), (2) non-gap probes with at least one SEED SNP present in 

the probe (n = 62,005; shown in red), (3) non-gap probes that do not contain a SEED SNP but do 

have an annotated variant as indicated by the dbSNP138 database or map to a UCSC-annotated 

repeat (n = 99,262; shown in blue), (4) gap probes that lack a SEED SNP, dbSNP-annotated 

polymorphism, or UCSC-annotated repeat that map to the probe (n = 1,808; shown in purple), 

(5) gap probes with at least one SEED SNP present in the probe (n = 5,453; shown in green), (6) 

gap probes that do not contain a SEED SNP but do have an annotated SNP as indicated by the 

dbSNP138 database or map to a UCSC-annotated repeat (n = 3,746; shown in orange). The 3 

non-gap probe distributions are distinct from the gap probe distribution but show some overlap; 

suggesting some probes with ‘gap-like’ distributions are not captured by gap hunting (also see 

Figure 7 for explanation). The gap probe distribution for those probes with annotated SNPs 

(green and orange) has a slightly higher area under the curve at higher standard deviation values 

(especially for the Type II design), which is likely due to the generally higher allele frequencies 

for the annotated SNPs compared to the measured SNPs (see Additional File 8). Gap probes 

lacking any probe SNPs form a distinct distribution, especially for the Type II design (purple).  
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Figure 9: Comparison of several different methods, including gap probes, for population 

stratification adjustment. Points are colored according to self-reported race with Caucasian 

shown in blue, African American shown in black, and Other shown in purple. Each panel 

contains a series of plots in which the values plotted are dictated by the row (y-axis) and column 

(x-axis). For example the top row will plot PC 1 (y-axis) vs PCs 2, 3, and 4 (x-axis). Panel A: 

Eigenvectors generated from GWAS data using the EIGENSTRAT software [21]. Panel B: PCs 

generated from probes overlapping with 1000 Genomes-annotated SNPs (0 bp from C site 

option) as demonstrated by Barfield et al. [20]. Panel C: PCs generated from gap signals, which 

perform similarly to the existing methylation-based method to account for ancestry in EWA-

studies show in Panel B.  
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Figure 10: Relationship between DNA methylation (DNAm) clusters, identified by gap 

hunting at cg12162195, and local haplotypes among the same individuals. (A) Percent 

methylation at cg12162195 vs. gap hunting-defined DNAm group. (B) Individual haplotypes 

sorted by gap hunting-defined DNAm group. Each column represents a genotyped SNP at a 

specific locus across all individuals with corresponding DNAm data. Each row denotes an 

individual’s local haplotype for the region that contains cg12162195. There are two rows per 

individual, one per haplotype. The arrow at the top of the plot depicts the location of cg12162195 

within the haplotype region. Gap hunting-identified groups correspond to different sets of 

haplotypes; these methylation groups can be used as surrogates of these haplotype groups. (C) 

Depiction of variant locations relative to probe orientation. Blue color indicates the single base 

extension site; black color denotes 450K probe; pink denotes the interrogated CpG site. Y-axis 

lists variants present in the dbSNP138 database with a frequency greater than 0.5% and validated 

in more than 200 people.  
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Figure 11: Five gap signals identified in the list of 56 probes that attained suggestive 

significance (p < 1E-4) with newborn arousal in a publically available dataset. There is 1 

plot for each probe, with percent methylation plotted on the y-axis and newborn arousal score 

plotted on the x-axis. Each sample is colored by its gap hunting-identified group. The * indicates 

a probe that would have been filtered out via the dbSNP137 reference annotation in the minfi 

package.   
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Additional Files 
 

Additional File 1 – Figure S1: Number of gap signals detected in SEED at various 

combinations of the ‘threshold’ and ‘outCutoff’ arguments to gaphunter().  

 

Additional File 2 – Figure S2: Examples of non-gap and gap signals found in SEED at 5% 

‘threshold’ argument and 1% ‘outCutoff’ argument. Panel A: 5 probes not identified as gap 

signals. Panel B: 5 probes identified as gap signals with 2 clusters. Panel C: 5 probes identified 

as gap signals with 3 clusters.  

 

Additional File 3 – Table S1: Distribution of group counts for gap signals in SEED. 

Breakdown of number of groups or clusters in the 11,007 gap signals found in SEED samples.  

 

Additional File 4 – Table S2: Breakdown of all C/G and SBE site measured polymorphism 

scenarios.  We isolated specifics scenarios in which the following conditions were met: a probe 

contained a measured SNP that mapped to the C, G, or SBE sites of a probe, and it also did not 

contain any other form of mapping SNP. This table contains a list of all SNP C, G and SBE site 

scenarios herein and their corresponding Figure #. Also included is the number of probes 

analyzed for each scenario, along with the count and proportion of those probes that were 

classified as gap signals. Most probes in SEED that overlapped with measured SNPs were not 

classified as gap signals (though ~80% of gap signals did overlap with SNPs, see Additional 

File 7).  

 

Additional File 5 – Figures S3-S25: All Remaining C and G site scenarios for Type II and 

Type I probes. Each additional scenario of a C and G site-mapping SNP delimited in Figure 2 

not including the scenario show in Figure 3. Each of these figures contains the same panels (A-

D) as seen in Figure 3 All scenarios demonstrate the expected behavior shown in Figure 2.  

 

Additional File 6 – Figures S26-S31: All Remaining SBE site scenarios. Each additional 

scenario of a SBE site-mapping SNP delimited in Figure 4 not including the scenario shown in 

Figure 5. Each of these figures contains 4 plots, showing every combination of CpG site 

interrogations on the forward and reverse strand as well as which nucleotide is the reference 

nucleotide.  

 

Additional File 7 – Figure S32: The effect of SNPs located in Type I probes outside of the 

CpG or SBE position on methylated signal and unmethylated signal. We examined specific 

scenarios in which the following conditions were met: a probe contained a measured SNP in the 

50bp probe length, it also did not contain a SNP mapping to the C, G and/or SBE sites, and it 

contained only a single SNP in the probe length. We found all probes that met this criteria and 

varying values of distance from the SNP to the measured C site (1-50 bp). At each distance 

value, we plotted the mean and inter-quartile range of the people who were homozygous for the 

reference allele (‘Major Homozygote’), heterozygous (‘Heterozygote’) or homozygous for the 

minor allele (‘Minor Homozygote’). The degree of overlap between these 3 lines and their 

respective IQRs therefore demonstrates the effect of a polymorphism on subsequent 450k signal; 

the lack of overlap is directly correlated to an increased influence of the polymorphism. For both 

methylated signal (Panel A) and unmethylated signal (Panel B), polymorphisms at closer 
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distance to the C site drive discordance between the 3 genotype groups. The relationship is less 

clear than for Type II probes, most likely because there are fewer Type I probes generally (and 

further fewer in this specific scenario) and the Type I design assumes that CpG sites within the 

probe length match that the methylation state of the interrogated CpG site. This assumption 

would be violated given our inclusion criteria for this analysis if the polymorphisms in question 

here occur at the C site of CpG site within the 50 bp probe length.  

 

Additional File 8 – Figure S33: MAF distributions of measured SNPs vs annotated SNPs 

that map to 450k probes. We calculated the minor allele frequency (MAF) of all measured 

SNPs that mapped to gap signals, and determined the MAF for all of the annotated SNPs that 

map to gap signals as seen in the dbSNP138 annotation. The greater amount of SNPs with high 

MAF (>0.1) in the annotated SNP group may account for the higher area under the curve at 

higher standard deviation values as seen in Figure 8.  

 

Additional File 9 – Table S3: Group distributions of 3 different classifications of gap 

signals. We compared the group distribution for the three groups – mapping measured SNP, 

mapping annotated SNP, and no mapping SNP – of gap signals. The two groups with mapping 

SNPs had a very similar relative proportion of groups, while the group with no mapping SNPs 

was comparatively enriched for distributions with 2 clusters or groups. This result lends 

additional rationale to a different mechanism besides SNPs as leading the gap signal behavior.  

 

Additional File 10 – Table S4: Alternatives to gap hunting do not correctly identify 

polymorphism-affected clusters. For the probes shown in Figure 7 and the gap signal in 

Figure 1, we explored other ways of identifying clusters. Specifically we examined a Gaussian 

mixture model clustering algorithm that selects an optimal number of clusters based on the 

Bayesian information criterion, and the dip test for unimodality (alternative hypothesis is that 

distribution is multi-modal). We recorded the number of clusters selected by the mixture model 

algorithm and the dip test p-value.  

 

Additional File 11 – Figure S34: Filtering on variably methylated probes at various cutoffs 

in the context of gap signals. We calculated the proportion of gap and non-gap signals at 

various percentile thresholds of standard deviation cutoff (1% to 99%) to define a variably 

methylated probe. Researchers who filter on variable methylation prior to association analysis 

should be cautioned to be increasingly aware of gap signals (and subsequently their implications 

on DNAm related to disease described herein) as the cutoff to define a variably methylated probe 

increases.   
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