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Abstract

Background: The Illumina 450K array has been widely used in epigenetic association studies.
Current quality-control (QC) pipelines typically remove certain sets of probes, such as those
containing a SNP or with multiple mapping locations. An additional set of potentially
problematic probes are those with DNA methylation (DNAm) distributions characterized by two
or more distinct clusters separated by gaps. Data-driven identification of such probes may offer
additional insights for downstream analyses.

Results: We developed a procedure, termed “gap hunting”, to identify probes showing clustered
distributions. Among 590 peripheral blood samples from the Study to Explore Early
Development, we identified 11,007 “gap probes”. The vast majority (9,199) are likely attributed
to an underlying SNP(s) or other variant in the probe, although SNP-affected probes exist that do
not produce a gap signals. Specific factors predict which SNPs lead to gap signals, including
type of nucleotide change, probe type, DNA strand, and overall methylation state. These
expected effects are demonstrated in paired genotype and 450k data on the same samples. Gap
probes can also serve as a surrogate for the local genetic sequence on a haplotype scale and can
be used to adjust for population stratification.

Conclusions: The characteristics of gap probes reflect potentially informative biology. QC
pipelines may benefit from an efficient data-driven approach that “flags” gap probes, rather than
filtering such probes, followed by careful interpretation of downstream association analyses. Our
results should translate directly to the recently released Illumina 850K EPIC array given the

similar chemistry and content design.
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Background

DNA methylation (DNAm) is a type of epigenetic mark and term commonly used to
denote the covalent addition of a methyl or hydroxymethyl group to a cytosine nucleotide base in
the DNA sequence, typically at cytosine-guanine dinucleotide sequences, or CpG sites. DNAm is
a necessary component to cellular differentiation during development, and is a leading
mechanism for the plasticity of the genome in response to various environmental stimuli during
the life course [1]. There is an ever-increasing focus on various studies of DNAm, which can be
broadly classified into three main domains: those seeking to discover the relationship between
DNAm and various adverse health outcomes [2-4], those seeking to find DNAm changes
associated with environmental exposures [5-7], and those screening for genetic loci that control
states of DNAmM (methylation quantitative trait loci, meQTLS) [3, 8]. These three groups of
studies constitute the now burgeoning field of epigenetic epidemiology.

The IHlumina HumanMethylation450 BeadChip (450k) has largely enabled the fast
growth of epigenetic epidemiology because it effectively balances sample throughput and cost
with epigenome coverage. Specifically, the 450k allows for the efficient interrogation of roughly
485,000 CpG sites in the human genome, covering 99% of RefSeq genes, CpG islands, lower-
density CpG regions, termed shores and shelves, shown to be associated with differentiation and
disease [9, 10], and other high value content such as microRNA promoter regions and DNase
hypersensitive sites [11]. Probes are characterized by 3 distinct features: a CpG site of interest, a
single-base extension (SBE) that incorporates a fluorescently labeled nucleotide for detection,
and an additional 48 or 49 base pairs. The chemistry involves two probe types. Type | uses two
probes per interrogated CpG site, one for a methylated sequence and one for unmethylated

sequence, with measurement based on signal from a single color channel (red or green)
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determined by the nucleotide base incorporated via SBE. Type Il probes use a single probe with
measurement based on the ratio of red and green signal intensities (a two-color array rather than
one-color) [11]. In this design the C base of the CpG site overlaps with the SBE site.

As use of the 450k has become increasingly widespread, there have been several
contributions that have increased our general understanding of probe behavior on the 450k. One
frequently cited example is that of ambiguously mapping probes, or probes that can hybridize to
multiple places in the genome. A list of these probes has been made publicly available, and they
are often removed prior to association analysis [12]. Several studies have also noted the
existence of probes in which genetic polymorphisms may be present at the target CpG site, at the
SBE, and/or elsewhere in the probe [13, 14]. Estimates of the proportion of polymorphic CpG
sites out of all those interrogated by the 450k Array have ranged from 4.3% [13] to 13.8% [12].
Typically, 450k Array-based studies account for the presence of polymorphisms by using various
reference annotation schemes; examples include those developed from the Database for Single
Nucleotide Polymorphisms (dbSNP) [3], from the 1000 Genomes Project [8], or from the
[llumina-provided manifest [15]. A recent report recommended removal of 190,672 probes (39%
of the 450k Array) prior to association analysis [16] based on concordance between whole
genome bisulfite sequencing data and 450k data in several potentially problematic groups of
probes compared to a “high quality” group, each defined via reference annotation. However
screening for potentially problematic probes based solely on pre-defined reference annotation
tables can be problematic because they can vary according to the database chosen (dbSNP, 1000
Genomes, etc.), contain very rare variants, or may not be relevant to the population being

investigated in a particular study. These factors could result in the misclassification of probes as
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being polymorphism-affected or not, and suggest against the blind removal of problematic
probes classified in any part by the reference annotation method.

Recently, Daca-Roszak et al. overcame these reference annotation limitations on a small
scale through the analysis of combined study-specific genotype and 450K array data on 96
probes that distinguished European and Chinese populations. 69% of these probes contained
study-specific SNPs that were ancestry informative. They specifically note the existence of tri-
and bi-modal beta value distributions at many of these 96 probes, and carefully delimit, through
consideration of bisulfite conversion and probe chemistry, how each possible SNP at the C and G
sites of interest (C/T, C/G, C/A or G/T, G/C, G/A) can affect methylated and unmethylated
signal and the subsequent beta value calculated. Ultimately, the authors recommend a careful
consideration of the potential influence of genetic polymorphism on DNAm signal when
interpreting epigenome-wide association study (EWAS) results [17].

The clustered distributions for some probes had been addressed previously with lesser
detail [13, 14], but the Daca-Roszak study underscored the need to better characterize these
probes more broadly. In that endeavor, several challenges need to be addressed. First, it would
be useful to have a method to efficiently find these probes in a particular data set, rather than
relying on reference data; the Daca-Roszak probe-by-probe approach [17] is not feasible for
empirically assessing all 450k probes. Second, it will be useful to attribute methylation clusters
to underlying genetic polymorphism where appropriate, again in a study population-specific
manner. Assessing this phenomenon will require not only a careful consideration of C and G site
SNPs as done previously [17], but a similarly precise examination of SBE (for Type | probes)

and probe-mapping SNPs as well. Finally, it is crucial to develop a standard practice for the use
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or accommodation of these probes in an EWAS pipeline, since this will ultimately impact the
interpretation of any DNAm association.

In our exploration of 450K data, we first noticed such clustered distributions by the “gap”
pattern apparent when methylation signals per mode clustered into non-overlapping groups. In
this paper, we present a method, termed ‘gap hunting’ to identify 450k probes that result in such
a distributional “gap”. ldentification of 450k probes with clustered methylation values using the
empirical approach we propose here overcomes previous limitations with other probe removal
approaches [16, 17] because it examines all measured sites, is specific to the study sample rather
than relying on external annotation, which may or may not be appropriate for a particular
population, and provides flexibility for the user to determine whether flagging or filtering these
probes is appropriate based on their particular study design. We apply this method in a peripheral
blood DNA study population from the Study to Explore Early Development, report the extent of
gap signals in this dataset, and explore the sources of gap signals, with a particular focus on the
various kinds (C/G sites, SBE, and probe-mapping) of SNPs and the mechanism by which they
can result in a gap signal. We also describe various cases in which a probe may be affected by a
SNP, but not result in a gap signal. We explore different applications of gap signals, such as their
utility to be used for population stratification adjustment and their potential to enhance
association analysis through discovery of methylation sites mediating genetic signal. Finally, we

describe our recommendations for the role of gap hunting in the current 450k analysis pipeline.

Results

Identification of gap signals using gap hunting
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We developed a simple, computationally fast algorithm, called ‘gap hunting’, to flag probes on
the 450k exhibiting distributions of percent DNAm that cluster into discrete groups. We applied
this to DNAm data from 590 whole-blood derived samples from the Study to Explore Early
Development | (SEED 1) at various combinations of user-supplied arguments to this procedure
termed ‘threshold’ and ‘outCutoff” (Additional File 1, see Methods for a detailed description of
the approach and these arguments). Of the 473,864 autosomal probes we measured in SEED |
participants on the 450k, we identified 11,007 (2.3%) with clustered distributions of DNAmM
values which we term ‘gap signals’. These results were generated using a ‘threshold’ value of
0.05 and an ‘outCutoff” value of 0.01; the following analyses were all conducted considering
these arguments and this list of gap signals. The vast majority of gap signals were composed of 2
or 3 clusters of DNAm values (Additional Files 2 and 3). For example, the distribution of
percent DNAm for cg01802772 clusters into 3 distinct groups (Figure 1, top panel). Using
genotyping data, available from the same SEED individuals, we found that these 3 methylation
clusters correspond to genotype for SNP rs299872; this SNP is located at the interrogated C site
(Figure 1, top panel). For this particular probe, we also queried the dbSNP138 database and
found that a C/T SNP is annotated as overlapping the interrogated C site (Figure 1, bottom

panel).

Based on our initial gap signal observations, we decided to perform an in-depth analysis of all
11,007 gap signals to characterize the underlying source of these DNAm distributions. Using
paired genotype (GWAS) and methylation data, we found that 5,453 gap probes (49.5%) contain
a SNP from our SEED GWAS dataset, and thus direct evidence for SNP influence. Of the
remaining gap probes, 3,746 (34.0%) have an (dbSNP13) annotated SNP, in-del, microsatellite,

or multi-nucleotide polymorphism or map to a University of California, Santa Cruz (UCSC)-


https://doi.org/10.1101/059659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/059659; this version posted November 17, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

annotated repeat (and thus have indirect evidence for SNP/variant influence), and 1,808 gap
probes (16.4%) did not contain a SNP from our SEED GWAS dataset and also were not
annotated as containing a variant from the doSNP138 database or a UCSC repeat. Given the
large proportion of SNP-associated gap probes, we first sought to examine the role of SNPs in
producing gap signals. Our approach to understanding the role of SNPs in producing gap signals
consisted of two main elements. First, we theoretically conceptualized how various types of
SNPs located at different locations in the probe, including the measured C and corresponding G
loci, the SBE site, as well as elsewhere in the probe would affect 450k signal based on our
knowledge of the measurement chemistry. Second, we performed empirical analyses using our
joint GWAS and 450k DNAm data from SEED. We also examined the remaining ~16% of gap
probes that do not have an associated SNP or variant, according to the SEED GWAS data and

reference annotations.

Predicted influence of SNPs on 450k DNAm signals

Based on the underlying 450k probe chemistry, we predicted how SNPs influence 450k signal.
Our predictions are summarized in Figure 2. We first predicted the influence on signal of
nucleotide changes for SNPs that overlap the C nucleotide of the measured locus. For Type I
forward strand probes containing a T/C SNP at the interrogated C site, we predict the no signal in
the methylated channel and signal in the unmethylated channel. Thus, the signal readout would
be the same as for an unmethylated CpG state. For all other possible SNPs, including A/C and
C/G, we would expect no signal to be reported by either the methylated or unmethylated

channels for Type | forward strand probes, resulting in no overall signal; these are likely to be
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detected as failed probes. We predict Type Il forward strand probes containing a T/C or A/C
SNP at the interrogated C site to result in cyanin5 (Cy5) signal, thus, mimicking an unmethylated
state. Type Il forward strand probes containing a C/G SNP are predicted to result in cyanin3
(Cy3) signal, thus, mimicking a methylated state. For all reverse strand probes, including Type |
and I1, any SNP at the interrogated C position results in no signal from either channel, and these

probes are also likely to be detected as failures.

Next we predicted the influence of nucleotide changes for SNPs that overlap the G nucleotide of
the measured CpG site on signal detection (Figure 2). For Type I reverse strand probes, we
predict an A/G SNP will result in a signal in the unmethylated channel and no signal in the
methylated channel, resulting in a similar methylation readout as an unmethylated cytosine
nucleotide. Other SNPs, including C/G and T/G, are predicted to result in no detectable signal in
either the methylated or unmethylated channels. For Type Il reverse strand probes, we would
expect a C/G SNP present at the interrogated G site to result in a green signal, the readout for
probes with these SNPs thus matches the readout for a methylated state. The presence of an A/G
or T/G SNP at the G nucleotide position should result in detection of a red signal; the readout
from probes with these SNPs would match the readout for an unmethylated states. Forward
strand probes with any type of G-site SNP are not predicted to mask methylation states, but

instead they should produce no overall signal.

Finally, we predict the influence of SNPs that overlap the SBE site on signal. For Type Il probes,

the SBE site overlaps with the interrogated C site; therefore, the influence of SNPs is the same as
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for C site SNPs, as described above and shown in Figure 2. In the Type | probe design, the SBE
site is immediately adjacent to the interrogated C site; it is one base upstream of forward strand
probes and one base downstream for reverse strand probes. The Illumina detection software is
programmed to read a pre-defined color channel, which is based on the nucleotide that is
expected to be incorporated (defined a priori using a reference sequence). For example, if the
base upstream of the interrogated C site is defined as an A nucleotide in the reference sequence,
the detection software will only detect signal in the red channel and will not query for a signal in
the green channel. Therefore, any SBE-associated SNPs will result in a loss of signal when the
incorporated nucleotide is tagged in the opposite color to that dictated by the reference sequence.
As shown in Figure 3, C/G, A/G and T/G genotypes at an SBE associated SNP will result in loss
of signal on forward strand probes. Note that the fluorescence still occurs upon SBE, but the
software does not read the signal because it is in a different color channel than what is expected,
based on the pre-defined reference sequence. Similarly, C/G, A/C, and T/C SNPs at SBE sites
for reverse strand probes are predicted to result in loss of signal (Figure 3). Several SBE
associated SNPs are also predicted to have no impact on the methylation readout. These include
T/A, AIC, and T/C variants for forward strand probes and T/A, A/G, and T/G variants for reverse

strand probes (Figure 3).

SNPs can also occur elsewhere in the probe length, however, it is less straightforward to develop
theoretical rules or principles guiding how these may affect probe signal. Similarly, it is unclear
how probes with multiple SNPs may behave with respect to methylation signal. Therefore, we do
not provide a theoretical framework for these types of probes, but instead provide the results

from our empirical analyses below.
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Empirical evidence shows SNPs at the interrogated CpG site are related to gap signals

We performed empirical analyses to determine the relationship between DNAmM levels reported
by 450k and SNPs present at the CpG site using our unified SEED DNAm and genotyping data
and compared them to our theoretical expectations, shown in Figure 2. We identified all of the
450k probes with a measured or imputed SNP present at the interrogated C or corresponding G
loci in our SEED sample (n=5,129) (Additional File 4). To ensure we were only assessing the
influence of our SEED SNPs at CpG sites, we limited our analysis to include only probes with a
SNP at the CpG site itself and not elsewhere in the probe length. We found that our empirical
SNP results coincided with our predicted results for the SNP scenarios shown in Figure 2
(Additional File 5). For example, we observed a positive correlation between percent DNAmM
and dosage of the G allele across the set of 94 probes, including 23 Type | and 71 Type Il probes,
containing a C/G SNP at the interrogated C locus (Figure 4A and Additional File 4). This
appears to be a direct consequence of the positive correlation with methylated probe signal and
negative correlation with unmethylated probe signal (Figure 4B-C). This observation coincides
with our prediction for this scenario (Figure 2) because the addition of the non-reference (G)
nucleotide is expected to increase methylated (green) signal at the expense of unmethylated (red)
signal. To better conceptualize the effect of a SNP on the total produced signal, i.e. combined
methylated and unmethylated signals, we computed a copy number metric (see Methods) and
found, in general, it decreased with dosage of the G allele (Figure 4D). However, the mean copy
number metric of the heterozygous group does not lie exactly intermediate between the two
homozygous groups, thus highlighting the importance of also considering the methylation state

in the interpretation of SNP-influenced 450k probes. For example, in Figure 1 (top panel),
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individuals with the “TT’ genotype have low methylation values because of their low ratios of
methylated to unmethylated intensities dictated by their T allele. Individuals containing one or
two copies of the C allele at this SNP can have varying degrees of methylation. In the example
shown in Figure 1, the C alleles are completely methylated for all samples, resulting in discrete
DNAm groups. If however, the C alleles were unmethylated, the groups would be largely
indistinguishable and form one cluster instead of three. The lack of an explicitly intermediate
mean in the heterozygous group for the copy number metric, then, is a consequence of the
heterogeneity in methylation at the ‘C’ base at these sites and heterogeneity amongst samples in
their methylation state. Additional File 5 contains plots for the remaining SNP scenarios

delimited in Figure 2, and all showed similar relationships.

Empirical evidence shows SBE site SNPs are related to gap signals

We identified all of the 450k probes in SEED with a measured or imputed SNP located at the
SBE site (n=118) (Additional File 4). We specifically limited our analyses to probes that
contained an SBE-associated SNP exclusively, i.e. there were no SNPs elsewhere in the probe.
We found that, overall, our empirical results correspond to our predicted signal for the SNP
scenarios shown in Figure 3 (Additional File 6). For example, we observed an inverse
relationship between dosage of the T allele and overall signal across all probes (n=2) that have a
T/G SNP at the SBE site, where G is the a priori defined base at the SBE according to the
genome reference sequence (Figure 5). This observation coincides with our prediction for this
scenario (Figure 3) because a SNP changing the nucleotide at the SBE position from ‘G’

(detected in the green channel) to ‘T’ (detected in the red channel) should result in no signal
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because the software is programmed, a priori based on reference genome sequence, to report
methylation solely as a function of the signal being generated in the green channel. Note that
similar to CpG associated SNPs, the mean copy number metric of the heterozygous group does
not lie exactly intermediate between the two homozygous groups. This is likely reflecting the
heterogeneity in DNA methylation across CpG sites and samples. Overall, our findings using
SEED measured and imputed genotypes are consistent with our predictions shown in Figure 3.
However, in certain cases the relationship is less clear. There are a number of potential
explanations for non-linear relationships. First, since the overall signal is a measure of both the
ability to detect signal, which as we’ve shown above can be influenced by SBE site SNPs, and
the actual methylation state itself, it is possible that deviations from the expected relationship are
related to actual differences in DNAm. These DNAm influences may be exacerbated by the
relatively small number of probes examined in each scenario shown in Figure 3 (all scenarios
have < 17 probes and some scenarios have < 7 probes; see Additional File 4). It is also possible
that these non-linear genotype signal shifts could be related to uncertainty around imputed

genotypes.

Probe SNPs up to 20 base pairs from the CpG site are associated with gap signals

Next we sought to specifically assess the relationship between the gap signals we detected via
gap hunting and probe SNPs using our unified SEED GWAS and DNAm data. We identified all
of the 450k probes in SEED with a measured or imputed SNP located in the probe, excluding
those with SNPs at the SBE or CpG sites (n=33,317). We limited our analysis to probes that

contained a single SNP to determine the relationship between SNP distance to the interrogated C
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site and gap signal. The probes were binned by SNP distance to the interrogated C site and
samples were grouped by genotype: homozygous for the reference allele, heterozygous, and
minor allele homozygous. When we plotted the signal intensities, for both the methylated and
unmethylated channels, which represent the mean intensity for all probes with a SNP at that
particular distance to C-site, we observed differences in mean signal intensities, and inter-
quartile ranges (25" — 75" percentiles), between heterozygotes and homozygotes that were
consistent with allelic dosage (Figure 6). For the Type Il probe design, mean intensity
differences between the genotype groups are observed up to a SNP distance of about 7-8 base
pairs (bp) from the interrogated C-site. We also observed that these probe SNP-related
differences in signal intensity are less pronounced in the methylated channel compared to the
unmethylated channel, where differences in intensity can persist for up to an approximately 20
bp distance. Thus, the unmethylated signal channel appears to be less robust to probe SNPs.
Type | probes exhibit a similar behavior, but appear to show greater differences in signal
intensity with SNPs and across larger probe distances (Additional File 7). One explanation for
this behavior could be that Type | probes are more susceptible to probe SNPs because they were
designed under the assumption that the interrogated CpG site and any CpG sites throughout the

remainder of the probe length have the same methylation state (Additional File 7).

SNP-affected probes do not always result in gap signals

Our analyses above focus on identifying potential sources of gap signals and show that SNPs can
lead to gap signals. Therefore, we also wanted to determine whether probe-associated SNPs
always lead to gap signals. We found that not all polymorphism-affected probes result in gap

signals (Additional File 4). There are 3 main classes of beta distributions in which a probe may
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be affected by a SNP, but not result in a ‘gap-like’ distribution (Figure 7). The first occurs when
there is a correlation between percent methylation and genotype, but no discrete clusters are
observed (Figure 7A). The second occurs when there are outlier signals, i.e. samples. The gap
hunting algorithm was designed to exclude probes from the gap signal list if they likely
contained an outlier sample. As a result if the smallest group of samples driving SNP-related
gaps is less than the proportion of samples determined by the ‘outCutoff” argument, these probes
will not be flagged as gap signal probes. Figure 7B illustrates this point; it shows that at
cg15013523, gap hunting would not identify the group with the ‘TT’ genotype as a discrete
cluster, i.e. gap signal, because it is comprised of a single sample. These types of probes could be
identified as a gap signal if the option to retain ‘outlier-driven’ probes is selected. Finally, beta
distributions with an associated SNP in the probe may show no DNAm variability at the site or
no correlation with genotype and, therefore, will not result in a ‘gap-like’ distribution (Figure
7C); this lack of clear genotype correlation was also observed by Daca-Roszak et al [17] and
referred to as a ‘cloud-like’ distribution. Therefore the potential for a polymorphism-affected
probe to be classified as a gap signal is related both to the presence of discrete separation in

groups, as well as the overall methylation state at the site.

Approximately 16% of gap signals identified in SEED cannot be attributed to an

underlying SNP

Finally, among all autosomal probes, we compared the standard deviation distribution between
gap and non-gap probes, both with and without an associated SNPs, to better characterize gap

signals that could not be attributed to an underlying SNP. The 6 mutually exclusive classes of


https://doi.org/10.1101/059659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/059659; this version posted November 17, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

probes we examined include (1) non-gaps with measured or imputed SEED SNPs, (2) non-gaps
with annotated variants or repeat elements, (3) non-gaps with no associated variants, (4) gaps
with measured or imputed SEED SNPs, (5) gaps with annotated variants or repeat elements, and
(6) gaps with no associated variants. As shown in Figure 8, all non-gap probe distributions,
including those with and without an associated SNP, are highly overlapping for both the Type |
and Type Il designs, suggesting that the majority of non-gap probes have no or low variability in
DNAm values similar to the example in Figure 7C. The gap probe distributions are distinct from
the non-gap distributions and show interesting within-group differences (Figure 8). The gap
signals with reference database annotated SNPs exhibit a higher proportion of probes with larger
standard deviations than those with SEED measured or imputed SNPs. This is likely due to
higher minor allele frequencies of annotated SNPs, generally, compared to the minor allele
frequencies of the SEED SNPs (Additional File 8). Another interesting feature of the overall
standard deviations is the distinct curve of the 1,808 gap signals that lacked any of a
measured/imputed SNP, reference database annotated variant, or a UCSC repeat in the probe. As
clearly seen in the Type Il probe design, there is a high proportion of gap probes without an
associated SNP or annotated variant/repeat at low standard deviation values, relative to gap
probes containing SNPs (Figure 8). We also show that gap probes without a SNP or annotated
variant/repeat tend to have a higher proportion of 2-cluster probes than gap probes with a SNP

(Additional File 9).

We were interested in quantifying the degree to which other factors, aside from a
measured/annotated SNP or annotated repeat element, could lead to gap-like behavior. For
example, it is possible that some of these 2-cluster gap signals ambiguously mapped to sex

chromosomes and clustered according to sex; however, we only observed sex-specific clusters in
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6 (0.3%) of these probes. 161 of these 1,808 probes in total were previously defined as
ambiguously mapping [12], 14 were determined to have failed via detection p-value, and 210
were found to discriminate blood cell types [18]. These 3 factors account for 379 (21.0%) unique

probes of the 1,808 gap signals not attributed to an underlying genetic variant.

Other methods to identify clustered DNAm distributions are not as robust as gap hunting

We assessed the potential for other methods to identify clustered DNAm distributions with
respect to detection sensitivity and the specific types of sample clusters they identify. We tested
these methods against a set of 5,000 probes made up of gap signals (which functioned as positive
controls) and 5,000 probes which were not gap signals, had no measured, imputed, or annotated
SNP, and had very low variability (and thus functioned as negative controls). First, using the beta
values for these probes, we applied a Gaussian mixture model clustering algorithm, which selects
the optimal number of clusters based on the Bayesian information criterion (BIC), and found that
it had 100% sensitivity, but only 50% specificity, to distinguish between the gap and non-gap
probes. Additionally, in cases where the mixture model predicted a gap signal to (correctly) have
more than 1 cluster, it was only able to identify the correct number of clusters 43% of the time.
We also examined the utility of the dip test, in which the null hypothesis is that the data are
unimodal [19], and found the area under the receiver operating characteristic curve to be 0.73.
These methods performed similarly using M-values, with a 100% sensitivity, 67% specificity
and 41% correct determination of cluster number using the mixture model, and an area under the
curve determined by dip test p-values of 0.73. We were then interested in examining the

performance of these methods at specific scenarios (Figure 7) to which gap hunting was
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insensitive (Additional File 10). The mixture model approach was unable to correctly identify
that there were 3 relevant clusters in any of these 3 probes, while using the dip test we could only
reject the null hypothesis of uni-modality at cg14613402 (Figure 7A); however, this would not
be the case if we used a more stringent p-value to account for multiple comparisons. Finally,
these 2 alternative methods did identify probe cg01802272 (Figure 1) as a multimodal (dip test

p-value =~ 0) as well as having 3 discrete clusters, consistent with our gap hunting approach.

Gap hunting can be useful in addressing population stratification in epigenome-wide

association studies

After gaining an understanding of gap signal properties, we were interested in highlighting the
potential utility of gap hunting in EWA studies. A recent paper by Barfield et al. demonstrated
the ability of principal components (PCs) derived from probes annotated with 1000 Genomes-
identified SNPs to correct for population stratification [20]. This method functions under the
principal that methylation at these sites will be enriched for genotype-influenced signal, and thus
serve as a suitable alternative to or surrogate for gold standard correction via genotype-derived
PCs [21] in studies where genotype data is unavailable. Given the strong SNP influence on gap
signals, we hypothesized that PCs derived from gap signals could be utilized in a similar manner
to the Barfield method. Similar to Barfield et al, our gap signal based PCs we able to clearly
separate ancestry groups (Figure 9). This result is expected since most (~85%) gap signals can
be attributed to an empirical or reference database annotated SNP/variant, most of which are

present in the 1000 Genomes Project that was used by Barfield et al. Additionally, most of the 96


https://doi.org/10.1101/059659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/059659; this version posted November 17, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

probes identified by Daca-Roszak et al. because they differentiated two ancestral groups [17]

exhibit ‘gap-like’ distributions.

Gap signals are enriched in common EWA probe filtering strategies

One approach used in EWA studies to address multiple testing burden is to subset the dataset to
only those probes that are variably methylated. We sought to define the proportion of probes in
the post-variably methylated filtering dataset that had gap signals identified using gap hunting.
As expected, due to our gap signals having inherently high variability, we observed gap signal
probe enrichment in the filtered dataset as we increased our standard deviation threshold for
filtering (Additional File 11). Enrichment was consistent at various percentile cutoffs of
standard deviation across samples. This result emphasizes that researchers should be aware that

applying filtering criteria related to probe variability can increase the proportion of gap signals.

Common EWA probe filtering strategies that remove all SNP-associated probes may miss

disease-relevant loci

Currently, most EWA studies explicitly remove polymorphism-affected probes that are a priori
defined using a reference SNP database or in the Illumina manifest, prior to association analyses.
However, based on our findings there are two main concerns with this removal approach. First, it
is possible that the SNPs present in reference databases, gathered from many ancestral
populations and often includes rare SNPs, may not reflect the genetic architecture among the

samples examined in a particular EWA. Second, we have shown that gap signals can be
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influenced by SNPs and, therefore, gap signals may represent the local genetic structure
underlying the interrogated CpG site; thus, they could still be biologically relevant to the
outcome of interest, but should be interpreted with caution. This local genetic structure extends
beyond that of the interrogated CpG site and 50-mer probe and includes the entire haplotype on
which the CpG site exists. For example, cg12162195 exhibits a three-group gap signal, with
three SNPs annotated in the probe body (Figure 10). The samples in each group represent
distinct groups of haplotypes; therefore, these methylation groups serve as a surrogate for their
respective collections of haplotypes. This is true for all 450k probes that are not located within
recombination hotspots. Given our findings that many gap signals have a strong genetic basis
underlying the observed differences in methylation, we would expect methylation values at gap
probes will capture a larger degree of haplotype diversity than non-gap probes. Therefore, we
propose that instead of removing reference database SNP or gap hunting-defined gap signal
probes before association analyses, they be included, but flagged, and carefully investigated and

interpreted after analyses should they be associated with the outcome of interest.

To examine the difference between our “flag” based gap hunting approach versus a “remove”
reference SNP annotation based approach in downstream interpretation of EWAS, we ran our
EWAS pipeline on publicly available data to evaluate the relationship between placenta
methylation and newborn neurobehavior. We identified a total of 11,286 gap signals among
443,825 probes. Using our EWAS pipeline, 56 probes showed suggestive statistical significance
(p < 1E-4) for infant arousal. Of these significant probes, 5 were gap signals (Figure 11), 15
were annotated as SNP-affected, and 3 of these were both SNP-annotated and gap identified.
Thus, an analysis with gap hunting results in 56 hits, 5 of which are flagged as gaps for further

investigation and interpretation. Using SNP annotation filtering without gap hunting resulted in
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41 hits, 2 of which have suspicious gap-like distributions. Inclusion of all probes in EWAS, with
flags for gaps via gap hunting and for SNP annotation, rather than explicitly filtering probes,
allows broader consideration of biologically-relevant associations and user-specific choices

regarding interpretation, rather than omitting potentially relevant findings.

Discussion

We demonstrate a procedure called ‘gap hunting’ to identify CpGs with clustered methylation
distributions and discover 11,007 ‘gap signals’ in a 450k dataset from the Study to Explore Early
Development. The vast majority (~85%) can likely be attributed to an underlying SNP(s) or
other variant in the C site, G site, SBE site, or elsewhere in the probe length. We document the
specific mechanisms by which SNPs at the C, G, and SBE sites lead to gap signals, which
involve a consideration of the type of nucleotide change occurring, as well as the probe type,
DNA strand of interrogation, and overall methylation state, and demonstrated that expected
effects are met using paired genotype and 450k data on the same samples. We additionally
demonstrate that distance between a probe SNP and the C site of the probe is a relevant factor
influencing methylation distributions. Finally, we delimit the situations in which a SNP-affected
probe does not produce a gap signal, highlight a subset of gap signals that cannot be attributed to
an underlying SNP, and discuss various utilities of gap signal identification in an EWAS
framework. We recommend using gap hunting to ‘flag’ probes for special consideration when
interpreting EWAS findings, rather than the common practice of removing probes annotated with

SNPs (using reference annotations) prior to EWAS.
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The focus of this manuscript was to characterize sources of clustered distributions, and highlight
implications of their removal or inclusion in an EWAS framework as opposed to developing an
optimized statistical method to identify these probes per se. In light of this conceptual
framework, we selected a ‘threshold’ argument of 0.05 and a ‘outCutoff” argument of 0.01 for
our analyses because it balanced detecting too many probes vs. too few probes for downstream
characterization and provided good face validity to capture the distributions of interest when we

visually observed the data.

We recognize that changes to these parameters may influence the total number of gaps detected,
indeed for our SEED dataset, the number of gap signals varied with different combinations of
these parameters (Additional File 1), with the ‘outCutoff” argument having the most pronounced
effects at lower ‘threshold’ values. While the parameters utilized here may be a good starting
point, we encourage users of the gap hunting approach to modulate this argument while
understanding that reported gaps are simultaneously a function of factors such as sample size
(more samples can lead to ‘denser” DNAm distributions), disease status, or other factors that

contribute to DNAm variability.

Our results highlight the importance of taking a “flag” versus removal approach. Typically, there
are two main concerns motivating a removal approach: that SNP-affected probes can lead to
technical failure of array measurement, and that they are redundant with genotype signal. Our
work does show that C, G, and SBE site SNPs impact methylation signal, based on various
factors, including bisulfite conversion and probe chemistry, as expected. This could be

reinterpreted not as probe ‘failure’ of measurement, but as methylation signal that is a reliable
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surrogate for true underlying biology. This interpretation is, in fact, the second argument for
removal often cited, but flagging for subsequent interpretation rather than removal can shed light
on genome-epigenome interactions that may be relevant to the EWAS question, and would be
missed via a removal strategy. These biologically illuminating relationships can relate a single
SNP to a single CpG site (Figure 1), or can extend to multiple SNP haplotypes (Figure 10). In
the latter context, grouping haplotypes according to the methylation state they produce may serve
as a collapsing strategy that overcomes the typical power limitations of haplotype-based genetic
analyses due to high dimensionality resulting from haplotype diversity. We implemented our
suggested flag strategy on a publicly available dataset and observed it to be useful in order to
identify additional probes of interest to the phenotype, many of which would have been removed

by applying a typical SNP annotation removal strategy.

This gap hunting approach does not identify all SNP-affected probes, since it relies on detection
of discrete clusters of percent methylation. SNP-affected probes may simply not have enough
methylation variability to detect multiple modes even when they exist, or genotype-specific
distributions may be so overlapping that discrete clusters cannot be detected. For the purposes of
EWAS, methylation at CpGs related to the first scenario is not likely to be of interest since
effects sizes with outcome will also be difficult to detect at low-variability CpGs. Probes
characterized by the latter scenario would in theory be of interest in EWAS, but approaches for
reliable identification of tightly overlapping distributions (but with distinct clusters) are limited.
For example probes of this nature, we applied Gaussian mixture models with BIC and dip
statistics, but could not consistently identify them as multi-modal and could not estimate the
proper number of clusters. These methods show similar (limited) performance on both the beta

value and M-value scales; the advantage of using beta values in gap hunting, however, is that the
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‘threshold’ argument can be more easily informed by biological intuition. These alternative
approaches could potentially be used to classify probes as having 1 versus more than 1 cluster,
but this would result in many false positives, likely including many probes unaffected by SNPs,
as described by Daca-Roszak et al. This is an unnecessary price to pay, considering that probes
of these sorts of distributions do not seem to be prevalent to such a large degree, at least in SEED
(Figure 8). To partially capture such probes, one could titrate the ‘threshold’ or ‘outCutoff’

input arguments to gap hunting to allow more liberal classification of gap probes.

Our work also emphasizes the utility of visual inspection of methylation distributions when
considering the potential influence of SNPs on probe signals. Methylated and unmethylated
signal intensities can be inspected with consideration of expected SNP effects (as in Figures 2
and 3). Such expectations are clear for C, G, and SBE SNPs, but less so for SNPs in the
remainder of the probe. Some reference annotations specifically emphasize probes with SNPs
less than 10bp away from the C site [22], but previous studies, based on SNP annotations, have
found little [13] to no [16] effect of SNPs in the probe body. Yet, our results using study-specific
genotype and 450Kk data, rather than reference data, found that SNPs at least up 7-8 bp away from
the C site, and potentially up to 20 bp away, affect subsequent signal (Figure 6). While we
focused on the distance to the C site of a single probe SNP, the multiplicity of SNPs in a single
probe, and the specific number of base pairs affected, may also be influential. The complexity of
analyzing this question with paired genotype and 450k data increases with the number of probe
SNPs, as one needs to consider each combination of genotypes that could be encountered at all

SNPs and compare the resulting signal from each of these groups.

We also note gap signals that are not due to an underlying SNP or variant. It is possible that a

SNP could be influencing at least a fraction of these probes, as annotation schemes are imperfect
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in their lack of study specificity and may not account for rare variants. We did observed that
among the gap probes not containing a known SNP, there was a greater proportion of 2-group
gap signals compared to the gap probes likely attributed to SNPs. This is consistent with the
signal expected if it were driven by rare variants. Other explanations for non-SNP-affected gap
probes could include cell type heterogeneity specific to a genomic region, ambiguously mapping
probes, or probes that fail via detection p-value; we found that approximately 21% of probes
could be attributed to these factors. An additional explanation for these gap signals could be
exposure or outcome associations for specific regions. This should be the focus of future work.
Notably, this is also the goal of EWAS, further arguing for a “flag and consider” approach rather

than removal.

The MethylationEPIC BeadChip, the next iteration of the 450k which queries over 850,000 CpG
sites, is now being utilized for EWAS. Given that the Type | and Type Il probe designs are
retained in this new array, the gap hunting approach and influences of SNPs we have described
will still be of importance. As a new subset of probes that merit special consideration in EWA
studies, gap signals can help advance the field by providing insight into methylation signals

mediating genetic signal, both locally and in a broader context.

Conclusions

We demonstrate a new method, called ‘gap hunting’ to identify clustered distributions of
methylation signal measured by the Illumina 450k platform. We apply this method in a
peripheral blood DNAm data set, find that the identified ‘gap signals’ are mostly attributed to
underlying SNPs, and demonstrate how specific SNP scenarios can lead to gap signal behavior.

We also describe several implications of gap signals in EWA studies and emphasize their ability
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to serve as surrogates for the genetic background of the interrogated CpG site. We argue for gap
signals as a new, study-specific, subset of 450k probes that merit special consideration in the

EWAS pipeline.

Methods

All analyses were carried out using R version 3.2.2 and minfi version 1.16.

Study sample

The Study to Explore Early Development (SEED) is a multi-site case-control study of 3-5-year-
old children with autism spectrum disorder (ASD), conducted in localities within 6 U.S. states.
Approximately 2,600 families participated in SEED phase I, and the children were classified into
three groups according to neurodevelopmental outcomes, as previously described. [23]. SEED
participants consist of the case group with ASD and 2 control groups without ASD: a general
population group and a developmental disabilities group. DNA methylation was measured on
610 children enrolled in SEED phase I. Genome-wide genotyping data were available on a
subset (n=590) of children on whom the DNA methylation was measured (see Genotype
Measurement section).

DNA methylation measurement and quality control

Genomic DNA (gDNA) was isolated from whole blood samples using the QIAsymphony midi
kit (Qiagen). For each of 610 gDNA SEED samples, 500 ng of DNA was bisulfite treated using
the 96-well EZ DNA methylation kit (Zymo Research). Samples were then processed on the
450K Array, randomized across and within plates to minimize potential confounding effects
introduced by batch. lllumina .idat files generated from the array were processed using the minfi
R package for 450k Array data [24]. Standard pre-processing and QC measurements were

performed, including the removal of bad arrays, replicate samples, and sex-discrepant samples,
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defined as those in which the predicted sex based on the minfi function ‘getSex’ was discordant
with self-reported sex. Cell composition estimates were obtained via the ‘estimateCellCounts’
function, also in the minfi package. Additional samples with outlying cell composition estimates
were removed. We did not perform any probe-level QC on these data, such as detection p-value
or ambiguously mapping probe filtering [12], because we were interested in quantifying the
degree to which they contributed to gap signal behavior. Finally, quantile normalization was
performed as implemented in the ‘preprocessQuantile’ function in minfi. These processing steps
resulted in 607 samples for use in the downstream analysis. Beta values (methylated
signal/(methylated + unmethylated signal) +100) were calculated and implemented in

downstream analyses.

Genotype measurement, imputation, and quality control

Of the 607 samples in our DNAm dataset, 590 had whole-genome genotyping data available,
which was measured using the Illumina HumanOmnil-Quad BeadChip. Standard QC measures
were applied: removing samples with less than 95% SNP call rate, sex discrepancies, relatedness
(Pi-hat > 0.2), or excess hetero- or homozygosity. Markers with less than a 98.5% call rate, or are
monomorphic were removed. Phasing was performed using SHAPEIT [25] followed by SNP
imputation via the IMPUTEZ2 software [26], and all individuals in the 1000 Genomes Project as a
reference sample. Genetic ancestry was determined using EigenStrat program [21] and
eigenvectors were utilized in statistical analyses, as described in detail below. Given our interest
in the role of SNPs in producing gap signals, we limited all of our analyses to the 590 samples
that had both genotype and 450k data. We also limited our analysis to those SNPs with a minor

allele frequency > 0.5%, as this value corresponded to the same number of individuals that
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would be allowed in the smallest gap signal group according to the default input arguments (see

‘gap hunting’ algorithm section).

Identification of gap signals

We identified gap signals using a function we developed, called gaphunter(), that can be

implemented using the minfi package [24].

A matrix of beta values (rows = probes, columns = samples) is input to or calculated by the

function. The method incorporates two user-defined arguments: ‘threshold’, and ‘outCutoff’. For

each row in this matrix:

1)
2)

3)

4)

5)

Order beta values sequentially

Calculate consecutive pairwise differences for these values.

Determine the number of difference values calculated in 2) that are greater than the
‘threshold’ argument, defined herein as gaps. If one or more gaps exist, classify probe as
gap signal and define the number of groups as the number of gaps plus one. If zero gaps
exist, define probe as non-gap signal.

For all gap signals, use location of gaps to classify individuals into distinct groups.
(Optional) For all probes defined as gap signals, sum the number of samples in all groups
except that of the largest count. Define ‘outlier-driven gap signals’ as those in which this
sum does not exceed the user-defined ‘outCutoff” parameter, which is the proportion of
the total sample size (default value = 1%). Remove these outlier-driven gap signals from

output.

We report the number of gap signals detected at all possible combinations of a series of threshold

(0.025, 0.05, 0.10, 0.2) and outCutoff (0.005, 0.01, 0.05, 0.1) values. We chose to complete all
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subsequent analyses with results from setting the threshold argument to 0.05 and the outCutoff
argument to 0.01. We also elected to implement this method on the Beta value scale because this
allows for the threshold argument to be informed by biological intuition. In the case where a user

only has M-values available, a simple transformation to the Beta scale can be performed [27].

dbSNP138 and repeat element annotation

We developed an annotation of all polymorphisms that mapped to probes on the 450k Array in
order to have available flexible information on the site(s) to which a polymorphism mapped
(CpG site, SBE site, etc.) and on the polymorphisms themselves (minor allele frequency, etc.).
The Database for Single Nucleotide Polymorphisms version 138 (dbSNP138), was downloaded
from the UCSC Genome Browser [28]. All classes of polymorphisms in doSNP138 were
incorporated downstream: “single” (SNPs), “mnp” (multi nucleotide polymorphism),
“microsatellite”, “insertion”, “deletion” and “in-del”. The latter three categories were grouped
together to form a single “in-del” group. A final class of polymorphisms, called ‘range’, was
created to lump together remaining dbSNP138 descriptions (“unknown”, “named”, “mixed”,
etc.). We also downloaded a list of repeat elements from the UCSC Genome Browser generated
via RepeatMasker [28]. We filtered this list to only include short and long interspersed nuclear
elements, long terminal repeat elements, and simple repeats (micro-satellites). The
‘findOverlaps’ function in the R package ‘GenomicRanges’ was used to map the location of all
annotated polymorphisms or repeat elements to the C, G, SBE, and probe locations of all 450k

Array probes [29].

Defining SNPs associated with C, G, and SBE sites

We were interested in analyzing the impact of specific SNPs (i.e. specific nucleotide changes) at

specific locations in the probe (C, G, and SBE sites) through joint analysis of our SEED
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genotype and 450k data. We again used the ‘findOverlaps’ function in the ‘GenomicRanges’ R
package to find which of our measured SNPs overlapped to the C, G, SBE and probe length sites
of all 450k probes. We performed these overlaps separately for all 4 probe locations, and then
pooled the overlap results together. We then removed probes that had more than 1 type of SNP
mapping to them. For example, if in our overlap results we found that a probe had a mapping C

site SNP and a probe-length mapping SNP, that probe was not considered in these analyses.

Once we defined a ‘clean’ set of probes with respect to the location at which they overlapped a
SNP, we grouped together probes of similar relevant characteristics. For the C and G site SNP
analyses, we grouped probes based on if they had the same: nucleotide change (C/T SNP, for
example), probe design (Type I or Type 1), SNP mapping location (C site or G site), and strand
on which the CpG of interest is designed to be interrogated. All probe level information was
found via the lllumina 450k manifest. For the SBE site SNP analyses, we grouped probes based
on all of these criteria as well as the reference nucleotide of the SNP. This step was necessary in
order to more easily understand in which genotypes to expect a loss of signal. Our groupings

were done for all of the scenarios delimited in Figures 2 and 3.

For each of these scenarios, we collected 4 metrics across all probes that fell into that scenario,
grouping samples by their genotypes at each probe. The 4 metrics were: percent methylation,
methylated signal, unmethylated signal, and a copy humber metric. The methylated and
unmethylated signals were derived from the minfi function ‘getMeth’ and ‘getUnmeth’, which
we performed on an un-normalized (output of minfi function ‘preprocessRaw’) R object. The
copy number metric was defined as:

Meth; Unmeth;
CNi = lOg | + lOg _
Methgpr Unmethggrp
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In this equation, ‘i’ refers to each individual and ‘Meth’ and ‘Unmeth’ to the methylated and
unmethylated signals, respectively. At each probe the intensities are scaled by the mean values of
the reference genotype of the SNP affecting that probe. This copy number metric therefore
serves as way to jointly consider methylated and unmethylated signal, and more explicitly

evaluate the difference between genotypes in terms of overall signal.

Defining probe-associated SNPs

We were interested in evaluating the effect of distance from the C site to the SNP for situations
in which a SNP was located in the probe but outside of the interrogated CpG and SBE positions.
We first performed a similar overlap evaluation and filtering process as described above. Once
we were limited to probes that had only overlapped measured probe-length mapping SNPs, we
further filtered to probes that only had a single SNP in the probe length. This step was done in
order to control for the potential effect of total amount of the probe length affected by SNPs.
Next we grouped probes into bins of equal distance from the C site to the SNP, which was from
1 to 50 base pairs for the Type 1l design and 1 to 49 base pairs for the Type | design. At each
probe, we identified the reference homozygote, heterozygote, and non-reference homozygote
genotypes and group samples accordingly. We performed this grouping across probes within a
specified distance value. Next we plotted the means and inter-quartile ranges (IQR; 25" to 75"
percentiles) of the methylated and unmethylated signals as a function of distance, separately for
the three genotype groups. The greater the discordance between the means and IQRs of the three

groups indicated a greater effect of the mapping SNP.

Defining probe categories

We were interested in comparing the overall standard deviation distributions of non-gap and gap

signals. Moreover, we were further interested in within group differences relating to probe
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having an underlying SNP (measured or annotated) or not. For both non-gap and gap signals, we
first identified probes that had at least one measured SNP anywhere in the probe body (through
the same overlap analysis described above). From the remaining probes in each group, we
identified which probes that overlapped at least one polymorphism in the doSNP138 annotation
described above, or a repeat element as defined by UCSC [28]. Again, overlap analysis in this
case was also undertaken as described above. The remaining probes in each group were
classified as having no underlying variant. This classification resulted in all 473,864 autosomal
probes into 6 mutually exclusive categories: non-gap signals with no underlying (measured or
annotated) SNP, non-gap signals with an annotated variant or repeat element, non-gaps signals
with a measured SNP, gap signals with no underlying (measured or annotated) SNP, gap signals
with an annotated variant or repeat element, and gap signals with a measured SNP. The
distinction between a measured an annotated SNP underlying a probe is that of a SNP that we
have complete certainty of existing in the SEED study population (as we imposed a MAF
threshold of 0.5% in our 590 samples) compared to the existence of a SNP with some probability

that is a function of MAF.

Investigating additional sources of gap-like behavior

We were also interested in quantifying the role of additional factors in producing gap-like
behavior in the gap signals that did not have a measured/imputed SNP or a mapping annotated
variant via dbSNP138 or a mapping repeat element. We determined the proportion of these
probes that were known to be ambiguously mapping, were determined to fail via detection p-
value, or were previously determined to be cell-type distinguishing probes in whole blood. To
define ambiguously mapping probes we used a previously defined list [12]. We defined a probe

as a technical failure if more than 10% of samples had a detection p-value of greater than 0.01, as
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determined via the detectionP() function in the minfi package [24]. We defined a probe as
distinguishing cell type if it had a p-value < 1E-8 reported from a previous study investigating

differential methylation according to blood cell types [18].

Comparing gap hunting to other methods to identify multi-modal distributions

We sought to investigate whether other methods that specifically identify multimodal
distributions could overcome gap hunting’s insensitivity to distributions that appeared
multimodal but did not cluster into discrete groups, but still retain the ability to identify
methylation distributions that did have discrete groups. One key complication to this question is
the fact that the ‘true’ status of methylation distributions at every measured probe is not known,
which hampers the ability to assess the classification properties of alternative methods. To
overcome this problem, we constructed a subset of 10,000 probes in which half were classified
as gap signals by gap hunting (and were thus positive controls) and the other half were non-gap
signals, did not have a measured/imputed or annotated SNP, and whose standard deviation was
in the lowest decile of standard deviations across all autosomal probes (and were thus negative
controls). In this way we could maximize our understanding of the true status of the probes we
were testing as having a clustered distribution or not. The first method we tested was a Gaussian
mixture model implemented via the ‘Mclust’ function in the mclust R package [30]. We allowed
the function to select the best number of clusters (choice of 1 to 6) for each of the 10,000 probes
based on a Bayesian information criterion. The second method we tested was the dip test in
which the null hypothesis is that the data come from a unimodal distribution [19]; we
implemented this test using the ‘dip.test’ function in the diptest R package [31]. We recorded the
dip test p-value for each of the 10,000 probes and calculated the area under a receiver operating

characteristic curve using the ‘auc’ function in the MESS R package [32] and generating dip test
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classifications at various p-value thresholds against the ‘true’ status of the 10,000 probes. We
performed the mixture model and dip test experiments on both beta values and M-values (logit
transform of beta values) to examine if the performances of these methods were affected by the

scale of the methylation values.

Population stratification

Upon confirming that gap signals were largely due to underlying SNPs, we were interested in
exploring their potential to correct for population stratification. We calculated principal
components (PCs) from gap signals and compared them to eigenvectors derived from GWAS,
via the EIGENSTRAT method [21], and PCs derived from probes annotated with 1000 Genomes
SNPs as described by Barfield et al. [20]. In the Barfield method, we used the option to include

probes that directly overlapped with SNPs at the C site.

Identification of variably methylated probes

We were interested in exploring gap signals in the context of a typical step in the EWAS pipeline
to filter out probes that are of low variability. We calculated the standard deviation of all 473,
864 autosomal probes and calculated the percentages of gap and non-gap signals in the
remaining probe set after imposing various standard deviation filters. Our cutoffs were ranged

from the 5" to the 99" percentile of standard deviation across all probes.

Relating gap signals to underlying haplotypes

We sought to demonstrate the potential for gap signals to serve as a surrogate for the local
genetic sequence, on a haplotype scale. We phased our genotype data using the SHAPEIT
software [25]. After downloading a list of recombination hotspots from the 1000 Genomes

Project combined panel, we defined the locations between them as linkage disequilibrium (LD)
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blocks [33] and defined haplotypes from all of the measured SNPs within these LD block

regions.

Implementing gap hunting in an EWAS pipeline

We sought to illustrate the utility of incorporating gap hunting into a typical EWAS pipeline. We
downloaded 450k data from a previous study examining placenta methylation and newborn
neurobehavioral outcomes in 335 samples [34] from the Gene Expression Omnibus (GSE 75248)
[35]. We performed functional normalization [36], and then removed samples according the
following criteria: if the predicted sex via the getSex() function in the minfi package did not
match the self-reported sex (N = 4), and samples with a detection p-value greater than 0.01 in
more than 1% of probes (N =7). We removed probes at which more than 10% of samples had a
detection p-value greater than 0.01 (n = 1,959), and if they were previously identified as being
ambiguously mapping (n = 29,233) [12]. The resulting data included data on 454,502 probes and
324 samples. We performed ComBat to adjust for a known batch variable [37], and performed
surrogate variable analysis to remove additional confounding due to cell type heterogeneity [38],
in the absence of a reference panel of sorted placenta cell types. We did not remove probes that
map to SNPs identified via reference annotation, in order to apply gap hunting on all cleaned
probes. Finally, we removed probes mapping to sex chromosomes (as this was done in the
previous study), identified gap signals via gaphunter(), and used the limma R package [39] to
perform single-site association analyses relating DNAm to infant arousal, adjusting for gender
and birthweight. We then noted the number of suggestively significant (p-value < 1E-4) hits, the
number of these flagged as gap signals, and the number that would have been removed via SNP

annotation, using a doSNP137 annotation included in the minfi package.
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Figure 1: An example of a gap signal detected in SEED at cg01802772 via gap hunting. Top
panel: Gap hunting identified groups are shown in black, red, and green and correspond to
measured SEED genotypes TT, TC, and CC, respectively at rs299872. Bottom panel: Depiction
of variant locations relative to probe orientation. Blue color denotes the single base extension site
which also corresponds to the interrogated CpG site for this probe type (Type I1); black color
denotes 50 bp probe length. Y-axis lists variants present in the doSNP138 database with a
frequency greater than 0.5% and validated in more than 200 people.
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Figure 2: Predicted 450k signal for SNPs present at the interrogated CpG site. On the left,
in the ‘DNAm state’ column, we show the expected signal for methylated and unmethylated
CpG states, when no SNP is present, for both Type I and 11 probe designs. Middle (‘C site SNP’)
and right columns (‘G site SNP”) provide expected signals for SNPs in the C and G nucleotide
positions, respectively. For all columns, S denotes signal, NS denotes no signal, G and R denote
red and green channel signals, respectively. "CG represents methylated cytosine. IM and IV
denote probe design type | methylated and unmethylated probe types, respectively; 11 denotes
probe type I1. For type | design, methylated probes fluoresce and unmethylated probes yield no
signal when methylation is present. The type Il design fluoresces in the green and red channels
for methylated and unmethylated states, respectively. For forward strand interrogated CpG sites
(top), a C to G SNP mimics the methylated state; C to A and C to T SNPs mimic the
unmethylated state for Type Il probes but result in no signal for the Type I design. One exception
is for a C to T SNP because it mimics post-bisulfite converted unmethylated Cs. G site SNPs on
the forward strand produce no signal for both probe designs because they inhibit single-base
extension. Reverse strand probes (bottom), are defined relative to the top strand, so the expected
signal scenarios are the converse of what is expected for the forward strand (i.e. G site with some
signal, C site with comprehensively no signal).
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Figure 3: Predicted type I probe signal for individuals with a SBE site-associated SNP. For
Type | probes, the SBE is located 1 bp upstream of the C site for interrogations on the forward
strand, and 2 bp downstream of the C site for interrogations on the reverse strand (defining the C
site location using the forward strand). Enumerating signal expectations requires consideration of
bisulfite conversion, complementary bases, the expected color channel for fluorescence, and if
those latter two factors change in the presence of SNP. Of note is that C and G bases are labeled
to fluoresce green signal while A and T bases are labeled to fluoresce red signal (hence the
existence of ‘Type I Red” and ‘Type I Green’ probes). For example, consider a forward strand
type | probe with a C nucleotide at the SBE position, based on a reference genome sequence (top
row). After bisulfite conversion this base will change to a T, the complementary SBE base is an
A, which fluoresces in the red channel. If instead of a C there is a G at the SBE due to a C/G
SNP, the SBE incorporated nucleotide would be a C and fluoresce in the green channel. Because
the software is programmed to read only the red channel, no fluorescent signal will be detected
when a G SNP is present. Inferring the scenarios for interrogating a CpG site on the reverse
strand requires similar reasoning but with the added consideration of complementary bases.
Abbreviations: N/A — not applicable (that SNP cannot exist there), S — signal, NS — no signal.
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Figure 4: The influence of a C/G SNP located at the interrogated cytosine on reported
methylation signal in Type Il forward strand probes. (A) Percent methylation vs. genotype
plot shows a positive correlation between percent methylation and dosage of the G allele. (B)
Methylated signal vs genotype plot shows a positive correlation between methylated signal and
dosage of the G allele. (C) Unmethylated signal vs genotype plot shows a negative correlation
between methylated signal and dosage of the G allele (D) Copy number metric vs genotype plot

shows a negative correlation between copy number and dosage of the G allele.
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Figure 5: The effect of a G/T SNP at the SBE site of Type | probes on percent methylation,
methylated signal, unmethylated signal, and a copy number metric. Percent methylation
(beta value), methylated signal, unmethylated signal, and a copy number metric plotted against
genotype for Type | probes interrogating a CpG site on the forward strand, when the G is the
reference genotype. Information was collected across 2 probes. There is an inverse association

between dosage of the T allele and signal produced, as predicted in Figure 3.
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Figure 6: The effect of probe SNPs on methylated signal and unmethylated signal in Type
Il probes. We isolated specific probes that met the following conditions: it contained a measured
SNP in the 50bp probe length outside of the C, G and/or SBE sites, and it contained only a single
SNP in the probe length. The probes that met our criteria varied in distance from 1-50 base pairs
from the interrogated CpG site. At each distance value, we plotted the mean (shown by dotted
lines) and inter-quartile range (greyed area) of the people who were homozygous for the
reference allele (shown in red), heterozygous (shown in green) or homozygous for the minor
allele (shown in blue). Lack of signal concordance across these 3 groups indicates stronger SNP
influences on signal. For both methylated (Panel A) and unmethylated signals (Panel B),
polymorphisms closer to the C site show stronger influences on signal. The influence is strongest
up to approximately 10 bp but is observed up to roughly 20 bp from the measured C-site.
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Figure 7: Examples of probes with a polymorphism that do not result in a gap signal. Most
probes that overlap with SEED SNPs are not classified as gap signals. These probes can
generally be grouped into 3 categories: Panel A: In SEED, cg14613402 overlaps with a C/T SNP
at the interrogated C site and displays a negative correlation with dosage of the T allele.
However, a discrete difference in the groups is not achieved. Panel B: cg15012523 overlaps with
a C/T SNP at the interrogated C site and also displays a negative correlation with dosage of the T
allele. Here, a discrete difference does existence between the TT genotype and others and thus
would be identified via gap hunting; it would be classified as an outlier-driven signal with the
default algorithm arguments, however (see Methods). Panel C: cg15283160 overlaps with a C/T
SNP at the interrogated C site but displays no variability in beta value.
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Figure 8: Distributions of standard deviations among 6 categories of 450K probes. All
autosomal probes (n = 473,864) were classified into one of six groups: (1) non-gap probes that
lack a SEED SNP, dbSNP-annotated polymorphism, or UCSC-annotated repeat that map to the
probe (n =301,590; shown in black), (2) non-gap probes with at least one SEED SNP present in
the probe (n = 62,005; shown in red), (3) non-gap probes that do not contain a SEED SNP but do
have an annotated variant as indicated by the dbSNP138 database or map to a UCSC-annotated
repeat (n = 99,262; shown in blue), (4) gap probes that lack a SEED SNP, dbSNP-annotated
polymorphism, or UCSC-annotated repeat that map to the probe (n = 1,808; shown in purple),
(5) gap probes with at least one SEED SNP present in the probe (n = 5,453; shown in green), (6)
gap probes that do not contain a SEED SNP but do have an annotated SNP as indicated by the
dbSNP138 database or map to a UCSC-annotated repeat (n = 3,746; shown in orange). The 3
non-gap probe distributions are distinct from the gap probe distribution but show some overlap;
suggesting some probes with ‘gap-like’ distributions are not captured by gap hunting (also see
Figure 7 for explanation). The gap probe distribution for those probes with annotated SNPs
(green and orange) has a slightly higher area under the curve at higher standard deviation values
(especially for the Type Il design), which is likely due to the generally higher allele frequencies
for the annotated SNPs compared to the measured SNPs (see Additional File 8). Gap probes
lacking any probe SNPs form a distinct distribution, especially for the Type 11 design (purple).
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Figure 9: Comparison of several different methods, including gap probes, for population
stratification adjustment. Points are colored according to self-reported race with Caucasian
shown in blue, African American shown in black, and Other shown in purple. Each panel
contains a series of plots in which the values plotted are dictated by the row (y-axis) and column
(x-axis). For example the top row will plot PC 1 (y-axis) vs PCs 2, 3, and 4 (x-axis). Panel A:
Eigenvectors generated from GWAS data using the EIGENSTRAT software [21]. Panel B: PCs
generated from probes overlapping with 1000 Genomes-annotated SNPs (0 bp from C site
option) as demonstrated by Barfield et al. [20]. Panel C: PCs generated from gap signals, which
perform similarly to the existing methylation-based method to account for ancestry in EWA-
studies show in Panel B.
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Figure 10: Relationship between DNA methylation (DNAm) clusters, identified by gap
hunting at cg12162195, and local haplotypes among the same individuals. (A) Percent
methylation at cg12162195 vs. gap hunting-defined DNAm group. (B) Individual haplotypes
sorted by gap hunting-defined DNAm group. Each column represents a genotyped SNP at a
specific locus across all individuals with corresponding DNAm data. Each row denotes an
individual’s local haplotype for the region that contains cg12162195. There are two rows per
individual, one per haplotype. The arrow at the top of the plot depicts the location of cg12162195
within the haplotype region. Gap hunting-identified groups correspond to different sets of
haplotypes; these methylation groups can be used as surrogates of these haplotype groups. (C)
Depiction of variant locations relative to probe orientation. Blue color indicates the single base
extension site; black color denotes 450K probe; pink denotes the interrogated CpG site. Y-axis
lists variants present in the dbSNP138 database with a frequency greater than 0.5% and validated
in more than 200 people.


https://doi.org/10.1101/059659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/059659; this version posted November 17, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

cg12209881* cg14845908 ©g20555674" cg01613406 cg13604887

' ‘Q"' "J
L]

Percent l\.ielhy\allan
Percent h.ielhy\atlon
Percent l\.ielhy\allan
Percent l\.ielhy\allan
Percent h.ielhy\atlon

Figure 11: Five gap signals identified in the list of 56 probes that attained suggestive
significance (p < 1E-4) with newborn arousal in a publically available dataset. There is 1
plot for each probe, with percent methylation plotted on the y-axis and newborn arousal score
plotted on the x-axis. Each sample is colored by its gap hunting-identified group. The * indicates
a probe that would have been filtered out via the dobSNP137 reference annotation in the minfi
package.


https://doi.org/10.1101/059659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/059659; this version posted November 17, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Additional Files

Additional File 1 — Figure S1: Number of gap signals detected in SEED at various
combinations of the ‘threshold’ and ‘outCutoff” arguments to gaphunter().

Additional File 2 — Figure S2: Examples of non-gap and gap signals found in SEED at 5%
‘threshold’ argument and 1% ‘outCutoff’ argument. Panel A: 5 probes not identified as gap
signals. Panel B: 5 probes identified as gap signals with 2 clusters. Panel C: 5 probes identified
as gap signals with 3 clusters.

Additional File 3 — Table S1: Distribution of group counts for gap signals in SEED.
Breakdown of number of groups or clusters in the 11,007 gap signals found in SEED samples.

Additional File 4 — Table S2: Breakdown of all C/G and SBE site measured polymorphism
scenarios. We isolated specifics scenarios in which the following conditions were met: a probe
contained a measured SNP that mapped to the C, G, or SBE sites of a probe, and it also did not
contain any other form of mapping SNP. This table contains a list of all SNP C, G and SBE site
scenarios herein and their corresponding Figure #. Also included is the number of probes
analyzed for each scenario, along with the count and proportion of those probes that were
classified as gap signals. Most probes in SEED that overlapped with measured SNPs were not
classified as gap signals (though ~80% of gap signals did overlap with SNPs, see Additional
File 7).

Additional File 5 — Figures S3-S25: All Remaining C and G site scenarios for Type Il and
Type | probes. Each additional scenario of a C and G site-mapping SNP delimited in Figure 2
not including the scenario show in Figure 3. Each of these figures contains the same panels (A-
D) as seen in Figure 3 All scenarios demonstrate the expected behavior shown in Figure 2.

Additional File 6 — Figures S26-S31: All Remaining SBE site scenarios. Each additional
scenario of a SBE site-mapping SNP delimited in Figure 4 not including the scenario shown in
Figure 5. Each of these figures contains 4 plots, showing every combination of CpG site
interrogations on the forward and reverse strand as well as which nucleotide is the reference
nucleotide.

Additional File 7 — Figure S32: The effect of SNPs located in Type | probes outside of the
CpG or SBE position on methylated signal and unmethylated signal. We examined specific
scenarios in which the following conditions were met: a probe contained a measured SNP in the
50bp probe length, it also did not contain a SNP mapping to the C, G and/or SBE sites, and it
contained only a single SNP in the probe length. We found all probes that met this criteria and
varying values of distance from the SNP to the measured C site (1-50 bp). At each distance
value, we plotted the mean and inter-quartile range of the people who were homozygous for the
reference allele (‘Major Homozygote’), heterozygous (‘Heterozygote’) or homozygous for the
minor allele (‘Minor Homozygote’). The degree of overlap between these 3 lines and their
respective IQRs therefore demonstrates the effect of a polymorphism on subsequent 450k signal;
the lack of overlap is directly correlated to an increased influence of the polymorphism. For both
methylated signal (Panel A) and unmethylated signal (Panel B), polymorphisms at closer
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distance to the C site drive discordance between the 3 genotype groups. The relationship is less
clear than for Type Il probes, most likely because there are fewer Type | probes generally (and
further fewer in this specific scenario) and the Type | design assumes that CpG sites within the
probe length match that the methylation state of the interrogated CpG site. This assumption
would be violated given our inclusion criteria for this analysis if the polymorphisms in question
here occur at the C site of CpG site within the 50 bp probe length.

Additional File 8 — Figure S33: MAF distributions of measured SNPs vs annotated SNPs
that map to 450k probes. We calculated the minor allele frequency (MAF) of all measured
SNPs that mapped to gap signals, and determined the MAF for all of the annotated SNPs that
map to gap signals as seen in the dbSNP138 annotation. The greater amount of SNPs with high
MAF (>0.1) in the annotated SNP group may account for the higher area under the curve at
higher standard deviation values as seen in Figure 8.

Additional File 9 — Table S3: Group distributions of 3 different classifications of gap
signals. We compared the group distribution for the three groups — mapping measured SNP,
mapping annotated SNP, and no mapping SNP — of gap signals. The two groups with mapping
SNPs had a very similar relative proportion of groups, while the group with no mapping SNPs
was comparatively enriched for distributions with 2 clusters or groups. This result lends
additional rationale to a different mechanism besides SNPs as leading the gap signal behavior.

Additional File 10 — Table S4: Alternatives to gap hunting do not correctly identify
polymorphism-affected clusters. For the probes shown in Figure 7 and the gap signal in
Figure 1, we explored other ways of identifying clusters. Specifically we examined a Gaussian
mixture model clustering algorithm that selects an optimal number of clusters based on the
Bayesian information criterion, and the dip test for unimodality (alternative hypothesis is that
distribution is multi-modal). We recorded the number of clusters selected by the mixture model
algorithm and the dip test p-value.

Additional File 11 — Figure S34: Filtering on variably methylated probes at various cutoffs
in the context of gap signals. We calculated the proportion of gap and non-gap signals at
various percentile thresholds of standard deviation cutoff (1% to 99%) to define a variably
methylated probe. Researchers who filter on variable methylation prior to association analysis
should be cautioned to be increasingly aware of gap signals (and subsequently their implications
on DNAm related to disease described herein) as the cutoff to define a variably methylated probe
increases.
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