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Abstract

Genome wide association studies have identified numerous regions in the genome
associated with hundreds of human diseases. Building accurate genetic risk prediction
models from these data will have great impacts on disease prevention and treatment
strategies. However, prediction accuracy remains moderate for most diseases, which is
largely due to the challenges in identifying all the disease-associated variants and
accurately estimating their effect sizes. We introduce AnnoPred, a principled framework
that incorporates diverse functional annotation data to improve risk prediction accuracy,

and demonstrate its performance on multiple human complex diseases.
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Main

Achieving accurate disease risk prediction using genetic information is a major goal in
human genetics research and precision medicine. Accurate prediction models will have
great impacts on disease prevention and early treatment strategies [1]. Advancements in
high-throughput genotyping technologies and imputation techniques have greatly
accelerated discoveries in genome-wide association studies (GWAS) [2]. Various
approaches that utilize genome-wide data in genetic risk prediction have been proposed,
including machine-learning models trained on individual-level genotype and phenotype
data [3-8], and polygenic risk scores (PRS) estimated using GWAS summary statistics [9,
10]. Despite the potential information loss in summary data, PRS-based approaches have
been widely adopted in practice since the summary statistics for large-scale association
studies are often easily accessible [11, 12]. However, prediction accuracies for most
complex diseases remain moderate, which is largely due to the challenges in both
identifying all the functionally relevant variants and accurately estimating their effect

sizes in the presence of linkage disequilibrium (LD) [13].

Explicit modeling and incorporation of external information, e.g. pleiotropy [7, 8] and
LD [10], has been shown to effectively improve risk prediction accuracy. Recent
advancements in integrative genomic functional annotation, coupled with the rich
collection of summary statistics from GWAS, have enabled increase of statistical power
in several different settings [14, 15]. To our knowledge, the impact of functional

annotations on performance of genetic risk prediction has not been systematically studied.
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Here, we introduce AnnoPred (available at https://github.com/yiminghu/AnnoPred), a
principled framework that integrates GWAS summary statistics with various types of
annotation data to improve risk prediction accuracy. We compare AnnoPred with state-
of-the-art PRS-based approaches and demonstrate its consistent improvement in risk
prediction performance using both simulations and real data of multiple human complex

diseases.

AnnoPred risk prediction framework has three main stages (Methods). First, we estimate
GWAS signal enrichment in 61 different annotation categories, including functional
genome predicted by GenoCanyon scores [14], GenoSkyline tissue-specific functionality
scores of 7 tissue types [15], and 53 baseline annotations [16]. Second, we propose an
empirical prior of SNP effect size based on annotation assignment and signal enrichment.
In general, SNPs located in annotation categories that are highly enriched for GWAS
signals receive a higher effect size prior. Finally, the empirical prior is adopted in a
Bayesian framework in which marginal summary statistics and LD matrix are jointly

modeled to infer the posterior effect size of each SNP. AnnoPred PRS is defined by
M
PRS = ZXjEA(ﬁjm,ﬁ)
j=1

where X; and f; are the standardized genotype and effect size of the i™ SNP, respectively,

f is the marginal estimate of 8, D is the sample LD matrix, and E, denotes the posterior
expectation under an empirical prior based on annotation assignment for all SNPs in the

dataset (Methods).
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We first performed simulations to demonstrate AnnoPred’s ability to improve risk
prediction accuracy. We compared AnnoPred with four popular PRS approaches
(Methods), i.e. PRS based on genome-wide significant SNPs (PRSs;,), PRS based on all
SNPs in the dataset (PRS,j), PRS based on tuned cutoffs for p-values and LD pruning
(PRSp.1), and recently proposed LDpred [10]. Mean correlations between simulated and
predicted traits were calculated from 100 replicates under different simulation settings
(Methods). AnnoPred showed the best prediction performance in all settings (Table 1).
In general, performance of PRSg;,, PRSp.1, LDpred, and AnnoPred all improved under a
sparser genetic model and higher trait heritability. PRS,; showed comparable
performance between sparse and polygenic models but its prediction accuracy was
consistently worse than other methods. Sample size in the training set was also crucial for
risk prediction accuracy. Doubling the training samples led to about 1.5-fold increase in

AnnoPred’s performance under different settings in our simulations.

To further illustrate the improvement in risk prediction performance, we applied
AnnoPred to five human complex diseases -- Crohn’s disease (CD), breast cancer (BC),
rheumatoid arthritis (RA), type-II diabetes (T2D), and celiac disease (CEL). We first
estimated GWAS signal enrichment in different annotation categories (Methods).
Enrichment pattern varies greatly across diseases (Figure 1A; Supplementary Tables 1),
reflecting the genetic basis of these complex phenotypes. Functional genome predicted by
GenoCanyon scores was consistently and significantly enriched for all five diseases.

Blood was strongly enriched for three immune diseases, namely CD (P=8.9x10"'%), CEL
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(P=7.0x10"), and RA (P=9.9x10"), while gastrointestinal (GI) tract was enriched in CD
(P=2.6x10") and CEL (P=1.4x10""), both of which have a known GI component. For BC,
epithelium (P=7.4x% 10, GI (P=5.9x10"), and muscle (P=6.1x107) were significantly
enriched. Next, we evaluated the effectiveness of proposed empirical effect size prior in
three diseases (i.e. CD, CEL, and RA) with well-powered testing cohorts (N>2,000).
Interestingly, despite the highly variable enrichment results in training datasets,
integrative effect size prior could effectively identify SNPs with large effect sizes and

consistent effect directions in independent validation cohorts (Figures 1B and 1C).

Area under the receiver operating characteristic curve (AUC) for different approaches is
summarized in Table 2. AnnoPred showed consistently improved prediction accuracy
compared with all other methods across five diseases. Notably, PRSi; and PRS,; showed
suboptimal performance in these datasets, reaffirming the importance of modeling LD
and other external information. To test different methods’ ability to stratify individuals
with high risk, we compared the proportion of cases among testing samples with high
PRS. AnnoPred outperformed all other methods in CD, CEL, RA, and T2D
(Supplementary Figure 1). Next, we tested AnnoPred’s performance using only the 53
baseline annotations and observed a substantial drop in prediction accuracy for all
diseases (Supplementary Table 2). These results highlight the importance of annotation
quality in genetic risk prediction, and also demonstrate GenoCanyon and GenoSkyline’s

ability to accurately identify functionality in the human genome.
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Due to distinct allele frequencies and LD structures across populations, risk prediction
accuracy usually drops when the training and testing samples are from different
populations. In order to investigate the robustness of AnnoPred against population
heterogeneity, we applied AnnoPred to three non-European cohorts for breast cancer and
type-II diabetes while training the model using summary statistics from European-based
studies. The AUCs are summarized in Supplementary Table 3. As expected, we
observed a drop in prediction accuracy for all methods. However, AnnoPred still

performed the best in all three trans-ethnic validation datasets.

Our work demonstrates that functional annotations can effectively improve performance
of genetic risk prediction. AnnoPred jointly analyzes diverse types of annotation data and
GWAS summary statistics to provide accurate estimates of SNP effect sizes, which lead
to consistently better prediction accuracy for multiple complex diseases. Our method is
not without limitation. First, despite the consistent improvement compared with existing
PRS-based methods, AUCs for most diseases remain moderate. In order to effectively
stratify risk groups for clinical usage, our model remains to be further calibrated using
large cohorts with measured environmental and clinical risk factors [1]. Second, accurate
estimation of GWAS signal enrichment and SNP effect sizes requires a large sample size
for the training dataset. This could be potentially improved by better estimators for
annotation-stratified heritability in the future [17]. The rich collection of publicly
available integrative annotation data, in conjunction with the increasing accessibility of
GWAS summary statistics, makes AnnoPred a customizable and powerful tool. As

GWAS sample size continues to grow, AnnoPred has the potential to achieve even better
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prediction accuracy and become widely adopted as a summary of genetic contribution in

clinical applications of risk prediction.
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Methods

Annotation data

We incorporated GenoCanyon general functionality scores [14], GenoSkyline tissue-
specific functionality scores for seven tissue types (brain, gastrointestinal tract, lung,
heart, blood, muscle, and epithelium) [15], and 53 LDSC baseline annotations [16] into
our model (Supplementary Table 1). We smoothened GenoCanyon annotation by taking
the mean GenoCanyon score using a 10Kb window as previously suggested [18]. The
smoothened GenoCanyon annotation and raw GenoSkyline annotations of seven tissue
types were dichotomized based on a cutoff of 0.5. The regions with GenoCanyon or
GenoSkyline scores greater than the cutoff were interpreted as non-tissue-specific or
tissue-specific functional regions in the human genome. Such dichotomization has been
previously shown to be robust against the cutoff choice [15]. Notably, the AnnoPred

framework allows users to specify their own choice of annotations.

Heritability partition
We assume throughout the paper that both the phenotype Yy, and the genotypes Xy«
are standardized with mean zero and variance one. We assume a linear model.

Yux1 = XyxmBux1 + enxa
X, B and € are mutually independent. We also assume that £ is a random effect and
effects of different SNPs are independent. A key idea in the AnnoPred framework is to

utilize functional annotation information to accurately estimate SNPs’ effect sizes. In
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order to achieve that, we first partition trait heritability by annotations using LD score
regression [16]. Per-SNP heritability is defined as the variance of B; for the i SNP, and
is used to quantify SNP effect sizes. More specifically, assume there are K + 1 pre-
defined annotation categories, denoted as Sy, Sy, ..., Sk with S, representing the entire
genome. Under an additive assumption for heritability in overlapped annotations, we

have B;~N(0,% ;. e s 1j), where 7, Ty, ..., Ty quantify the contribution to per-SNP

heritability from each annotation category. Denote the estimated marginal effect size of

A T
the i™ SNP as §3; = %, then we have the following approximation
E(NB?) ~ (N — 1)2 Tol(i, ) + 1
k

where [(i, k) is the annotation-stratified LD score and N denotes the total sample size.
Regression coefficients 7, are estimated through weighted least squares. The estimated

heritability of the i™ SNP is then Var(B) =Y. j:i€s; ij.

Empirical prior of effect size
Based on per-SNP heritability estimates, we propose two different priors for SNP effect
sizes to add flexibility against different genetic architecture. For the first prior, we

assume SNP effect size follows a spike-and-slab distribution

A2
Bi ~ poN <0; % /p0> + (1 = po)do
where p,, is the proportion of causal SNPs in the dataset, and §, is a Dirac function

representing a point mass at zero. The empirical variance of each SNP, i.e. 67, is
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determined by the annotation categories it falls in. More specifically, we assume
6t =c(X jiies; 1;), where c is a constant calculated from the following equation

z 6% = A2

i

We do not directly use ;. ;e s; 1; as the empirical variance prior because it is estimated in
the context where all SNPs in the 1000 genomes database are included in the model [16].
Such per-SNP heritability estimates cannot be extrapolated to the risk prediction context
where much fewer SNPs are analyzed [19]. Therefore, we rescale the heritability
estimates to better quantify each SNP’s contribution toward chip heritability. Following
[20], we use a summary statistics-based heritability estimator that approximates

Haseman-Elston estimator:

ﬁz — ()ZZ - 1)
NI

where 2 and [ denote mean N Blz and mean non-stratified LD score, respectively.

In the first prior, we assumed the same proportion of causal SNPs but different effect
sizes across annotation categories. We now describe the second prior that assumes
different proportions of but the same effect size for causal SNPs. To be specific, we
assume causal effect size to be Var(Bequsar) = V, the total number of SNPs to be M,
and the overall proportion of causal SNPs to be p,. The total heritability HZ could then be
written as HZ = poM,V. For the i SNP, use T; = (n;, i€s; 5;) 0 (N igs,, Sk) to denote
the collection of SNPs that share the same annotation assignment with the i SNP, and let

My, = |T;|, i.e. number of SNPs in the set. Then, the total heritability of SNPs in T is


https://doi.org/10.1101/058768
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058768; this version posted June 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

H 72~i = pr,;My7,V, with pr, denoting the proportion of causal SNPs in T;. Following these

notations, we have

ﬁi ~ pTl'N(O) V) + (1 - pTl')aO

2
H, MoHT, = . .
where V = p—;\’] and pr, = po 53— Weuse H 2 to estimate HZ, and use the following
oNo T;"o

formula to estimate H7,.

772
T;

_ ZkeTl- Zj: kes; Tj 02

=M .
Zkil Zj:kesj' T

Finally, p, is treated as a tuning parameter for both prior functions in our analysis.

Calculation of posterior effect sizes

By Bayes’ rule, the posterior distribution of § is:
f(B18,D) < £(B|8.D)f ()

where D = %X TX is the sample correlation matrix and f§ = %X TY is the marginal effect

size estimates. Given 8 and D, 8 follows a multivariate normal distribution

asymptotically with the following mean and variance
Al 1 ~ ~ ~
E(B|B.D) = N [E(X"XB|B,D) + E(X"¢|p,D)] = DB

Var(B|B,D) = Var <%XT8 ,8,5) = %(1 —h2)D

However, D is usually non-invertible and has very high dimensions. We thus study the
posterior distribution of a small chunk of f instead. Let /3, be the estimated marginal

effect size of SNPs in a region b (e.g. a LD block) and the corresponding genotype matrix
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is X}, and sample correlation matrix is D;. Then the conditional mean and variance of 5},

are
~ - 1 N ) D
E(By|By, D) = N[E(XngfBerb) +E(X5¢[By Dy)] = DoBy
~ = 1 T T D
Var(By|y Dy) = mvar(xb XpBp + X (X_pB-p + €8y, D)
1 T A
= mvar(xb (X—bﬁ—b + S)lﬁb’ Db)
1 . A
= FX,, var(X_bﬁ_b + 8|ﬁb»Db)Xb
1 PP
= N(l — hy)Dy

where hi = Y; ¢, 67 is the heritability of SNPs in region b, and X_, and _,, denote the

genotype matrix and effect sizes of SNPs not in region b. The conditional distribution of
By is:

" - 1 ~
f(By|By, Dp) < N (Dbﬁbﬂﬁ(l - hIZJ)Db> Hf(ﬁi)

i€b

~ 1 - 2
N (Dbﬁb,ﬁ 1- hlz,)Db> 1_[ [pON (0, % /p0> +(1- p0)6o] ,under the first prior
ieb

~ 1 -
N (Dbﬁb,ﬁ 1- h,z,)Db> 1_[[ pr,N(O,V) + (1 - pTi)60] ,under the second prior

i €b

[od

Although it is difficult to derive E (B, |8y, D) from the joint conditional distribution of

By, each element of B, follows a mixed normal distribution conditioning on S, D,,, and
all other elements in f;,. Therefore, we could apply a Gibbs sampler to draw samples

from f (,Bb | By, ﬁb) and use the sample mean as an approximation for E (ﬁb | By, 5,,).

Calculation of PRS
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PRS is calculated using the following formula

PRS = ¥jLy X;E+(B;15. D),
where E, denotes the posterior expectation as described above. In practice, the
individual-level genotype matrix is not available and we use the LD matrix estimated
from a reference panel or the validation samples to substitute D. We apply the same
standard of choosing the size of b as described in [10]. Choices of prior and p, can be
tuned in an independent cohort. For the data analysis described in this work, we adopted
a cross-validation scheme. We tuned parameters using half of the testing samples and
evaluated prediction accuracy using the other half, and then repeated the analysis after
reversing the two sample subsets. Finally, we reported the mean AUC of two cross-

validations.

Other methods for comparison

We compared AnnoPred with four commonly used risk prediction methods based on
summary data of association studies. PRSq;, and PRS,; were both calculated as the inner
product of marginal effect size estimates and the corresponding genotypes. PRS,; used all
the SNPs that are shared between training and testing datasets while PRS;, only used
SNPs with p-values below 5%1078 in the training set. We downloaded python code for
PRSpir and LDpred from Bitbucket (https://bitbucket.org/bjarni_vilhjalmsson/ldpred).

All the tuning parameters were tuned through cross-validation as we did for AnnoPred.
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Simulation settings

We simulated traits from WTCCC genotype data, which contain 15,918 individuals
genotyped for 393,273 SNPs after filtering variants with missing rate above 1% and
individuals with genetic relatedness above 0.05. We first generated two annotations and
each annotation was simulated by randomly selecting 10% of the genome, denoted as A,

and A,. Denote the heritability of the trait as hf, (25% or 50%) and the number of causal
variants as m (300 or 3,000). Causal variants were generated as follows: m/3 causal

variants were selected from A, m/ 3 from A, and the rest from (4, UA,)C. Effect sizes of

. h2 . .
causal variants were sampled from N (0, ;g). For each simulation, we used 70% of the

data to calculate the training summary statistics and randomly divided the rest 30% into
two parts for parameter tuning. We also randomly selected half of the training data to
calculate summary statistics in order to study the effect of sample size on prediction

accuracy.

GWAS summary statistics and validation data

We trained AnnoPred using publicly accessible GWAS summary statistics and evaluated
risk prediction performance using individual-level genotype and phenotype data from
cohorts independent from the training samples. Details for each training and testing

dataset are provided in Supplementary Notes and Supplementary Table 4.

For Crohn’s disease, we trained the model using summary statistics from International

Inflammatory Bowel Disease Genetics Consortium (IIBDGC; N¢ase=6,333 and
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Neontror=15,056) [21]. Samples from the Wellcome Trust Case Control Consortium
(WTCCC) were removed from the meta-analysis and used as the validation dataset
(Nease=1,689 and Neoniro=2,891) [22]. For breast cancer, we trained the model using
summary statistics from Genetic Associations and Mechanisms in Oncology (GAME-ON)
study (Nease=16,003 and Neontro=41,335) [23], and tested the performance using samples
from the Cancer Genetic Markers of Susceptibility (CGEMS) study (Ncase=966 and
Neontror=70) [24]. Shared samples between CGEMS and GAME-ON were removed. We
used samples from the CIDR-GWAS of breast cancer for trans-ethnic analysis
(Nease=1,666 and Neoniro=2,038) [25]. For rheumatoid arthritis, we used summary
statistics from a meta-analysis with 5,539 cases and 20,169 controls to train the model
[26]. WTCCC samples were removed from the meta-analysis and used for validation
(Nease=1,829 and Neonirol=2,892) [22]. For type-II diabetes, the training dataset is Diabetes
Genetics Replication and Meta-analysis (DIAGRAM) consortium GWAS with 12,171
cases and 56,862 controls [27]. We used samples from Northwestern NUgene Project for
validation (Ncase=662 and Neontro=517) [28]. Samples from Institute for Personalized
Medicine (IPM) eMERGE project are used for trans-ethnic analysis (African American:
Nease=517 and Neonro=213; Hispanic: Nease=477 and Neontroi=102) [29]. The training
dataset for celiac disease is from a GWAS with 4,533 cases and 10,750 controls [30].
Samples in the National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK) celiac disease study were used for validation (Ngase=1,716 and Neopiro=530)

[31].
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Software availability
AnnoPred software and source code are freely available online at

https://github.com/yiminghu/AnnoPred
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Figures and Tables

Figure 1. Evaluating effectiveness of annotations and empirical effect size prior. (A)
GWAS signal enrichment across GenoCanyon and tissue-specific GenoSkyline
annotations. The horizontal lines mark p-value cutoffs of 0.05 and Bonferroni corrected

significance level. (B) Comparing signal strength of SNPs with high priors and low priors

in independent validation cohorts. SNPs with higher priors have significantly stronger

associations across three independent and well-powered testing datasets (N>2,000). P-
values were calculated using one-sided Kolmogorov-Smirnov test. (C) Comparing
consistency of SNPs’ effect direction between training and testing datasets. Each bar
quantifies the proportion of SNPs with consistent effect directions. P-values were
calculated using one-sided two-sample binomial test.
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Table 1. Mean correlation between simulated and predicted traits calculated from
100 replicates under different simulation settings. The highest mean correlations are
highlighted in boldface. Standard deviations are shown in parentheses.

Training samples  Heritability #Causal PRS;;, PRSan PRSp+1 LDpred AnnoPred
0.25 300 0.149(.028) 0.08(.021)  0.25(.028)  0.279(.025)  0.286(.024)

Half ' 3000 NA* 0.082(.016) 0.073(.020) 0.087(.019)  0.096(.020)

05 300 0.304(.04) 0.16(.022)  0.48(.026)  0.502(.033)  0.512(.026)

] 3000 NA* 0.157(.019) 0.157(.024) 0.195(.021)  0.209(.019)

0.25 300 0.217(.031) 0.11(.02) 0.332(.023) 0.35(.033) 0.358(.022)

Full ) 3000 NA* 0.11(.014) 0.107(.018) 0.136(.017)  0.145(.017)

0.5 300 0.373(.036) 0.213(.023) 0.548(.024) 0.557(.047) 0.566(.034)

) 3000 0.078(.023) 0.21(.019)  0.243(.021) 0.309(.021)  0.324(.019)

* NA means no SNP achieves genome-wide significance level (5e-8).
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Table 2. AUCs of different methods. The highest AUCs are highlighted in boldface.

Disease/Trait PRS;;e PRS.n PRSp+1 LDpred  AnnoPred
Crohn's Disease 0.659 0.634 0.690 0.689 0.702
Breast Cancer 0.553 0.581 0.598 0.632 0.665
Rheumatoid Arthritis 0.617 0.566 0.645 0.661 0.665
Type-II Diabetes 0.596 0.586 0.616 0.609 0.623

Celiac Disease 0.576 0.593 0.624 0.631 0.640
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Supplementary Notes

Details on GWAS summary statistics and validation data

For Crohn’s disease, we used International Inflammatory Bowel Disease Genetics
Consortium (IIBDGC) summary statistics (6,333 Crohn’s disease patients and 15,056
controls) [1]. WTCCC was removed from the meta-analysis and used as a validation set
[2]. We filtered individuals with genetic relatedness larger than 0.05 and SNPs with a
missing rate larger than 1% and a minor allele frequency less than 1%. In addition, we
filtered SNPs with ambiguous nucleotides and kept SNPs matched the summary statistics
by both rs number and alleles. After QC, the WTCCC cohort consisted of 1,689 cases and
2,891 controls with 218,833 SNPs overlapping the summary statistics.

For breast cancer, we used the Genetic Associations and Mechanisms in Oncology
(GAME-ON) summary statistics, consisting of 16,003 cases and 41,335 controls [3]. As
for validation data, we first removed individuals overlapped with BPC3 in GAME-ON
from Cancer Genetic Markers of Susceptibility (CGEMS) [4]. The validation set
consisted of 966 cases and 70 controls with 497,315 SNPs in common. Besides CGEMS,
we also used an African-American as validation data to see how the model performs on
different population. The data we used is CIDR-GWAS of Breast Cancer in the African
Diaspora (CIDR) [5]. After QC, CIDR consisted of 1,666 cases and 2,038 controls with
555,169 SNPs in common.

For rheumatoid arthritis, we used a meta-analysis consisting of 5,539 cases and 20,169
controls [6]. WTCCC was removed from the meta-analysis and used as a validation set
[2]. After QC, WTCCC cohort consisted of 1,829 cases and 2,892 controls with 274,486
SNPs in common.

For type-II diabetes, we used Diabetes Genetics Replication and Meta-analysis
(DIAGRAM) consortium GWAS summary statistics with 12,171 cases and 56,862
controls [7]. For testing data, we used Northwestern NUgene Project and after QC it
consisted of 662 cases and 517 controls with 479,345 SNPs in common [8].

For celiac disease, we used a GWAS consisting of 4,533 cases and 10,750 controls [9].
The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) celiac
disease data was used as validation data [10]. After QC, it consisted of 1,716 cases and
530 controls with 504,785 SNPs in common.


https://doi.org/10.1101/058768
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058768; this version posted June 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Figures

Supplementary Figure 1. Enrichment of proportion of cases in the top 5% testing
samples with high PRS.
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Supplementary Table 1. GWAS signal enrichment across 61 annotation categories.

BC CD RA CEL T2D

Category Fold SE P Fold SE P Fold SE P Fold SE P Fold SE P

base 0 1 0.00 NA 1 0.00 NA 1 0.00 NA 1 0.00 NA 1 0.00 NA
Coding_ UCSC_0 -0.51  6.73 8.22E-01  8.88 5.56 1.55E-01  2.35 10.80  9.00E-01  6.68 4.68 2.16E-01  2.65 6.72 8.06E-01
Coding_UCSC.extend.500_0 3.57 1.73 1.40E-01  4.77 1.10 5.62E-04  6.24 2.20 1.48E-02  3.41 1.44 9.28E-02  0.50 1.76 7.77E-01
Conserved_LindbladToh_0 1595  6.22 8.28E-03 4.44 3.40 3.01E-01 -525 6.68 3.44E-01 1042 5.06 5.27E-02  4.99 5.71 4.74E-01
Conserved_LindbladToh.extend.500_0 2.17 0.62 7.47E-02  2.46 0.35 1.10E-04  2.90 0.60 1.54E-03  1.76 0.46 9.87E-02  1.63 0.58 2.74E-01
CTCF_Hoffman 0 -2.87 638 5.40E-01 -4.67 4.64 2.07E-01  -1.55 7.69 7.37E-01  0.90 5.49 9.85E-01  -1.67 7.37 7.12E-01
CTCF_Hoffman.extend.500_0 -0.42 249 5.65E-01 -2.78 145 8.02E-03  -4.25 2.86 5.39E-02  1.08 1.88 9.68E-01  -0.60 2.46 5.04E-01
DGF_ENCODE 0 -0.97 246 4.18E-01  6.06 1.69 2.85E-03  5.81 3.28 1.31E-01  3.98 2.18 1.62E-01  -4.25 2.94 6.84E-02
DGF_ENCODE.extend.500_0 1.35 0.43 427E-01 1.87 0.25 1.67E-03  0.81 0.56 7.21E-01 1.29 0.34 4.01E-01 1.18 0.42 6.75E-01
DHS_peaks_Trynka 0 2.82 2.81 5.15E-01  5.86 1.75 4.05E-03  8.19 3.80 442E-02 3.03 2.50 4.17E-01  -2.71 3.59 2.91E-01
DHS_Trynka 0 4.26 2.21 1.51E-01  2.17 1.39 3.98E-01 2.26 2.73 6.41E-01  2.15 1.90 5.45E-01  -0.38 2.44 5.72E-01
DHS_Trynka.extend.500_0 1.17 0.50 7.26E-01  1.40 0.33 2.24E-01  1.07 0.65 9.11E-01  1.06 0.44 8.88E-01  1.46 0.49 3.60E-01
Enhancer_Andersson_0 2.80 2037 9.28E-01 28.66 1243 3.13E-02 -22.08 22.23 3.01E-01 12.86 16.78 4.82E-01 -26.80 17.84 9.05E-02
Enhancer_Andersson.extend.500_0 2.15 6.88 8.65E-01  16.53 4.77 3.02E-03 1.74 6.72 9.11E-01 1628 5.02 2.07E-03  -5.49 4.52 1.24E-01
Enhancer_Hoffman 0 0.68 3.70 9.30E-01  5.36 2.03 3.06E-02  4.07 428 4.65E-01 448 2.61 1.76E-01  -0.03 3.26 7.53E-01
Enhancer_Hoffman.extend.500_0 1.03 1.30 9.80E-01  3.67 0.86 2.25E-03  4.40 1.45 2.01E-02 425 1.00 1.42E-03  2.64 1.27 2.10E-01
FetalDHS Trynka 0 -321  3.63 2.12E-01 721 2.15 4.87E-03  4.04 4.38 4.75E-01  6.92 2.81 3.08E-02  -3.65 3.84 2.15E-01
FetalDHS Trynka.extend.500_0 0.73 0.96 7.74E-01  2.52 0.54 6.55E-03  2.48 1.17 2.27E-01 2.53 0.76 441E-02 1.06 0.97 9.53E-01
H3K27ac_Hnisz 0 1.97 0.41 1.03E-02  2.16 0.18 2.04E-09 2.33 0.40 6.38E-04  2.20 0.29 4.66E-05  1.50 0.36 1.60E-01
H3K27ac_Hnisz.extend.500_0 1.97 0.33 4.03E-03 2.11 0.21 2.01E-07 1.84 0.44 4.66E-02 226 0.28 432E-06 1.92 0.33 6.58E-03
H3K27ac_PGC2_0 0.92 0.92 9.28E-01  2.48 0.53 430E-03 224 1.14 2.72E-01  3.54 0.78 6.52E-04  1.18 0.89 8.36E-01
H3K27ac_PGC2.extend.500_0 3.20 0.55 9.59E-05  2.51 0.32 3.25E-06 2.85 0.73 7.75E-03  2.52 0.45 3.98E-04 1.84 0.53 1.20E-01
H3K4mel peaks Trynka 0 4.01 2.14 1.61E-01  1.92 1.37 5.04E-01 -1.53 2.42 2.92E-01 298 1.65 2.14E-01  0.20 2.16 7.07E-01
H3K4mel Trynka 0 1.04 0.64 9.48E-01  1.83 0.38 3.42E-02  0.11 0.92 3.15E-01  2.03 0.61 8.62E-02  1.64 0.64 3.04E-01
H3K4mel Trynka.extend.500_0 1.74 0.23 3.52E-03  1.62 0.15 8.41E-05 1.86 0.28 2.39E-03  1.72 0.20 7.31E-04 1.57 0.24 3.54E-02
H3K4me3_peaks Trynka 0 -1.61  4.67 5.80E-01  3.68 428 5.35E-01  6.85 6.64 3.71E-01  4.70 4.86 4.44E-01  -1.90 4.59 5.26E-01
H3K4me3_Trynka 0 2.15 1.60 4.66E-01 492 1.30 2.01E-03 2.54 2.12 4.59E-01 2.88 1.39 1.62E-01  1.72 1.55 6.41E-01
H3K4me3_Trynka.extend.500_0 1.55 0.68 4.19E-01 259 0.53 3.03E-03 2.29 0.94 1.72E-01  2.30 0.59 2.68E-02  1.78 0.70 2.70E-01
H3K9ac_peaks Trynka 0 2.10 5.70 8.45E-01 2.74 3.22 5.94E-01  0.50 6.41 9.38E-01  1.43 4.62 9.25E-01  -2.29 6.15 5.90E-01
H3K9ac_Trynka 0 3.08 2.10 2.92E-01 3.12 1.22 8.14E-02 3.94 2.13 1.42E-01 1.23 1.35 8.62E-01  3.30 1.76 1.85E-01
H3K9ac_Trynka.extend.500_0 1.16 0.90 8.55E-01 2.25 0.52 1.75E-02  0.18 1.08 431E-01 0.89 0.75 8.81E-01  2.58 0.80 3.98E-02
Intron_UCSC_0 1.48 0.28 6.26E-02  1.01 0.20 9.71E-01  1.11 0.36 7.60E-01 145 0.20 1.95E-02 1.24 0.26 3.40E-01
Intron_UCSC.extend.500_0 1.49 0.23 2.10E-02  1.28 0.17 7.83E-02 1.18 0.22 3.97E-01 1.52 0.19 3.54E-03 1.14 0.18 4.26E-01
PromoterFlanking Hoffman 0 8.22 10.50 4.84E-01 -9.46  6.53 1.14E-01  -1529 1498 2.72E-01 -7.06 8.2 3.43E-01 9.30 11.94  4.83E-01
PromoterFlanking Hoffman.extend.500_ 0  0.84 3.73 9.66E-01  2.35 2.44 5.80E-01  7.41 4.45 1.46E-01  2.83 2.84 5.16E-01  0.77 3.99 9.54E-01
Promoter UCSC_0 2.47 3.28 6.53E-01  3.85 2.39 2.36E-01  10.22 4.39 2.82E-02  0.99 2.57 9.96E-01  3.84 3.57 4.20E-01
Promoter_UCSC.extend.500_0 -0.69 1.84 3.73E-01  4.46 1.69 3.73E-02  5.60 2.46 5.05E-02  2.99 1.74 2.46E-01  1.06 1.86 9.74E-01
Repressed_Hoffman 0 -0.65  0.64 6.29E-03  0.06 0.35 4.36E-03  0.42 0.66 3.82E-01  0.11 0.51 6.82E-02  0.39 0.64 3.34E-01
Repressed_Hoffman.extend.500_0 0.81 0.16 2.04E-01  0.51 0.09 1.29E-07  0.48 0.20 6.04E-03  0.37 0.16 5.75E-06  0.74 0.16 1.07E-01
SuperEnhancer_Hnisz 0 2.52 0.55 429E-03 292 0.34 7.18E-09  2.77 0.61 4.10E-03 454 0.57 1.84E-12  1.37 0.53 4.83E-01
SuperEnhancer_Hnisz.extend.500_0 2.75 0.49 6.27E-04  3.03 0.34 2.41E-09 2.57 0.53 423E-03 445 0.53 9.33E-14 141 0.48 3.94E-01
TFBS_ENCODE 0 6.74 2.41 1.27E-02  4.17 1.67 6.19E-02  2.92 2.85 5.06E-01  6.84 1.96 2.17E-03  -1.26 2.57 3.63E-01
TFBS_ENCODE.extend.500_0 2.07 0.71 1.46E-01  2.22 0.45 4.95E-03 238 0.97 1.68E-01  1.89 0.58 1.35E-01  1.58 0.67 3.98E-01
Transcribed_Hoffman_0 2.24 0.80 9.63E-02  1.17 0.46 7.09E-01  0.86 0.81 8.62E-01  1.16 0.57 7.74E-01  2.19 0.78 1.02E-01
Transcribed_Hoffman.extend.500_0 0.79 0.23 3.43E-01 093 0.13 5.70E-01  0.63 0.28 1.70E-01  0.63 0.22 1.07E-01  0.80 0.21 3.43E-01
TSS_Hoffman 0 5.14 5.84 4.76E-01  9.19 4.71 9.43E-02  11.07 8.27 2.14E-01  23.15 7.27 8.53E-04  -1.98 6.53 6.48E-01
TSS_Hoffman.extend.500_0 0.32 3.42 8.42E-01 9.21 2.41 1.31E-03  9.75 4.45 437E-02  7.56 3.26 3.49E-02 -2.42 3.56 3.31E-01
UTR_3_UCSC_0 -3.46  6.88 5.09E-01  5.70 4.57 2.98E-01 7.15 7.39 4.05E-01  0.05 5.23 8.55E-01 -2.92 6.12 5.21E-01
UTR_3_UCSC.extend.500_0 0.62 2.97 8.98E-01  6.77 3.38 9.08E-02  0.00 3.58 7.81E-01  1.27 2.49 9.14E-01  -0.41 2.54 5.80E-01
UTR_5_UCSC_0 -8.59  10.57 3.46E-01 3.17 8.61 8.00E-01  -6.10 18.24  6.86E-01 11.58 828 1.99E-01  15.88 2442  5.41E-01
UTR_5_UCSC.extend.500_0 3.67 3.02 3.76E-01  3.88 2.11 1.79E-01  6.42 3.66 1.37E-01  1.56 2.38 8.12E-01 2.74 3.47 6.13E-01
WeakEnhancer Hoffman 0 2.37 7.49 8.55E-01  10.64 4.90 5.20E-02  10.22 8.98 2.98E-01 14.51 645 2.88E-02  1.80 9.24 9.30E-01
WeakEnhancer Hoffman.extend.500_0 2.77 1.76 3.08E-01 2.46 1.27 2.43E-01 495 2.32 1.00E-01  3.90 1.49 6.28E-02  3.86 1.99 1.73E-01
GenoCanyon 2.04 0.29 420E-04 237 0.19 1.27E-10  2.56 0.41 6.66E-05  2.76 0.29 2.01E-12 192 0.26 5.82E-04
GenoSkyline-Brain 3.97 2.00 1.18E-01  3.06 1.14 7.35E-02  1.89 2.01 6.52E-01  1.95 1.47 5.13E-01  -0.04 1.90 5.80E-01
GenoSkyline-GI 6.61 2.11 5.87E-03  6.03 1.17 2.64E-05  1.66 1.82 7.18E-01  6.25 1.52 1.41E-04 225 1.65 4.40E-01
GenoSkyline-Lung 9.16 3.98 3.90E-02 6.13 1.83 5.04E-03  4.41 3.46 3.07E-01  5.70 2.53 5.80E-02  0.76 3.31 9.42E-01
GenoSkyline-Heart 5.99 2.51 3.53E-02  2.34 1.49 3.77E-01  1.58 2.72 8.30E-01 5.48 2.15 2.92E-02  -0.86 2.56 4.66E-01
GenoSkyline-Blood 5.52 1.96 1.63E-02  9.59 1.19 8.93E-12  10.00 2.41 9.89E-06 1392 2.03 7.03E-15  1.87 1.61 5.84E-01
GenoSkyline-Muscle 7.37 2.50 6.12E-03  5.47 1.38 1.59E-03  3.69 2.27 2.34E-01  3.33 1.83 1.91E-01  3.92 2.28 1.83E-01
GenoSkyline-Epithelium 7.56 2.10 7.40E-04  3.95 1.49 5.15E-02  2.06 2.31 6.38E-01  3.45 1.64 1.11E-01  2.88 1.67 2.48E-01
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Supplementary Table 2. Comparison of the complete model and AnnoPred with
baseline annotations. The highest AUCs are highlighted in boldface.

Disease/Trait

AnnOPredbaseline AnnOPredcomplete

Crohn's Disease
Breast Cancer
Rheumatoid Arthritis
Type-II Diabetes
Celiac Disease

0.673 0.702
0.552 0.665
0.536 0.665
0.587 0.623

0.608 0.640
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Supplementary Table 3. AUCs for trans-ethnic analyses. The highest AUCs are
highlighted in boldface.

Disease/Trait Population® PRSj, PRS.n PRSp.r LDpred AnnoPredpscine AnnoPredcompiete
Breast Cancer AFR 0.526 0.527 0.517 0.526 0.529 0.545
Type-II Diabetes AFR 0.544 0.536 0.521 0.553 0.562 0.564
Type-II Diabetes LTS 0.532 0.523 0.511 0.539 0.526 0.543

* Population of testing samples
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Supplementary Table 4. URLSs for training and testing datasets.

Disease/Trait

GWAS summary statistics

Validation datasets

Crohn's Disease

http://www.ibdgenetics.org

http://www.wtccc.org.uk/cccl/wteeel_studies.html

Breast Cancer

http://gameon.dfci.harvard.edu

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000147.v3.p1l
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000383.v1.pl

Rheumatoid Arthritis

http://www .broadinstitute.org/ftp/pub/rheumat
oid_arthritis/Stahl _etal 2010NG/

http://www.wtccc.org.uk/cccl/wteeel_studies.html

Type-II Diabetes

http://diagram-consortium.org/downloads.html

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000237.v1.pl

Celiac Disease

https://www.immunobase.org/downloads/prote
cted data/GWAS Data/

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000274.v1.p1l
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