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Abstract  

 

Genome wide association studies have identified numerous regions in the genome 

associated with hundreds of human diseases. Building accurate genetic risk prediction 

models from these data will have great impacts on disease prevention and treatment 

strategies. However, prediction accuracy remains moderate for most diseases, which is 

largely due to the challenges in identifying all the disease-associated variants and 

accurately estimating their effect sizes. We introduce AnnoPred, a principled framework 

that incorporates diverse functional annotation data to improve risk prediction accuracy, 

and demonstrate its performance on multiple human complex diseases. 
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Main  

 

Achieving accurate disease risk prediction using genetic information is a major goal in 

human genetics research and precision medicine. Accurate prediction models will have 

great impacts on disease prevention and early treatment strategies [1]. Advancements in 

high-throughput genotyping technologies and imputation techniques have greatly 

accelerated discoveries in genome-wide association studies (GWAS) [2]. Various 

approaches that utilize genome-wide data in genetic risk prediction have been proposed, 

including machine-learning models trained on individual-level genotype and phenotype 

data [3-8], and polygenic risk scores (PRS) estimated using GWAS summary statistics [9, 

10]. Despite the potential information loss in summary data, PRS-based approaches have 

been widely adopted in practice since the summary statistics for large-scale association 

studies are often easily accessible [11, 12]. However, prediction accuracies for most 

complex diseases remain moderate, which is largely due to the challenges in both 

identifying all the functionally relevant variants and accurately estimating their effect 

sizes in the presence of linkage disequilibrium (LD) [13]. 

 

Explicit modeling and incorporation of external information, e.g. pleiotropy [7, 8] and 

LD [10], has been shown to effectively improve risk prediction accuracy. Recent 

advancements in integrative genomic functional annotation, coupled with the rich 

collection of summary statistics from GWAS, have enabled increase of statistical power 

in several different settings [14, 15]. To our knowledge, the impact of functional 

annotations on performance of genetic risk prediction has not been systematically studied. 
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Here, we introduce AnnoPred (available at https://github.com/yiminghu/AnnoPred), a 

principled framework that integrates GWAS summary statistics with various types of 

annotation data to improve risk prediction accuracy. We compare AnnoPred with state-

of-the-art PRS-based approaches and demonstrate its consistent improvement in risk 

prediction performance using both simulations and real data of multiple human complex 

diseases.  

 

AnnoPred risk prediction framework has three main stages (Methods). First, we estimate 

GWAS signal enrichment in 61 different annotation categories, including functional 

genome predicted by GenoCanyon scores [14], GenoSkyline tissue-specific functionality 

scores of 7 tissue types [15], and 53 baseline annotations [16]. Second, we propose an 

empirical prior of SNP effect size based on annotation assignment and signal enrichment. 

In general, SNPs located in annotation categories that are highly enriched for GWAS 

signals receive a higher effect size prior. Finally, the empirical prior is adopted in a 

Bayesian framework in which marginal summary statistics and LD matrix are jointly 

modeled to infer the posterior effect size of each SNP. AnnoPred PRS is defined by  

𝑃𝑅𝑆 = 𝑋!𝐸!(𝛽!|𝛽,𝐷)
!

!!!

 

where 𝑋! and 𝛽! are the standardized genotype and effect size of the jth SNP, respectively, 

𝛽 is the marginal estimate of 𝛽, 𝐷 is the sample LD matrix, and 𝐸! denotes the posterior 

expectation under an empirical prior based on annotation assignment for all SNPs in the 

dataset (Methods). 
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We first performed simulations to demonstrate AnnoPred’s ability to improve risk 

prediction accuracy. We compared AnnoPred with four popular PRS approaches 

(Methods), i.e. PRS based on genome-wide significant SNPs (PRSsig), PRS based on all 

SNPs in the dataset (PRSall), PRS based on tuned cutoffs for p-values and LD pruning 

(PRSP+T), and recently proposed LDpred [10]. Mean correlations between simulated and 

predicted traits were calculated from 100 replicates under different simulation settings 

(Methods). AnnoPred showed the best prediction performance in all settings (Table 1). 

In general, performance of PRSsig, PRSP+T, LDpred, and AnnoPred all improved under a 

sparser genetic model and higher trait heritability. PRSall showed comparable 

performance between sparse and polygenic models but its prediction accuracy was 

consistently worse than other methods. Sample size in the training set was also crucial for 

risk prediction accuracy. Doubling the training samples led to about 1.5-fold increase in 

AnnoPred’s performance under different settings in our simulations. 

 

To further illustrate the improvement in risk prediction performance, we applied 

AnnoPred to five human complex diseases -- Crohn’s disease (CD), breast cancer (BC), 

rheumatoid arthritis (RA), type-II diabetes (T2D), and celiac disease (CEL). We first 

estimated GWAS signal enrichment in different annotation categories (Methods). 

Enrichment pattern varies greatly across diseases (Figure 1A; Supplementary Tables 1), 

reflecting the genetic basis of these complex phenotypes. Functional genome predicted by 

GenoCanyon scores was consistently and significantly enriched for all five diseases. 

Blood was strongly enriched for three immune diseases, namely CD (P=8.9×10-12), CEL 
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(P=7.0×10-15), and RA (P=9.9×10-6), while gastrointestinal (GI) tract was enriched in CD 

(P=2.6×10-5) and CEL (P=1.4×10-4), both of which have a known GI component. For BC, 

epithelium (P=7.4×10-4), GI (P=5.9×10-3), and muscle (P=6.1×10-3) were significantly 

enriched. Next, we evaluated the effectiveness of proposed empirical effect size prior in 

three diseases (i.e. CD, CEL, and RA) with well-powered testing cohorts (N>2,000). 

Interestingly, despite the highly variable enrichment results in training datasets, 

integrative effect size prior could effectively identify SNPs with large effect sizes and 

consistent effect directions in independent validation cohorts (Figures 1B and 1C). 

 

Area under the receiver operating characteristic curve (AUC) for different approaches is 

summarized in Table 2. AnnoPred showed consistently improved prediction accuracy 

compared with all other methods across five diseases. Notably, PRSsig and PRSall showed 

suboptimal performance in these datasets, reaffirming the importance of modeling LD 

and other external information. To test different methods’ ability to stratify individuals 

with high risk, we compared the proportion of cases among testing samples with high 

PRS. AnnoPred outperformed all other methods in CD, CEL, RA, and T2D 

(Supplementary Figure 1). Next, we tested AnnoPred’s performance using only the 53 

baseline annotations and observed a substantial drop in prediction accuracy for all 

diseases (Supplementary Table 2). These results highlight the importance of annotation 

quality in genetic risk prediction, and also demonstrate GenoCanyon and GenoSkyline’s 

ability to accurately identify functionality in the human genome. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2016. ; https://doi.org/10.1101/058768doi: bioRxiv preprint 

https://doi.org/10.1101/058768
http://creativecommons.org/licenses/by-nc-nd/4.0/


Due to distinct allele frequencies and LD structures across populations, risk prediction 

accuracy usually drops when the training and testing samples are from different 

populations. In order to investigate the robustness of AnnoPred against population 

heterogeneity, we applied AnnoPred to three non-European cohorts for breast cancer and 

type-II diabetes while training the model using summary statistics from European-based 

studies. The AUCs are summarized in Supplementary Table 3. As expected, we 

observed a drop in prediction accuracy for all methods. However, AnnoPred still 

performed the best in all three trans-ethnic validation datasets.  

 

Our work demonstrates that functional annotations can effectively improve performance 

of genetic risk prediction. AnnoPred jointly analyzes diverse types of annotation data and 

GWAS summary statistics to provide accurate estimates of SNP effect sizes, which lead 

to consistently better prediction accuracy for multiple complex diseases. Our method is 

not without limitation. First, despite the consistent improvement compared with existing 

PRS-based methods, AUCs for most diseases remain moderate. In order to effectively 

stratify risk groups for clinical usage, our model remains to be further calibrated using 

large cohorts with measured environmental and clinical risk factors [1]. Second, accurate 

estimation of GWAS signal enrichment and SNP effect sizes requires a large sample size 

for the training dataset. This could be potentially improved by better estimators for 

annotation-stratified heritability in the future [17]. The rich collection of publicly 

available integrative annotation data, in conjunction with the increasing accessibility of 

GWAS summary statistics, makes AnnoPred a customizable and powerful tool. As 

GWAS sample size continues to grow, AnnoPred has the potential to achieve even better 
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prediction accuracy and become widely adopted as a summary of genetic contribution in 

clinical applications of risk prediction.  
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Methods 

 

Annotation data 

We incorporated GenoCanyon general functionality scores [14], GenoSkyline tissue-

specific functionality scores for seven tissue types (brain, gastrointestinal tract, lung, 

heart, blood, muscle, and epithelium) [15], and 53 LDSC baseline annotations [16] into 

our model (Supplementary Table 1). We smoothened GenoCanyon annotation by taking 

the mean GenoCanyon score using a 10Kb window as previously suggested [18]. The 

smoothened GenoCanyon annotation and raw GenoSkyline annotations of seven tissue 

types were dichotomized based on a cutoff of 0.5. The regions with GenoCanyon or 

GenoSkyline scores greater than the cutoff were interpreted as non-tissue-specific or 

tissue-specific functional regions in the human genome. Such dichotomization has been 

previously shown to be robust against the cutoff choice [15]. Notably, the AnnoPred 

framework allows users to specify their own choice of annotations. 

 

 

Heritability partition 

We assume throughout the paper that both the phenotype 𝑌!×! and the genotypes 𝑋!×! 

are standardized with mean zero and variance one. We assume a linear model.  

𝑌!×! = 𝑋!×!𝛽!×! + 𝜀!×! 

𝑋, 𝛽 and 𝜀 are mutually independent. We also assume that 𝛽 is a random effect and 

effects of different SNPs are independent. A key idea in the AnnoPred framework is to 

utilize functional annotation information to accurately estimate SNPs’ effect sizes. In 
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order to achieve that, we first partition trait heritability by annotations using LD score 

regression [16]. Per-SNP heritability is defined as the variance of 𝛽! for the ith SNP, and 

is used to quantify SNP effect sizes. More specifically, assume there are 𝐾 + 1 pre-

defined annotation categories, denoted as 𝑆!, 𝑆!,… , 𝑆! with 𝑆! representing the entire 

genome. Under an additive assumption for heritability in overlapped annotations, we 

have 𝛽!~𝑁(0, 𝜏!!: !∈!! ), where 𝜏!, 𝜏!,… , 𝜏! quantify the contribution to per-SNP 

heritability from each annotation category. Denote the estimated marginal effect size of 

the ith SNP as 𝛽! =
!!
!!
!

, then we have the following approximation 

𝐸 𝑁𝛽!! ≈ (𝑁 − 1) 𝜏!𝑙 𝑖, 𝑘 + 1
!

 

where 𝑙 𝑖, 𝑘  is the annotation-stratified LD score and 𝑁 denotes the total sample size. 

Regression coefficients 𝜏! are estimated through weighted least squares. The estimated 

heritability of the ith SNP is then 𝑉𝑎𝑟(𝛽!) = 𝜏!!: !∈!! . 

 

 

Empirical prior of effect size 

Based on per-SNP heritability estimates, we propose two different priors for SNP effect 

sizes to add flexibility against different genetic architecture. For the first prior, we 

assume SNP effect size follows a spike-and-slab distribution 

𝛽!  ~ 𝑝!𝑁 0,𝜎!
!

𝑝! + (1− 𝑝!)𝛿! 

where 𝑝! is the proportion of causal SNPs in the dataset, and 𝛿! is a Dirac function 

representing a point mass at zero. The empirical variance of each SNP, i.e. 𝜎!!, is 
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determined by the annotation categories it falls in. More specifically, we assume 

𝜎!! = 𝑐( 𝜏!!: !∈!! ), where 𝑐 is a constant calculated from the following equation 

𝜎!!

!

= 𝐻! 

We do not directly use 𝜏!!: !∈!!  as the empirical variance prior because it is estimated in 

the context where all SNPs in the 1000 genomes database are included in the model [16]. 

Such per-SNP heritability estimates cannot be extrapolated to the risk prediction context 

where much fewer SNPs are analyzed [19]. Therefore, we rescale the heritability 

estimates to better quantify each SNP’s contribution toward chip heritability. Following 

[20], we use a summary statistics-based heritability estimator that approximates 

Haseman-Elston estimator: 

𝐻! =
(𝜒! − 1)
𝑁𝑙

 

where 𝜒! and 𝑙 denote mean 𝑁𝛽!! and mean non-stratified LD score, respectively.  

 

In the first prior, we assumed the same proportion of causal SNPs but different effect 

sizes across annotation categories. We now describe the second prior that assumes 

different proportions of but the same effect size for causal SNPs. To be specific, we 

assume causal effect size to be 𝑉𝑎𝑟 𝛽!"#$"% = 𝑉, the total number of SNPs to be 𝑀!, 

and the overall proportion of causal SNPs to be 𝑝!. The total heritability 𝐻!! could then be 

written as 𝐻!! = 𝑝!𝑀!𝑉. For the ith SNP, use 𝑇! = ( 𝑆!!: !∈!! ) ∩ ( 𝑆!!!: !∉!! ) to denote 

the collection of SNPs that share the same annotation assignment with the ith SNP, and let 

𝑀!! = |𝑇!|, i.e. number of SNPs in the set. Then, the total heritability of SNPs in 𝑇! is 
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𝐻!!
! = 𝑝!!𝑀!!𝑉, with 𝑝!! denoting the proportion of causal SNPs in 𝑇!. Following these 

notations, we have 

𝛽!  ~ 𝑝!!𝑁 0,𝑉 + (1−  𝑝!!)𝛿! 

where 𝑉 = !!
!!!!

 and 𝑝!! = 𝑝!
!!!!!

!

!!!!!
!. We use 𝐻! to estimate 𝐻!!, and use the following 

formula to estimate 𝐻!!
! .  

𝐻!!
! =

𝜏!!: !∈!!!∈!!

𝜏!!: !∈!!
!!
!!!

𝐻! 

Finally, 𝑝! is treated as a tuning parameter for both prior functions in our analysis. 

  

 

Calculation of posterior effect sizes 

By Bayes’ rule, the posterior distribution of 𝛽 is:   

𝑓 𝛽 𝛽,𝐷 ∝ 𝑓 𝛽 𝛽,𝐷 𝑓 𝛽  

where 𝐷 = !
!
𝑋!𝑋 is the sample correlation matrix and 𝛽 =  !

!
𝑋!𝑌 is the marginal effect 

size estimates. Given 𝛽 and 𝐷, 𝛽 follows a multivariate normal distribution 

asymptotically with the following mean and variance 

𝐸 𝛽 𝛽,𝐷 =
1
𝑁 𝐸 𝑋!𝑋𝛽 𝛽,𝐷 + 𝐸 𝑋!𝜀 𝛽,𝐷 = 𝐷𝛽 

𝑉𝑎𝑟 𝛽 𝛽,𝐷 = 𝑉𝑎𝑟
1
𝑁𝑋

!𝜀 𝛽,𝐷 =
1
𝑁 (1− ℎ!

!)𝐷 

However, 𝐷 is usually non-invertible and has very high dimensions. We thus study the 

posterior distribution of a small chunk of 𝛽 instead. Let 𝛽! be the estimated marginal 

effect size of SNPs in a region 𝑏 (e.g. a LD block) and the corresponding genotype matrix 
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is 𝑋! and sample correlation matrix is 𝐷!. Then the conditional mean and variance of 𝛽! 

are 

𝐸 𝛽! 𝛽! ,𝐷! =
1
𝑁 𝐸 𝑋!!𝑋𝛽 𝛽! ,𝐷! + 𝐸 𝑋!!𝜀 𝛽! ,𝐷! =  𝐷!𝛽! 

𝑉𝑎𝑟 𝛽! 𝛽! ,𝐷! =
1
𝑁! 𝑣𝑎𝑟 𝑋!

!𝑋!𝛽! + 𝑋!! 𝑋!!𝛽!! + 𝜀 |𝛽! ,𝐷!  

=
1
𝑁! 𝑣𝑎𝑟 𝑋!

! 𝑋!!𝛽!! + 𝜀 |𝛽! ,𝐷!  

=
1
𝑁! 𝑋!

!𝑣𝑎𝑟 𝑋!!𝛽!! + 𝜀 𝛽! ,𝐷! 𝑋! 

=
1
𝑁 (1− ℎ!

!)𝐷! 

where ℎ!! = 𝜎!!! ∈!  is the heritability of SNPs in region 𝑏, and 𝑋!! and 𝛽!! denote the 

genotype matrix and effect sizes of SNPs not in region 𝑏. The conditional distribution of 

𝛽! is: 

𝑓 𝛽! 𝛽! ,𝐷! ∝ 𝑁 𝐷!𝛽! ,
1
𝑁

1 − ℎ!! 𝐷! 𝑓 𝛽!
! ∈!

 

 ∝

𝑁 𝐷!𝛽! ,
1
𝑁

1 − ℎ!! 𝐷! 𝑝!𝑁 0,𝜎!
!

𝑝! + 1 − 𝑝! 𝛿!
! ∈!

, under the first prior

𝑁 𝐷!𝛽! ,
1
𝑁

1 − ℎ!! 𝐷!  𝑝!!𝑁 0,𝑉 + (1 −  𝑝!!)𝛿!
! ∈!

, under the second prior
 

Although it is difficult to derive 𝐸 𝛽! 𝛽! ,𝐷!  from the joint conditional distribution of 

𝛽!, each element of 𝛽! follows a mixed normal distribution conditioning on 𝛽!, 𝐷!, and 

all other elements in 𝛽!. Therefore, we could apply a Gibbs sampler to draw samples 

from 𝑓 𝛽! 𝛽! ,𝐷!  and use the sample mean as an approximation for 𝐸 𝛽! 𝛽! ,𝐷! .  

 

 

Calculation of PRS 
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PRS is calculated using the following formula 

𝑃𝑅𝑆 = 𝑋!𝐸!(𝛽!|𝛽,𝐷)!
!!! , 

where 𝐸! denotes the posterior expectation as described above. In practice, the 

individual-level genotype matrix is not available and we use the LD matrix estimated 

from a reference panel or the validation samples to substitute 𝐷. We apply the same 

standard of choosing the size of 𝑏 as described in [10]. Choices of prior and 𝑝! can be 

tuned in an independent cohort. For the data analysis described in this work, we adopted 

a cross-validation scheme. We tuned parameters using half of the testing samples and 

evaluated prediction accuracy using the other half, and then repeated the analysis after 

reversing the two sample subsets. Finally, we reported the mean AUC of two cross-

validations. 

 

 

Other methods for comparison 

We compared AnnoPred with four commonly used risk prediction methods based on 

summary data of association studies. PRSsig and PRSall were both calculated as the inner 

product of marginal effect size estimates and the corresponding genotypes. PRSall used all 

the SNPs that are shared between training and testing datasets while PRSsig only used 

SNPs with p-values below 5×10!! in the training set. We downloaded python code for 

PRSP+T and LDpred from Bitbucket (https://bitbucket.org/bjarni_vilhjalmsson/ldpred). 

All the tuning parameters were tuned through cross-validation as we did for AnnoPred. 
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Simulation settings 

We simulated traits from WTCCC genotype data, which contain 15,918 individuals 

genotyped for 393,273 SNPs after filtering variants with missing rate above 1% and 

individuals with genetic relatedness above 0.05. We first generated two annotations and 

each annotation was simulated by randomly selecting 10% of the genome, denoted as 𝐴! 

and 𝐴!. Denote the heritability of the trait as ℎ!! (25% or 50%) and the number of causal 

variants as 𝑚 (300 or 3,000). Causal variants were generated as follows: 𝑚 3 causal 

variants were selected from 𝐴!, 𝑚 3 from 𝐴! and the rest from (𝐴!⋃𝐴!)! . Effect sizes of 

causal variants were sampled from 𝑁(0, !!
!

!
). For each simulation, we used 70% of the 

data to calculate the training summary statistics and randomly divided the rest 30% into 

two parts for parameter tuning. We also randomly selected half of the training data to 

calculate summary statistics in order to study the effect of sample size on prediction 

accuracy.  

 

 

GWAS summary statistics and validation data 

We trained AnnoPred using publicly accessible GWAS summary statistics and evaluated 

risk prediction performance using individual-level genotype and phenotype data from 

cohorts independent from the training samples. Details for each training and testing 

dataset are provided in Supplementary Notes and Supplementary Table 4.  

 

For Crohn’s disease, we trained the model using summary statistics from International 

Inflammatory Bowel Disease Genetics Consortium (IIBDGC; Ncase=6,333 and 
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Ncontrol=15,056) [21]. Samples from the Wellcome Trust Case Control Consortium 

(WTCCC) were removed from the meta-analysis and used as the validation dataset 

(Ncase=1,689 and Ncontrol=2,891) [22]. For breast cancer, we trained the model using 

summary statistics from Genetic Associations and Mechanisms in Oncology (GAME-ON) 

study (Ncase=16,003 and Ncontrol=41,335) [23], and tested the performance using samples 

from the Cancer Genetic Markers of Susceptibility (CGEMS) study (Ncase=966 and 

Ncontrol=70) [24]. Shared samples between CGEMS and GAME-ON were removed. We 

used samples from the CIDR-GWAS of breast cancer for trans-ethnic analysis 

(Ncase=1,666 and Ncontrol=2,038) [25]. For rheumatoid arthritis, we used summary 

statistics from a meta-analysis with 5,539 cases and 20,169 controls to train the model 

[26]. WTCCC samples were removed from the meta-analysis and used for validation 

(Ncase=1,829 and Ncontrol=2,892) [22]. For type-II diabetes, the training dataset is Diabetes 

Genetics Replication and Meta-analysis (DIAGRAM) consortium GWAS with 12,171 

cases and 56,862 controls [27]. We used samples from Northwestern NUgene Project for 

validation (Ncase=662 and Ncontrol=517) [28]. Samples from Institute for Personalized 

Medicine (IPM) eMERGE project are used for trans-ethnic analysis (African American: 

Ncase=517 and Ncontrol=213; Hispanic: Ncase=477 and Ncontrol=102) [29]. The training 

dataset for celiac disease is from a GWAS with 4,533 cases and 10,750 controls [30]. 

Samples in the National Institute of Diabetes and Digestive and Kidney Diseases 

(NIDDK) celiac disease study were used for validation (Ncase=1,716 and Ncontrol=530) 

[31].  
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Software availability 

AnnoPred software and source code are freely available online at 

https://github.com/yiminghu/AnnoPred 
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Figures and Tables 
 
 
Figure 1. Evaluating effectiveness of annotations and empirical effect size prior. (A) 
GWAS signal enrichment across GenoCanyon and tissue-specific GenoSkyline 
annotations. The horizontal lines mark p-value cutoffs of 0.05 and Bonferroni corrected 
significance level. (B) Comparing signal strength of SNPs with high priors and low priors 
in independent validation cohorts. SNPs with higher priors have significantly stronger 
associations across three independent and well-powered testing datasets (N>2,000). P-
values were calculated using one-sided Kolmogorov-Smirnov test. (C) Comparing 
consistency of SNPs’ effect direction between training and testing datasets. Each bar 
quantifies the proportion of SNPs with consistent effect directions. P-values were 
calculated using one-sided two-sample binomial test. 
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Table 1. Mean correlation between simulated and predicted traits calculated from 
100 replicates under different simulation settings. The highest mean correlations are 
highlighted in boldface. Standard deviations are shown in parentheses.  
 

Training samples Heritability #Causal PRSsig PRSall PRSP+T LDpred AnnoPred 

Half 
0.25 300 0.149(.028) 0.08(.021) 0.25(.028) 0.279(.025) 0.286(.024) 

3000 NA* 0.082(.016) 0.073(.020) 0.087(.019) 0.096(.020) 

0.5 300 0.304(.04) 0.16(.022) 0.48(.026) 0.502(.033) 0.512(.026) 
3000 NA* 0.157(.019) 0.157(.024) 0.195(.021) 0.209(.019) 

Full 
0.25 300 0.217(.031) 0.11(.02) 0.332(.023) 0.35(.033) 0.358(.022) 

3000 NA* 0.11(.014) 0.107(.018) 0.136(.017) 0.145(.017) 

0.5 300 0.373(.036) 0.213(.023) 0.548(.024) 0.557(.047) 0.566(.034) 
3000 0.078(.023) 0.21(.019) 0.243(.021) 0.309(.021) 0.324(.019) 

* NA means no SNP achieves genome-wide significance level (5e-8). 
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Table 2. AUCs of different methods. The highest AUCs are highlighted in boldface. 
 

Disease/Trait PRSsig PRSall PRSP+T LDpred AnnoPred 
Crohn's Disease 0.659 0.634 0.690 0.689 0.702 
Breast Cancer 0.553 0.581 0.598 0.632 0.665 
Rheumatoid Arthritis 0.617 0.566 0.645 0.661 0.665 
Type-II Diabetes 0.596 0.586 0.616 0.609 0.623 
Celiac Disease 0.576 0.593 0.624 0.631 0.640 
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Supplementary Notes 
 
Details on GWAS summary statistics and validation data 
 
For Crohn’s disease, we used International Inflammatory Bowel Disease Genetics 
Consortium (IIBDGC) summary statistics (6,333 Crohn’s disease patients and 15,056 
controls) [1]. WTCCC was removed from the meta-analysis and used as a validation set 
[2]. We filtered individuals with genetic relatedness larger than 0.05 and SNPs with a 
missing rate larger than 1% and a minor allele frequency less than 1%. In addition, we 
filtered SNPs with ambiguous nucleotides and kept SNPs matched the summary statistics 
by both rs number and alleles. After QC, the WTCCC cohort consisted of 1,689 cases and 
2,891 controls with 218,833 SNPs overlapping the summary statistics. 
 
For breast cancer, we used the Genetic Associations and Mechanisms in Oncology 
(GAME-ON) summary statistics, consisting of 16,003 cases and 41,335 controls [3]. As 
for validation data, we first removed individuals overlapped with BPC3 in GAME-ON 
from Cancer Genetic Markers of Susceptibility (CGEMS) [4]. The validation set 
consisted of 966 cases and 70 controls with 497,315 SNPs in common. Besides CGEMS, 
we also used an African-American as validation data to see how the model performs on 
different population. The data we used is CIDR-GWAS of Breast Cancer in the African 
Diaspora (CIDR) [5]. After QC, CIDR consisted of 1,666 cases and 2,038 controls with 
555,169 SNPs in common. 
 
For rheumatoid arthritis, we used a meta-analysis consisting of 5,539 cases and 20,169 
controls [6]. WTCCC was removed from the meta-analysis and used as a validation set 
[2]. After QC, WTCCC cohort consisted of 1,829 cases and 2,892 controls with 274,486 
SNPs in common. 
 
For type-II diabetes, we used Diabetes Genetics Replication and Meta-analysis 
(DIAGRAM) consortium GWAS summary statistics with 12,171 cases and 56,862 
controls [7]. For testing data, we used Northwestern NUgene Project and after QC it 
consisted of 662 cases and 517 controls with 479,345 SNPs in common [8]. 
 
For celiac disease, we used a GWAS consisting of 4,533 cases and 10,750 controls [9]. 
The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) celiac 
disease data was used as validation data [10]. After QC, it consisted of 1,716 cases and 
530 controls with 504,785 SNPs in common. 
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Supplementary Figures 
 
Supplementary Figure 1. Enrichment of proportion of cases in the top 5% testing 
samples with high PRS. 
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Supplementary Tables 
 
Supplementary Table 1. GWAS signal enrichment across 61 annotation categories. 
 

 
BC CD RA CEL T2D 

Category Fold SE P Fold SE P Fold SE P Fold SE P Fold SE P 
base_0 1 0.00 NA 1 0.00 NA 1 0.00 NA 1 0.00 NA 1 0.00 NA 
Coding_UCSC_0 -0.51 6.73 8.22E-01 8.88 5.56 1.55E-01 2.35 10.80 9.00E-01 6.68 4.68 2.16E-01 2.65 6.72 8.06E-01 
Coding_UCSC.extend.500_0 3.57 1.73 1.40E-01 4.77 1.10 5.62E-04 6.24 2.20 1.48E-02 3.41 1.44 9.28E-02 0.50 1.76 7.77E-01 
Conserved_LindbladToh_0 15.95 6.22 8.28E-03 4.44 3.40 3.01E-01 -5.25 6.68 3.44E-01 10.42 5.06 5.27E-02 4.99 5.71 4.74E-01 
Conserved_LindbladToh.extend.500_0 2.17 0.62 7.47E-02 2.46 0.35 1.10E-04 2.90 0.60 1.54E-03 1.76 0.46 9.87E-02 1.63 0.58 2.74E-01 
CTCF_Hoffman_0 -2.87 6.38 5.40E-01 -4.67 4.64 2.07E-01 -1.55 7.69 7.37E-01 0.90 5.49 9.85E-01 -1.67 7.37 7.12E-01 
CTCF_Hoffman.extend.500_0 -0.42 2.49 5.65E-01 -2.78 1.45 8.02E-03 -4.25 2.86 5.39E-02 1.08 1.88 9.68E-01 -0.60 2.46 5.04E-01 
DGF_ENCODE_0 -0.97 2.46 4.18E-01 6.06 1.69 2.85E-03 5.81 3.28 1.31E-01 3.98 2.18 1.62E-01 -4.25 2.94 6.84E-02 
DGF_ENCODE.extend.500_0 1.35 0.43 4.27E-01 1.87 0.25 1.67E-03 0.81 0.56 7.21E-01 1.29 0.34 4.01E-01 1.18 0.42 6.75E-01 
DHS_peaks_Trynka_0 2.82 2.81 5.15E-01 5.86 1.75 4.05E-03 8.19 3.80 4.42E-02 3.03 2.50 4.17E-01 -2.71 3.59 2.91E-01 
DHS_Trynka_0 4.26 2.21 1.51E-01 2.17 1.39 3.98E-01 2.26 2.73 6.41E-01 2.15 1.90 5.45E-01 -0.38 2.44 5.72E-01 
DHS_Trynka.extend.500_0 1.17 0.50 7.26E-01 1.40 0.33 2.24E-01 1.07 0.65 9.11E-01 1.06 0.44 8.88E-01 1.46 0.49 3.60E-01 
Enhancer_Andersson_0 2.80 20.37 9.28E-01 28.66 12.43 3.13E-02 -22.08 22.23 3.01E-01 12.86 16.78 4.82E-01 -26.80 17.84 9.05E-02 
Enhancer_Andersson.extend.500_0 2.15 6.88 8.65E-01 16.53 4.77 3.02E-03 1.74 6.72 9.11E-01 16.28 5.02 2.07E-03 -5.49 4.52 1.24E-01 
Enhancer_Hoffman_0 0.68 3.70 9.30E-01 5.36 2.03 3.06E-02 4.07 4.28 4.65E-01 4.48 2.61 1.76E-01 -0.03 3.26 7.53E-01 
Enhancer_Hoffman.extend.500_0 1.03 1.30 9.80E-01 3.67 0.86 2.25E-03 4.40 1.45 2.01E-02 4.25 1.00 1.42E-03 2.64 1.27 2.10E-01 
FetalDHS_Trynka_0 -3.21 3.63 2.12E-01 7.21 2.15 4.87E-03 4.04 4.38 4.75E-01 6.92 2.81 3.08E-02 -3.65 3.84 2.15E-01 
FetalDHS_Trynka.extend.500_0 0.73 0.96 7.74E-01 2.52 0.54 6.55E-03 2.48 1.17 2.27E-01 2.53 0.76 4.41E-02 1.06 0.97 9.53E-01 
H3K27ac_Hnisz_0 1.97 0.41 1.03E-02 2.16 0.18 2.04E-09 2.33 0.40 6.38E-04 2.20 0.29 4.66E-05 1.50 0.36 1.60E-01 
H3K27ac_Hnisz.extend.500_0 1.97 0.33 4.03E-03 2.11 0.21 2.01E-07 1.84 0.44 4.66E-02 2.26 0.28 4.32E-06 1.92 0.33 6.58E-03 
H3K27ac_PGC2_0 0.92 0.92 9.28E-01 2.48 0.53 4.30E-03 2.24 1.14 2.72E-01 3.54 0.78 6.52E-04 1.18 0.89 8.36E-01 
H3K27ac_PGC2.extend.500_0 3.20 0.55 9.59E-05 2.51 0.32 3.25E-06 2.85 0.73 7.75E-03 2.52 0.45 3.98E-04 1.84 0.53 1.20E-01 
H3K4me1_peaks_Trynka_0 4.01 2.14 1.61E-01 1.92 1.37 5.04E-01 -1.53 2.42 2.92E-01 2.98 1.65 2.14E-01 0.20 2.16 7.07E-01 
H3K4me1_Trynka_0 1.04 0.64 9.48E-01 1.83 0.38 3.42E-02 0.11 0.92 3.15E-01 2.03 0.61 8.62E-02 1.64 0.64 3.04E-01 
H3K4me1_Trynka.extend.500_0 1.74 0.23 3.52E-03 1.62 0.15 8.41E-05 1.86 0.28 2.39E-03 1.72 0.20 7.31E-04 1.57 0.24 3.54E-02 
H3K4me3_peaks_Trynka_0 -1.61 4.67 5.80E-01 3.68 4.28 5.35E-01 6.85 6.64 3.71E-01 4.70 4.86 4.44E-01 -1.90 4.59 5.26E-01 
H3K4me3_Trynka_0 2.15 1.60 4.66E-01 4.92 1.30 2.01E-03 2.54 2.12 4.59E-01 2.88 1.39 1.62E-01 1.72 1.55 6.41E-01 
H3K4me3_Trynka.extend.500_0 1.55 0.68 4.19E-01 2.59 0.53 3.03E-03 2.29 0.94 1.72E-01 2.30 0.59 2.68E-02 1.78 0.70 2.70E-01 
H3K9ac_peaks_Trynka_0 2.10 5.70 8.45E-01 2.74 3.22 5.94E-01 0.50 6.41 9.38E-01 1.43 4.62 9.25E-01 -2.29 6.15 5.90E-01 
H3K9ac_Trynka_0 3.08 2.10 2.92E-01 3.12 1.22 8.14E-02 3.94 2.13 1.42E-01 1.23 1.35 8.62E-01 3.30 1.76 1.85E-01 
H3K9ac_Trynka.extend.500_0 1.16 0.90 8.55E-01 2.25 0.52 1.75E-02 0.18 1.08 4.31E-01 0.89 0.75 8.81E-01 2.58 0.80 3.98E-02 
Intron_UCSC_0 1.48 0.28 6.26E-02 1.01 0.20 9.71E-01 1.11 0.36 7.60E-01 1.45 0.20 1.95E-02 1.24 0.26 3.40E-01 
Intron_UCSC.extend.500_0 1.49 0.23 2.10E-02 1.28 0.17 7.83E-02 1.18 0.22 3.97E-01 1.52 0.19 3.54E-03 1.14 0.18 4.26E-01 
PromoterFlanking_Hoffman_0 8.22 10.50 4.84E-01 -9.46 6.53 1.14E-01 -15.29 14.98 2.72E-01 -7.06 8.52 3.43E-01 9.30 11.94 4.83E-01 
PromoterFlanking_Hoffman.extend.500_0 0.84 3.73 9.66E-01 2.35 2.44 5.80E-01 7.41 4.45 1.46E-01 2.83 2.84 5.16E-01 0.77 3.99 9.54E-01 
Promoter_UCSC_0 2.47 3.28 6.53E-01 3.85 2.39 2.36E-01 10.22 4.39 2.82E-02 0.99 2.57 9.96E-01 3.84 3.57 4.20E-01 
Promoter_UCSC.extend.500_0 -0.69 1.84 3.73E-01 4.46 1.69 3.73E-02 5.60 2.46 5.05E-02 2.99 1.74 2.46E-01 1.06 1.86 9.74E-01 
Repressed_Hoffman_0 -0.65 0.64 6.29E-03 0.06 0.35 4.36E-03 0.42 0.66 3.82E-01 0.11 0.51 6.82E-02 0.39 0.64 3.34E-01 
Repressed_Hoffman.extend.500_0 0.81 0.16 2.04E-01 0.51 0.09 1.29E-07 0.48 0.20 6.04E-03 0.37 0.16 5.75E-06 0.74 0.16 1.07E-01 
SuperEnhancer_Hnisz_0 2.52 0.55 4.29E-03 2.92 0.34 7.18E-09 2.77 0.61 4.10E-03 4.54 0.57 1.84E-12 1.37 0.53 4.83E-01 
SuperEnhancer_Hnisz.extend.500_0 2.75 0.49 6.27E-04 3.03 0.34 2.41E-09 2.57 0.53 4.23E-03 4.45 0.53 9.33E-14 1.41 0.48 3.94E-01 
TFBS_ENCODE_0 6.74 2.41 1.27E-02 4.17 1.67 6.19E-02 2.92 2.85 5.06E-01 6.84 1.96 2.17E-03 -1.26 2.57 3.63E-01 
TFBS_ENCODE.extend.500_0 2.07 0.71 1.46E-01 2.22 0.45 4.95E-03 2.38 0.97 1.68E-01 1.89 0.58 1.35E-01 1.58 0.67 3.98E-01 
Transcribed_Hoffman_0 2.24 0.80 9.63E-02 1.17 0.46 7.09E-01 0.86 0.81 8.62E-01 1.16 0.57 7.74E-01 2.19 0.78 1.02E-01 
Transcribed_Hoffman.extend.500_0 0.79 0.23 3.43E-01 0.93 0.13 5.70E-01 0.63 0.28 1.70E-01 0.63 0.22 1.07E-01 0.80 0.21 3.43E-01 
TSS_Hoffman_0 5.14 5.84 4.76E-01 9.19 4.71 9.43E-02 11.07 8.27 2.14E-01 23.15 7.27 8.53E-04 -1.98 6.53 6.48E-01 
TSS_Hoffman.extend.500_0 0.32 3.42 8.42E-01 9.21 2.41 1.31E-03 9.75 4.45 4.37E-02 7.56 3.26 3.49E-02 -2.42 3.56 3.31E-01 
UTR_3_UCSC_0 -3.46 6.88 5.09E-01 5.70 4.57 2.98E-01 7.15 7.39 4.05E-01 0.05 5.23 8.55E-01 -2.92 6.12 5.21E-01 
UTR_3_UCSC.extend.500_0 0.62 2.97 8.98E-01 6.77 3.38 9.08E-02 0.00 3.58 7.81E-01 1.27 2.49 9.14E-01 -0.41 2.54 5.80E-01 
UTR_5_UCSC_0 -8.59 10.57 3.46E-01 3.17 8.61 8.00E-01 -6.10 18.24 6.86E-01 11.58 8.28 1.99E-01 15.88 24.42 5.41E-01 
UTR_5_UCSC.extend.500_0 3.67 3.02 3.76E-01 3.88 2.11 1.79E-01 6.42 3.66 1.37E-01 1.56 2.38 8.12E-01 2.74 3.47 6.13E-01 
WeakEnhancer_Hoffman_0 2.37 7.49 8.55E-01 10.64 4.90 5.20E-02 10.22 8.98 2.98E-01 14.51 6.45 2.88E-02 1.80 9.24 9.30E-01 
WeakEnhancer_Hoffman.extend.500_0 2.77 1.76 3.08E-01 2.46 1.27 2.43E-01 4.95 2.32 1.00E-01 3.90 1.49 6.28E-02 3.86 1.99 1.73E-01 
GenoCanyon 2.04 0.29 4.20E-04 2.37 0.19 1.27E-10 2.56 0.41 6.66E-05 2.76 0.29 2.01E-12 1.92 0.26 5.82E-04 
GenoSkyline-Brain 3.97 2.00 1.18E-01 3.06 1.14 7.35E-02 1.89 2.01 6.52E-01 1.95 1.47 5.13E-01 -0.04 1.90 5.80E-01 
GenoSkyline-GI 6.61 2.11 5.87E-03 6.03 1.17 2.64E-05 1.66 1.82 7.18E-01 6.25 1.52 1.41E-04 2.25 1.65 4.40E-01 
GenoSkyline-Lung 9.16 3.98 3.90E-02 6.13 1.83 5.04E-03 4.41 3.46 3.07E-01 5.70 2.53 5.80E-02 0.76 3.31 9.42E-01 
GenoSkyline-Heart 5.99 2.51 3.53E-02 2.34 1.49 3.77E-01 1.58 2.72 8.30E-01 5.48 2.15 2.92E-02 -0.86 2.56 4.66E-01 
GenoSkyline-Blood 5.52 1.96 1.63E-02 9.59 1.19 8.93E-12 10.00 2.41 9.89E-06 13.92 2.03 7.03E-15 1.87 1.61 5.84E-01 
GenoSkyline-Muscle 7.37 2.50 6.12E-03 5.47 1.38 1.59E-03 3.69 2.27 2.34E-01 3.33 1.83 1.91E-01 3.92 2.28 1.83E-01 
GenoSkyline-Epithelium 7.56 2.10 7.40E-04 3.95 1.49 5.15E-02 2.06 2.31 6.38E-01 3.45 1.64 1.11E-01 2.88 1.67 2.48E-01 
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Supplementary Table 2. Comparison of the complete model and AnnoPred with 
baseline annotations. The highest AUCs are highlighted in boldface. 
 

Disease/Trait AnnoPredbaseline AnnoPredcomplete 
Crohn's Disease 0.673 0.702 
Breast Cancer 0.552 0.665 
Rheumatoid Arthritis 0.536 0.665 
Type-II Diabetes 0.587 0.623 
Celiac Disease 0.608 0.640 
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Supplementary Table 3. AUCs for trans-ethnic analyses. The highest AUCs are 
highlighted in boldface. 
 

Disease/Trait Populationa PRSsig PRSall PRSP+T LDpred AnnoPredbaseline AnnoPredcomplete 

Breast Cancer AFR 0.526 0.527 0.517 0.526 0.529 0.545 
Type-II Diabetes  AFR 0.544 0.536 0.521 0.553 0.562 0.564 
Type-II Diabetes LTS 0.532 0.523 0.511 0.539 0.526 0.543 

a Population of testing samples 
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Supplementary Table 4. URLs for training and testing datasets. 

Disease/Trait GWAS summary statistics Validation datasets 

Crohn's Disease http://www.ibdgenetics.org http://www.wtccc.org.uk/ccc1/wtccc1_studies.html 

Breast Cancer http://gameon.dfci.harvard.edu http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000147.v3.p1 

  http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000383.v1.p1 

Rheumatoid Arthritis http://www.broadinstitute.org/ftp/pub/rheumat
oid_arthritis/Stahl_etal_2010NG/ http://www.wtccc.org.uk/ccc1/wtccc1_studies.html 

Type-II Diabetes http://diagram-consortium.org/downloads.html http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000237.v1.p1 

Celiac Disease https://www.immunobase.org/downloads/prote
cted_data/GWAS_Data/ http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000274.v1.p1 
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