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Summary

Cyanobacterial blooms occur in lakes worldwide, producing toxins that pose a serious public
health threat. Eutrophication caused by human activities and warmer temperatures both
contribute to blooms, but it is still difficult to predict precisely when and where blooms will
occur. One reason that prediction is so difficult is that blooms can be caused by different species
or genera of cyanobacteria, which may interact with other bacteria and respond to a variety of
environmental cues. Here we used a deep 16S amplicon sequencing approach to profile the
bacterial community in eutrophic Lake Champlain over time, to characterize the composition and
repeatability of cyanobacterial blooms, and to determine the potential for blooms to be predicted
based on time-course sequence data. Our analysis, based on 135 samples between 2006 and 2013,
spans multiple bloom events. We found that bloom events significantly alter the bacterial
community without reducing overall diversity, suggesting that a distinct microbial community —
including non-cyanobacteria — prospers during the bloom. We also observed that the community
changes cyclically over the course of a year, with a repeatable pattern from year to year. This
suggests that, in principle, bloom events are predictable. We used probabilistic assemblages of
OTUs to characterize the bloom-associated community, and to classify samples into bloom or
non-bloom categories, achieving up to 92% classification accuracy (86% after excluding
cyanobacterial sequences). Finally, using symbolic regression, we were able to predict the start
date of a bloom with 78-92% accuracy (depending on the data used for model training), and

found that sequence data was a better predictor than environmental variables.
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I ntroduction

Cyanobacterial blooms occur in freshwaters systems around the world, and are both a
nuisance and a public health threat (Zingone and Enevoldsen, 2000; Paerl et al., 2013). These
blooms are defined by a massive accumulation of cyanobacterial biomass, formed through
growth, migration, and physical-chemical forces (Paerl, 1996). In temperate eutrophic lakes,
blooms tend to occur annually, specifically during the summer when water temperatures are
warmer (Kanoshina et al., 2003, Havens, 2008). The frequency and intensity of these blooms is
increasing over time (Johnson et al., 2010; Posch et al., 2012), likely due to increased
eutrophication, climate change, and increased nutrient input from human activities (O’Neil ef al.,
2012; Winder, 2012).

Attempts have been made to predict blooms using hydrodynamic-ecosystem models
(Allen, 2008, Qing et al., 2014), artificial neural networks models (Maier et al., 2000; 2001), or
statistical models such as on linear regression (Dillion and Rigler, 1974, Onderka, 2007).
Nevertheless, these models have been limited in their ability to accurately predict cyanobacterial
dynamics (Downing et al., 2001; Taranu et al., 2012), perhaps because they mainly used abiotic
factors (e.g. temperature, pH, nutrients, etc.) to predict blooms, while largely ignoring biotic
factors (Recknagel et al., 1997; Downing et al., 2001; Oh et al., 2007). It is known that
cyanobacteria interact with their biotic environment in a variety of ways, ranging from predator-
prey interactions to mutualistic interactions (Rashidan and Bird, 2001; Eiler and Bertilsson, 2004;
Berg et al., 2008; Li et al., 2012; Mou et al., 2013; Louati et al., 2015; Woodhouse et al. 2016).
Biotic factors, such as the composition of the surrounding bacterial community, could therefore
help refine bloom prediction. Previous studies have predicted the distribution of other bacteria

based on community structure (Larsen et al 2012; Kuang et al., 2016) but to our knowledge this
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has not been attempted to predict freshwater cyanobacterial blooms. Prediction based on biotic
factors is attractive because the composition of the microbial community can be thoroughly
measured through culture-independent, high-throughput sequencing, whereas it is not always
clear which are the relevant (or most predictive) abiotic factors that should be measured.
Moreover, the microbial community composition may contain information about both measured
and unmeasured abiotic variables, insofar as these variables impact the community.

For bloom prediction based on biotic factors to be successful, there must be some degree
of repeatability in the changes to lake bacterial community composition that precede blooms.
Several studies have shown that many aquatic microbial communities are temporally dynamic
(Pernthaler et al., 1998; Hofle et al., 1999; Lindstrom et al., 2000; Crump et al., 2003; Kent et al.,
2004; Shade et al., 2007 ; Kara et al., 2013; Fuhrman et al., 2015), often with repeatable patterns
of community structure (Fuhrman et al., 2006; Fuhrman et al., 2015). Recent studies have
tracked the dynamics of microbial communities in bloom-impacted lakes using culture-
independent sequencing methods (Eiler et al., 2012; Li et al., 2015; Woodhouse et al., 2016). Li
et al. (2015) found that a bloom-impacted lake returned to its initial community composition after
a period of one year. However, all these studies were carried out over one year or less, making it
difficult to generalize the results and make robust predictions. As highlighted by Fuhrman et al.,
(2015) data should be collected over several consecutive years to assess the repeatability of
bacterial community dynamics, and to assess if community structure follows a predictable
pattern, and over what time scales.

Blooms can be operationally defined in numerous ways. A classic definition is simply
when algal biomass is high enough to be visible (Reynolds and Walsby, 1975). Other bloom
definitions rely on chlorophyll concentrations (>20 ug/L), or dominance of cyanobacteria (>50%)

over other phytoplankton (Molot et al., 2014). An attractive alternative is to view cyanobacterial
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93  blooms as a biological disturbance, measurable by their impact on the surrounding microbial
94  community (Shade et al., 2012). Blooms can have a major impact on the microbial community
95  through both direct (e.g. microbe-microbe interactions) and indirect effects (e.g. changes to lake
96  chemistry). For example, blooms can reduce carbon dioxide concentrations, increase pH, and
97  alter the distribution of biomass across the length and depth of a lake (Verspagen et al., 2014;
98  Sandrini et al., 2016). Such bloom-induced changes in water chemistry could then impact the
99  structure and diversity of microbial communities (Bouvy et al., 2001; Eiler and Bertilsson, 2004;
100  Bagatini et al., 2014; Li et al., 2015, Woodhouse et al., 2016). For example, as cyanobacteria
101  decompose, they release metabolites that can be utilized by other taxa, such as Cytophagaceae
102 (Rashidan and Bird, 2001; O’Neil et al., 2012), which we therefore expect to be observed in
103 association with blooms. Positive associations have been observed between the genus
104 Phenylobacterium or members of the order Rhizobiales with the cyanobacterial genus
105  Microcystis (Louati et al., 2015). However, the reasons for these interactions, as well as their
106  repeatability (over time) and generality (across different lakes) remain unknown.

107 Here, we present an eight-year time-course study of the bacterial community structure of a
108 large eutrophic North American lake, Lake Champlain, where cyanobacterial blooms are
109  observed nearly every summer. Samples were collected from 2006 to 2013 and analyzed using
110 high-throughput 16S amplicon sequencing. We tracked the bacterial community composition in
111 135 time-course samples to determine how the community varies over time and how it is
112 impacted by blooms. Considering blooms as a disturbance to the surrounding microbial
113 community (Shade et al. 2012), we defined bloom events as a relative abundance of
114  cyanobacteria above which community diversity begins to decline. Blooms are characterized both
115 by a dominance of cyanobacteria, but also a characteristic surrounding bacterial community. We

116  show that the community composition does not vary considerably from year to year, but does
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117  vary within a year, on time scales of days to months. As a result, community dynamics are
118 largely repeatable from year to year, and are in principle predictable. Finally, exploiting the
119  repeatable dynamics of the lake community, we showed that bloom events can be predicted
120  several weeks in advance based on the microbial community composition, with slightly greater
121 accuracy than predictions based on abiotic factors.

122

123

124 Materialsand M ethods

125
126  Sampling
127 A total of 150 water samples were collected from the photic zone (0-1 meter depth) of

128  Missisquoi Bay, Lake Champlain, Quebec, Canada (45°02'45"N, 73°07'58"W). Between 12 and
129 27 (median 17) samples were collected each year, from 2006 to 2013, between April and
130 November of each year. Samples were taken from both littoral (78 samples) and pelagic (72
131  samples) zones (Supplementary Methods). Between 50 and 250 ml of lake water was filtered
132 depending on the density of the planktonic biomass using 0.2-um hydrophilic polyethersulfone
133 membranes (Millipore). Physico-chemical measurements, as described in Fortin et al. (2015),
134 were also taken during most sampling events (Supplementary  File:
135  File S1_Environmental Table.txt). These environmental data included water temperature,
136  average air temperature over one week, cumulative precipitation over one week, microcystin
137  toxin concentration, total and dissolved nutrients (phosphorus and nitrogen). Details of the
138  sampling protocol are described in Supplementary Methods.

139

140 DNA extraction, purification and sequencing
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141 DNA was extracted from frozen filters by a combination of enzymatic lysis and phenol-
142 chloroform purification as described by Fortin ef al. (2010). Each DNA sample was resuspended
143 in 250 pl of TE (Tris-Cl, 10 mM; EDTA, 1 mM; pH 8) and quantified with the PicoGreen®
144  dsDNA quantitation assay (Invitrogen). DNA libraries for paired-end Illumina sequencing were
145  prepared using a two-step 16S rRNA gene amplicon PCR as described in Preheim et al. (2013).
146  We amplified the V4 region, then confirmed the library size by agarose gels and quantified DNA
147  with a Qubit v.2.0 fluorometer (Life Technologies). Libraries were pooled and denatured as
148  described in the Illumina protocol. We performed two sequencing runs using MiSeq reagent Kit
149 V2 (Illumina) on a MiSeq instrument (Illumina). Each run included negative controls and two
150  mock communities composed of 16S rRNA clones libraries from other lake samples (Preheim et
151  al., 2013). Details of the library preparation protocol are described in Supplementary Methods.
152

153  Sequence analysisand OTU picking

154 Sequences were processed with the default parameters of the SmileTrain pipeline
155  (https://github.com/almlab/SmileTrain/wiki/; Supplementary Methods) that combined reads
156  quality filtering, chimera filtering, paired-end joining and, de-replication using USEARCH
157  (version 7.0.1090, http://www.drive5.com/usearch/) (Edgar, 2010), Mothur (version 1.33.3)
158  (Schloss et al., 2009), Biopython (version 2.7) and custom scripts. SmileTrain also incorporates a
159 de novo distribution-based clustering: dbOTUcaller algorithm (Preheim et al., 2013)
160  (https://github.com/spacocha/dbOTUcaller, version 2.0), which was performed to cluster
161  sequences into Operational Taxonomic Units (OTUs) by taking into account the sequence
162  distribution across samples. The OTU table generated was then filtered using
163  filter otus from otu table.py QIIME scripts (Caporaso et al., 2010) (version 1.8,

164  http://qiime.org/) to remove OTUs observed less than 10 times, minimizing false-positive OTUs
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165  (Table S1). Fifteen samples with less than 1000 sequences were removed from the OTU table
166  using filter samples from otu table.py QIIME script, yielding a final dataset of 135 samples.
167 Taxonomy was assigned post-clustering using a two different approaches: (i) the latest 97%
168  reference OTU collection of the GreenGenes database (release 13 8, August 2013,
169  ftp://greengenes.microbio.me/greengenes release/gg 13 5/gg 13 8 otus.tar.gz;

170  http://greengenes.lbl.gov), using assign taxonomy.py QIIME script (default parameters), and (ii)
171  a combination of GreenGenes and a freshwater-specific database (Freshwater database 2016
172 August 18 release; Newton et al, 2011), wusing the TaxAss method
173 (https://github.com/McMahonLab/TaxAss, access date: September 13™ 2016). Taxonomy
174  information was then added to the OTU table using the biom add-metadata scripts (http://biom-
175  format.org/). We removed OTUs that were not prokaryotes but still present in the database
176  (Cryptophyta, Streptophyta, Chlorophyta and Stramenopiles orders). A total of 7,321,195
177  sequences were obtained from our 135 lake samples, ranging from 1,392 to 218,387 reads per
178  sample, with a median of 47,072. This dataset was clustered into 4061 OTUs. Of these OTUs,
179 4053 were observed in littoral samples and 4042 in pelagic samples, with 4034 in common to
180  both sites, 19 unique to littoral and 8 to pelagic.

181 To evaluate the quality of the SmileTrain OTU picking pipeline used and estimate the
182  potential false positive OTUs generated by the approach used, we compared the number and
183  identity of OTUs obtained for two different mock communities that were generated from
184  plasmids containing 16S rRNA sequences from a clone library as described on Preheim et al.
185  (2013). SmileTrain (using the dbOTUcaller algorithm) recovered 100% of the expected OTUs in
186  the mock community, i.e we found a perfect match between 16S sequences from the library and
187  the OTU representative sequences generated post-clustering. However we also found some false

188  positives (Table S1). We removed OTUs represented by fewer than 10 sequences in total to
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189  minimize false positives using filter otus from otu table.py QIIME script. (Table S1). After this
190 filtering, we still recovered 97% for Mockl10 and 100% for Mockl1. Details of the post-
191  sequencing computational pipeline are described in Supplementary Methods, and R scripts (for
192  analyses described here and below) are in Supplementary File 2 (File S2 R_scripts.txt).

193

194  Diversity analysis

195 To calculate the alpha diversity, indexes known for their robustness to sequencing depth
196  variation were used: Shannon diversity (Shannon and Weaver, 1949), evenness (the equitability
197  metric calculated in QIIME as: Shannon diversity / log2(number of observed OTUs)), and
198  Balance-Weighted-abundance Phylogenetic Diversity (BWPD) (McCoy and Matsen IV, 2013).
199  To assess the impact of variable sequencing depth on these diversity measures, rarefaction curves
200 were made with multiple rarefactions from the lowest to the deepest sequencing depth, at
201  intervals of 3000 sequences, with replacement and 100 iterations (Fig S1) using
202  parallel multiple rarefactions.py, parallel alpha diversity.py and collate alpha.py QIIME
203  scripts. Alpha diversity metrics were then calculated using the mean of the 100 iterations of the
204  deepest sequencing depth for each sample (McMurdie and Holmes, 2014). This approach was
205 used to avoid losing data, and to estimate alpha diversity as accurately as possible. The Shannon
206  index (OTU richness and evenness), and Equitability (evenness) were calculated using QIIME
207  scripts as described above. The BWPD index that captures both the phylogeny (summed branch
208 length) and the relative abundance of species was calculated using the guppy script with fpd
209  subcommand (http://matsen.github.io/pplacer/generated rst/guppy fpd.html). Boxplots and
210  statistical analyses were performed with IBM SPSS version 22.

211 To calculate the beta diversity between groups of samples (e.g. months or seasons), we

212 used a non-rarefied OTU table to calculate two metrics that are robust to sequencing depth


https://doi.org/10.1101/058289
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058289; this version posted March 16, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

213 variation: weighted Unifrac (Lozupone et al,. 2007) and Jensen-Shannon divergence (JSD)
214 (Fuglede and Topsoe 2004; Preheim et al., 2013). We used the phyloseq R package (version
215  1.19.1) (McMurdie and Holmes, 2013) (https://joey711.github.io/phyloseq/) to first transform the
216  OTU table into relative abundance (defined here as the counts of each OTU within a sample,
217  divided by the total counts of all OTUs in that sample) then to calculate the square root of each
218  metric (JSD or weighted UniFrac), and finally to perform principal coordinates analysis (PCoA)
219  (Gower, 1966). As we observed potential arch effects with sqrt(JSD), we decided to use
220  Nonmetric multidimensional scaling (NMDS, from the phyloseq package that incorporates the
221  metaMDS() function from the R vegan package, Oksanen, J. ef al., 2010. R package version 2.4-
222 1) (Shepard, 1962; Kruskal, 1964) plots. A square root transformation is necessary here to
223  transform weighted Unifrac (non Euclidean metric) and JSD (semi-metric) into Euclidean metrics
224  (Legendre and Gallagher, 2001). Differences in community structure between groups (e.g. bloom
225  vs. non-bloom samples) were tested using: (i) analysis of similarity (Clarke, 1993) using the
226  anosim() function. The non-parametric Analysis of Similarity (ANOSIM; Clarke, 1993) has been
227  used to test if the similarity among group sample is greater than within-group sample. If the
228  anosim() function returns an R value of 1, this indicates that the groups do not share any
229  members of the bacterial community. (ii) Differences in community structure between groups
230  was also tested using permutational multivariate analysis of variance (PERMANOVA; Anderson,
231  2001) with the adonis() function. Both ANOSIM and PERMANOVA tests can be sensitive to
232 dispersion, so we first tested for dispersion in the data by performing an analysis of multivariate
233 homogeneity (PERMDISP, Anderson, 2006) with the permuted betadisper() function. In our
234  analysis, we observed a significant dispersion effect when cyanobacterial sequences were
235  included. The dispersion effect makes the PERMANOVA and ANOSIM results difficult to

236  interpret. Dispersion mostly disappeared when we removed the cyanobacterial sequences,

10
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237  meaning that cyanobacteria were in part responsible for the differences in dispersion between
238  groups. PERMANOVA, PERMDISP and ANOSIM were performed using the R vegan package
239  (Oksanen, J. et al., 2010. R package version 2.4-1), with 999 permutations. Beta diversity
240  analyses were also performed using a rarefied OTU table (rarefied to 10,000 reads per sample)
241  and similar results were observed (data not shown). Phylogenetic trees used for phylogenetic
242  analysis were built wusing FastTree (version 2.1.8, Price et al, 2009)
243 (http://meta.microbesonline.org/fasttree/). Three other tree inference methods were tested,
244  vyielding similar results to FastTree (Supplementary Methods).

245

246  Bloom definition and K-means partitioning

247 Only a small subset of our samples were associated with estimates of cyanobacterial cell
248  counts. We therefore estimated the relative abundance of cyanobacteria based on 16S rRNA gene
249  amplicon data, which was significantly (but imperfectly) correlated with in situ cyanobacterial
250  cell counts from a limited number of samples (Figure S6, adjusted R*=0.336; F)s5;=27.46,
251  P<0.001). The reason for the imperfect correlation is that, even when their absolute numbers are
252 low, cyanobacteria can still dominate the community in relative terms.

253 To define cyanobacterial blooms, we followed the biological pulse disturbance definition
254  described in Shade et al. (2012). Specifically, we defined a critical threshold of cyanobacterial
255  relative abundance above which the Shannon diversity of the community begins to decline
256  sharply, consistent with a major ecological disturbance (Figure S2). The decline in diversity is
257  most pronounced when cyanobacteria make up 20% or more of the community, so we defined
258  samples with 20% cyanobacteria or more as "bloom samples" (Table S7).

259 As an alternative and completely independent way of binning samples, we used the K-means

260  partitioning algorithm (MacQueen, 1967), implemented with the function cascadaKM() from the

11
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261  vegan package in R, with 999 permutations. The OTU table was first transformed by Hellinger
262  transformation (Rao, 1995) as advised in Legendre and Legendre (1998) by using the
263  decostand(x, method="hellinger”) function from R vegan package. OTU tables are generally
264  composed of many zeros (as is the case for our data), which is inappropriate for the calculation of
265  Euclidean distance. Hellinger transformation is a method to avoid this problem by down-
266  weighting low-abundance OTUs (Legendre and Gallagher, 2001). We tested the partitioning of
267  the 135 samples into 2 to 10 groups, based on the microbial community composition. The
268  Calinski-Harabasz index (Calinski & Harabasz, 1974) was used to determine that our samples
269  naturally clustered into two groups (Figure S3), and bloom samples (defined as above) were all
270  found in a single K-means group (Figure S5). This suggests that the lake samples are naturally
271  divided into two groups, and that cyanobacteria are a major distinguishing feature between
272 groups.

273

274  Changesin community composition over time

275 In order to investigate microbial community variation over time, we first analysed the
276  change in Bray-Curtis dissimilarity over years. We performed separated analyses for littoral and
277  pelagic OTU tables, after filtering out singleton OTUs only observed in one sample. This yielded
278 3491 OTUs for littoral samples and 3371 OTUs for pelagic samples. These two OTU tables were
279  transformed to relative abundances prior to analysis. We calculated the Bray-Curtis dissimilarity
280  between all pairs of samples using the QIIME script beta-diversity.py. We verified that
281  distribution of Bray-Curtis dissimilarity across samples was approximately normal. Then, we
282  used a custom script (see Supplementary file: “File S2 R scripts.txt”) to group the samples
283  based on the amount of time (years) separating them, and to plot the mean dissimilarity of

284  samples against their separation in time. Error bars were determined by calculating the standard

12
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285  error of the mean.

286

287 In a second approach, we used multivariate regression tree analyses (Breiman et al. 1984;
288  De’ath 2002) with different time scales: year, season, month, week and day of the year. The goal
289  here is to identify the temporal variables that best explain the variation in microbial community
290  composition. An analysis was performed for each temporal variable (year, season, month or
291 DoY) using the function mvpart() and rpart.pca() from the R mvpart package (Therneau and
292  Atkinson, 1997; De'ath, 2007). Prior to analysis, the OTU table was Hellinger transformed (Rao,
293 1995) as advised in Ouellette et al., (2012). This approach is particularly useful to investigate
294  both linear and non-linear relationships between community composition and a set of explanatory
295  variables without requiring residual normality (Ouellette et al., 2012). After 100 cross-validations
296  (Breiman et al. 1984), we plotted and pruned the tree using the 1-SE rule (Legendre & Legendre
297  2012) to select the least complex model, avoiding over-fitting. We then used the function
298  rpart.pca() from mvpart package to plot a PCA of the MRT.

299

300 Taxa-environment relationships

301 To investigate taxa-environment relationships, we performed a redundancy analysis
302 (RDA; Rao, 1964) that searches for the linear combination of explanatory variables (the matrix of
303  abiotic environmental data) that best explains the variation in a response matrix (the OTU table).
304 The OTU table was transformed by Hellinger transformation (Rao, 1995) as advised in Legendre
305 and Legendre (1998). The explanatory (environmental) matrix was first log-transformed then z-
306 score standardized using the function decostand(x, method="standardize) because different
307  environmental parameters are in different units. The environmental matrix variables included:

308 total phosphorus in pg/L (TP), total nitrogen in mg/L (TN), particulate phosphorus in pg/L (PP,
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309 the difference between TP and DP), particulate nitrogen in mg/L (PN, the difference between TN
310 and DN), soluble reactive phosphorus in pg/L. (DP), dissolved nitrogen in mg/L (DN), 1-week-
311  cumulative precipitation in mm, l-week-average air temperature in Celsius and microcystin
312 concentration in pg/L. The functions corvif(x) (Zuur et al., 2009) and cor(x, method="pearson”)
313 (the Pearson correlation; Bravais, 1846; Pearson, 1896) from the R stats package were applied to
314  assess colinearity among explanatory variables (Table S2). Based on these correlation tests, we
315  concluded that TP and TN were highly correlated with PP and PN, respectively, so TP and TN
316 were removed. RDA was performed using the rda(scaling=2) function from the R vegan
317  package. To determine the significance of constraints, we used the anova.cca() function from the
318 R vegan package (Table S4A). Finally, we performed another RDA with all possible interactions
319  between variable (except for Microcystin that is more a consequence of the bloom) to test if
320 interactions between environmental variables could better explain the cyanobacterial bloom. The
321  significance of the interactions is shown table S4B. Both RDAs were performed on a reduced
322  dataset (a subset of 74 samples for which environmental data were available; see Supplementary
323  file: File_S1 Environmental Table.txt).

324

325 Differential OTU abundance analysis

326 To identify genera and OTUs associated with blooms, we used the ALDEx2 R package
327  (version: 1.5.0 (Fernandes et al., 2014). We used the aldex() function to perform a differential
328  analysis with Welsh’s t-test and 128 Monte Carlo samples. ALDEx2 uses the centred log-ratio
329  transformation to avoid compositionally issue. Taxa (OTUs or genera) with a Q-value below 0.05
330  after Benjamini-Hochberg correction were considered biomarkers. The top 25 biomarkers (with
331  the highest differential scores) are listed in Table S8.

332
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333 Bloom classification

334 To classify bloom and non-bloom samples (Table S7), we used the Bayesian inference of
335  microbial communities (BIOMICO) model described by Shafiei et al., (2015). This supervised
336  machine learning approach infers how OTUs are combined into assemblages, and how
337 combinations of these assemblages differ between bloom and non-bloom samples. An
338 assemblage here is defined as a set of co-occurring OTUs. We defined bloom samples as
339  described above, and trained the model with two different approaches: (i) with 2/3 of the total
340  data, selected at random, and (ii) with two distinctive years: 2007, a year with only a short-lived
341 fall bloom, and 2009, a year in which Fortin ef al., (2015) observed a high biomass of
342  cyanobacteria during the summer. In the training stage, BIOMICO learns how OTU assemblages
343  contribute to community structure, and what assemblages tend to be present during blooms. In
344  the testing stage, the model classifies the rest of the data (not used during training), and we assess
345 accuracy as the percentage of correctly classified samples. To assess the performance of
346  BIOMICoO relative to a random classifier, we approximated a random classifier using a binomial
347  distribution with correct classification probability of 0.5.

348

349  Bloom prediction

350 We attempted to predict the timing of blooms using sequence or environmental data. As
351 many OTUs or genera may have such low abundances that they might be missed in some
352  samples, and might also increase the probability of finding spurious correlations, we pre-filtered
353  the OTU table by removing taxa with summed relative abundances (over the 135 samples) lower
354  than an arbitrary threshold of 0.1. Our goal was to predict the timing of the next bloom, using
355  sequencing and/or environmental data from samples taken before a bloom event. Samples taken

356 during a bloom were not used in these analyses. Thus, we used 21 samples with full
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357  environmental information when the analysis included these variables, and 54 samples when the
358 analysis did not require the environmental variable. We defined the time (in days) from each non-
359  bloom sample to the next bloom sample of the year as the dependent variable. In these analyses,
360  we used either OTUs, genera, or environmental data, as predictor variables. We also calculated
361 the trend in all predictor variables from one sample to the next by subtracting the latter values
362  from the former and dividing by the number of days that separated the two sample dates. In this
363  way, we obtained a trend value for each predictor variable.

364 Genetic programming, in the form of symbolic regression (SR) (Koza, 1992), is a
365  particular derivation of genetic algorithms that searches the space of mathematical equations
366  without any constraints on their form, hence providing the flexibility to represent complex
367 systems, such as lake microbial communities. Contrary to traditional statistical techniques,
368  symbolic regression searches for both the formal structure of equations and the fitted parameters
369  simultaneously (Schmidt and Lipson 2009). There are however some caveats associated with SR.
370  First, as with any other regression technique, overfitting may occur and measures that correct for
371  model complexity, such as the Akaike information criterion (AIC,) should be used to compare
372  equations. Second, contrary to standard regression techniques, there are no standard ways to
373  interpret SR equations. Finally, SR suffers from the same limitations of evolutionary algorithms
374  in general. In many cases the algorithm may get stuck in local minima of the search space,
375  requiring time (or even a restart with different parameters) to find the global minimum. We used
376  the software Eureqa (http://www.nutonian.com/products/eureqa/, version 1.24.0) to implement
377 SR, using 75% of the data for model training and 25% for testing. As building blocks of the
378 equations we used all predictor variables (including trends), random constants, algebraic
379  operators (+, —, +, X) and analytic function types (exponential, log and power). As no a priori

380 assumptions regarding relationships between terms could be made, the search was fully

16


https://doi.org/10.1101/058289
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058289; this version posted March 16, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

381 unbounded. Given the inherent stochasticity of the process, ten replicate runs were conducted for
382  each analysis. All runs were stopped when the percentage of convergence was 100, meaning that
383  the formulas being tested were similar and were no longer evolving. Each run produces multiple
384  formulas along a Pareto front (see Cardoso et al. 2015.). For each formula, we calculated the
385  Akaike information criterion (AIC) and the corrected AIC (Burnham and Anderson, 2002) for
386  small sample sizes. Based on Eureqa complexity (number of parameter) and Eureqa fit score
387  (model accuracy), multiple formulae were selected from each of the ten runs (see Supplementary
388  File : File S3 SR table.xlsx). The formula with the lowest AICc for each analysis was retained
389  and considered the "best" formula (Table 2).

390

391
392  Results

393 Defining and characterizing blooms

394 To survey microbial diversity over time, we analysed 135 lake samples sequenced to an
395  average depth of 54,231 reads per sample (minimum of 1000 reads per sample), and clustered the
396  sequences into 4,061 operational taxonomic units (OTUs). Rarefaction curves showed that this
397  depth of sequencing provided a thorough estimate of community diversity (Figure S1). To assess
398 the repeatability and predictability of cyanobacterial blooms, we first needed to define bloom
399  events. Instead of defining blooms based on cyanobacterial cell counts, we used a definition
400  based on the extent to which the bloom disturbs the community. Above 20% cyanobacteria,
401  Shannon diversity begins to decline sharply (Figure S2). We therefore used a 20% cutoff to bin
402  our samples into "bloom" or "non-bloom" (Table S7).

403 Based on our definition, bloom samples necessarily have lower Shannon diversity than
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404  non-bloom samples (Figure 1). More surprisingly, bloom samples had significantly (Mann-
405  Whitney test, U= 814, P<0.001) higher phylogenetic diversity (BWPD) compared to non-bloom
406  samples (Figure 1A). These result suggests that cyanobacterial blooms lead to (i) an increase in
407  phylogenetic diversity by adding additional, relatively long cyanobacterial branches to the
408  phylogeny, and (ii) a decrease of taxonomic evenness due to the dominance of cyanobacteria.
409  However, when we repeated the same analysis after removing all cyanobacterial OTUs, we found
410  that blooms did not alter the diversity of the remaining (non-cyanobacterial) community (Figure
411 1D, E, F). These exploratory alpha diversity analyses prompted us to investigate how community
412  composition changed between bloom and non-bloom samples, and over time.

413 Despite their limited impact on the diversity of the non-cyanobacterial community, we
414  found that blooms clearly alter the community composition of the lake. Using weighted UniFrac
415  distances to assess differences in community composition, we observed a separate grouping of
416  bloom and non-bloom samples (Figure 2A). However, the difference in community composition
417  could not be assessed with PERMANOVA statistics because bloom and non-bloom samples were
418  differently dispersed (Table S6. When we removed the Cyanobacteria counts and re-normalized
419 the OTU table (Figure 2B), we still observed a significant, but less pronounced difference
420  between bloom and non-bloom samples (PERMANOVA, R?*=0.035; P<0.001; ANOSIM
421 R=0.211; P<0.01; PERMDISP P = 0.084; Table S6). We observed the same trend using another
422 beta diversity metric, JSD (Table S6 and Figure S7). These results suggest that even excluding
423  Cyanobacteria (the bloom-defining feature), the bloom community still differs to some extent

424  from the non-bloom community.
425

426  Abiotic factors associated with blooms
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427 A subset of our samples was associated with environmental measurements that might
428  explain bloom events. We performed an RDA to identify environmental variables that could
429  explain how bloom and non-bloom samples are grouped, and found particulate nitrogen (PN),
430  particulate phosphorus (PP), microcystin concentration, and to a lesser extent soluble reactive
431  phosphorus (DP), to be most explanatory of the bloom (Figure S8; adjusted R*=0.273; ANOVA,
432 F76=4.919, P<0.001). DN and temperature explain less variation and act in opposing directions
433  (Pearson correlation = -0.18), perhaps because higher temperatures favour the growth of
434  microbes that rapidly consume dissolved nitrogen (Hong et al., 2014). Together, these
435  environmental variables explain ~25% of the microbial community variation (axis 1: 18.5%; axis
436  2: 6.9%) suggesting that unmeasured biotic or abiotic factors are needed to explain the remaining
437  ~75% of the variation. We also explored the ability of interactions among environmental
438  variables to explain variation, but despite the modest increase in R* to 0.34 (to be expected given

439  the added variables) we did not observe any significant interactions (Supplementary Table 4B).
440

441  Community dynamics vary more within than between years

442 We next asked how the lake microbial community varied over time, at scales ranging
443  from days to years. As described above, samples can be partially separated according to season
444  (spring, summer or fall) based on weighted UniFrac distances (Figure 2). However, seasons
445  differed significantly in their dispersion (with summer samples visibly more dispersed in Figure
446  2), violating an assumption of PERMANOVA and ANOSIM tests, and preventing us from
447  determining whether samples varied more by months, seasons or years (Table S6). However, it is
448  visually clear from Figure 2 that bloom samples explain much of the variation in summer

449  community composition.
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450 To more clearly track changes in community composition over time (temporal beta
451  diversity), we calculated the Bray-Curtis dissimilarity between pairs of samples separated by
452  increasing numbers of years. We did not observe any tendency for the community to become
453  more dissimilar over time, suggesting a long-term stability of the bacterial community on the
454  time scale of years in both the littoral (linear regression, F(; 1999)=1.171, P>0.05) and pelagic
455  sampling sites (linear regression, F(;2073=0.8467, P>0.05; Figure S4). Consistently, even though
456  years differed significantly in their dispersion (PERMDISP P < 0.05), community composition
457  remained relatively similar from year to year. (Weighted Unifrac: ANOSIM R<0.1, P<0.010;
458 PERMANOVA R’=0.011, P=0.098).

459 To further explore temporal signals in the data, we used a multivariate regression tree
460  (MRT) approach to determine how community structure varies over time scales of days to years.
461  Consistent with the stable Bray-Curtis similarity over years (Figure S4), we found that year-to-
462  year variation explains very little of the variation in community structure (R*=0.027; Table S5).
463  Week of the year explained the most the community variation (R*=0.274; Figure 3, Table S5),
464  followed closely by day (R*=0.254; Table S5) and month (R’=0.216; Table S5). Even though
465  weeks explained the most variation, much of this variation is captured at longer time scale of
466  months. Figure 3 shows how the regression tree roughly divides samples by season: Split 1 (red)
467  corresponds to samples taken before May 12 (early spring), split 2 (green) to samples taken
468  between May 12 and June 23 (late spring), split 3 (yellow) to samples taken after October 6 (fall),
469  split 4 (blue) to samples taken between June 23 and July 14 (early summer), split 5 (cyan) to
470  samples taken between July 14 and August 11 (mid-summer), and split 6 (purple) to samples
471  taken between August 11 and October 6 (late summer). The PCA ordination based on MRT
472  (Figure 3B) shows that community dynamics appear to be somewhat cyclical, returning to

473  roughly the same composition each year. Different times of year are characterized by different
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474  sets of OTUs, for example Acl-Bl and PnecB in early summer and Microcystis and
475  Dolichospermum in mid-summer.

476 To determine if the variation observed during summer (Figures 2 and 3) could be driven
477 by cyanobacterial bloom events, we repeated the MRT analyses after removing all cyanobacterial
478  sequences. Similar MRT results were obtained after removing cyanobacteria, suggesting that the
479  entire bacterial community, not just cyanobacteria, are responsible for temporal variation (Table
480  S5). Together, these results show how bacterial community dynamics follow an annually
481  repeating, cyclical pattern, and that both cyanobacteria and other bacteria contribute to the
482  dynamics.

483

484  Blooms are repeatably dominated by Microcystis and Dolichospermum

485 To explore potential biological factors involved in bloom formation, we attempted to
486  identify taxonomic biomarkers of bloom or non-bloom samples, at the genus and OTU levels. To
487  do so, we performed a differential analysis using ALDEX2 to identify the genera or OTUs that are
488  most enriched in bloom samples. We found several significant biomarkers and as expected, the
489  strongest bloom biomarkers belonged to the phylum Cyanobacteria (Table S8). The two strongest
490 OTU- and genus-level biomarkers were Microcystis (Microcystacae) and Dolichospermum
491  (Nostocaceae, previously named Anabaena), both genera of Cyanobacteria.

492

493 Blooms can be accurately classified based on non-cyanobacterial sequence data

494 Given the observation that bloom samples have distinct cyanobacterial and non-
495  cyanobacterial communities (Figure 2), we hypothesized that blooms could be classified based on
496  their bacterial community composition. We trained a machine-learning model (BIoMICO) on a

497  portion of the samples, and tested its accuracy in classifying the remaining samples (Methods).
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498  BIOMICO was able to correctly classify samples with ~92% accuracy (Table 1). Such high
499  accuracy is expected because blooms are defined as having >20% cyanobacteria, so the model
500  should be able to easily classify samples based on cyanobacterial abundance.

501 In a more challenging classification task, BIoMICoO was able to classify samples with 83-
502  86% accuracy after excluding cyanobacterial sequences. This result supports the existence of a
503  characteristic non-cyanobacterial community repeatably associated with the bloom. Two different
504 training approaches (Methods) yielded similar classification accuracy, both significantly better
505 than random (Table 1), but found different bloom-associated assemblages. When we compared
506 the best assemblages obtained with the two different trainings, focusing only on the 50 best OTU
507  scores, only 11 OTUs were found in both trainings (Table S9). This result suggests that data can
508  be classified into bloom or non-bloom samples, but different assemblages (containing different
509 sets of OTUs) can be found with similarly high classification accuracy (Table S9). This is
510  consistent with a general lack of repeatability at the level of individual OTUs, but that there exist
511  combinations of OTUs (Table S8) that are characteristic of blooms.

512

513 Blooms can be predicted by sequence data

514 The existence of microbial taxa and assemblages characteristic of blooms suggests that
515  blooms could, in principle, be predicted based on amplicon sequence data. We therefore used
516  symbolic regression (SR) to model the response variable “days until bloom” as a function of
517  OTU- or genus-level relative abundances, their interactions, and their trends over time (Methods).
518  To achieve true prediction, not simply classification, we used only samples collected prior to
519  each bloom event in order to predict the number of days until a bloom sample (i.e. bloom
520  samples themselves were not used). We based our analysis on 54 samples, ranging from 7 to 112

521  days before a bloom sample. Due to limitations in the resolution of sampling (approximately
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522 weekly), we cannot know the exact start date of a bloom, only the first date sampled. Using
523  OTUs or genera, we were able to predict the timing of the next bloom event with 80.5% or 78.2%
524  accuracy on tested data, respectively (Table 2). Using a subset of 21 samples with a full
525  complement of environmental data, we were able to compare the predictive power of sequence
526  data (OTU or genus level) versus environmental data. Predictions based on genus-level sequence
527  data clearly outperformed predictions based on environmental data. Predictions based on OTU-
528 level sequence data explained less variance than predictions based on genera, consistent with
529  OTUs being more variable and less reliable bloom predictors than higher taxonomic units.

530 All models tend to overshoot when based on samples taken closer to the bloom (i.e.
531 negative residuals), and tend to predict bloom events too soon when based on samples farther
532 from the bloom (Figure S9). One taxon — a member of the order Burkholderiales in the family
533  Oxalobacteraceae (unknown genus; Greengenes taxonomy) was consistently found in every
534  predictive formula (Table 2). At the OTU level, seq413 (Table 2) is assigned to Oxalobacteraceae
535 by Greengenes (with 67% confidence) but to Polynucleobacter C-subcluster (with 99%
536  confidence) based on TaxAss, a freshwater-specific database (Table S10). While Microcystis and
537  Dolichospermum are dominant closer to bloom events, seq413 showed the opposite pattern,
538  decreasing in relative abundance as the bloom approaches (Figure 4). The fact that seq413, but
539  not Microcystis or Dolichospermum, appears in the predictive equations suggests that the decline
540 in Oxalobacteraceae/seq413 is detectable before the increase in Cyanobacteria. Indeed, seq413
541  appear to decline before Microcystis or Dolichospermum increase (Figure 4). However, the
542  predictive analyses were done at the OTU or genus level, such that Cyanobacteria were not
543  treated as one entity (i.e. one variable in predictive equations). It is therefore possible that the
544  decline in seq413 was driven by a total increase in the sum of all Cyanobacteria, none of which

545  could be detected individually. To test this possibility, we repeated the SR analysis after merging
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546  Cyanobacteria into a single variable, and found that Cyanobacteria were never found in any
547  predictive equation. This is consistent with Oxalobacteraceae/PnecC declining before
548  Cyanobacteria increase. Hence, changes in the microbial community provide information about
549  impending blooms before they occur.

550

551 Discussion

552 We used a deep 16S rRNA amplicon sequencing approach to profile the bacterial
553  community in Lake Champlain over eight years, spanning multiple cyanobacterial blooms. We
554  sequenced with sufficient depth that bacterial diversity estimates reached a plateau (Figure S1),
555 and proposed a bloom definition based upon cyanobacterial relative abundance in 16S data.
556  Although there is no consensus bloom definition, the World Health Organization has proposed
557  guidelines, based on cyanobacterial cell density, to connect blooms to potential health risks
558 (WHO, Guidelines for safe recreational water environments, 2003). We found that, while
559  cyanobacterial relative abundance in 16S data is significantly correlated with cyanobacterial cell
560 density, the correlation is imperfect (Figure S6) because cyanobacteria can have high relative
561 abundance without achieving a high absolute cell density. Our bloom definition, based on
562  relative, not absolute abundance is therefore more a measure of how cyanobacteria impact their
563  surrounding bacterial community than a direct measure of human health risks.

564 Our results should be interpreted in light of four methodological caveats. First, the OTU
565 data are compositional, such that only the relative OTU abundances are meaningful, and the
566  relative abundances are non-independent (Gloor and Reid, 2016). As a result, removing certain
567 OTUs or taxa (e.g. Cyanobacteria, as discussed in the paragraph below) does not remove their

568 influence on the rest of the data. For some purposes, corrections for compositionality can be

24


https://doi.org/10.1101/058289
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058289; this version posted March 16, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

569 performed (e.g. ALDEx performs a centered log transform before inferring differentially
570  abundant OTUs). BioMico might identify OTUs that are not truly associated with blooms, but
571  that are falsely correlated with OTUs that are truly associated. However, this is not a major
572  problem because the goal of BioMico is bloom classification, not identification of bloom-
573  associated OTUs. A similar logic applies to prediction with SR: if the goal is pragmatic
574  prediction, whether the predictive taxa are biologically meaningful (or mere artefacts of
575  compositionality) is irrelevant. In reality, the fact that SR repeatably converged on equations with
576  the same taxa (Table 2) suggests that these taxa are indeed biologically meaningful. The second
577  caveat is that the same data was used to define blooms and also to classify/predict blooms, which
578  could be considered circular reasoning. However, the bloom definition was based on a univariate
579  summary of the data (Shannon diversity), while BioMico classification uses the multivariate data
580  (the relative abundance of each OTU across samples). Therefore, circularity is limited because
581  blooms were defined based on one feature of the data (a decline in Shannon diversity), and
582  classification was based on a different feature (OTU identities). For the prediction task,
583  circularity was limited because only non-bloom samples were used to predict the timing of a
584  bloom event. The third caveat is that phylogenetic measures of alpha and beta diversity (BWPD
585  and UniFrac, respectively) rely on a phylogenetic tree, which may be inaccurate. However, trees
586 inferred using FastTree, ML or neighbour-joining gave very similar results (Supplementary
587  Methods), so we expect tree errors to have a limited impact on our conclusions. The fourth caveat
588 s that the choice of OTU calling will influence the number and identify of OTUs. We used a
589  distribution-based OTU caller (Preheim et al., 2013), which uses the distribution of OTUs across
590 samples to reduce the number of false-positive OTUs (e.g. due to sequence errors). Other
591 methods, such as DADA2 (Callahan et al., 2016), oligotyping or minimum entropy

592  decomposition (Eren et al., 2013; 2015), are similarly able to de-noise 16S data, while calling
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593  OTUs at fine taxonomic resolution (e.g. 99% rather than 97% identity). In the future, these
594  methods could be used to analyze bloom dynamics at finer taxonomic resolution than the 97%
595  cutoff used here.

596 Our results suggest that blooms decrease community diversity because of an increase in
597  the relative abundance of cyanobacteria, not due to a reduction in the diversity of other bacteria.
598  This result is based on an analysis of three diversity measures, before and after removing
599  cyanobacterial sequences (Figure 1). Before removing Cyanobacteria, bloom samples clearly
600 have lower Shannon diversity and evenness compared to non-bloom samples (this is true by
601  definition, based on the nature of our bloom definition). After removing Cyanobacteria, there is
602  no apparent difference in diversity or evenness. Removing cyanobacterial reads does not remove
603 their influence on other OTUs, because of the dependence structure of compositional data (Gloor
604  and Reid, 2016; Morton et al., 2017). However, even if removing Cyanobacteria creates a bias in
605 the rest of the data, the same bias is introduced in both bloom and non-bloom samples alike, so
606 the comparison should remain valid. The removal of cyanobacterial reads is analogous to the
607  common practice of first removing eukaryotic reads from 16S data, and continuing all subsequent
608 analyses on bacterial reads only. The dataset as a whole is biased by the removal of eukaryotes
609  (i.e. the data becomes a 'subcomposition') but all samples have the same bias, so it is still possible
610 to compare among samples. Regardless, these diversity comparisons (Figure 1) were exploratory
611 in nature, and served as an entry point for more detailed beta diversity analyses, classification,
612  and prediction.

613 Consistent with our current knowledge of temperate lakes (Shade et al., 2007; Crump et
614  al., 2005), we found that community structure varied more within years than between years
615  (Figures 2, 3, and S4; Tables S5 and S6). In agreement with previous observations in eutrophic

616 lakes (Shade et al., 2007), Lake Champlain appears to return to a steady-state (Figure S4, Table
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617  S5), despite the biological disturbance induced by dramatic bloom events. Various studies have
618 already shown temporal patterns in microbial community structure (Hofle ef al., 1999; Lindstrom
619 et al., 2000; Crump et al., 2003; Shade et al., 2007; Kara et al., 2013; Fuhrman et al., 2015), but
620  ours does so in the context of cyanobacterial blooms.

621 The RDA results (Figure S8) are consistent with many previous studies describing the
622  environmental factors responsible for blooms (Owens and Esaias, 1976; Hecky and Kilham,
623  1988). For example, cyanobacterial growth is optimal at higher temperatures, between 15 and
624  30°C (Konoka and Brock, 1978). We confirmed that cyanobacterial blooms are correlated with,
625  and likely respond to nutrient concentrations, as previously described (Fogg, 1969; Jacoby et al.,
626  2000; Paerl and Huisman, 2008; Paerl and Huisman, 2009, Fortin et al 2015, Isles et al., 2015).
627  Dissolved nitrogen and temperature were negatively correlated, which could be explained by the
628  fact that the lake becomes enriched in nitrates during spring, when temperatures are lower, and
629  rain and drainage bring nutrients into the lake (Shade et al., 2007; Fortin et al., 2015). Another
630  explanation would be that in the spring, before most of the bloom events occur, the majority of
631 the nitrogen is dissolved, but when cyanobacteria and other phytoplankton increase in abundance
632  over the summer, nitrogen becomes concentrated in particulate forms within cells. We found that
633  measured abiotic variables explained only a part (~25%) of the variation between bloom and non-
634  bloom samples. Including interactions between variables in the model increased the adjusted R*
635  to ~35%; however no significant interactions were found (Table S4B). The rest of the variation
636  could be explained by unmeasured variables, such as different nitrogen species, water column
637  stability and mixing (although Missisquoi Bay is shallow [~2-5m] and likely never stratified), or
638  time-lagged variables. More variance might also be explained with a larger dataset containing
639  more samples.

640 In addition to environmental variables, we showed that biological variables, in the form of
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641  bacterial OTUs or genera, also characterize bloom events. Differential analysis using ALDEx2
642  identified Microcystis and Dolichospermum as the top bloom biomarkers (Table S8). These two
643  bloom-forming genera are associated with lake eutrophication (O’Neil ef al., 2012) and are also
644  known to produce cyanotoxins (Gorham and Carmichael et al., 1979; Carmichael, 1981). We
645  found additional bloom biomarkers in the genus Pseudanabaena and the family Cytophagacaea,
646  previously found to be associated with cyanobacterial blooms (Rashidan and Bird, 2001; O’Neil
647 et al., 2012). The order Chthoniobacterales (in the phylum Verrucomicrobia) was also found as a
648  bloom biomarker, consistent with previous studies that observed this taxon in association with
649  Anabaena blooms (Louati et al., 2015). Other studies have reported specific association between
650  Verrucomicrobia and Cyanobacteria, suggesting that members of this phylum might assimilate
651  cyanobacterial metabolites (Parveen et al., 2013; Louati ef al., 2015). We also found N, —fixing
652  members of Rhizobiales order as bloom biomarkers. These taxa might be associated with the
653  non-N,-fixing cyanobacteria Microcystis, potentially supporting its growth.

654 Using machine learning, we were able to classify bloom samples with high accuracy
655 based on microbial assemblages, confirming that there is a specific microbial community
656  associated with blooms. Consistent with the ALDEx2 results, Microcystis and Dolichospermum
657  were present in all bloom assemblages (Table S9). Cyanobacterial blooms have been previously
658  suggested to alter the local environment and the surrounding microbial community (Louati et al.,
659  2015). As a result, these assemblages may include bacteria that are reliant on cyanobacterial
660  metabolites and biomass. For example, we found that bloom assemblages included potential
661  cyanobacterial predators from the order Cytophagales and the genus Flavobacterium (Table S9),
662  both associated with bloom termination (Rashidan and Bird, 2001; Kirchman, 2002) but also taxa
663  such as Methylophilaceae, acl, and acIV that have been previously associated with cyanobacterial

664  blooms (Li et al., 2015; Woodhouse et al., 2016). We found that acl was abundant in early
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summer, just before the Microcystis and Dolichospermum blooms of mid-summer (Figure 3B).
While acl might help "set the stage" for a bloom, acIV might have the capacity to use metabolites
from cyanobacterial decomposition, and Methylophilaceae is a potential microcystin degrader
(Bogard et al., 2014; Ghylin et al., 2014, Mou et al., 2013).

Finally, we show the potential for bloom events to be predicted based on amplicon
sequence data. We acknowledge that long-term environmental processes such as global
warming, and punctual seasonal events such as floods and droughts, are major determinants of
whether a bloom will occur in a given year (Paerl and Huisman, 2008; Paerl and Paul, 2012).
For example, no bloom occurred in 2007, likely due to a spring drought which dramatically
reduced nutrient run-off into the lake. However, sequence data might be useful to predict
bloom dynamics on shorter time scales of days, weeks or months. We demonstrated that it is
possible to use pre-bloom sequence data to predict the number of days until a bloom event,
with errors on the order of weeks (Figure S9) — the best that could be expected, given that
sampling density was also on the order of weeks. Sequence data appears to be a strong
predictor, similar or better than prediction with environmental variables (Table 2). These
results are consistent with a recent study suggesting that abiotic environmental factors could
be crucial to initiate blooms, but that biotic interactions might also be important in the exact
timing and dominant members of the bloom (Needham and Fuhrman, 2016). Similarly,
environmental variables explained relatively little variation in freshwater bacterial
composition, while biotic variables (i.e. phytoplankton) explained more (Kent ez al. 2004). It
is possible that measuring more environmental variables, or using more complex time-lagged
environmental variables (beyond the simple trends used in SR equations) could provide better
predictions. However, microbial variables (OTUs) can be measured nearly exhaustively in a

single sequencing run, whereas it is hard to know which environmental variables to measure
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689 (e.g. temperature, pH, nitrogen, etc. seem relevant but what about Fe, As, Mg, etc.?) and hard
690 to measure them all in high-throughput. However, SR models might be prone to overfitting,
691 which might explain why better predictive accuracy is achieved with fewer samples (Table 2).
692 Our samples were rarely taken more often than weekly, explaining why prediction error is on
693 the order of weeks (Figure S9). We expect that more samples taken over shorter time periods
694 will reduce both overfitting and prediction error. We also note that the "best" predictive
695 equations found by SR are not necessarily global optima, because the space of possible
696 equations is not explored exhaustively.

697 Surprisingly, we never found Cyanobacteria as a bloom predictor in any of the predictive

698  models (Table 2). This means that the models are not simply tracking a positive trend in
699  cyanobacterial abundance, possibly because bloom events are "spiky" (Figure 4) and hence
700  difficult to predict with weekly sampling. Instead, predictive equations always included a
701  member of the order Burkholderiales, classified as Oxalobacteraceaec with 67% confidence by
702  Greengenes, or Polynucleobacter C (PnecC) with 99% confidence by TaxAss. We acknowledge
703  this taxonomic uncertainty, but give preference to the higher-confidence PnecC assignment. PneC
704  tends to be relatively abundant further ahead of bloom events (Figure 4). This observation could
705  be explained by an ecological succession between PnecC and Microcystis/Dolichospermum. The
706  fact that PnecC was chosen as a better predictor than Cyanobacteria suggests that PnecC begins
707  to decline before any detectable increase in Cyanobacteria, providing a potential early warning
708  sign. Simek et al., (2011) showed that some PnecC taxa grow poorly in co-culture with algae,
709  suggesting that negative interactions could also occur with cyanobacteria.

710 We have shown that cyanobacterial blooms contain highly (but not exactly) repeatable
711  communities of Cyanobacteria and other bacteria. It appears that the community begins to change

712 before a full-blown bloom, suggesting that sequence-based surveys could provide useful early
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713 warning signals. While the predictions of our models are fairly coarse-grained (e.g. prediction
714  error on the order of weeks), they suggest that more accurate prediction might be enabled with
715  increased sampling frequency. It remains to be seen to what extent bloom and pre-bloom
716  communities — which show repeatable dynamics within one lake — are also repeatable across
717  different lakes, and to what extent predictors could be universal or lake-specific. To improve
718  predictions going forward, we suggest sampling additional lakes with dense time-courses, paired
719  with 16S or metagenomic sequencing. In order to predict not just blooms but also the toxicity of

720  blooms, sequencing should be paired with detailed toxin analyses.
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1030 Tablelegends

1031

1032 Table 1. Bloom classification results. We used a supervised machine learning approach
1033  (BioMico) to determine if samples can be classified into bloom bins based on microbial
1034  assemblages (Methods). Accuracy was calculated as the percentage of correctly classified
1035  samples (true positives + true negatives) relative to the total number of samples in the testing set.
1036  The 95% confidence intervals of a random classifier (Methods) and the P-values (that the real
1037  classifier differs from random) are also shown.

1038

1039  Table 2. Predicting bloom timing with symbolic regression (SR). The best formula found by
1040 SR is shown for each category of predictor variables. SR was performed on two datasets. First,
1041  OTUs and genera were used as predictor variables, using the maximum number of non-bloom
1042 samples (N = 54). Second, in order to determine the impact of including environmental data as
1043  predictor variables, we used only samples with a full set of metadata (N = 21). (*/** indicate
1044  OTUs/genera found multiple times in SR formulas).
1045

1046
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1047  Figurelegends

1048

1049  Figure 1. Comparison of alpha diversity between bloom and non-bloom states. Three alpha
1050  diversity metrics were employed: (A) BWPD, (B) the Shannon index, and (C) the Shannon
1051  evenness (equitability) to compare alpha diversity between bloom (black) and non-bloom (grey)
1052  samples. We repeated the same analysis after removing Cyanobacteria. Comparisons were
1053  performed using a Mann-Whitney test (* P < 0.05, ** P <0.01, *** P <0.001).

1054

1055  Figure 2. Changes in community composition across seasons and bloom events. Each point
1056  in the PCoA plot represents a sample, with distances between samples calculated using weighted
1057  UniFrac as a measure of community composition. Non-bloom samples are shown in black, bloom
1058  samples in grey. Different shapes describe the different seasons: circle for Spring, triangle for
1059  Summer and star for Fall. (A) Samples with all OTUs included. (B) Samples excluding OTUs
1060  from the phylum Cyanobacteria.

1061

1062  Figure 3. Cyclical community composition dynamics. Multivariate regression tree (MRT)
1063  analysis was used to estimate the impact of time on bacterial community structure. (A) The most
1064  parsimonious tree shows how the community is partitioned by MRT using week of the year as a
1065  temporal variable. Six different leaves (large coloured circles) were defined based on microbial
1066  abundance and composition. (B) The community composition within leaves is represented in a
1067  PCA plot, where small points represent individual samples and large points represent the group
1068  mean (within the leaf). The grey barplot in the background indicates OTUs whose differential
1069  abundance explains variation in the PCA plot.

1070
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Figure 4. Oxalobacteraceae and seq413 decline while Microcystis and Dolichospermum
increase as a bloom event approaches. We plotted the relative abundance of relevant taxa from
112 to 7 days before a bloom sample. Oxalobacteraceae (genus unclassified) and the OTU seq413
(Oxalobacteraceae, genus unclassified or Polynucleobacter PnecC ) are relatively abundant long
before a bloom event, and gradually decline as bloom events approach. Microcystis and

Dolichospermum are the two most dominant bloom-forming cyanobacteria.
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‘Trainingset Testingset | Classification False False True True  95% confidence P-value (real
Accuracy interval of classifier differs
positives - negatives = negatives = positives random from random)
classifier

Z3of al ysofal 91.84 % 4 0 33 12 36-64% 8.225x10™
samples samples

2007& 2009 | All other 92.52% 8 0 73 26 40-60% <2.2x10™
samples samples

2/3 of dll 1/3 of all

samples, samples, 85.71% 6 1 31 11 36-64% 3.625x107
without without

cyanobacteria cyanobacteria

2007 & 2009 All other
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without without

cyanobacteria cyanobacteria
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- Environmental
data

trend(f_Cerasicoccaceae g_unclassified
_segb48) + 2511.838 x f__Oxalobacteraceae

Table2.
Predictor Best response formula R®>  Components Number Mean AlC Corrected
variables of squared AlIC
daysto bloom= samples . error
used

OoTuU 18.264 + 2179.337 x
f__Cryomorphaceae_g_unclassified_seq436 +
2007.048 x f_ Oxalobacteraceae_ 0.805 4 54 117540 = 265.406 266.222
g_unclassified _seq413**

Genera 19.780 + 2057.652 x f_Oxalobacteraceae
g_unclassified* + 703.606 x
f_Armatimonadaceae g_unclassified - 0.782 6 54 131.134 : 275.316 277.103
2599.909 x genus_Arcobacter-7598.106 x
genus_Rickettsiella

OoTuU 15.941 + 49774.285 %
trend(f_Cerasicoccaceae g_unclassified
_seqp48) + 2511.838 x f__ Oxalobacteracese. 0.826 4 21 83.845 101.008 103.508
g_unclassified _seq413**

Genera 21.185 + 2646.333 x f_Oxalobacteraceae
g_unclassified* - 13323.212 x
trend(genus_Flavobacterium) - 16288.058 x 0.914 5 21 31776 82633 86.633
o_Ellin329 g_unclassified

Environmental = 114.017 + 192.663 x trend(MeanT) + 137.168

data x DN - 0.413 x PP - 6.915 x MeanT - 223.712
x DN x trend(MeanT) - 51.424 x DN? 0.828 8 21 63.493 103.170 115.170

OTU + 15.941 + 49774.285 x 0.826 4 21 83.845 101.008 103.508

"8sua9l| feuoneuIgIul 0y DN-AG-DD8
Japun a|qejrene apew si 1| ‘Ainadiad ul uudaid ayy Aejdsip 01 asuadl| B AIxHolq pajuelb sey oym ‘1spunyoyine ayl si (mainai 1aad Aq palined
10U sem yaiym) Juudauid siy 1oy Jspjoy 1yBuAdod syl *2TOZ ‘9T Yase paisod uoisiaA sIy) :682850/T0TT 0T/B10 10p//:sdny :10p uudaid AxyHolq


https://doi.org/10.1101/058289
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058289; this version posted March 16, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

©
irg)
N
©
ire]
N
o
o
o)
N~
™
0
~
—
N
o)
I
I
=2
o
1
Py
. §
*.I.m
82
=)
2¢o
5 85
c I 7|
* u_S_nuv_
X =)}
& A5
™
S x QO
59885
_oo.amE_
BZLL S
ﬁ3wxx
7 N8 o
4r888
© © ™ g
n%x%S
500«
|~ M ©
oON !'da =
©
5
+ E
T 5
o o=
s
5 2 =
C @©
Ouwo



https://doi.org/10.1101/058289
http://creativecommons.org/licenses/by-nc/4.0/

	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

