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Summary 25 

Cyanobacterial blooms occur in lakes worldwide, producing toxins that pose a serious public 26 

health threat. Eutrophication caused by human activities and warmer temperatures both 27 

contribute to blooms, but it is still difficult to predict precisely when and where blooms will 28 

occur. One reason that prediction is so difficult is that blooms can be caused by different species 29 

or genera of cyanobacteria, which may interact with other bacteria and respond to a variety of 30 

environmental cues. Here we used a deep 16S amplicon sequencing approach to profile the 31 

bacterial community in eutrophic Lake Champlain over time, to characterize the composition and 32 

repeatability of cyanobacterial blooms, and to determine the potential for blooms to be predicted 33 

based on time-course sequence data. Our analysis, based on 135 samples between 2006 and 2013, 34 

spans multiple bloom events. We found that bloom events significantly alter the bacterial 35 

community without reducing overall diversity, suggesting that a distinct microbial community – 36 

including non-cyanobacteria – prospers during the bloom. We also observed that the community 37 

changes cyclically over the course of a year, with a repeatable pattern from year to year. This 38 

suggests that, in principle, bloom events are predictable. We used probabilistic assemblages of 39 

OTUs to characterize the bloom-associated community, and to classify samples into bloom or 40 

non-bloom categories, achieving up to 92% classification accuracy (86% after excluding 41 

cyanobacterial sequences). Finally, using symbolic regression, we were able to predict the start 42 

date of a bloom with 78-92% accuracy (depending on the data used for model training), and 43 

found that sequence data was a better predictor than environmental variables.  44 

  45 
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Introduction 46 

Cyanobacterial blooms occur in freshwaters systems around the world, and are both a 47 

nuisance and a public health threat (Zingone and Enevoldsen, 2000; Paerl et al., 2013). These 48 

blooms are defined by a massive accumulation of cyanobacterial biomass, formed through 49 

growth, migration, and physical–chemical forces (Paerl, 1996). In temperate eutrophic lakes, 50 

blooms tend to occur annually, specifically during the summer when water temperatures are 51 

warmer (Kanoshina et al., 2003, Havens, 2008). The frequency and intensity of these blooms is 52 

increasing over time (Johnson et al., 2010; Posch et al., 2012), likely due to increased 53 

eutrophication, climate change, and increased nutrient input from human activities (O’Neil et al., 54 

2012; Winder, 2012).  55 

Attempts have been made to predict blooms using hydrodynamic-ecosystem models 56 

(Allen, 2008, Qing et al., 2014), artificial neural networks models (Maier et al., 2000; 2001), or 57 

statistical models such as on linear regression (Dillion and Rigler, 1974, Onderka, 2007). 58 

Nevertheless, these models have been limited in their ability to accurately predict cyanobacterial 59 

dynamics (Downing et al., 2001; Taranu et al., 2012), perhaps because they mainly used abiotic 60 

factors (e.g. temperature, pH, nutrients, etc.) to predict blooms, while largely ignoring biotic 61 

factors (Recknagel et al., 1997; Downing et al., 2001; Oh et al., 2007). It is known that 62 

cyanobacteria interact with their biotic environment in a variety of ways, ranging from predator-63 

prey interactions to mutualistic interactions (Rashidan and Bird, 2001; Eiler and Bertilsson, 2004; 64 

Berg et al., 2008; Li et al., 2012; Mou et al., 2013; Louati et al., 2015; Woodhouse et al. 2016). 65 

Biotic factors, such as the composition of the surrounding bacterial community, could therefore 66 

help refine bloom prediction. Previous studies have predicted the distribution of other bacteria 67 

based on community structure (Larsen et al 2012; Kuang et al., 2016) but to our knowledge this 68 
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has not been attempted to predict freshwater cyanobacterial blooms. Prediction based on biotic 69 

factors is attractive because the composition of the microbial community can be thoroughly 70 

measured through culture-independent, high-throughput sequencing, whereas it is not always 71 

clear which are the relevant (or most predictive) abiotic factors that should be measured. 72 

Moreover, the microbial community composition may contain information about both measured 73 

and unmeasured abiotic variables, insofar as these variables impact the community. 74 

For bloom prediction based on biotic factors to be successful, there must be some degree 75 

of repeatability in the changes to lake bacterial community composition that precede blooms. 76 

Several studies have shown that many aquatic microbial communities are temporally dynamic 77 

(Pernthaler et al., 1998; Hofle et al., 1999; Lindstrom et al., 2000; Crump et al., 2003; Kent et al., 78 

2004; Shade et al., 2007 ; Kara et al., 2013; Fuhrman et al., 2015), often with repeatable patterns 79 

of community structure (Fuhrman et al., 2006; Fuhrman et al., 2015). Recent studies have 80 

tracked the dynamics of microbial communities in bloom-impacted lakes using culture-81 

independent sequencing methods (Eiler et al., 2012; Li et al., 2015; Woodhouse et al., 2016). Li 82 

et al. (2015) found that a bloom-impacted lake returned to its initial community composition after 83 

a period of one year. However, all these studies were carried out over one year or less, making it 84 

difficult to generalize the results and make robust predictions. As highlighted by Fuhrman et al., 85 

(2015) data should be collected over several consecutive years to assess the repeatability of 86 

bacterial community dynamics, and to assess if community structure follows a predictable 87 

pattern, and over what time scales.  88 

Blooms can be operationally defined in numerous ways. A classic definition is simply 89 

when algal biomass is high enough to be visible (Reynolds and Walsby, 1975). Other bloom 90 

definitions rely on chlorophyll concentrations (≥20 µg/L), or dominance of cyanobacteria (>50%) 91 

over other phytoplankton (Molot et al., 2014). An attractive alternative is to view cyanobacterial 92 
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blooms as a biological disturbance, measurable by their impact on the surrounding microbial 93 

community (Shade et al., 2012). Blooms can have a major impact on the microbial community 94 

through both direct (e.g. microbe-microbe interactions) and indirect effects (e.g. changes to lake 95 

chemistry). For example, blooms can reduce carbon dioxide concentrations, increase pH, and 96 

alter the distribution of biomass across the length and depth of a lake (Verspagen et al., 2014; 97 

Sandrini et al., 2016). Such bloom-induced changes in water chemistry could then impact the 98 

structure and diversity of microbial communities (Bouvy et al., 2001; Eiler and Bertilsson, 2004; 99 

Bagatini et al., 2014; Li et al., 2015, Woodhouse et al., 2016). For example, as cyanobacteria 100 

decompose, they release metabolites that can be utilized by other taxa, such as Cytophagaceae 101 

(Rashidan and Bird, 2001; O’Neil et al., 2012), which we therefore expect to be observed in 102 

association with blooms. Positive associations have been observed between the genus 103 

Phenylobacterium or members of the order Rhizobiales with the cyanobacterial genus 104 

Microcystis (Louati et al., 2015). However, the reasons for these interactions, as well as their 105 

repeatability (over time) and generality (across different lakes) remain unknown.  106 

Here, we present an eight-year time-course study of the bacterial community structure of a 107 

large eutrophic North American lake, Lake Champlain, where cyanobacterial blooms are 108 

observed nearly every summer. Samples were collected from 2006 to 2013 and analyzed using 109 

high-throughput 16S amplicon sequencing. We tracked the bacterial community composition in 110 

135 time-course samples to determine how the community varies over time and how it is 111 

impacted by blooms. Considering blooms as a disturbance to the surrounding microbial 112 

community (Shade et al. 2012), we defined bloom events as a relative abundance of 113 

cyanobacteria above which community diversity begins to decline. Blooms are characterized both 114 

by a dominance of cyanobacteria, but also a characteristic surrounding bacterial community. We 115 

show that the community composition does not vary considerably from year to year, but does 116 
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vary within a year, on time scales of days to months. As a result, community dynamics are 117 

largely repeatable from year to year, and are in principle predictable. Finally, exploiting the 118 

repeatable dynamics of the lake community, we showed that bloom events can be predicted 119 

several weeks in advance based on the microbial community composition, with slightly greater 120 

accuracy than predictions based on abiotic factors.  121 

 122 

 123 

Materials and Methods 124 

 125 

Sampling  126 

A total of 150 water samples were collected from the photic zone (0-1 meter depth) of 127 

Missisquoi Bay, Lake Champlain, Quebec, Canada (45°02'45''N, 73°07'58''W). Between 12 and 128 

27 (median 17) samples were collected each year, from 2006 to 2013, between April and 129 

November of each year. Samples were taken from both littoral (78 samples) and pelagic (72 130 

samples) zones (Supplementary Methods). Between 50 and 250 ml of lake water was filtered 131 

depending on the density of the planktonic biomass using 0.2-μm hydrophilic polyethersulfone 132 

membranes (Millipore). Physico-chemical measurements, as described in Fortin et al. (2015), 133 

were also taken during most sampling events (Supplementary File:  134 

File_S1_Environmental_Table.txt). These environmental data included water temperature, 135 

average air temperature over one week, cumulative precipitation over one week, microcystin 136 

toxin concentration, total and dissolved nutrients (phosphorus and nitrogen). Details of the 137 

sampling protocol are described in Supplementary Methods. 138 

 139 

DNA extraction, purification and sequencing 140 
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DNA was extracted from frozen filters by a combination of enzymatic lysis and phenol-141 

chloroform purification as described by Fortin et al. (2010). Each DNA sample was resuspended 142 

in 250 μl of TE (Tris-Cl, 10 mM; EDTA, 1 mM; pH 8) and quantified with the PicoGreen® 143 

dsDNA quantitation assay (Invitrogen). DNA libraries for paired-end Illumina sequencing were 144 

prepared using a two-step 16S rRNA gene amplicon PCR as described in Preheim et al. (2013). 145 

We amplified the V4 region, then confirmed the library size by agarose gels and quantified DNA 146 

with a Qubit v.2.0 fluorometer (Life Technologies). Libraries were pooled and denatured as 147 

described in the Illumina protocol. We performed two sequencing runs using MiSeq reagent Kit 148 

V2 (Illumina) on a MiSeq instrument (Illumina). Each run included negative controls and two 149 

mock communities composed of 16S rRNA clones libraries from other lake samples (Preheim et 150 

al., 2013). Details of the library preparation protocol are described in Supplementary Methods. 151 

 152 

Sequence analysis and OTU picking 153 

Sequences were processed with the default parameters of the SmileTrain pipeline 154 

(https://github.com/almlab/SmileTrain/wiki/; Supplementary Methods) that combined reads 155 

quality filtering, chimera filtering, paired-end joining and, de-replication using USEARCH 156 

(version 7.0.1090, http://www.drive5.com/usearch/) (Edgar, 2010), Mothur (version 1.33.3) 157 

(Schloss et al., 2009), Biopython (version 2.7) and custom scripts. SmileTrain also incorporates a 158 

de novo distribution-based clustering: dbOTUcaller algorithm (Preheim et al., 2013) 159 

(https://github.com/spacocha/dbOTUcaller, version 2.0), which was performed to cluster 160 

sequences into Operational Taxonomic Units (OTUs) by taking into account the sequence 161 

distribution across samples. The OTU table generated was then filtered using 162 

filter_otus_from_otu_table.py QIIME scripts (Caporaso et al., 2010) (version 1.8, 163 

http://qiime.org/) to remove OTUs observed less than 10 times, minimizing false-positive OTUs 164 
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(Table S1). Fifteen samples with less than 1000 sequences were removed from the OTU table 165 

using filter_samples_from_otu_table.py QIIME script, yielding a final dataset of 135 samples. 166 

Taxonomy was assigned post-clustering using a two different approaches: (i) the latest 97% 167 

reference OTU collection of the GreenGenes database (release 13_8, August 2013, 168 

ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz; 169 

http://greengenes.lbl.gov), using assign_taxonomy.py QIIME script (default parameters), and (ii) 170 

a combination of GreenGenes and a freshwater-specific database (Freshwater database 2016 171 

August 18 release; Newton et al., 2011), using the TaxAss method 172 

(https://github.com/McMahonLab/TaxAss, access date: September 13th 2016). Taxonomy 173 

information was then added to the OTU table using the biom add-metadata scripts (http://biom-174 

format.org/). We removed OTUs that were not prokaryotes but still present in the database 175 

(Cryptophyta, Streptophyta, Chlorophyta and Stramenopiles orders). A total of 7,321,195 176 

sequences were obtained from our 135 lake samples, ranging from 1,392 to 218,387 reads per 177 

sample, with a median of 47,072. This dataset was clustered into 4061 OTUs. Of these OTUs, 178 

4053 were observed in littoral samples and 4042 in pelagic samples, with 4034 in common to 179 

both sites, 19 unique to littoral and 8 to pelagic. 180 

 To evaluate the quality of the SmileTrain OTU picking pipeline used and estimate the 181 

potential false positive OTUs generated by the approach used, we compared the number and 182 

identity of OTUs obtained for two different mock communities that were generated from 183 

plasmids containing 16S rRNA sequences from a clone library as described on Preheim et al. 184 

(2013). SmileTrain (using the dbOTUcaller algorithm) recovered 100% of the expected OTUs in 185 

the mock community, i.e we found a perfect match between 16S sequences from the library and 186 

the OTU representative sequences generated post-clustering. However we also found some false 187 

positives (Table S1). We removed OTUs represented by fewer than 10 sequences in total to 188 
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minimize false positives using filter_otus_from_otu_table.py QIIME script. (Table S1). After this 189 

filtering, we still recovered 97% for Mock10 and 100% for Mock11. Details of the post-190 

sequencing computational pipeline are described in Supplementary Methods, and R scripts (for 191 

analyses described here and below) are in Supplementary File 2 (File_S2_R_scripts.txt). 192 

 193 

Diversity analysis 194 

To calculate the alpha diversity, indexes known for their robustness to sequencing depth 195 

variation were used: Shannon diversity (Shannon and Weaver, 1949), evenness (the equitability 196 

metric calculated in QIIME as: Shannon diversity / log2(number of observed OTUs)), and 197 

Balance-Weighted-abundance Phylogenetic Diversity (BWPD) (McCoy and Matsen IV, 2013). 198 

To assess the impact of variable sequencing depth on these diversity measures, rarefaction curves 199 

were made with multiple rarefactions from the lowest to the deepest sequencing depth, at 200 

intervals of 3000 sequences, with replacement and 100 iterations (Fig S1) using 201 

parallel_multiple_rarefactions.py, parallel_alpha_diversity.py and collate_alpha.py QIIME 202 

scripts. Alpha diversity metrics were then calculated using the mean of the 100 iterations of the 203 

deepest sequencing depth for each sample (McMurdie and Holmes, 2014). This approach was 204 

used to avoid losing data, and to estimate alpha diversity as accurately as possible. The Shannon 205 

index (OTU richness and evenness), and Equitability (evenness) were calculated using QIIME 206 

scripts as described above. The BWPD index that captures both the phylogeny (summed branch 207 

length) and the relative abundance of species was calculated using the guppy script with fpd 208 

subcommand (http://matsen.github.io/pplacer/generated_rst/guppy_fpd.html). Boxplots and 209 

statistical analyses were performed with IBM SPSS version 22. 210 

 To calculate the beta diversity between groups of samples (e.g. months or seasons), we 211 

used a non-rarefied OTU table to calculate two metrics that are robust to sequencing depth 212 
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variation: weighted Unifrac (Lozupone et al,. 2007) and Jensen-Shannon divergence (JSD) 213 

(Fuglede and Topsoe 2004; Preheim et al., 2013). We used the phyloseq R package (version 214 

1.19.1) (McMurdie and Holmes, 2013) (https://joey711.github.io/phyloseq/) to first transform the 215 

OTU table into relative abundance (defined here as the counts of each OTU within a sample, 216 

divided by the total counts of all OTUs in that sample) then to calculate the square root of each 217 

metric (JSD or weighted UniFrac), and finally to perform principal coordinates analysis (PCoA) 218 

(Gower, 1966). As we observed potential arch effects with sqrt(JSD), we decided to use 219 

Nonmetric multidimensional scaling (NMDS, from the phyloseq package that incorporates the 220 

metaMDS() function from the R vegan package, Oksanen, J. et al., 2010. R package version 2.4-221 

1) (Shepard, 1962; Kruskal, 1964) plots. A square root transformation is necessary here to 222 

transform weighted Unifrac (non Euclidean metric) and JSD (semi-metric) into Euclidean metrics 223 

(Legendre and Gallagher, 2001). Differences in community structure between groups (e.g. bloom 224 

vs. non-bloom samples) were tested using: (i) analysis of similarity (Clarke, 1993) using the 225 

anosim() function. The non-parametric Analysis of Similarity (ANOSIM; Clarke, 1993) has been 226 

used to test if the similarity among group sample is greater than within-group sample. If the 227 

anosim() function returns an R value of 1, this indicates that the groups do not share any 228 

members of the bacterial community. (ii) Differences in community structure between groups 229 

was also tested using permutational multivariate analysis of variance (PERMANOVA; Anderson, 230 

2001) with the adonis() function. Both ANOSIM and PERMANOVA tests can be sensitive to 231 

dispersion, so we first tested for dispersion in the data by performing an analysis of multivariate 232 

homogeneity (PERMDISP, Anderson, 2006) with the permuted betadisper() function. In our 233 

analysis, we observed a significant dispersion effect when cyanobacterial sequences were 234 

included. The dispersion effect makes the PERMANOVA and ANOSIM results difficult to 235 

interpret. Dispersion mostly disappeared when we removed the cyanobacterial sequences, 236 
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meaning that cyanobacteria were in part responsible for the differences in dispersion between 237 

groups. PERMANOVA, PERMDISP and ANOSIM were performed using the R vegan package 238 

(Oksanen, J. et al., 2010. R package version 2.4-1), with 999 permutations. Beta diversity 239 

analyses were also performed using a rarefied OTU table (rarefied to 10,000 reads per sample) 240 

and similar results were observed (data not shown). Phylogenetic trees used for phylogenetic 241 

analysis were built using FastTree (version 2.1.8, Price et al., 2009) 242 

(http://meta.microbesonline.org/fasttree/). Three other tree inference methods were tested, 243 

yielding similar results to FastTree (Supplementary Methods).  244 

 245 

Bloom definition and K-means partitioning  246 

Only a small subset of our samples were associated with estimates of cyanobacterial cell 247 

counts. We therefore estimated the relative abundance of cyanobacteria based on 16S rRNA gene 248 

amplicon data, which was significantly (but imperfectly) correlated with in situ cyanobacterial 249 

cell counts from a limited number of samples (Figure S6, adjusted R2=0.336; F1,50=27.46, 250 

P<0.001). The reason for the imperfect correlation is that, even when their absolute numbers are 251 

low, cyanobacteria can still dominate the community in relative terms. 252 

To define cyanobacterial blooms, we followed the biological pulse disturbance definition 253 

described in Shade et al. (2012). Specifically, we defined a critical threshold of cyanobacterial 254 

relative abundance above which the Shannon diversity of the community begins to decline 255 

sharply, consistent with a major ecological disturbance (Figure S2). The decline in diversity is 256 

most pronounced when cyanobacteria make up 20% or more of the community, so we defined 257 

samples with 20% cyanobacteria or more as "bloom samples" (Table S7).  258 

As an alternative and completely independent way of binning samples, we used the K-means 259 

partitioning algorithm (MacQueen, 1967), implemented with the function cascadaKM() from the 260 
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vegan package in R, with 999 permutations. The OTU table was first transformed by Hellinger 261 

transformation (Rao, 1995) as advised in Legendre and Legendre (1998) by using the 262 

decostand(x, method=”hellinger”) function from R vegan package. OTU tables are generally 263 

composed of many zeros (as is the case for our data), which is inappropriate for the calculation of 264 

Euclidean distance. Hellinger transformation is a method to avoid this problem by down-265 

weighting low-abundance OTUs (Legendre and Gallagher, 2001). We tested the partitioning of 266 

the 135 samples into 2 to 10 groups, based on the microbial community composition. The 267 

Calinski-Harabasz index (Caliński & Harabasz, 1974) was used to determine that our samples 268 

naturally clustered into two groups (Figure S3), and bloom samples (defined as above) were all 269 

found in a single K-means group (Figure S5). This suggests that the lake samples are naturally 270 

divided into two groups, and that cyanobacteria are a major distinguishing feature between 271 

groups. 272 

 273 

Changes in community composition over time 274 

In order to investigate microbial community variation over time, we first analysed the 275 

change in Bray-Curtis dissimilarity over years. We performed separated analyses for littoral and 276 

pelagic OTU tables, after filtering out singleton OTUs only observed in one sample. This yielded 277 

3491 OTUs for littoral samples and 3371 OTUs for pelagic samples. These two OTU tables were 278 

transformed to relative abundances prior to analysis. We calculated the Bray-Curtis dissimilarity 279 

between all pairs of samples using the QIIME script beta-diversity.py. We verified that 280 

distribution of Bray-Curtis dissimilarity across samples was approximately normal. Then, we 281 

used a custom script (see Supplementary file: “File_S2_R_scripts.txt”) to group the samples 282 

based on the amount of time (years) separating them, and to plot the mean dissimilarity of 283 

samples against their separation in time. Error bars were determined by calculating the standard 284 
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error of the mean.  285 

 286 

In a second approach, we used multivariate regression tree analyses (Breiman et al. 1984; 287 

De’ath 2002) with different time scales: year, season, month, week and day of the year. The goal 288 

here is to identify the temporal variables that best explain the variation in microbial community 289 

composition. An analysis was performed for each temporal variable (year, season, month or 290 

DoY) using the function mvpart() and rpart.pca() from the R mvpart package (Therneau and 291 

Atkinson, 1997; De'ath, 2007). Prior to analysis, the OTU table was Hellinger transformed (Rao, 292 

1995) as advised in Ouellette et al., (2012). This approach is particularly useful to investigate 293 

both linear and non-linear relationships between community composition and a set of explanatory 294 

variables without requiring residual normality (Ouellette et al., 2012). After 100 cross-validations 295 

(Breiman et al. 1984), we plotted and pruned the tree using the 1-SE rule (Legendre & Legendre 296 

2012) to select the least complex model, avoiding over-fitting. We then used the function 297 

rpart.pca() from mvpart package to plot a PCA of the MRT.  298 

 299 

Taxa-environment relationships 300 

 To investigate taxa-environment relationships, we performed a redundancy analysis 301 

(RDA; Rao, 1964) that searches for the linear combination of explanatory variables (the matrix of 302 

abiotic environmental data) that best explains the variation in a response matrix (the OTU table). 303 

The OTU table was transformed by Hellinger transformation (Rao, 1995) as advised in Legendre 304 

and Legendre (1998). The explanatory (environmental) matrix was first log-transformed then z-305 

score standardized using the function decostand(x, method=”standardize”) because different 306 

environmental parameters are in different units. The environmental matrix variables included: 307 

total phosphorus in μg/L (TP), total nitrogen in mg/L (TN), particulate phosphorus in μg/L (PP, 308 
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the difference between TP and DP), particulate nitrogen in mg/L (PN, the difference between TN 309 

and DN), soluble reactive phosphorus in μg/L (DP), dissolved nitrogen in mg/L (DN), 1-week-310 

cumulative precipitation in mm, 1-week-average air temperature in Celsius and microcystin 311 

concentration in μg/L. The functions corvif(x) (Zuur et al., 2009) and cor(x, method=”pearson”)  312 

(the Pearson correlation; Bravais, 1846; Pearson, 1896) from the R stats package were applied to 313 

assess colinearity among explanatory variables (Table S2). Based on these correlation tests, we 314 

concluded that TP and TN were highly correlated with PP and PN, respectively, so TP and TN 315 

were removed. RDA was performed using the rda(scaling=2) function from the R vegan 316 

package. To determine the significance of constraints, we used the anova.cca() function from the 317 

R vegan package (Table S4A). Finally, we performed another RDA with all possible interactions 318 

between variable (except for Microcystin that is more a consequence of the bloom) to test if 319 

interactions between environmental variables could better explain the cyanobacterial bloom. The 320 

significance of the interactions is shown table S4B. Both RDAs were performed on a reduced 321 

dataset (a subset of 74 samples for which environmental data were available; see Supplementary 322 

file:  File_S1_Environmental_Table.txt).   323 

 324 

Differential OTU abundance analysis 325 

To identify genera and OTUs associated with blooms, we used the ALDEx2 R package  326 

(version: 1.5.0 (Fernandes et al., 2014). We used the aldex() function to perform a differential 327 

analysis with Welsh’s t-test and 128 Monte Carlo samples. ALDEx2 uses the centred log-ratio 328 

transformation to avoid compositionally issue. Taxa (OTUs or genera) with a Q-value below 0.05 329 

after Benjamini-Hochberg correction were considered biomarkers. The top 25 biomarkers (with 330 

the highest differential scores) are listed in Table S8. 331 

 332 
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Bloom classification  333 

 To classify bloom and non-bloom samples (Table S7), we used the Bayesian inference of 334 

microbial communities (BIOMICO) model described by Shafiei et al., (2015). This supervised 335 

machine learning approach infers how OTUs are combined into assemblages, and how 336 

combinations of these assemblages differ between bloom and non-bloom samples. An 337 

assemblage here is defined as a set of co-occurring OTUs. We defined bloom samples as 338 

described above, and trained the model with two different approaches: (i) with 2/3 of the total 339 

data, selected at random, and (ii) with two distinctive years: 2007, a year with only a short-lived 340 

fall bloom, and 2009, a year in which Fortin et al., (2015) observed a high biomass of 341 

cyanobacteria during the summer. In the training stage, BIOMICO learns how OTU assemblages 342 

contribute to community structure, and what assemblages tend to be present during blooms. In 343 

the testing stage, the model classifies the rest of the data (not used during training), and we assess 344 

accuracy as the percentage of correctly classified samples. To assess the performance of 345 

BIOMICO relative to a random classifier, we approximated a random classifier using a binomial 346 

distribution with correct classification probability of 0.5.  347 

 348 

Bloom prediction 349 

We attempted to predict the timing of blooms using sequence or environmental data. As 350 

many OTUs or genera may have such low abundances that they might be missed in some 351 

samples, and might also increase the probability of finding spurious correlations, we pre-filtered 352 

the OTU table by removing taxa with summed relative abundances (over the 135 samples) lower 353 

than an arbitrary threshold of 0.1. Our goal was to predict the timing of the next bloom, using 354 

sequencing and/or environmental data from samples taken before a bloom event. Samples taken 355 

during a bloom were not used in these analyses. Thus, we used 21 samples with full 356 
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environmental information when the analysis included these variables, and 54 samples when the 357 

analysis did not require the environmental variable. We defined the time (in days) from each non-358 

bloom sample to the next bloom sample of the year as the dependent variable. In these analyses, 359 

we used either OTUs, genera, or environmental data, as predictor variables. We also calculated 360 

the trend in all predictor variables from one sample to the next by subtracting the latter values 361 

from the former and dividing by the number of days that separated the two sample dates. In this 362 

way, we obtained a trend value for each predictor variable. 363 

Genetic programming, in the form of symbolic regression (SR) (Koza, 1992), is a 364 

particular derivation of genetic algorithms that searches the space of mathematical equations 365 

without any constraints on their form, hence providing the flexibility to represent complex 366 

systems, such as lake microbial communities. Contrary to traditional statistical techniques, 367 

symbolic regression searches for both the formal structure of equations and the fitted parameters 368 

simultaneously (Schmidt and Lipson 2009). There are however some caveats associated with SR. 369 

First, as with any other regression technique, overfitting may occur and measures that correct for 370 

model complexity, such as the Akaike information criterion (AIC,) should be used to compare 371 

equations. Second, contrary to standard regression techniques, there are no standard ways to 372 

interpret SR equations. Finally, SR suffers from the same limitations of evolutionary algorithms 373 

in general. In many cases the algorithm may get stuck in local minima of the search space, 374 

requiring time (or even a restart with different parameters) to find the global minimum. We used 375 

the software Eureqa (http://www.nutonian.com/products/eureqa/, version 1.24.0) to implement 376 

SR, using 75% of the data for model training and 25% for testing. As building blocks of the 377 

equations we used all predictor variables (including trends), random constants, algebraic 378 

operators (+, –, ÷, ×) and analytic function types (exponential, log and power). As no a priori 379 

assumptions regarding relationships between terms could be made, the search was fully 380 
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unbounded. Given the inherent stochasticity of the process, ten replicate runs were conducted for 381 

each analysis. All runs were stopped when the percentage of convergence was 100, meaning that 382 

the formulas being tested were similar and were no longer evolving. Each run produces multiple 383 

formulas along a Pareto front (see Cardoso et al. 2015.). For each formula, we calculated the 384 

Akaike information criterion (AIC) and the corrected AIC (Burnham and Anderson, 2002) for 385 

small sample sizes. Based on Eureqa complexity (number of parameter) and Eureqa fit score 386 

(model accuracy), multiple formulae were selected from each of the ten runs (see Supplementary 387 

File : File_S3_SR_table.xlsx). The formula with the lowest AICc for each analysis was retained 388 

and considered the "best" formula (Table 2). 389 

 390 

 391 

Results 392 

Defining and characterizing blooms 393 

 To survey microbial diversity over time, we analysed 135 lake samples sequenced to an 394 

average depth of 54,231 reads per sample (minimum of 1000 reads per sample), and clustered the 395 

sequences into 4,061 operational taxonomic units (OTUs). Rarefaction curves showed that this 396 

depth of sequencing provided a thorough estimate of community diversity (Figure S1). To assess 397 

the repeatability and predictability of cyanobacterial blooms, we first needed to define bloom 398 

events. Instead of defining blooms based on cyanobacterial cell counts, we used a definition 399 

based on the extent to which the bloom disturbs the community. Above 20% cyanobacteria, 400 

Shannon diversity begins to decline sharply (Figure S2). We therefore used a 20% cutoff to bin 401 

our samples into "bloom" or "non-bloom" (Table S7).  402 

 Based on our definition, bloom samples necessarily have lower Shannon diversity than 403 
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non-bloom samples (Figure 1). More surprisingly, bloom samples had significantly (Mann-404 

Whitney test, U= 814, P<0.001) higher phylogenetic diversity (BWPD) compared to non-bloom 405 

samples (Figure 1A). These result suggests that cyanobacterial blooms lead to (i) an increase in 406 

phylogenetic diversity by adding additional, relatively long cyanobacterial branches to the 407 

phylogeny, and (ii) a decrease of taxonomic evenness due to the dominance of cyanobacteria. 408 

However, when we repeated the same analysis after removing all cyanobacterial OTUs, we found 409 

that blooms did not alter the diversity of the remaining (non-cyanobacterial) community (Figure 410 

1 D, E, F). These exploratory alpha diversity analyses prompted us to investigate how community 411 

composition changed between bloom and non-bloom samples, and over time. 412 

 Despite their limited impact on the diversity of the non-cyanobacterial community, we 413 

found that blooms clearly alter the community composition of the lake. Using weighted UniFrac 414 

distances to assess differences in community composition, we observed a separate grouping of 415 

bloom and non-bloom samples (Figure 2A). However, the difference in community composition 416 

could not be assessed with PERMANOVA statistics because bloom and non-bloom samples were 417 

differently dispersed (Table S6. When we removed the Cyanobacteria counts and re-normalized 418 

the OTU table (Figure 2B), we still observed a significant, but less pronounced difference 419 

between bloom and non-bloom samples (PERMANOVA, R2=0.035; P<0.001; ANOSIM 420 

R=0.211; P<0.01; PERMDISP P = 0.084; Table S6). We observed the same trend using another 421 

beta diversity metric, JSD (Table S6 and Figure S7). These results suggest that even excluding 422 

Cyanobacteria (the bloom-defining feature), the bloom community still differs to some extent 423 

from the non-bloom community. 424 

 425 

Abiotic factors associated with blooms 426 
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 A subset of our samples was associated with environmental measurements that might 427 

explain bloom events. We performed an RDA to identify environmental variables that could 428 

explain how bloom and non-bloom samples are grouped, and found particulate nitrogen (PN), 429 

particulate phosphorus (PP), microcystin concentration, and to a lesser extent soluble reactive 430 

phosphorus (DP), to be most explanatory of the bloom (Figure S8; adjusted R2=0.273; ANOVA, 431 

F7,66=4.919, P<0.001). DN and temperature explain less variation and act in opposing directions 432 

(Pearson correlation = -0.18), perhaps because higher temperatures favour the growth of 433 

microbes that rapidly consume dissolved nitrogen (Hong et al., 2014). Together, these 434 

environmental variables explain ~25% of the microbial community variation (axis 1: 18.5%; axis 435 

2: 6.9%) suggesting that unmeasured biotic or abiotic factors are needed to explain the remaining 436 

~75% of the variation. We also explored the ability of interactions among environmental 437 

variables to explain variation, but despite the modest increase in R2 to 0.34 (to be expected given 438 

the added variables) we did not observe any significant interactions (Supplementary Table 4B). 439 

 440 

Community dynamics vary more within than between years 441 

We next asked how the lake microbial community varied over time, at scales ranging 442 

from days to years. As described above, samples can be partially separated according to season 443 

(spring, summer or fall) based on weighted UniFrac distances (Figure 2). However, seasons 444 

differed significantly in their dispersion (with summer samples visibly more dispersed in Figure 445 

2), violating an assumption of PERMANOVA and ANOSIM tests, and preventing us from 446 

determining whether samples varied more by months, seasons or years (Table S6). However, it is 447 

visually clear from Figure 2 that bloom samples explain much of the variation in summer 448 

community composition. 449 
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To more clearly track changes in community composition over time (temporal beta 450 

diversity), we calculated the Bray-Curtis dissimilarity between pairs of samples separated by 451 

increasing numbers of years. We did not observe any tendency for the community to become 452 

more dissimilar over time, suggesting a long-term stability of the bacterial community on the 453 

time scale of years in both the littoral (linear regression, F(1,1999)=1.171, P>0.05) and pelagic 454 

sampling sites (linear regression, F(1,2078)=0.8467, P>0.05; Figure S4). Consistently, even though 455 

years differed significantly in their dispersion (PERMDISP P < 0.05), community composition 456 

remained relatively similar from year to year. (Weighted Unifrac: ANOSIM R<0.1, P<0.010; 457 

PERMANOVA R2=0.011, P=0.098). 458 

To further explore temporal signals in the data, we used a multivariate regression tree 459 

(MRT) approach to determine how community structure varies over time scales of days to years. 460 

Consistent with the stable Bray-Curtis similarity over years (Figure S4), we found that year-to-461 

year variation explains very little of the variation in community structure (R2=0.027; Table S5). 462 

Week of the year explained the most the community variation (R2=0.274; Figure 3, Table S5), 463 

followed closely by day (R2=0.254; Table S5) and month (R2=0.216; Table S5). Even though 464 

weeks explained the most variation, much of this variation is captured at longer time scale of 465 

months. Figure 3 shows how the regression tree roughly divides samples by season: Split 1 (red) 466 

corresponds to samples taken before May 12 (early spring), split 2 (green) to samples taken 467 

between May 12 and June 23 (late spring), split 3 (yellow) to samples taken after October 6 (fall), 468 

split 4 (blue) to samples taken between June 23 and July 14 (early summer), split 5 (cyan) to 469 

samples taken between July 14 and August 11 (mid-summer), and split 6 (purple) to samples 470 

taken between August 11 and October 6 (late summer). The PCA ordination based on MRT 471 

(Figure 3B) shows that community dynamics appear to be somewhat cyclical, returning to 472 

roughly the same composition each year. Different times of year are characterized by different 473 
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sets of OTUs, for example AcI-B1 and PnecB in early summer and Microcystis and 474 

Dolichospermum in mid-summer. 475 

To determine if the variation observed during summer (Figures 2 and 3) could be driven 476 

by cyanobacterial bloom events, we repeated the MRT analyses after removing all cyanobacterial 477 

sequences. Similar MRT results were obtained after removing cyanobacteria, suggesting that the 478 

entire bacterial community, not just cyanobacteria, are responsible for temporal variation (Table 479 

S5). Together, these results show how bacterial community dynamics follow an annually 480 

repeating, cyclical pattern, and that both cyanobacteria and other bacteria contribute to the 481 

dynamics.   482 

 483 

Blooms are repeatably dominated by Microcystis and Dolichospermum  484 

 To explore potential biological factors involved in bloom formation, we attempted to 485 

identify taxonomic biomarkers of bloom or non-bloom samples, at the genus and OTU levels. To 486 

do so, we performed a differential analysis using ALDEx2 to identify the genera or OTUs that are 487 

most enriched in bloom samples. We found several significant biomarkers and as expected, the 488 

strongest bloom biomarkers belonged to the phylum Cyanobacteria (Table S8). The two strongest 489 

OTU- and genus-level biomarkers were Microcystis (Microcystacae) and Dolichospermum 490 

(Nostocaceae, previously named Anabaena), both genera of Cyanobacteria.  491 

 492 

Blooms can be accurately classified based on non-cyanobacterial sequence data 493 

 Given the observation that bloom samples have distinct cyanobacterial and non-494 

cyanobacterial communities (Figure 2), we hypothesized that blooms could be classified based on 495 

their bacterial community composition. We trained a machine-learning model (BIOMICO) on a 496 

portion of the samples, and tested its accuracy in classifying the remaining samples (Methods). 497 
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BIOMICO was able to correctly classify samples with ~92% accuracy (Table 1). Such high 498 

accuracy is expected because blooms are defined as having >20% cyanobacteria, so the model 499 

should be able to easily classify samples based on cyanobacterial abundance.  500 

 In a more challenging classification task, BIOMICO was able to classify samples with 83-501 

86% accuracy after excluding cyanobacterial sequences. This result supports the existence of a 502 

characteristic non-cyanobacterial community repeatably associated with the bloom. Two different 503 

training approaches (Methods) yielded similar classification accuracy, both significantly better 504 

than random (Table 1), but found different bloom-associated assemblages. When we compared 505 

the best assemblages obtained with the two different trainings, focusing only on the 50 best OTU 506 

scores, only 11 OTUs were found in both trainings (Table S9). This result suggests that data can 507 

be classified into bloom or non-bloom samples, but different assemblages (containing different 508 

sets of OTUs) can be found with similarly high classification accuracy (Table S9). This is 509 

consistent with a general lack of repeatability at the level of individual OTUs, but that there exist 510 

combinations of OTUs (Table S8) that are characteristic of blooms. 511 

 512 

Blooms can be predicted by sequence data 513 

The existence of microbial taxa and assemblages characteristic of blooms suggests that 514 

blooms could, in principle, be predicted based on amplicon sequence data. We therefore used 515 

symbolic regression (SR) to model the response variable “days until bloom” as a function of 516 

OTU- or genus-level relative abundances, their interactions, and their trends over time (Methods). 517 

To achieve true prediction, not simply classification, we used only samples collected prior to 518 

each bloom event in order to predict the number of days until a bloom sample (i.e. bloom 519 

samples themselves were not used). We based our analysis on 54 samples, ranging from 7 to 112 520 

days before a bloom sample. Due to limitations in the resolution of sampling (approximately 521 
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weekly), we cannot know the exact start date of a bloom, only the first date sampled. Using 522 

OTUs or genera, we were able to predict the timing of the next bloom event with 80.5% or 78.2% 523 

accuracy on tested data, respectively (Table 2). Using a subset of 21 samples with a full 524 

complement of environmental data, we were able to compare the predictive power of sequence 525 

data (OTU or genus level) versus environmental data. Predictions based on genus-level sequence 526 

data clearly outperformed predictions based on environmental data. Predictions based on OTU-527 

level sequence data explained less variance than predictions based on genera, consistent with 528 

OTUs being more variable and less reliable bloom predictors than higher taxonomic units.  529 

All models tend to overshoot when based on samples taken closer to the bloom (i.e. 530 

negative residuals), and tend to predict bloom events too soon when based on samples farther 531 

from the bloom (Figure S9). One taxon – a member of the order Burkholderiales in the family 532 

Oxalobacteraceae (unknown genus; Greengenes taxonomy) was consistently found in every 533 

predictive formula (Table 2). At the OTU level, seq413 (Table 2) is assigned to Oxalobacteraceae 534 

by Greengenes (with 67% confidence) but to Polynucleobacter C-subcluster (with 99% 535 

confidence) based on TaxAss, a freshwater-specific database (Table S10). While Microcystis and 536 

Dolichospermum are dominant closer to bloom events, seq413 showed the opposite pattern, 537 

decreasing in relative abundance as the bloom approaches (Figure 4). The fact that seq413, but 538 

not Microcystis or Dolichospermum, appears in the predictive equations suggests that the decline 539 

in Oxalobacteraceae/seq413 is detectable before the increase in Cyanobacteria. Indeed, seq413 540 

appear to decline before Microcystis or Dolichospermum increase (Figure 4). However, the 541 

predictive analyses were done at the OTU or genus level, such that Cyanobacteria were not 542 

treated as one entity (i.e. one variable in predictive equations). It is therefore possible that the 543 

decline in seq413 was driven by a total increase in the sum of all Cyanobacteria, none of which 544 

could be detected individually. To test this possibility, we repeated the SR analysis after merging 545 
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Cyanobacteria into a single variable, and found that Cyanobacteria were never found in any 546 

predictive equation. This is consistent with Oxalobacteraceae/PnecC declining before 547 

Cyanobacteria increase. Hence, changes in the microbial community provide information about 548 

impending blooms before they occur.  549 

 550 

Discussion 551 

We used a deep 16S rRNA amplicon sequencing approach to profile the bacterial 552 

community in Lake Champlain over eight years, spanning multiple cyanobacterial blooms. We 553 

sequenced with sufficient depth that bacterial diversity estimates reached a plateau (Figure S1), 554 

and proposed a bloom definition based upon cyanobacterial relative abundance in 16S data. 555 

Although there is no consensus bloom definition, the World Health Organization has proposed 556 

guidelines, based on cyanobacterial cell density, to connect blooms to potential health risks 557 

(WHO, Guidelines for safe recreational water environments, 2003). We found that, while 558 

cyanobacterial relative abundance in 16S data is significantly correlated with cyanobacterial cell 559 

density, the correlation is imperfect (Figure S6) because cyanobacteria can have high relative 560 

abundance without achieving a high absolute cell density. Our bloom definition, based on 561 

relative, not absolute abundance is therefore more a measure of how cyanobacteria impact their 562 

surrounding bacterial community than a direct measure of human health risks. 563 

Our results should be interpreted in light of four methodological caveats. First, the OTU 564 

data are compositional, such that only the relative OTU abundances are meaningful, and the 565 

relative abundances are non-independent (Gloor and Reid, 2016). As a result, removing certain 566 

OTUs or taxa (e.g. Cyanobacteria, as discussed in the paragraph below) does not remove their 567 

influence on the rest of the data. For some purposes, corrections for compositionality can be 568 
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performed (e.g. ALDEx performs a centered log transform before inferring differentially 569 

abundant OTUs). BioMico might identify OTUs that are not truly associated with blooms, but 570 

that are falsely correlated with OTUs that are truly associated. However, this is not a major 571 

problem because the goal of BioMico is bloom classification, not identification of bloom-572 

associated OTUs. A similar logic applies to prediction with SR: if the goal is pragmatic 573 

prediction, whether the predictive taxa are biologically meaningful (or mere artefacts of 574 

compositionality) is irrelevant. In reality, the fact that SR repeatably converged on equations with 575 

the same taxa (Table 2) suggests that these taxa are indeed biologically meaningful. The second 576 

caveat is that the same data was used to define blooms and also to classify/predict blooms, which 577 

could be considered circular reasoning. However, the bloom definition was based on a univariate 578 

summary of the data (Shannon diversity), while BioMico classification uses the multivariate data 579 

(the relative abundance of each OTU across samples). Therefore, circularity is limited because 580 

blooms were defined based on one feature of the data (a decline in Shannon diversity), and 581 

classification was based on a different feature (OTU identities). For the prediction task, 582 

circularity was limited because only non-bloom samples were used to predict the timing of a 583 

bloom event. The third caveat is that phylogenetic measures of alpha and beta diversity (BWPD 584 

and UniFrac, respectively) rely on a phylogenetic tree, which may be inaccurate. However, trees 585 

inferred using FastTree, ML or neighbour-joining gave very similar results (Supplementary 586 

Methods), so we expect tree errors to have a limited impact on our conclusions. The fourth caveat 587 

is that the choice of OTU calling will influence the number and identify of OTUs. We used a 588 

distribution-based OTU caller (Preheim et al., 2013), which uses the distribution of OTUs across 589 

samples to reduce the number of false-positive OTUs (e.g. due to sequence errors). Other 590 

methods, such as DADA2 (Callahan et al., 2016), oligotyping or minimum entropy 591 

decomposition (Eren et al., 2013; 2015), are similarly able to de-noise 16S data, while calling 592 
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OTUs at fine taxonomic resolution (e.g. 99% rather than 97% identity). In the future, these 593 

methods could be used to analyze bloom dynamics at finer taxonomic resolution than the 97% 594 

cutoff used here. 595 

Our results suggest that blooms decrease community diversity because of an increase in 596 

the relative abundance of cyanobacteria, not due to a reduction in the diversity of other bacteria. 597 

This result is based on an analysis of three diversity measures, before and after removing 598 

cyanobacterial sequences (Figure 1). Before removing Cyanobacteria, bloom samples clearly 599 

have lower Shannon diversity and evenness compared to non-bloom samples (this is true by 600 

definition, based on the nature of our bloom definition). After removing Cyanobacteria, there is 601 

no apparent difference in diversity or evenness. Removing cyanobacterial reads does not remove 602 

their influence on other OTUs, because of the dependence structure of compositional data (Gloor 603 

and Reid, 2016; Morton et al., 2017). However, even if removing Cyanobacteria creates a bias in 604 

the rest of the data, the same bias is introduced in both bloom and non-bloom samples alike, so 605 

the comparison should remain valid. The removal of cyanobacterial reads is analogous to the 606 

common practice of first removing eukaryotic reads from 16S data, and continuing all subsequent 607 

analyses on bacterial reads only. The dataset as a whole is biased by the removal of eukaryotes 608 

(i.e. the data becomes a 'subcomposition') but all samples have the same bias, so it is still possible 609 

to compare among samples. Regardless, these diversity comparisons (Figure 1) were exploratory 610 

in nature, and served as an entry point for more detailed beta diversity analyses, classification, 611 

and prediction.  612 

Consistent with our current knowledge of temperate lakes (Shade et al., 2007; Crump et 613 

al., 2005), we found that community structure varied more within years than between years 614 

(Figures 2, 3, and S4; Tables S5 and S6). In agreement with previous observations in eutrophic 615 

lakes (Shade et al., 2007), Lake Champlain appears to return to a steady-state (Figure S4, Table 616 
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S5), despite the biological disturbance induced by dramatic bloom events. Various studies have 617 

already shown temporal patterns in microbial community structure (Hofle et al., 1999; Lindstrom 618 

et al., 2000; Crump et al., 2003; Shade et al., 2007; Kara et al., 2013; Fuhrman et al., 2015), but 619 

ours does so in the context of cyanobacterial blooms.  620 

The RDA results (Figure S8) are consistent with many previous studies describing the 621 

environmental factors responsible for blooms (Owens and Esaias, 1976; Hecky and Kilham, 622 

1988). For example, cyanobacterial growth is optimal at higher temperatures, between 15 and 623 

30oC (Konoka and Brock, 1978). We confirmed that cyanobacterial blooms are correlated with, 624 

and likely respond to nutrient concentrations, as previously described (Fogg, 1969; Jacoby et al., 625 

2000; Paerl and Huisman, 2008; Paerl and Huisman, 2009, Fortin et al 2015, Isles et al., 2015). 626 

Dissolved nitrogen and temperature were negatively correlated, which could be explained by the 627 

fact that the lake becomes enriched in nitrates during spring, when temperatures are lower, and 628 

rain and drainage bring nutrients into the lake (Shade et al., 2007; Fortin et al., 2015). Another 629 

explanation would be that in the spring, before most of the bloom events occur, the majority of 630 

the nitrogen is dissolved, but when cyanobacteria and other phytoplankton increase in abundance 631 

over the summer, nitrogen becomes concentrated in particulate forms within cells. We found that 632 

measured abiotic variables explained only a part (~25%) of the variation between bloom and non-633 

bloom samples. Including interactions between variables in the model increased the adjusted R2 634 

to ~35%; however no significant interactions were found (Table S4B). The rest of the variation 635 

could be explained by unmeasured variables, such as different nitrogen species, water column 636 

stability and mixing (although Missisquoi Bay is shallow [~2-5m] and likely never stratified), or 637 

time-lagged variables. More variance might also be explained with a larger dataset containing 638 

more samples.  639 

In addition to environmental variables, we showed that biological variables, in the form of 640 
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bacterial OTUs or genera, also characterize bloom events. Differential analysis using ALDEx2 641 

identified Microcystis and Dolichospermum as the top bloom biomarkers (Table S8). These two 642 

bloom-forming genera are associated with lake eutrophication (O’Neil et al., 2012) and are also 643 

known to produce cyanotoxins (Gorham and Carmichael et al., 1979; Carmichael, 1981). We 644 

found additional bloom biomarkers in the genus Pseudanabaena and the family Cytophagacaea, 645 

previously found to be associated with cyanobacterial blooms (Rashidan and Bird, 2001; O’Neil 646 

et al., 2012). The order Chthoniobacterales (in the phylum Verrucomicrobia) was also found as a 647 

bloom biomarker, consistent with previous studies that observed this taxon in association with 648 

Anabaena blooms (Louati et al., 2015). Other studies have reported specific association between 649 

Verrucomicrobia and Cyanobacteria, suggesting that members of this phylum might assimilate 650 

cyanobacterial metabolites (Parveen et al., 2013; Louati et al., 2015).  We also found N2 –fixing 651 

members of Rhizobiales order as bloom biomarkers. These taxa might be associated with the 652 

non-N2-fixing cyanobacteria Microcystis, potentially supporting its growth. 653 

Using machine learning, we were able to classify bloom samples with high accuracy 654 

based on microbial assemblages, confirming that there is a specific microbial community 655 

associated with blooms. Consistent with the ALDEx2 results, Microcystis and Dolichospermum 656 

were present in all bloom assemblages (Table S9). Cyanobacterial blooms have been previously 657 

suggested to alter the local environment and the surrounding microbial community (Louati et al., 658 

2015). As a result, these assemblages may include bacteria that are reliant on cyanobacterial 659 

metabolites and biomass. For example, we found that bloom assemblages included potential 660 

cyanobacterial predators from the order Cytophagales and the genus Flavobacterium (Table S9), 661 

both associated with bloom termination (Rashidan and Bird, 2001; Kirchman, 2002) but also taxa 662 

such as Methylophilaceae, acI, and acIV that have been previously associated with cyanobacterial 663 

blooms (Li et al., 2015; Woodhouse et al., 2016). We found that acI was abundant in early 664 
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summer, just before the Microcystis and Dolichospermum blooms of mid-summer (Figure 3B). 665 

While acI might help "set the stage" for a bloom, acIV might have the capacity to use metabolites 666 

from cyanobacterial decomposition, and Methylophilaceae is a potential microcystin degrader 667 

(Bogard et al., 2014; Ghylin et al., 2014, Mou et al., 2013).  668 

Finally, we show the potential for bloom events to be predicted based on amplicon 669 

sequence data. We acknowledge that long-term environmental processes such as global 670 

warming, and punctual seasonal events such as floods and droughts, are major determinants of 671 

whether a bloom will occur in a given year (Paerl and Huisman, 2008; Paerl and Paul, 2012).  672 

For example, no bloom occurred in 2007, likely due to a spring drought which dramatically 673 

reduced nutrient run-off into the lake. However, sequence data might be useful to predict 674 

bloom dynamics on shorter time scales of days, weeks or months. We demonstrated that it is 675 

possible to use pre-bloom sequence data to predict the number of days until a bloom event, 676 

with errors on the order of weeks (Figure S9) – the best that could be expected, given that 677 

sampling density was also on the order of weeks. Sequence data appears to be a strong 678 

predictor, similar or better than prediction with environmental variables (Table 2). These 679 

results are consistent with a recent study suggesting that abiotic environmental factors could 680 

be crucial to initiate blooms, but that biotic interactions might also be important in the exact 681 

timing and dominant members of the bloom (Needham and Fuhrman, 2016). Similarly, 682 

environmental variables explained relatively little variation in freshwater bacterial 683 

composition, while biotic variables (i.e. phytoplankton) explained more (Kent et al. 2004). It 684 

is possible that measuring more environmental variables, or using more complex time-lagged 685 

environmental variables (beyond the simple trends used in SR equations) could provide better 686 

predictions. However, microbial variables (OTUs) can be measured nearly exhaustively in a 687 

single sequencing run, whereas it is hard to know which environmental variables to measure 688 
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(e.g. temperature, pH, nitrogen, etc. seem relevant but what about Fe, As, Mg, etc.?) and hard 689 

to measure them all in high-throughput. However, SR models might be prone to overfitting, 690 

which might explain why better predictive accuracy is achieved with fewer samples (Table 2). 691 

Our samples were rarely taken more often than weekly, explaining why prediction error is on 692 

the order of weeks (Figure S9). We expect that more samples taken over shorter time periods 693 

will reduce both overfitting and prediction error. We also note that the "best" predictive 694 

equations found by SR are not necessarily global optima, because the space of possible 695 

equations is not explored exhaustively. 696 

Surprisingly, we never found Cyanobacteria as a bloom predictor in any of the predictive 697 

models (Table 2). This means that the models are not simply tracking a positive trend in 698 

cyanobacterial abundance, possibly because bloom events are "spiky" (Figure 4) and hence 699 

difficult to predict with weekly sampling. Instead, predictive equations always included a 700 

member of the order Burkholderiales, classified as Oxalobacteraceae with 67% confidence by 701 

Greengenes, or Polynucleobacter C (PnecC) with 99% confidence by TaxAss. We acknowledge 702 

this taxonomic uncertainty, but give preference to the higher-confidence PnecC assignment. PneC 703 

tends to be relatively abundant further ahead of bloom events (Figure 4). This observation could 704 

be explained by an ecological succession between PnecC and Microcystis/Dolichospermum. The 705 

fact that PnecC was chosen as a better predictor than Cyanobacteria suggests that PnecC begins 706 

to decline before any detectable increase in Cyanobacteria, providing a potential early warning 707 

sign. Šimek et al., (2011) showed that some PnecC taxa grow poorly in co-culture with algae, 708 

suggesting that negative interactions could also occur with cyanobacteria.  709 

We have shown that cyanobacterial blooms contain highly (but not exactly) repeatable 710 

communities of Cyanobacteria and other bacteria. It appears that the community begins to change 711 

before a full-blown bloom, suggesting that sequence-based surveys could provide useful early 712 
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warning signals. While the predictions of our models are fairly coarse-grained (e.g. prediction 713 

error on the order of weeks), they suggest that more accurate prediction might be enabled with 714 

increased sampling frequency. It remains to be seen to what extent bloom and pre-bloom 715 

communities – which show repeatable dynamics within one lake – are also repeatable across 716 

different lakes, and to what extent predictors could be universal or lake-specific. To improve 717 

predictions going forward, we suggest sampling additional lakes with dense time-courses, paired 718 

with 16S or metagenomic sequencing. In order to predict not just blooms but also the toxicity of 719 

blooms, sequencing should be paired with detailed toxin analyses. 720 
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Table legends 1030 

 1031 

Table 1. Bloom classification results.  We used a supervised machine learning approach 1032 

(BioMico) to determine if samples can be classified into bloom bins based on microbial 1033 

assemblages (Methods). Accuracy was calculated as the percentage of correctly classified 1034 

samples (true positives + true negatives) relative to the total number of samples in the testing set. 1035 

The 95% confidence intervals of a random classifier (Methods) and the P-values (that the real 1036 

classifier differs from random) are also shown. 1037 

 1038 

Table 2. Predicting bloom timing with symbolic regression (SR). The best formula found by 1039 

SR is shown for each category of predictor variables. SR was performed on two datasets. First, 1040 

OTUs and genera were used as predictor variables, using the maximum number of non-bloom 1041 

samples (N = 54). Second, in order to determine the impact of including environmental data as 1042 

predictor variables, we used only samples with a full set of metadata (N = 21). (*/** indicate 1043 

OTUs/genera found multiple times in SR formulas).    1044 

 1045 

  1046 
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Figure legends 1047 

 1048 

Figure 1. Comparison of alpha diversity between bloom and non-bloom states. Three alpha 1049 

diversity metrics were employed: (A) BWPD, (B) the Shannon index, and (C) the Shannon 1050 

evenness (equitability) to compare alpha diversity between bloom (black) and non-bloom (grey) 1051 

samples. We repeated the same analysis after removing Cyanobacteria. Comparisons were 1052 

performed using a Mann-Whitney test (* P < 0.05, ** P < 0.01, *** P < 0.001). 1053 

 1054 

Figure 2. Changes in community composition across seasons and bloom events. Each point 1055 

in the PCoA plot represents a sample, with distances between samples calculated using weighted 1056 

UniFrac as a measure of community composition. Non-bloom samples are shown in black, bloom 1057 

samples in grey. Different shapes describe the different seasons: circle for Spring, triangle for 1058 

Summer and star for Fall. (A) Samples with all OTUs included. (B) Samples excluding OTUs 1059 

from the phylum Cyanobacteria.  1060 

 1061 

Figure 3. Cyclical community composition dynamics. Multivariate regression tree (MRT) 1062 

analysis was used to estimate the impact of time on bacterial community structure. (A) The most 1063 

parsimonious tree shows how the community is partitioned by MRT using week of the year as a 1064 

temporal variable. Six different leaves (large coloured circles) were defined based on microbial 1065 

abundance and composition. (B) The community composition within leaves is represented in a 1066 

PCA plot, where small points represent individual samples and large points represent the group 1067 

mean (within the leaf). The grey barplot in the background indicates OTUs whose differential 1068 

abundance explains variation in the PCA plot.  1069 

 1070 
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Figure 4. Oxalobacteraceae and seq413 decline while Microcystis and Dolichospermum 1071 

increase as a bloom event approaches. We plotted the relative abundance of relevant taxa from 1072 

112 to 7 days before a bloom sample. Oxalobacteraceae (genus unclassified) and the OTU seq413 1073 

(Oxalobacteraceae, genus unclassified or Polynucleobacter PnecC ) are relatively abundant long 1074 

before a bloom event, and gradually decline as bloom events approach. Microcystis and 1075 

Dolichospermum are the two most dominant bloom-forming cyanobacteria. 1076 
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Table 1.  
 
Training set Testing set Classification 

Accuracy 
False  

positives 

False 

negatives 

True  

negatives 

True  

positives 

95% confidence 
interval of 

random 
classifier 

P-value (real 
classifier differs 
from random) 

2/3 of all 
samples 

1/3 of all 
samples 91.84 % 4 0 33 12 36-64% 8.225×10-10 

2007 & 2009 
samples 

All other 
samples 92.52% 8 0 73 26 40-60% < 2.2×10-16 

2/3 of all 
samples, 
without 
cyanobacteria 

1/3 of all 
samples, 
without 
cyanobacteria 

85.71% 6 1 31 11 36-64% 3.625×10-07 

2007 & 2009 
samples, 
without 
cyanobacteria 

All other 
samples, 
without 
cyanobacteria 

83.18% 9 9 72 17 40-60% 1.781×10-12 
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Table 2. 
 

Predictor 
variables 

Best response formula 
 

days to bloom= 

R2 Components Number 
of 

samples 
used 

Mean 
squared 

error 

AIC Corrected
AIC 

OTU 18.264 + 2179.337 × 
f__Cryomorphaceae_g_unclassified_seq436 + 
2007.048 × f__Oxalobacteraceae_ 
g_unclassified _seq413** 

0.805 4 54 117.540 265.406 266.222 

Genera 19.780 + 2057.652 × f_Oxalobacteraceae_
g_unclassified* + 703.606 × 
f_Armatimonadaceae_ g_unclassified - 
2599.909 × genus_Arcobacter-7598.106 × 
genus_Rickettsiella 

0.782 6 54 131.134 275.316 277.103 

  
OTU 15.941 + 49774.285 × 

trend(f_Cerasicoccaceae_ g_unclassified 
_seq548) + 2511.838 × f__Oxalobacteraceae_ 
g_unclassified _seq413** 

0.826 4 21 83.845 101.008 103.508 

Genera 21.185 + 2646.333 × f_Oxalobacteraceae_ 
g_unclassified* - 13323.212 × 
trend(genus_Flavobacterium) - 16288.058 × 
o_Ellin329_ g_unclassified 

0.914 5 21 31.776 82.633 86.633 

Environmental 
data 

114.017 + 192.663 × trend(MeanT) + 137.168 
× DN - 0.413 × PP - 6.915  × MeanT - 223.712 
× DN × trend(MeanT) - 51.424 × DN2 
 

0.828 8 21 63.493 103.170 115.170 

OTU + 
Environmental 
data 

15.941 + 49774.285 × 
trend(f_Cerasicoccaceae_ g_unclassified 
_seq548) + 2511.838 × f__Oxalobacteraceae_ 

0.826 4 21 83.845 101.008 103.508 
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g_unclassified _seq413** 
Genera + 
Environmental 
data 

23.353 + 2389.349 × 
f_Oxalobacteraceae|_g_unclassified* - 
13323.212 ×  trend(genus_Flavobacterium) - 
16288.057 × o_Ellin329_g_unclassified 

0.923 5 21 28.375 80.256 84.256 
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