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Abstract

Polygenic scores (PGS) summarize the genetic contribution of a person’s genotype to a disease or phenotype.
They can be used to group participants into different risk categories for diseases, and are also used as covariates
in epidemiological analyses. A number of possible ways of calculating polygenic scores have been proposed,
and recently there is much interest in methods that incorporate information available in published summary
statistics. As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a pertinent
question is how we can make use of LD information available elsewhere to supplement such analyses. To answer
this question we propose a method for constructing PGS using summary statistics and a reference panel in a
penalized regression framework, which we call lassosum. We also propose a general method for choosing the value
of the tuning parameter in the absence of validation data. In our simulations, we showed that pseudovalidation
often resulted in prediction accuracy that is comparable to using a dataset with validation phenotype and was
clearly superior to the conservative option of setting the tuning parameter of lassosum to its lowest value. We
also showed that lassosum achieved better prediction accuracy than simple clumping and p-value thresholding

in almost all scenarios. It was also substantially faster and more accurate than the recently proposed LDpred.
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Introduction

A vast number of twin studies as well as recent genome-wide association studies have demonstrated that a large
proportion of the variance in liability to common diseases and human traits is due to genetic differences between
individuals (Polderman et al., 2015; Yang et al., 2011; Bulik-Sullivan et al., 2015). These studies have also made
clear that only a very small proportion of the total genetic contribution can be unambiguously attributed to
variation in particular loci of the genome. The vast majority of such genetic contribution is thus spread across
the huge landscape of the genome, with many loci each contributing a small, almost undetectable effect on the
phenotypes (Dudbridge, 2013, 2016). One important source of evidence towards this conclusion is from studies
that examined the association of polygenic predictors of diseases/traits, where it has been repeatedly found that
SNPs that are not themselves significantly associated with the phenotypes can, by being aggregated as a score,
be very significantly associated with the phenotypes in different samples (Agerbo et al., 2015; Byrne et al., 2014;
Evans et al., 2009; Wei et al., 2009; Purcell et al., 2009; Ripke et al., 2013; Speliotes et al., 2010; Machiela et al.,
2011; Stahl et al., 2012; Martin et al., 2015; Chang et al., 2014). A particular remarkable demonstration is that
persons with such polygenic scores for schizophrenia at the top 10 percentile of the population can be at more
than 10 times the risk of having the disease than those at the bottom 10 percentile (Ripke et al., 2014; Agerbo
et al., 2015), raising hope that one day a person’s risk for many common disease can be accurately assessed
simply by the examination of one’s genome.

Thus, there is considerable interest in the calculation of such polygenic scores (PGS) in GWAS and Genome-
wide meta-analyses, where they are also known as risk scores (Ripke et al., 2013; Domingue et al., 2014),
polygenic risk scores (e.g. Euesden et al., 2015; Byrne et al., 2014; Agerbo et al., 2015; Dudbridge, 2013), and
allelic scores (Burgess and Thompson, 2013; Evans et al., 2013). In a typical application, a unique PGS is
assigned to each individual based on the person’s genotype. The score summarizes the genetic contribution to
a particular disease or phenotype for that indivdiual given his/her genotype. They are then used for testing
of complex genetic contribution due to multiple loci or even the entire genome, or the examination of genetic
correlation, or are used as a covariate for the adjustment of genetic effects in a multiple regression model (Wray
et al., 2014).

From a statistical perspective, polygenic scores are weighted sums of the genotypes of a set of SNPs. In most
applications of PGS, the weights are usually the SNPs’ individual regression coefficients with the phenotype (e.g.
Purcell et al., 2009; Wray et al., 2014; Euesden et al., 2015). A critical issue is the total number of SNPs that

should be included in the PGS. Although it is usually advisable to use a liberal p-value cutoff in the selection
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of SNPs to be included, the optimal p-value cutoff is generally unknown (Wray et al., 2014). As a result, in
many studies, PGS are constructed using a number of thresholds (Purcell et al., 2009; Ripke et al., 2014; Byrne
et al., 2014; Martin et al., 2015; Chang et al., 2014), and there is at least one piece of software developed to
facilitate this (Euesden et al., 2015). Generally, we focus on the p-value threshold that achieves the highest
correlation/association with the phenotypes in a validation dataset that contains a measure of the phenotype
under study. This approach, however, becomes less useful if the phenotype is not available in the target dataset.
Recently, Mak et al. (2016) sought to overcome this problem by downweighting the usual weights by the SNPs’
local true discovery rate, where the additional downweighting or shrinkage factor can be estimated using a
data-driven approach. Although p-value thresholds were not needed, they showed that this leads to comparable
predictive performance with the best p-value threshold.

Another issue with this standard approach to PGS calculation is that there is no account taken of the
fact that SNPs are in linkage disequilibrium (LD) with each other. If SNPs of a particular locus which are in
high LD with one another are all included in the score, the contribution to the PGS due to that locus will be
exaggerated in the score. For this reason, it is often recommended that SNPs be pruned before the application
of PG scoring, such that highly correlated SNPs within a locus will have one or more removed (Purcell et al.,
2009). Such an approach, however, may well reduce the predictive power of the PGS, as SNPs that are most
predictive of the phenotype may be pruned away. A recent suggestion which has become very popular is that
of clumping, which selectively removes less significantly related SNPs to reduce LD (Wray et al., 2014).

In principle, various machine learning methods or Bayesian methods can be applied in the construction of
PGS, as they have been applied in the estimation of breeding values in animal studies (Meuwissen et al., 2001;
Abraham et al., 2013; Szymczak et al., 2009; Habier et al., 2011; Pirinen et al., 2013; Erbe et al., 2012; Ogutu
et al., 2012; Zhou et al., 2013). These methods do not require the assumption of SNP independence or near
independence, and have been shown to perform better than simple PGS in simulation settings. However, their
disadvantage is that they cannot be applied to summary statistics. Researchers without access to large datasets
are thus unable to take advantage of the power offered by these studies or meta-analyses. A recent development
in this direction is Vilhjalmsson et al. (2015). The authors proposed an approximate Bayesian method known
as LDpred that calculates PGS based on summary statistics, using LD information from a reference panel. Such
a development is particularly welcome due to the ready availability of summary statistics from many consortia,
often calculated from tens to hundreds of thousands of individuals.

In this paper, we present an alternative method based on penalized regression. It is a deterministic method

and a convex optimization problem, and as such does not suffer from problems of non-convergence, which is
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a possible problem with LDpred. It is also substantially faster than LDpred, and in our simulations achieved
near-best prediction performance across a wide variety of scenarios. As a side observation, it was also found
that LDpred did not achieve the improved prediction performance claimed by the authors in our simulations.
As with any machine learning approach, our proposed method requires the choice of a tuning parameter. This
is particularly difficult when we do not have raw data and hence cannot perform cross-validation. Here, we offer
a solution that can potentially be applied more generally. The approach is presented in the methods section

and we assessed its performance by simulation studies. Insights gained from the simulations are discussed.

Material and methods

The LASSO problem in terms of summary statistics

Given a linear regression problem

y=XB+e (1)

where X denotes an n-by-p data matrix, and y a vector of observed outcomes, the LASSO (Tibshirani, 1996) is
a popular method for deriving estimates of 8 and predictors of (future observations of) y, especially in the case
where p (the number of predictors/columns in X) is large and when it is reasonable to assume that many 3 are
zero. LASSO obtains estimates of 3 (weights in the linear combination of X) given y and X by minimizing

the objective function

f(B)=(y—XB)" (y— XB) +2)Bll; (2)

=yTy+B87XTXB - 28" X"y + 2|0} (3)

where ||B|]1 = Y, |Bi| denote the £1 norm of 3, for a particular fixed value of A. In general, depending on A,
a proportion of the §; are given the estimate of 0. It is also a specific instance of penalized regression where
the usual least square formulation of the linear regression problem is augmented by a penalty, in this case
2)\||8|[3. LASSO lends itself to being used for estimation of 3 in the event where only summary statistics are
available, because if X represent standardized genotype data and y standardized phenotype, divided by /n,

then equation (3) can be written as:

f(B) =y "y +BTRB - 28"r + 2|81 (4)
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where r = X Ty represents the SNP-wise correlation between the SNPs and the phenotype, and R = X7 X
is the LD matrix, a matrix of correlations between SNPs. As we can obtain estimates of r from summary
statistics databases that are publicly available for major diseases/phenotypes (see e.g. the list from Pasaniuc
and Price, 2016) and LD hub (http://ldsc.broadinstitute.org/), and estimates of LD (R) from publicly
available genotype such as the 1000 Genome database (1000 Genomes Project Consortium, 2015), equation (4)
suggests a method for deriving PGS weights as estimates of 3 by minimizing f(3).

An issue that surfaces when we substitute R and 7 with the estimates derived from publicly available data
is that the genotype X used to estimate R and r will in general be different. In particular, it will be more
appropriate to write R = X ;:FX » to indicate that the genotype used to derive estimates of LD (X, ) will not in

general be the same as the genotype that gave rise to the correlations r. Writing equation (4) as

fB) =y "y +BTXTX.8-28" X"y +2)|0|]1, (5)

however, would imply that (5) is no longer a LASSO problem, because it is no longer a penalized least squares
problem. A minimum to (5) can still be sought, although the solutions would often be unstable and non-unique,
since yTy + BT X TTX B — 287 X"y will not generally have a finite minimum.

A natural solution to this problem is to regularize equation (5). In particular, if we replace X ,F:FX » with

R,=(1-5)XIX, 4 sI, for some 0 < s < 1, then

f(8) =y y + B RB - 268" r + 2X|8]]1, (6)

will be equivalent to a LASSO problem.

Proof. First, we note that y’y is a constant and thus replacing it with any other constant will not change the
solution. R is necessarily positive definite for 0 < s < 1. This means that there always exists W and v such
that

WIw =R,, Wlv=r (7)

Substituting (7) into (6) and replacing y?y with v7v, we see that (6) can be written in a form such as (2) and

is therefore a LASSO problem. O

Expanding (6) into

fB)=yTy+ (1 —s)B"XTX,8-28"r+ 5878+ 2)|0]1, (8)
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we note that (8) encompasses a number of submodels as special cases. For example, when s = 1, estimates of 3
will be equivalent to applying a “soft” threshold to the univariate correlation summary statistics r (as opposed

to the “hard” thresholds using p-values.) In particular,

L sign(r;) (|| = A) if [rs| = A >0
Cs 9)

0 otherwise

(Zou and Hastie, 2005). Note that because there is a monotonic relationship between univariate p-values and
unsigned correlation coefficients (coming from the monotonic relationship between correlation coefficients and
t-statistics with n — 2 degrees of freedom, equation (15)), soft-thresholding using correlation coefficients can be
expected to be very similar to p-value thresholding. Another feature is that when A = 0, the problem is similar
to applying ridge regression to estimate 3, except for a constant scaling value. In most cases, the scale of a
PGS is irrelevant, since it is almost never directly used in genomic risk prediction without appropriate scaling
(e.g., in So et al., 2011). For a particular choice of s, therefore, equation (8) results in genomic BLUP (Best
Linear Unbiased Predictors) (de Los Campos et al., 2013). When A = 0 and s = 1, the estimated PGS becomes
equivalent to simply using the entire set of correlation estimates without shrinkage or subset selection.
Moreover, (8) is simply an elastic net problem (Zou and Hastie, 2005), and thus can be solved using fast
coordinate descent algorithms (Friedman et al., 2010) for many values of A at a time. In particular, using
this algorithm, it is not necessary to compute the p-by-p matrix X fX r, which would be extremely memory-
consuming even for tens of thousands of SNPs. Denoting X = /I — s X, the solution to the minimization of

equation (8) can be obtaining by iteratively updating f; as

X;+s) if[ul?]—x>0

0 otherwise

A more detailed proof of equations (10) and (11) is given in the Supplementary materials. An R package that
carries out the estimation of 3 is made available at https://github.com/tshmak/lassosum. We made special
effort to allow estimation to be done directly on PLINK 1.9 (Chang et al., 2015) .bed files, eliminating the need

to load large genotype matrices into R.
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Selection of tuning parameters

As with standard elastic net problems, in any application, A and s need to be chosen. Generally, in the presence
of a validation dataset, we can choose A by maximizing the correlation of the PGS with the validation phenotype
data, just as it has been done in the choice of a p-value cutoff points in standard PGS calculations (Wray et al.,
2014; Euesden et al., 2015). In principle we can use this method to choose a suitable value for s also, although
repeating the estimation over different values of s is much more time-consuming. Thus in this paper we set s to
a few chosen values and examined whether they are sufficient in arriving at a PGS with reasonable prediction
accuracy.

A more pressing problem is that validation phenotypes are not often available. And here we try to simulate
this procedure in the following manner, which we refer to as pseudovalidation in this paper. First, note that
the correlation between a PGS(\) = X BA and the phenotype ¢ in a new “test” dataset with standardized

genotype X is .
B\ X Py

- o g ~ ~
\/ BiX PXB,y" Py

Corr(PGS(\), 9) (12)

where P = I — 117 /n is the mean-centering matrix.

In the absence of validation data, § is unavailable. Our solution is to substitute # for X TP_@, where 7 is
a shrunken estimate of the 7, the observed correlation coefficient vector. Since X TPQ can be interpreted as a
correlation coefficient only if X is a standardized genotype matrix and ¢ standardized phenotype, we replace

X with its standardized version, X, and discard the constant 7 Pg term, so as to maximize the function

T A
)= AT (13)
V BX X X8,
over \. Here, following Mak et al. (2016), we calculated
TA’Z‘ = Ti(l - fdrz) (14)

where fdr; is the local false discovery rate of SNP i. While Mak et al. (2016) estimated fdr; using maximum
likelihood and a non-parametric kernel density estimator, we found that Strimmer (2008) provided a fast, non-
parametric estimator for fdr; which is constrained to be monotonic decreasing with |r;|, and it is this approach

that we have implmented in the simulations.
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Some notes on application

In the above, we have assumed that the SNP-wise correlations () will be available from the summary statistics.
When these are not available, we suggest pseudo-correlation estimates 7; be derived by converting p-values to

correlation, using the monotonic relationship between ¢-statistics and correlations:

ti
\/n—1+1¢2

In our simulations this resulted in almost identical estimates as using actual (Pearson’s product moment)

Ty =

(15)

correlations (Figure S1).

Another issue is that in the theory given above, we assume that X and y have been standardized such
that r represent the correlation coefficients between the genotype and the phenotype. We note that such
standardization can be justified by the fact that the LASSO is often performed on standardized variables (Li
et al., 2012; Hastie et al., 2009; Yi et al., 2014). However, when it comes to the construction of PGS, we ought
to use unstandardized coefficients as weights. To convert standardized coefficients to unstandardized ones, we

can simply use the formula

ﬁ;lnstandardized - Sd(y) (16)

However, since sd(y) and sd(X;) are generally unavailable, we can use sd(@) and sd(X;) from the validation
data instead. Using these also prevents any SNP from undue influence in the overall PGS due to the division
of sd(X i) close to 0, since a SNP’s variance contribution is proportional to its variance and the square of the
coefficients.

A third issue concerns the difference between the SNPs with summary statistics and the SNPs that are
included in the reference panel. Often the reference panel may not contain all SNPs with summary statistics.
Equivalently, there may be no variation within the panel for some SNPs. In LDpred, these SNPs are discarded
by default. However, we think that this is not necessary, as it may result in the removal of SNPs that are
predictive of the disease/phenotype. An intuitive approach to dealing with these SNPs is that we treat them as
if they were all mutually independent and apply soft-thresholding as in (9). Equivalently, we let X,.; for these

SNPs to be a vector of zero, and we augment equation (8) by a term (1 — )87 3,,
FB) =Ty + (1= 9)BTXTX,8 26T + 5676 + (1 - )87 Bo + 2|81, (17)

where B denotes the sub-vector of 3 whose sd(X;) = 0, such that the total ridge penalty for these parameters
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is 1.

A fourth issue concerns the application of pseudovalidation to clumped data. We proposed above that
be estimated using (14) and that the local false discovery rates be estimated using the procedure of Strimmer
(2008). An important point is that the method assumes that a sizeable proportion of the 7 are in fact null.
Under clumping, this may not necessarily be the case, and we therefore suggest estimating fdr; and hence 7;

before applying clumping.

Simulation studies

We performed a number of simulation studies to assess the performance of our proposed method, which we
refer to in this paper as lassosum. In our first simulation study, we made use of the Welcome Trust Case
Control Consortium (WTCCC) Phase 1 data for seven diseases. We filtered variants and participants using the
following QC criteria: genotype rate > 0.99, Minor Allele Frequency > 0.01, Missing genotype per individual
< 0.01, SNP rsID included in the 1000 Genome project (Phase 3, release May 2013) genotype data, with
matching reference and alternative alleles, on top of the QC done by the original researchers (Wellcome Trust
Case Control Consortium, 2007). This resulted in 358,179 SNPs and 15,603 individuals, of which 2,859 were
controls. In our first set of simulations, we ignored the phenotype data and generated our own based on the

linear model

y=XB+e (18)

where X is the unstandardized genotype matrix, and € ~ N (0, 0%1) represents random error. The distribution
of the causal effects B = vec({;}) = vec({Bjr}) is generated using a similar scheme to that described in

Vilhjalmsson et al. (2015):

N(0,1) with probability ;
Bik ~ (19)
0 with probability 1 — 7;

m; ~ Beta(p(causal), 1 — p(causal)) (20)

where j denotes genomic regions and k indices SNPs within the region and ¢ is a general index for all SNPs
in the database, and p is the expected proportion of causal SNPs across the genome (note E(rm;) = p(causal)).
Genomic regions were defined using the 1,725 LD blocks obtained from the 1000 Genomes European (EUR)

sub-population, as provided by Berisa and Pickrell (2015).
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We derived standardized 3 as

sd Xz
L CS) (21)
sd(y)
and observed correlation coefficients as
rj ~ N(R;3), R;/n) (22)

where R is the observed correlation matrix of the jth region from the genotype X and n is the sample size.

We set 02 = Var(X3) 1;32 and h? = 0.5 in our calculation of y.

We randomly chose two 1,000 samples as two test datasets. In the first dataset X (1), validation and
pseudovalidation were performed to determine the optimal value of A. This choice of A and/or s was applied in
the other test dataset X in the assessment of prediction accuracy. Prediction accuracy was assessed by the
correlation of the PGS with the true predictor X 2) 3. Except when assessing the performance of using different
reference panels, we used the first test dataset X (1) as the reference panel also.

In assessing of the impact of using different reference panels, we let the 1000 Genome East Asian (EAS)
sub-population (n = 503) be our test dataset. We compared the performance of using four different reference
panels: (1) the original sample that generated the summary statistics, (2) a sample of 1,000 from the WTCCC,
(3) the European sub-population from the 1000 Genome project, and (4) the East-Asian sub-population from
the 1000 Genome project.

The above simulations were repeated 10 times and were compared with the approach of p-value thresh-
olding (with and without clumping) and LDpred. For clumping, we used a window of 250 kb and an R? of
{0.1,0.2,0.5,0.8}. (See Supplementary Note for a brief explanation of clumping.) For p-value thresholding, we
used the set of p values {5e~%, 1e72,1e74, 1e73, 0.0015, 0.002, 0.0025, ...,0.995,1} as possible p-value thresh-
olds. For LDpred, we used the set of proportion of causal SNPs {0.001,0.003,0.01,0.03,0.1,0.3,1}. The size
of the window for LD calculation was calculated as the number of SNPs in the dataset divided by 3,000, as
recommended in the LDpred paper. For p-value thresholding and LDpred, we used a validation dataset as well
as pseudovalidation to select the best threshold and proportion of causal SNPs, respectively.

Because summary statistics are often calculated from large sample sizes and for a large number (often around
10 million) of SNPs, we also attempted to carry out simulations using a larger dataset. In particular, we wanted
to see whether clumping is an efficient strategy for data reduction, as the speed of lassosum suffers with such
a large number of SNPs. For this purpose, we first identified SNPs from the summary statistics derived in the
meta-analysis of Okada et al. (2014) for Rheumatoid Arthritis (RA) that were common with those in the 1000

Genome dataset. We then generated our own summary statistics using the above method (equations 18 to 22),

10
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using the European (EUR) subsample of the 1000 Genome dataset as a base. This resulted in a dataset of
8,270,298 SNPs. We used the EUR subsample as the reference panel and the East Asian (EAS) subsample of
the 1000 Genome dataset as the test sample to assess the predictive performance.

Finally, we assessed the performance of lassosum using real summary statistics from large meta-analyses.
Summary statistics were downloaded from five publicly available resources: Bipolar disorder (https://www.med.unc.edu,
Sklar et al. (2011), n(cases) = 7,481, n(controls) = 9,250), Coronary Artery Disease (http://www.cardiogramplusc4d.
Nikpay et al. (2015), n(cases) = 60, 801, n(controls) = 123, 504), Crohn’s disease (http://ibdgenetics.org/downloads.
Liu et al. (2015), n(cases) = 22,575, n(controls) = 46, 693), Rheumatoid Arthritis (http://plaza.umin.ac.jp/ yokada,
Okada et al. (2014), n(cases) = 14, 361, n(controls) = 43,923), and Type 2 diabetes (http://diagram-consortium.org/,
Mahajan et al. (2014), n(cases) = 26,488, n(controls) = 83,964). The performance of PGS derived using
lassosum and other methods were assessed using the WTCCC data. Because all of these meta-analyses in-
cluded the WTCCC as one of the studies, PGS derived using these summary statistics directly would overfit
the data. To overcome this problem, we attempted to isolate the non-WTCCC components of the summary

statistics by reversing the fixed-effects meta-analysis equations:

Bs/02 + Bs/o?
Bimeta 1/02+1/02 (23)
1 1 1
=+ (24)
Umeta O O3

where s and o, denote the log odds ratio and standard error from the WTCCC study and B and oz the

2

contribution to the meta-analysis apart from WTCCC. SNPs with negative 0% were set to have zero effect size.
p-values were derived from 2(1 — ¥~1(|35/05|)) and converted to correlations using (15). Prediction accuracy
of the summary statistics-derived PGS were assessed by the Area Under the ROC Curve (AUC) statistic when
used to predict disease status in the WTCCC dataset with the relevant disease and the 2,859 controls. The
testing sample was also used as the reference panel.

In all of the above analyses, we carried out estimation by LD blocks as defined by Berisa and Pickrell (2015).

Results

Our WTCCC simulations were performed with summary statistics sample sizes of 10,000, 50,000 and 250,000 re-
spectively. We used two values for p(causal), the expected proportion of causal SNPs: 0.1 and 0.01. p(causal) =

0.01 represents a scenario where there are fewer causal SNPs and effect sizes are larger. Conversely p(causal) =
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0.1 represents a scenario where causal SNPs have smaller effect sizes and are more spread out over the genome.
Figure S2 displays the performance of lassosum with different values of A for one of the simulations. It can
be seen that in all the simulation scenarios, the general pattern is that predictive performance increases with
A up to a point and then decreases, often rapidly. Using a validation dataset or alternatively pseudovalidation
is usually effective in helping us select a value of A that is close to the optimal. Comparing different values of
s, the shrinkage parameter, we see that the maximum attainable correlation is generally lower for s = 1, the
scenario where lassosum reduces to soft-thresholding, i.e. where information on LD is ignored, except when
n = 10000 and p(causal) = 0.1. In addition, s = 0.5 and s = 0.2 usually gives better performance than s = 0.9.

In Figure 1A, we give the average prediction performance over 10 simulations, comparing the use of pseu-
dovalidation and a validation dataset with phenotype data as well as using the minimum A value of 0.001. We
use A = 0.001 for comparison because it is shown in Figure S2 that in general the prediction performance of
lassosum approaches a constant as A tends to 0, whereas when \ approaches 1, the performance drops sharply.
Thus, using A close to 0 represents a conservative, safe option, and as noted before A = 0 is equivalent to
ridge regression. When s = 0.2 or 0.5, the performance of pseudovalidation was very similar to using a real
validation phenotype. Both approaches were clearly superior to the conservative option of setting A = 0.001.
When s = 0.9 or s = 1, pseudovalidation was still clearly superior to setting A = 0.001 for n = 10000 and
n = 50000 and p(causal) = 0.01. In all simulations, the performance of p-value thresholding was similar to
the use of lassosum with s = 1. Thus “soft-thresholding” and “hard-thresholding” appeared to give similar
performance. We also observed that lassosum with s = 0.2 or s = 0.5 tended to give the best performance
overall. In our implementation of lassosum, the computation time for s = 0.2,0.5 and 0.9 were similar (Figures
S4 and S5). Thus, it is reasonable to maximize over s also using either a validation phenotype or pseudoval-
idation when using lassosum. In Figure 1B, we compare the performance of lassosum with clumping and
p-value thresholding, as well as with LDpred. For lassosum, we optimized over both A and s = {0.2,0.5,0.9,1}.
For comparison, we optimized over p-value thresholds and clumping R? = {0.1,0.2,0.5,0.8, No clumping}. For
LDpred, we optimized over p(causal) = {0.001,0.003,0.01,0.03,0.1,0.3,1}. For p-value thresholding, clumping
led to a noticeable increase in prediction accuracy, except when p(causal) = 0.1 and n = 10000. However, in
all scenarios, lassosum was superior to clumping and thresholding. The result was similar whether the method
was optimized using a validation dataset or pseudovalidation. We found that LDpred did not appear to have
the claimed advantage over p-value thresholding in our simulations. At first we thought this might be because
the size of the reference sample used was only 1,000, smaller than the recommended size of at least 2,000 in the

paper. However, we found that the performance of LDpred did not improve even when the sample size of the
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reference panel (and test panels) were set to 5,000 (Figure S3).

A possible criticism of our simulations so far is that we performed lassosum by LD blocks defined by Berisa
and Pickrell (2015), while the summary statistics were also simulated by the same LD blocks. To address this
issue, we repeated the analysis using blocks with roughly the same number of SNPs spread uniformly across the
genome. The number of blocks were made equal to the number of blocks given by Berisa and Pickrell (2015),
but the boundaries were different. This would allow lassosum to adjust for LD within blocks but not LD
across blocks in the boundary regions. We also compared it to the scenario when lassosum was carried out by
chromosomes. The results are presented in Figure S4. It can be seen that lassosum by LD blocks and uniform
blocks had nearly identical predictive performance. Thus the advantage that lassosum had in our simulations
by sharing the same blocks by which the summary statistics were generated was negligible. The relative poor
performance of lassosum when carried out by chromosomes is likely due to confounding by chance correlations
between SNPs over long distances that are not in fact in LD.

In Figure 1C, we examined the effect of using different reference panels when using lassosum. We generated
the summary statistics using the entire WTCCC sample, and used four different reference panels for our LD
information: (1) the original WTCCC sample that generated the summary statistics, (2) a sample of 1,000 from
the WTCCC, (3) the European sub-population from the 1000 Genome project, and (4) the East-Asian sub-
population from the 1000 Genome project, which also served as the test sample. It was found that for the small
sample size (n = 10,000) scenario the use of the different reference panels made relatively little difference to
predictive performance. However, as sample size increased, using the true sample that generated the summary
statistics led to noticeably improved predictive performance. For many scenarios, using the 1000 Genome EUR
sample as the reference panel led to a similar performance as using the original summary statistic sample. A
clear advantage for using the summary statistics sample was only shown in the scenario with the most power
(n = 250000 and p(causal) = 0.01). Using the wrong (EAS) reference sample was clearly inferior when the
sample size was above 50,000, but it was still better than simple p-value thresholding.

Next we examined the performance of lassosum in a larger simulated dataset with around 8 million SNPs,
with a focus on clumping, to see whether pre-filtering by clumping can be an effective method in reducing the
number of SNPs in the analysis. The sample size for the summary statistics was set to 200,000. Six levels
of clumping (r? = 0.01, 0.05, 0.1, 0.2, 0.5, and 0.8) were applied to the data, using a window size of 250kb,
resulting in around 190,000, 330,000, 430,000, 610,000, 1,170,000, and 1,940,000 SNPs respectively. (The actual
number depends on the simulations.) We did not perform LDpred for r? > 0.2 because it was too time and

memory intensive. In Figure 2A, we present the results from this simulation. Here, we see that clumping was

13


https://doi.org/10.1101/058214
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058214; this version posted March 22, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

A n = 10000 n = 50000 n = 250000
T =
I
0.75 )
IRl ;
&
0.50 8
1
(=
8 0.25 I =< lasso (s=0.2)
5 0.00 . lasso (s=0.5)
3 0
= _ B =ss0 (s=09)
Q I
O 075 T = . lasso (s=1)
g . p-thres
0.50 L ] g
1l
o
- I i:[iiii Iiiii i
0.00
lambda Pseudo Validation lambda Pseudo Validation lambda Pseudo Validation
=0.001 validation =0.001 validation =0.001 validation
B P(causal) = 0.01 P(causal) = 0.1 C P(causal) = 0.01 P(causal) = 0.1
0.75 0.75
> =
1 1
0.50 3 0.50 3
S S
S S
s} S
0.00 0.00
c 0.75 c 0.75
K] > 9 =
= N 1
© © 0.50
- 0.50 o = I3
o 8| © g
5 g 3 s
O 025 Q025
0.00 0.00
0.75 0.75
= =
1 1
0.50 5 0.50 I
3 5]
S S
0.25 ° 0.25 =
0.00 0.00
Validation Pseudo Validation Pseudo sum WTCCC EUR EAS p-thres  sum WTCCC EUR EAS p-thres

N . . . stats sample stats sample
validation validation i P

Reference panel

. lassosum . p—thres. C+T . LDpred . lassosum . p-thres

Figure 1: In all of the plots, mean and standard deviation of the correlation of the PGS
with the true predictor are plotted. (A) Comparing the use of a validation dataset with
phenotype data and pseudovalidation in selecting the tuning parameter A. (B) Com-
paring the performance lassosum, p-value thresholding (p-thres), p-value thresholding
with clumping (C+T), and LDpred. (C) The effect of using different reference panels
on lassosum. sum stats: The same data from which the summary statistics were sim-
ulated, WTCCC sample: A sample of 1,000 from the WT'CCC, EUR: European, EAS:
East Asian reference panel from 1000G.
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beneficial in improving prediction performance for p-value thresholding, and the best performance was achieved
with an 72 of 0.5 or 0.8. For lassosum, performance decreased with increasing level of clumping (decreasing r?).
lassosum with no clumping gave the best performance overall. LDpred performed poorly in this simulation,
likely because the reference panel size was too small.

In Figure 2B, we present the results for using real summary statistics from five large meta-analyses to predict
phenotypes in the WTCCC data. In all cases, the use of pseudovaliation resulted in a PGS that is close to
the maximum AUC across all tuning parameters, and was clearly superior to using A = 0.001. For BD, CAD,
CD, and RA, the performance of lassosum, LDpred, and clumping and thresholding were similar, although a
slightly higher AUC was observed for lassosum. For T2D, the maximum AUC was surprisingly achieved by
p-value thresholding without clumping.

In Figures S5 and S6, we plot the average time taken to run lassosum on our computer cluster, using 1
core for each analysis. In general, running times for different values of s were similar, although lower values of
s led to slightly longer running times. However, running times increased exponentially both with the number
of participants (Figure S5) and the number of SNPs (Figure S6). Nonetheless, it was still substantially faster

than LDpred. While LDpred typically requires hours to run, lassosum took only minutes.

Discussion

In this paper, we have proposed the calculation of polygenic scores using a penalized regression approach
using summary statistics and examined its performance in simulation experiments. Our proposed approach,
lassosum, in general appeared to give better prediction than p-value thresholding with or without clumping as
well as the recently proposed LDpred, for which we failed to demonstrate the claimed superior performance over
p-value thresholding. Clumping was beneficial for p-value thresholding in most scenarios but not for lassosum.
In some scenarios, clumping actually decreases the predictive power of p-value thresholding, such as in our
simulations with p(causal) = 0.1 and n = 10, 000.

Compared with LDpred, we showed that lassosum is not only more accurate but also a lot faster. Running
lassosum on a reference panel of around 300,000 SNPs and 1,000 individuals typically takes only several minutes
without parallel processing. Even when using a reference panel with 8 million SNPs and 500 participants,
lassosum took around 15 minutes without parallel processing for each value of s. The time taken was similar to
that for clumping in PLINK 1.9 and therefore lassosum had similar speed to clumping and p-value thresholding

when run with a small reference sample size. Increasing the sample size of the reference panel will generally
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Figure 2: (A) Performance of lassosum in a large simulated dataset with n = 200,000
using different clumping levels in relation to p-value thresholding and LDpred. Mean
and standard deviation of the AUC of the PGS with the true disease status are plotted.
(B) Performance of lassosum vs. other methods when using real summary statis-
tics data from meta-analyses. Predictive accuracy was assessed by prediction in the
WTCCC dataset after the contribution from WTCCC was removed from the summary
statistics. p-thres: p-value thresholding without clumping, C+T: p-value thresholding
with clumping.
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increase prediction accuracy also, although this comes at a cost of exponentially increasing running times. In
our simulations we found that gains in prediction accuracy from a larger reference panel were usually modest.
We are currently working on a parallel implementation of lassosum and this should be available by the time
the article is accepted for publication.

Another contribution from this paper is the method of pseudovalidation, which can be applied to any PGS
method that requires a tuning parameter. We showed that it is effective in selecting a parameter value that is
close to the optimum. Not surprisingly, having a validation dataset with phenotype data generally provides an
even more reliable method for selecting the tuning parameter. However, in the event where this is unavailable,
pseudovalidation offers an alternative. Recently, polygenic scores were often used to assess genetic correlation
between two diseases. Often times, the tuning parameter (or p-value threshold) used in the polygenic scores
was chosen by maximising over the correlation of the PGS with another disease (e.g. Krapohl et al., 2015). We
have not examined the performance of using this approach to select the tuning parameter, although it is likely
that there will be bias in estimation of correlations due to winner’s curse.

Although we have focused on the performance of lassosum as a method, we note that it is more generally
an instance of penalized regression. Potentially other penalties can be used in place of A||B||1 in equation (2)
that can lead to even better prediction. We chose the LASSO penalty because of its simplicity. Other similar
methods that can also be solved using the fast coordinate descent method of Friedman et al. (2007) include the
non-negative garotte, LAD-LASSO, and Grouped LASSO.

Some limitations of the present study are worth bearing in mind when considering these results. For example,
summary statistics may be inflated due to population stratification in the data where they are generated. As
summary statistics are often derived from meta-analyses, it is also possible that there is underlying heterogeneity
in effect sizes. How these impact PGS calculation is currently unknown.

Recently, methods for conducting GWAS have moved beyond the single-disease paradigm. Often, multiple
related diseases are analysed together to give improved power for detection of GWAS signals (Korte et al.,
2012; Andreassen et al., 2013; Zhou and Stephens, 2014; Chung et al., 2014; Li et al., 2014). Frequently,
these new methods operate in the Bayesian framework resulting in Bayes factor or posterior probability of
associations (or alternatively local false discovery rates) for each SNPs. In principle, we can translate these into
p-values (Stephens and Balding, 2009) and thus make use of additional information to improve PGS predictive
performance. Likewise additional information gained in the consideration of functional annotations of the
genome (Schork et al., 2013; Pickrell, 2014; Kichaev et al., 2014) can be incorporated similarly. The simplicity

of lassosum makes it an ideal framework from which more complex methods can be developed.
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