

1 **HIV-1 gag-pol mRNA localization regulates the site of virion assembly**

2

3 Jordan T. Becker and Nathan M. Sherer*

4

5 McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer

6 Center

7 University of Wisconsin – Madison

8 1525 Linden Drive, Madison, WI 53706

9

10 Short title: HIV-1 mRNA translation and virion production

11

12 *To whom correspondence should be addressed: 501 Robert M. Bock Lab, 1525 Linden Drive,

13 Madison, WI 53706. Tel: (608) 890-2551. Email: nsherer@wisc.edu

14

15

16 **AUTHOR SUMMARY**

17

18 The spatial distribution of messenger RNAs (mRNAs) within the cytoplasm can be a crucial
19 determinant of gene expression. Here we provide evidence that a devastating viral pathogen,
20 human immunodeficiency virus type 1 (HIV-1), exploits localized translation to favor the
21 formation of infectious, transmissible virions at the surface of infected cells. Artificially tethering
22 viral mRNAs encoding the Gag and Gag-Pol capsid proteins (*gag-pol* mRNAs) to alternative
23 regions of the cell such as cytoplasmic vesicles or the actin cytoskeleton markedly alters Gag
24 subcellular distribution, perturbs sites of assembly, and reduces virus particle production. These
25 and additional findings suggest a model for HIV-1 assembly wherein localized Gag/Gag-Pol
26 translation coupled to confined interactions between Gag and viral genomes ensures infectious
27 virion production at the right place and the right time. Perturbing HIV-1 mRNA subcellular
28 localization could represent a novel antiviral strategy.

29

30 **ABSTRACT**

31

32 HIV-1 full-length, unspliced genomic RNAs (gRNAs) serve both as mRNAs encoding the Gag
33 and Gag-Pol capsid proteins as well as the genetic material packaged by Gag into virions that
34 assemble at the plasma membrane (PM). Whether localized Gag synthesis contributes to
35 assembly at the PM is unknown. Here we show that artificially tethering gRNAs or surrogate
36 *gag-pol* mRNAs to non-PM membranes or the actin cytoskeleton can markedly affect Gag's
37 distribution in the cytoplasm, causing aberrant subcellular sites of assembly and severe
38 reductions to virus particle output. Only *gag-pol* mRNAs competent for translation were capable
39 of altering Gag's distribution within the cell, and the activity mapped to two *cis*-acting RNA
40 regulatory elements; the 5' packaging signal (Psi) bound by Gag and, unexpectedly, the Rev
41 response element (RRE) that regulates the nuclear export of gRNAs and other intron-retaining
42 viral RNAs. Taken together, our results suggest a model wherein localized translation of gRNAs
43 at the PM helps to compartmentalize Gag-gRNA interactions, thereby promoting efficient
44 genome encapsidation.

45

46

47 **INTRODUCTION**

48

49 The spatial distribution of messenger RNAs (mRNAs) within the cytoplasm is a core
50 determinant of mRNA turnover, cytoplasmic utilization, and the formation of functional
51 macromolecular complexes [1–3]. Viruses face severe challenges in this regard during the
52 productive phases of infection wherein viral mRNAs, genomes, and core structural elements
53 must be successfully compartmentalized in space and time to ensure the efficient assembly and
54 release of infectious virions [4–6].

55 For the retrovirus human immunodeficiency virus type 1 (HIV-1), virion assembly is
56 coordinated at the cytoplasmic face of the plasma membrane (PM) where a dimer of ~9kb,
57 unspliced genomic RNA (gRNA) is encapsidated into an enveloped, proteinaceous shell
58 consisting of ~2,000 Gag (and Gag-Pol) capsid polyproteins [7,8]. To initiate assembly, Gag
59 interacts with the PM via a fatty acid myristoyl membrane anchor and must also interact with an
60 RNA scaffold in the cytoplasm [9–13]. Four functional domains of the 55 kDa Gag precursor
61 polyprotein (Pr55^{Gag}) coordinate this process. Matrix (MA/p17^{Gag}) targets Gag to the cytosolic
62 face of the PM through interactions with the phospholipid phosphatidylinositol 4,5-bisphosphate
63 (PI(4,5)P₂) [14–16]. Capsid (CA/p24^{Gag}) coordinates Gag-Gag interactions during capsid
64 assembly [17–19,7]. Nucleocapsid (NC/p7^{Gag}) binds to gRNAs and/or cellular RNAs [20–24].
65 The late domain (p6^{Gag}) recruits the cellular endosomal sorting complex required for transport
66 (ESCRT) machinery that catalyzes membrane abscission and particle release [25–28].

67 Upstream of assembly, a single pool of HIV-1 gRNA molecules is thought to serve both as
68 mRNAs encoding Gag and Gag-Pol as well as the core genetic substrate bound by Gag and
69 packaged into virions [29–33]. Gag is translated on free polysomes either prior to or coincident
70 with the formation of viral ribonucleoprotein (vRNP) trafficking granules that consist of low-order
71 multiples of Gag bound to gRNAs in conjunction with cellular RNA binding proteins [34–39].
72 Recent advanced imaging studies have demonstrated that vRNPs diffuse in the cytoplasm prior

73 to being tethered to the PM by Gag [13,40,41]. Gag-membrane binding is initiated when
74 cytoplasmic Gag concentrations reach a critical level known as the cooperative threshold [42–
75 44], triggering the activation of a myristoyl switch mechanism within MA that subsequently
76 anchors gRNP complexes to the PM [45,46,12].

77 Gag selectively encapsidates a dimer of gRNA molecules with high efficiency [47–50] due to
78 the NC domain's capacity to bind a *cis*-acting RNA packaging signal known as *Psi* located in the
79 gRNA's 5' untranslated region (UTR) with high affinity [51,21,31,52,53,33,54]. A second *cis*-
80 acting RNA structure, the Rev response element (RRE), may also contribute to the efficiency of
81 gRNA encapsidation albeit through an unknown mechanism [55,56]. Indeed, the RRE is much
82 better characterized as regulating gRNA nucleocytoplasmic transport through recruitment of the
83 viral Rev protein and subsequent Rev-mediated interactions with cellular CRM1 nuclear export
84 receptor [57–59]. The dimerization of gRNAs may occur in the cytoplasm [60] and/or after Gag-
85 PM anchoring [61], followed by the gradual recruitment of additional Gag molecules to form an
86 immature capsid lattice over a time period of 10–60 minutes [13,62,63,49,41]. NC also binds to
87 and packages cellular RNAs, with highly structured RNAs such as U6 snRNAs and 7SL RNAs
88 encapsidated into virions with a high degree of specificity [64,23,50,65,24]. Interestingly, the MA
89 domain has also been reported to bind RNAs, in particular cellular tRNAs, an activity that
90 regulates MA-membrane interactions *in vitro* and predicted to impact assembly efficiency in
91 cells [53,66,67].

92 Gag is sufficient to drive the assembly of non-infectious virus-like particles (VLPs) even in the
93 absence of packageable gRNAs [68–73]. Thus, capsid-genome interactions are clearly not
94 obligatory for HIV-1 assembly, unlike for many other viruses [74–76]. On the other hand,
95 imaging studies have demonstrated that gRNAs accumulate at the membrane with Gag prior to
96 the onset of higher-order assembly, so that the gRNA may be capable of nucleating assembly
97 [13,41]. Moreover, we and others have demonstrated that manipulating gRNA trafficking (e.g.,
98 rendering gRNAs or surrogate *gag-pol* mRNAs Rev/RRE-independent) can, in some instances,

99 profoundly affect Gag's capacity to traffic to the PM [77,35,78–81]. An attractive, long-standing
100 hypothesis for links between HIV-1 mRNA trafficking and assembly is that, under native
101 conditions, gRNAs encode one or more signals that influence gRNA/Gag subcellular distribution
102 in the cytoplasm [77,35,80,82]. However, direct evidence for such an activity remains elusive.

103 In the current study we combined imaging and functional assays to determine if the
104 cytoplasmic abundance or subcellular site of gRNA (*gag-pol* mRNA) localization are
105 determinants of the assembly pathway. Altering gRNA cytoplasmic abundance, in a non-coding
106 context, had little to no stimulatory effect on assembly when provided to Gag in *trans*. By
107 contrast, disrupting gRNA (*gag-pol* mRNA) diffusion in the cytoplasm by artificially tethering
108 gRNAs to non-PM membranes or the actin cytoskeleton markedly affected Gag subcellular
109 distribution and potently reduced virus particle production. Interestingly, these effects were only
110 observed for gRNAs competent for Gag synthesis (*i.e.*, *gag-pol* mRNAs), with the effects
111 mapping to the 5' *Psi* element bound by Gag as well as the Rev response element (RRE) that
112 governs gRNA nuclear export. Taken together, our results are consistent with a model wherein
113 localized Gag translation and compartmentalized Gag-gRNA interactions at the PM promote
114 efficient gRNA encapsidation.

115

116 **RESULTS**

117

118 **Tracking Gag/gRNA interactions in single living cells.** To study Gag/gRNA interactions
119 functionally and using fluorescence microscopy, we inserted 24 copies of the MS2
120 bacteriophage RNA stem-loop (MS2 stem loops; MSL), recognized by the MS2 coat protein,
121 between the *gag* and *pol* open reading frames within the major intron of a full-length HIV-1 NL4-
122 3-based luciferase reporter virus construct (WT-MSL) (Fig 1). WT-MSL expressed full-length
123 Gag and yielded robust production of virus-like particles (VLPs), albeit in the absence of Gag
124 cleavage due to insertion of the MSL cassette upstream of the *pol* gene thereby abolishing
125 synthesis of the viral protease (Figs 1A and 1B, lane 2). In order to visualize gRNAs in living
126 cells, MSL-bearing gRNAs were monitored in HeLa cells engineered to stably express the MS2-
127 YFP protein fused to a carboxy-terminal nuclear localization signal (NLS) (HeLa.MS2-YFP) (Fig
128 1C). In these cells, low levels of the MS2-YFP protein are sequestered in the nucleus until
129 bound to an MSL-containing gRNA and exported to the cytoplasm. We have previously
130 validated this strategy as a reliable way to obtain direct, single cell measurements of viral mRNA
131 nuclear export, cytoplasmic trafficking behaviors, and translation [82].

132

133 **Fig 1. Tracking Gag/gRNA interactions in single living cells.** (A) Cartoon depiction of
134 gRNAs used in these studies. Ψ = *Psi* packaging signal. MSL = 24 copies of MS2 RNA
135 stem loop. RRE = Rev-response element. *Tat* and *rev* encode gene-regulatory proteins
136 translated from multiply-spliced mRNAs. *Vif* and *vpu* encode immune modulatory
137 proteins translated from singly-spliced mRNAs. (B) HEK293T cells were transfected with
138 2000ng HIV-1 plasmids encoding the WT, modified, and mutated gRNAs depicted in (A).
139 VLPs and cell lysates were collected 48 hours post-transfection, resolved by SDS-
140 PAGE, and detected by immunoblot using anti-p24^{Gag} antiserum (HSP90 was also
141 detected as a loading control). (C) Widefield deconvolution microscopy images of

142 HeLa.MS2-YFP cells transfected with 100ng RevInd GagFP and 900ng HIV constructs,
143 fixed ~30 hours post-transfection, and imaged. Single Z-plane images are shown. Scale
144 bars represent 10 microns in full images, 2 microns in regions of interest (ROI). Dashed
145 white lines show the relative position of cell nuclei. White box outlines the ROI. Red
146 arrows indicate sites where RevInd GagFP has accumulated in PM-adjacent punctae.
147 (D) Quantification of MS2-YFP localization phenotypes. Bar graphs show percent of
148 transfected cells with nuclear, cytoplasmic, or both distributions of gRNA for each
149 transfection condition. (E) Quantification of GagFP distribution phenotypes. Bar graphs
150 show percent of transfected cells with diffuse or PM-adjacent punctae Gag localization
151 for each transfection condition. For both (D) and (E), error bars represent standard
152 deviation from the mean for at least four independent experiments quantifying at least
153 100 cells per condition. (F) HEK293T cells were co-transfected with 500ng RevInd
154 GagFP and 1500ng of HIV gRNA constructs as indicated or an empty vector control
155 (pBluescript) and immunoblotted as in 1A. Bar graphs show fold change in Gag release
156 factor relative to empty vector condition. Release factor is calculated by Gag band
157 intensities in VLPs divided by lysates normalized to HSP90 (N=4).

158
159 Investigating the role of gRNAs during the process of assembly is confounded by the gRNA's
160 essential role as the *gag/gag-pol* mRNA [35]. Thus, we also monitored "gRNA-only" transcripts
161 bearing a single nucleotide substitution (ATG>ACG) at the initiator methionine codon of Gag
162 (1ACG-MSL, depicted in Fig 1A). To control for cytoplasmic activities, we mutated 1ACG-MSL
163 transcripts by deleting the Rev response element (RRE), thus generating a gRNA incapable of
164 exiting the nucleus due to the inability of HIV-1 Rev to regulate CRM1-dependent gRNA
165 nucleocytoplasmic trafficking (dRRE-MSL, Fig 1A). As expected, neither 1ACG nor dRRE
166 transcripts were competent for the translation of full-length Gag proteins (Fig 1B, compare lanes
167 3 and 4 to lane 2). However, 1ACG transcripts were both exported from the nucleus (Fig 1C)

168 and translated, as evidenced by the synthesis of low levels of a minor Gag isoform (p40)
169 previously shown to result from initiation at *gag* codon methionine-142 (Fig 1B, lane 3) [83,84].
170 To supply “gRNA-minus” Gag in *trans*, we expressed Gag-fluorescent protein (FP = cyan
171 fluorescent protein, mTagBFP2, mCherry, etc., depending on the experiment but shown in blue
172 throughout for consistency) fusion proteins from constructs wherein the *gag* coding region was
173 codon-optimized to achieve protein synthesis in the absence of Rev or any other viral factors
174 (RevInd GagFP) [85,86] (Figs 1A and 1B, lane 5).

175 We first tested if RevInd GagFP trafficking or assembly efficiency was affected by the
176 provision of cytoplasmic HIV-1 gRNAs in *trans*. As expected, expression of WT-MSL and 1ACG-
177 MSL gRNAs yielded translocation of MS2-YFP from the nucleus to the cytoplasm in >50% of
178 transfected HeLa.MS2-YFP cells at ~24 hours post-transfection (Figs 1C and quantification in
179 1D). By contrast, dRRE-MSL gRNAs formed discrete MS2-YFP punctae that were retained in
180 the nucleus in >90% of transfected cells, consistent with gRNA transcription events but in the
181 absence of nuclear export (Figs 1C and 1D). When co-expressed, WT- or 1ACG-gRNAs co-
182 localized with RevInd GagFP aggregates at the plasma membrane, suggesting Gag/gRNA co-
183 trafficking to assembly sites (Fig 1C, bottom panels). However, for each of these conditions, we
184 observed only minor differences in the frequency of cells exhibiting PM-adjacent RevInd GagFP
185 aggregates (Fig 1C, middle panels, and quantification in 1E). Moreover, RevInd GagFP was
186 released from cells with similar efficiency when co-expressed with either 1ACG- or dRRE-
187 gRNAs in a VLP assembly assay using HEK293T cells (Fig 1F). These experiments
188 demonstrated that RevInd GagFP trafficking is largely unaffected by gRNAs co-expressed in the
189 cytoplasm and accessed in *trans*.

190

191 **Increasing HIV-1 gRNA cytoplasmic abundance has only minor effects on GagFP**
192 **trafficking at low, sub-cooperative levels.** Because per cell Gag expression levels vary
193 during transient transfection, we next tested the hypothesis that gRNA cytoplasmic abundance

194 is more relevant to the assembly pathway at low, sub-cooperative levels of Gag using HeLa
195 cells engineered to stably express only low levels of RevInd Gag-CFP (HeLa.Gag-CFP cells).
196 Consistent with previous reports defining cooperative assembly [42,43], these cells did not
197 exhibit marked Gag-CFP fluorescence along the PM or diffraction-limited Gag-CFP punctae at
198 the PM. We selected a high performance clone wherein RevInd Gag-CFP was typically
199 observed in a diffuse distribution throughout the cytoplasm until the cells were infected with an
200 HIV-1/mCherry reporter virus, wherein the Gag-CFP signal was markedly relocalized to punctae
201 at the PM at 24-36 hours post-infection (Fig 2A and S1 Video). This visual detection of the onset
202 of particle production demonstrated the utility of this cell line as a biosensor for detecting HIV-1
203 assembly activity in real time.

204

205 **Fig 2. HIV-1 gRNA cytoplasmic abundance plays a minor role in GagFP trafficking**
206 **at the sub-cooperative threshold.** (A) Widefield deconvolution microscopy images
207 from live cell imaging experiments of HeLa.Gag-CFP cells infected with WT NL4-3 E-R-
208 mCherry reporter virus. Multi-channel images were acquired once per hour for up to 48
209 hours beginning at ~1 hour post-infection. Scale bars represent 10 microns. Red arrows
210 indicate sites where stably expressed RevInd Gag-CFP has transitioned from a diffuse
211 cytoplasmic distribution to PM-associated punctae. (B) Depiction of “self-labeling” WT-
212 MSL gRNA. These gRNAs are identical to those depicted in Fig 1A with the addition of
213 MS2-mCherry-NLS as a reporter and gRNA-tagging protein expressed from the viral *nef*
214 gene position. (C) Widefield deconvolution microscopy images of stable HeLa.Gag-CFP
215 cells transfected with 1000ng HIV gRNA constructs and fixed ~30 hours post-
216 transfection. Scale bars represent 10 μ m in full images, 2 μ m in ROI. Dashed white lines
217 show the relative position of cell nuclei. The white box designates the ROI. Red arrows
218 indicate sites where stably expressed Gag-CFP has accumulated at the PM for WT-MSL
219 or in the cytoplasm for 1ACG-MSL. dRRE-MSL gRNAs are not exported from the

220 nucleus. Dashed red line in ROI represents edge of cell. (D & E) Quantification of Gag-
221 CFP distribution phenotypes from live cell imaging experiments performed similar to Fig
222 2A. HeLa.Gag-CFP cells were transfected with 333ng of gRNA constructs (WT-MSL,
223 1ACG-MSL, and dRRE-MSL also encoding MS2-mCherry-NLS as a reporter and gRNA
224 tagging protein). (D) Bar graphs show the percentage of transfected cells with diffuse or
225 PM-adjacent punctae Gag localization. (E) Bar graph shows the percentage of
226 transfected cells with diffuse, granules, or PM-adjacent punctae Gag localization. Error
227 bars represent standard deviation from the mean. At least 30 cells were quantified per
228 transfection condition per experiment (N=3). (F) HEK293T.Gag-CFP cells were
229 transfected with 2000ng of HIV gRNA constructs as indicated or an empty vector control
230 (pBluescript) and immunoblotted for Gag and HSP90. Bar graphs show fold change in
231 Gag release factor relative to empty vector condition (N=3). The asterisk (*) indicates
232 stable GagFP release factor for WT-MSL condition is significantly different from empty
233 vector condition (Two-tailed Student's t-test, p=0.0006).

234

235 Because the HeLa.Gag-CFP cell line lacked MS2-YFP, in these experiments we tracked
236 Gag-CFP in the presence of WT-MSL, 1ACG-MSL, and dRRE-MSL constructs modified to
237 express MS2-mCherry-NLS from the native viral promoter (*i.e.*, with MS2-mCherry-NLS inserted
238 into the *nef* reading frame, Fig 2B). In HeLa.Gag-CFP cells expressing WT-MSL/MS2-mCherry-
239 NLS gRNAs, we observed marked transitions of RevInd Gag-CFP to discrete punctae at the PM
240 of >75% of cells, identical to the transitions observed after infection (Fig 2A) and thus
241 demonstrating recruitment of Gag-CFP into budding virions (Figs 2C, left panels and
242 quantification in 2D). The gRNA's MS2-mCherry-NLS signal (yellow) co-localized with surface
243 Gag-CFP (cyan), consistent with Gag/gRNA co-trafficking to the PM and suggesting gRNA
244 encapsidation (Fig 2C, lower left panel). Gag-CFP was also released from cells as VLPs under
245 this condition (Fig 2F, compare lane 2 to lane 1). Contrary to our hypothesis, accumulation of

246 1ACG-MSL gRNAs in the cytoplasm did not drive RevInd Gag-CFP at sub-cooperative levels to
247 the PM. Instead, we observed RevInd Gag-CFP as well as cytoplasmic MS2-mCherry-NLS
248 signals coalescing in large cytoplasmic granules in >50% of cells (Figs 2C, middle panels,
249 quantification in 2E, and S2 Video). dRRE-MSL expression also had no effect on RevInd Gag-
250 CFP distribution, as expected (Figs 2C, right panels, 2D, and 2E). Taken together, these data
251 indicated that a sub-cooperative threshold for Rev-independent Gag assembly cannot be
252 lowered (or reached) by an excess abundance of cytoplasmic gRNA in single cells, at least
253 when provided in *trans*. In fact, the tendency of 1ACG-gRNAs to aggregate with Gag-CFP in
254 large cytoplasmic granules suggests that disproportionately high levels of gRNA in the
255 cytoplasm are detrimental to Gag trafficking.

256

257 **Perturbing the subcellular localization of HIV-1 gRNAs competent for Gag synthesis**
258 **disrupts virus particle production.** The above experiments indicated that altering gRNA
259 cytoplasmic abundance has little to no effect on Gag subcellular trafficking or in nucleating
260 assembly events at the PM when provided in *trans*. We next tested if gRNA subcellular
261 localization is a determinant of the assembly pathway. To this end, we modified MS2-YFP
262 fusion proteins to carry subcellular trafficking motifs in order to artificially target MSL-bearing
263 gRNAs to specific cellular membranes or the actin cytoskeleton (Figs 3-6). We first tested a
264 protein myristylation signal (MGSSKSKPKD) derived from the proto-oncogene Src kinase, and
265 generated versions of Src-MS2-YFP that would or would not accumulate preferentially in
266 association with the nucleus due to the presence or absence of a carboxy-terminal NLS (Src-
267 MS2-YFP and Src-MS2-YFP-NLS, respectively) (Fig 3A). The Src targeting motif was chosen
268 for these experiments because, similar to Gag's MA domain, it targets proteins to PI(4,5)P₂
269 phospholipid moieties at the cytoplasmic face of the PM [87]. Indeed, prior work has shown that
270 the assembly of Gag mutants lacking MA is rescued by the addition of an amino-terminal Src
271 membrane targeting motif [42,88]. As a control, we employed a previously validated MS2-NXF1

272 fusion protein that alters gRNA nucleocytoplasmic transport by biasing it toward the NXF1/NXT1
273 nuclear export pathway, in competition with Rev and CRM1 [89,90]. Fluorescence microscopy
274 confirmed that the Src-MS2-YFP protein localized predominantly to the PM, as expected (Fig
275 3B). Interestingly, the addition of the NLS (Src-MS2-YFP-NLS) resulted in preferential targeting
276 to the nuclear membrane (Fig 3B), perhaps accessing nucleus-associated PI(4,5)P2 [91].

277

278 **Fig 3. Perturbing HIV-1 gRNA subcellular localization disrupts virus particle**
279 **production.** (A) Cartoon depiction of MS2-YFP targeting protein constructs used in
280 these studies. Short name used in subsequent Figs is underlined. Amino acid targeting
281 motif is shown at their relative (amino- or carboxy-terminal) position. (B) Widefield
282 deconvolution microscopy images of HeLa cells transfected with 333ng MS2-YFP
283 targeting constructs and fixed ~30 hours post-transfection. Scale bars represent 10 μ m.
284 Dashed white lines show the relative position of cell nuclei. Dashed cyan lines show the
285 edge of cell. (C) HEK293T cells were transfected with 1000ng MS2-YFP targeting
286 constructs as indicated and 1000ng of WT-MSL and immunoblotted for Gag and HSP90.
287 Bar graphs show release factor relative to Free MS2-YFP. Error bars represent standard
288 deviation from the mean for three independent experiments. The asterisks (*) indicate
289 Pr55 Gag release factor is significantly different for comparisons indicated by black bars
290 (two-tailed Student's t-test, $p=0.023$ Src and 0.015 Src+NLS). (D) HEK293T cells were
291 transfected with 1000ng MS2-YFP targeting constructs as indicated and 1000ng of WT
292 NL4-3 E-R- and immunoblotted for Gag and HSP90. Cells were treated with the HIV-1
293 protease inhibitor saquinavir to prevent Pr55 Gag proteolytic processing and aid
294 quantification of Gag expression and release. Bar graphs show release factor relative to
295 Free MS2-YFP. Error bars represent standard deviation from the mean of three
296 independent experiments. No conditions were significantly different. (E) HEK293T cells

297 were transfected with the indicated amounts of WT NL4-3 E-R- plasmid as indicated and
298 processed as for (D). Bar gr103

299 apbs show release factor relative to 1000ng condition. Error bars represent standard
300 deviation from the mean for three independent experiments. (C-E). Numbers above blot
301 images represent Gag intensity value of band directly below, relative to lane 1 of each
302 image.

303

304 We initially hypothesized that the MS2-YFP protein bearing the Src membrane-targeting
305 signal would stimulate virus particle assembly by enhancing MSL-dependent gRNA trafficking to
306 the PM, and thus provide a nucleation signal to Gag. However, we observed the opposite
307 outcome, with co-expression of either Src-MS2-YFP or Src-MS2-YFP-NLS causing a greater
308 than ten-fold reduction in VLP release for Gag derived from MSL-bearing gRNA (WT-MSL)
309 transcripts (Fig 3C, compare lanes 3 and 4 to lanes 1 and 2). Parental WT gRNAs lacking the
310 MSL cassette were relatively immune to the MS2 targeting proteins (Fig 3D), even at a high
311 ratio (1:1) of MS2:gRNA plasmids, thus demonstrating that the bulk of the effect was specific to
312 MS2-MSL interactions. The MS2-NXF1 control also affected VLP release specifically from the
313 WT-MSL construct. However, this effect was associated with a marked increase to levels of cell-
314 associated Gag, likely reflecting enhanced gRNA nuclear export and/or effects on gRNA
315 trafficking or Gag synthesis intrinsic to the NXF1/NXT1 pathway (Fig 3C, lane 5).

316 Because assembly is a cooperative process (*i.e.*, highly sensitive to intracellular Gag levels)
317 [12,42,92], we tested if the effects on virus particle production reflected either 1) net reductions
318 to per cell Gag expression levels, 2) decreases to Gag assembly efficiency, or 3) a combination
319 of both effects. In our experiments, we measured virus assembly competency by calculating a
320 “release factor” (RF) [80], defined as the amount of Gag detected in VLPs released into the
321 culture media (determined by quantitative infrared immunoblot), and compared to relative levels
322 of cell-associated Gag. Careful control titrations of the WT construct from 1000 ng to 31.25 ng

323 per transfection (Fig 1E) demonstrated a remarkably linear ($R^2=0.97$) relationship between Gag
324 cytoplasmic abundance and VLP production at all levels of Gag in our assays (*i.e.*, a 10-fold
325 loss to VLP production correlated to a 10-fold decrease to cytoplasmic Gag abundance,
326 compare Fig 3E lane 1 to lane 3). For the Src-MS2-YFP conditions, we observed a ~2-fold
327 reduction to cell-associated Gag for both the WT-MSL and WT constructs (*e.g.*, compare Fig 3C
328 lanes 3 and 4 to Fig 3D lane 3). However, the effects on VLP release for the MSL-bearing
329 construct was much greater (>10-fold compared to 3-fold, compare Figs 3C VLPs lanes 3 and 4
330 to Fig 3D lane 3). Thus, Src-MS2-YFP interactions with WT-MSL gRNAs were apparently
331 affecting not only Gag synthesis but also virus particle release.

332

333 **Tethering gag-pol mRNAs to non-PM membranes disrupts Gag's trafficking to the plasma
334 membrane.** To address the mechanism underpinning the Src-MS2-YFP effects on Gag
335 abundance and trafficking, we directly monitored Gag in single cells using previously validated,
336 intron-retaining and Rev-dependent GagFP-MSL-RRE surrogate gRNA transcripts [82] (Figs 3-
337 7). Similar to WT-MSL gRNAs, GagFP-MSL-RRE VLP release was completely inhibited by Src-
338 MS2-YFP or Src-MS2-YFP-NLS proteins (Fig 4B, compare lanes 3 and 4 to 1 and 2). Increasing
339 the ratio of Src-MS2-YFP:gRNA plasmids lowered the amount of GagFP released from cells in
340 the form of VLPs without changing levels of cell-associated GagFP-RRE-MSL (Fig 4C, lanes 4-
341 6), a result, again, consistent with a block to virus particle assembly or release from the cell.

342

343 **Fig 4. Src-MS2-YFP proteins induce a gRNA-specific block to Gag trafficking in
344 *cis*.** (A) Cartoon depiction of subgenomic HIV-1 GagFP-MSL-RRE construct used.
345 Splice donor (SD) and splice acceptor (SA) are shown to emphasize that the viral *gagfp*
346 mRNA (surrogate subgenomic gRNA) retains an intron. (B) HEK293T cells were
347 transfected with 1000ng MS2-YFP targeting constructs as indicated, 900ng of GagFP-
348 MSL-RRE, and 100ng pRev and immunoblotted for Gag and HSP90. Bar graphs show

349 release factor relative to Free MS2-YFP. Error bars represent standard deviation from
350 the mean for three independent experiments. The asterisks (*) indicate Gag release
351 factor is significantly different for comparisons indicated by black bars (two-tailed
352 Student's t-test, $p=0.03$). (C) HEK293T were transfected with decreasing amounts of
353 GagFP-MSL-RRE (1500/1000/500ng) plus 200ng Rev and empty vector as filler up to
354 2 μ g total DNA in lanes 1-3. Cells were transfected with 1500ng GagFP-MSL-RRE, plus
355 200ng Rev, empty vector as filler, and increasing amounts (100/200/300ng) of Src-MS2-
356 YFP and immunoblotted for Gag and HSP90 in lanes 4-6. Bar graphs show release
357 factor relative to lane 1. Error bars represent standard deviation from the mean of three
358 independent experiments. (D) *Cis* versus *trans* effects. HEK293T cells were transfected
359 with 500ng RevInd Gag-CFP, 100ng MS2-YFP targeting construct as indicated, and
360 1400ng empty vector, 1ACG (no MSL), or 1ACG-MSL in lanes 1-6. Lanes 7-8 were
361 transfected with 1400ng GagFP-MSL-RRE, 100ng MS2-YFP targeting construct as
362 indicated, 200ng Rev, and 300ng empty vector immunoblotted for Gag and HSP90. (E)
363 Widefield deconvolution microscopy images of HeLa cells transfected with 100ng MS2-
364 YFP targeting constructs, 800ng subgenomic GagFP-MSL-RRE, and 100ng pRev and
365 fixed ~30 hours post-transfection. Scale bars represent 10 μ m in full images and 2 μ m in
366 regions of interest (ROI). Dashed white lines show the relative position of cell nuclei.
367 White boxes outline the ROIs. Red arrows indicate sites where GagFP has accumulated.
368 (F) Quantification of GagFP localization phenotypes. Bar graphs show the percentage of
369 cells exhibiting vesicular, diffuse cytoplasmic, or PM-associated punctate for each
370 transfection condition. Error bars represent the standard deviation from the mean for
371 three independent experiments, quantifying at least 100 cells per condition. (G) Whole
372 field quantification of GagFP fluorescence for ~500 cells comparing the permissive NLS
373 and non-permissive Src conditions in cells fixed and imaged at 24 hours post-
374 transfection. HeLa cells were transfected with 150ng MS2-YFP targeting construct,

375 750ng GagFP-MSL-RRE, and 100ng pRev. Error bars represent the standard deviation
376 from the mean for three independent transfections.

377

378 We also tested if Src-MS2-YFP proteins could inhibit VLP production in *trans* by co-
379 transfecting RevInd GagFP with 1ACG genomes either lacking or bearing the MSL cassette,
380 and also in the presence or absence of either control MS2-YFP-NLS or inhibitory Src-MS2-YFP
381 proteins. Src-MS2-YFP did not inhibit assembly by RevInd GagFP under these conditions (Fig
382 4D, compare lanes 3 and 6 to the controls in lanes 7 and 8), thus indicating that the Src-MS2-
383 YFP-induced, gRNA-dependent assembly inhibition only operates in *cis*, in the context of the
384 *gag/gag-pol* mRNA.

385 Fluorescence microscopy revealed GagFP to be less frequently detected at PM punctae
386 under these conditions (measured at 24 hours post-transfection), and most often found
387 associated with cytoplasmic vesicles (Fig 4E and quantification in 4F), perhaps consistent with
388 the capacity of the Src-derived trafficking signals to track PI(4,5)P2 throughout the endocytic
389 pathway [91,93]. Fluorescence-based measurements of GagFP demonstrated no differences to
390 cell-associated Gag at this low yet inhibitory ratio of Src-MS2-YFP:gRNA plasmids (1:5) (Figs
391 4B and fluorescence measured in 4G). Time lapse imaging of both MS2-YFP and GagFP
392 constructs simultaneously in single cells over a 16 hour time course revealed that, for the
393 control MS2-YFP-NLS protein, Gag filled the cytoplasm gradually prior to formation of bright
394 Gag- and gRNA-positive punctae at the PM. This was consistent with the expected punctuated
395 burst of gRNA nuclear export, Gag translation, Gag/gRNA diffusion in the cytoplasm, and
396 ultimately the formation of higher order assembly intermediates at the PM (Fig 5A, black
397 arrows). By contrast, the Src-MS2-YFP protein drove GagFP to accumulate at perinuclear
398 structures, visible even at the lowest levels of GagFP detected (Fig 5B, black arrows). We
399 concluded from these experiments that a convergence of Src-MS2-YFP, gRNA, and Gag leads
400 to the aggregation of Gag/gRNA transport complexes at non-PM membranes, with a possible

401 explanation being Gag accumulating in close proximity to its mRNA and localized site of
402 translation. Such a behavior would not be expected for Gag and gRNA when expressed in *trans*
403 (as suggested by Fig 2 and consistent with Fig 4D).

404

405 **Fig 5. Mis-targeted gRNAs are capable of physically re-routing Gag trafficking to**
406 **aberrant subcellular locations even at very low levels of Gag expression.** (A) Single
407 HeLa cells expressing GagFP derived from GagFP-MSL-RRE constructs, Rev, and
408 MS2-YFP-NLS transfected as for 4E and monitored using live cell fluorescence
409 microscopy for 16 hours. As expected [82], both GagFP and MS2-YFP signals
410 accumulated in the cytoplasm over time prior to coalescing in bright punctate at the PM.
411 (B) When co-expressed with the Src-MS2-YFP protein, both Src-MS2-YFP and GagFP
412 aggregated in a perinuclear zone at even the lowest levels of GagFP detected (see T=0
413 and T=1h).

414

415 **Effects of targeting gag mRNAs to the actin cytoskeleton.** The experiments above indicated
416 that tethered *gag-pol* mRNAs (as represented by the surrogate subgenomic GagFP gRNA
417 transcripts) physically reposition sites of Gag synthesis from typical cytoplasmic diffusion paths
418 toward the PM (see Fig 5A) to alternative locations (Fig 5B). To further test the capacity of
419 gRNAs to control Gag trafficking, we tested a second targeting protein, Lifeact-MS2-YFP,
420 intended to bias gRNA trafficking to the cell periphery due to its strong interactions with the
421 cortical actin cytoskeleton (Fig 6). Several studies have implicated cortical actin in HIV-1
422 trafficking/assembly [94–99]. Lifeact is a 17 amino acid peptide capable of targeting proteins to
423 F-actin bundles with high specificity [100] and, as expected, Lifeact-MS2-YFP localized to
424 peripheral actin fibers throughout the cell (Fig 6A). Both Src-MS2-YFP and Lifeact-MS2-YFP
425 had inhibitory effects on assembly (Fig 6B), although Lifeact-MS2-YFP was typically less potent
426 than Src-MS2-YFP (Fig 6B, compare lanes 5 and 6 to 4, and see Fig 8). Two-color time-lapse

427 single cell imaging confirmed that GagFP was rapidly targeted to actin fibers with LifeAct MS2-
428 YFP, again at the earliest and lowest detectable levels of GagFP expression (Fig 6C, white
429 arrows). Interestingly, at early time points GagFP clustered preferentially with Lifeact-MS2-YFP
430 at F-actin bundles at or near the cell body (the rounded portion of the cell) and was less
431 frequently observed in association with dynamic actin ruffles or filopodia at the cell periphery
432 (Fig 5C, black arrows at T=3h). These experiments confirmed that re-targeted *gag-pol* mRNAs
433 are sufficient to target Gag to even relatively exotic subcellular locales such as the actin
434 cytoskeleton.

435

436 **Fig 6. Effects of re-targeting gRNAs to the actin cytoskeleton.** (A) Cartoon depiction
437 of Lifeact-MS2-YFP targeting protein construct and widefield deconvolution microscopy
438 image of HeLa cell transfected with 333ng MS2-YFP targeting constructs, fixed ~30
439 hours post-transfection. Scale bar represent 10 microns. (B) HEK293T cells were
440 transfected with 100ng MS2-YFP targeting constructs as indicated and either 1700ng
441 RevInd GagFP (no MSL) with empty vector OR 1700ng of GagFP-MSL-RRE with 200ng
442 pRev and immunoblotted for Gag and HSP90. Bar graphs show release factor relative to
443 MS2-YFP-NLS condition for each Gag type (RevInd GagFP or GagFP-MSL-RRE). Error
444 bars represent standard deviation from the mean of three independent experiments. The
445 asterisks (*) indicate GagFP release factor is significantly different for comparisons
446 indicated by black bars (two-tailed Student's t-test, p=0.0001). (C) Images from live cell
447 time-lapse fluorescence microscopy of a HeLa cell expressing GagFP derived from
448 750ng GagFP-MSL-RRE constructs co-transfected with 100ng Rev and 150ng Lifeact-
449 MS2-YFP. Gag aggregated with linear F-actin bundles at or near the cell surface even at
450 early time points (T=0).

451

452 **Targeting gag mRNAs to non-PM membranes or the actin cytoskeleton alters sites of**
453 **virus particle assembly.** Because the MS2-YFP proteins were proxies for MSL-bearing RNAs,
454 it was essential to confirm the subcellular localization of native *gag-pol* mRNAs using single
455 molecule fluorescence *in situ* hybridization (smFISH) in conjunction with super-resolution
456 structured illumination microscopy (SIM). In these 3-color experiments, we transfected HeLa
457 cells with Rev-dependent GagFP-MSL-RRE and MS2-YFP fusion proteins either with or without
458 Rev, fixed cells at ~30 hours post-transfection, and performed smFISH using a *gag/gag-pol*-
459 specific DNA probe set (Fig 7A). HeLa cells transfected with MS2-YFP-NLS and GagFP-MSL-
460 RRE in the absence of Rev exhibited marked co-localization between MS2-YFP-NLS and the
461 gRNA FISH signal in the nucleus, with no apparent GagFP expression, consistent with robust
462 transcription but the inability of these intron-retaining mRNAs to escape the nucleus through the
463 CRM1 export pathway (Fig 7A, NLS no Rev condition, and S3 Video). When Rev was co-
464 expressed, both the MS2-YFP-NLS and gRNA FISH signals shifted to the cytoplasm, consistent
465 with nuclear export, and were now readily detected in a diffuse distribution throughout the
466 cytoplasm as well as co-localizing with GagFP at PM-adjacent punctae, (Fig 7A, NLS+Rev
467 condition, and S4 Video). These control experiments confirmed that the MS2-YFP signals
468 tracked in Figs 1-6 were indeed representative of actual gRNA trafficking.

469

470 **Fig 7. gRNA-directed effects on Gag trafficking and subcellular sites of virus**
471 **particle assembly.** (A) HeLa cells were transfected with 800ng GagFP-MSL-RRE,
472 100ng MS2-YFP targeting constructs as indicated, and 100ng Rev or empty vector as
473 indicated. Cells were fixed at ~30 hours post-transfection, subjected to FISH, and multi-Z
474 stack images acquired by structured-illumination microscopy (SIM) using a 100x (NA
475 1.49) TIRF oil objective. Single Z-plane images are shown with scale bars representing 5
476 microns. White arrows indicate points of interest highlighting colocalization. Nucleus =
477 “nuc”, cytoplasm = “cyto”. (B) HEK293T cells were transfected with 1800ng WT-MSL and

478 200ng MS2-YFP targeting constructs as indicated for EM. Red arrows indicate
479 representative particle events for budding (NLS), intracellular (Src), and incomplete
480 (Lifeact). (C) Quantification of particles with budding phenotypes observed by thin-
481 section EM. Bar graph shows percent of assembly events exhibiting intracellular,
482 incomplete, or budding phenotype. Errors bars represent standard deviation from the
483 mean of 10 cells imaged. At least 100 budding events were quantified per condition.

484

485 As expected, Src-MS2-YFP also co-localized with the gRNA smFISH signal. However,
486 for this condition the Src modification triggered a massive relocalization of gRNAs from a diffuse
487 cytoplasmic distribution to perinuclear membranes including, apparently, the nuclear envelope
488 itself (Fig 7A, Src+Rev condition, and S5 Video). Consistent with the time lapse imaging
489 presented in Fig 4B, we observed notable accumulations of GagFP at or near the perinuclear
490 sites (Fig 7A, compare blue panels for NLS+Rev and Src+Rev conditions). Moreover, thin
491 section electron microscopy on HEK293T cells transfected with WT-MSL and MS2-YFP
492 targeting constructs confirmed a high frequency of intracellular VLP assembly events for the
493 Src-MS2-YFP condition relative to the MS2-YFP-NLS control (50% of particles detected in
494 association with intracellular vesicles, Fig 7B and quantification in 7C). Thus, gRNA-directed
495 Gag trafficking to the “wrong” cellular membranes was likely to explain the bulk of the virus
496 particle release defect observed for the Src-MS2-YFP RNA tether. Interestingly, Lifeact-MS2-
497 YFP clearly did not abolish Gag’s trafficking to the PM (Figs 7A and S6 Video). However, we
498 observed a large number of partially budding structures at the cell surface for this condition
499 (defined as electron dense shells less than 75% complete) (Figs 7B and 7C). Thus, Gag
500 tethered to actin filaments through its mRNA may be sufficient to confer an assembly defect.
501 Taken together, these high resolution imaging strategies provided further confirmation that
502 redirecting *gag* mRNAs to aberrant sites in the cytoplasm can markedly affect Gag subcellular
503 distribution and reduce virus particle output.

504

505 **The *gag-pol* mRNA's capacity to influence Gag trafficking maps to both Psi and the RRE.**
506 That *gag* mRNA trafficking influences the subcellular distribution of its protein product is
507 consistent with a model wherein localized translation allows gRNAs to help compartmentalize
508 Gag to the bud site. gRNAs encode two well-characterized *cis*-acting trafficking elements, Psi
509 encoded within the 5'UTR is bound by Gag to facilitate gRNA encapsidation [22,33] and the
510 RRE that is essential for the nuclear export of gRNAs and other intron-retaining mRNAs [57,58]
511 (e.g., see Fig 8A). We compared the effects of MS2 targeting proteins at relatively low
512 MS2:gRNA plasmid ratios (1:17) on WT *gag* mRNAs, a version mutated to no longer encode Psi
513 (dPsi.GagFP-MSL-RRE), and a version that retained Psi but was rendered Rev-independent by
514 replacing the RRE with four copies of the constitutive transport element (CTE) derived from
515 Mason-Pfizer monkey virus that is well known to direct mRNA nuclear export to the NXF1/NXT1
516 pathway (depicted in Fig 8A) [77,101,102]. To our surprise, neither Src-MS2-YFP nor Lifeact-
517 MS2-YFP had a negative effect on Gag derived from the dPsi mutant transcript (compare Fig
518 8B to 8C), and exerted only mild effects for the CTE condition (Fig 8D).

519

520 **Fig 8. The HIV-1 *gag-pol* mRNA's capacity to regulate Gag trafficking maps to both**
521 **Psi and the RRE.** (A) Cartoon depiction of constructs used in these studies. 4xCTE =
522 four copies of the constitutive transport element from Mason-Pfizer monkey virus. (B-E)
523 HEK293T cells were transfected with 100ng MS2-YFP targeting constructs as indicated
524 and 1700ng of GagFP-MSL-RRE and 200ng pRev (B), 1700ng dPsi.GagFP-MSL-RRE
525 and 200ng pRev (C), 1700ng GagFP-MSL-CTE and 200ng empty vector (D), or 1700ng
526 RevInd GagFP-MSL and 200ng empty vector (E). VLPs and cell lysates were
527 immunoblotted for Gag and HSP90. Bar graphs show release factor relative to MS2-
528 YFP-NLS. Error bars represent standard deviation from the mean of three independent
529 experiments. The asterisks (*) indicate GagFP release factor is significantly different for

530 comparisons indicated by black bars (two-tailed Student's t-test, p=0.018 Src & 0.047
531 Lifeact). (F) Cartoon depiction of RevInd GagFP constructs used in (G). (G) HEK293T
532 cells were transfected with 100ng MS2-YFP targeting constructs as indicated, 1700ng of
533 RevInd GagFP constructs as indicated, and either 200ng empty vector or pRev as
534 indicated and immunoblotted for Gag and HSP90.

535

536 We also tested a dual Psi- and RRE-minus condition, using a transcript encoding codon-
537 optimized, RevInd GagFP (as for Fig 1A) but augmented to carry the 24xMSL cassette in the
538 3'UTR (depicted in Fig 8A). Interestingly, both Src-MS2-YFP and Lifeact-MS2-YFP actually
539 enhanced VLP production for Gag derived from these transcripts (Fig 8E and 8G, lanes 1-6).
540 Genetic manipulation of this construct allowed us to test the sufficiency of either RNA element
541 (Psi and/or RRE) to affect Gag trafficking. Gag derived from RevInd GagFP-MSL constructs
542 modified to bear the 5'UTR region encompassing Psi (RevInd Psi-GagFP-MSL, shown in Fig
543 8F) became highly sensitive to Src-MS2-YFP and LifeAct-MS2-YFP expression both in terms of
544 cytoplasmic abundance of Gag and net VLP production (Fig 8G, compare lanes 7-9 to 10-12).
545 Remarkably, Gag derived from RevInd transcripts modified to bear the RRE (RevInd GagFP-
546 MSL-RRE, shown in Fig 8F) also became sensitive to the Src-MS2-YFP targeting protein, but
547 only when expressed in the presence of Rev (Fig 8G, compare lanes 13-15 to 16-18).
548 Therefore, either Psi or the RRE (in the presence of Rev) structures were sufficient for Gag
549 synthesis and/or assembly to be affected by targeting mRNAs to non-PM locations.

550

551 **DISCUSSION**

552 For retroviruses, gRNA nucleocytoplasmic transport is a tightly regulated process ensuring
553 robust late gene expression and efficient genome encapsidation during virion assembly. Herein
554 we provide, to our knowledge, the first direct evidence that gRNA subcellular distribution
555 represents a core determinant of the HIV-1 virion assembly pathway. We initially hypothesized
556 that increasing the net abundance of PM-proximal gRNAs would stimulate virus particle
557 assembly, according to the assumption that gRNAs encode one or more signals relevant to the
558 nucleation of the assembly event at the PM [13,32,41]. However, increasing levels of “Gag-
559 minus” 1ACG-gRNAs in *trans* had little to no effect on assembly either at high (Fig 1) or low (Fig
560 2) levels of GagFP. In fact, 1ACG-gRNAs arrested GagFP in cytoplasmic granules in our stable
561 “low” GagFP cell line, suggesting that a suboptimal Gag-gRNA stoichiometry is detrimental to
562 the formation and transit of gRNP trafficking complexes. Efforts to bias gRNP trafficking to the
563 PM using our MS2-based RNA tethering strategy were also not beneficial to assembly, but
564 instead inhibited virus particle production for Gag derived from gRNAs as well as *Psi*- or
565 Rev/RRE-bearing *gag* mRNAs (Figs 3-8). Time resolved imaging confirmed striking changes to
566 Gag subcellular distribution in living cells (Figs 5B and 6C), and single-molecule FISH coupled
567 to super-resolution microscopy in fixed cells clearly demonstrated that both the Src-MS2-YFP
568 and Lifeact-MS2-YFP proteins markedly altered the distribution of MSL-gRNAs and Gag away
569 from their native, “diffuse” cytoplasmic pattern to accumulate preferentially at subcellular
570 membranes or in association with F-actin, respectively (Fig 7A and S5 Video and S6 Video).

571 Although artificial, the MS2 tethering strategy provides for comparative measurements of
572 mRNA trafficking, translation, and Gag function in single cells, thus providing useful insights
573 relevant to the native assembly pathway. That mRNA-linked effects on Gag trafficking and
574 assembly were only observed for gRNAs or *gag-pol* mRNAs competent for Gag synthesis (Fig
575 4D) bearing either Psi or the RRE *cis*-acting structural elements (Fig 8) suggests a *cis*-biased
576 model for assembly wherein coordination of gRNA nuclear export, gRNA stability in the

577 cytoplasm, localized translation, and compartmentalized Gag-gRNA interactions regulate Gag's
578 assembly efficiency at the PM (working model presented in Fig 9). Consistent with a model for
579 localized translation, we have detected ribosomal proteins (e.g., RPL9-YFP) at or near
580 Gag/gRNA complexes both at the PM and at "re-targeted" vesicular and F-actin locations (Fig
581 9B). However, additional work is necessary to directly assess if these sites are truly active for
582 Gag translation and, if so, for how long.

583

584 **Fig 9. Right place, right time model for HIV-1 gRNA trafficking, Gag translation,**
585 **and virion assembly.** (A) HIV-1 gRNAs (red line) are exported from the nucleus via the
586 RRE/Rev/CRM1 pathway. Once in the cytoplasm, the HIV-1 gRNA are translated
587 (purple ribosomes) to yield some amount of the Gag polyprotein. We suggest that these
588 HIV-1 gRNAs (likely bound by a small amount of Gag, possibly a Gag dimer) freely
589 diffuse toward the PM where gRNA dimerization, further Gag translation, high-order
590 Gag multimerization, increased Gag-gRNA interactions, and virion assembly occur. If
591 these gRNAs are redirected to different subcellular locales ("Bad Neighborhoods") such
592 as intracellular vesicles (tan circles) or actin filaments (black chalk lines), Gag trafficking
593 is similarly redirected and virion assembly is subsequently inhibited. In our system,
594 using Src-MS2-YFP and Lifeact-MS2-YFP we have observed this redirection and
595 inhibition that occurs via *cis* interactions between Gag and gRNA and is RRE/Rev-
596 dependent. It is possible that gRNAs exported through the CRM1 pathway are marked,
597 restructured, or coated by some as of yet unknown "missing link" indicated here by pink
598 factor X. (B) Consistent with our model, ribosomal proteins (RPL9-YFP, yellow) were
599 observed at PM-adjacent punctae colocalizing with Gag-CFP (cyan), and MS2-tagged
600 gRNA (MS2-mCherry-NLS, magenta) in transfected HeLa cells. RPL9-YFP also
601 colocalized with Gag-CFP in the presence of Src-MS2-mCherry and Lifeact-MS2-
602 mCherry. Scale bars represent 10 μ m in full images and 2 μ m in regions of interest

603 (ROI). White boxes outline the ROIs. White arrows indicate sites where MS2-mCherry,
604 RPL9-YFP and Gag-CFP have accumulated. White pixels occur where three colors
605 overlap.

606
607 Compartmentalization of Gag synthesis and gRNA binding in space and time may explain
608 why gRNA encapsidation is so highly efficient despite Gag's ready capacity to bind to non-viral
609 RNAs and assemble non-infectious particles even in the absence of gRNA binding. At early time
610 points, we speculate that Gag and gRNAs are maintained in the cytoplasm at low abundance in
611 order to avoid nucleating the formation of cytoplasmic granules that may represent kinetically
612 trapped ("dead-end") complexes (Fig 2D and Movie 3). Low-order Gag-gRNA interactions may
613 control how much Gag is translated [103], and diffusion in the cytoplasmic fluid will ultimately
614 allow assembly intermediates to achieve close proximity to the PM [36,37,104]. That mis-
615 targeted gRNAs are capable of "dragging" Gag to (and/or translate Gag at) aberrant locales
616 and, in some instances, perturb the efficiency of budding (note partial capsids for the Lifeact
617 condition shown in Fig 7B) suggests a strong physical interaction. In this context, Psi's role
618 while bound by Gag likely explains why this element is both necessary and sufficient to allow for
619 MS2-mediated perturbation of Gag distribution (Fig 8). That the RRE (with Rev) has a similar
620 but less potent effect (Fig 8G) is more confounding. However, Gag was recently shown by
621 Bieniasz and colleagues to bind the RRE with specificity [53] and Rev and/or the RRE have
622 previously been shown to play roles in gRNA encapsidation [105,56,55,106].

623 We emphasize that under native conditions, it is almost certain that Gag plays the dominant
624 role in defining the preferred site of assembly by tethering gRNAs to the PM through the activity
625 of its N-terminal Matrix domain [13,41]. However, our model does not rule out potential
626 contributions from one or more cellular RNA binding proteins that, like the MS2-targeting
627 proteins, modulate transient Gag/gRNA interactions with membranes or other cellular
628 machineries (Fig 9, factor "X"). The coating/coding of mRNAs with cellular factors influences

629 their size, hydrophobicity, fluid phase, localization, and utilization [107,108], and a plethora of
630 RNA binding proteins (ABCE1, DDX3, hnRNP isoforms, RHA, Staufen, SR proteins, among
631 others) have already been implicated in the formation and maintenance of the HIV-1 Gag/gRNA
632 trafficking granules [109,110,34,111,39,112,35,77,80,113–117]. We also note that unique
633 spatiotemporal features of the Rev-regulated nuclear export pathway (e.g., punctuated, rapid
634 increases to free Gag/gRNP abundance in the cytoplasm, or diffusion in itself; Fig 4C) should
635 influence the efficiency of the assembly pathway [82]. In this context, deficiencies to one or
636 more co-factors tied to Rev-dependent trafficking dynamics or downstream cytoplasmic events
637 may underpin previously observed changes to Gag assembly competency when its message is
638 rendered Rev/RRE-independent [35,77,78,80,81].

639 In general, large vRNP complexes trafficking through the cytoplasm prior to utilization
640 draw parallels with cellular mRNA molecules that are translated locally [118–120]. Perturbations
641 to the ability of gRNAs to freely diffuse through a dense cytoplasmic fluid may have negative
642 consequences for localized translation and subsequent virion assembly. To date, there are no
643 FDA-approved antiviral approaches that perturb HIV-1 gene expression or the stages upstream
644 of immature virus particle assembly, although several strategies have been pursued including
645 disruption of Tat or Rev function, virus-specific miRNAs, and trans-dominant proteins [reviewed
646 in [121]]. Indeed, the regulation RNP complex formation is of increasing interest in other
647 diseases where malformation of aberrant RNA/protein aggregates or disruption of normal fluid
648 phase dynamics are evident [4,122,107,123,124]. Our results suggest that strategies to
649 successfully disrupt viral mRNA subcellular distribution, gRNP complex formation, or fluid phase
650 transitions using small molecule inhibitors or alternative strategies (e.g., provision of *trans*-acting
651 synthetic “restriction” factors via gene therapy) merit further exploration.

652 **MATERIALS AND METHODS**

653

654 **Cell culture, plasmids, and stable cell lines.** Human HeLa and HEK293T cell lines (obtained
655 from the ATCC) were cultured in DMEM (Sigma-Aldrich, Madison, WI, USA) supplemented with
656 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin-streptomycin. Full-length parental
657 WT HIV-1 proviral plasmids were derived from the pNL4-3 molecular clone [125] bearing
658 inactivating mutations in *env*, *vpr*, and expressing a Firefly Luciferase reporter from the *nef*
659 reading frame (E-R-/Luc) [126]. 24 copies of the MS2 bacteriophage RNA stem loop (MSL, a
660 kind gift of Robert Singer, Albert Einstein University, New York, NY) were engineered into the
661 full-length pNL4-3 derived constructs as previously described [127] thereby generating pNL4-
662 3/E-R-Luc-24xMSL (WT-MSL). Replacing Firefly Luciferase reporter E-R-/Luc with mCherry in
663 the *nef* reading frame using *NotI* and *Xhol* cut sites generated HIV-1/mCherry virus.
664 Subgenomic GagFP-MSL HIV-1 expression plasmids encoded Gag fused to mTagBFP2 [128],
665 ECFP, or mCherry upstream of the MSL cassette and inserted into surrogate, subgenomic HIV-
666 1 gRNA plasmid Gag-Pol-Vif-RRE or Gag-Pol-Vif-4xCTE [113,82]. Rev-independent (RevInd)
667 Gag-fluorescent protein (FP) plasmids were derived from a plasmid encoding partially codon-
668 optimized Gag-GFP (a gift of Marilyn Resh, Memorial Sloan Kettering Cancer Center, New
669 York, NY, USA) [85,86]. The FP reading frame was fused in frame to RevInd Gag cDNAs using
670 overlapping PCR and inserted into pcDNA3.1 using *NheI* and *Xhol* cut sites. In all instances,
671 mutants of full-length HIV-1 and RevInd Gag plasmids were generated using overlapping PCR.
672 pRevInd-GagFP-MSL was generated by inserting the 24xMSL cassette into pRevInd-GagFP
673 using *BsrGI* cut sites, Psi-RevInd-MSL GagFP by inserting HIV-1_{NL4-3} 5'UTR nts 1-336 into *NheI*
674 and *SacII* sites in pRevInd-GagFP-MSL, and pRevInd-GagFP-MSL-RRE by transferring the
675 RevInd-GagFP-MSL sequence into a pcDNA-RRE backbone plasmid using *SacI* and *EcoRI*
676 sites. mTagBFP2 was a gift from Michael Davidson (Addgene plasmid # 55302). pRev has been
677 described [77]. MS2-YFP targeting constructs were generated by amplifying cDNAs from pMS2-

678 YFP (also a gift of Rob Singer, Albert Einstein University, New York, NY, USA) [129] using
679 overlapping PCR prior to subcloning into a pcDNA3.1 backbone using *Hind*III and *Xhol* cut sites.
680 MS2-mCherry-NLS was generated by overlapping PCR to replace YFP with the mCherry
681 reading frame and subcloned into the *nef* position of the full-length pNL4-3/E-R-Luc-24xMSL
682 HIV constructs using *Not*I and *Xhol* cut sites. MS2-YFP targeting constructs included an amino-
683 terminal membrane targeting signal derived from the Src kinase (MGSSKSKPKD) [87], amino-
684 terminal Lifeact actin-targeting domain (MGVADLIKKFESISKEE) [100], and/or a carboxy-
685 terminal nuclear localization signal (NLS; PKKKRKV) derived from the SV40 Large T antigen
686 [130]. pRPL9-YFP was subcloned from human cDNA using overlapping PCR. HeLa.MS2-YFP,
687 HeLa.Gag-CFP, and HEK293T.Gag-CFP stable cell lines were generated as previously
688 described [131–133,82]. Briefly, MS2-YFP or Gag-CFP reading frames were subcloned into a
689 MIGR1-derived retroviral vector (pCMS28) upstream of sequence encoding an internal
690 ribosomal entry site (IRES) regulating a second reading frame encoding Puromycin-N-
691 acetyltransferase [131]. High performance clones were selected by limiting dilution in 2 μ g/mL
692 puromycin.

693

694 **Retroviral assembly assays.** Cells at 30–40% confluence were transfected with 2 μ g DNA in six
695 well dishes using polyethylenimine (PEI; #23966, Polysciences Inc, Warrington, PA, USA).
696 pcDNA3.1 or pBlueScript were used as empty vector controls. Culture media were replaced at
697 24 hours post-transfection and cell lysates and supernatants were harvested for immunoblot
698 analysis at 48 hours as previously described [80]. Briefly, 1mL of harvested culture supernatant
699 was filtered, underlaid with 20% sucrose (w/v) in PBS, subjected to centrifugation at >21,000g
700 for two hours at 4°C, and viral pellets were resuspended in 35 μ L dissociation buffer (62.5 mM
701 Tris-HCl, pH 6.8, 10% glycerol, 2% sodium dodecyl sulfate [SDS], 5% β -mercaptoethanol). Cells
702 were harvested in 500 μ L radioimmunoprecipitation assay (RIPA) buffer (10 mM Tris-HCl, pH
703 7.5, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Triton X-100, 1% sodium deoxycholate), lysed

704 by passage through a 26G needle, subjected to centrifugation at 1,500g for 20 minutes at 4°C,
705 and combined 1:1 with 2X dissociation buffer. Proteins were resolved by sodium dodecyl
706 sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose
707 membranes. Gag was detected using a mouse monoclonal antibody recognizing HIV-1
708 capsid/p24 (183-H12-5C; 1:1000 dilution) from Dr. Bruce Chesebro and obtained from the NIH
709 AIDS Research and Reference Reagent Program (Bethesda, MD, USA) [134] and anti-mouse
710 secondary antibodies conjugated to an infrared fluorophore (IRDye680LT, 1:10000 dilution, Li-
711 Cor Biosciences, Lincoln, NE, USA) for quantitative immunoblotting. As a loading control, heat
712 shock protein 90A/B (HSP90) was detected using a rabbit polyclonal antibody (H-114, 1:2500
713 dilution, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and anti-rabbit secondary antibodies
714 conjugated to an infrared fluorophore (IRDye800CW, 1:7500 dilution, Li-Cor Biosciences).
715 Where indicated, the protease inhibitor saquinavir (NIH AIDS Research and Reference Reagent
716 program, Bethesda, MD) was added at 24 hours post-transfection. Typically, retroviral assembly
717 assays were performed with transfections and harvesting occurring in one week while
718 processing and immunoblotting occurred in the following week. To ensure reproducibility, most
719 results were obtained from three biological replicates as defined as cells plated in six well
720 dishes transfected on separate days (*i.e.* replicate 1 was transfected on a separate day from
721 replicate 2).

722

723 **Microscopy and fluorescence in situ hybridization (FISH).** Cells were plated in 24-well
724 glass-bottom dishes (Mattek Corporation, Ashland, MA, USA) or 8-well microslides (IBIDI,
725 Madison, WI, USA) and transfected using PEI. Transfection mixes contained 1µg (24-well) or
726 333ng (IBIDI) plasmid DNA, respectively. Deconvolution fixed-cell imaging experiments were
727 performed on a Nikon Ti-Eclipse inverted wide-field microscope (Nikon Corporation, Melville,
728 NY, USA) using a 100x Plan Apo oil objective lens (numerical aperture NA 1.45). These cells
729 were fixed 24-32 hours post-transfection in 4% paraformaldehyde in PBS. Live cell imaging

730 experiments were also performed on a Nikon Ti-Eclipse inverted wide-field microscope using a
731 20x Plan Apo objective lens (NA 0.75) with images acquired typically every 60 minutes over a
732 time course of 16-36 hours. Images were acquired using an ORCA-Flash4.0 CMOS camera
733 (Hamamatsu Photonics, Skokie, IL, USA) and using the following excitation/emission filter sets
734 (nanometer ranges): 430/470 (CFP), 510/535 (YFP), 585/610 (mCherry).

735 For fixed cell experiments using smFISH to visualize HIV-1 gRNA, cells were plated and
736 transfected as above. At ~30 hours post-transfection, cells were washed, fixed in 4%
737 formaldehyde, and permeabilized in 70% ethanol for at least four hours at 4°C. Custom Stellaris
738 FISH probes were designed to recognize NL4-3 HIV-1 *gag-pol* reading frame nucleotides 386-
739 4614 by utilizing Stellaris RNA FISH Probe Designer (Biosearch Technologies, Inc., Petaluma,
740 CA, USA) available online at www.biosearchtech.com/stellarisdesigner (version 4.1). The
741 samples were hybridized with the Gag/GagPol Stellaris RNA Fish Probe set (48 probes) labeled
742 with CAL Fluor Red 610 dye (Biosearch Technologies, Inc.), following manufacturer's
743 instructions available online at www.biosearchtech.com/stellarisprotocols. Structured
744 illumination microscopy (SIM) was performed on a Nikon N-SIM microscope using a 100x TIRF
745 oil objective lens (NA 1.49). Images were acquired using an Andor iXon Ultra 897 EMCCD
746 (Andor Technology, Belfast, United Kingdom) and Nikon NIS Elements in 3D-SIM mode using
747 the following excitation laser wavelengths (nanometer ranges): 408 (mTagBFP2), 488 (YFP),
748 and 561 (CAL Fluor Red 610). Widefield epifluorescent microscopy images were deconvolved
749 using NIS Elements. All images were processed and analyzed using FIJI/ImageJ2 [135].
750 Results were obtained from three biological replicates as defined as cells plated in IBIDI slides
751 or 24-well dishes transfected on separate days (*i.e.* replicate 1 was transfected on a separate
752 day from replicate 2).

753

754 **Thin section electron microscopy.** For thin section EM, HEK293T cells were cultured in six-
755 well dishes and transfected as described above and processed as previously described [136].

756 At 48 hours post-transfection, cells were fixed in a solution of 2.5% glutaraldehyde, 2.0%
757 paraformaldehyde in 0.1M sodium phosphate buffer (PBS), pH 7.4 for ~2 hours at room
758 temperature. Samples were rinsed five times for five minutes each in 0.1M PBS. Rinsed cells
759 were post-fixed in 1% osmium tetroxide, 1% potassium ferrocyanide in PBS for 1 hour at room
760 temperature. Following osmium tetroxide post-fixation, the samples were rinsed in PBS, as
761 before, and rinsed three times in distilled water for five minutes to clear phosphates and
762 embedded using increasing concentrations (10mL A/M, 10mL B, 300µL C, 100µL D
763 components) of Durcupan ACM resin (Fluka AG, Switzerland) at 60°C. Cells were pelleted and
764 sectioned using a Leica EM UC6 ultramicrotome with 100nm sections collected on 300 mesh
765 copper thin-bar grids, and contrasted with Reynolds lead citrate and 8% uranyl acetate in 50%
766 ethanol. Sections were observed with a Phillips CM120 transmission electron microscope, and
767 images were collected with a MegaView III (Olympus-SIS, Lakewood, CO, USA) side-mounted
768 digital camera. All images were processed and analyzed using FIJI/ImageJ2 [135].
769
770

771 **ACKNOWLEDGEMENTS**

772 We gratefully acknowledge Randall Massey and the University of Wisconsin SMPH Electron
773 Microscopy Facility for assistance with processing and imaging EM. We gratefully acknowledge
774 Elle Kielar Grevstad and the University of Wisconsin Biochemistry Optical Core for assistance
775 with structured illumination microscopy. The following reagents were obtained through the NIH
776 AIDS Reagent Program, Division of AIDS, NIAID, NIH: HIV-1 p24 Hybridoma (183-H12-5C)
777 (from Dr. Bruce Chesebro) and Saquinavir. We wish to thank Bill Sugden, Sam Butcher, Halena
778 VanDeusen, Ed Evans, and Bayleigh Benner for their assistance in reading this manuscript and
779 helpful intellectual discussions.

780

781 REFERENCES

782

783 1. Giorgi C, Moore MJ. The nuclear nurture and cytoplasmic nature of localized mRNPs.
784 Semin Cell Dev Biol. 2007;18: 186–193. doi:10.1016/j.semcd.2007.01.002

785 2. Donnelly CJ, Fainzilber M, Twiss JL. Subcellular communication through RNA transport
786 and localized protein synthesis. Traffic Cph Den. 2010;11: 1498–1505.
787 doi:10.1111/j.1600-0854.2010.01118.x

788 3. Buxbaum AR, Haimovich G, Singer RH. In the right place at the right time: visualizing and
789 understanding mRNA localization. Nat Rev Mol Cell Biol. 2015;16: 95–109.
790 doi:10.1038/nrm3918

791 4. Beckham CJ, Parker R. P bodies, stress granules, and viral life cycles. Cell Host Microbe.
792 2008;3: 206–212. doi:10.1016/j.chom.2008.03.004

793 5. Miller S, Krijnse-Locker J. Modification of intracellular membrane structures for virus
794 replication. Nat Rev Microbiol. 2008;6: 363–374. doi:10.1038/nrmicro1890

795 6. den Boon JA, Ahlquist P. Organelle-like membrane compartmentalization of positive-
796 strand RNA virus replication factories. Annu Rev Microbiol. 2010;64: 241–256.
797 doi:10.1146/annurev.micro.112408.134012

798 7. Sundquist WI, Kräusslich H-G. HIV-1 assembly, budding, and maturation. Cold Spring
799 Harb Perspect Med. 2012;2: a006924. doi:10.1101/cshperspect.a006924

800 8. Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015;13: 484–
801 496. doi:10.1038/nrmicro3490

802 9. Spearman P, Wang JJ, Vander Heyden N, Ratner L. Identification of human
803 immunodeficiency virus type 1 Gag protein domains essential to membrane binding and
804 particle assembly. *J Virol.* 1994;68: 3232–3242.

805 10. Zhou W, Parent LJ, Wills JW, Resh MD. Identification of a membrane-binding domain
806 within the amino-terminal region of human immunodeficiency virus type 1 Gag protein
807 which interacts with acidic phospholipids. *J Virol.* 1994;68: 2556–2569.

808 11. Campbell S, Rein A. In vitro assembly properties of human immunodeficiency virus type 1
809 Gag protein lacking the p6 domain. *J Virol.* 1999;73: 2270–2279.

810 12. Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Entropic switch
811 regulates myristate exposure in the HIV-1 matrix protein. *Proc Natl Acad Sci U S A.*
812 2004;101: 517–522. doi:10.1073/pnas.0305665101

813 13. Jouvenet N, Simon SM, Bieniasz PD. Imaging the interaction of HIV-1 genomes and Gag
814 during assembly of individual viral particles. *Proc Natl Acad Sci U S A.* 2009;106: 19114–
815 19119. doi:10.1073/pnas.0907364106

816 14. Ono A, Abian SD, Lockett SJ, Nagashima K, Freed EO. Phosphatidylinositol (4,5)
817 bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. *Proc Natl Acad
818 Sci U S A.* 2004;101: 14889–14894. doi:10.1073/pnas.0405596101

819 15. Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting
820 HIV-1 Gag proteins to the plasma membrane for virus assembly. *Proc Natl Acad Sci U S
821 A.* 2006;103: 11364–11369. doi:10.1073/pnas.0602818103

822 16. Ono A. HIV-1 Assembly at the Plasma Membrane: Gag Trafficking and Localization.
823 *Future Virol.* 2009;4: 241–257. doi:10.2217/fvl.09.4

824 17. Fuller SD, Wilk T, Gowen BE, Kräusslich HG, Vogt VM. Cryo-electron microscopy reveals
825 ordered domains in the immature HIV-1 particle. *Curr Biol CB*. 1997;7: 729–738.

826 18. Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, et al. Electron
827 cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag
828 shells. *EMBO J*. 2007;26: 2218–2226. doi:10.1038/sj.emboj.7601664

829 19. Briggs J a. G, Riches JD, Glass B, Bartonova V, Zanetti G, Kräusslich H-G. Structure and
830 assembly of immature HIV. *Proc Natl Acad Sci U S A*. 2009;106: 11090–11095.
831 doi:10.1073/pnas.0903535106

832 20. Berkowitz RD, Ohagen A, Höglund S, Goff SP. Retroviral nucleocapsid domains mediate
833 the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA
834 packaging in vivo. *J Virol*. 1995;69: 6445–6456.

835 21. Zhang Y, Barklis E. Nucleocapsid protein effects on the specificity of retrovirus RNA
836 encapsidation. *J Virol*. 1995;69: 5716–5722.

837 22. D'Souza V, Summers MF. How retroviruses select their genomes. *Nat Rev Microbiol*.
838 2005;3: 643–655. doi:10.1038/nrmicro1210

839 23. Rulli SJ, Hibbert CS, Mirro J, Pederson T, Biswal S, Rein A. Selective and nonselective
840 packaging of cellular RNAs in retrovirus particles. *J Virol*. 2007;81: 6623–6631.
841 doi:10.1128/JVI.02833-06

842 24. Eckwahl MJ, Arnion H, Kharytonchyk S, Zang T, Bieniasz PD, Telesnitsky A, et al.
843 Analysis of the human immunodeficiency virus-1 RNA packageome. *RNA N Y N*.
844 2016;22: 1228–1238. doi:10.1261/rna.057299.116

845 25. VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, et al. Tsg101, a
846 homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1
847 Pr55(Gag). *Proc Natl Acad Sci U S A.* 2001;98: 7724–7729. doi:10.1073/pnas.131059198

848 26. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, et al.
849 Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. *Cell.*
850 2001;107: 55–65.

851 27. Demirov DG, Ono A, Orenstein JM, Freed EO. Overexpression of the N-terminal domain
852 of TSG101 inhibits HIV-1 budding by blocking late domain function. *Proc Natl Acad Sci U*
853 *S A.* 2002;99: 955–960. doi:10.1073/pnas.032511899

854 28. Martin-Serrano J, Zang T, Bieniasz PD. HIV-1 and Ebola virus encode small peptide
855 motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. *Nat Med.*
856 2001;7: 1313–1319. doi:10.1038/nm1201-1313

857 29. Dorman N, Lever A. Comparison of viral genomic RNA sorting mechanisms in human
858 immunodeficiency virus type 1 (HIV-1), HIV-2, and Moloney murine leukemia virus. *J*
859 *Virol.* 2000;74: 11413–11417.

860 30. Butsch M, Boris-Lawrie K. Destiny of unspliced retroviral RNA: ribosome and/or virion? *J*
861 *Virol.* 2002;76: 3089–3094.

862 31. Johnson SF, Telesnitsky A. Retroviral RNA dimerization and packaging: the what, how,
863 when, where, and why. *PLoS Pathog.* 2010;6: e1001007.
864 doi:10.1371/journal.ppat.1001007

865 32. Jouvenet N, Lainé S, Pessel-Vivares L, Mougel M. Cell biology of retroviral RNA
866 packaging. *RNA Biol.* 2011;8: 572–580. doi:10.4161/rna.8.4.16030

867 33. Kuzembayeva M, Dilley K, Sardo L, Hu W-S. Life of psi: how full-length HIV-1 RNAs
868 become packaged genomes in the viral particles. *Virology*. 2014;454–455: 362–370.
869 doi:10.1016/j.virol.2014.01.019

870 34. Cochrane AW, McNally MT, Mouland AJ. The retrovirus RNA trafficking granule: from
871 birth to maturity. *Retrovirology*. 2006;3: 18. doi:10.1186/1742-4690-3-18

872 35. Swanson CM, Malim MH. Retrovirus RNA trafficking: from chromatin to invasive
873 genomes. *Traffic Cph Den*. 2006;7: 1440–1450. doi:10.1111/j.1600-0854.2006.00488.x

874 36. Kutluay SB, Bieniasz PD. Analysis of the initiating events in HIV-1 particle assembly and
875 genome packaging. *PLoS Pathog*. 2010;6: e1001200. doi:10.1371/journal.ppat.1001200

876 37. Robinson BA, Reed JC, Geary CD, Swain JV, Lingappa JR. A temporospatial map that
877 defines specific steps at which critical surfaces in the Gag MA and CA domains act during
878 immature HIV-1 capsid assembly in cells. *J Virol*. 2014;88: 5718–5741.
879 doi:10.1128/JVI.03609-13

880 38. Lingappa JR, Reed JC, Tanaka M, Chutiraka K, Robinson BA. How HIV-1 Gag
881 assembles in cells: Putting together pieces of the puzzle. *Virus Res*. 2014;193: 89–107.
882 doi:10.1016/j.virusres.2014.07.001

883 39. Reed JC, Molter B, Geary CD, McNevin J, McElrath J, Giri S, et al. HIV-1 Gag co-opts a
884 cellular complex containing DDX6, a helicase that facilitates capsid assembly. *J Cell Biol*.
885 2012;198: 439–456. doi:10.1083/jcb.201111012

886 40. Chen J, Grunwald D, Sardo L, Galli A, Plisov S, Nikolaitchik OA, et al. Cytoplasmic HIV-1
887 RNA is mainly transported by diffusion in the presence or absence of Gag protein. *Proc
888 Natl Acad Sci U S A*. 2014;111: E5205-5213. doi:10.1073/pnas.1413169111

889 41. Sardo L, Hatch SC, Chen J, Nikolaitchik O, Burdick RC, Chen D, et al. Dynamics of HIV-1
890 RNA Near the Plasma Membrane during Virus Assembly. *J Virol.* 2015;89: 10832–10840.
891 doi:10.1128/JVI.01146-15

892 42. Perez-Caballero D, Hatzioannou T, Martin-Serrano J, Bieniasz PD. Human
893 immunodeficiency virus type 1 matrix inhibits and confers cooperativity on gag precursor-
894 membrane interactions. *J Virol.* 2004;78: 9560–9563. doi:10.1128/JVI.78.17.9560-
895 9563.2004

896 43. Hatzioannou T, Martin-Serrano J, Zang T, Bieniasz PD. Matrix-induced inhibition of
897 membrane binding contributes to human immunodeficiency virus type 1 particle assembly
898 defects in murine cells. *J Virol.* 2005;79: 15586–15589. doi:10.1128/JVI.79.24.15586-
899 15589.2005

900 44. Yadav SS, Wilson SJ, Bieniasz PD. A facile quantitative assay for viral particle genesis
901 reveals cooperativity in virion assembly and saturation of an antiviral protein. *Virology.*
902 2012;429: 155–162. doi:10.1016/j.virol.2012.04.008

903 45. Paillart JC, Göttlinger HG. Opposing effects of human immunodeficiency virus type 1
904 matrix mutations support a myristyl switch model of gag membrane targeting. *J Virol.*
905 1999;73: 2604–2612.

906 46. Hermida-Matsumoto L, Resh MD. Human immunodeficiency virus type 1 protease
907 triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA. *J*
908 *Virol.* 1999;73: 1902–1908.

909 47. Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE, Coffin JM, et al. High efficiency
910 of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion

911 analysis. *Proc Natl Acad Sci U S A.* 2009;106: 13535–13540.

912 doi:10.1073/pnas.0906822106

913 48. Moore MD, Nikolaitchik OA, Chen J, Hammarskjöld M-L, Rekosh D, Hu W-S. Probing the
914 HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and
915 single virion analyses. *PLoS Pathog.* 2009;5: e1000627.
916 doi:10.1371/journal.ppat.1000627

917 49. Nikolaitchik OA, Dilley KA, Fu W, Gorelick RJ, Tai S-HS, Soheilian F, et al. Dimeric RNA
918 Recognition Regulates HIV-1 Genome Packaging. *PLoS Pathog.* 2013;9: e1003249.
919 doi:10.1371/journal.ppat.1003249

920 50. Houzet L, Paillart JC, Smagulova F, Maurel S, Morichaud Z, Marquet R, et al. HIV
921 controls the selective packaging of genomic, spliced viral and cellular RNAs into virions
922 through different mechanisms. *Nucleic Acids Res.* 2007;35: 2695–2704.
923 doi:10.1093/nar/gkm153

924 51. Lever A, Gottlinger H, Haseltine W, Sodroski J. Identification of a sequence required for
925 efficient packaging of human immunodeficiency virus type 1 RNA into virions. *J Virol.*
926 1989;63: 4085–4087.

927 52. Lu K, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome
928 packaging. *J Mol Biol.* 2011;410: 609–633. doi:10.1016/j.jmb.2011.04.029

929 53. Kutluay SB, Zang T, Blanco-Melo D, Powell C, Jannain D, Errando M, et al. Global
930 changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. *Cell.*
931 2014;159: 1096–1109. doi:10.1016/j.cell.2014.09.057

932 54. Keane SC, Heng X, Lu K, Kharytonchyk S, Ramakrishnan V, Carter G, et al. Structure of
933 the HIV-1 RNA packaging signal. *Science*. 2015;348: 917–921.
934 doi:10.1126/science.aaa9266

935 55. Cockrell AS, van Praag H, Santistevan N, Ma H, Kafri T. The HIV-1 Rev/RRE system is
936 required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA
937 into HIV-1 viral particles. *Retrovirology*. 2011;8: 51. doi:10.1186/1742-4690-8-51

938 56. Brandt S, Blissenbach M, Grewe B, Konietzny R, Grunwald T, Uberla K. Rev proteins of
939 human and simian immunodeficiency virus enhance RNA encapsidation. *PLoS Pathog.*
940 2007;3: e54. doi:10.1371/journal.ppat.0030054

941 57. Pollard VW, Malim MH. The HIV-1 Rev protein. *Annu Rev Microbiol*. 1998;52: 491–532.
942 doi:10.1146/annurev.micro.52.1.491

943 58. Fernandes J, Jayaraman B, Frankel A. The HIV-1 Rev response element. *RNA Biol*.
944 2012;9: 6–11. doi:10.4161/rna.9.1.18178

945 59. Rausch JW, Grice SFJL. HIV Rev Assembly on the Rev Response Element (RRE): A
946 Structural Perspective. *Viruses*. 2015;7: 3053–3075. doi:10.3390/v7062760

947 60. Ferrer M, Clerté C, Chamontin C, Basyuk E, Lainé S, Hottin J, et al. Imaging HIV-1 RNA
948 dimerization in cells by multicolor super-resolution and fluctuation microscopies. *Nucleic
949 Acids Res*. 2016; doi:10.1093/nar/gkw511

950 61. Chen J, Rahman SA, Nikolaitchik OA, Grunwald D, Sardo L, Burdick RC, et al. HIV-1
951 RNA genome dimerizes on the plasma membrane in the presence of Gag protein. *Proc
952 Natl Acad Sci U S A*. 2016;113: E201-208. doi:10.1073/pnas.1518572113

953 62. Ivanchenko S, Godinez WJ, Lampe M, Kräusslich H-G, Eils R, Rohr K, et al. Dynamics of
954 HIV-1 assembly and release. *PLoS Pathog.* 2009;5: e1000652.
955 doi:10.1371/journal.ppat.1000652

956 63. Ku P-I, Miller AK, Ballew J, Sandrin V, Adler FR, Saffarian S. Identification of Pauses
957 during Formation of HIV-1 Virus Like Particles. *Biophys J.* 2013;105: 2262–2272.
958 doi:10.1016/j.bpj.2013.09.047

959 64. Onafuwa-Nuga AA, Telesnitsky A, King SR. 7SL RNA, but not the 54-kd signal
960 recognition particle protein, is an abundant component of both infectious HIV-1 and
961 minimal virus-like particles. *RNA N Y N.* 2006;12: 542–546. doi:10.1261/rna.2306306

962 65. Didierlaurent L, Racine PJ, Houzet L, Chamontin C, Berkhout B, Mougel M. Role of HIV-1
963 RNA and protein determinants for the selective packaging of spliced and unspliced viral
964 RNA and host U6 and 7SL RNA in virus particles. *Nucleic Acids Res.* 2011;39: 8915–
965 8927. doi:10.1093/nar/gkr577

966 66. Chukkapalli V, Hogue IB, Boyko V, Hu W-S, Ono A. Interaction between the human
967 immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-
968 bisphosphate is essential for efficient gag membrane binding. *J Virol.* 2008;82: 2405–
969 2417. doi:10.1128/JVI.01614-07

970 67. Chukkapalli V, Oh SJ, Ono A. Opposing mechanisms involving RNA and lipids regulate
971 HIV-1 Gag membrane binding through the highly basic region of the matrix domain. *Proc
972 Natl Acad Sci U S A.* 2010;107: 1600–1605. doi:10.1073/pnas.0908661107

973 68. Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, et al. Assembly
974 and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-
975 infected insect cells. *Cell.* 1989;59: 103–112.

976 69. Smith AJ, Cho MI, Hammarskjöld ML, Rekosh D. Human immunodeficiency virus type 1
977 Pr55gag and Pr160gag-pol expressed from a simian virus 40 late replacement vector are
978 efficiently processed and assembled into viruslike particles. *J Virol.* 1990;64: 2743–2750.

979 70. Wills JW, Craven RC. Form, function, and use of retroviral gag proteins. *AIDS Lond Engl.*
980 1991;5: 639–654.

981 71. Zhang Y, Qian H, Love Z, Barklis E. Analysis of the assembly function of the human
982 immunodeficiency virus type 1 gag protein nucleocapsid domain. *J Virol.* 1998;72: 1782–
983 1789.

984 72. Accola MA, Strack B, Göttlinger HG. Efficient particle production by minimal Gag
985 constructs which retain the carboxy-terminal domain of human immunodeficiency virus
986 type 1 capsid-p2 and a late assembly domain. *J Virol.* 2000;74: 5395–5402.

987 73. Muriaux D, Costes S, Nagashima K, Mirro J, Cho E, Lockett S, et al. Role of murine
988 leukemia virus nucleocapsid protein in virus assembly. *J Virol.* 2004;78: 12378–12385.
989 doi:10.1128/JVI.78.22.12378-12385.2004

990 74. Patel N, Dykeman EC, Coutts RHA, Lomonosoff GP, Rowlands DJ, Phillips SEV, et al.
991 Revealing the density of encoded functions in a viral RNA. *Proc Natl Acad Sci U S A.*
992 2015;112: 2227–2232. doi:10.1073/pnas.1420812112

993 75. Rolfsson Ó, Middleton S, Manfield IW, White SJ, Fan B, Vaughan R, et al. Direct
994 Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2. *J Mol Biol.*
995 2016;428: 431–448. doi:10.1016/j.jmb.2015.11.014

996 76. Stockley PG, White SJ, Dykeman E, Manfield I, Rolfsson O, Patel N, et al. Bacteriophage
997 MS2 genomic RNA encodes an assembly instruction manual for its capsid.
998 Bacteriophage. 2016;6: e1157666. doi:10.1080/21597081.2016.1157666

999 77. Swanson CM, Puffer BA, Ahmad KM, Doms RW, Malim MH. Retroviral mRNA nuclear
1000 export elements regulate protein function and virion assembly. EMBO J. 2004;23: 2632–
1001 2640. doi:10.1038/sj.emboj.7600270

1002 78. Jin J, Sturgeon T, Chen C, Watkins SC, Weisz OA, Montelaro RC. Distinct intracellular
1003 trafficking of equine infectious anemia virus and human immunodeficiency virus type 1
1004 Gag during viral assembly and budding revealed by bimolecular fluorescence
1005 complementation assays. J Virol. 2007;81: 11226–11235. doi:10.1128/JVI.00431-07

1006 79. Jin J, Sturgeon T, Weisz OA, Mothes W, Montelaro RC. HIV-1 matrix dependent
1007 membrane targeting is regulated by Gag mRNA trafficking. PloS One. 2009;4: e6551.
1008 doi:10.1371/journal.pone.0006551

1009 80. Sherer NM, Swanson CM, Papaioannou S, Malim MH. Matrix mediates the functional link
1010 between human immunodeficiency virus type 1 RNA nuclear export elements and the
1011 assembly competency of Gag in murine cells. J Virol. 2009;83: 8525–8535.
1012 doi:10.1128/JVI.00699-09

1013 81. Diaz-Griffero F, Taube R, Muehlbauer SM, Brojatsch J. Efficient production of HIV-1 viral-
1014 like particles in mouse cells. Biochem Biophys Res Commun. 2008;368: 463–469.
1015 doi:10.1016/j.bbrc.2007.12.195

1016 82. Pocock GM, Becker JT, Swanson CM, Ahlquist P, Sherer NM. HIV-1 and M-PMV RNA
1017 Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking
1018 Behaviors. PLoS Pathog. 2016;12: e1005565. doi:10.1371/journal.ppat.1005565

1019 83. Buck CB, Shen X, Egan MA, Pierson TC, Walker CM, Siliciano RF. The human
1020 immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. *J Virol.*
1021 2001;75: 181–191. doi:10.1128/JVI.75.1.181-191.2001

1022 84. Poon DTK, Chertova EN, Ott DE. Human Immunodeficiency Virus Type 1 Preferentially
1023 Encapsidates Genomic RNAs That Encode Pr55Gag: Functional Linkage between
1024 Translation and RNA Packaging. *Virology.* 2002;293: 368–378.
1025 doi:10.1006/viro.2001.1283

1026 85. Schwartz S, Campbell M, Nasioulas G, Harrison J, Felber BK, Pavlakis GN. Mutational
1027 inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in
1028 Rev-independent gag expression. *J Virol.* 1992;66: 7176–7182.

1029 86. Hermida-Matsumoto L, Resh MD. Localization of human immunodeficiency virus type 1
1030 Gag and Env at the plasma membrane by confocal imaging. *J Virol.* 2000;74: 8670–8679.

1031 87. Sigal CT, Zhou W, Buser CA, McLaughlin S, Resh MD. Amino-terminal basic residues of
1032 Src mediate membrane binding through electrostatic interaction with acidic phospholipids.
1033 *Proc Natl Acad Sci U S A.* 1994;91: 12253–12257.

1034 88. Accola MA, Strack B, Göttlinger HG. Efficient particle production by minimal Gag
1035 constructs which retain the carboxy-terminal domain of human immunodeficiency virus
1036 type 1 capsid-p2 and a late assembly domain. *J Virol.* 2000;74: 5395–5402.

1037 89. Yang J, Bogerd HP, Wang PJ, Page DC, Cullen BR. Two closely related human nuclear
1038 export factors utilize entirely distinct export pathways. *Mol Cell.* 2001;8: 397–406.

1039 90. Wiegand HL, Coburn GA, Zeng Y, Kang Y, Bogerd HP, Cullen BR. Formation of
1040 Tap/NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing
1041 recruitment to nuclear pore complexes. *Mol Cell Biol.* 2002;22: 245–256.

1042 91. Bunce MW, Bergendahl K, Anderson RA. Nuclear PI(4,5)P(2): a new place for an old
1043 signal. *Biochim Biophys Acta.* 2006;1761: 560–569. doi:10.1016/j.bbapap.2006.03.002

1044 92. Yadav SS, Wilson SJ, Bieniasz PD. A facile quantitative assay for viral particle genesis
1045 reveals cooperativity in virion assembly and saturation of an antiviral protein. *Virology.*
1046 2012;429: 155–162. doi:10.1016/j.virol.2012.04.008

1047 93. Haucke V. Phosphoinositide regulation of clathrin-mediated endocytosis. *Biochem Soc
1048 Trans.* 2005;33: 1285–1289. doi:10.1042/BST20051285

1049 94. Ott DE, Coren LV, Kane BP, Busch LK, Johnson DG, Sowder RC, et al. Cytoskeletal
1050 proteins inside human immunodeficiency virus type 1 virions. *J Virol.* 1996;70: 7734–
1051 7743.

1052 95. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-
1053 induced, actin-dependent synapse. *J Exp Med.* 2004;199: 283–293.
1054 doi:10.1084/jem.20030648

1055 96. Sasaki H, Ozaki H, Karaki H, Nonomura Y. Actin filaments play an essential role for
1056 transport of nascent HIV-1 proteins in host cells. *Biochem Biophys Res Commun.*
1057 2004;316: 588–593. doi:10.1016/j.bbrc.2004.02.088

1058 97. Cooper J, Liu L, Woodruff EA, Taylor HE, Goodwin JS, D'Aquila RT, et al. Filamin A
1059 protein interacts with human immunodeficiency virus type 1 Gag protein and contributes

1060 to productive particle assembly. *J Biol Chem.* 2011;286: 28498–28510.

1061 doi:10.1074/jbc.M111.239053

1062 98. Wen X, Ding L, Wang J-J, Qi M, Hammonds J, Chu H, et al. ROCK1 and LIM kinase
1063 modulate retrovirus particle release and cell-cell transmission events. *J Virol.* 2014;88:
1064 6906–6921. doi:10.1128/JVI.00023-14

1065 99. Thomas A, Mariani-Floderer C, López-Huertas MR, Gros N, Hamard-Péron E, Favard C,
1066 et al. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag
1067 Particle Release in CD4 T Cells. *J Virol.* 2015;89: 8162–8181. doi:10.1128/JVI.00469-15

1068 100. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, et al. Lifeact: a
1069 versatile marker to visualize F-actin. *Nat Methods.* 2008;5: 605–607.
1070 doi:10.1038/nmeth.1220

1071 101. Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, Rekosh D, et al. A small element from
1072 the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1
1073 expression and replication Rev-independent. *Proc Natl Acad Sci U S A.* 1994;91: 1256–
1074 1260.

1075 102. Wodrich H, Schambach A, Kräusslich H-G. Multiple copies of the Mason–Pfizer monkey
1076 virus constitutive RNA transport element lead to enhanced HIV-1 Gag expression in a
1077 context-dependent manner. *Nucleic Acids Res.* 2000;28: 901–910.
1078 doi:10.1093/nar/28.4.901

1079 103. Anderson EC, Lever AML. Human immunodeficiency virus type 1 Gag polyprotein
1080 modulates its own translation. *J Virol.* 2006;80: 10478–10486. doi:10.1128/JVI.02596-05

1081 104. Dooher JE, Lingappa JR. Conservation of a stepwise, energy-sensitive pathway involving
1082 HP68 for assembly of primate lentivirus capsids in cells. *J Virol.* 2004;78: 1645–1656.

1083 105. Ma H, Cockrell A, Bash R, VanDyke T, Kafri T. 822. A Rev/RRE Dependent Packaging
1084 System for MLV Based Vectors Raises Biosafety Concerns. *Mol Ther.* 2005;11: S320–
1085 S320. doi:10.1016/j.ymthe.2005.07.365

1086 106. Grewe B, Ehrhardt K, Hoffmann B, Blissenbach M, Brandt S, Überla K. The HIV-1 Rev
1087 Protein Enhances Encapsidation of Unspliced and Spliced, RRE-Containing Lentiviral
1088 Vector RNA. *PLOS ONE.* 2012;7: e48688. doi:10.1371/journal.pone.0048688

1089 107. Anderson P, Kedersha N, Ivanov P. Stress granules, P-bodies and cancer. *Biochim
1090 Biophys Acta.* 2015;1849: 861–870. doi:10.1016/j.bbaprm.2014.11.009

1091 108. Brangwynne CP. Phase transitions and size scaling of membrane-less organelles. *J Cell
1092 Biol.* 2013;203: 875–881. doi:10.1083/jcb.201308087

1093 109. Zimmerman C, Klein KC, Kiser PK, Singh AR, Firestein BL, Riba SC, et al. Identification
1094 of a host protein essential for assembly of immature HIV-1 capsids. *Nature.* 2002;415:
1095 88–92. doi:10.1038/415088a

1096 110. Yedavalli VSRK, Neuveut C, Chi Y-H, Kleiman L, Jeang K-T. Requirement of DDX3
1097 DEAD box RNA helicase for HIV-1 Rev-RRE export function. *Cell.* 2004;119: 381–392.
1098 doi:10.1016/j.cell.2004.09.029

1099 111. Naji S, Ambrus G, Cimermančič P, Reyes JR, Johnson JR, Filbrandt R, et al. Host cell
1100 interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus
1101 production. *Mol Cell Proteomics MCP.* 2012;11: M111.015313.
1102 doi:10.1074/mcp.M111.015313

1103 112. Chatel-Chaix L, Clément J-F, Martel C, Bériault V, Gatignol A, DesGroseillers L, et al.
1104 Identification of Staufen in the human immunodeficiency virus type 1 Gag
1105 ribonucleoprotein complex and a role in generating infectious viral particles. *Mol Cell Biol.*
1106 2004;24: 2637–2648.

1107 113. Swanson CM, Sherer NM, Malim MH. SRp40 and SRp55 promote the translation of
1108 unspliced human immunodeficiency virus type 1 RNA. *J Virol.* 2010;84: 6748–6759.
1109 doi:10.1128/JVI.02526-09

1110 114. Mouland AJ, Xu H, Cui H, Krueger W, Munro TP, Prasol M, et al. RNA trafficking signals
1111 in human immunodeficiency virus type 1. *Mol Cell Biol.* 2001;21: 2133–2143.
1112 doi:10.1128/MCB.21.6.2133-2143.2001

1113 115. Lévesque K, Halvorsen M, Abrahamyan L, Chatel-Chaix L, Poupon V, Gordon H, et al.
1114 Trafficking of HIV-1 RNA is Mediated by Heterogeneous Nuclear Ribonucleoprotein A2
1115 Expression and Impacts on Viral Assembly. *Traffic.* 2006;7: 1177–1193.
1116 doi:10.1111/j.1600-0854.2006.00461.x

1117 116. Boeras I, Song Z, Moran A, Franklin J, Brown WC, Johnson M, et al. DHX9/RHA Binding
1118 to the PBS-Segment of the Genomic RNA during HIV-1 Assembly Bolsters Virion
1119 Infectivity. *J Mol Biol.* 2016;428: 2418–2429. doi:10.1016/j.jmb.2016.04.011

1120 117. Bolinger C, Boris-Lawrie K. Mechanisms employed by retroviruses to exploit host factors
1121 for translational control of a complicated proteome. *Retrovirology.* 2009;6: 8.
1122 doi:10.1186/1742-4690-6-8

1123 118. Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, et al. Global
1124 analysis of mRNA localization reveals a prominent role in organizing cellular architecture
1125 and function. *Cell.* 2007;131: 174–187. doi:10.1016/j.cell.2007.08.003

1126 119. Donnelly CJ, Fainzilber M, Twiss JL. Subcellular communication through RNA transport
1127 and localized protein synthesis. *Traffic Cph Den.* 2010;11: 1498–1505.
1128 doi:10.1111/j.1600-0854.2010.01118.x

1129 120. Sinnamon JR, Czaplinski K. mRNA trafficking and local translation: the Yin and Yang of
1130 regulating mRNA localization in neurons. *Acta Biochim Biophys Sin.* 2011;43: 663–670.
1131 doi:10.1093/abbs/gmr058

1132 121. Herrera-Carrillo E, Berkhout B. Bone Marrow Gene Therapy for HIV/AIDS. *Viruses.*
1133 2015;7: 3910–3936. doi:10.3390/v7072804

1134 122. Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. Wiley
1135 *Interdiscip Rev RNA.* 2013;4: 317–331. doi:10.1002/wrna.1162

1136 123. Bosse JB, Hogue IB, Feric M, Thibierge SY, Sodeik B, Brangwynne CP, et al. Remodeling
1137 nuclear architecture allows efficient transport of herpesvirus capsids by diffusion. *Proc
1138 Natl Acad Sci U S A.* 2015;112: E5725-5733. doi:10.1073/pnas.1513876112

1139 124. Shukla S, Parker R. Hypo- and Hyper-Assembly Diseases of RNA-Protein Complexes.
1140 *Trends Mol Med.* 2016;22: 615–628. doi:10.1016/j.molmed.2016.05.005

1141 125. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, et al. Production of
1142 acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman
1143 cells transfected with an infectious molecular clone. *J Virol.* 1986;59: 284–291.

1144 126. Connor RI, Chen BK, Choe S, Landau NR. Vpr is required for efficient replication of
1145 human immunodeficiency virus type-1 in mononuclear phagocytes. *Virology.* 1995;206:
1146 935–944. doi:10.1006/viro.1995.1016

1147 127. Phalora PK, Sherer NM, Wolinsky SM, Swanson CM, Malim MH. HIV-1 replication and
1148 APOBEC3 antiviral activity are not regulated by P bodies. *J Virol.* 2012;86: 11712–11724.
1149 doi:10.1128/JVI.00595-12

1150 128. Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV. An Enhanced Monomeric Blue
1151 Fluorescent Protein with the High Chemical Stability of the Chromophore. *PLoS ONE.*
1152 2011;6: e28674. doi:10.1371/journal.pone.0028674

1153 129. Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ.
1154 *Science.* 1998;280: 585–590.

1155 130. Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to
1156 specify nuclear location. *Cell.* 1984;39: 499–509.

1157 131. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-
1158 1 infection and is suppressed by the viral Vif protein. *Nature.* 2002;418: 646–650.
1159 doi:10.1038/nature00939

1160 132. Sherer NM, Swanson CM, Hué S, Roberts RG, Bergeron JRC, Malim MH. Evolution of a
1161 species-specific determinant within human CRM1 that regulates the post-transcriptional
1162 phases of HIV-1 replication. *PLoS Pathog.* 2011;7: e1002395.
1163 doi:10.1371/journal.ppat.1002395

1164 133. Aligeti M, Behrens RT, Pocock GM, Schindelin J, Dietz C, Eliceiri KW, et al. Cooperativity
1165 among Rev-associated nuclear export signals regulates HIV-1 gene expression and is a
1166 determinant of virus species tropism. *J Virol.* 2014;88: 14207–14221.
1167 doi:10.1128/JVI.01897-14

1168 134. Chesebro B, Wehrly K, Nishio J, Perryman S. Macrophage-tropic human
1169 immunodeficiency virus isolates from different patients exhibit unusual V3 envelope
1170 sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical
1171 amino acids involved in cell tropism. *J Virol.* 1992;66: 6547–6554.

1172 135. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an
1173 open-source platform for biological-image analysis. *Nat Methods.* 2012;9: 676–682.
1174 doi:10.1038/nmeth.2019

1175 136. Garcia-Miranda P, Becker JT, Benner BE, Blume A, Sherer NM, Butcher SE. Stability of
1176 HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus
1177 Infectivity. *J Virol.* 2016;90: 6906–6917. doi:10.1128/JVI.00149-16

1178

1179

1180

1181 **SUPPLEMENTARY MATERIAL**

1182

1183 **S1 Video. HIV-1 infection drives stably-expressed GagFP to assembly sites at the**

1184 **PM.** Live cell imaging of HeLa.Gag-CFP (cyan) cells infected with WT NL4-3 E-R-

1185 /mCherry reporter virus. Images were acquired once per hour and are shown here at 4

1186 frames per second. Scale bar represents 10 microns. White arrows indicate sites

1187 where stably expressed RevInd Gag-CFP has accumulated in PM-adjacent punctae.

1188

1189 **S2 Video. HIV-1 “Gag-minus” 1ACG-gRNAs trigger accumulation of stably-**

1190 **expressed GagFP into cytoplasmic granules.** Live cell imaging of HeLa.Gag-CFP

1191 (cyan) cells transfected with 1ACG-MSL/MS2-mCherry (yellow). Images were acquired

1192 once per hour and are shown here at 4 frames per second. Scale bar represents 10

1193 microns. White arrows indicate sites where stably expressed RevInd Gag-CFP and

1194 MS2-mCherry-tagged gRNA have accumulated in cytoplasmic granules.

1195

1196 **S3 Video. Three-dimensional view of MS2-YFP-NLS and smFISH tagged HIV-1**

1197 **gRNA expressed in the absence of Rev.** SIM image reconstructed in 3D using

1198 FIJI/ImageJ2. Scale bar represents 5 microns. MS2-YFP (green) and gRNA FISH (red)

1199 are sequestered in the nucleus in the absence of the Rev protein. White arrow indicates

1200 edge of nucleus (nuclear envelope).

1201

1202 **S4 Video. Three-dimensional view of MS2-YFP-NLS, smFISH tagged HIV-1 gRNA,**

1203 **and HIV-1 Gag.** SIM image reconstructed in 3D using FIJI/ImageJ2. Scale bar

1204 represents 5 microns. MS2-YFP (green) and gRNA FISH (red) colocalize in the

1205 cytoplasm and at the PM with Gag (blue). White arrows indicate colocalized MS2-YFP,

1206 gRNA, and Gag punctae at PM.

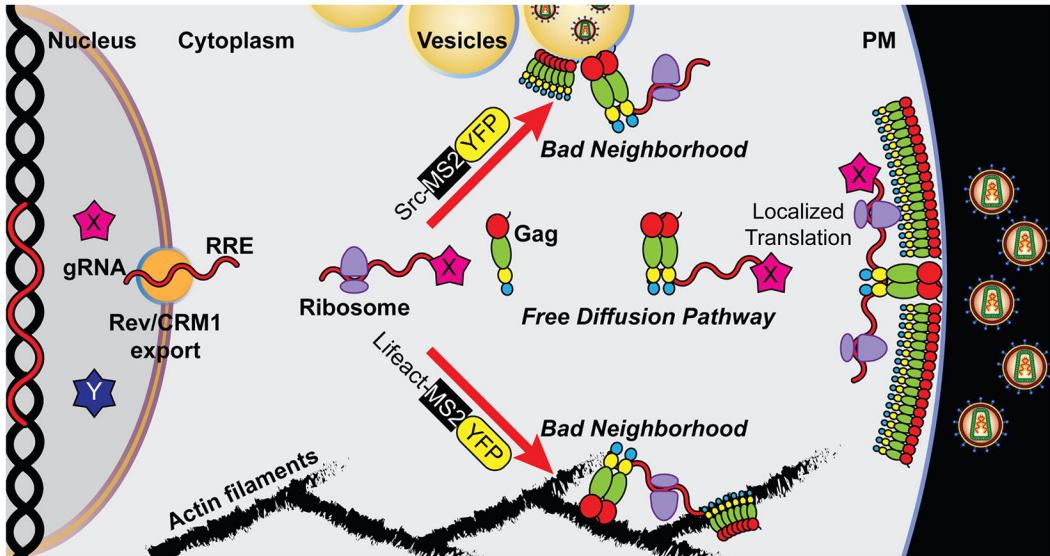
1207

1208 **S5 Video. Three-dimensional view of Src-MS2-YFP, smFISH tagged HIV-1 gRNA,**
1209 **and HIV-1 Gag.** SIM image reconstructed in 3D using FIJI/ImageJ2. Scale bar
1210 represents 5 microns. MS2-YFP (green) and gRNA FISH (red) colocalize at intracellular
1211 vesicles and the nuclear periphery with Gag (blue). White arrows indicate colocalized
1212 MS2-YFP, gRNA, and Gag punctae at intracellular membranes.

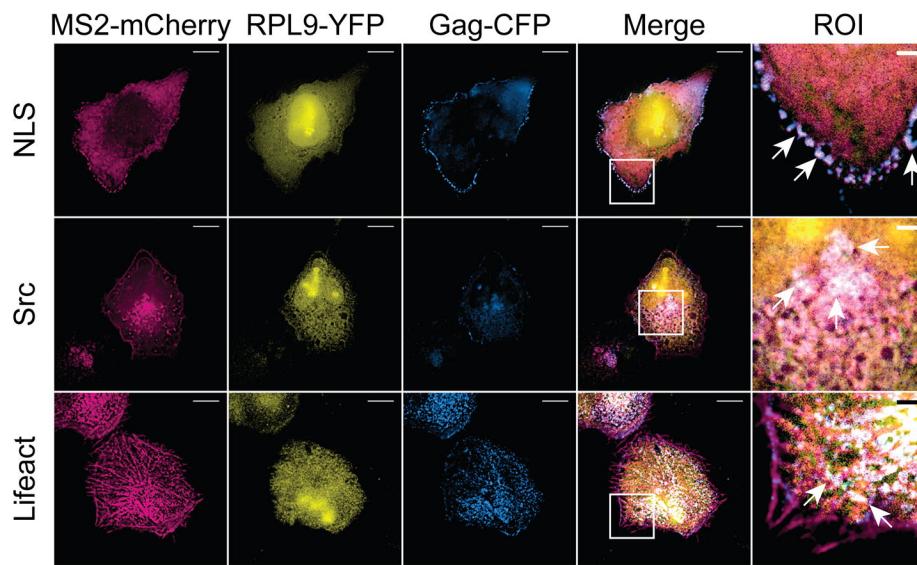
1213

1214 **S6 Video. Three-dimensional view of Lifeact-MS2-YFP, smFISH tagged HIV-1**
1215 **gRNA, and HIV-1 Gag.** SIM image reconstructed in 3D using FIJI/ImageJ2. Scale bar
1216 represents 5 microns. MS2-YFP (green) and gRNA FISH (red) colocalize along linear F-
1217 actin filaments with Gag (blue). White arrows indicate colocalized MS2-YFP, gRNA, and
1218 Gag punctae along actin filaments.

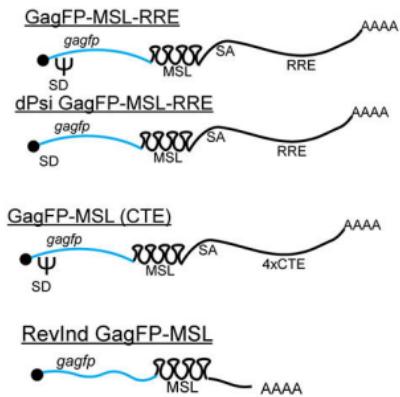
1219

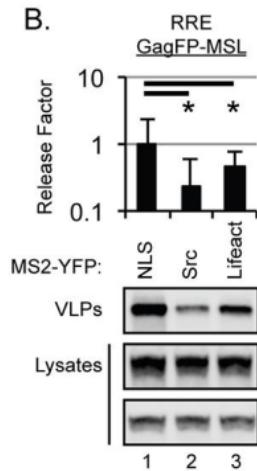

1220 **S5 Video. Three-dimensional view of Src-MS2-YFP, smFISH tagged HIV-1 gRNA,**
1221 **and HIV-1 Gag.** SIM image reconstructed in 3D using FIJI/ImageJ2. Scale bar
1222 represents 5 microns. MS2-YFP (green) and gRNA FISH (red) colocalize at intracellular
1223 vesicles and the nuclear periphery with Gag (blue). White arrows indicate colocalized
1224 MS2-YFP, gRNA, and Gag punctae at intracellular membranes.

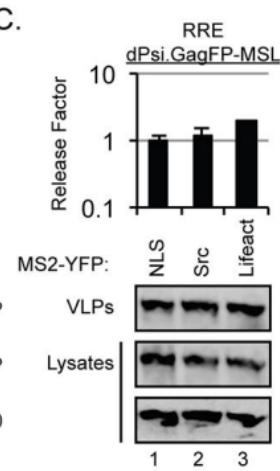
1225

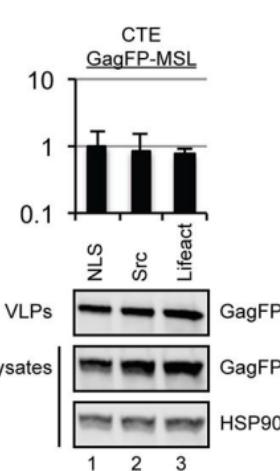

1226 **S6 Video. Three-dimensional view of Lifeact-MS2-YFP, smFISH tagged HIV-1**
1227 **gRNA, and HIV-1 Gag.** SIM image reconstructed in 3D using FIJI/ImageJ2. Scale bar
1228 represents 5 microns. MS2-YFP (green) and gRNA FISH (red) colocalize along linear F-
1229 actin filaments with Gag (blue). White arrows indicate colocalized MS2-YFP, gRNA, and
1230 Gag punctae along actin filaments.

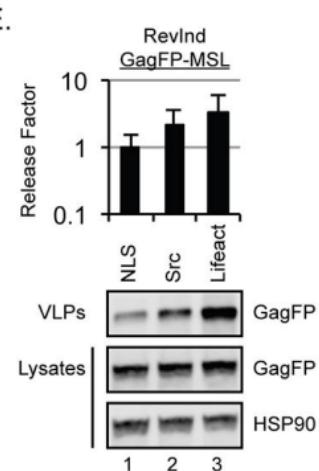
1231

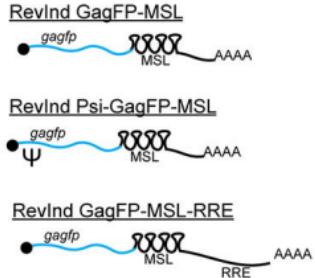

A.

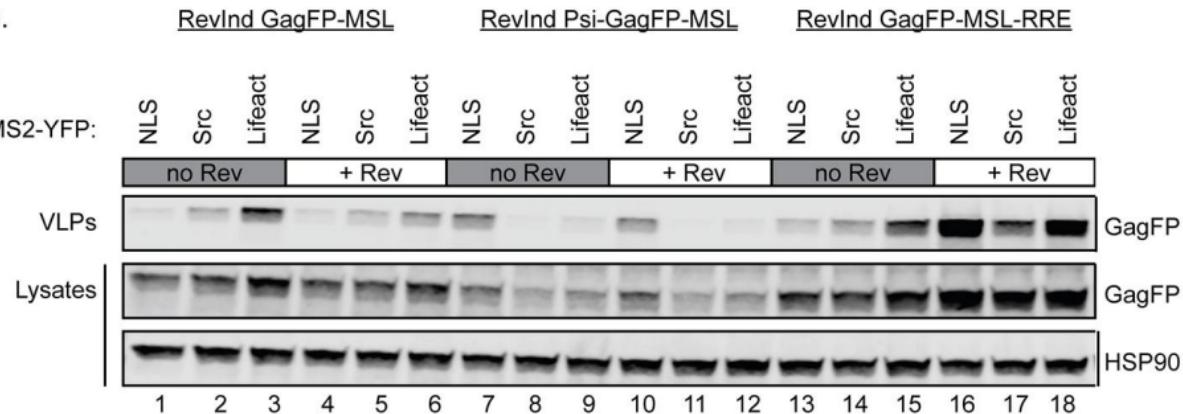

B.

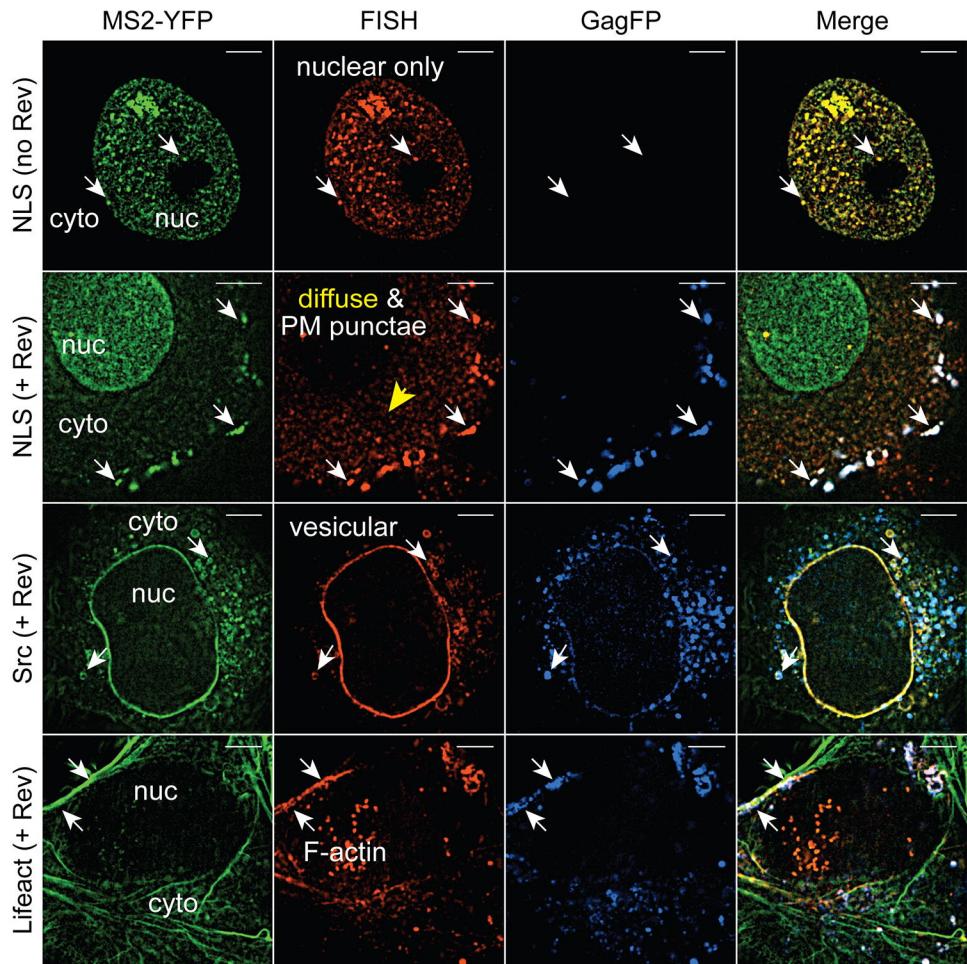

A.

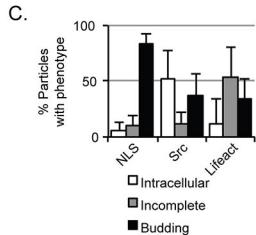
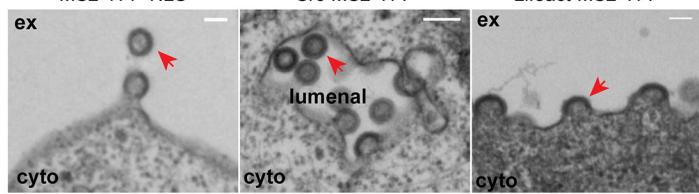

B.


C.

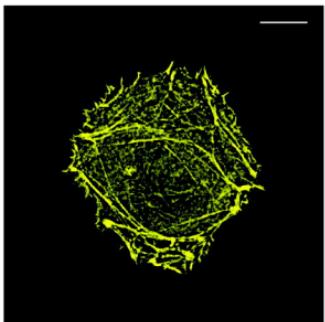

D.


E.

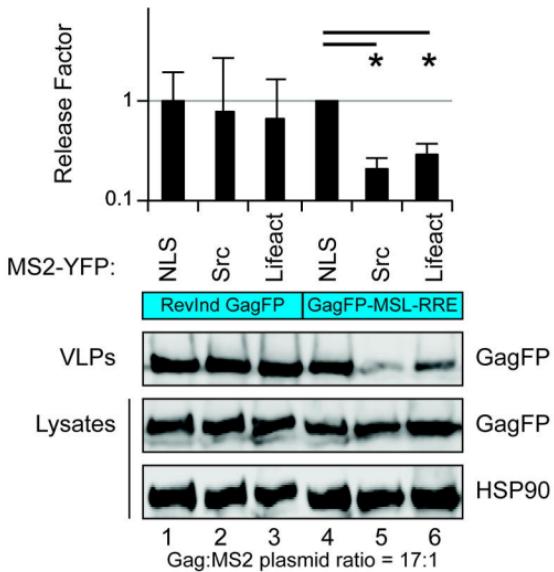

F.



G.

A.

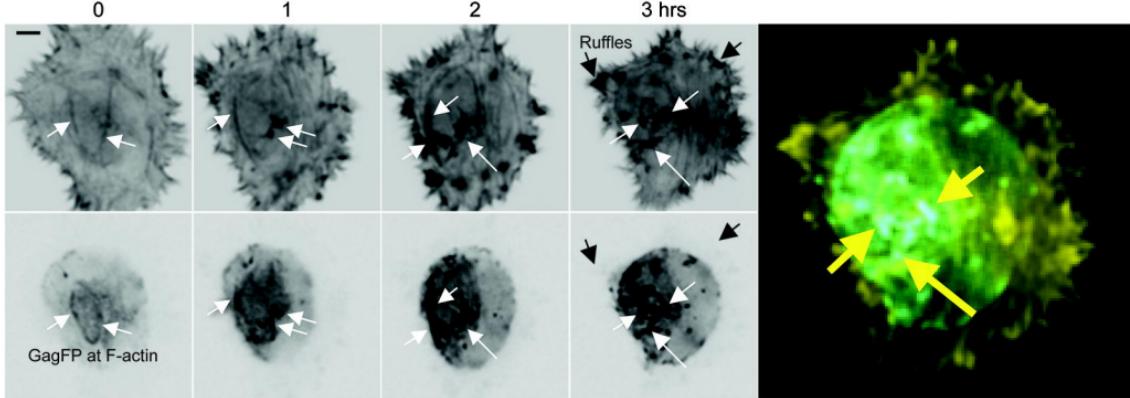


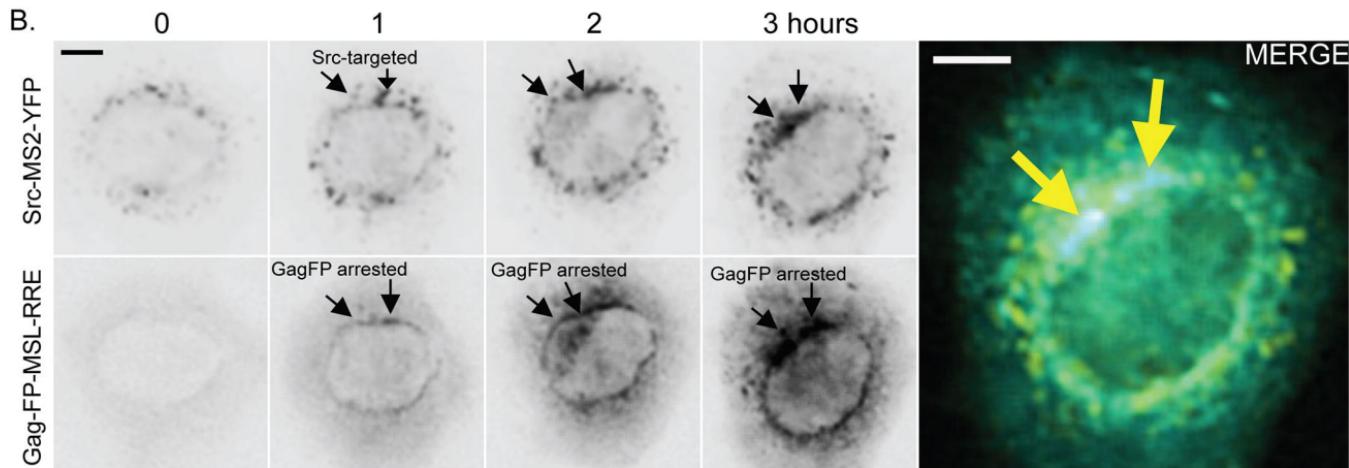
B.


A.

Lifeact-MS2-YFP

MGVADLIKKFESISKEE MS2

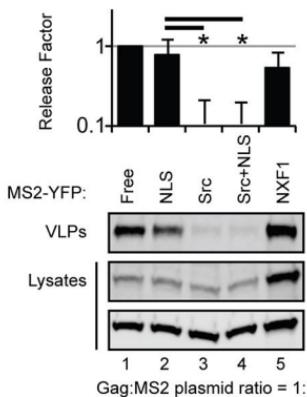

B.

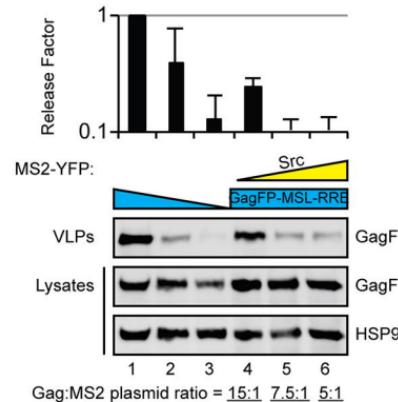


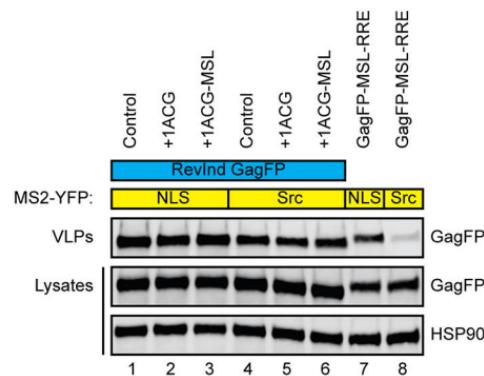

C.

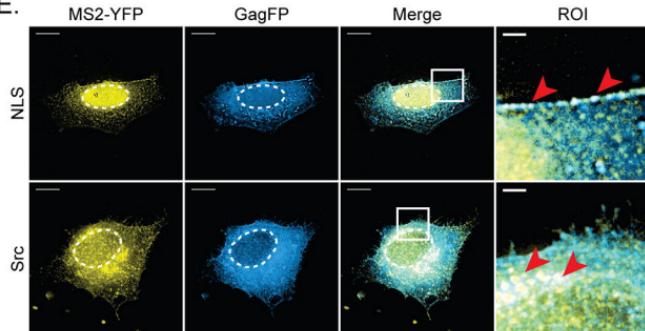
Lifeact-
MS2-YFP

Gag-FP-MSL-RRE

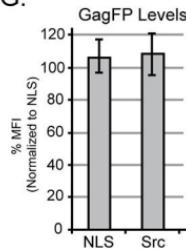



A. GagFP-MSL-RRE


B.

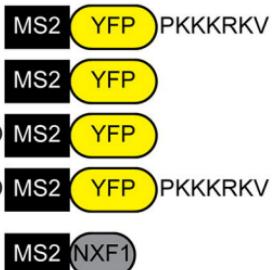

C.


D.

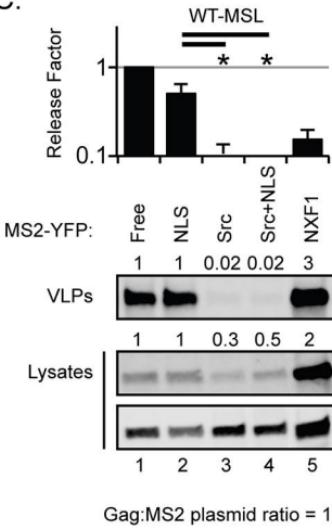

E.

F.

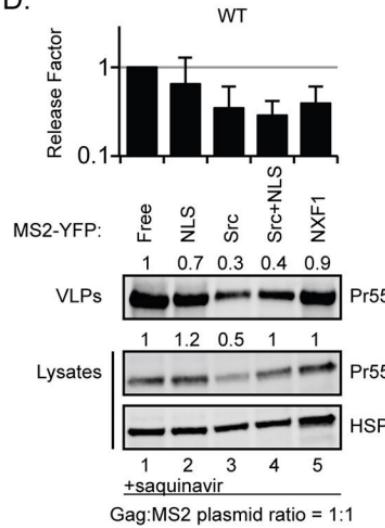
G.

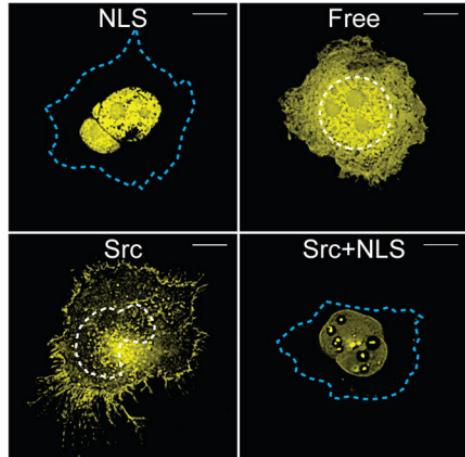

A. MS2-YFP-NLS

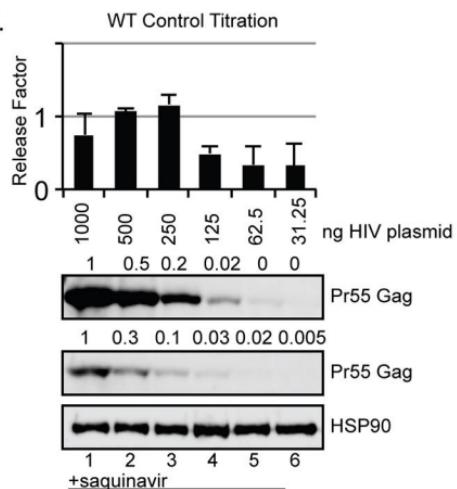
MS2-YFP (Free)

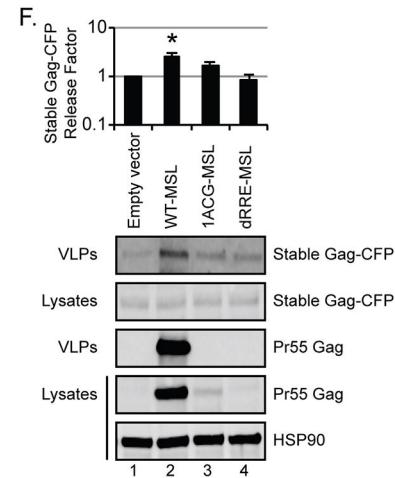
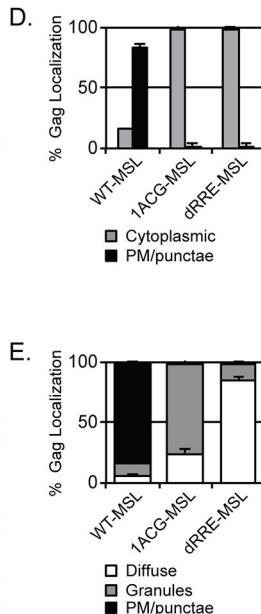
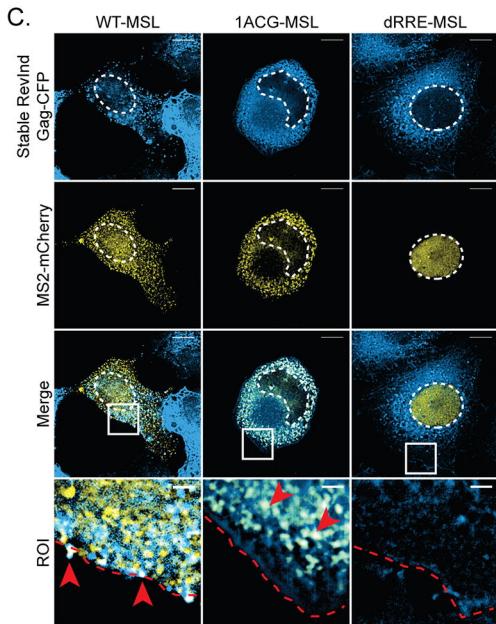
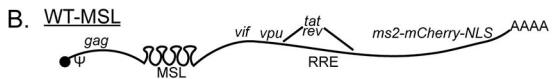
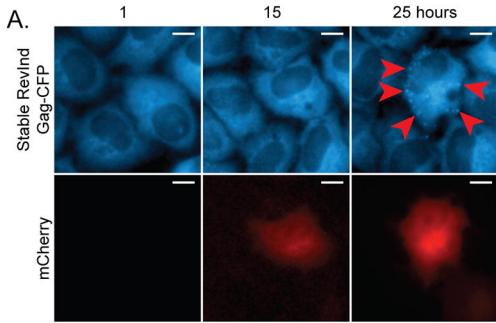

Src-MS2-YFP

Src-MS2-YFP-NLS (Src+NLS)

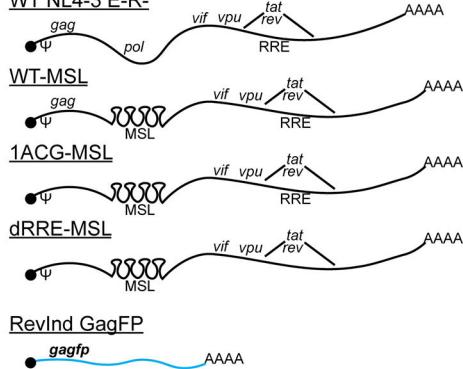

MS2-NXF1


C.

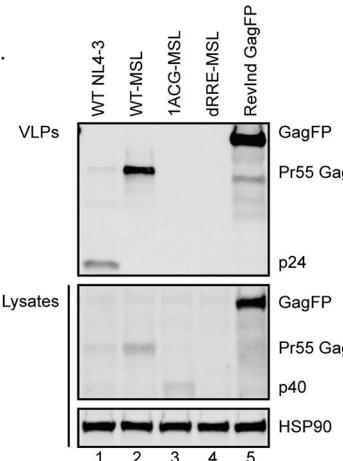

D.

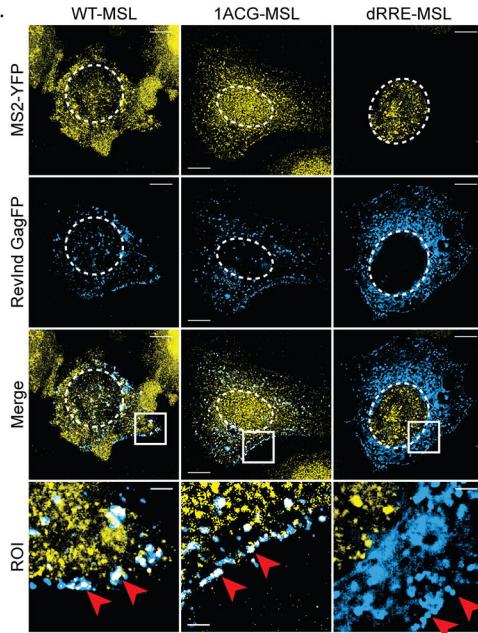






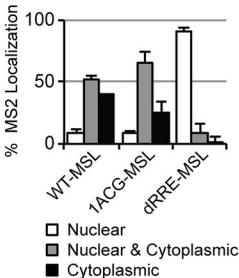
B.

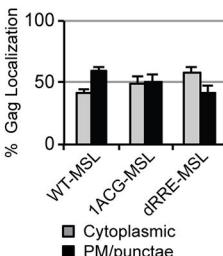


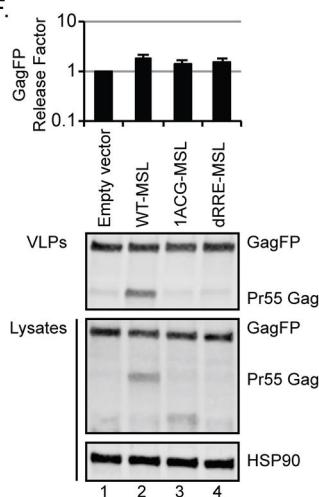
E.




A. WT NL4-3 E-R-


B.


C.


D.

E.

F.

