
F1000Research 2014 - DRAFT ARTICLE (PRE-SUBMISSION)

Efficient cardinality estimation for k-mers in large DNA
sequencing data sets
k-mer cardinality estimation

Luiz C. Irber Jr.1 and C. Titus Brown2

1lcirberjr@ucdavis.edu, Department of Population Health and Reproduction, University of California, Davis,
Davis, CA 95616, USA
2ctbrown@ucdavis.edu, corresponding author, Department of Population Health and Reproduction, University of
California, Davis, Davis, CA 95616, USA

Abstract
We present an open implementation of the HyperLogLog cardinality estimation
sketch for counting fixed-length substrings of DNA strings (“k-mers”).
The HyperLogLog sketch implementation is in C++ with a Python interface, and is
distributed as part of the khmer software package. khmer is freely available from
https://github.com/dib-lab/khmer under a BSD License. The features
presented here are included in version 1.4 and later.

Page 1 of 5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 7, 2016. ; https://doi.org/10.1101/056846doi: bioRxiv preprint

https://github.com/dib-lab/khmer
https://doi.org/10.1101/056846
http://creativecommons.org/licenses/by/4.0/

F1000Research 2014 - DRAFT ARTICLE (PRE-SUBMISSION)

Introduction
DNA sequencing technologies have increased in data gen-
eration capacity faster than Moore’s Law for more than a
decade now, driving the development of new computa-
tional analysis approaches.
Alon et al. [1996] analyses randomized algorithms for the
approximation of “frequency moments” of a sequence us-
ing a streaming approach, where items of the sequence
are not (or can not be) stored, and are processed se-
quentially (arrive one by one). KmerStream Melsted and
Halldórsson [2014] implemented
A number of probabilistic data structures and algorithms
have been developed over the last few years to scale anal-
ysis approaches to the rapidly increasing volume of data
[Pell et al., 2012],
Here we present an open implementation of the Hyper-
LogLog cardinality estimation algorithm, specialized for
k-length substrings of DNA strings, or k-mers. The Hyper-
LogLog sketch (HLL) [Flajolet et al., 2008] is a cardinality
estimation data structure with constant (and low) mem-
ory footprint.
Efficient k-mer cardinality estimation is useful for a vari-
ety of purposes, including estimating the memory require-
ments for de Bruijn graph assemblers [Zerbino and Bir-
ney, 2008] and choosing the initial memory allocation for
data structures like Bloom filters and Count-Min Sketches
([Zhang et al., 2014]).

Methods
We implemented HyperLogLog for k-mers in C++ on top
of the khmer library. khmer[Crusoe et al.] is a library
and suite of command line tools for working with DNA se-
quences. It implements k-mer counting, read filtering and
graph traversal using probabilistic data structures such as
Bloom Filters and Count-Min Sketches. Building on top of
khmer leveraged the existing infrastructure (read parsers,
package installation, API signatures and some k-mer hash-
ing methods).
The HyperLogLog sketch (HLL) [Flajolet et al., 2008] es-
timates the approximate cardinality (F0 frequency mo-
ment) of a set. The HLL is composed of a byte array
M[1..m] initialized with 0s and a precision value p, where

m= 2p

The expected error rate e is

e =
1.04
p

m

and by modifying p we can control the precision of the
estimate.
Each position of M represents the longest run of zeros
found in the nth substream, where n is an index calculated
from the least significant p bits of the hashed value:

n= f (x)∧ (m− 1)

The two basic operations of a sketch are Add (or update)
and Merge. Adding an element x involves calculating its

hash value using a hash function f ,

Add(x , M) : M[n]← ρ(f (x)� p)

where ρ(h) is the number of leading zeros in the binary
representation of h.
The cardinality estimator E is the normalized harmonic
mean of the estimation on the substream:

E =
αmm2

∑m
j=1 2−M[j]

, with αm =

�

m

∫ ∞

0

�

log2

�

2+ u
1+ u

��m

du

�−1

Multiple HLL sketches can be merged by taking the max-
imum value, element-wise, from every sketch byte-array.
For a more detailed description and error bounds analysis,
see [Flajolet et al., 2008].

Implementation details
We chose MurmurHash3 for the hash function because
it is one of the fastest non-cryptographic hash functions
available and it has a reasonably uniform hash space dis-
tribution. Since a k-mer is a representation of a substring
of a single strand of DNA, the reverse complement on the
other strand must also be considered to avoid overcount-
ing. We hash the k-mer and its reverse complement indi-
vidually using MurmurHash3 and create a unique value
by doing a binary exclusive-OR on the two hashed values,
generating a 128-bit hash value. For compatibility with
the current khmer codebase, where hashed values are 64
bits long, we do another binary exclusive-OR over the first
and last 64 bits to have a single 64-bit hash value. This
procedure is executed len(sequence) − (k − 1) times for
each sequence in the dataset, where k is the desired k-
mer size.
Our implementation of HLL for multiple processors uses a
shared memory model, creating multiple HLL sketches in
order to avoid synchronization and locking when adding
elements. A master thread processes the input and dis-
tributes reads between task threads. After all the reads are
consumed the sketches are merged and the final sketch
can be used for cardinality estimation of the entire data
set. Since sketch sizes are small (16 KiB for a 1% error
rate), instantiating additional temporary HLL sketches is
a viable tradeoff. One alternative is one HLL shared be-
tween threads, with a locking mechanism to isolate the
byte array on updates. This would avoid the merge pro-
cess at the end, but then threads could block on updating
the shared structure.
The shared memory model is also a good fit since this is
the architecture most potential users have readily avail-
able for use. OpenMP is an appropriate choice for the
conditions we outlined, and the code compiles to a se-
quential implementation when OpenMP is not available.
We used the OpenMP tasks functionality, since they map
well to our problem.

Benchmarking
All tests were executed on a server hosted by Rackspace.
This machine has an Intel Xeon E5-2680 CPU with 20
physical cores (2 sockets) running at 2.80GHz, 60 GB of

Page 2 of 5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 7, 2016. ; https://doi.org/10.1101/056846doi: bioRxiv preprint

https://doi.org/10.1101/056846
http://creativecommons.org/licenses/by/4.0/

F1000Research 2014 - DRAFT ARTICLE (PRE-SUBMISSION)

RAM and a SATA block storage with 200 MB/s transfer
rate. During the streaming tests the network transfer rate
with the external server was measured to be 10 MB/s.

Results
Comparison with exact counters
To test the correctness of the implementation we used
two exact cardinality data structures for comparison to
our HLL sketch implementation. For exact cardinality we
created a Python implementation using the standard li-
brary (“collections.Counter”) and another in C++ using
the Google sparsehash library. Neither are parallelized.
Both implementations are impractical for large cardinal-
ities, so we chose two relatively small datasets from the
Sequence Read Archive for benchmarking:

• SRR797943, containing 417 PacBio and 454 se-
quences with average length 1690 basepairs and to-
taling 704,951 basepairs, with 670,487 unique k-
mers. Referred to below as the small dataset,

• SRR1216679, containing 675,236 Illumina reads
with average length of 250 bp, 168,809,000 base-
pairs and 17,510,301 unique k-mers. Referred to be-
low as the medium dataset.

Tables 1 and 2 show the runtime, memory consumption,
cardinality and the error of the estimate compared to the
true cardinality of each dataset. Both exact implemen-
tations report the same cardinality and consume similar
amounts of memory for each dataset, with the Python
implementation taking longer to run. HLL is an order
of magnitude faster and consumes a constant amount of
memory for both cases, about 6 times less on the small
dataset and 200 times less on the medium dataset.
The error in the HLL implementation is close to the ideal
upper bound, 1%. The difference can be attributed to
MurmurHash3 and our hashing procedure not being per-
fectly uniform on the hash value space.

Scaling behavior
We chose a larger dataset for examining the scaling per-
formance of our HLL implementation. This larger dataset,
SRR1304364, contains 163,379 PacBio sequences with
average length 12,934 bp, and 2,113,086,496 basepairs
in total.
We examined how our implementation scaled with num-
ber of threads. Since hashing is CPU-bound, the prob-
lem can be easily parallelized. We ran a simple bench-
mark to discover the I/O lower bound, using the same
input and read parsing infrastructure as the HLL sketch
tests, but without performing any kind of processing. Fig-
ure 1 shows the results of these tests, where we found
16 threads are needed to saturate I/O on this particular
setup, which has 16 physical cores.

Streaming
The HyperLogLog sketch is designed for streams of data,
and we can take advantage of this property to com-
pose the cardinality estimation capabilities with other
pipelines. Here, the overhead of the cardinality counting
is minimal with respect to I/O: downloading SRR1304364
and piping it into our HLL implementation adds only 1%
to the overall runtime (199.7± 9.5 seconds for counting
and saving, versus 199.5±13.6 seconds for simply saving
the file). Thus our HLL implementation can be used "mid-
stream" to evaluate the effects of streaming lossy compres-
sion and error trimming.

Discussion/Conclusions
We present an open and remixable implementation of the
HyperLogLog sketch for cardinality counting of DNA k-
mers, written in C++. The implementation scales well to
multiple threads, and uses OpenMP for task coordination.

Author contributions
LCI and CTB conceived the study and designed the ex-
periments. LCI carried out the research, prepared figures
and tables and performed the computation work. LCI and
CTB analyzed the data and wrote the paper. All authors
were involved in the revision of the draft manuscript and
have agreed to the final content.

Competing interests
The authors have no conflicts of interest or competing in-
terests to disclose.

Grant information
This work was supported by grant 2013-67015-21357
from the United States Department of Agriculture. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.

Acknowledgements

References
Noga Alon, Yossi Matias, and Mario Szegedy. The space complex-

ity of approximating the frequency moments. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of
computing, pages 20–29. ACM, 1996. URL http://dl.
acm.org/citation.cfm?id=237823.

Páll Melsted and Bjarni V. Halldórsson. Kmerstream:
streaming algorithms for k-mer abundance estima-
tion. Bioinformatics, 30(24):3541–3547, 2014.
doi: 10.1093/bioinformatics/btu713. URL http:
//bioinformatics.oxfordjournals.org/content/
30/24/3541.abstract.

Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina
Howe, James M Tiedje, and C Titus Brown. Scaling
metagenome sequence assembly with probabilistic de bruijn
graphs. Proceedings of the National Academy of Sciences,
109(33):13272–13277, 2012.

Page 3 of 5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 7, 2016. ; https://doi.org/10.1101/056846doi: bioRxiv preprint

http://dl.acm.org/citation.cfm?id=237823
http://dl.acm.org/citation.cfm?id=237823
http://bioinformatics.oxfordjournals.org/content/30/24/3541.abstract
http://bioinformatics.oxfordjournals.org/content/30/24/3541.abstract
http://bioinformatics.oxfordjournals.org/content/30/24/3541.abstract
https://doi.org/10.1101/056846
http://creativecommons.org/licenses/by/4.0/

F1000Research 2014 - DRAFT ARTICLE (PRE-SUBMISSION)

Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Me-
unier. Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. DMTCS Proceedings, (1), 2008.

Daniel R. Zerbino and Ewan Birney. Velvet: algorithms for de
novo short read assembly using de Bruijn graphs. Genome
research, 18(5):821–829, 2008.

Qingpeng Zhang, Jason Pell, Rosangela Canino-Koning, Ad-
ina Chuang Howe, and C. Titus Brown. These are not the k-
mers you are looking for: Efficient online k-mer counting us-
ing a probabilistic data structure. PLoS ONE, 9(7):e101271,
07 2014. doi: 10.1371/journal.pone.0101271. URL http:
//dx.doi.org/10.1371%2Fjournal.pone.0101271.

Michael R. Crusoe, Hussien F. Alameldin, Sherine Awad, Elmar
Bucher, Adam Caldwell, Reed Cartwright, Amanda Charbon-
neau, Bede Constantinides, Greg Edvenson, Scott Fay, Jacob
Fenton, Thomas Fenzl, Jordan Fish, Leonor Garcia-Gutierrez,
Phillip Garland, Jonathan Gluck, Iván González, Sarah Guer-
mond, Jiarong Guo, Aditi Gupta, Joshua R. Herr, Adina
Howe, Alex Hyer, Andreas Härpfer, Luiz Irber, Rhys Kidd,
David Lin, Justin Lippi, Tamer Mansour, Pamela McA’Nulty,
Eric McDonald, Jessica Mizzi, Kevin D. Murray, Joshua R.
Nahum, Kaben Nanlohy, Alexander Johan Nederbragt, Hum-
berto Ortiz-Zuazaga, Jeramia Ory, Jason Pell, Charles Pepe-
Ranney, Zachary N Russ, Erich Schwarz, Camille Scott, Josiah
Seaman, Scott Sievert, Jared Simpson, Connor T. Skennerton,
James Spencer, Ramakrishnan Srinivasan, Daniel Standage,
James A. Stapleton, Joe Stein, Susan R Steinman, Benjamin
Taylor, Will Trimble, Heather L. Wiencko, Michael Wright,
Brian Wyss, Qingpeng Zhang, en zyme, and C. Titus Brown.

Evangelos Georganas, Aydin Buluç, Jarrod Chapman, Leonid
Oliker, Daniel Rokhsar, and Katherine Yelick. Parallel de bruijn
graph construction and traversal for de novo genome assem-
bly. In High Performance Computing, Networking, Storage
and Analysis, SC14: International Conference for, pages 437–
448. IEEE, 2014.

Yousra Chabchoub and Georges Hébrail. Sliding hyperloglog:
Estimating cardinality in a data stream over a sliding win-
dow. In Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on, pages 1297–1303. IEEE, 2010.

Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog
in practice: algorithmic engineering of a state of the art car-
dinality estimation algorithm. In Proceedings of the 16th
International Conference on Extending Database Technology,
pages 683–692. ACM, 2013.

Page 4 of 5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 7, 2016. ; https://doi.org/10.1101/056846doi: bioRxiv preprint

http://dx.doi.org/10.1371%2Fjournal.pone.0101271
http://dx.doi.org/10.1371%2Fjournal.pone.0101271
https://doi.org/10.1101/056846
http://creativecommons.org/licenses/by/4.0/

F1000Research 2014 - DRAFT ARTICLE (PRE-SUBMISSION)

1 2 4 8 16
threads

32

64

128

256

512

1024

El
ap

se
d

(w
al

l c
lo

ck
) t

im
e

(s
ec

on
ds

)

Walltime (s), CI 95%

Parallel HLL
Just I/O

Figure 1. Walltime and lower bound(I/O)

Implementation Time (seconds) Memory (MB) Cardinality Error

HLL 0.193 13.44 670,328 0.0002
C++/sparsehash 3.888 77.64 670,487 0
Python 4.306 83.48 670,487 0

Table 1. Wall clock time and memory consumption for HLL and two exact cardinality implementations (Python
and C++/sparsehash) using the small size dataset

Implementation Time (seconds) Memory (MB) Cardinality Error

HLL 12.08 13.38 17,686,322 1.01
C++/sparsehash 344.04 2,018.50 17,510,301 0
Python 891.17 2,056.05 17,510,301 0

Table 2. Wall clock time and memory consumption for HLL and two exact cardinality implementations (Python
and C++/sparsehash) using the medium size dataset

Page 5 of 5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 7, 2016. ; https://doi.org/10.1101/056846doi: bioRxiv preprint

https://doi.org/10.1101/056846
http://creativecommons.org/licenses/by/4.0/

