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ABSTRACT

Whole Exome Sequencing (WES) is a powerful clinical diagnostic tool for discovering the
genetic basis of many diseases. A major shortcoming of WES is uneven coverage of sequence
reads over the exome targets contributing to many low coverage regions, which hinders accurate
variant calling. In this study, we devised two novel metrics, Cohort Coverage Sparseness (CCS)
and Unevenness (Ug) Scores for a detailed assessment of the distribution of coverage of
sequence reads. Employing these metrics we revealed non-uniformity of coverage and low
coverage regions in the WES data generated by three different platforms. This non-uniformity of
coverage is both local (coverage of a given exon across different platforms) and global (coverage
of all exons across the genome in the given platform). The low coverage regions encompassing
functionally important genes were often associated with high GC content, repeat elements and
segmental duplications. While a majority of the problems associated with WES are due to the
limitations of the capture methods, further refinementsin WES technologies have the potential to

enhanceits clinical applications.
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INTRODUCTION

Whole Exome Sequencing (WES) is a high throughput genomic technology that sequences
coding regions of the genome selectively captured by target enrichment strategies'. Target
enrichment is achieved by oligonucleotide probes that selectively hybridize and capture the
entire coding region of the genome, referred to as the exome**. Since the exome represents
approximately two percent of the genome, WES technology provides high coverage at alower
cost and in a shorter time than Whole Genome Sequencing (WGS) technology®. From its first
successful application in discovering the candidate gene associated with Miller syndrome®, WES
has been used to study a number of Mendelian” and complex disorders™. WES is used in the
1000 Genomes Project, the Exome Aggregation Consortium (EXAC), and the NHLBI GO exome
seguencing projects to catalog variants in the population and to identify rare variants associated
with diseases™*°. Since 2011, WES has also been routinely offered as a diagnostic tool in
clinical genetics laboratories™ . A recent study reported that in alarge cohort of patients
referred by a physician to receive genetic testing, 25% of patients received a genetic diagnosis,
including diseases such as neurodevel opmental disorders, cancer, cardiovascular disease, and
immune-related diseases™.

Several target enrichment strategies to capture exomes are available, including the widely
used Agilent SureSelect Human All Exon capture kit, Roche NimbleGen SeqCap EZ Exome
capture system, and the Illumina TruSeq Exome Enrichment kit. While the basic sample
preparation protocols are similar among these platforms, major differences liein the design of
the oligonucleotide probes, including selection of target genomic regions, sequence features and
lengths of probes, and the exome capture mechanisms®?*. This may lead to some differencesin

genes captured on each chromosome by the different platforms. In spite of its extensive use, the
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analysis of WES data till presents considerable challenges. There are significant concerns
regarding unevenness of sequence read coverage, which affects downstream analysis. For
example, even in samples with high average read depth (>75X), some regions are captured
poorly (with coverage as low as 10X), potentially resulting in missed variant calls?. Similar
issues with uneven coverage can also affect studies with target sequencing strategies, where
genomic regions with low read coverage (5X) has decreased sensitivity for detecting variants
than regions with higher coverage (20X)**?®. Studies examining the overall quality of WES data
have focused on comparing the performance of a single DNA sample or a small number (n<6) of
samplesin different capture technologies™?**’. While these studies have focused on the GC
content and overall coverage differences between different platforms, the intra-platform variation
in sequence coverage, characteristics of the low-coverage regions, and variation of coverage
across the exome have not been quantitatively evaluated. We undertook a comprehensive
assessment of sequence coverage in the human exome, and examined the variance in read depth
both between samples and across the exome. We evaluated the sequence content and
characteristics of the genomic regions contributing to systematic biases in exome sequencing
using WES data from atotal of 169 individuals obtained from three different platforms. Our
study provides quantitative metrics for systematic analysis of different parameters that could
potentially impact WES analysis, and confirms the association between low coverage regions

and occurrence of duplicated sequences and high GC content.
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RESULTS

To assess the coverage distribution of reads, we selected 169 out of 184 exome sequence samples
obtained from NimbleGen, Agilent and Illumina TruSeq platforms, with an average target
coverage of at least 75X (Figure S1, Table S1). The coverage at specific positions in the exons
varied among different samples for each of the three platformstested. For example, the average
read depth of exon 16 of TP53BP2 in two samples sequenced with NimbleGen at a smilar
average coverage (92X) was 48X and 92X, respectively. This inconsistency in coverage
digtribution resulted in arange of 10X-500X read depth at several regionsin the exome when
multiple samples were run on the same platform. Such regions of highly variable read coverage
mapping within disease-associated genes can affect the accuracy of current variant calling
algorithmsin genetic studies. To characterize the distribution of sequence reads along the exome,
we devel oped two metrics, Cohort Coverage Sparseness (CCS) and Unevenness (Ug) scores. The
CCS score provides an assessment of coverage of all exons across the genome (global) in the
given platform, while the Ug score provides an assessment of coverage of a given exon (local)

across different platforms.

Coverage deficiencies determined by CCS Score

Read coverage of a position in the genomeis considered deficient if the number of reads mapped
to that position is less than 10 reads”’. The CCS score is defined as the percentage of low
coverage (<10X) bases within a given exon in multiple WES samples. The CCS scoreis
estimated by first calculating the read depth for each base position in a given exon, and then
determining the median percentage of samples with low coverage at that region (see Methods).

The resulting CCS score may vary between 0 and 1, with high CCS scores indicating low
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sequence coverage. We plotted CCS scores for all genes against the chromosome positionsin a
modified Manhattan plot (Figure 1). As shown in the figure, a mgjority of genes (>88%) were
clustered in the low CCS score region (<0.2), indicating good coverage in all three platforms
(Figure 1A-C). The remaining genes with CCS scores >0.2, which contain low coverage
regions, were scattered throughout the plot. In those low coverage genes, CCS score >0.5
indicates nearly half of the regions have less than 10X read depth. The distribution of CCS
scores is skewed to the right when plotted as a histogram (Figure S2), consistent with the pattern
shown in Figure 1. Further, the data generated from Illumina TruSeq have the lowest percentage
of low coverage genes (~7%), compared with data generated by the capture kits from NimbleGen
(~10%) and Agilent (~11%), as shown in Table 1. The differences in these percentages could be
due to differences in the design of probes that target the exome in these platforms®. Table S2
lists all autosomal low coverage genes identified in the three WES platforms compared to a
WGS dataset.

The low coverage regions (CCS>0.2) varied significantly across all chromosomesin the
three platforms analyzed (Table S3; chi-square test p-value <2.2x10°). Chromosomes 6 and 19
have a higher proportion of low coverage genes compared to other chromosomes. A low
coverage gene cluster on chromosome 6 (cytobands 6p21.33 and 6p21.32) corresponded to the
genes encoding human leukocyte antigen, which are known to be polymorphic and have alleles
showing high sequence identity®®?°. Similarly, chromosome 19 is known to carry a high
proportion of tandem gene families, repeat sequences, and segmental duplications (SD)®. These

sequence features potentially affect accurate mapping of reads, leading to low coverage regions.

Coverage non-unifor mity deter mined by Ug Score
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The Ug score provides a measure of non-uniformity calculated after smoothing the coverage
distribution curves and identifying peaks and troughs along the curve (Figur e 2, see Methods). It
is calculated based on the number and structural features (height, width, base) of the coverage
peaks. The Ug score increases with an increase in the number and relative height of peaks within
agiven exon. For regions with uniformly distributed coverage, the Ug scoreis 1; for regions with
uneven coverage, the Ug scoreis greater than 1. To illustrate how Ug score varies among
different platforms, we chose the last coding exon of ZNF484, which had high (CCS scores <
0.01) but variable (Ug score 72.2-141.9) coverage across the different platforms, indicating
inconsistent coverage (Figure 3).

We also observed a positive association between exon length and the Ug scorein all three
platforms as shown in the scatter plot (Figure 4). The Pearson correlation coefficient for all
platforms was >0.7 (NimbleGen, 0.80, Agilent, 0.71; TruSeq, 0.70). The Ug score was
significantly different for longer exons (>400 bp) among the three platforms tested (Friedman
test, p-value <2.2x10*%). When the coverage distribution of the neighboring exons was
examined, we found inconsistencies in the rank order of read coverage among samples tested on
the same platform (Figur e S3). Since most of the current methods for calling copy number
variations (CNVs) are based on detecting continuous depletion or enrichment after normalizing

1-
53 33

for coverage of adjacent exon , thislack of consistency of rank orders between closely

occurring exons could affect CNV calling from exon read depths.

L ow coverageregions are enriched within repeat e ements
Since chromosomes 6 and 19 contain repeat el ements and clustered gene families that accounted

for specific regions showing low coverage, we checked if these sequence features globally
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correspond with the occurrence of low coverage. In one study, SD regions from the Agilent WES

dataset and the Segmental Duplication Database (http://humanparal ogy.gs.washington.edu) were

cross-referenced with the low coverage genes obtained from our analysis, and examined for the
percentage of reads that mapped unambiguoudly to off-target regions. The percentage of off-
target reads with multiple hitsin SD regions (50%) was about double that of those found in
unique regions (26%). These results suggest that the mapping method may also contribute to the
missing coverage.

Because SD regions share similar features with repeat e ements, we next tested if low
coverage regions were associated with underlying repeat sequences. We first examined the 358
bp exon 1 of MAST4, which containsa 22 bp low complexity repeat e ement predicted by
RepeatM asker (http://www.repeatmasker.org), in four samples sequenced with the NimbleGen
platform with highly variable overall coverage (75X-200X). As shown in Figure5, the coverage
was high (30X) for sequence base positions 1-200 in samples with high average coverage. The
read depth at each nucleotide in this region remains high. In contrast, the coverage falls
dramatically (to <10X) between base positions 200-358, with corresponding low read depth at
each nucleotide in thisregion. The low coverage region is greater than atypical exome capture
probe size (50-150 bp), indicating that influences of a repeat element can extend beyond its
location. This shows that even when using a platform with high variability in coverage across
samples, some genomic regions associated with repeat sequences can consistently show low
coverage.

To test for aglobal association between the occurrence of repeat elements and low
coverage, we examined all the troughs (from Ug score calculations) in coverage in the 169

samples studied. Repeat elements predicted by RepeatM asker coincided with extremely low
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troughs (median coverage <10X) for a mgority of the exons (60% to 69% of exons tested on the
three platforms), especially for exons >200 bp in size. For example, as shown in Figure $4,
multiple repeat elements occur in the extremely low trough region (positions 1 to 400 bp) in the
last coding exon of CASZ1. This suggests that coverage troughs are highly associated with repeat
segquences. However, we also find that several troughs contain repeat € ements that are not

annotated by RepeatM asker when default parameters are used (Figure S5).

Negative association between GC content and sequence cover age

323'35-37, we

Since GC content is one of the mgjor factors contributing to low coverage in WES dat
investigated whether there is an association between GC content and CCS score. We used a
density curve plot and a modified density plot, which visualizes the distribution of GC content of
genes with the corresponding CCS scores (Figure 6, Figure S6). Based on GC content, we were
able to clearly distinguish exons with CCS score <0.2 from exons with CCS score >0.2. Thus,
high GC content correlated with high CCS scores, and therefore with lower coverage regions.
Exons with good sequence coverage (CCS<0.2) were clustered in the intermediate GC content
regions (between 30 -70%). In contrast, a higher density of low coverage exons (CCS>0.2) was
observed in regions with relatively high GC content (>70%). Very few good coverage exons
were present in regions with less than 20% or more than 80% GC content (T able $4). However,
some poorly covered exons (CCS>0.8) were found in the intermediate GC content regions

(<70% and > 30%), suggesting that there may be other factors contributing to the low coverage

within these regions.

L ow cover age r egions contain functionally relevant genes
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To examine whether low coverage regions had functional significance, we conducted Functional
Disease Ontology Annotations (FUnDO)® of 832 low coverage genes that were common to all
three platforms (Figure 7A). Result showed enrichment of genesimplicated in leukemia,
psoriasis, and heart failure (Figure 7B). We aso examined the coverage of genes that American
College of Medical Genetics and Genomics (ACMG) recommends for pathogenic variant
discovery and clinical reporting®“. Of the 59 genes examined, six genes, including, KCNH2,
KCNQ1, SDHD, TNNI3, VHL, and WT1, mapped within low coverage regionsin one or more
samples (with average coverage >75X) (Figur e S7). These results suggest that low coverage
regions within functionally important genes could affect variant discovery and subsequent

clinical diagnosis.

L ow coverageismore of an issue for WES than WGS based platforms

We examined differences in the exon coverage between the WES and WGS datasets to test
whether mapping issues were common to both platforms. We examined the CCS scores for all
genes (Figure 1D), and the Ug scores (Figure 4) and GC content (Figure 6D) for all exons. For
WGS datasets with an average coverage of about 60X (Table S2), only 15 genes with high CCS
scores were observed in the modified Manhattan plot (Figure 1D). In contrast, for WES
platforms with an average coverage of >75X, over 1,000 genes with high CCS scores were
observed (Figure 1A-C). Similarly, the Ug score for al exonsin the WGS analysis was
significantly lower compared to the WES analysis (Friedman’s test, p<2.2x10*¢). As shown in
Figure 4, the Ug score increased dlightly with increased size of the exon. To examine how GC
content affects coverage in the WGS dataset, we generated probability density curves for GC

content for different gene groups (Figure 6). In all the three WES platforms, we found a
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dramatic shift in the density plots for high coverage genes compared to low coverage genes
based on GC content. In comparison, for the WGS platform, the shift in GC content between the
exons with high and low CCS scores was minimal. Thus, GC content appears to have less
influence on sequence coverage in WGS than WES analysis. These results suggest that problems
of low coverage are specific to WES platforms, and these limitations could be contributed by
technological differences (such as capture bias) in WES **%, Therefore, the methods devel oped

for WGS analysis require further modifications before application to WES platforms.

DISCUSSION
WES is apowerful clinical diagnostic tool for identifying disease-associated variantsin
patients**. Since most known Mendelian disorders are associated with mutationsin the coding
regions, focusing on sequencing exomes rather than whole genomes is efficient in terms of time,
expense and coverage’. Recent studies have successfully used WES technology to identify
variants that strongly correlate with disease phenotypes'®?*“¢4’. However, high-resolution
examination of different WES datasets shows uneven coverage along the length of exons, which
could cause possible problemsin variant calling analysis. This affects identification of de novo
variations that may be clinically important. In this study, we systematically examined different
parameters that could potentially impact WES analysis and identified key issues associated with
seguence architecture contributing to the low coverage.

We analyzed WES data captured by three major platforms. NimbleGen CapSeq V2,
Agilent SureSelect V2 and Illumina TruSeg. All three platforms are based on similar target
enrichment protocols and cover >95% of RefSeq™® coding region with >88% low CCS scores.

These platforms differ from one another in the layout and length of probes. Most importantly,

11
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while NimbleGen uses overlapping probes, Agilent uses tiling probes, and I1lumina uses gapped
probes 2% This difference in probe design contributes towards inconsistency in the coverage,
creating systematic biases and preventing the combining of datasets from different platforms for
SNV and CNV detection??**". Thisis amajor concern, especially with large cohort studies
involving multiple centers using different platforms. While the heterogeneity of the cohorts and
the differences in the number of samples in each cohort could potentially affect our conclusions
on the evaluation of the WES platforms (for example, cancer samples in the TruSeq data versus
samples from the developmental disorder cohort in the NimbleGen data), we find a common set
of genes that are affected by low coverage irrespective of differencesin protocols, tissue
samples, and sequencing and platform biases. In fact, 832 genes are covered at low depth in all
the three platforms (Figure 7).

Even in the data generated by a single platform, the coverage distribution varied among
different exons. Several factorsincluding size of the exon, GC content, presence or absence of
repeat elements, and segmental duplications affect the coverage. The uniformity of coverage
distribution decreases for longer exons. For a given exon, the pattern of coverage varied among
different platforms even for genes with high coverage (Figure 3), making it difficult to
normalize the background coverage for CNV calling. As shown in our study, coverage in regions
with extremes of GC content (<30%; >70%) was low reflecting poor capture efficiency. In
contrast, no such correlation was observed for regions with moderate GC content (30-70%). The
coverage was also affected by the presence of repeat e ements. Even simple repeat elements as
small as 22 bp may contribute to low coverage. Those platforms, which use RepeatMasker in
probe design, are likely to miss exonic regions containing repetitive elements. We also note that

while the CCS and Ug metrics are useful in identifying areas of the genome with uneven
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coverage across multiple samples, they will miss genomic regions that have consistently low
coverage across all tested samples.

Several studies comparing technologies have found WGS to be superior to WES™49%°,
The parameters affecting coverage including GC content, uniformity of the coverage, and read
depths were examined. Our results are cons stent with these findings. Although WGS data has
lower average coverage, the coverage depth along exons is more uniformly distributed. WGS
data have fewer sparse regions, which may contribute to lower numbers of false negative variant
calls. However, with more than 100,000 exomes sequenced to date, WES has become the major
genetic tool in several diagnostic centers™**. A thorough understanding of the limitations of each
of the WES platformsis thus important. Modifications in the design of the targeted sequence
capture technology and improvements in mapping algorithms are essential for accurate calling of

variants and filling the gaps in heritability estimates of genetic disease.

13


https://doi.org/10.1101/051888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/051888; this version posted March 19, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

MATERIALSAND METHODS

Datasetsand Pre-processing

Datasets:. WES data generated from NimbleGen SeqCap, Agilent SureSelect, and Illumina
TruSeq were obtained for analysis from the dbGaP (the database of Genotypes and Phenotype)®
and SRA (Sequence Read Archive) databases™. WGS sample data were obtained from the 1000

Genomes Project, Phase 3 analysis *. Detailed information for each dataset is listed in Table S1.

Mapping of reads: All SRA files of exome samples downloaded from different databases were
first converted to FASTQ files using the SRA Toolkit>. Then, raw sequence reads were mapped
to the reference genome using Bowtie2 version 2.1.0, with default parameters™. We used the
hg19/GRCh37 assembly of the human genome as the reference sequence throughout the
analysis, and SAMtools version 1.2 was used to sort reads and remove PCR duplicates™. The
WGS dataset was downloaded asraw FASTQ files from the 1000 Genomes servers, and were
mapped using Bowtie2 version 2.1.0, with parameter —X 1500 to adjust the maximum insert size
for valid paired-end alignments™. Mapping statistics for each data set, including average library

size, number of mapped reads, percent PCR duplicates, and coverage are listed in Table S5.

Reads with low mapping qualities were retained in order to identify all regions with low
coverage. We note that Bowtie2, like other alignment software, randomly assigns readsto a
location if multiple optimal locations are identified™. Aswe retained such reads, coverage of
highly homologous genomic regions may differ between multiple alignments of the same
sample. However, when we compared the average mappability of each region®’ to both CCS and

Ue metrics, we found no statistical correlation to our metrics (Figure S8).

14
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Exome and gene sets annotation: Overlapping exons of the same gene from different transcripts
were merged to create a consensus exome annotation file from the RefSeq database using an in-
house pipeline. Target regions obtained from three different capture kits were mapped and
intersected with the consensus exome annotation file. These target regions were then sorted by
genomic coordinates on chromosomes and defined as target exon regions. For WGS data
analysis, al exonsin the consensus exome annotation file were used as target exon regions. Only

autosomal chromosomes 1 to 22 were included in thisanalysis.

Coverage calculation: BEDTools version 1.v2.18.2% was used to calculate the single base pair

coverage of all BAM files at all positions covered in the exome annotation file.

Metricsto Evaluate Low Cover age Regions

CCSscore: The CCS score for all exons and genes was cal culated with the ExomeCQA program.
The CCS score provides a measure of percentage of base pairsin agiven region for which
coverageislessthan 10 reads in multiple samples (see Figure S9). The CCS scoreis calculated

by the formula:

CCS = mediany (=2

R
where, N isthe total number of samples; # is the count of the genomic positions with read depth
less than 10X; c;isthe coverage at genomic position I; and Lris the length of the region of

interest.
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Ue of coverage: The Ug metric was introduced to measure the non-uniformity of the coverage

over targeted regions, and is calculated using ExomeCQA. The scoreis based on peaks and
troughsin the coverage. For atargeted region, the median coverage at each genomic position is
computed from all the samples. The median coverage is smoothed against base position using the
LOWESS (locally weighted scatterplot smoothing)® method with an empirically selected span
0.03, which dampens the locus-to-locus variability of the curve so that local trends can be
detected. Here we defined “span” as a parameter that represents the proportion of the total
number of base positions of the exon region that contribute to each locally fitted coverage value.
We used a percentage-based span parameter instead of a constant base-pair parameter in the
LOWESS method, as we wanted to consider the length of the peak in relation to the length of the
exon after smoothing. Using a percentage-based span will allow smaller peaks and troughsin the
shorter exon, whilein longer exons small peaks and troughs will be smoothed over. Thisjustifies
considering all peaks when calculating the Ug formula. Peaks and troughs of the median
coverage were identified by a Hill Climbing local optimization algorithm®, which was
implemented by scanning all base positions and identifying the positions without increasing or
decreasing neighbors in the smoothed coverage curve. The height and width of the peaks were
then used to calculate the unevenness score by the following formula:

N
e = H/B
P LWLy

where Ug is unevenness score, N is number of peaks, H is height of the peak, B is base of the

peak, and W is width of the peak.

We note that the library size is not considered in Ug score calculation. When the local coverage

is proportional to the library size, samples with (for example) double the coverage should have
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peaks that are twice as high. In the high coverage regions, we expect the coverage to be
proportional to the library size. If the low coverage regions are also proportional to the library
size, then height and base will change proportionally and Ug will remain the same. However, we
have already seen (Figure 6) that there are some exonic regions in which no reads map. In that
case, the height of the peak increases but the height of the base does not, increasing Ug. This
adaptation to library size seems appropriate, since in the former case the relative size of the
peaksis maintained, whereas in the latter case, the higher peaks do actually lead to less even
coverage.

Program ExomeCQA: ExomeCQA was written to calculate different metrics of cohort exome
sequencing data from coverage files input. This program was written in C++ and can be

downloaded at http://exomecga.sourceforge.net.

Statistical Methods
All the statistical tests were conducted in R. The Manhattan plots of CCS scoresin all

chromosomes were generated with the “GWASTool” ®*

package. The density plot of GC content
and low coverage regions was generated with the package “ GenePlotter” 2. Both packages are

hosted in Bioconductor®.
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Table 1. Low coverage geneswith high CCS scoresin three different datasets

Geneswith CCS> Geneswith CCS>

Platforms Genes* 0.2 (%) 0.5 (%)
NimbleGen 18,024 1,819 (10%) 428 (2%)
Agilent 17,780 2,025 (11%) 374 (2%)
[llumina TruSeq 17,866 1,252 (7%) 228 (1.3%)

*Gene setsin different platforms were defined as described in the M ethods section.
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FIGURE LEGENDS

Figure 1. CCS scores of targeted Ref Seq genes along the whole chromosome in WES and WGS
datasets. The CCS values are plotted along the length of each chromosome in a modified
Manhattan Plot for WES datasets obtained from (A) NimbleGen, (B) Agilent, (C) lllumina

TruSeq, and (D) WGS dataset from 1000 Genomes project.

Figure 2: Characterizing the coverage distribution with the Unevenness (Ug) score. (A) The
coverage distribution from multiple samplesis plotted against the exon length. (B) The smoothed
median coverage plotted against the exon length, obtained by first calculating median coverage
for each position and then using LOWESS smoothing. Peaks and troughs were then identified by
using alocal optimization algorithm. Arrows indicate peaksidentified in the curve: B, base, W,

width and H, height of the peak, L, length of the region analyzed

Figure. 3: Base coverage distribution along the length of the last coding exon of gene ZNF484

from WES datasets obtained from (A) NimbleGen, (B) Agilent, and (C) Illumina TruSeq.

Figure 4. Scatterplot of Unevenness (Ug) scores againgt exon size in WES and WGS datasets.

Figure. 5. Concurrence of repeat elements and coverage sparseness. (A) Base coverage
digtribution along the length of the first coding exon of MST4. WES samples from the
NimbleGen platform with different average coverage ranging from 75X to 200X are shown in
different colors. Arrow indicates the point at which coverage falls sharply. (B) UCSC browser

screen shot of MST4 genomic region, black bar indicates the position of the repeat element.
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Figure. 6: The probability density curves showing GC content in sets of genes with different
coverage. Thedistribution of GC content of all genes (black), high coverage genes with CCS

score < 0.2 (green), low coverage genes with CCS score > 0.2 (blue) are represented.

Figure. 7: Genes with low coverage in three different datasets. (A) Venn diagram showing
number of low coverage genes (CCS score > 0.2) across three different platforms. There are 832
genes with low coverage in common across all platforms. (B) Network diagram showing disease
ontology analysis of the 832 |ow-coverage genes showing associations with leukemia, psoriasis,

heart failure, and mucocutaneous lymph node syndrome.
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