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Abstract 

Humans prioritize different semantic qualities of a complex stimulus depending on their 

behavioral goals. These semantic features are encoded in distributed neural populations, yet it 

is unclear how attention might operate across these distributed representations. To address 

this, we presented participants with naturalistic video clips of animals behaving in their natural 

environments while the participants attended to either behavior or taxonomy. We used models 

of representational geometry to investigate how attentional allocation affects the distributed 

neural representation of animal behavior and taxonomy. Attending to animal behavior 

transiently increased the discriminability of distributed population codes for observed actions 

in anterior intraparietal, pericentral, and ventral temporal cortices. Attending to animal 

taxonomy while viewing the same stimuli increased the discriminability of distributed animal 

category representations in ventral temporal cortex. For both tasks, attention selectively 

enhanced the discriminability of response patterns along behaviorally relevant dimensions. 

These findings suggest that behavioral goals alter how the brain extracts semantic features 

from the visual world. Attention effectively disentangles population responses for downstream 

read-out by sculpting representational geometry in late-stage perceptual areas. 
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Introduction 

The brain’s information processing machinery operates dynamically to accommodate diverse 

behavioral goals. Selective attention reduces the complexity of information processing by 

prioritizing representational content relevant to the task at hand (Tsotsos 2011). The attention 

literature has focused mostly on early vision, employing rudimentary visual stimuli and simple 

tasks to probe task-related changes in the representation of low-level visual information, such 

as orientation and motion direction (Carrasco 2011). Humans, however, perceive and act on 

the world in terms of both semantically-rich representations and complex behavioral goals. 

Naturalistic stimuli, although less controlled, serve to convey richer perceptual and semantic 

information, and have been shown to reliably drive neural responses (Hasson et al. 2004; 

Haxby et al. 2011; Huth et al. 2012, 2016; Guntupalli et al. 2016). 

The brain encodes this sort of complex information in high-dimensional representational 

spaces grounded in the concerted activity of distributed populations of neurons (Averbeck et 

al. 2006; Kriegeskorte et al. 2008a; Haxby et al. 2014). Population coding is an important motif 

in neural information processing across species (Dayan and Abbott 2001), and has been well-

characterized in early vision (Chen et al. 2006; Miyawaki et al. 2008; Graf et al. 2011), face and 

object recognition (Rolls and Tovee 1995; Hung et al. 2005; Kiani et al. 2007; Freiwald and 

Tsao 2010), and other sensorimotor and cognitive domains (Georgopoulos et al. 1986; Lewis 

and Kristan 1998; Uchida et al. 2000; Rigotti et al. 2013). Multivariate decoding analyses of 

human neuroimaging data have allowed us to leverage distributed patterns of cortical 

activation to provide a window into the representation of high-level semantic information 

(Haxby et al. 2001, 2014; Kriegeskorte et al. 2008a; Mitchell et al. 2008; Oosterhof et al. 2010, 

2012; Connolly et al. 2012, 2016; Huth et al. 2012; Sha et al. 2015), but these studies generally 
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assume that neural representations are relatively stable, rather than dynamic or context-

dependent. 

Electrophysiological work on attentional modulation has typically been constrained to single 

neurons (Treue and Martínez Trujillo 1999; Reynolds et al. 2000; Reynolds and Heeger 2009). 

For example, attention shifts the balance between excitatory and suppressive neural activity to 

accentuate the responses of neurons tuned to task-relevant features (Reynolds and Heeger 

2009), and object categorization training increases selectivity for task-relevant stimulus 

features in in macaque temporal cortex neurons (Sigala and Logothetis 2002). More recent 

work has suggested that task demands may alter population encoding to sharpen attended 

representations (Cohen and Maunsell 2009; Ruff and Cohen 2014; Downer et al. 2015). In line 

with this, a handful of recent neuroimaging studies have examined how task demands affect 

multivariate pattern classification (Serences and Boynton 2007; Peelen et al. 2009; Jehee et al. 

2011; Brouwer and Heeger 2013; Sprague and Serences 2013; Harel et al. 2014; Erez and 

Duncan 2015). In particular, Brouwer and Heeger (2013) demonstrated that when participants 

perform a color naming task, distributed neural representations of color in two early visual 

areas become more categorical—that is, the neural color space is altered such that within-

category distances decrease while between-category colors increase. In a related approach, 

Çukur and colleagues (2013) used a natural vision paradigm to demonstrate that performing a 

covert visual search task for either humans or vehicles in natural scenes drives widespread 

shifts in voxelwise semantic tuning, even when these target objects are not present in the 

stimulus. With the exception of this study, most prior work has investigated only simple visual 

stimuli such as oriented gratings, moving dots, colors, and static object images. The current 

study aims to directly investigate task-related changes in the geometry of distributed neural 
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representation of high-level visual and semantic information about animal taxonomy and 

behavior conveyed by dynamic, naturalistic stimuli. 

We hypothesized that, in order to interface with distributed neural representations, attention 

may operate in a distributed fashion as well—that is, by selectively reshaping representational 

geometry (Edelman 1998; Kriegeskorte and Kievit 2013). This hypothesis was motivated by 

behavioral and theoretical work suggesting that attention may facilitate categorization by 

expanding psychological distances along task-relevant stimulus dimensions and collapsing 

task-irrelevant distinctions (Nosofsky 1986; Kruschke 1992). Here we aimed to provide neural 

evidence for this phenomenon by examining how task demands affect the distributed neural 

representation of two types of semantic information thought to rely on distributed population 

codes: animal taxonomy (Connolly et al. 2012, 2016; Sha et al. 2015) and behavior (Oosterhof 

et al. 2010, 2012, 2013). We operationalize attention broadly in this context as the modulatory 

effect of top-down task demands on stimulus-evoked neural representation; at minimum, the 

1-back task requires participants to categorize stimuli, maintain the previously observed 

category in working memory, and compare the currently observed category with the prior 

category, and execute (or withhold) a motor response. To expand on previous work, we used 

dynamic, naturalistic video clips of animals behaving in their natural environments. These 

stimuli not only convey information about animal form or category, but also behavior, allowing 

us to examine how attention affects the neural representation of observed actions (Oosterhof 

et al. 2013), which has not previously been studied. Categorical models of representational 

geometry were employed to demonstrate that attention selectively alters distances between 

neural representations of both animal taxonomy and behavior along task-relevant dimensions. 
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Materials and Methods 

Participants 

Twelve right-handed adults (seven female; mean age = 25.4 ± 2.6 SD years) with normal or 

corrected-to-normal vision participated in the attention experiment. Participants reported no 

neurological conditions. Additionally, 19 adults, including the 12 from the attention experiment, 

participated in a separate scanning session for the purposes of hyperalignment. All participants 

gave written, informed consent prior to participating in the study, and the study was approved 

by the Institutional Review Board of Dartmouth College. 

Stimuli and design 

Each of the 20 conditions in the fully-crossed design comprised two unique exemplar clips of 

animals from five taxonomic categories (primates, ungulates, birds, reptiles, insects) 

performing actions from four behavioral categories (eating, fighting, running, swimming) as well 

as their horizontally-flipped counterparts, for a total of 40 clips and 80 total exemplars 

(Supplementary Table 1, Supplementary Video 1). The four behavioral categories and five 

taxonomic categories roughly correspond to intermediate levels of noun and verb category 

hierarchies (Fellbaum 1990; Rosch 1978). Note that although the taxonomy and behavior 

factors are orthogonalized at the level of categorization relevant for the task, orthogonalizing 

lower-level variables (e.g., the specific animal performing each behavior) is not feasible in 

naturalistic contexts. Each trial consisted of a 2 s video clip presented without sound followed 

by a 2 s fixation period in a rapid event-related design. Clips for the attention experiment were 

extracted from nature documentaries (Life, Life of Mammals, Microcosmos, Planet Earth) and 

YouTube videos matched for resolution. The clips used in the attention experiment were not 

included in the segment of the documentary presented for the purpose of hyperalignment. All 

80 stimuli, as well as four behavior repetition events, four taxon repetition events, and four null 
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events were presented in pseudorandom order in each of 10 runs, resulting in 92 events per 

run, plus 12 s fixation before and after the events of interest, for a total run length of 392 s 

(~6.5 min). Ten unique runs were constructed for a total scan time of approximately 65 min, 

and run order was counterbalanced across participants. At the beginning of each run, 

participants were instructed to pay attention to either taxonomy or behavior types and press 

the button only when they observed a category repetition of that type. Prior to scanning, 

participants were verbally familiarized with the categories and their constituents (e.g., the 

“ungulates” category includes quadrupedal, hoofed, herbivorous mammals such as horses). 

There were five behavior attention runs and five taxonomy attention runs presented in 

counterbalanced order across participants. 

For each run, a pseudorandom trial order was first constructed such that no taxonomic or 

behavioral categories were repeated (adjacent in the trial order). Next, four taxonomic category 

repetition events and four behavioral category repetition events were inserted as sparse catch 

trials such that a repetition event of each type fell on a random trial within each quarter of the 

run (without inducing unplanned repetitions). Each repetition event repeated either the 

taxonomic or behavioral category of the preceding stimulus and varied on the other dimension. 

There were no repetitions of the same clip exemplar (or its horizontal mirror image). Four 

additional 2 s null events consisting of only a fixation cross were inserted into each run to 

effect temporal jittering. 

The same button was pressed for repetitions of both types. Button presses were only elicited 

by repetition events and were therefore sparse. Participants were informed that repetition 

events would be sparse and that they should not pay attention to or press the button if they 

noticed repetitions of the unattended type. Participants were only instructed to maintain 

fixation when the fixation cross was present, not during the presentation of the clips. 
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In an independent scanning session, participants were presented with approximately 63 min of 

the Life nature documentary narrated by David Attenborough for the purpose of 

hyperalignment. The documentary was presented in four runs of similar duration, and included 

both the visual and auditory tracks. In the movie session, participants were instructed to 

remain still and watch the documentary as though they were watching a movie at home. All 

stimuli were presented using PsychoPy (Peirce 2007). 

Image acquisition 

All functional and structural images were acquired using a 3 T Philips Intera Achieva MRI 

scanner (Philips Medical Systems, Bothell, WA) with a 32-channel phased-array SENSE 

(SENSitivity Encoding) head coil. For the attention experiment, functional images were acquired 

in an interleaved fashion using single-shot gradient-echo echo-planar imaging with a SENSE 

reduction factor of 2 (TR/TE = 2000/35 ms, flip angle = 90°, resolution = 3 mm isotropic, matrix 

size = 80 × 80, FOV = 240 × 240 mm, 42 transverse slices with full brain coverage and no gap). 

Each run began with two dummy scans to allow for signal stabilization. For each participant 10 

runs were collected, each consisting of 196 dynamic scans totaling 392 s (~6.5 min). At the 

end of each scanning session, a structural scan was obtained using a high-resolution T1-

weighted 3D turbo field echo sequence (TR/TE = 8.2/3.7 ms, flip angle = 8°, resolution = 1 mm 

isotropic, matrix size = 256 × 256 × 220, FOV = 240 × 188 × 220 mm). 

For the movie session, functional images also were acquired in an interleaved order using 

single-shot gradient-echo echo-planar imaging (TR/TE = 2500/35 ms, flip angle = 90°, 

resolution = 3 mm isotropic, matrix size = 80 × 80, and FOV = 240 × 240 mm; 42 transverse 

slices with full brain coverage and no gap). Four runs were collected for each participant, 

consisting of 374, 346, 377, and 412 dynamic scans, totaling 935 s (~15.6 min), 865 s (~14.4 

min), 942.5 s (~15.7 min), and 1030 s (~17.2 min), respectively. At the end of this session, a 
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structural scan was obtained using a high-resolution T1-weighted 3D turbo field echo 

sequence (TR/TE = 8.2/3.7 ms, flip angle = 8°, resolution = 1 mm isotropic, matrix size = 256 × 

256 × 220, and FOV = 240 × 188 × 220). For participants included in both the attention 

experiment and the movie session, structural images were registered and averaged to increase 

signal-to-noise ratio. 

Preprocessing 

For each participant, functional time series data were de-spiked, corrected for slice timing and 

head motion, normalized to the ICBM 452 template in MNI space, and spatially smoothed with 

a 4 mm FWHM Gaussian kernel using AFNI (Cox 1996). Functional images were then motion-

corrected in two passes: first, functional images were initially motion corrected, then averaged 

across time to create a high-contrast reference volume; motion correction parameters were 

then re-estimated in a second pass using the reference volume as the target. Affine 

transformation parameters were then estimated to coregister the reference volume and the 

participant’s averaged structural scans. Each participant’s averaged structural scan was then 

normalized to the ICBM 452 template in MNI space. These transformation matrices were 

concatenated and each participant’s data were motion-corrected and normalized to the 

template via the participant’s anatomical scan in a single interpolation step. All subsequent 

analyses were performed in MNI space. Signal intensities were normalized to percent signal 

change prior to applying the general linear model. 

Functional time series from the Life movie session were analyzed using the same 

preprocessing pipeline. Prior to hyperalignment, time series data were bandpass filtered to 

remove frequencies higher than 0.1 Hz and lower than 0.0067 Hz. Head motion parameters 

and the mean time series derived from the FreeSurfer segmentation of the ventricles were 

regressed out of the signal. 
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Cortical surfaces were reconstructed from structural scans using FreeSurfer, aligned according 

to curvature patterns on the spherical surface projection (Fischl et al. 1999), and visualized 

using SUMA (Saad et al. 2004).  

General linear model 

A general linear model (GLM) was used to estimate BOLD responses for each of the 20 

conditions for each task using AFNI’s 3dREMLfit. Stimulus-evoked BOLD responses to each 

event were modeled using a simple hemodynamic response function (AFNI’s GAM response 

model) adjusted for a 2 s stimulus duration. Nuisance regressors accounting for repetition 

events, button presses, and head motion were included in the model. For representational 

similarity analyses, beta parameters were estimated over the five taxonomy attention runs, then 

separately over the five behavior attention runs. Time points subtending abrupt head 

movements greater than roughly 1 mm of displacement or 1 degree of rotation were censored 

when fitting the general linear model. Response patterns were estimated from the 80 trials in 

each run, excluding repetition trials. For each of the two attention conditions, four trials per run 

from each of five runs contributed to the stimulus-evoked response pattern for each 

taxonomic–behavioral category condition, meaning that each pattern was estimated from 20 

trials presented in pseudorandom order over the course of five separate runs (interspersed with 

runs from the other attention condition). Therefore we expect these response patterns (and the 

subsequent neural representational geometries) to be relatively robust to instrumental noise, 

temporal autocorrelation and intrinsic physiological correlations in the preprocessed time 

series data (Henriksson et al. 2015). Betas for each voxel were z-scored across the 20 

conditions per feature before and after hyperalignment, and prior to any multivariate analysis. 

Note that constructing neural representational dissimilarity matrices (RDMs) by computing the 

correlation distance between response pattern vectors (rather than, e.g., Euclidean distance) 
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entails that the subsequent multivariate analyses are invariant to differences in regional-

average activity levels within a searchlight or ROI (Kriegeskorte et al. 2008b). For searchlight 

classification analyses (Supplementary Fig. 2), beta parameters were estimated separately for 

each run. 

Whole-brain hyperalignment 

Surface-based searchlight whole-brain hyperalignment (Haxby et al. 2011; Guntupalli et al. 

2016) was performed based on data collected while participants viewed the Life nature 

documentary. Each surface-based searchlight referenced the 200 nearest voxels from the 

associated volume, selected based on their geodesic proximity to the searchlight center. The 

time series of response patterns elicited by the movie stimulus was rotated via the Procrustes 

transformation in order to achieve optimal functional alignment across participants and the 

estimated transformation matrices for each searchlight were aggregated (Supplementary Fig. 

1A). Hyperalignment transformation parameters estimated from the movie data were then 

applied to the independent attention experiment data. Subsequent analyses were applied to 

the hyperaligned data. All multivariate pattern analyses were performed using the PyMVPA 

package (www.pymvpa.org; Hanke et al. 2009). 

Searchlight representational similarity regression 

Representational similarity analysis (Kriegeskorte et al. 2008b) was applied using 100-voxel 

surface-based searchlights (Kriegeskorte et al. 2006; Oosterhof et al. 2011). Each surface-

based searchlight referenced the 100 nearest voxels to the searchlight center based on 

geodesic distance on the cortical surface. Pairwise correlation distances between stimulus-

evoked response patterns for the 20 conditions were computed separately for each task. 

These pairwise distances were collated into a representational dissimilarity matrix (RDM) 

describing the representational geometry for a patch of cortex (Kriegeskorte and Kievit 2013). 
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Two categorical target RDMs were constructed based on the experimental design: one of 

these RDMs discriminated the animal taxa invariant to behavior, the other discriminated the 

behaviors invariant to taxonomy. Least squares multiple regression was then used to model the 

observed neural RDM as a weighted sum of the two categorical target RDMs. For each 

searchlight, both the observed neural RDM and the target RDMs were ranked and 

standardized prior to regression (see Saltelli et al. 2004). Since we suspect the neural 

representational space does not respect the magnitude of dissimilarity specified by our 

models, we relax the linear constraint and ensure only monotonicity (analogous to Spearman 

correlation, keeping with Kriegeskorte et al. 2008b). Although applying the rank transform prior 

to least squares linear regression is relatively common practice, this approach may emphasize 

main effects at the expense of interaction effects; however, in the current experiment, we have 

no a priori hypotheses corresponding to interaction terms. Intercept terms in the estimated 

models were negligible across all searchlights, task conditions, and participants. The 

searchlight analysis was performed in the hyperaligned space, then the results were projected 

onto the cortical surface reconstruction for the participant serving as the reference participant 

in the hyperalignment algorithm. 

Statistical assessment of searchlight analysis 

To assess the statistical significance of searchlight maps across participants, all maps were 

corrected for multiple comparisons without choosing an arbitrary uncorrected threshold using 

threshold-free cluster enhancement (TFCE) with the recommended values (Smith and Nichols 

2009). A Monte Carlo simulation permuting condition labels was used to estimate a null TFCE 

distribution (Oosterhof et al. 2012, 2016). To test the null hypothesis that response patterns 

contain no information about the 20 taxonomy–behavior conditions separately for each task 

condition, we permuted the 20 condition labels. To test the null hypothesis that task does not 
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affect representational geometry, we permuted the sign of the difference between regression 

coefficients (following representational similarity regression) for the two tasks. First, 100 null 

searchlight maps were generated for each participant by randomly permuting the 20 condition 

labels within each observed searchlight RDM, then computing the regression described above. 

Next, we randomly sampled (with replacement) from these null searchlight maps, computed 

the mean searchlight regression coefficient across participants for each random sample of 12 

data sets (one from each participant), then computed TFCE. This resulted in a null TFCE map. 

We then repeated this resampling procedure 10,000 times to construct a null distribution of 

TFCE maps (Stelzer et al., 2013). The resulting group searchlight maps are thresholded at 

cluster-level p = .05 corrected for familywise error using TFCE, and the average regression 

coefficient across participants is plotted for surviving searchlights. 

In the case of searchlight classification (Supplementary Fig. 2), labels were shuffled within each 

run and each category of the crossed factor (e.g., the four behavior labels were permuted 

within each of the five taxa), then the full cross-validation scheme was applied (Nastase et al. 

2016). The resulting maps are similarly thresholded, with the average classification accuracy 

across participants plotted for surviving searchlights. For difference maps (Supplementary Fig. 

3), clusters surviving correction for multiple comparisons are indicated by white contours and 

subthreshold searchlights are displayed transparently. This method for multiple comparisons 

correction was implemented using the CoSMoMVPA software package (cosmomvpa.org; 

Oosterhof et al. 2016). 

To assess more global effects, task-related differences in regression coefficients across 

searchlights were computed separately for each categorical target RDM. We assessed whether 

the attentional task altered mean regression coefficients for both categorical target RDMs 

within searchlights containing information about behavioral and taxonomic categories. For the 
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behavioral category target RDM, the mean regression coefficients were computed across all 

searchlight regression coefficients surviving statistical thresholding using TFCE (cluster-level p 

< .05) in either attention condition. A nonparametric randomization test was used to evaluate 

the significance of a task difference in the regression coefficient across participants. The sign 

of the attentional difference in the mean regression coefficient across searchlights was 

permuted across participants. This tests the null hypothesis that there is no systematic 

attentional difference in searchlight regression coefficients across participants. This procedure 

was repeated for the taxonomic category target RDM considering all searchlight regression 

coefficients that survived TFCE in both tasks. 

Identifying regions of interest 

Cluster analysis was used to identify regions of the cortical surface characterized by shared 

representational geometry in an unsupervised manner (Connolly et al. 2012). Prior to cluster 

analysis, the observed neural RDMs for each surface-based searchlight were converted from 

correlation distances to Fisher transformed correlation values and averaged across 

participants. Gaussian mixture models were used to cluster searchlights according to their 

representational geometry at varying values of k components (clusters). Gaussian mixture 

modeling is a probabilistic generalization of the k-means algorithm, and models the 20,484 

searchlights as a mixture of k overlapping Gaussian distributions in a 190-dimensional feature 

space defined by the upper triangular of the 20 × 20 observed neural RDM. The clustering 

algorithm was implemented using the scikit-learn machine learning library for Python 

(Pedregosa et al. 2011). 

We evaluated the reproducibility of parcellations across participants at values of k from 2 to 30 

using a split-­half resampling approach (100 iterations per k) that has previously been applied 

to functional parcellations based on resting-state functional connectivity (Yeo et al. 2011). For 
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each of 100 resampling iterations, half of the participants were randomly assigned to a training 

set, while the other half were assigned to a test set (Lange et al. 2004). Surface-based 

searchlight RDMs for each participant were then averaged across participants within the 

separate training and test sets. Gaussian mixture models were estimated on the training set for 

each of k components ranging from 2 to 30. Test data were then assigned to the nearest 

cluster mean of the model estimated from the training data. A separate mixture model was 

then estimated for the test data, and the predicted cluster labels (based on the training data) 

were compared to the actual cluster labels using adjusted mutual information (AMI; Thirion et 

al. 2014). AMI compares cluster solutions and assigns a value between 0 and 1, where 0 

indicates random labeling and 1 indicates identical cluster solutions (robust to a permutation of 

labels, adjusted for greater fit by chance at higher k). Note that, unlike previous applications 

(Yeo et al. 2011), we cross-validated AMI at the participant level rather than partitioning at the 

searchlight level.  

Separate parcellations were obtained for each attention task condition to ensure the clustering 

algorithm did not attenuate task effects. The cluster analysis yielded qualitatively similar 

surface parcellations for data from both the behavior attention task and the taxonomy attention 

task, however the behavior attention task tended toward more reproducible solutions at higher 

k. Note that clustering cortical searchlights according to the pairwise neural distances between 

a certain set of experimental conditions should not be expected to yield a generally valid 

parcellation for the entire brain. Furthermore, although spatial smoothing, overlapping 

searchlights, and hyperalignment induce spatial correlations, there is nothing intrinsic to the 

clustering algorithm that ensures spatial contiguity (on the cortical surface) or bilaterality in the 

resulting parcellation. 
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The reproducibility analysis indicated local maxima at k = 2, 4, 14, 19, and 23 (Supplementary 

Fig. 4A), and these cluster solutions can then be mapped back to the cortical surface 

(Supplementary Figs. 4B, 5). All subsequent analyses were performed on regions of interest 

(ROIs) derived from the parcellation at k = 19 based on the behavior attention data. From these 

19 areas tiling the entire cortical surface, 10 ROIs were selected comprising early visual areas, 

the ventral visual pathway, the dorsal visual pathway, and somatomotor cortex. These 10 ROIs 

corresponded to the areas of the brain with the highest inter-participant correlation of RDMs 

for both tasks (Supplementary Fig. 1D). Both the clustering algorithm and the reproducibility 

analysis are agnostic to any particular representational geometry or task effect (Kriegeskorte et 

al. 2009). ROIs were large, including on average 1,980 voxels (SD = 1,018 voxels; see 

Supplementary Table 2 for individual ROI extents). 

Correlations with target RDMs 

For each ROI, we used the stimulus-evoked patterns of activation across all referenced voxels 

to compute neural RDMs for both attention conditions. We tested for task differences in 

Spearman correlation between the observed neural RDM and the target RDMs. To test this, we 

first constructed a linear mixed-effects model to predict Spearman correlations with the 

categorical target RDMs using Task, Target RDM, and ROI, and their two- and three-way 

interactions as fixed effects, with Participant modeled as a random effect (random intercepts). 

The Task variable captured the two attentional task conditions, Target RDM represented the 

behavioral and taxonomic category target RDMs, and ROI represented the 10 regions of 

interest. Mixed-effects modeling was performed in R using lme4 (Bates et al. 2015). Statistical 

significance was assessed using a Type III analysis of deviance. 

To assess the statistical significance of differences in Spearman correlation as a function of 

attention task for each ROI, nonparametric randomization tests were performed in which the 
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mean difference in Spearman correlation (the test statistic) was computed for all possible 

permutations of the within-participants attention task assignments (212 = 4,096 permutations, 

two-sided exact test). This approach permutes the signs of the within-participant task 

differences across participants. This tests the null hypothesis that there is no reliable effect of 

the attentional task manipulation across participants (task assignment is exchangeable within 

participants under the null hypothesis), and approximates a paired t-test where participant is 

modeled as a random effect. This nonparametric significance test was used for all subsequent 

tests of the attentional manipulation within ROIs. For visualization, mean Spearman 

correlations are plotted with bootstrapped 95% confidence intervals. Bootstrapping was 

performed at the participant level; that is, confidence intervals were constructed by sampling 

(with replacement) from the within-participant task differences in Spearman correlation to 

respect the within-participants comparison (Loftus and Masson, 1994). Note that Spearman 

correlation accommodates ties in a way that can be problematic when comparing RDMs with 

numerous ties (e.g., categorical RDMs, like those used here), particularly relative to RDMs with 

more continuous dissimilarity values (i.e., fewer ties; Nili et al., 2014). However, this does not 

negatively impact the present analysis where we compute Spearman correlations using the 

same RDM in different task contexts. To more directly interface with the searchlight analysis, 

we used the same standardized rank regression to examine task-related differences in 

representational geometry. This approach models the neural representational geometry of an 

ROI as a weighted sum of the behavioral category and taxonomic category target RDMs.  

To ensure that our findings were not biased by the unsupervised functional parcellation method 

used to identify cortical ROIs with consistent representational geometries, we reproduced the 

above analysis in anatomically-defined ROIs. We extracted rough analogues of four key ROIs 

using the FreeSurfer cortical surface parcellation (Destrieux et al. 2010). The VT ROI was 
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defined bilaterally as the conjunction of the fusiform gyrus (lateral occipitotemporal gyrus), 

collateral sulcus (medial occipitotemporal sulcus) and lingual sulcus, and lateral 

occipitotemporal sulcus parcels. IPS comprised the bilateral intraparietal sulci, transverse 

parietal sulci, and superior parietal lobules. PCS was defined bilaterally to include the 

postcentral gyrus, postcentral sulcus, and supramarginal gyrus, extending superiorly to z = 50 

on the inflated cortical surface of the reference participant (in the hyperalignment algorithm) in 

MNI space. The vPC/PM ROI comprised the bilateral precentral gyri, central sulci, and 

subcentral gyri and sulci, similarly extending superiorly to z = 50. This superior boundary is 

roughly coterminous with the extension of the upper bank of the intraparietal sulcus anteriorly 

and was imposed on the PCS and vPC/PM ROIs to better match the functionally-defined ROIs 

reported above. Note hyperalignment effectively projects all participants’ data into the 

reference participant’s anatomical space. 

Recent work (Walther et al. 2015) suggests that neural RDMs may be more reliably estimated 

by computing pairwise distances between conditions in a cross-validated fashion (i.e., across 

scanner runs). We re-computed the above analyses using alternative distance metrics and 

cross-validation schemes. We first estimated neural RDMs using Euclidean distance rather 

than correlation distance. Different distance metrics have different theoretical interpretations, 

and each has strengths and weaknesses. For example, correlation distance is susceptible to 

baseline shifts and noise, while Euclidean distance (and related metrics, such as Mahalanobis 

distance) is sensitive to regional-average differences in activation magnitude (Kriegeskorte et 

al. 2008; Walther et al. 2015). Next, we computed neural RDMs using leave-one-run-out cross-

validation. Response patterns were estimated for each scanning run. Responses for four of the 

five runs for each attention task were averaged and pairwise distances were computed 

between each condition in the averaged runs and the left-out fifth run. This results in a neural 
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RDM with nonzero distances in the diagonal cells. We then compared these neural RDMs with 

the categorical target RDMs using Spearman correlation, as described above. These analyses 

were performed post-hoc, in an exploratory fashion. 

Evaluating model fit 

As evidenced by the searchlight analysis (Fig. 2), the target RDMs for taxonomy and observed 

behavior representation may differ in the extent to which they capture neural representational 

geometry. To address this, we evaluated differences in the fit of these models. However, 

although the target RDMs were sufficient to test our hypothesis, they cannot capture 

differences in the distances between behavioral and taxonomic categories; e.g., the animacy 

continuum (Connolly et al. 2012; Sha et al. 2015). To accommodate this type of geometry for 

behavior and taxonomy, we decomposed the categorical target RDMs into separate regressors 

for each between-category relationship. The number of regressors used was determined by the 

number of pairwise relationships between categories. The number of pairwise relationships 

between n categories is (n × (n – 1)) / 2. Therefore, for the four action categories, there are (4 × 

(4 – 1)) / 2 = 6 pairwise relationships. For the five animal categories, there are (5 × (5 – 1)) / 2 = 

10 pairwise relationships. For example, the taxonomy model consists of a separate regressor 

for each within-category “box” along the diagonal of the taxonomic category target RDM (Fig. 

1). 

To evaluate these two flexible behavior and taxonomy models, in each ROI and each 

participant we computed the coefficient of partial determination (partial R2), then averaged 

these model fits over the two attention tasks (van den Berg et al. 2014). Partial R2 can be 

interpreted as the proportion of variance accounted for by one model controlling for any 

variance accounted for by the other model, and was computed separately for each attention 

task and then averaged across tasks within participants. We then computed the within-
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participants differences between the two models per ROI, and submitted these differences to a 

nonparametric randomization test to assess significance across participants. In the 

nonparametric randomization test, we permuted the direction of the within-participant 

difference in model fits across participants, testing the null hypothesis that there is no reliable 

difference in model fits across participants. The test statistic was the mean within-participants 

difference in model fit between the decomposed taxonomic and behavioral category models. 

Note, however, that partial R2 is biased toward more complex models (in this case, the 

taxonomy model), so we corroborated this analysis using the Akaike information criterion (AIC), 

which penalizes more complex models. We computed the difference in AIC for the six- and 10-

regressor models for each attention task condition within each participant, then averaged 

across the attention tasks. These differences in AIC were assessed statistically using an exact 

test permuting the sign of the difference. 

Task-related differences in representational distances 

Next, we probed for task-related differences in representational distances directly. Note 

however that certain pairwise distances (e.g., the distance between neural representations of a 

bird eating and an insect fighting) would not be hypothesized to change in a meaningful way as 

a function of our task manipulation (see, e.g., the diagonal distances in Fig. 4B). For this 

reason, we constrained our analysis to only within-category pairwise distances (cells of the 

RDM). Correlation distances were converted to Fisher-transformed correlations prior to 

statistical testing. Rather than averaging the pairwise distances across cells of the target RDM 

within each participant, cells corresponding to particular pairwise distances were included as a 

random effect (as per an items analysis; Baayen et al. 2008). We constructed a linear mixed-

effects model to predict observed correlation distances based on Task, Category, and ROI, 

and their two- and three-way interactions as fixed effects, with Participant and Cell as random 
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effects (random intercepts). Task represented the attentional task condition, Category 

represented the category relationship (within-behavior or within-taxon), ROI indicated the 10 

ROIs reported above, and Cell indicated particular cells (pairwise relationships) of the target 

RDM. Statistical significance was assessed using a Type III analysis of deviance. 

Nonparametric randomization tests were used to assess task-related differences in mean 

within-category correlation distances within each ROI. 

Visualizing neural representational space 

To visualize task-related changes in representational geometry, we used multidimensional 

scaling (Kriegeskorte et al. 2008b). For a given ROI, we first computed 40 × 40 neural RDMs 

based on the 20 conditions for both attention tasks and averaged these across participants. 

Note that between-task differences in the 40 × 40 neural RDM may be difficult to interpret, as 

the attentional task manipulation is confounded with scanner runs (Henriksson et al., 2015). 

However, we would not expect simple run differences to result in the observed attentional 

differences in representational distances for both behavior and taxonomy. To visualize task-

related changes in observed action representation, we computed an 8 × 8 distance matrix 

comprising the mean between-behavior distances within each taxonomic category (as in Fig. 

4). For taxonomy representation, we computed the average between-taxon distances within 

each behavioral category to construct a 10 × 10 matrix. Distances were computed between 

conditions for both tasks (e.g., resulting in a single 8 × 8 distance matrix rather than two 

separate 4 × 4 matrices for behavior representation) to ensure that distances for both attention 

tasks were on the same scale. 

These distance matrices were then submitted to metric multidimensional scaling implemented 

in scikit-learn (Pedregosa et al. 2011). In the case of behavior representation, for example, this 

resulted in eight positions in a two-dimensional space. However, because we were interested 
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in the overall task-related expansion between conditions (and less concerned with, e.g., the 

distance between one condition in one attention task and another condition in the other 

attention task), the positions in the resulting two-dimensional solution were then split according 

to attention task, and the Procrustes transformation (without scaling) was used to best align 

the conditions within one attention task to another. This transformation preserves the 

relationships between conditions within each task and captures the overall attentional 

expansion of between-category distances. 

Results 

Behavioral performance 

Participants were highly accurate in detecting the sparse repetition events for both attention 

conditions (mean accuracy for animal attention condition = 0.993, SD = 0.005; mean accuracy 

for behavior attention condition = 0.994, SD = 0.005). There was no significant task-related 

difference in either accuracy (t(11) = 0.469, p = 0.648), or signal detection theoretic measures 

of sensitivity (t(11) = 0.116, p = 0.910) and bias (t(11) = 0.449, p = 0.662) adjusted for logistic 

distributions (according to Kane et al. 2007, p. 617). Response latencies for repetition trials 

where participants responded correctly did not significantly differ between the behavior 

attention and taxonomy attention tasks (paired t-test: t(11) = 0.015). However, the scanner 

protocol was not designed to robustly measure response times, as there were only four 

repetition events per run and participants did not respond to non-repetitions. 

Searchlight analysis 

We applied representational similarity analysis using surface-based searchlights to map areas 

of the brain encoding information about animal taxonomy and behavior. Neural 

representational dissimilarity matrices (RDMs) were computed based on the pairwise 

correlation distances between hyperaligned stimulus-evoked response patterns for the 20 
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conditions (Fig. 1B). We modeled the neural representational geometry as a weighted sum of 

two categorical target RDMs reflecting the experimental design: a behavioral category target 

RDM and a taxonomic category target RDM (Fig. 1C). 

We first identified clusters of searchlights where the neural representational geometry reflected 

the categorical target RDMs for both attention conditions. Regression coefficients for the 

behavioral category target RDM were strongest in lateral occipitotemporal (LO) cortex, in the 

dorsal visual pathway subsuming posterior parietal, intraparietal sulcus (IPS), motor and 

premotor areas, and in ventral temporal (VT) cortex (Fig. 2A). Regression coefficients for the 

animal taxonomy target RDM were strongest in VT, LO, and posterior parietal cortices, as well 

as left inferior and dorsolateral frontal cortices. 

Based on previous work (e.g., Çukur et al. 2013), we hypothesized that attending to a particular 

type of semantic information would enhance task-relevant representational distinctions in 

searchlights encoding taxonomic and behavioral category information throughout the cortex. 

Globally, attending to behavior or taxonomy increased the regression coefficients for the target 

RDMs corresponding to the attended categories. Attending to behavior increased the number 

of searchlights with significant regression coefficients for the behavioral category target RDM 

from 11,408 to 14,803 (corrected for multiple comparisons). We next tested whether attentional 

allocation increased the mean regression coefficient for the behavioral category target RDM in 

searchlights containing information about the behavioral categories. When considering 

regression coefficients for the behavioral category target RDM in all searchlights surviving 

multiple comparisons correction for either attention task, attending to animal behavior 

significantly increased the mean regression coefficient from 0.100 to 0.129 (p = .007, 

nonparametric randomization test). Attending to taxonomy increased the number of 

searchlights with significant regression coefficients for the taxonomic category target RDM 
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from 1,691 to 3,401. For searchlights surviving multiple comparisons correction for either task, 

regression coefficients for the taxonomic category RDM increased significantly from 0.049 to 

0.071 (p = .017, nonparametric randomization test). A linear SVM searchlight classification 

analysis, in which we used leave-one-category-out data folding for cross-validation 

(Supplementary Fig. 2), resulted in qualitatively similar maps, suggesting the results presented 

in Fig. 2 are not driven solely by low-level visual properties of particular stimuli (although low-

level visual properties may still covary with condition). 

Regions of interest 

We hypothesized that task demands may alter representational geometry across larger cortical 

fields than captured by the relatively small searchlights. We tested our hypothesis in large ROIs 

defined by shared searchlight representational geometry. We applied an unsupervised 

clustering algorithm to the searchlight representational geometries to parcellate cortex into 

ROIs and used a relatively reproducible parcellation with 19 areas (Supplementary Fig. 4). We 

interrogated 10 ROIs with high inter-participant similarity of searchlight representational 

geometry subtending the dorsal and ventral visual pathways (Fig. 3B, Supplementary Fig. 1). 

The 10 ROIs were labeled as follows: posterior early visual cortex (pEV), inferior early visual 

cortex (iEV), superior early visual cortex (sEV), anterior early visual cortex (aEV), lateral 

occipitotemporal cortex (LO), ventral temporal cortex (VT), occipitoparietal and posterior 

parietal cortex (OP), intraparietal sulcus (IPS), left postcentral sulcus (left PCS), and ventral 

pericentral and premotor cortex (vPC/PM). 

For each ROI, we measured the Spearman correlation between the observed neural RDM and 

the two categorical target RDMs for each task, to test whether task demands altered neural 

representational geometry (Fig. 3A). A linear mixed-effects model yielded significant main 

effects for ROI (χ2(9) = 115.690, p < .001) and Target RDM (χ2(9) = 69.640, p < .001), and a 
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significant Target RDM × ROI interaction (χ2(9) = 112.442, p < .001). The Task × ROI interaction 

was also significant (χ2(9) = 23.301, p = .006), suggesting that the task manipulation more 

strongly affected correlations in certain ROIs than others. Note however that differences due to 

the task manipulation across ROIs could be driven by different noise levels in different ROIs 

(Diedrichsen et al. 2011). Finally, the three-way Task × Target RDM × ROI interaction was 

significant (χ2(9) = 22.034, p = .009), motivating the following within-ROI tests. Nonparametric 

randomization tests revealed that attending to animal behavior increased correlations between 

the observed neural RDM and the behavioral category target RDM in vPC/PM (p = .026), left 

PCS (p = .005), IPS (p = .011), and VT (p = .020). A decrease in the categoricity of behavior 

representation was observed in sEV when participants attended to behavior (p = .032). 

Attending to animal taxonomy increased correlations between the observed neural RDM and 

the taxonomic category target RDM in VT (p = 0.010) and left PCS (p = .036). The effect in left 

PCS was driven by a negative correlation in the behavior attention task that was abolished 

when attention was directed at taxonomy. To ensure that these effects were not biased by the 

functional parcellation technique used to define functional ROIs, we reproduced key findings in 

anatomically-defined ROIs (Supplementary Fig. 7). To better interface with the searchlight 

results, we reproduced qualitatively similar findings using the standardized rank regression 

technique used in the searchlight analysis (Supplementary Fig. 8). Unlike computing Spearman 

correlation separately per RDM, this approach allocates variance in neural representational 

geometry to both RDMs. This analysis yielded generally greater regression coefficients for the 

taxonomic category RDM, suggesting that the low and negative correlations observed using 

Spearman correlation with the taxonomic category RDM (e.g., in left PCS) may be due to 

variance in representational geometry related to the behavioral categories. Attending to 

behavior significantly enhanced behavioral category representation in anatomically-defined 

vPC/PM, bilateral PCS, and VT ROIs, while attending to taxonomy strongly enhanced 
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taxonomic category representation in VT and weakly in vPC/PM. We also reproduced 

qualitatively similar findings using Euclidean distance rather than correlation distance and using 

leave-one-run-out cross-validation in constructing the neural RDMs (Supplementary Fig. 9). 

Supplementary Tables 2 and 3 present task differences in Spearman correlation for all 19 

parcels returned by the cluster analysis and all anatomically discontiguous parcels, 

respectively. 

Unexpectedly, behavioral category representation was found to be considerably stronger and 

more prevalent than taxonomic category representation. To test this formally, we next 

evaluated how well full representational models of animal taxonomy and behavior fit the neural 

representational geometry in each ROI. The model RDMs used above tested our experimental 

hypothesis but do not capture the geometry of distances between behavioral or taxonomic 

categories; e.g., the animacy continuum (Connolly et al. 2012; Sha et al. 2015). To 

accommodate this type of geometry for behavior and taxonomy, we decomposed the 

categorical target RDMs into separate regressors for each pairwise between-category similarity 

(six regressors for behavior model, 10 for the taxonomy model). To evaluate these two flexible 

behavior and taxonomy models, in each ROI we estimated the coefficient of partial 

determination (partial R2) and AIC separately for each model and attention task within each 

participant, then averaged these model fits over the two attention tasks. The six-regressor 

behavior model captured on average over 2 times more variance (adjusted R2) than the single-

regressor behavioral category target RDM in LO, VT, OP, IPS, left PCS, and vPC/PM, 

suggesting that some behaviors are more similar to each other than are others. The 10-

regressor taxonomy model accounted for well over 4 times more variance than the single-

regressor taxonomic category target RDM in pEV, iEV, and VT. Based on nonparametric 

randomization tests, partial R2 for the behavior model significantly exceeded that of the animal 
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taxonomy model in sEV, LO, VT, OP, IPS, left PCS, and vPC/PM (Fig. 3C), and AIC for the 

behavior model was significantly lower for all 10 ROIs. Surprisingly, the behavior model 

accounted for over 2.5 times more variance in VT neural representational geometry than did 

the taxonomy model (behavior model: 23.8% of variance; taxonomy model: 8.8% of variance). 

Although the initial ROI analysis demonstrated that the attention task alters overall neural 

representational geometry to more closely resemble the categorical target RDMs, it does not 

directly quantify changes in representational distances. To test task-related changes in 

representational distances more explicitly, we isolated cells of the neural RDM capturing 

distances between two conditions that differed on one dimension and were matched on the 

other; i.e., different behaviors performed by animals from the same taxonomic category, or 

animals of different taxonomic categories performing the same behavior (Fig. 4A). Although we 

hypothesized that attention enhances task-relevant representational distinctions as depicted in 

Fig. 4B (40, 41), note that diagonal distances do not change; that is, the effect of attention on 

distances between conditions that differ on both dimensions is ambiguous. Thus, focusing on 

the correlation distances between pairs of conditions that differ on only one dimension affords 

a less confounded examination of the effects of attention. A significant increase in, e.g., 

between-taxon correlation distances within each behavior (Fig. 4A, red) when attending to 

behavior can also be interpreted as a decrease in within-taxon distances when attending to 

taxonomy; therefore, we refer to this effect as enhancing task-relevant representational 

distinctions. A linear mixed-effects model yielded significant main effects for ROI (χ2(9) = 

66.850, p < .001) and Category (within-behavior or within-taxon category relationship; χ2(9) = 

13.047, p < .001), as well as a significant ROI × Category interaction (χ2(9) = 165.725, p < .001). 

Most importantly, this analysis revealed a significant three-way Task × Category × ROI 

interaction (χ2(9) = 33.322, p < .001), motivating the following within-ROI tests. Nonparametric 
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randomization tests indicated that attention significantly enhanced task-relevant 

representational distinctions for both groups of distances in left PCS (between-taxon, within-

behavior distances: p = .002; between-behavior, within-taxon distances: p = .010) and VT 

(between-taxon, within-behavior distances: p = .028; between-behavior, within-taxon 

distances: p = .009). Attention significantly enhanced task-relevant between-taxon distances 

within behaviors in vPC/PM (p = .007), effectively collapsing taxonomic distinctions when 

attending to behavior. An inverted task effect was observed in sEV (between-taxon, within-

behavior distances: p = .028).  Supplementary Tables 4 and 5 present the task enhancement of 

representational distances for all 19 parcels returned by cluster analysis and all anatomically 

discontiguous parcels, respectively. The expansion of distances between attended category 

representations is illustrated with multidimensional scaling of the representational geometries 

in left PCS and VT (Fig. 4C). 

Discussion 

The present study was motivated by the following question: How does attention prioritize 

certain semantic features of a complex stimulus in service of behavioral goals? We 

hypothesized that attention may enhance certain features of semantic information encoded in 

distributed neural populations by transiently altering representational geometry (Kriegeskorte 

and Kievit 2013). Our findings provide neural evidence for psychological theories of attentional 

deployment in categorization (Shepard, 1964; Tversky, 1977; Nosofsky 1986; Kruschke 1992) 

by demonstrating that attention selectively increases distances between stimulus-evoked 

neural representations along behaviorally relevant dimensions. To expand on prior work 

examining early visual (e.g., orientation, contrast, color, motion direction; Serences and 

Boynton 2007; Jehee et al. 2011; Brouwer and Heeger 2013; Sprague and Serences 2013) and 

object category (Peelen et al. 2009; Çukur et al. 2013; Harel et al. 2014; Erez and Duncan 2015) 
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representation, we used dynamic, naturalistic stimuli to demonstrate that attention alters the 

representation of both animal taxonomy and behavior according to a similar principle. 

The neural representation of animal taxonomy and behavior changed significantly with task. 

When participants attended explicitly to animal behavior, the categoricity of observed action 

representation increased most dramatically in premotor, pericentral, and postcentral 

somatomotor areas supporting action and goal recognition (Oosterhof et al. 2010, 2012, 2013; 

Rizzolatti and Sinigaglia 2010), intraparietal areas implicated in executive control (Petersen and 

Posner 2012), and VT. The left-lateralization of this effect is consistent with generally left-

lateralized representation of action concepts in the brain (Noppeney 2008; Watson et al. 2013). 

In the current study, we cannot rule out the possibility that attending to behavior enhances the 

representation of low-level motion-related features of the stimulus more so than higher-level 

semantic representations. However, we note that retinotopic visual areas driven primarily by 

motion energy (Nishimoto et al. 2011; Huth et al. 2012) and early areas exhibiting robust 

representation of animal behavior (e.g., LO and OP) were not strongly modulated by the task 

manipulation. Attending to animal taxonomy increased the categoricity of animal 

representation in VT, consistent with accounts of neural representation of animals and objects 

(Connolly et al. 2012; Grill-Spector and Weiner 2014; Sha et al. 2015), as well as left PCS, but 

not in lateral occipitotemporal or early visual areas. Note that attending to behavior induced a 

negative correlation for the taxonomic category target RDM in left PCS, while attending to 

taxonomy abolished this effect. This negative correlation when attending to behavior could be 

driven by increased distances between behavior representations within each animal taxon. 

Behavior and taxonomy representation observed in unexpected regions such as anterior 

prefrontal cortex using the searchlight approach may be due to both the richness of the 

information conveyed by naturalistic stimuli and the categorization and working-memory 
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components of the task. The relative magnitudes of task-related and stimulus-driven 

contributions to representational geometry varied across cortical areas. Overall, attending to 

animal behavior, as compared to when participants attended to animal taxonomy, increased 

correlations with the behavioral category RDM from .25 to .33 on average in the three 

frontoparietal ROIs, with increases in correlation ranging from .06–.11 or 23–42%. Significant 

correlation between the taxonomic category RDM and the VT neural RDMs was observed only 

when participants attended to animal taxonomy. 

Performing a categorization task requiring attention to either animal taxonomy or behavior 

enhances the categoricity of neural representations by accentuating task-relevant 

representational distinctions. Our results demonstrate that attentional allocation sculpts 

representational geometry in late-stage sensorimotor areas; this effect was not observed in 

early perceptual areas. This is in line with electrophysiological work in macaques 

demonstrating that object categorization training increases the precision of response selectivity 

for task-relevant stimulus features in cortical areas thought to support perceptual processing 

(i.e., temporal cortex; Sigala and Logothetis 2002). In a related series of reports, Peelen and 

colleagues (2009, 2011, 2014) have suggested that visual search (for objects such as humans 

and vehicles) is facilitated by the activation of task-relevant representational templates in late-

stage visual areas. Our findings support this hypothesis in the context of a finer-grained 

taxonomic categorization task and suggest that this framework may extend beyond object 

detection to more abstract representational templates of observed actions. More generally, our 

results demonstrate that the representational geometry of semantic information in systems 

such as VT and somatomotor cortex is dynamic and actively tuned to behavioral goals, rather 

than being solely a reflection of static conceptual knowledge. 
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Behavioral performance was effectively at ceiling for both attention tasks, suggesting that 

although participants were compliant, the task may not have elicited strong attentional 

deployment. Furthermore, to reduce the impact of behavioral responses on the MRI data, 

participants were not required to respond to non-repetitions, and therefore submitted very few 

(e.g., four) behavioral responses per run. These limitations prevent us from making claims 

relating the magnitude of attentional deployment to the size of changes in representational 

geometry and examining trial-by-trial relationships between behavior and representational 

geometry. A more demanding attentional task may further enhance changes in representational 

geometry and reveal a more extensive cortical system that is modulated by attention. 

Parametric variation of attentional demand may allow quantification of the effect of attention on 

representational geometry. The magnitude of attentional deployment in naturalistic paradigms 

with more complex goals is difficult to vary systematically and may be relatively low compared 

to psychophysical paradigms employing controlled stimuli. Furthermore, we did not include a 

“baseline” or “no attention” task condition in the present study, as it is not clear what would 

constitute an appropriate “baseline” task in natural vision paradigms given the difficulty of 

controlling spontaneous allocation of attention to meaningful, dynamic stimuli. Because of 

these considerations, the significance of our findings rests on the relative differences between 

the behavior and taxonomy attention tasks. 

Numerous visual areas coded for both taxonomy and behavior, suggesting these two types of 

information are encoded in distributed population codes in a superimposed or multiplexed 

fashion (Grill-Spector and Weiner 2014; Haxby et al. 2014). However, the behavior model 

accounted for notably more variance in neural representation throughout the cortex than the 

taxonomy model—even in areas typically associated with animal category representation, such 

as VT (Connolly et al. 2012; Sha et al. 2015). The dominance of behavior in the representational 
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geometry of behaving animals may be related to the prevalence of biological motion energy 

information when viewing naturalistic video stimuli (Huth et al. 2012; Russ and Leopold 2015). 

Work by others shows that lateral fusiform cortex responds strongly to dynamic stimuli that 

depict agentic behavior with no biological form (Grossman and Blake 2002; Gobbini et al. 

2007), and biological motion and social behaviors drive responses in face-selective temporal 

areas in the macaque (Russ and Leopold 2015). Future work can use eye-tracking and 

neurally-inspired motion-energy models (e.g., Nishimoto et al. 2011) to examine how viewing 

time, gaze patterns, and motion information contribute to observed action representation and 

how low-level stimulus properties, such as simple and biological motion energy, interact with 

endogenous attention. 

By design, there was considerable heterogeneity both in the exemplar animals within each 

taxonomic category and the exemplar actions within each behavioral category. For example, 

the primate category included different species, with stimuli depicting a chimpanzee eating a 

fruit and a macaque swimming in a hot spring. However, behavioral categories were similarly 

heterogeneous, grouping, for example, the bonobo eating a fruit with stimuli depicting a 

hummingbird feeding from a flower and a caterpillar eating its own eggshell. The visual 

heterogeneity of the category exemplars attests to the top-down category structure imposed 

on the stimuli by the task demands. There is some behavioral evidence that actions (or verbs), 

similarly to objects (typically nouns; Rosch 1978), adhere to a hierarchical category structure 

with a “basic” (or most frequent, prototypical) intermediate level (Abbott et al. 1985; Rifkin 

1985; Fellbaum 1990; Morris and Murphy 1990). The behavioral and taxonomic categories 

used here are at an intermediate level but may not be at a putative basic level of the semantic 

category hierarchy. Verb hierarchies, however, are qualitatively different from noun hierarchies, 

with a “more shallow, bushy structure” and fewer hierarchical levels (Fellbaum 1990), making it 
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difficult to match the level of taxonomic and behavioral categories across their respective 

semantic hierarchies. Moreover, it is unclear to what extent neural representation (as 

accessible using fMRI) reflects the primacy of basic-level categories reported behaviorally (cf. 

Connolly et al. 2012). 

The neural representation of observed animal behaviors (and observed actions more generally) 

may differ qualitatively from the neural representation of animal taxonomy. The stronger 

correlation of neural representational geometry with models of behavioral categories may be 

due to stronger neural responses to biological motion energy than to biological form (Huth et 

al. 2012; Russ and Leopold 2015). Furthermore, whereas taxonomic category can be 

ascertained quickly and does not change with time, observed behaviors evolve over time. The 

semantic content conveyed by behavior also differs considerably from that conveyed by 

taxonomy. For example, observed actions convey motor goals (Oosterhof et al. 2013; Rizzolatti 

and Sinigaglia 2010) and vary considerably in affective content. The rich, multidimensional 

information conveyed by dynamic stimuli depicting behaving animals in their natural 

environments may evoke responses in a variety of neural systems. Along these lines, the 

representation of taxonomy is also driven by semantic features such as animacy (Connolly et 

al. 2012; Sha et al. 2015) and perceived threat (Connolly et al. 2016). The neural representation 

of these features may rely on systems supporting affective and social cognition (Saxe 2006; 

Connolly et al. 2016). 

The present study expands on work by (Brouwer and Heeger 2013) demonstrating that the 

neural color space in early visual areas becomes more categorical when participants perform a 

color naming task. Here, we use rich, naturalistic stimuli to demonstrate that task demands 

affect neural representations of animal taxonomy and behavior in a similar fashion in 

perceptual and somatomotor areas. The current findings also complement a recent study by 
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Çukur and colleagues (2013) demonstrating that attending to a particular object category 

(humans or vehicles) shifts the semantic tuning of widely distributed cortical voxels toward that 

category, even when exemplars of that category are not present in the stimulus. Although the 

tuning shifts observed by Çukur and colleagues (2013) are consistent with a selective 

expansion of representational space, they may not be the exclusive underlying mechanism. For 

example, increased response gain, sharper tuning (Brouwer and Heeger 2013), and changes in 

the correlation structure among voxels (Chen et al. 2006; Miyawaki et al. 2008) may also 

contribute to the task-related differences we observe in distributed representation. Further 

work is needed to investigate the relative roles played by each of these candidate mechanisms 

in task-related changes of representational geometry measured from distributed response 

patterns. Nonetheless, our findings provide a direct demonstration of the task-related 

expansion of representational space hypothesized by Çukur and colleagues (2013) and extend 

the domain of attentional modulation from object categories to observed actions. 

Scaling up the effects of attention on single neurons to population responses and multivoxel 

patterns of activity is an outstanding challenge. Top-down signals (Desimone and Duncan 

1995; Baldauf and Desimone 2014) may bias how information is encoded by single neurons 

(Treue and Martinez Trujillo 1999; Sigala and Logothetis 2002) and at the population level by 

altering neuronal gain, tuning, and interneuronal correlations (Averbeck et al. 2006; Cohen and 

Maunsell 2009; Ruff and Cohen 2014; Downer et al. 2015) in order to optimize representational 

discriminability for downstream read-out systems. Our findings suggest a model whereby 

attention alters population encoding in late-stage perception so as to enhance the 

discriminability of task-relevant representational content. At an algorithmic level (Marr 1982), 

attention may tune a feature space of arbitrary dimensionality by dynamically altering 

population encoding. This mechanism could enhance behavioral performance by temporarily 
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disentangling (DiCarlo et al. 2012) task-relevant representations and collapsing task-irrelevant 

content. 
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Figures  

 

Figure 1. Experimental procedure and analytic approach. (A) Schematic of event-related 

design with naturalistic video clips of behaving animals (Supplementary Table 1, 

Supplementary Video 1). Participants performed a repetition detection task requiring them to 

attend to either animal taxonomy or behavior. (B) Stimulus-evoked response patterns for the 20 

conditions were estimated using a conventional general linear model. The pairwise correlation 

distances between these response patterns describe the representational geometry 

(representational dissimilarity matrix; RDM) for a given brain area. (C) Whole-brain surface-

based searchlight hyperalignment was used to rotate participants’ responses into functional 

alignment based on an independent scanning session (Supplementary Fig. 1). Following 

hyperalignment, the neural representational geometry in each searchlight was modeled as a 
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weighted sum of models capturing the taxonomic and behavioral categories. Model RDMs 

were constructed by assigning correlation distances of 0 to identical conditions (the diagonal), 

correlation distances of 1 to within-category category distances, and correlation distances of 2 

to between-category distances. Note that absolute distances assigned to these model RDMs 

are unimportant as only the ordinal relationships are preserved when using rank correlation 

metrics (e.g., Spearman correlation). Only the vectorized upper triangular of the RDMs 

(excluding the diagonal) are used. The observed neural representational geometry of a 

searchlight in posterolateral fusiform gyrus in a representative participant is used as an 

example. Supplementary Fig. 2 provides more detailed examples of searchlight 

representational geometries. 
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Figure 2. Mapping representations of animal behavior and taxonomy for both tasks. Significant  

searchlight regression coefficients for the behavioral category target RDM (left) and the 

taxonomic category target RDM (right) are mapped onto the cortical surface for both attention 

conditions. Cluster-level significance was assessed at the group level using TFCE and maps 

are thresholded at cluster-level p < .05 (nonparametric one-sided test, corrected for multiple 

comparisons). For searchlights surviving cluster-level significance testing, the mean regression 

coefficient across participants is plotted. All colored searchlights exceed the cluster-level 

threshold of statistical significance across participants, corrected for multiple comparisons 

using TFCE; searchlights not surviving cluster-level significance testing are not colored. Note 

that regression coefficients for behavior representation and taxonomy representation are 

plotted with different color scales to better visualize the distribution of coefficients. Regression 

coefficients less than 0.10 for the behavioral category target RDM and less than 0.07 for the 

taxonomic category target RDM are plotted as red. See Supplementary Fig. 2 for qualitatively 

similar searchlight classification maps, and Supplementary Fig. 3 for difference maps. 
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Figure 3. Attention alters representational geometry in functionally-defined ROIs. (A) Task 

differences in Spearman correlation between neural RDMs and the behavioral and taxonomic 

category target RDMs (see Supplementary Table 2 for results for all 19 clusters). Participants 

were bootstrap resampled to construct 95% confidence intervals for within-participant effects. 

Supplementary Fig. 7 presents key findings reproduced in anatomically-defined ROIs. 

Supplementary Fig. 8 depicts qualitatively similar results using standardized rank regression 

rather than Spearman correlation. See Supplementary Fig. 9 for similar analyses computed 

using alternative pairwise distance metrics and cross-validation schemes. (B) Ten functional 

ROIs identified by parcellating the cerebral cortex based on representational geometry. (C) 

Comparison of model fit for the six-regressor behavior model and 10-regressor taxonomy 

model. *p < .05, **p < .01, ***p < .001, two-sided nonparametric randomization test. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/045252doi: bioRxiv preprint 

https://doi.org/10.1101/045252
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Attention enhances the categoricity of neural responses patterns. (A) Enhancement 

of within-category distances for both behavioral and taxonomic categories based on the 

attention task (see Supplementary Table 3 for results for all 19 clusters). Error bars indicate 

bootstrapped 95% confidence intervals for within-participants task differences (bootstrapped 

at the participant level). (B) Schematic illustrating how neural distances are expanded along the 

behaviorally relevant dimensions while task-irrelevant distances are collapsed (Nosofsky 1986; 

Kruschke 1992). (C) Multidimensional scaling (MDS) solutions for left PCS and VT depict the 

attentional expansion of between-category distances. *p < .05, **p < .01, two-sided 

nonparametric randomization test. 
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Supplementary Figure 1. Whole-brain searchlight hyperalignment enhances representational 

correspondence across participants. (A) For each surface-based searchlight, the Procrustes 

transformation is used to rotate each participant’s time series of functional response patterns 

to the Life movie stimulus into a common space that maximizes representational 

correspondence across participants. These patterns are depicted as a trajectory of responses 

in a three-voxel space over time. (B) Each point in the scatterplot represents the average inter-

participant Spearman correlation of RDMs for both attention tasks in a single searchlight. For 

each surface-based searchlight, the upper triangulars of the observed neural RDMs for both 

attention tasks were concatenated and pairwise Spearman correlations were computed 

between all participants. The vertical axis indicates Spearman correlation based on surface-

based spherical alignment; the horizontal axis indicates Spearman correlation after surface-

based searchlight whole-brain hyperalignment. Deviance from the identity line indicates a 

strong effect of alignment method on inter-participant similarity of RDMs. Searchlights are 
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colored according their location on the posterior–anterior axis of the inflated cortical surface. 

(C) Inter-participant Spearman correlation of searchlight RDMs for both attention tasks using 

anatomical alignment thresholded at .10. (D) Average inter-participant Spearman correlation of 

searchlight RDMs after hyperalignment at the same threshold. Prior to hyperalignment, the 

maximum mean Spearman correlation was .32 in a searchlight superior to the left lateral 

occipital sulcus. Following hyperalignment, the maximum mean Spearman correlation was .44 

in a searchlight in the left lateral occipital sulcus. 
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Supplementary Figure 2. Example searchlight representational geometries. The observed 

neural RDMs for two example searchlights from a representative participant are plotted for the 

behavior attention task and the taxonomy attention task. (A) Observed neural RDM for a 

searchlight in left lateral occipitotemporal cortex (posterior middle temporal gyrus). Differences 

in behavioral category representation are reflected in repeated off-diagonal strips. (B) Observed 

neural RDM for a searchlight in left ventral temporal cortex (posterolateral fusiform gyrus). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/045252doi: bioRxiv preprint 

https://doi.org/10.1101/045252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Taxonomic categories are represented according to an animacy continuum varying 

systematically in similarity from primates (most animate) to insects (least animate; Connolly et 

al. 2012; Sha et al. 2015). Example searchlights were not selected to convey an effect of the 

task manipulation. 
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Supplementary Figure 3. Effect of attention on searchlight classification of behavior and 

taxonomy. Cross-validation was implemented in the following leave-one-category-out fashion: 

classifiers discriminating the four behaviors (left) were trained on four of the five taxa, and 

tested on the left-out taxon; classifiers discriminating the five animal taxa (right) were trained 

on three of the four behaviors and tested on the left-out behavior. This procedure ensured that 

any information about animal behavior generalizes across animal taxa, and vice versa. 

Furthermore, classifiers in this cross-validation scheme are always tested on exemplar clips 

not in the training set, ensuring that classification accuracy is not based solely on low-level 

visual properties idiosyncratic to particular stimuli. Prior to classification, the GLM was 

computed separately for each run, yielding 20 beta parameters per run. The maps are 

qualitatively similar to the representational similarity regression maps reported in Fig. 2, with an 

average correlation of .83 across conditions prior to thresholding. Chance accuracy for four-
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class behavior classification is .25 and chance accuracy for five-class taxonomy classification 

is .20. Accuracies less than 0.31 for behavior classification and less than .24 for taxonomy 

classification are plotted as red. Maps are thresholded at p < .05 using TFCE, based on a null 

distribution of searchlight maps generated by permuting the labels of interest within each run 

and within each category of the crossed factor. 
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Supplementary Figure 4. Task differences in searchlight representational geometry. (A) 

Attention-related differences in standardized rank regression coefficients were computed for 

both the behavioral category and taxonomic category target RDMs. Warm colors represent 

attentional enhancement for the corresponding semantic information. The range of values on 

the color bar reflects the mean difference in the regression coefficient. (B) Cells of the 

searchlight RDMs capturing within-category distances for both animal behavior and taxonomy 

were isolated (see Fig. 4) and tested for attentional enhancement of correlation distance. The 

absolute values of the within-behavior and within-taxon distances were averaged for each 

searchlight to compute an index of overall task difference in within-category correlation 

distances. Clusters surviving TFCE-based correction for multiple comparisons at p = .05 (two-

tailed test) are displayed at full opacity and outlined with a white contour, while searchlights not 

surviving TFCE are displayed as partially transparent. TFCE maps were estimated using a 
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Monte Carlo simulation randomly flipping the attention task label. Note that the trend towards 

an effect of attention to taxonomy in VT cortex on correlation with the taxonomic RDM was not 

significant in this searchlight analysis but was strongly significant in the ROI analysis that used 

larger regions. Searchlights in this case included only 100 voxels and cannot capture the more 

distributed effects observed in the ROI analysis. Furthermore, searchlight analyses are 

subjected to conservative multiple comparisons correction because of the large number of 

searchlights. 
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Supplementary Figure 5. Functional parcellation of the cerebral cortex based on 

representational geometry. (A) Parcellation reproducibility was evaluated using split-half 

resampling across participants (100 partitions per k) separately for each attention task. The 

mean AMI across the 100 partitions is plotted across the values of k, with error bars indicating 

the standard error of the mean across partitions. Vertical gray bars indicate several local 

maxima spanning the range of k tested. Parcellations at these reproducible values of k are 

visualized on the cortical surface in Supplementary Fig. 5. (B) Full parcellation at k = 19 for the 

behavior attention task data. Ten parcels from this solution corresponding to the dorsal and 

ventral visual pathways were further interrogated in the ROI analysis. 
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Supplementary Figure 6. Functional parcellations at reproducible values of k for both 

attention tasks. Parcellation reproducibility was assessed using split-half resampling across 

participants, and parcellations are depicted for local maxima in parcellation reproducibility (k = 

2, 4, 14, 19, and 23; corresponding to vertical gray bars in Supplementary Fig. 4A). The left 

column depicts parcellations based on searchlight representational geometries from the 

behavior attention task and the right column depicts parcellations based on searchlight 

representational geometries from the taxonomy attention task. The parcellation for the behavior 

attention task data (left) at k = 19 was used for subsequent ROI analysis and is reproduced in 

Fig. 3 and Supplementary Fig. 4B. Colors were assigned manually to avoid similar colors at 

anatomically adjacent parcels, and to emphasize similar parcels across tasks and values of k. 
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Supplementary Figure 7. Attention alters representational geometry in anatomically-defined 

ROIs. (A) The following anatomically-defined analogues of four key ROIs were extracted from 

the FreeSurfer cortical surface parcellation (Destrieux et al. 2010). VT: bilateral fusiform gyri 

(lateral occipitotemporal gyri), collateral sulci (medial occipitotemporal sulci) and lingual sulci, 

and lateral occipitotemporal sulci; IPS: bilateral intraparietal sulci, transverse parietal sulci, and 

superior parietal lobules; PCS: bilateral postcentral gyri, postcentral sulci, and supramarginal 

gyri extending superiorly to z = 50; vPC/PM: bilateral precentral gyri, central sulci, and 

subcentral gyri (central opercula) extending superiorly to z = 50. (B) Attending to animal 

behavior increased Spearman correlations between the observed neural RDM and the 

behavioral category target RDM in vPC/PM (p = .001), PCS (p < .001), and VT (p = .030). 

Attending to animal taxonomy increased correlations between the observed neural RDM and 

the taxonomic category target RDM in vPC/PM (p = .043) and VT (p < .001). Error bars indicate 

bootstrapped 95% confidence intervals for within-participants task differences (bootstrapped 
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at the participant level). *p < .05, **p < .01, ***p < .001, two-sided nonparametric randomization 

test. 
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Supplementary Figure 8. Representational similarity analysis using standardized rank 

regression. Neural representational geometry in each ROI was modeled as a weighted sum of 

the behavioral category and taxonomic category target RDMs. Mean regression coefficients for 

the behavioral category target RDM and taxonomic category target RDM are plotted for both 

task condition. Error bars indicated bootstrapped 95% confidence intervals for within-

participants task differences (bootstrapped at the participant level). This method is identical to 

the multiple regression used in the searchlight analysis (Figure 2), and reflects qualitatively 

similar results to the simpler approach using Spearman correlation reported in Figure 3. 
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Supplementary Figure 9. Representational similarity analysis using alternative distance 

metrics and cross-validation schemes (cf. Figure 3). Neural RDMs for each ROI are compared 

to the categorical target RDMs using Spearman correlation. All error bars indicate 

bootstrapped 95% confidence intervals for within-participants task differences (bootstrapped 

at the participant level). (A) Neural RDMs were constructed using Euclidean distance to 

compute the pairwise dissimilarities between response patterns (rather than correlation 
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distance as in Figure 3). Response patterns were estimated for all five scanning runs for each 

attention task and neural RDMs were not computed in a cross-validation fashion (as in Figure 

3). (B) Neural RDMs were constructed using leave-one-run-out cross-validation and correlation 

distance. Response patterns were estimated separately for each scanning run. For each cross-

validation fold, response patterns for four runs were averaged, and pairwise correlation 

distances were computed between conditions in the averaged runs and the left-out fifth run 

(for each attention task). This results in a neural RDM with a nonzero diagonal. (C) Neural RDMs 

were constructed using the same leave-one-run-out cross-validation scheme, but using 

Euclidean distance as the pairwise dissimilarity metric. 
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Description Behavioral category Taxonomic category 
Chimpanzee eating a fruit Eating Primate 
Howler monkey eating leaves Eating Primate 
Llama eating cactus fruits Eating Ungulate 
Reindeer grazing on grass Eating Ungulate 
Lammergeier eating carrion Eating Bird 
Hummingbird drinking from flower Eating Bird 
Chameleon eating grasshopper Eating Reptile 
Komodo dragon eating carcass Eating Reptile 
Caterpillar eating its own eggshell Eating Insect 
Ladybug eating mites Eating Insect 
Baboons fighting on rocks Fighting Primate 
Geladas fighting amongst herd Fighting Primate 
Bison butting heads on prairie Fighting Ungulate 
Ibex locking horns on mountainside Fighting Ungulate 
Seabirds fighting on rocks Fighting Bird 
Vultures fighting in the snow Fighting Bird 
Chameleon biting another chameleon Fighting Reptile 
Komodo dragons fighting Fighting Reptile 
Ant and ladybug fighting Fighting Insect 
Stag beetles locking mandibles Fighting Insect 
Baboon running toward water Running Primate 
Monkey running away through tall grass Running Primate 
Juvenile ibex running down mountainside Running Ungulate 
Topi running through herd Running Ungulate 
Penguin running across meadow Running Bird 
Seagull running through cloud of insects Running Bird 
Komodo dragon walking on rocks Running Reptile 
Lizard running across sand Running Reptile 
Ants traveling across sand Running Insect 
Beatle running across dirt Running Insect 
Macaque swimming underwater Swimming Primate 
Snow monkey swimming in hot spring Swimming Primate 
Deer swimming across lake Swimming Ungulate 
Reindeer herd swimming across strait Swimming Ungulate 
Duck swimming across stream Swimming Bird 
Penguin swimming underwater Swimming Bird 
Marine iguana swimming in clear water Swimming Reptile 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/045252doi: bioRxiv preprint 

https://doi.org/10.1101/045252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sea turtle swimming near seafloor Swimming Reptile 
Dobsonfly larva swimming toward streambed Swimming Insect 
Water beetle swimming underwater Swimming Insect 

Supplementary Table 1. Descriptions of video clip stimuli and condition assignments. Each of 

the 40 video clip exemplars is briefly described. The condition assignments are indicated for 

each clip. There were two exemplar clips for each condition. 
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Parcel Color Extent Task differences in Spearman’s ρ (z-value) 
      Behavior RDM Taxonomy RDM 
pEV purple 1,419 -0.944 0.914 
iEV teal 1,321 -0.928 -0.191 
sEV olive 1,220 -2.142* -0.798 
aEV red 882 -0.863 0.922 
LO gold 1,333 1.652 1.707 
VT maroon 2,063 2.326* 2.567* 
OP blue 3,570 0.372 0.223 
IPS copper 2,638 2.535* 0.770 
Left PCS green 1,356 2.784** 2.095* 
vPC/PM orange 3,995 2.228* 0.649 
dPC cyan 4,840 2.385* 2.221* 
pSTS white 2,793 1.135 0.365 
Right dlPFC light yellow 11,362 1.579 0.846 
Left dlPFC violet 5,199 1.856 0.739 
mV yellow 2,671 -0.211 0.434 
Precuneus brown 4,428 1.933 1.238 
Cingulate dark pink 3,166 1.731 0.909 
OFC navy 5,611 1.656 0.849 
mPFC dark gray 3,334 0.190 0.425 

Supplementary Table 2. Task differences in Spearman correlation for all 19 parcels (Fig. 3). 

Parcels are listed roughly proceeding from posterior early visual areas anteriorly along the 

lateral surface, followed by medial structures. Parcel colors reference Supplementary Fig. 4B. 

Extent indicates the number of voxels referenced by all surface-based searchlights in the 

parcel. The average extent across all 19 parcels was 3,260 voxels (SD = 2,378 voxels). Note 

that neighboring searchlights overlap spatially and may overlap in the voxels they reference, 

although these voxels are only counted once for analysis purposes and in each parcel’s extent. 

Task differences in representational geometry were evaluated by applying (exact) permutation 

tests to the Fisher transformed Spearman correlations between the observed neural RDM for 

each parcel and the behavioral category and taxonomic category target RDMs. Reported z-

values were derived from the p-values returned by the nonparametric randomization test. 
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Negative values indicate decreased Spearman correlation with a target RDM when attending to 

the corresponding semantic information. Parcel label abbreviations are as follows. pEV: 

bilateral posterior early visual cortex comprising the occipital pole and posterior lateral occipital 

sulcus; iEV: bilateral inferior early visual cortex extending from the inferior bank of the posterior 

calcarine sulcus across the posterior lingual gyrus and posterior transverse collateral sulcus to 

the inferior occipital gyrus; sEV: bilateral superior early visual cortex encompassing the 

posterior calcarine sulcus and posterior cuneus; aEV: bilateral anterior early visual cortex 

including the anterior calcarine sulcus and a portion of the lingual gyrus; LO: bilateral lateral 

occipitotemporal cortex including the inferior middle occipital gyrus (and human MT+); VT: 

bilateral ventral temporal cortex including the fusiform gyrus, inferior temporal gyrus, and 

lateral occipitotemporal sulcus; OP: bilateral occipitoparietal and posterior parietal cortex 

extending from the lateral occipital sulcus dorsally to the transverse parietal sulcus; IPS: 

bilateral anterior intraparietal sulcus including the superior parietal lobule; left PCS: left 

postcentral sulcus, including the postcentral gyrus, inferior parietal lobule (supramarginal 

gyrus), and anterior intraparietal sulcus; vPC/PM: bilateral ventral pericentral gyri including the 

ventral central sulcus, premotor cortex, and extending ventrally to include the subcentral gyrus 

and posterior insula; dPC: bilateral dorsal pericentral gyri and central sulcus extending medially 

to the paracentral gyrus and posterior medial frontal gyrus; pSTS: bilateral posterior superior 

temporal sulcus including the posterior middle temporal gyrus and superior temporal gyrus; left 

dlPFC: left dorsolateral prefrontal cortex extending from the superior frontal gyrus ventrally to 

the inferior frontal gyrus and extending dorsomedially to the middle anterior medial superior 

frontal cortex; right dlPFC: right dorsolateral prefrontal cortex extending from the superior 

frontal gyrus ventrally to inferior frontal gyrus and extending dorsomedially to middle-anterior 

medial superior frontal cortex, as well as bilateral anterior superior temporal sulcus (aSTS) and 

middle temporal gyrus, and bilateral temporoparietal junction (TPJ), including the inferior 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/045252doi: bioRxiv preprint 

https://doi.org/10.1101/045252
http://creativecommons.org/licenses/by-nc-nd/4.0/


parietal lobule, supramarginal gyrus, and angular gyrus; mV: bilateral medial visual cortex 

extending from the parietooccipital sulcus across the anterior calcarine sulcus to the 

parahippocampal gyrus and medial aspect of the fusiform gyrus; Precuneus: bilateral 

precuneus including subparietal cortex and the marginal ramus of the cingulate sulcus, as well 

as the bilateral posterior superior frontal sulcus; Cingulate: bilateral middle cingulate cortex, 

medial subcortical structures, and the right anterior insula; OFC: bilateral orbitofrontal cortex 

extending posteriorly to include bilateral anterior temporal lobes (ATL; parahippocampal gyrus 

and temporal pole); mPFC: bilateral medial prefrontal cortex including the anterior cingulate 

and superior frontal gyrus. See Supplementary Table 3 for tests computed separately for each 

bilateral homologue and otherwise anatomically discontiguous parcel. *p < .05, **p < .01, two-

sided nonparametric randomization test, uncorrected. 
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Parcel Hemisphere Color Extent Task differences in Spearman’s ρ (z-value) 
        Behavioral RDM Taxonomic RDM 
pEV L purple 712 -1.309 -0.098 
  R purple 707 -0.827 0.596 
iEV L teal 729 -0.233 0.681 
  R teal 552 -1.414 -0.777 
sEV L olive 654 -2.235* -1.162 
  R olive 566 -1.725 -0.991 
aEV L red 470 0.191 1.917 
  R red 412 -1.339 -1.285 
LO L gold 592 2.034* 1.411 
  R gold 741 0.061 0.771 
VT L maroon 1,037 2.308* 2.038* 
  R maroon 1,026 1.929 2.001* 
OP L blue 1,878 0.474 0.406 
  R blue 1,692 0.328 0.408 
IPS L copper 980 0.378 0.130 
  R copper 1,658 2.602** 0.692 
Left PCS L green 1,356 2.784** 2.095* 
vPC/PM L orange 1,953 2.354* 1.135 
  R orange 2,042 1.454 0.125 
dPC L cyan 2,616 2.074* 2.160* 
  R cyan 2,224 1.704 2.095* 
pSTS L white 1,300 1.921 0.283 
  R white 1,493 0.435 0.553 
Right dlPFC R light yellow 5,004 1.532 0.562 
aSTS L light yellow 1,726 1.048 0.853 
 R light yellow 2,169 1.461 0.906 
TPJ L light yellow 766 1.630 0.845 
 R light yellow 1,117 1.488 -0.113 
Left OFC L light yellow 195 0.162 -0.101 
Right aI R light yellow 138 1.691 -0.070 
Left PreC L light yellow 127 1.962* 2.166* 
Left dlPFC L violet 5,199 1.856 0.739 
mV L yellow 1,374 -0.261 0.511 
  R yellow 1,297 0.112 0.494 
Precuneus L brown 1,440 0.831 0.742 
  R brown 1,449 1.126 0.851 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/045252doi: bioRxiv preprint 

https://doi.org/10.1101/045252
http://creativecommons.org/licenses/by-nc-nd/4.0/


pSFS L brown 803 3.487*** 1.546 
 R brown 653 0.465 0.062 
Cingulate L pink 1,380 0.677 1.358 
  R pink 1,234 1.725 0.841 
Left aI L pink 552 2.079* -0.569 
OFC L navy 2,275 1.393 0.905 
  R navy 2,083 1.550 0.578 
mPFC L dark gray 1,649 0.507 0.579 
  R dark gray 1,685 0.077 0.287 

Supplementary Table 3. Task differences in Spearman correlation computed separately for 

each anatomically discontiguous parcel. In many cases, the clustering algorithm returned 

bilateral homologues as one cluster, while in several cases additional spatially discontiguous 

regions of the cortical surface were included in a single cluster. We split these discontiguous 

regions into separate parcels based on the neighborhood structure of the cortical surface 

mesh, then analyzed each parcel separately using nonparametric randomization tests. The 

average extent across all discontiguous parcels was 1,394 voxels (SD = 1,026 voxels). Z-

values were derived from the p-values returned by the randomization test, and negative values 

indicate decreased Spearman correlation with a target RDM when attending to the 

corresponding semantic categories. In addition to bilateral homologues, the highly diffuse right 

dlPFC cluster split into bilateral anterior superior temporal sulcus (aSTS) parcels, bilateral 

temporoparietal junction (TPJ) parcels, and three small parcels in left orbitofrontal cortex 

(OFC), right anterior insula (aI), and left precentral gyrus (PreC). The Precuneus cluster included 

bilateral posterior superior frontal sulcus (pSFS) parcels, and the Cingulate cluster included a 

portion of the left anterior insula (aI). *p < .05, **p < .01, ***p < .005, two-sided nonparametric 

randomization test, uncorrected. 
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Parcel Task enhancement for within-category distances 
  Within-behavior Within-taxon 
pEV -1.287 0.606 
iEV -0.664 0.145 
sEV -2.200* -0.659 
aEV -0.696 0.534 
LO 0.899 1.586 
VT 2.200* 2.620** 
OP 0.563 1.301 
IPS 1.917 1.390 
Left PCS 3.097*** 2.584** 
vPC/PM 2.705** 1.134 
dPC 2.090* 2.620** 
pSTS 0.632 0.382 
Right dlPFC 1.770 1.113 
Left dlPFC 1.617 1.023 
mV -0.452 0.669 
Precuneus 1.873 1.542 
Cingulate 1.501 1.278 
OFC 1.669 1.207 
mPFC 0.579 0.781 

Supplementary Table 4. Task enhancement for within-category correlation distances for all 19 

parcels (Fig. 4).  Reported z-values were derived from the p-values returned by the 

nonparametric randomization test. Positive values in the “within-behavior” column can be 

interpreted as either decreased within-behavioral category distances when attending to 

behavior or an increase in between-taxonomic category distances when attending to 

taxonomy; similarly, positive values in the “within-taxonomy” column can be interpreted as 

either decreased within-taxonomic category distances when attending to taxonomy or 

increased between-behavioral category distances when attending to behavior. Negative values 

indicate the inverse effect. See Supplementary Table 5 for tests computed separately for each 

bilateral homologue and otherwise anatomically discontiguous parcel.  *p < .05, **p < .01, ***p 

< .005, two-sided nonparametric randomization test, uncorrected. 
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Parcel Hemisphere Task enhancement for within-category distances 
    Within-behavior Within-taxon 
pEV L -1.601 -0.391 
  R -1.036 0.323 
iEV L -0.094 0.376 
  R -0.794 -0.278 
sEV L -2.221* -0.985 
  R -2.019 -0.669 
aEV L 0.141 1.385 
  R -1.001 -0.994 
LO L 1.918 1.461 
  R -0.582 0.866 
VT L 2.364* 2.221* 
  R 1.084 2.124* 
OP L 1.301 1.230 
  R -0.341 0.948 
IPS L 0.937 1.270 
  R 1.891 0.241 
Left PCS L 3.097*** 2.584** 
vPC/PM L 2.848** 1.626 
  R 2.186* 0.377 
dPC L 1.941 2.640** 
  R 1.600 2.015* 
pSTS L 1.499 0.470 
  R -0.024 0.407 
Right dlPFC R 1.623 0.908 
aSTS L 1.048 0.853 
 R 1.461 0.906 
TPJ L 1.059 1.005 
 R 1.396 1.431 
Left OFC L 0.292 -0.115 
Right aI R 1.856 -0.029 
Left PreC L 2.048* 2.243* 
Left dlPFC L 1.617 1.023 
mV L -0.050 0.674 
  R 0.254 0.314 
Precuneus L 0.836 0.855 
  R 1.319 1.122 
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pSFS L 3.182*** 1.280 
 R 0.997 0.446 
Cingulate L 0.602 1.430 
  R 1.538 1.144 
Left aI L 1.895 -0.036 
OFC L 1.450 1.218 
  R 1.546 1.033 
mPFC L 0.642 0.781 
  R 0.493 0.728 

Supplementary Table 5. Task enhancement for within-category distances computed 

separately for each anatomically discontiguous parcel. In addition to bilateral homologues, the 

highly diffuse right dlPFC cluster split into bilateral anterior superior temporal sulcus (aSTS) 

parcels, bilateral temporoparietal junction (TPJ) parcels, and three small parcels in left 

orbitofrontal cortex (OFC), right anterior insula (aI), and left precentral gyrus (PreC). The 

Precuneus cluster included bilateral posterior superior frontal sulcus (pSFS) parcels, and the 

Cingulate cluster included a portion of the left anterior insula (aI). *p < .05, **p < .01, ***p < .005, 

two-sided nonparametric randomization test, uncorrected. 
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