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Abstract

To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving

between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages

called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation, clustering

and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison of morphology and connectiv-

ity across many neurons after imaging or co-registration within a common template space. The natverse also enables transformations

between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neu-

roanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuro-

scientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the

community.

1 Introduction

Neuroanatomy has become a large-scale, digital and quan-
titative discipline. Improvements in sample preparation and
imaging increasingly enable the collection of large 3D im-
age volumes containing complete neuronal morphologies in5

the context of whole brains or brain regions. Neuroscien-
tists, therefore, need to tackle large amounts of morpholog-
ical data, often writing custom code to enable repeated anal-
ysis using their specific requirements. They also need to anal-
yse neuronal morphology and connectivity in the context10

of whole nervous systems or sub-regions. However, it is de-
sirable not to rewrite basic functionalities such as reading
various types of data file, representing neurons in different
data structures, implementing spatial transforms between
samples, integrating popular datasets or performing popular15

analyses from scratch. Scaling up or developing custom anal-
ysis strategies is simpler and more feasible for researchers if
they can reuse existing infrastructure. This has been amply
demonstrated by flexible but open-source platforms such as
ImageJ/Fiji for image analysis (Schindelin et al., 2012) or Bio-20

conductor for bioinformatics (Huber et al., 2015). One impor-
tant consequence of these free and open-source tools is that
they aid collaboration and reproducibility, and reduce the
overhead when switching between different types of analysis.
Together, these considerations have motivated us to create25

the NeuroAnatomy Toolbox (nat) and its extensions, which
we detail in this paper.

A number of software tools are already available to anal-
yse neuronal data (Billeci et al., 2013; Glaser and Glaser, 1990;
Schmitz et al., 2011; Rasband, 2011; Meijering et al., 2004;30

Pool et al., 2008; Ho et al., 2011; Narro et al., 2007; Brown et al.,

2005; Wearne et al., 2005; Gensel et al., 2010; Cuntz et al.,
2010; Kim et al., 2015; Saalfeld et al., 2009; Katz and Plaza,
2019; Feng et al., 2015; Myatt et al., 2012; Peng et al., 2014).
However, most focus on image processing and the morpho- 35

logical analysis options available are fairly basic, such as ex-
amining arbour lengths or performing Sholl analyses (Sholl,
1953). Of these, the trees toolbox (Cuntz et al., 2010) has par-
ticularly strong support for morphological analysis of neu-
rons but focuses on individual neurons in isolation rather 40

than neurons within the volume of the brain as a whole.

Recent technological advances have made acquiring large
amounts of neuronal morphology data in their whole-brain
contexts feasible across phyla (Chiang et al., 2011; Zheng
et al., 2018; Li et al., 2019; Kunst et al., 2019; Jenett et al., 45

2012; Cook et al., 2019; Economo et al., 2016; Oh et al., 2014;
Ohyama et al., 2015; Winnubst et al., 2019; Ryan et al., 2016).
Image data are typically registered against a template space,
allowing one to compare data from many brains directly
and quantitatively. This significantly aids the classification of 50

neuronal cell types because it allows type classification rel-
ative to the arbours of other neuronal types (Sümbül et al.,
2014) and anatomical subvolumes. However, while this en-
ables the comparison of data within a given study, template
spaces are often different across studies or laboratories, hin- 55

dering data integration.

This paper describes the Neuroanatomy Toolbox (nat), a
general purpose open-source R-based package for quanti-
tative neuroanatomy, and a suite of extension R packages
that together we call the natverse. A distinctive feature of 60

the natverse, as compared with other available tools, is to
analyse neurons within and across template spaces and to
simplify access to a wide range of data sources. Neurons
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can be read from local files or from online repositories (As-
coli et al., 2007; Jenett et al., 2012; Kunst et al., 2019; Chi-65

ang et al., 2011; Economo et al., 2016; Winnubst et al., 2019)
and web-based reconstruction environments (Saalfeld et al.,
2009; Schneider-Mizell et al., 2016; Katz and Plaza, 2019).
The natverse can be installed in one line of code as de-
scribed on the project website (https://natverse.org). Every70

function is documented with a large number of examples
based on bundled or publicly available data. The code to
generate the figures in this manuscript is available through
https://github.com/natverse/nat.examples. We provide on-
line community support through our nat-user mailing list:75

https://groups.google.com/forum/#!forum/nat-user.
We now give an overview of the natverse and showcase

a number of common applications. The natverse has re-
cently been employed for large scale analysis of zebrafish
data (Kunst et al., 2019) and we provide examples across a80

range of invertebrate and vertebrate species. We then give
more specific examples focussing on cell type identifica-
tion across Drosophila datasets. Using the natverse, we have
created bridging registrations that transform data from one
template to another along with mirroring registrations (e.g.85

left-to-right hemisphere) and made these easily deployable.
This unifies all publicly available Drosophila neuroanatomi-
cal datasets, including those image data for genetic resources
and whole brain connectomics.

2 Results90

2.1 Software packages for neuroanatomy

We have opted to develop our software in R, a leading plat-
form for bioinformatics and general data analysis. R is free
and open-source, and is supported by high quality integrated
development environments (e.g. RStudio). It features a well-95

defined system for creating and distributing extension pack-
ages that bundle code and documentation. These can eas-
ily be installed from high-quality curated repositories (CRAN,
Bioconductor) as well as via GitHub. R supports a range of
reproducible research strategies including reports and note-100

books and integrates with the leading cross-platform tools in
this area (jupyter, binder).

The core package of the natverse is the Neuroanatomy
Toolbox, nat. It supports 3D visualisation and analysis of
neuroanatomical data (Figure 1a), especially tracings of sin-105

gle neurons (Figure 1b). nat allows a user to read neuronal
data from a variety of popular data formats produced by
neuron reconstruction tools (Figure 1a). Typical image anal-
ysis pipelines include imaging neurons with confocal mi-
croscopy, reconstructing them using ImageJ’s Simple Neurite110

Tracer (Longair et al., 2011) then saving them as SWC files
(Cannon et al., 1998); nat can read a collection of such files
with a single command. In addition, a user can, for example,
mark the boutons on each neuron using ImageJ’s point tool
and export that as a CSV file, load this into nat and then anal-115

yse the placement of these synaptic boutons with respect to
the originally traced neuron (Supplementary Figure 1).

We have extended nat by building the natverse as an
ecosystem of interrelated R packages, each with a discrete
purpose (Figure 1a). The natverse is developed using mod-120

ern software best practices including revision control, code
review, unit testing, continuous integration, and code cover-
age. Developing sets of functions in separate packages helps
compartmentalise development, ease troubleshooting and
divides the natverse into documented units that users can 125

search to find the more specific code examples or functions
that they need. To the casual user, these divisions may ini-
tially be of little consequence. We therefore provide a single
wrapper package, natverse; installing this results in the in-
stallation of all packages and their dependencies, immedi- 130

ately giving the user all the capabilities described in this pa-
per (Figure 1a). natverse packages have already been used
in recent publications from our lab (Frechter et al., 2019;
Dolan et al., 2019, 2018; Huoviala et al., 2018; Jefferis et al.,
2007; Cachero et al., 2010; Grosjean et al., 2011; Costa et al., 135

2016) and others (Felsenberg et al., 2018; Kunst et al., 2019;
Zheng et al., 2018; Clemens et al., 2018; Eichler et al., 2017;
Saumweber et al., 2018; Jeanne et al., 2018; Clemens et al.,
2015). Confirmed stable versions of nat, nat.templatebrains,
nat.nblast, nat.utils and nabor can be downloaded from the 140

centralised R package repository, CRAN, with development
versions available from our GitHub page (https://github.
com/natverse/).

In brief, natverse packages can be thought of as belonging
to four main groups (Figure 1a). The first two support obtain- 145

ing data, either by a) interacting with repositories and soft-
ware primarily used for neuron reconstructions from elec-
tron micrograph (EM) data, including CATMAID, NeuPrint
and DVID or b) interacting with repositories for light-level
data, including MouseLight, FlyCircuit, Virtual Fly Brain, 150

NeuroMorpho, the InsectBrainDB and the FishAtlas projects.
Additional R packages help with c) manipulating and deploy-
ing registrations to move data between brainspaces, and d)
data analysis and visualisation (see Materials and methods
for additional details). 155

2.2 Manipulating neuroanatomical data

2.2.1 Neuron skeleton data

Raw 3D images enable true to life visualisation but simpli-
fied representations are usually required for data analysis.
For example, neurons can be traced to generate a compact 160

3D skeleton consisting of 3D vertices joined by edges. The
natverse provides functions for morphological and graph-
theoretic analyses of neurons, collections of neurons, neu-
rons as vector clouds and neurons as tree graphs (Figure 2a).
The natverse represents skeletonised neurons as neuron ob- 165

jects, with the neuron’s geometry in the standard SWC format
where each node in the skeleton has its own integer iden-
tifier. There are additional data fields (Supplementary Fig-
ure 2): the treenode IDs for branch points, the location of its
synapses in 3D space and their polarity, including the source 170

file, leaf nodes and series of IDs that belong to continuous
non-branching segments of the neuron (Supplementary Fig-
ure 2).

Neurons have tree like structures that are critical to their
function (Cuntz et al., 2010). ngraph data objects represent 175

a neuron as a graph originating at a root (usually the soma)
with directed edges linking each of the neuron’s tree nodes
(Figure 2a). This representation provides a bridge to the rich
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Figure 1: The natverse. a R packages that constitute the natverse. Packages are coloured by whether they are general purpose, or cater
specifically for Mus musculus, Danio rerio or Drosophila melanogaster datasets. Coarse division into packages for fetching remote data,
implementing registrations and analysing data are shown. Data, as output by most reconstruction pipelines, can also be read by nat. b The
natverse is designed to work best in the RStudio environment, by far the most popular environment in which to execute and write R code.
3D visualisation is based on the R package rgl, which is based on OpenGL. It runs on Mac, Linux and Windows platforms. c R functions
can be called by other popular scientific programming languages; some example packages/libraries are shown. P. Schlegel has developed
Python code inspired by and parallel with the natverse for analysing neuron morphology, NAVIS (https://github.com/schlegelp/navis),
and talking to the CATMAID API, PyMaid (https://github.com/schlegelp/pyMaid). These python libraries transform natverse-specific R
objects into Python data types and can call natverse R functions like nblast.
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Figure 2: Neurons in nat. a Data classes defined by nat. A D. melanogaster DA1 olfactory projection neuron (Costa et al., 2016) is shown as
part of four different data types, useful for different sorts of analyses: as a neuron object (left), as part of a larger neuronlist of multiple
olfactory projection neurons (middle), as a vector-cloud dotprops object (right, upper) and an ngraph object (right, lower). In grey, the
FCWB template brain, an hxsurf object from the package nat.flybrains, is shown. Generic code for visualizing these data types is shown
is grey boxes. b Visualisation, with generic sample code, of connectomic data from a dense reconstruction inner plexiform layer of the
mouse retina is shown, coloured by the cell class and then cell type annotations given by their reconstructors (Helmstaedter et al., 2013).
Because this dataset contains many neuron fragments that have been severely transected, we only consider skeletons of a total cable length
greater than 500 µm using functions summary and subset. Somata are shown as spheres. c A synaptic-resolution neuron reconstruction
for a D. melanogaster lateral horn neuron (Dolan et al., 2018) has been read from a live CATMAID project hosted by Virtual Fly Brain
(https://fafb.catmaid.virtualflybrain.org/) using catmaid, and plotted as a neuron object. It is rooted at the soma, consistent with the
convention. d Boxed, Strahler order is a measure of branching complexity for which high Strahler order branches are more central to a
neuron’s tree structure, and the lower order ones more peripheral, such that branches with leaf nodes are all Strahler order 1. Main, the
same neuron which has had its lower Strahler order branches progressively pruned away. e We can extract the longest path through a
neuron, its ‘spine’, purple, a method that could help define the tracts that a neuron might traverse. f Boxed, in insect neurons, the main
structure of the neuron is supported by a microtubular backbone, but as it branches its more tortuous, smaller caliber neurites loose the
microtubule, and make more postsynapses (Schneider-Mizell et al., 2016). Main, in CATMAID users can tagged the tree nodes that mark
the position where neurite loses its microtubular backbone, so an R user can use prune family functions to remove, add or differentially
colour microtubular backbone versus twigs. g Both presynapses and postsynapses can been manually annotated in CATMAID, and be
visualised in R. Because neurons from CATMAID have synaptic data, they are treated as a slightly different class by the natverse, called
catmaidneuron. A neuronlist can also contain many catmaidneuron objects. h Boxed, neurons can be split into putative dendrite and
axon using the flow centrality algorithm from Schneider-Mizell et al. (2016). In short, a path is drawn from every post- to presynapse, and
the point in the neuron where the most paths cross is used to split the neuron in two. Main, exemplar neuron algorithmically split into
compartments.
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and efficient graph theory analysis provided by the igraph
package (Csardi and Nepusz, 2005).180

Objects of class neuronlist are collections of neuron
objects, representing one or more neurons, with some at-
tached metadata. This attached metadata can give informa-
tion such as a neuron’s name, some unique identifier, its cell
type, etc (Supplementary Figure 2). An ngraph, neuron or185

neuronlist can be passed to many functions in the nat-
verse, and also to other functions familiar to R users for
which we have written specific methods. For example, users
can call subset on a neuronlist to select only those neu-
rons with a certain entry in their corresponding metadata,190

e.g. all amacrine cells. Methods passed to plot3d enable a
neuronlist to be plotted with colours based on its meta-
data entries (Figure 2b); in this case connectomic data from
the inner plexiform layer of the mouse retina (Helmstaedter
et al., 2013) is shown coloured by cell type. Many functions195

are built to work with neuron objects, but will also have a
method that allows them to be applied to every neuron in
a given neuronlist via the nat function nlapply. R users
will be familiar with this logic from using the base R function
lapply.200

2.2.2 Basic analysis

A useful function with methods for neuron objects and
neuronlist objects is summary. This gives the user counts
for tree nodes, branch points, leaf nodes and the total com-
bined cable length of a neuron (Supplementary Figure 3a).205

We can further use the natverse to identify points on a neuron
that have particular properties based on the neuron’s skele-
ton structure (Figure 2c-e) or because we have some other
data that identifies the position of some biological feature
(Figure 2f-g), or both (Figure 2h). Branching can be assessed210

by branching density, e.g. a Sholl analysis (sholl_analysis)
(Supplementary Figure 3b), or decomposed by branching
complexity, e.g. Strahler order (Supplementary Figure 3c).
Geodesic distances, i.e. within-skeleton distances, can be cal-
culated between any tree node in the graph (Supplementary215

Figure 3c) with the help of functions from the R package
igraph (Csardi and Nepusz, 2005) and Euclidean distances
can be calculated using our R package nabor.

Some reconstruction environments allow tree nodes to be
tagged with extra information, e.g. CATMAID. This can in-220

clude neurite diameter, microtubules (Figure 2e) and pre-
and postsynapses (Figure 2f). This information is fetched
when the catmaid package reads a neuron. It can be used
by a graph theoretic algorithm (Schneider-Mizell et al., 2016)
(Figure 2g, inset) to divide a neuron into its dendrites, axon225

and intervening cable (Figure 2g). We put this information
together in the example in Supplementary Figure 3c, which
shows the geodesic distribution of pre- and postsynapses
along three neurons arbors, split by axon and dendrite, then
further by Strahler order, then further by presence or absence230

of microtubule. Here, for our three exemple neurons, presy-
napses only exist on the larger calibre, microtubule contain-
ing backbone of the neuron, and are present in high num-
ber except at the highest Strahler orders. In contrast postsy-
napses are mainly on twigs (i.e. fine terminal branches) at235

Strahler order 1–2. We can also identify connected neurons
using catmaid functions, and see that the dendrites of these

cells receive particular inputs.

2.2.3 Neuroanatomical volumes

The natverse also helps users analyse neuronal skeletons 240

with respect to volume objects that might represent neu-
roanatomical structures on a scale from a whole brain to neu-
ropil subvolumes. 3D objects from diverse sources can be vi-
sualised and analysed with nat, and we can calculate their
volumes (Figure 3a). By using the nat function make_model, 245

a user can interactively create their own 3D objects from, for
example, points from a neuron’s cable or its synapses (Fig-
ure 3b). This could be used to look at, for example, the enve-
lope around a dendrite or set of dendrites, which may corre-
late with other features of a neuron (Figure 3b). Using the nat 250

function prune_in_volume a skeleton can be cut to include
or exclude the cable within a given volume, while the func-
tion pointsinside can tell a user which synapses lie within
a standard neuropil segmentation (Figure 3c).

2.2.4 Advanced analysis 255

Because the natverse is a flexible platform that allows users
to easily write their own custom R code, very specific analy-
ses can be performed. For example, we might be interested
in using skeletons to define anatomical subvolumes and an-
alyzing the logic of neuronal projections between these sub- 260

volumes. For Supplementary Figure 4 we developed cus-
tom code on top of core natverse functionality to exam-
ine light-level D. melanogaster olfactory projections to, and
target neurons with dendrites in a subregion of the brain
called the lateral horn (Grosjean et al., 2011; Chiang et al., 265

2011; Frechter et al., 2019). We voxelised the lateral horn
as well as its target regions into overlapping kernel den-
sity estimates based on agglomerating similarly shaped sub-
branches for projection neuron axons. This analysis reveals a
structure of distinct subregions in a classic neuropil, and the 270

3D locations that are likely to receive input from these new
subregions (Supplementary Figure 4d). The natverse con-
tains other functions to infer connectivity from light-level
data, including potential_synapses, an implementation
of a synapse prediction algorithm that makes use of spatial 275

proximity and approach angle (Stepanyants and Chklovskii,
2005), and overlap, a simpler algorithm that measures the
putative overlap in Euclidean space between neuron pairs
(Frechter et al., 2019).

2.2.5 Cell typing neurons 280

Neuronal cell type is a useful classification in neuroscience.
It constitutes a testable hypothesis, that shared morphology
indicates functional equivalency (Bates et al., 2019). Neu-
ronal cell typing can be done by expert examination (Helm-
staedter et al., 2013), purely by morphological clustering 285

(Jeanne et al., 2018), or a combination of both (Frechter et al.,
2019). Many neurogeometric algorithms for assessing simi-
larity exist. Some are invariant to the 3D embedding space
(Sholl, 1953; Wan et al., 2015; Li et al., 2017), but those that
are dependent on neurons’ relative positioning in a template 290

space (Cardona et al., 2010; Costa et al., 2016; Zhao and Plaza,
2014) can be more performant when they can be applied
(Zhao and Plaza, 2014; Li et al., 2017).
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Figure 3: Neuroanatomical models with nat. a We accessed the InsectBrainDB.org via insectbrainr to obtain template brains for different
species of insect (Brandt et al., 2005; de Vries et al., 2017; El Jundi et al., 2018; Heinze and Reppert, 2012; Kurylas et al., 2008; Løfaldli et al.,
2010; Stone et al., 2017; Zhao and Plaza, 2014). The package insectbrainr converts retrieved OBJ files into hxsurf objects, which contain
one set of 3D points for each whole brain, and then different sets of edges between these points to form 3D neuropil subvolumes. These
subvolumes were already defined by expert annotators. Their volume are compared across insect brain, normalised by total brain size.
Insect template brain data curated by: S. Heinze, M. Younger, J. Rybak, G. Pfuhl, B. Berg, B. el Jundi, J. Groothuis and U. Homberg. b We can
create our own subvolumes by pulling synaptic neuron reconstructions (Berck et al., 2016) from a first-instar larva EM dataset (Ohyama
et al., 2015) (a public Virtual Fly Brain CATMAID instance), extracting dendritic post synapses from olfactory projections neurons, and
using synapse clouds from neurons of the same cell type, to define glomerular volumes by creating an α-shape. The volumes of these α-
shapes can then be calculated, and correlated with the number of presynapses the same neurons make in two higher-order brain regions,
the lateral horn and the mushroom body calyx. c Volumes can be used to analyse skeleton data. In Figure 3c we look again at olfactory
projection neurons, this time from an adult fly EM dataset (Zheng et al., 2018) and use the nat function pointsinside with standard
neuropil volumes (Ito et al., 2014) to find the numbers of presynapses GABAergic and cholinergic olfactory projection neurons from the
antennal lobe make in different neuropils. These neuropils exist as an hxsurf object in our R package nat.flybrains.
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NBLAST (Costa et al., 2016) is a recent morphological simi-
larity algorithm that has been used in a range of publications295

(Kohl et al., 2013; Masse et al., 2012; Jeanne et al., 2018; Kunst
et al., 2019; Zheng et al., 2018; Frechter et al., 2019). NBLAST
is included in the natverse in our nat.nblast package (Costa
et al., 2016). In many parts of mammalian nervous systems,
morphologically similar neurons are repeated in space, and300

so aligning neurons to one another, without a specified tem-
plate space, is sufficient for quantitative comparison (Fig-
ure 4a). NBLAST scores can be hierarchically clustered in R,
plotted as a dendrogram, and used to visualize morpholog-
ical groups at a defined group number or cut height (Fig-305

ure 4a). Often, this forms a good starting point for cell typ-
ing, but might not be in exact agreement with manually de-
fined cell types (Figure 4b). This can be due to neuron recon-
structions being differently severed by the field of view or size
of the tissue sample collected (Helmstaedter et al., 2013), or310

due to registration offsets between registered neuronal skele-
tons (Kunst et al., 2019; Chiang et al., 2011). The natverse in-
cludes interactive functions, such as nlscan, that allow users
to visually scan neurons and identify mis-assignments (Fig-
ure 4c), or find.neuron and find.soma, that allow users to315

select a neuron of interest from a 3D window (Figure 4c).
In smaller brains, like theinsect or larval zebrafish central

brains, the overlap of both axons and dendrites in 3D space
is an excellent starting point for defining a neuronal type,
since neurite apposition is suggestive of synaptic connectiv-320

ity (Rees et al., 2017) and they are highly stereotyped (Pas-
cual et al., 2004; Jenett et al., 2012). If they have been regis-
tered to whole brain templates (Costa et al., 2016; Kunst et al.,
2019; Chiang et al., 2011) it is desirable to choose a canoni-
cal brain hemisphere and standardise such that all neurons325

are mapped onto this side to approximately double the neu-
rons available for clustering and assign the same cell types on
both hemispheres (Supplementary Figure 5 and Supplemen-
tary Figure 6).

2.3 Comparing disparate datasets330

2.3.1 Template brains in D. melanogaster

It is also highly desirable to compare neurons between differ-
ent datasets within a single template space. Considering just
the case of D. melanogaster, separate template brains ‘con-
tain’ many large and useful but disparate datasets (see Table335

1 on page 9): ~23,000 single light-level neuronal morpholo-
gies, hundreds of neuronal tracings from dye fills, a collec-
tion of ~11,000 genetic driver lines, ~100 neuroblast clones,
and connectomic data, including a brainwide draft connec-
tome on the horizon (Zheng et al., 2018; Scheffer and Mein-340

ertzhagen, 2019). Because of the wealth of data available for
D. melanogaster, we focus on its brain for our registration ex-
amples.

Two approaches have been taken in specifying template
spaces: a) choosing a single brain avoids any potential ar-345

tifacts generated by the averaging procedure, but b) an av-
erage brain can reduce the impact of biological variation
across individuals and deformations introduced during sam-
ple preparation, thus increasing the likelihood of successful
and accurate registration (Bogovic et al., 2018). Quantitative350

neuroanatomical work requires images to be spatially cali-

brated (i.e. with an accurate voxel size), but such calibrations
are not present in all template brains.

Table 2 on page 10 lists the template brains for D.
melanogaster considered in this work and details the re- 355

sources available for each; some are shown in Figure 6. Un-
registered raw data, along with two template brains (one for
each sex) are publicly available for FlyCircuit (Chiang et al.,
2011). The FlyLight project also provides only raw image
data. Template brains and registered data are publicly avail- 360

able for the Vienna Tiles GAL4 libraries (Tirian and Dickson,
2017), but are not distributed in bulk form. We created an in-
tersex reference brain for the FlyCircuit dataset and added
spatial calibrations and re-registered data to our new tem-
plate brains as necessary (see Materials and methods) be- 365

fore constructing bridging registrations. We have deposited
all template brain images, in NRRD format (http://teem.
sourceforge.net/nrrd/) at http://zenodo.org to ensure long-
term availability.

2.3.2 Mirroring data in D. melanogaster 370

Whilst the Drosophila brain is highly symmetric it is not per-
fectly so and the physical handling of brains during sample
preparation introduces further non-biological asymmetries.
A simple 180◦ flip about the medio-lateral axis is therefore
insufficient. To counter this, we have constructed non-rigid 375

warping registrations for a number of template spaces that
apply the small displacements required to fix the mapping
from one hemisphere to the other (Supplementary Figure 7,
see Methods).

Our mirroring registrations can be applied using the func- 380

tion mirror_brain. They can be used to counter non-
biological asymmetries, allowing the investigation of relevant
similarities and differences in morphology between the two
sides of the brain (Supplementary Figure 7a). We found that
the mirroring procedure (see Materials and methods) does 385

not introduce any systematic errors into neuron morphology.
NBLAST was used to calculate morphologically-determined
similarity scores between DL2d olfactory projection neurons
taken from the same side of the brain and compare them with
those calculated between DL2d projection neurons taken 390

from alternate sides of the brain (Figure 5b). We do not find
the distributions of scores (Figure 5c) to be significantly dif-
ferent (D=0.025, p=0.094, two-sample Kolmogorov-Smirnov
test). Extending this, we have used these scores to classify
neurons based on their bilateral symmetry. Figure 5d shows 395

12 example neurons, taken from the bilateral subset of the
FlyCircuit dataset, spanning the range of similarity scores
from most asymmetric A to most bilaterally symmetric L. In-
terestingly, the distribution of scores suggest that most bilat-
eral neurons are reasonably symmetric. 400

It is also possible to use our mirroring registrations to test
the degree of symmetry for sections of neurons. We take seg-
ments of a neuron and use our similarity metric to compute a
score between the segment and the corresponding segment
in the mirrored version of the neuron. This allows differences 405

in innervation and axonal path between the two hemispheres
to be clearly visualised (Figure 5e).
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Figure 4: Cell typing with nat. a Neurons from a dense reconstruction from EM data of the mouse inner plexiform layer (Helmstaedter
et al., 2013) can either be NBLAST-ed in situ (upper) or after alignment by their principal axes in 3D space (lower) in order to make a
first pass at defining, finding or discovering morphological neuronal cell types using NBLAST. b A tSNE plot visualising the results of an
aligned NBLAST of neurons in A, coloured by the manually annotated cells types seen in Figure 2c, with shapes indicating the cell class.
c Manual sorting using the interactive nat functions nlscan and find.soma or find.neuron can help identify misclassifications and make
assignments.
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Dataset Type Count References

Flycircuit Single neuron morphologies
stochastically labeled from dense
transmitter-related lines

~23,000 neurons Shih et al. (2015); Chiang
et al. (2011)

FlyLight GMR
collection

Collection of genetic driver lines,
drive by orthogonal transcription
factors GAL4 (Brand and Perrimon,
1993) or LexA (Lai and Lee, 2006)

~3500 GAL4 lines
~1500 LexA lines

Pfeiffer et al. (2008); Jenett
et al. (2012)

Vienna Tiles
collection

Collection of genetic driver lines,
driven by orthogonal transcription
factors GAL4 or LexA

~8000 GAL4 lines
~3000 LexA lines

Kvon et al. (2014); Tirian
and Dickson (2017)

FlyLight
split-GAL4
collection

Genetic driver lines labelling small
constellations of neurons using the
split-GAL4 system

~400 sparse lines covering the
mushroom body, lobula plate and
column, visual projection neu-
rons, ellipsoid body, descending
neurons, central complex, olfac-
tory projection neurons (Y. Aso,
personal communication, 2019)
and lateral horn

Aso et al. (2014); Aso and
Rubin (2016); Dolan et al.
(2019); Wu et al. (2016);
Robie et al. (2017); Klapo-
etke et al. (2017); Namiki
et al. (2018); Wolff and Ru-
bin (2018)

K. Ito, T.
Lee and V.
Hartenstein

Neuroblast clones for the central
brain & larval-born neurons, gener-
ated using the MARCM method (Lee
and Luo, 2001)

~100 neuroblast clones Yu et al. (2013); Ito et al.
(2013); Wong et al. (2013)

FlyEM and
Harvard
Medical
School

Volume-restricted connectomes Hundreds of neurons from the
mushroom body alpha lobe, two
antennal lobe glomeruli and sev-
eral columns of the optic medulla

Takemura et al. (2013, 2015,
2017); Tobin et al. (2017);
Horne et al. (2018)

FAFB project Serial section transmission electron
microscopy data for a single, whole
adult female fly brain (Zheng et al.,
2018), that has a partial automatic
segmentation available (Li et al.,
2019)

Raw image data for ~150,000 neu-
rons of which several hundred
have been partially reconstructed
for recent publications, 7 thou-
sand more unpublished; an esti-
mated ~5 % of neurons have some
level of reconstruction

Sayin et al. (2019); Felsen-
berg et al. (2018); Frechter
et al. (2019); Dolan et al.
(2018); Huoviala et al.
(2018); Zheng et al. (2018);
Dolan et al. (2019)

Various labo-
ratories

Single neuron morphologies ex-
tracted from dye-filling (e.g. with
biocytin) neurons

Hundreds across a range of stud-
ies, some cited here

Jeanne and Wilson (2015);
Frechter et al. (2019); Gros-
jean et al. (2011); Jefferis
et al. (2007)

Table 1: Neuron morphology resources currently available for the adult D. melanogaster brain.
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Template Description Resources DOI Citation

Wuerzburg Single nc82-stained fe-
male brain

Wild-type CantonS nc82
stained reference brain

— Rein et al. (2002)

TEFOR Averaged brain gener-
ated from Rein et al.
dataset (22 f, 22 m)

— — Arganda-Carreras
et al. (2017)

Cell07 Partial intersex nc82-
stained averaged brain
(14 f, 2 m)

~240 lateral horn projection
neuron tracings

10.5281/zenodo.10570 Jefferis et al. (2007)

T1 Intersex nc82-stained
averaged brain

The Vienna Tiles collection 10.5281/zenodo.10590 Yu et al. (2010)

IS2 Intersex nc82-stained
averaged brain

1018 3D confocal images of
fruitless neurons

10.5281/zenodo.10595 Cachero et al. (2010)

FCWB Intersex Dlg-stained
averaged brain (17 f, 9
m)

Good for FlyCircuit data,
~16,000 neurons re-registered

10.5281/zenodo.10568 Costa et al. (2016)

JFRC Single nc82-stained fe-
male brain

The FlyLight collection — Jenett et al. (2012)

JFRC2 Spatially calibrated
copy of JFRC

The FlyLight collection 10.5281/zenodo.10567 This study

IBN Tri-labelled half brain,
with n-syb-GFP

Neuropil and tract segmenta-
tions (half-brain)

— Ito et al. (2014)

IBNWB Synthetic whole-brain
version of IBN

Neuropil and tract segmenta-
tions (whole-brain)

10.5281/zenodo.10569 This study

FAFBV14 An aligned volume for a
single whole female fly
brain from EM data

Thousands of single neuron
partial manual reconstructions
and fragmented automatic
segmentation (Li et al., 2019)

— Zheng et al. (2018)

JRC2018F A symmetrised high-
quality template
from FAFB extracted
synapse data (Heinrich
et al., 2018)

— — Bogovic et al. (2018)

Table 2: D. melanogaster template brains.
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Figure 5: Sample applications of mirroring registrations. a Three FlyCircuit neurons along with mirrored versions; a visual projection neu-
ron, OA-VUMa2 (Busch et al., 2009) and the CSD interneuron (Dacks et al., 2006). Co-visualisation facilitates the detection of differences
in innervation, such as the higher density of innervation for the CSD interneuron in the lateral horn on the contralateral side compared to
the ipsilateral lateral horn. b Neurons from the same side of the brain and alternate side of brain are compared and a similarity score gen-
erated. c Distributions of similarity scores for comparisons within the same brain hemisphere and across brain hemispheres. d Sequence
of 12 example neurons (black) with mirrored counterparts (grey), having equally spaced similarity scores. Below, full distribution of scores
for all neurons in FlyCircuit dataset. e Segment-by-segment measures of neuron similarity. Redder shades correspond to low degrees of
symmetricity, bluer shades higher. Flipped version of neuron in gray.
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2.3.3 Bridging template spaces in D. melanogaster

Simply rescaling a sample image to match a reference brain
usually fails due to differences in position and rotation (Sup-410

plementary Figure 8a). An affine transformation can ac-
count for these differences, but not for differences in shape
that may be of biological or experimental origin. To cor-
rect for these, we use a full non-rigid warping deformation,
as described previously (Rueckert et al., 1999; Rohlfing and415

Maurer, 2003; Jefferis et al., 2007) (also see Materials and
methods). Briefly, a regular lattice of control points is cre-
ated in the reference brain and corresponding control points
in the sample brain are moved around to specify the defor-
mations required to take the sample data into the reference420

space (Figure 6c-g). Deformations between control points are
interpolated using B-splines, which define a smooth defor-
mation of sample to reference (Figure 6f). The use of a mutual
information metric based on image intensity avoids the re-
quirement for landmarks to be added to each image a time-425

consuming task that can often introduce significant inaccu-
racies. Our approach allows for the unsupervised registration
of images and the independent nature of each registration
allows the process to be parallelised across CPU cores. By
utilizing a high-performance computational cluster, we re-430

registered, with high accuracy, the entire FlyCircuit dataset
within a day.

Our bridging registrations can be deployed on any 3D
natverse-compatible data (e.g. points, neurons, surfaces, im-
ages) using the function xform_brain. A successful and ac-435

curate bridging registration will result in two template spaces
being well co-localised (Figure 6). After visually inspecting
co-localised template spaces to check for any obvious de-
fects, we find it helpful to map a standard neuropil segmenta-
tion (Ito et al., 2014) into the space of the new brain to check440

for more subtle defects (Figure 6d). If the registration passes
these checks it can then be used to combine data from mul-
tiple datasets.

The creation of a bridge between a GAL4 expression li-
brary, such as the GMR collection (Jenett et al., 2012), and445

images of single neurons, such as those of FlyCircuit (Chi-
ang et al., 2011), facilitates the decomposition of an expres-
sion pattern into its constituent neurons, allowing the correct
assessment of innervation density on, for example, ipsilat-
eral and contralateral sides (Figure 6e). Similarly, correspon-450

dences between neuroblast clones can be identified with co-
visualisation. We bridge Fru+ clones (Cachero et al., 2010)
from IS2 space into the JFRC2 space of elav clones (Ito et al.,
2013) and hence determine subset relations (Supplementary
Figure 9b). Furthermore, we can bridge the single neuron Fly-455

Circuit data (Chiang et al., 2011) from the FCWB space into
the IS2 space of the Fru+ clones and use the known sexual
dimorphisms of Fru clones to predict which neurons may be
sexually dimorphic (Supplementary Figure 9c).

The ability to bridge segmentations from one space to460

another is useful for checking innervation across datasets.
While FlyCircuit single neurons (Chiang et al., 2011) were
provided along with information on innervation density
based on their own neuropil segmentation, this segmenta-
tion is not the same as the canonical one (Ito et al., 2014).465

We have bridged the latter segmentation into FCWB space
and recalculated innervation for all the FlyCircuit neurons,

providing a more standardised measure (Figure 6f). Further,
we can compare neurons from Flycircuit with those for which
we have electrophysiological data (Kohl et al., 2013; Frechter 470

et al., 2019), enabling us to suggest a functional role for un-
recorded neurons based on their morphological similarity to
recorded neurons (Figure 6g).

Both the FlyLight (Jenett et al., 2012) and Vienna Tiles li-
braries (Tirian and Dickson, 2017) contain a wealth of GAL4 475

lines amenable to intersectional strategies (Luan et al., 2006).
However, as the two libraries are registered to different tem-
plate spaces, it is difficult to predict which combinations of a
FlyLight GMR line with a Vienna Tiles line would produce a
good intersection (split-GAL4, targeting one cell type present 480

in both parent lines) from the raw images provided by both.
Bridging one library into the space of another (Figure 6h) en-
ables direct co-visualisation. This could be used manually or
computationally to identify combinations that could poten-
tially yield useful intersectional expression patterns (Venken 485

et al., 2011).
It is also possible to warp 3D neuropils and neuron skele-

tons onto some target, without using landmark pairs. For this,
Deformetrica (Bône et al., 2018; Durrleman et al., 2014) can
be used to compute many pairwise registrations at once for 490

different kinds of 3D objects to produce a single deformation
of ambient 3D space describing a registration (Supplemen-
tary Figure 10). This is a generic method that does not require
landmark correspondences to be manually assigned. We give
a simple example in Supplementary Figure 10a, symmetriz- 495

ing a wonky brain and making a LM-EM bridge for first-instar
larva, for which there is a nascent connectome (Berck et al.,
2016; Eichler et al., 2017; Ohyama et al., 2015; Schneider-
Mizell et al., 2016). With such a method it should be possible
to bridge EM or LM data between developmental stages for a 500

nervous system to make comparisons or identify neurons.

2.3.4 EM to LM and back again

Finding neurons of the same cell type between a high-
resolution EM dataset and light-level images of neurons (Fig-
ure 7a) is an essential step in identifying neurons and their 505

genetic resources. So doing links connectivity and detailed
morphological information acquired at the nanometer reso-
lution to other forms of data. This can most easily be done by
finding corresponding landmarks in EM data and a LM tem-
plate space to build a registration (Supplementary Figure 8). 510

In Figure 7 and Figure 8 we give the general pipeline we
used in recent publications (Dolan et al., 2018, 2019; Frechter
et al., 2019; Li et al., 2019) to connect neurons sparsely
labeled in a split-GAL4 line (registered to the template
space JFRC2) to sparsely reconstructed neurons from an EM 515

dataset (FAFB14). Neurons can be manually reconstructed
(Schneider-Mizell et al., 2016) or, more recently, partially
reconstructed by machine learning methods (Januszewski
et al., 2018) as segments that can be manually concate-
nated (Li et al., 2019). A thin plate spline bridging registra- 520

tion between JFRC2 and FAFB14 can be built by finding ~100
corresponding landmarks between the two brainspaces e.g.
the location of turns in significant tracts, the boundaries of
neuropils, the location of easily identifiable single neurons
(Zheng et al., 2018). This registration can be deployed using 525

xform_brain and our elmr package.
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Figure 6: Bridging registrations for brain templates. a A small sample of Drosophila template brains used around the world are shown.
b A partial neuron tracing (purple) made using Simple Neurite Tracer (Longair et al., 2011) being transformed (xform_brain) from the
IS2 standard brainspace to FCWB, where it can be co-visualised with a more complete, matching morphology from FlyCircuit, using our R
package flycircuit. c Outermost neuropil boundaries for FlyCircuit (red) and FlyLight (cyan) template brains. Primed space names indicate
original spaces for data. Unprimed space names indicate current space of image. d Neuropil segmentation from JFRC2 space alongside
FCWB reformatted version. e CSD interneuron from FlyCircuit (red) and FlyLight (cyan). f Neuropil segmentation from JFRC2 (Ito et al.,
2014) space that has been bridged into FCWB space, so it can be seen along with selected neurons from FlyCircuit. g A traced neuron
in FCWB space alongside morphologically similar neuron from FlyCircuit. h Expression pattern of Vienna Tiles line superimposed on
expression pattern of FlyLight line.
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Figure 7: Finding specific neurons in EM and LM data. a Pipeline for acquiring EM neuron data. Serial section transmission EM at high
speed with a TEM camera array (Bock et al., 2011) produced several micrographs per section at 4 × 4 nm resolution, ~40 nm thick. These
were, per section, stitched into mosaics which were, across sections, registered to create the female adult fly brain v.14 template space
(FAFB14, grey) (Zheng et al., 2018). Corresponding landmarks between FAFB14 and JFRC2 can be found and used to build a bridge. b The R
package elmr can be used to select an anatomical locus, here the PD2 primary neurite tract (Frechter et al., 2019), from 3D plotted light-level
neurons, taken from FlyCircuit, and generate a URL that specifies its correct coordinates in a FAFB14 CATMAID instance. Candidates (185)
may then be coarsely traced out until they deviate from the expected light-level morphologies (178 pink dotted profiles, often a few minutes
to an hour of manual reconstruction time to rule out neurons of dissimilar cell types sharing a given tract, similar cell types are more
subtly different and might need to be near completely reconstructed). Those that remain largely consistent were fully reconstructed (green
profiles, ~7-12 person-hours per neuron) (Li et al., 2019). c Close matches reveal likely morphology of non-reconstructed branches (orange
arrow) but also contain off-target expression (yellow arrow). Identification of multiple candidate lines enables split-GAL4 line generation
aimed at retaining common neurons in two GAL4 patterns. MultiColor FlpOut of resultant splits can be compared with the EM morphology.
Here, a candidate GAL4 line is found for AL-lALT-PN3 (Frechter et al., 2019; Tanaka et al., 2012) using NBLAST and a MIP search (Otsuna
et al., 2018). d A recent dense, but volume-restricted reconstruction of the mushroom body α-lobe discovered a ‘new’ mushroom body
output neuron type (MBON-α2sp) (Takemura et al., 2017). By bridging from the correct mushroom-body compartment using a mushroom
body mesh (Ito et al., 2014) to the FAFB14 EM data’s equivalent space in CATMAID using the R package elmr, an experienced tracer can
easily identify dendrites and find MBON-α2sp. By doing so, we found its previously unreported axon-morphology. We then imported the
skeleton into R, bridged MBON-α2sp into the JFRC2 template space where it could be NBLAST-ed against GMR GAL4 lines to identify
candidate lines containing the MBON.
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Figure 8: Bridging EM and LM data. a Sparse EM reconstruction providing a database of non-comprehensive, partial morphologies that
can be searched using NBLAST. Candidate neurons from the EM brainspace can be NBLAST-ed against MCFO data and other light-level
datasets in order to connect them to cell-type specific information, such as odour responses and functional connectivity (Chiang et al.,
2011; Dolan et al., 2019; Frechter et al., 2019; Jeanne et al., 2018), by bridging these datasets into the same brainspace. b An all-by-all
NBLAST of all neurons in the PD2 primary neurite cluster (Frechter et al., 2019) in multiple datasets can be shown as a tSNE plot. EM cell
type matches can easily be found, as well as other correspondences between the light level datasets.
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By bridging multiple other light-level datasets into JFRC2
(Figure 6), candidate neurons from the EM brainspace can
be co-visualised (Figure 8c) and NBLAST-ed against light-
level datasets in order to confirm their cell type identity and530

consider results from different studies (Jeanne et al., 2018;
Frechter et al., 2019; Chiang et al., 2011; Dolan et al., 2019)
(Figure 8d). However, FAFB14 contains unannotated image
data for ~150,000 neurons (Bates et al., 2019), each requiring
hours of manual reconstruction time, and person-power is535

limited. To find specific neurons in this volume, we can use
the R package elmr to select a distinctive anatomical locus,
for example the cell body fiber tract (Frechter et al., 2019)
from 3D plotted neurons, and jump to its approximate co-
ordinates in FAFB14 in a supported CATMAID instance us-540

ing the generated URL (Figure 7b). Reconstruction efforts can
then be focused at this location, being aware that the jump
is not always completely accurate despite a good bridging
registration as some light-level datasets can be ill-registered
(Figure 7b). In the absence of an extant light-level reconstruc-545

tion, candidate neurons can be found by identifying distinc-
tive anatomical loci in the EM volume that correspond to the
anatomy of the cell type in question (Figure 7d).

A user may also want to work the opposite way, and con-
nect an interesting EM reconstruction to light-level data, e.g.550

to identify a genetic resource that targets that neuron. In this
situation, a similar pipeline can be used. For D. melanogaster,
a reconstruction can be bridged into JFRC2 and NBLAST-ed
against GAL4 lines (Jenett et al., 2012; Tirian and Dickson,
2017) read from image data and represented as vector clouds555

(Costa et al., 2016). Alternatively, image matching tools can
be used, such as the recent colour depth MIP mask search
(Otsuna et al., 2018), which operates as an ImageJ plug-in
(Figure 7c).

Further, because close light-level matches for in-progress560

EM reconstructions reveal the likely morphology of non-
reconstructed branches (Figure 7c) this process can help hu-
man annotators reconstruct neurons accurately and in a tar-
geted manner, which may be desirable given how time inten-
sive the task is. In order to further reduce this burden, we565

combined the natverse with a recent automatic segmenta-
tion of neurites in FAFB14 using a flood filling approach (Li
et al., 2019), which produces volumetric fragments of neu-
rites, where segments may be fairly large, ~100 µm in cable
length.570

Our fafbseg package includes functions to implement im-
proved up-/downstream sampling of neurons based on these
segments, which we have recently discussed elsewhere (Li
et al., 2019). We can also generate volumetric reconstruc-
tions of manually traced neurons by mapping them onto vol-575

umetric data (Supplementary Figure 11b), hosted by a brain-
maps server and visible through a Neuroglancer instance
(Supplementary Figure 11a). Currently, ~500 such segments
will map onto one accurately manually traced neuron but
only ~20 segments may constitute the highest Strahler order580

branches meaning that manual concatenation of these frag-
ments speeds up discovery of coarse morphologies by ~10×
(Li et al., 2019). These fragments can be used to identify the
neuron in question by NBLAST-ing against light-level data.
Twigs and small-calibre, lower Strahler order branches are585

more difficult to automatically segment (Supplementary Fig-
ure 11c). Nevertheless, matching tracings to segmentations

allows us to estimate the volume of neurons that we have
previously manually reconstructed (Dolan et al., 2019, 2018)
by only tracing the neurites’ midline (i.e. skeletonisation). We 590

can therefore observe that superior brain neurons’ axons are
slightly thicker than their dendrites and that neuronal vol-
umes correlates strongly with its total cable length (Supple-
mentary Figure 11d).

In early 2020, a densely reconstructed connectome for 595

about one half of the fly brain will be made available from
the FlyEM team at Janelia Research Campus (Scheffer and
Meinertzhagen, 2019). Neurons from this ‘hemibrain’ volume
can be transformed to the JRC2018F light level template brain
via a bridging registration constructed using the strategy de- 600

scribed by Bogovic et al. (2018) (J. Bogovic and S. Saalfeld,
personal communication, October 2019). We have already
wrapped this bridging registration within the natverse frame-
work, thereby connecting it to the full network of fly tem-
plate brains, datasets and analysis tools already described in 605

this paper. We will release this implementation immediately
when the hemibrain connectome becomes available.

3 Discussion

The shape of a neuron is of major functional significance.
Morphology is driven by and constrains connectivity. It is also 610

the primary means by which neuroscientists have historically
identified neuron classes. There have been three main drivers
behind the recent emphasis on quantitative neuroanatomy:
a) the ever increasing scale of new approaches for acquir-
ing image data and reconstructing neurons, b) a drive to for- 615

malise descriptions of the spatial properties of neurons and
networks at various scales, and c) a desire to intuit the organ-
isational principles behind different nervous tissues and cor-
relate these findings with dynamic data on neuron activity.

With the natverse, a suite of R packages for neuroanatomy 620

with well documented code and detailed installation instruc-
tions and tutorials available online, we aim to expedite anal-
ysis of these data in a flexible programming environment.
The natverse allows a user to read data from local or re-
mote sources into R, and leverage both natverse functions 625

and the >10,000 R packages on CRAN (and more on Biocon-
ductor, Neuroconductor, GitHub, etc.) to aid their data anal-
ysis. Users may also call natverse R functions from other lan-
guages such as Python, Julia and MATLAB. We have provided
detailed examples to analyse skeleton and volume data from 630

various sources and have made the code available with both
R and Python examples, at https://github.com/natverse/nat.
examples. These examples demonstrate how to obtain skele-
ton and volume data, calculate basic metrics for neurons,
examine synapses and other tagged biological features like 635

microtubules, analyse morphology as a graph or through
Strahler order and NBLAST searches, prune neurons, semi-
manually cell type neurons, spatially transform neurons and
create subvolumes using neurons. We have also given an ex-
ample of building a more complex analysis, based on nat- 640

verse tools but making use of other available R packages.
We hope that the natverse becomes a collaborative plat-

form for which users can contribute to existing R packages
or link to their own. We note that the natverse is an actively
developing project and also anticipate a) an increasing inter- 645
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est in dealing with neurons as volumes as automatic segmen-
tation of datasets becomes commonplace, b) expanding our
bridging tools to support a wider range of species, and to map
between similar species and developmental stages, c) writ-
ing libraries to facilitate the use of the natverse in other pro-650

gramming languages and toolboxes besides Python, and d)
expanding the range of neurogeometric analysis algorithms
readily available in the natverse.

In addition to general purpose natverse tools, we have gen-
erated some specific R packages to support ongoing projects655

in the D. melanogaster brain. We have constructed high qual-
ity registrations for the bridging of data from one template
space to another, along with registrations for mirroring data
across brain hemispheres. In two of the largest cases, only
raw unregistered data were available, so we began by registra-660

tion to an appropriate template space. This has allowed us to
deposit ~20,000 co-registered images from different sources
in the virtualflybrain.org project. Averaged intersex template
spaces can form high quality registration templates for both
sexes and we recommend the use of averaged brains to re-665

duce the effects of sample-to-sample variation. We propose
using a small number of template spaces, particularly those
that are already associated with the most data (JFRC2) or of
highest quality (Bogovic et al., 2018), as a hub. High quality
bridging registrations would be created between new tem-670

plate spaces and brains in the hub, ensuring that any tem-
plate could be bridged to any other via appropriate concate-
nations and inversions of these registrations.

Using these resources, it is now possible to co-visualise
and analyse more than 23,000 single neuron images (Chiang675

et al., 2011), expression patterns of >9,500 GAL4 lines (Kvon
et al., 2014; Jenett et al., 2012; Tirian and Dickson, 2017) and
a near complete set of ~100 adult neuroblast clone lineage
data (Ito et al., 2013; Yu et al., 2013) and easily combine these
data with the standard insect brain name nomenclature sys-680

tem (Ito et al., 2014). For example we have calculated the neu-
ropil overlap between single neurons in the FlyCircuit data,
which we have deposited with virtualflybrain.org so they can
be queried online. It will soon be possible to identify split-
GAL4 lines, a synaptic EM reconstruction and the develop-685

mental clone of origin for any given neuron or neuronal cell
type for D. melanogaster. We anticipate such mappings to be-
come publicly available and easy to use via resources such as
https://v2.virtualflybrain.org/.

The near future will see generation of EM data for multi-690

ple whole adult Dipteran brains and larval zebrafish, possibly
from different sexes and species, as well as quality automatic
segmentations for such data’s neurites (Januszewski et al.,
2018; Funke et al., 2019) and synapses (Heinrich et al., 2018),
even from anisotropic serial section transmission EM data695

(Li et al., 2019).Interpreting high resolution EM connectomic
data will be accelerated and enriched by making links to light
level data (Schlegel et al., 2017). Furthermore, it is possible
that connectomes and transcriptomes may be linked on a cell
type basis, using neuron morphology as a bridge (Bates et al.,700

2019). The natverse provides extensible functionality for eas-
ily combining and analysing all these data.

4 Materials and methods

4.1 R packages for Neuroanatomy

The R programming language (Development Core Team, 705

2011) is perhaps the premier environment for statistical data
analysis, is well supported by the integrated development en-
vironment RStudio and is a strong choice for data visuali-
sation (Wickham, 2016). It already hosts a wealth of pack-
ages for general morphometric and graph theoretic analysis 710

(Schlager, 2017; Lafarge et al., 2014; Csardi and Nepusz, 2005;
Duong, 2007). An R package is a bundle of functions, docu-
mentation, data, tests and example code (Wickham, 2015).
R packages are discrete, standardised and highly shareable
units of code. They are primarily installed either from the 715

Comprehensive R Archive Network (CRAN, >14,000 pack-
ages, curated), Bioconductor (>1,700 packages, curated) or
GitHub (larger, uncurated), using just one or two function
calls and an Internet connection. The R packages behind the
natverse can be divided into four groups (Figure 1a): 720

4.1.1 Working with synaptic resolution data in nat

Group a) obtains synaptic-level data required for connec-
tomes and includes catmaid, neuprintr, drvid and fafbseg.
The package catmaid provides application programming in-
terface (API) access to the CATMAID web image annotation 725

tool (Schneider-Mizell et al., 2016; Saalfeld et al., 2009). CAT-
MAID is a common choice for communities using terabyte-
scale EM data to manually reconstruct neuron morphologies
and annotate synaptic locations (Ohyama et al., 2015; Berck
et al., 2016; Dolan et al., 2018; Frechter et al., 2019; Eichler 730

et al., 2017; Zheng et al., 2018). Users can use catmaid to read
CATMAID neurons into R including the locations and asso-
ciations of their synapses, and other tags that might iden-
tify biological entities such as somata, microtubules or gap
junctions. Users can also leverage CATMAID’s infrastructure 735

of flexible hierarchical semantic annotations to make queries
for neurons e.g. in a brain region of interest. Further catmaid
can edit CATMAID databases, e.g. adding annotations, up-
loading neurons, synapses and meshes. Some CATMAID in-
stances are kept private by a community before data publi- 740

cation. In this case catmaid can enable a user to send au-
thenticated requests to a CATMAID server, i.e. data can be
kept private but still be read into R over an Internet con-
nection. The packages neuprintr and drvid are very simi-
lar, except that they interact with API endpoints for differ- 745

ent distributed annotation tools, the NeuPrint connectome
analysis service (https://github.com/connectome-neuprint/
neuPrint) and DVID (Katz and Plaza, 2019) and can retrieve
neurons as volumes as well as skeletons. The package fafb-
seg aims to make use of the results of automatic segmenta- 750

tion attempts for large, dense brain volumes. It includes sup-
port for working with Google’s BrainMaps and NeuroGlancer
(https://github.com/google/neuroglancer). Automatic seg-
mentation of EM data is a rapidly-developing field and this
package is currently in active development; at present it onlys 755

supports auto-segmentation (Li et al., 2019) of a single female
adult fly brain (FAFB) dataset (Zheng et al., 2018).
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4.1.2 Working with light-resolution data projects in nat

Group b) is targeted at light microscopy and cellular resolu-
tion atlases, or mesoscale projectomes. Its packages, neuro-760

morphr, flycircuit, vfbr, mouselight, insectbrainr and fishat-
las can read from large repositories of neuron morphology
data, many of which are co-registered in a standard brain
space. neuromorphr provides an R client for the NeuroMor-
pho.org API (Ascoli et al., 2007; Halavi et al., 2008; Nanda765

et al., 2015), a curated inventory of reconstructed neurons
(n = 107395, 60 different species) that is updated as new
reconstructions are collected and published. Since its neu-
rons derive from many different systems and species, there is
no ‘standard’ orientation, and so they are oriented by plac-770

ing the soma at the origin and aligning neurons by their
principal components in Euclidean space. insectbrainr can
retrieve neurons and brain region surface models from In-
sectBrainDB.org (n = 139 neurons, 14 species). Similarly fly-
circuit interacts with the flycircuit.tw project (Chiang et al.,775

2011; Shih et al., 2015), which contains >23,000 registered
and skeletonised D. melanogaster neurons. The vfbr pack-
age can pull image data from virtualflybrain.org, which hosts
registered stacks of central nervous system image data for
D. melanogaster, including image stacks for the major GAL4780

genetic driver line collections (Jenett et al., 2012), neurob-
last clones (Yu et al., 2013; Ito et al., 2013) and FlyCir-
cuit’s stochastically labelled neurons (Chiang et al., 2011).
This non-skeleton data can be read into R as point clouds.
The fishatlas package interacts with FishAtlas.neuro.mpg.de,785

which contains 1,709 registered neurons from the larval
Danio rerio (Kunst et al., 2019), while mouselightr does the
same for the MouseLight project at Janelia Research Cam-
pus (Economo et al., 2016), which has generated >1,000 mor-
phologies. In both cases, investigators have acquired sub-790

micron single neuron reconstructions from datasets of whole
brains using confocal (Kunst et al., 2019) or two-photon mi-
croscopy (Economo et al., 2016), modified tissue clearing
techniques (Treweek et al., 2015), and generated a template
brain with defined subvolumes.795

4.1.3 Working with registrations in nat

Group c) helps users make use of registration and bridging
tools. The package nat.ants wraps the R package ANTsRCore
(Kandel et al., 2019) with a small number of functions to
enable nat functions to use Advanced Normalisation Tools800

(ANTs) registrations (Avants et al., 2009). The R package de-
formetricar does the same for the non-image (e.g. mesh or
line data) based registration software Deformetrica (Bône
et al., 2018; Durrleman et al., 2014) without the need for land-
mark correspondences. The nat package already contains805

functions to support CMTK registrations (Rohlfing and Mau-
rer, 2003). The nat.templatebrains package extends nat to ex-
plicitly include the notion of each neuron belonging to a cer-
tain template space, as well as functions to deploy bridging
and mirroring registrations. Additionally, nat.flybrains con-810

tains mesh data describing commonly used template spaces
for D. melanogaster as well as CMTK bridging and mirror de-
formations discussed in the latter half of the results section.

4.1.4 Analyzing data in nat

Group d) contains functions that help users to easily analyse 815

neuron data as both skeletons and volumes. Its biggest con-
tributor is still nat, but nat.nblast allows users to deploy the
NBLAST neuron similarity algorithm (Costa et al., 2016), by
pairwise comparison of vector clouds describing these neu-
rons in R. Our nabor package is a wrapper for libnabo (S. 820

Magnenat), a k-nearest neighbour library which is optimised
for low dimensional (e.g. 3D) spaces. The package elmr is an-
other fly focused package that has been born out of a specific
use case. Currently, ~22 laboratories and ~100 active users
worldwide are engaged with reconstructing D. melanogaster 825

neurons from EM data (Zheng et al., 2018) using CATMAID
(Saalfeld et al., 2009; Schneider-Mizell et al., 2016) in order
to build a draft, sparse connectome. The package elmr al-
lows users to read neurons from this environment, trans-
form them into a template space where they can be com- 830

pared with light-level neurons for which the community may
have some other information (e.g. gene expression, func-
tional characterisation, presence in genetic drive lines, etc.),
then visualised and/or NBLAST-ed; all with only a few lines
of code. This process enables CATMAID users to perform 835

interim analyses as they reconstruct neurons, helping them
to choose interesting targets for reconstruction and identify
manually traced or automatically reconstructed neuron frag-
ments (Dolan et al., 2019) or anatomical landmarks such as
fiber tracts (Frechter et al., 2019), and so improve the effi- 840

ciency of their targeted circuit reconstructions (Dolan et al.,
2018; Huoviala et al., 2018; Felsenberg et al., 2018).

4.2 Building mirroring registrations

A simple 180◦ flip about the medio-lateral axis is insufficient
to generate a left-right mirror for most neuroanatomical vol- 845

umes; after flipping, the brain will not be perfectly centered
in the image. It is first necessary to apply an affine registra-
tion to roughly match the flipped brain to the same location
as the original. This results in a flipped brain with the correct
gross structure (i.e. large structures such as neuropils align) 850

but with mismatched fine details (e.g. bilaterally symmetric
neurons may appear to innervate slightly different regions on
either side (Figure 5a). For example, for the JFRC2 template
space we found that points are, on average, displaced by 4.8
µm from their correct position, equivalent to 7–8 voxels of 855

the original confocal image. The largest displacements, of the
order of 10–15 µm, are found around the esophageal region
(Supplementary Figure 7b) and are likely due to specimen
handling when the gut is removed during dissection. An ideal
mirroring registration would result in zero total displacement 860

after two applications of the mirroring procedure, i.e. a point
would be mapped back to exactly the same location in the
original brain hemisphere. Our constructed mirroring regis-
trations have, on average, a round-trip displacement of less
than a quarter of a micron – i.e. about the diffraction limit 865

resolution of an optical microscope and less than half of the
sample spacing of the original confocal image (Supplemen-
tary Figure 7c).
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4.3 Building bridging registrations

Given a bridging registration A 7→ B, an attempt to produce870

the registration B 7→ A can be made via numerical inversion
of the original registration. This is a computationally inten-
sive process but we find it to be useful for neuroanatomical
work as the inaccuracies are set by numerical error, which
is much smaller than registration error. As the registration A875

7→ B may be injective (i.e. points within brain A may map to
a subset of the points within brain B ), there may be some
points in B, particularly near the boundaries of the brain, for
which this inversion will not map them into A. To counter this
we have, for some brains, constructed a new registration B880

7→ A by explicitly registering B onto A, rather than relying on
numerical inversion. Full details of the building of bridging
registrations and their directions are shown in Supplemen-
tary Figure 8. Here, the arrows indicate the direction of the
forward transformation but, due to the ability to numerically885

invert the transformations, it is possible to travel ‘backwards’
along an arrow to transform in the opposite direction. While
the inversion takes an appreciable time to calculate, the re-
sulting errors are extremely small, far below the resolution of
the original images, and only exist due to the finite precision890

with which the floating-point numbers are manipulated. By
inverting and concatenating bridging registrations as appro-
priate, it is possible to transform data registered to any of the
template spaces to any of the other template spaces.

4.4 Creating accurate registrations895

Full, non-rigid warping registrations were computed using
the Computational Morphometry Toolkit (CMTK), as de-
scribed previously (Jefferis et al., 2007). An initial rigid affine
registration with twelve degrees of freedom (translation, ro-
tation and scaling of each axis) was followed by a non-900

rigid registration that allows different brain regions to move
somewhat independently, subject to a smoothness penalty
(Rueckert et al., 1999). In the non-rigid step, deformations
between the independently moving control points are inter-
polated using B-splines, with image similarity being com-905

puted through the use of a normalized mutual information
metric (Studholme et al., 1999). The task of finding an ac-
curate registration is treated as an optimisation problem of
the mutual information metric that, due to its complex na-
ture, has many local optima in which the algorithm can be-910

come stuck. To help avoid this, a constraint is imposed to
ensure the deformation field is spatially smooth across the
brain, as is biological reasonable. Full details of the parame-
ters passed to the CMTK tools are provided in the ‘settings’
file that accompanies each registration. To create mirroring915

registrations, images were first flipped horizontally in Fiji be-
fore being registered to the original template spaces using
CMTK. For convenience, we also encoded the horizontal flip
as a CMTK-compatible affine transformation, meaning that
the entire process of mirroring a sample image can be carried920

in single step with CMTK.

4.5 Construction of new template spaces

The template space provided by the FlyLight project (JFRC)
is not spatially calibrated and so we added spatial calibration

to a copy named JFRC2. Similarly, FlyCircuit images are regis- 925

tered to male and female template spaces and so we created
an intersex template space from 17 female and 9 male brains
to bring all FlyCircuit neurons into a common space, irre-
spective of sex. The IS2, Cell07 and T1 template spaces were
left unaltered. 930

As the neuropil and tract masks provided by the Insect
Brain Name working group (Ito et al., 2014) only cover half
a brain (IBN), we extended the IBN template space into a
new whole brain template (named IBNWB) to improve the
quality of the bridging registration between the IBN files and 935

the other whole brain templates. The green channel (n-syb-
GFP) of the tricolour confocal data provided was taken, du-
plicated and flipped about the medio-lateral axis using Fiji
(Schindelin et al., 2012). The Fiji plugin ‘Pairwise stitching’
(Preibisch et al., 2009) was used to stitch the two stacks 940

together with an offset of 392 pixels. This offset was cho-
sen by eye as the one from the range of offsets 385–400
pixels that produced the most anatomically correct result.
The overlapping region’s intensity was set using the ‘linear
blend’ method. We attempted improving on this alignment 945

using the Fourier phase correlation method that the plugin
also implements, but this gave poor results — the algorithm
favoured overlapping the optic lobes, with a half central brain
being present on each of the left and right sides.

As the template space is synthesized from an affine trans- 950

formation of the original IBN template, we only considered
an affine bridging registration between IBN and IBNWB. The
n-syb-GFP labelling used in the IBN template strongly labels
a large collection of cell bodies close to the cortex, posterior
of the superior lateral protocerebrum and lateral horn, that 955

are not labelled by nc82 or Dlg and hence the warping regis-
trations from IBNWB to the other whole brain templates are
less accurate in this region.

4.6 Construction of averaged template spaces

CMTK’s avg_adm tool was used to iteratively produce new 960

averaged seed brains given a set of template spaces and an
initial seed brain drawn from the set. In each round, tem-
plate spaces are registered to the seed brain and averaged to
produce a new seed brain. After all rounds are complete, a
final affine registration between the latest seed brain and a 965

flipped version is calculated and then halved, resulting in a
final brain that is centered in the middle of the image. The
FCWB template was produced in this manner using 17 fe-
male and 9 male brains. We have developed documented
tools to help users make average templates, available via 970

https://github.com/jefferislab/MakeAverageBrain.

4.7 Application of registrations to images,
traced neurons and surface data

CMTK provides two commands, reformatx and
streamxform that will use a registration to reformat 975

images and transform points, respectively. The R package
nat (NeuroAnatomy Toolbox) wraps these commands and
can use them to transform neuroanatomical data, stored as
objects in the R session, between template spaces. A 3D sur-
face model of the standard neuropil segmentation (Ito et al., 980

2014) was generated from the labelled image stack, using
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Amira, read into R using nat, transformed into the different
template template spaces, via JFRC2, and saved as new 3D
surfaces. These can then be used to segment neurons in their
original space, providing interesting volumetric data for a985

neuron such as the relative density of neuropil innervation.

4.8 Flies

Wild-type (Canton S, Bloomington Stock Center, Indiana
University) and transgenic strains were kept on standard
yeast/agar medium at 25 ◦C. Transgenics were a GH146-lexA990

line and the dFasciculin-II-GFP protein trap line (courtesy of
M. Landgraf). Lines were balanced with CyO, Dfd-GMR-YFP
or TM6b, Sb, Dfd-GMR-YFP balancer chromosomes (Bloom-
ington Stock Center, Indiana University).

4.9 Larval dissection, immunohistochemistry995

and imaging

Flies were mated a day before dissection and laid eggs on
apple-juice based media with a spot of yeast paste overnight
at 25◦C. Adults and large hatched larvae were subsequently
removed, and small embryos (approx. the length of an egg)1000

were dissected in Sorensen’s saline (pH 7.2, 0.075 M). A hypo-
dermic needle (30 G × 0.5′; Microlance) was used to sever the
mouth hooks of each larva, at which point the CNS extruded
along with viscera, and was gently separated and stuck to a
cover glass that has been coated with poly-L-lysine (Sigma-1005

Aldrich) in a bubble of solution. The CNS were then fixed
in 4% formaldehyde (Fisher Scientific) in Sorensen’s saline
for 15 min at room temperature, and subsequently perme-
abilised in PBT (phosphate buffer with 0.3% Triton-X-100,
SigmaAldrich). Incubated overnight in primary antibodies at1010

4◦C and, after washes in PBT, in secondary antibodies for 2
hrs at room temperature. Washes took place in either a bub-
ble of fluid or shallow dish filled with solution to prevent
collapse of brain lobes into the VNC. For this reason also,
confocal stacks were acquired with a 40× dipping lens on a1015

Zeiss LSM 710, voxel resolution 0.2×0.2×0.5 microns3. Pri-
mary antibodies used were Chicken anti-GFP (Invitrogen),
1: 10000, mouse IgG1 anti-FasciclinII (DSHB), 1:10, rat N-
Cadherin (DSHB) and mouse IgG1 Discs large-1, 1:50. Sec-
ondaries used were goat anti-mouse CF568, 1:600, goat anti-1020

Chicken Alexa488, goat anti-mouse CF647, 1:600. Some an-
tibodies and dissection training were kindly supplied by M.
Landgraf.

4.10 Visualisation

The majority of images shown in this manuscript were gener-1025

ated in RStudio. 3D images were plotted with natverse func-
tions that depend on the R package rgl (Murdoch, 2001), 2D
plots were generated using ggplot2 (Wickham, 2016). 3D im-
ages of confocal data were visualized using Amira 6.0, and
Paraview. Figures were generated using Adobe Illustrator.1030

4.11 Data Availability

The bridging and mirroring registrations are deposited in
two version controlled repositories at http://github.com/
jefferislab with revisions uniquely identified by the SHA-1

hash function. As some template spaces may have multiple 1035

versions, we identify each version by its SHA-1 hash as this is
uniquely dependent on the data contained in each file. Since
we use the distributed version control system, git, any user
can clone a complete, versioned history of these repositories.
We have also taken a repository snapshot at the time of the re- 1040

lease of this paper on the publicly funded http://zenodo.org
site, which associates the data with a permanent digital ob-
ject identifiers (DOI). To simplify data access for colleagues,
we have provided spatially calibrated template spaces for
the main template spaces in use by the Drosophila com- 1045

munity in a single standard format, NRRD. These brain im-
ages have permanent DOIs listed in Table 2 on page 10. We
have also generated registrations for the entire FlyCircuit sin-
gle neuron and FlyLight datasets. The registered images have
been deposited at http://virtualflybrain.org. The R packages 1050

nat.flybrains and elmr in the natverse also contain easy-to-
use functions for deploying these registrations. The com-
plete software toolchain for the construction and application
of registrations consists exclusively of open-source code re-
leased under the GNU Public License and released on GitHub 1055

and Sourceforge. A full listing of these resources is available
at http://jefferislab.org/si/bridging. All of these steps will en-
sure that these resources will be available for many years to
come, as has been recommended (Ito, 2010).
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