

1 **An Improved Chromosome-scale Genome Assembly and Population Genetics**
2 **resource for *Populus tremula*.**

3
4
5 Kathryn M. Robinson^{1&}, Bastian Schiffthaler^{1&}, Hui Liu², Sara M. Westman¹, Martha Rendón-
6 Anaya³, Teitur Ahlgren Kalman¹, Vikash Kumar¹, Camilla Canovi¹, Carolina Bernhardsson⁴,
7 Nicolas Delhomme⁵, Jerry Jenkins⁶, Jing Wang⁷, Niklas Mähler¹, Kerstin H. Richau¹, Victoria
8 Stokes⁸, Stuart A'Hara⁸, Joan Cottrell⁸, Kizi Coeck⁹, Tim Diels^{10,11}, Klaas Vandepoele^{10,11,12},
9 Chanaka Mannapperuma¹, Eung-Jun Park¹³, Stephane Plaisance⁹, Stefan Jansson¹, Pär K.
10 Ingvarsson³, Nathaniel R. Street^{1,14*}

11
12 ¹ Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå,
13 Sweden

14 ² National Engineering Laboratory for Tree Breeding; Key Laboratory of Genetics and
15 Breeding in Forest Trees and Ornamental Plants, Ministry of Education; The Tree and
16 Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and
17 Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry
18 University, China

19 ³ Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter,
20 Swedish University of Agricultural Science, Uppsala, Sweden

21 ⁴ Evolutionary Biology Centre, Department of Organismal Biology, Uppsala University,
22 Uppsala, Sweden

23 ⁵ Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish
24 University of Agricultural Science, Umeå, Sweden

25 ⁶ Hudson-Alpha Institute for Biotechnology, Huntsville, Alabama, USA

26 ⁷ Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan
27 University, Chengdu, China

28 ⁸ Forest Research, Northern Research Station, Roslin, UK

29 ⁹ VIB Nucleomics Core, VIB, Leuven, Belgium.

30 ¹⁰ Department of Plant Biotechnology and Bioinformatics, Ghent University,
31 Technologiepark 71, 9052 Ghent, Belgium

32 ¹¹ VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium

33 ¹² Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent,
34 Belgium

35 ¹³ Forest Medicinal Resources Research Center, National Institute of Forest Science, Suwon,
36 Korea

37 ¹⁴ Science for Life Laboratory, Umeå University, Umeå, Sweden

38
39 & These authors contributed equally to this work.

40
41 * Corresponding author: Nathaniel R. Street, Umeå Plant Science Centre, Department of
42 Plant Physiology, Umeå University, 901 87 Umeå, Sweden. E-mail: nathaniel.street@umu.se

45 **Running head:** A genomics resource for European Aspen

46

47 **Keywords:** genome assembly, natural selection, co-expression, population genetics,
48 *Populus*, aspen, GWAS, leaf physiognomy, leaf shape, leaf size, genetic architecture, ATAC-
49 Seq, lncRNA

50

51 **Abstract**

52 Aspen (*Populus tremula* L.) is a widely distributed keystone species and a model system for
53 forest tree genomics, with extensive resources developed for population genetics and
54 genomics. Here we present an updated resource comprising a chromosome-scale assembly
55 of *P. tremula* and population genetics and genomics data integrated into the PlantGenIE.org
56 web resource. We demonstrate use of the diverse data types included to explore the genetic
57 basis of natural variation in leaf size and shape as examples of traits with complex genetic
58 architecture.

59

60 We present a chromosome-scale genome assembly generated using long-read sequencing,
61 optical and high-density genetic maps containing 39,894 annotated genes with functional
62 annotations for 73,765 transcripts from 37,184 gene loci. We conducted whole-genome
63 resequencing of the Umeå Aspen (UmAsp) collection comprising 227 aspen individuals. We
64 utilised the assembly, the UmAsp re-sequencing data and existing whole genome re-
65 sequencing data from the Swedish Aspen (SwAsp) and Scottish Aspen (ScotAsp) collections
66 to perform genome-wide association analyses (GWAS) using Single Nucleotide
67 Polymorphisms (SNPs) for leaf physiognomy phenotypes. We conducted Assay of
68 Transposase Accessible Chromatin sequencing (ATAC-Seq) and identified genomic regions
69 of accessible chromatin and subset SNPs to these regions, which improved the GWAS
70 detection rate. We identified candidate long non-coding RNAs in leaf samples and quantified
71 their expression in an updated co-expression network (AspLeaf, available in
72 PlantGenIE.org), which we further used to explore the functions of candidate genes
73 identified from the GWAS.

74

75 We examined synteny to the reference *P. trichocarpa* assembly and identified *P. tremula*-
76 specific regions. Analysis of whole-genome duplication indicated differential substitution
77 rates for the two *Populus* species, indicating more rapid evolution in *P. tremula*. A GWAS of
78 26 leaf physiognomy traits and all SNPs in each of the three aspen collections found
79 significant associations for only two traits in ScotAsp collection and one in UmAsp, whereas
80 subsetting SNPs to those in open chromatin regions revealed associations for a further four
81 traits among all three aspen collections. The significant SNPs were associated with genes
82 annotated for developmental and growth functions, which represent candidates for further
83 study. Of particular interest was a 177-kbp region of chromosome 9 harbouring SNPs
84 associated with multiple leaf phenotypes in ScotAsp, with the set of SNPs in linkage
85 disequilibrium explaining 24 to 30 % of the phenotypic variation in leaf indent depth
86 variation.

87

88 We have incorporated the assembly, population genetics, genomics and leaf physiognomy
89 GWAS data into the PlantGenIE.org web resource, including updating existing genomics data
90 to the new genome version. This enables easy exploration and visualisation of the genomics
91 data and exploration of GWAS results. We provide all raw and processed data used for the
92 presented analyses to facilitate reuse in future studies.

93

94 **Introduction**

95 The *Populus* genus encompasses around thirty broad-leaved, fast-growing tree species that
96 occur naturally across most of the Northern hemisphere. *Populus* species are used
97 extensively in short-rotation forestry and landscaping worldwide and are pioneer, keystone
98 species. The black cottonwood, *P. trichocarpa*, was the first tree genome to be sequenced
99 (Tuskan *et al.*, 2006) after which the genomes of several other poplars, aspens and
100 cottonwoods have been published (Yang *et al.*, 2017; Lin *et al.*, 2018; Ma *et al.*, 2019; An *et*
101 *al.*, 2020; Wu *et al.*, 2020; Zhang *et al.*, 2020; Bai *et al.*, 2021; Chen *et al.*, 2023a; Bae *et al.*,
102 2023, Zhou *et al.*, 2023, Shi *et al.*, 2024), firmly establishing *Populus* as a model system for
103 forest tree research with a mature genomics resource (Jansson & Douglas, 2007). The aspens
104 (section *Populus*) include *P. tremula* and *P. alba*, which have ranges spanning northern

105 Eurasia, *P. tremuloides* and *P. grandidenta*, native to North America, and *P. adenopoda*, *P.*
106 *qiongdaoensis* and *P. davidiana*, distributed in northern and eastern Asia (Slavov & Zhelev,
107 2010; Hou *et al.*, 2018). They are recognised by their capacity for clonal regeneration,
108 particularly after environmental perturbation such as fire or intense browsing (Myking *et*
109 *al.*, 2011). Other distinguishing features of aspens are their characteristic leaf tremble, and
110 abundant variation in spring and autumn leaf colouration.

111

112 The availability of a reference genome can be transformative in enabling research of a
113 species, opening possibilities for a range of functional genomics, population genetics and
114 comparative genomics studies. We previously described a reference genome for *P. tremula*
115 (Lin *et al.*, 2018) produced using short-read, second generation sequencing technologies.
116 While this genome assembly provided high quality and comprehensive representation of the
117 gene space, it was highly fragmented and lacked long-range contiguity. Such fragmentation
118 is a common limitation of using short read sequencing technologies to assemble highly
119 heterozygous, repeat-rich or polyploid genomes (Jiao & Schneeberger, 2017). These
120 limitations can be alleviated or overcome, depending on the scale of the challenge, by use of
121 third generation sequencing technologies such as those commercialised by Pacific
122 Bioscience or Oxford Nanopore Technologies, which produce vastly longer individual
123 sequence reads (Jiao & Schneeberger, 2017). These long reads simplify assembly, with
124 individual sequencing reads often being sufficiently long to span a repeat element or a
125 heterozygous region, although such haplotype resolved assembly ability also introduces its
126 own set of challenges (Amarasinghe *et al.*, 2020; Michael & VanBuren, 2020). These
127 technologies can be combined with newly developed or improved methods for scaffolding,
128 such as Hi-C or optical mapping, to further improve long-range assembly contiguity (Ghurye
129 & Pop, 2019; Ghurye *et al.*, 2019; Pan *et al.*, 2019). The vastly improved contiguity achieved
130 also facilitates use of genetic maps to anchor and orient assembled scaffolds to produce
131 chromosome scale assemblies. Improved contiguity is essential for synteny and other
132 comparative genome-based analyses and highly contiguous and accurate assemblies provide
133 a more reliable resource for performing gene family and orthology analyses and for
134 designing guide sequencing to perform genome editing using approaches such as CRISPR-
135 Cas.

136

137 We previously reported the evolutionary divergence of *P. trichocarpa* from the aspens,
138 showing how natural variation has shaped genetic relationships among the
139 European/Eurasian (*P. tremula*) and American (*P. tremuloides* and *P. grandidentata*) aspens
140 (Wang *et al.*, 2016a; Wang *et al.*, 2016b; Lin *et al.*, 2018; Apuli *et al.*, 2020). An important
141 resource for such work is the Swedish Aspen (SwAsp) collection, which exhibits considerable
142 heritable variation in numerous phenotypes including phenology, leaf shape, specialised
143 metabolite composition and ecological interactions (Luquez *et al.*, 2008; Robinson *et al.*,
144 2012; Bernhardsson *et al.*, 2013; Wang *et al.*, 2018; Mähler *et al.*, 2020) in addition to gene
145 expression (Mähler *et al.* 2017). While we previously reported GWAS resulting in the
146 discovery of a major locus for an adaptive phenological trait (Wang *et al.*, 2018), most of the
147 phenotypes considered to date have not yielded significant SNP-phenotype associations
148 (Grimberg *et al.* 2018; Mähler *et al.*, 2020), likely indicative of complex and highly polygenic
149 genetic architecture (e.g., Mähler *et al.*, 2020). However, other factors such as the fragmented
150 nature of the v1.1 genome assembly (Lin *et al.*, 2018), rare or non-SNP variants and a
151 relatively small population size are also likely to contribute to the limited ability to detect
152 significant associations (Street & Ingvarsson, 2011).

153

154 Here we present a chromosome-scale genome assembly for *P. tremula*, which we refer to as
155 *P. tremula* v2.2, generated using long-read sequences and optical and genetic maps. We
156 demonstrate utility of this improved genome assembly by performing SNP calling and GWAS
157 for selected leaf physiognomy traits with complex genetic architecture in three collections
158 of wild aspen trees grown in common gardens, including the Umeå Aspen (UmAsp) collection
159 for which we here present whole-genome resequencing data. To facilitate community access
160 and utilisation of the various datasets available for *P. tremula* we have integrated them into
161 the PlantGenIE.org web resource (Sundell *et al.*, 2015) in addition to making all raw and
162 processed data available at public repositories. We provide examples of how these genetics
163 and genomics datasets can be used to explore or develop hypotheses and how the tools
164 available at PlantGenIE.org can be used to gain additional biological insight for identified
165 candidate genes.

166

167 **Materials and Methods**

168 We extracted DNA from the individual used to generate the v1.1 assembly presented in Lin
169 *et al.* (2018). For genome assembly and correction, we generated two libraries: “PacBio
170 data”: 28,874,072,954 bases (filtered subreads, ~60x coverage), Pacific Biosciences on the
171 RSII platform (sequencing performed by Science for Life Laboratory, Uppsala, Sweden); and
172 “Illumina data”: 108,353,739,802 bases (226x coverage), Illumina HiSeq2500. We also
173 utilised five existing RNA-Seq datasets to support gene annotation. We purified nuclei and
174 produced an ATAC-library. We used five RNA-Seq datasets from *P. tremula* as supporting
175 evidence for gene annotation. We called ATAC-Seq peaks using MACS2 v2.2.7.1 (Zhang *et al.*,
176 2008).

177

178 To flag sequences originating from the chloroplast, we matched all unplaced scaffolds to
179 published chloroplast sequences (Kersten *et al.*, 2016), using blast+.

180 We created a custom *de novo* repeat library using RepeatModeler v1.0.11 and subsequently
181 masked the genome using RepeatMasker4.0.8. (<http://www.repeatmasker.org>). We used
182 Trinity assemblies from all RNA-Seq datasets in conjunction with all annotated transcripts
183 from the v1 assembly as evidence for gene annotation. We provided proteins from the v1 *P.*
184 *tremula* assembly and the v3.0 assembly of *P. trichocarpa* (Tuskan *et al.*, 2006) as protein
185 evidence. We performed the lift-over alignments of v1.1 scaffolds to the v2.2 assembly using
186 minimap 2 (v2.2.2, Li, 2018). We aligned the PacBio data to both the v1.1 and v2.2 assemblies
187 using pbmm2 (v1.1.0), which uses minimap2 internally. We then performed variant
188 detection using pbsv (v2.2.2, <https://github.com/PacificBiosciences/pbsv>). We aligned the
189 transcripts and protein-coding sequences retrieved from MAKER to the NCBI nt (Wheeler *et*
190 *al.*, 2007) and UniRef90 (The UniProt Consortium, 2019) databases. For transcripts, we used
191 Blast+ version 2.6.0+ (Altschul *et al.*, 1990) with the non-default parameters: -e-value 1e-5.
192 For proteins, we used Diamond version 0.9.26 (Buchfink *et al.*, 2014). We identified and
193 extracted the sequences aligning solely to the NCBI nt database to complement the UniRef90
194 alignments using an ad-hoc script (available upon request). We then imported the resulting
195 alignment files into Blast2GO (Götz *et al.*, 2008) version 5.2. Finally, we used Blast2GO to

196 generate Gene Ontology (both GO and GO-Slim), Pfam (El-Gebali *et al.*, 2018) and KEGG
197 (Kanehisa & Goto, 2000) annotations.

198

199 To calculate summary statistics of the assembly, we used QUAST v5.0.2 (Gurevich *et al.*,
200 2013), aligning a 20X coverage subset (generated by truncating the library to a total count
201 of $8 * 10^9$ nucleotides) of the aspen V1 2x150 PE library data (ENA: PRJEB23581) to
202 calculate mapping percentages. We ran BUSCO v3.0.2 for both the genomic and transcript
203 sequences.

204

205 To identify homologous chromosomes between *P. tremula* and *P. trichocarpa* genomes, we
206 used minimap2 (Li, 2018). We performed an all-versus-all BLASTP using protein sequences
207 of *P. tremula* and *P. trichocarpa* to identify homologous gene pairs between the two species.
208 We used MCscanX (Wang *et al.*, 2012) to identify syntenic gene blocks. We aligned the
209 protein sequences for duplicate gene pairs in syntenic blocks using MAFFT (Katoh &
210 Standley, 2013). We used the PAML package (Yang, 2007) to estimate the *Ks* and *Ka/Ks*
211 for each gene pair.

212

213 We used 32 plant genomes, (Supplementary table S1, Appendix S1) to perform gene family
214 analysis. We used Orthofinder v2.2.7 (Emms & Kelly, 2015) to cluster the genes into gene
215 families. Gene family trees were constructed using the PLAZA pipeline (Van Bel *et al.*, 2018),
216 for multiple sequence alignment and tree inference. We used muscle as the multiple
217 sequence alignment method and fasttree as the tree construction method. The species tree
218 was inferred using STAG (<https://github.com/davidemms/STAG>). To estimate the
219 divergence time, we first calibrated the species tree based on the divergence dates
220 from Timetree (<http://www.timetree.org/>) and inferred the divergence time on each
221 clade using r8s (Sanderson, 2003). We inferred the expansion and contraction of the gene
222 families using CAFÉ (De Bie *et al.*, 2006) and the species tree.

223

224 We reprocessed the RNA-Seq data in developing terminal leaves of aspen from Mähler *et al.*
225 (2020), using the v2.2 genome assembly with salmon/1.0.0 (Patro *et al.*, 2017). We mapped
226 expression quantitative trait loci (eQTL) using two different methods: (1) following the

227 method and settings used in Mähler *et al.* (2020) using Matrix eQTL (Shabalin, 2012), and
228 (2) using fastJT (Lin *et al.*, 2019) which has no underlying assumption of the phenotypic
229 distribution. For both methods, the eQTL were considered significant at FDR < 0.05.

230

231 We implemented a pipeline to identify putative long intergenic non-coding RNAs (lincRNAs)
232 on the pre-processed RNA-Seq data. We first *in silico*-normalised the reads to reduce data
233 redundancy and then reconstructed the transcriptome using a *de novo* assembler, Trinity (v.
234 2.8.3; Grabherr *et al.*, 2011; Haas *et al.*, 2013), on which other programs were run. We
235 retained only transcripts being expressed in the dataset, that were identified as having no
236 coding potential by PLEK (predictor of long non-coding RNAs and messenger RNAs based on
237 an improved k-mer scheme; v. 1.2; settings -minlength 200; A. Li *et al.*, 2014), CNCI (Coding-
238 Non-Coding Index; v. 2; Sun *et al.*, 2013), and CPC2 (Coding Potential Calculator version 2; v.
239 2.0 beta; settings -r TRUE; Kang *et al.*, 2017) and being longer than 200 nt. We kept only
240 transcripts identified as having no coding potential by TransDecoder (version 2.8.3;
241 <https://github.com/TransDecoder/TransDecoder/wiki>; Haas *et al.*, 2013), and at a distance
242 > 1000 nt from any annotated gene using BEDTools closest (v. 2.30.0;
243 <https://bedtools.readthedocs.io/en/latest/content/tools/closest.html>; Quinlan & Hall,
244 2010). The DESeq2 package (v. 1.42.0; Love *et al.*, 2014) was used for differential expression
245 analysis with the formula based on consecutive leaf developmental series, both for genes and
246 lincRNAs. Then, lincRNAs and gene expression data were transformed to homoscedastic,
247 asymptotical \log_2 counts using the variance stabilising transformation as implemented in
248 DESeq2 (setting blind=FALSE). We retained all the genes and lincRNAs being different from
249 na in the dds results and used their values from the 'aware' variance stabilising
250 transformation as an input for the co-expression network. Thereafter, ten network inference
251 methods were run using the Seidr toolkit (Schiffthaler *et al.*, 2023). The networks were
252 aggregated using the inverse rank product method (Zhong *et al.*, 2014) and edges were
253 filtered according to the noise-corrected backbone (Coscia & Neffke, 2017). We selected
254 backbone8 to be used for further analyses.

255

256 We measured phenotypic traits in three aspen (*P. tremula*) collections, two of which
257 originate from Sweden and one from Scotland. The Swedish Aspen (SwAsp) collection of 113

258 individuals, collected across ten degrees of latitude and longitude (Luquez *et al.*, 2008), is
259 replicated in two common gardens in Sweden, one in the north (Sävar, ~64 °N) and one in
260 the south (Ekebo, ~56 °N). The Umeå Aspen (UmAsp) collection comprises 242 individuals
261 originating from the Umeå municipality in northern Sweden (Fracheboud *et al.*, 2009;
262 Robinson *et al.*, 2014) growing in a common garden at Sävar (~64 °N). The Scottish Aspen
263 (ScotAsp) collection of 138 trees originating from across Scotland, was cloned and grown in
264 plots of five trees per clone, in a common garden at Forest Research, Roslin, UK (~56 °N)
265 Harrison (2009).

266

267 Details of the SwAsp and ScotAsp DNA sequencing and SNP calling have been described
268 previously (Rendón-Anaya *et al.*, 2021, Supplementary table S2). Samples sequenced from
269 the previously generated data set comprising 94 genotypes from the SwAsp collection (Wang
270 *et al.*, 2018) have been complemented with a further five genotypes re-sequenced for *P.*
271 *tremula* v2.2. We called SNPs and generated VCF files independently for SwAsp, UmAsp and
272 ScotAsp (with 99, 227 and 105 unrelated individuals, respectively), containing biallelic, high
273 quality sites along the 19 chromosomes. We also created a VCF for each collection containing
274 a subset of all SNPs by intersecting with open chromatin regions identified by ATAC-Seq. The
275 intersection was performed using bcftools (Danecek *et al.*, 2021).

276

277 We measured leaf physiognomy (shape and size) parameters in six leaves of three clonal
278 replicate trees in the UmAsp common garden, and fifteen leaves sampled across five clonal
279 replicates per genotype in the ScotAsp Roslin common garden. We sampled mature,
280 undamaged leaves, scanned them using a flatbed scanner, and measured using LAMINA
281 software (Bylesjö *et al.*, 2008) following methods described in Mähler *et al.* (2020). We
282 present leaves sampled from the SwAsp common gardens as reported in Mähler *et al.* (2020)
283 for leaf area, leaf circularity and leaf indent depth, and a further 23 leaf shape and size
284 metrics for the analysis with SNPs called from *P. tremula* v2.2. We estimated Best Linear
285 Unbiased Predictor (BLUP) values for each of the 26 phenotypes used in the GWAS (i.e. 26
286 phenotypes from each collection) using a custom pipeline. We used these BLUP estimates as
287 phenotypic values to carry out GWAS in 99 SwAsp, 227 UmAsp, or 105 ScotAsp individuals
288 for which SNP data were available and that remained after removing some samples due to

289 high relatedness (IDB, identity by descent > 0.4). For the GWAS, we filtered SNPs with a
290 minor allele frequency above 5% and Hardy-Weinberg equilibrium P -value threshold of $1e^-6$
291 using PLINK version 1.9. (Purcell *et al.*, 2007). We investigated genome-wide associations
292 using linear mixed models in GEMMA v0.98.1 (Zhou & Stephens, 2012), on (1) all SNPs, and
293 (2) on SNPs subset to open chromatin regions. We used a 5% false discovery rate (q -value)
294 to define associations as significant, calculated in the 'qvalue' package in R (Storey *et al.*,
295 2021). We annotated the SNPs using ANNOVAR v2019Oct24 to produce GWAS summary
296 tables, adding *A. thaliana* homologues of the *P. tremula* v2.2 gene models from
297 PlantGenIE.org. We estimated the proportion of phenotypic variation explained (PVE) by an
298 individual SNP using the equation stated in Wang *et al.* (2018). We calculated marker-based
299 heritability (h^2 , Kruijer *et al.*, 2015) using 'marker_h2' function, in the 'heritability' package
300 version 1.3 (Kruijer, 2019) in R. We visualised the gene ontology enrichments using the
301 PlantGenIE.org tool and additional visualisation using default R scripts exported from
302 REVIGO (Supek *et al.*, 2011)

303
304 For population genetic analysis, we discarded SNPs in SwAsp, UmAsp, and ScotAsp failing
305 the Hardy-Weinberg equilibrium test (P -value $< 1e^-6$) and/or with missing rate $> 5\%$. We
306 used SNPs with minor allele frequency $> 10\%$ and missing rate $< 20\%$ for linkage
307 disequilibrium (LD) analysis. We calculated squared correlation coefficients (r^2) between all
308 pairs of SNPs that were within 50 Kbp using PopLDdecay v3.41 (Zhang *et al.*, 2019). To
309 analyse the population structure based on the PCA, we pruned SNPs by removing one SNP
310 from each pair of SNPs with a between SNP correlation coefficient (r^2) > 0.2 in windows of
311 50 SNPs with a step of 5 SNPs using PLINK v1.90b6.16 (Purcell *et al.*, 2007). We then used
312 the smartpca program in EIGENSOFT v6.1.4 (Patterson *et al.*, 2006) to perform a principal
313 components analysis (PCA) on the reduced set of genome-wide independent SNPs.

314
315 We calculated the composite likelihood ratio (CLR) statistic in 10 Kbp non-overlapping
316 windows using SweepFinder2 and iHH12 (Integrated Haplotype Homozygosity Pooled)
317 using selscan v1.3. To identify regions under positive selection, we used sliding windows
318 containing at least 10 SNPs as input to a range of inference methods. We considered windows
319 with the lowest 5% Tajima's D values or highest 5% values for other as those windows

320 displaying evidence of signals of positive selection. We assumed genes or SNPs within these
321 selected regions to be under selection. We ran Betascan (Siewert *et al.*, 2017) (-fold -m 0.1)
322 to detect possible signals of balancing selection in the ScotAsp, UmAsp and SwAsp
323 collections.

324

325 **Resource overview**

326 The resource comprises the new *P. tremula* v2.2 genome assembly and gene annotation,
327 genomic data sets (for example, *P. tremula*-specific regions, open chromatin regions, and
328 lincRNAs), population genetics resources (SNPs and regions/SNPs under selection), both
329 raw and processed leaf physiognomy phenotype data, and results of the leaf physiognomy
330 GWAS analyses. The genomic resources are available at PlantGenIE.org where the genome
331 assembly, gene annotation, gene expression data and associated co-expression networks are
332 available through interactive tools and as flat files on the File Transfer Protocol (FTP) site
333 (<https://plantgenie.org/FTP>). The assembly, open chromatin regions, lincRNAs, gene
334 models, SNP variants and sites under selection have been made available as tracks in the
335 JBrowse genome browser tool. The SwAsp leaf bud gene expression data and expression
336 quantitative trait loci (eQTL) analysis presented in Mähler *et al.* (2017) have been updated
337 to *P. tremula* v2.2. The AspLeaf dataset (Mähler *et al.* 2020) was used to identify lincRNAs
338 and an updated co-expression network including these has been included in the exNet tool.
339 Expression data sets can also be viewed in the exImage, exPlot and exHeatmap tools. The
340 Potra v2.2 SNPs in SwAsp, UmAsp and ScotAsp are available in VCF format at the European
341 Variation Archive (EVA, <https://www.ebi.ac.uk/eva/>). The phenotype data can be accessed
342 at the SciLifeLab Data Repository (<https://figshare.scilifelab.se/>): this includes original raw
343 leaf images used for phenotyping, the images processed by the LAMINA software, raw and
344 processed leaf physiognomy metrics, and genotypic BLUP values, in addition to the raw
345 GWAS output tables. Scripts used to generate the results presented here, including a BLUP
346 pipeline for preparing phenotype data for GWAS, are available at
347 <https://github.com/bschiffthaler/aspen-v2> and at
348 https://github.com/sarawestman/Genome_paper.

349

350 **Results and discussion**

351 **A high-quality reference genome for *Populus tremula***

352 The previously available version of the *P. tremula* genome (v1.1) was highly fragmented
353 despite having good representation of the gene space (Lin *et al.*, 2018; Supplementary table
354 3). Such fragmentation was a common characteristic of assemblies produced using short-
355 read sequencing technologies and was especially problematic for repeat-rich and highly
356 heterozygous genomes. The extent of fragmentation prohibited or limited analyses requiring
357 long-range contiguity, such as synteny, made gene-family analysis error-prone and
358 presented challenges for accurate SNP calling in hard to assemble regions. Here, we used a
359 combination of long-read sequencing, optical and genetic maps to generate a high-quality
360 and highly contiguous genome assembly for *P. tremula*. Integration with a genetic map Apuli
361 *et al.* (2020) enabled anchoring and orienting of assembled contigs to form pseudo-
362 chromosomes (Figure 1A), with the final assembly having a contig N50 of 16.9 MB (Table 1),
363 representing an order of magnitude improvement compared to the previous v1.1 genome
364 assembly (Lin *et al.*, 2018).

365

366 **Genome Assembly**

367 The v2.2 *P. tremula* genome assembly contains 19 pseudo-chromosomes and 1,582 unplaced
368 scaffolds with a combined length of 408,834,716 bp and an N50 of 16.9 Mb (Supplementary
369 table S3). Alignment of ~95 million Illumina reads (~20X coverage) yielded a mapping rate
370 of 96.4% (compared to 97.77% in v1.1) with 94.19% (compared to 92.33% in v1.1) of
371 paired-end reads mapped as proper pairs. The increase in proper pairs and decrease in
372 overall mapping reflects expectations for an assembly with higher contiguity but lower per-
373 base accuracy, which is a characteristic of the PacBio sequencing reads utilised. Analysis of
374 the genome using Benchmarking Universal Single-Copy Orthologue (BUSCO) with the
375 embryophyta_odb10 ortholog set (Simão *et al.*, 2015) to assess gene-space completeness
376 identified 96% (96% in v1.1) complete BUSCOs, of which 81.7% (82.5% in v1.1) were single
377 copy and 15.1% (14.3% in v1.1) duplicated (Supplementary table S3). The long terminal
378 repeat (LTR) index for the assembly (Ou *et al.*, 2018) was 6.65, with 1.42% of intact LTRs
379 and 20.66% of total LTRs, indicative of a high-quality assembly. The improved contiguity of

380 the new assembly is clear when examining multiple sequences from v1.1 that align, for
381 example, to a region of chromosome 1 (Figure 1A).

382

383 **Gene annotation**

384 There are 39,894 identified gene models, 37,184 of which are located on pseudo-
385 chromosomes and 2,710 on unplaced scaffolds. There are 77,949 annotated transcripts,
386 73,765 on pseudo-chromosomes and 4,184 on unplaced scaffolds (~1.95 transcripts per
387 gene). Functional annotations were assigned for 73,765 transcripts in 37,184 genes. Analysis
388 of the predicted transcripts using BUSCO with the embryophyta_odb10 ortholog set showed
389 98.1% (96.8% in v1.1) complete BUSCOs, of which 35.7% (30.2% in v1.1) were single copy
390 and 62.4% (66.6% in v1.1) duplicated (Supplementary table S3). Similarly, the PLAZA core
391 Gene Family (coreGF) set of genes (Veeckman *et al.* 2016; Buccini *et al.*, 2021) indicated
392 99% completeness (99% in v1.1; Supplementary table S3).

393

394 **Comparative genomics analyses**

395 We utilised the improved assembly to perform gene family and comparative genomics
396 analyses, identifying syntenic and species-specific genomic regions of *P. tremula* compared
397 to *P. trichocarpa*. (Figure 1B). There were a large number of aspen- and *P. tremula*-specific
398 genes and genomic regions (Supplementary table S4) in addition to a set of highly diverged
399 regions (Supplementary table S5), although we acknowledge that lineage specific (orphan)
400 genes should be viewed with caution (Weisman *et al.*, 2020). Similar analyses to identify
401 orphan genes in *P. trichocarpa* were recently reported (Yates *et al.*, 2021), but using a far
402 more stringent definition of orphan genes, showing that orphan genes are polymorphic in a
403 GWAS population and integrated within co-expression networks. Species- and clade-specific
404 gene families were identified (Supplementary tables S6), and *P. tremula*-specific genomic
405 regions were enriched for the terms “non-membrane-bounded organelle” and “cell
406 differentiation” among the set of expanded gene families (Supplementary tables S7 S8, S9).
407 We used the tools in PlantGenIE to explore these groups of genes and their gene ontology
408 (GO) enrichments. For example, we used the Venn tool to view the intersection of lists of *P.*
409 *tremula* specific genes and genes in *P. tremula*-specific regions (Figure 1C). While this
410 exploration did not provide us with specific insights into leaf physiognomy traits, which we

411 focus on below, the comparative genomics resource is available for exploration in future
412 studies of *P. tremula*.

413

414 **Long intergenic non-coding RNAs**

415 Long non-coding RNAs (lncRNAs) are arbitrarily defined as transcripts longer than 200 nt,
416 not producing functional proteins. If they are located entirely in the intergenic space, they
417 are sub-classified as long intergenic non-coding RNAs (lincRNAs). In general, lncRNAs have
418 low expression levels and tissue-specific expression. They are also characterised by a rapid
419 evolution and a low sequence conservation between species (Chen & Zhu, 2022; Palos *et al.*,
420 2023). Recent reports have shown that lncRNAs participate in plant developmental
421 regulation (Kramer *et al.*, 2022; Chen *et al.*, 2023b). We identified 902 putative lincRNAs in
422 developing aspen leaves (Supplementary table S10) and integrated them into the Aspen
423 Leaf (AspLeaf) expression data resources at PlantGenIE.org.

424

425 **Population genetics of SwAsp, UmAsp and ScotAsp**

426 The original locations of the samples (Figure 2A) differed among the aspen collections in
427 climatic variables, with Scottish samples drawn from a milder, maritime climate and Swedish
428 samples from a colder, more continental climate (Supplementary table 11). Based on whole-
429 genome re-sequencing data, and after removal of related samples and the batch correction
430 described in Rendón-Anaya *et al.* (2021), we identified 12,054,692 SNPs for 99 individuals
431 from SwAsp, 16,938,820 SNPs for 227 individuals from UmAsp, and 19,655,602 SNPs for 105
432 individuals from ScotAsp, on chromosomes, after discarding SNPs with missing rate >5%
433 and failing the Hardy-Weinberg equilibrium test (P -value $< 1e^{-6}$). Of these SNPs, 27.4% were
434 found within gene boundaries for SwAsp, 31.1% for UmAsp, and 31.8% for ScotAsp while
435 33.6% were in gene flanking regions for SwAsp, 30.8% for UmAsp, and 30.6% for ScotAsp.
436 The remaining sites were in intergenic regions. The SNP density was 33.3 SNPs/Kbp for
437 SwAsp, 48.8 SNPs/Kbp for UmAsp and 54.3 SNPs/Kbp for ScotAsp across the 19
438 chromosomes and was highest in the flanking regions and lowest in the CDS regions for the
439 three aspen collections. The three collections harboured substantial levels of nucleotide
440 diversity (π) across the genome (0.0061 in SwAsp, 0.0080 in UmAsp, and 0.0082 in ScotAsp).
441 While the majority of SNPs (13,153,803) were shared between Swedish (UmAsp or SwAsp)

442 and Scottish aspens (Figure 2B), 9,539,889 SNPs were shared only between SwAsp and
443 UmAsp, indicating the potential utility of a combined Swedish aspen resource, and there
444 were 6,501,799 SNPs unique to ScotAsp, highlighting its differences from the Swedish
445 collections.

446
447 We used seven measures calculated in 10 Kbp non-overlapping windows to identify regions
448 under selection in SwAsp and UmAsp using ScotAsp as an outgroup. Signatures of positive
449 selection were identified for 589 and 653 regions, corresponding to 7.46 Mbp and 8.60 Mbp
450 in SwAsp and UmAsp, respectively (Table S12). Only 1.57 Mbp of regions under selection
451 were shared between SwAsp and UmAsp. Based on genome annotation, we identified 621
452 and 633 genes under selection in SwAsp and UmAsp, respectively (Table S12) of which 123
453 genes were in common.

454
455 Population structure based on PCA clearly separated at least two independent clusters of
456 individuals, one corresponding to ScotAsp with the other comprising SwAsp and UmAsp
457 (Figure 2C), indicating that ScotAsp is a suitable outgroup to identify signatures of selection
458 in SwAsp and UmAsp. This clustering pattern is consistent with previous observations by de
459 Carvalho *et al.* (2010) and Rendón-Anaya *et al.* (2021), which have shown that the aspens
460 from the British Isles are diverged from aspens in continental Europe. In agreement with
461 previous results (Lin *et al.*, 2018), genome-wide mean linkage disequilibrium (LD) measured
462 by r^2 was largest between adjacent SNP pairs (0.36 to 0.37) in the three aspen groups and
463 decreased rapidly to 0.1 within 10 Kbp (Figure 2D). The population genetic data are available
464 in JBrowse in PlantGenIE, where tracks can be loaded and viewed in the context of other
465 genomic features and significant GWAS results.

466
467 **Natural genetic variation in leaf physiognomy phenotypes**
468 The leaves of *P. tremula* are rounded with irregular serrations, hereafter termed indents. In
469 previous leaf physiognomy analyses we reported natural genetic variation in ten traits
470 (Bylesjö *et al.*, 2008), and three representative traits ('leaf area', 'circularity', and 'indent
471 depth'; Mähler *et al.*, 2020) in the SwAsp collection. Here we present 26 traits (Appendix S2)
472 measured in the two SwAsp common gardens in each of two years, and in the UmAsp and

473 ScotAsp common gardens in a single year. The raw image files of the sampled leaves, the
474 annotated images indicating measured parameters (Figure 3A) and data output from the
475 measurement software (LAMINA, Bylesjö *et al.*, 2008), are available at the associated
476 Figshare data repository (see data availability statement for details). There was a clear
477 shared genetic component among indent traits and shape traits (Figure 3B), with high
478 genetic correlations between ‘Squared Perimeter/Area’ and each of ‘indent depth’ and
479 ‘indent depth standard deviation (SD)’. Leaf size traits were all positively genetically
480 correlated, with high correlations among length traits and among width traits, and to a
481 moderate extent between length and width traits (Figure 3B). Narrow-sense (‘chip’)
482 heritability was greater for shape and indent traits than size traits (3C, Appendix S2), with
483 the exception of the composite trait ‘indent density,’ which had low heritability ($h^2 = 0.138$).
484 There was clear separation of size traits from shape and indent traits in the first principal
485 component (PC1) of a PCA of all 26 leaf metrics in the three populations. While PC1 explained
486 43.5 % of the variation in this combined data set and an overall intersection among ScotAsp,
487 SwAsp and UmAsp, there was a tendency towards larger leaves (i.e. smaller values of PC1)
488 in ScotAsp. The heritability estimates and shared multivariate space among the three aspen
489 collections, together with number of common SNPs, favour the integration of these traits and
490 collections in genetic analyses. The processed phenotype data, including composite leaf
491 physiognomy traits (Appendix S2) and BLUPs are available at Figshare.
492

493 **GWAS in open chromatin regions enhances detection of SNP-phenotype associations**

494 Leaf physiognomy traits appear to be highly polygenic, yet highly heritable, with variation
495 among individuals resulting from numerous small-scale effects (Mähler *et al.*, 2020). In such
496 cases it is common that no significant genetic associations are identified, with huge sample
497 sizes needed to detect such small-scale effects. Other factors, such as incomplete genome
498 assembly, can also prohibit detection of sequence-based genetic markers in hard-to-
499 assemble regions of the genome. While we previously reported our GWAS study in three leaf
500 physiognomy traits in SwAsp using the previous genome assembly version, here we
501 conducted GWAS on 26 leaf physiognomy metrics in each of the SwAsp, UmAsp and ScotAsp
502 populations, taking advantage of the substantially higher number of SNP markers called
503 using the improved v2.2 genome assembly. In the GWAS including all SNPs (All-SNP GWAS),

504 we detected significant (q -value < 0.05) associations for vertical size 75% (L75) in UmAsp,
505 while in ScotAsp there were associations for 'indent width SD' (the standard deviation of
506 indent width) and circularity (Supplementary table S13). No significant associations were
507 identified in the SwAsp All-SNP GWAS. A GWAS that includes several million SNPs in a
508 relatively small population may fail to detect associations for complex traits due to
509 adjustments for multiple testing. Inspired by work in maize (Rodgers-Melnick *et al.*, 2016)
510 demonstrating that open chromatin regions harbour much of the genetic variation for
511 quantitative traits, we generated ATAC-Seq data from *P. tremula* leaves to identify regions of
512 open chromatin (open chromatin regions, OCRs). We then subset SNPs to only those regions,
513 and ran GWAS using these SNP subsets (OCR GWAS). This resulted in 212,902 SNPs in
514 ScotAsp, 185,616 in SwAsp and 220,009 in UmAsp. The genomic context distribution
515 differed between the All-SNP and OCR-SNP sets with a greater proportion of SNPs in
516 up/downstream, UTR and exonic regions, and a lower proportion of SNPs in intergenic
517 regions, in the OCR-SNP set (Figure 4). OCR GWAS resulted in ten, five and four significant
518 associations (q -value > 0.05) in ScotAsp, UmAsp and SwAsp respectively for three, two and
519 two leaf traits respectively (Supplementary table S13). These associations ranked highly in
520 the All-SNP GWAS, despite in most cases falling below the q -value threshold (Table 2).
521 Significant OCR-GWAS associations intersected with significant All-SNP GWAS associations
522 in the case of only one ScotAsp trait (indent width SD).

523

524 **Genome-wide associations suggestive of leaf development processes**

525 We looked for signals of leaf developmental processes in the GWAS results, first by
526 examining expression patterns in the AspLeaf data set for all genes with significant SNPs in
527 the GWAS. Of the 25 genes associated with SNPs in the GWAS, 24 had expression data in the
528 AspLeaf data resource, and 18 of those had a clear gradient of expression from the apex or
529 youngest leaf to the oldest leaf. Next, we examined the annotations of genes associated with
530 significant SNPs in both the All-SNP and OCR GWAS and noted that the majority are
531 annotated with functions that include plant developmental processes (Table 3). Significant
532 SNPs for ScotAsp indent width SD in the All-SNP GWAS (Supplementary table S13) included
533 a pescadillo homologue (Potra2n4c9542), important in leaf growth, in particular through
534 control of ribosomal biogenesis affecting leaf cell division, expansion, and pavement cell

535 differentiation and (Cho *et al.*, 2013; Ahn *et al.*, 2016), and a *FAB1*-like gene (Potra2n1c1433)
536 also annotated as a phosphatidylinositol-3-phosphate 5-kinase, important for auxin
537 signalling and normal plant development (Hirano *et al.*, 2011; Baute *et al.*, 2015). The three
538 significant SNP associations for ScotAsp circularity in the All-SNP GWAS were in linkage
539 disequilibrium and located on chromosome 17 in intronic and exonic regions of
540 Potra2n17c30934, which is annotated as a "PATRONUS 1-like isoform X1 protein" and
541 carries the GO identifier, "regulation of mitotic cell cycle." PATRONUS1 is reported to have
542 an important role in cell division in plants (Cromer *et al.*, 2019). In the UmAsp All-SNP GWAS,
543 the 11 significant SNPs were located in upstream, exonic, intronic and 5' UTR regions of
544 Potra2n3c7046 and in an intergenic region with Potra2n3c7047 (Supplementary table S13).
545 The *A. thaliana* homologues of these two genes are, respectively, AT5G13390 ('No exine
546 formation 1'), important in pollen wall development (Ariizumi *et al.*, 2004), and AT1G28130,
547 an Auxin-responsive GH3 family protein that regulates auxin metabolism and distribution
548 and plant development (Zheng *et al.*, 2016; Guo *et al.*, 2022). In the SwAsp OCR-GWAS, two
549 SNPs in the 5' UTR region of Potra2n1c2680 were associated with indent width SD. The *A.*
550 *thaliana* homologue of Potra2n1c2680 is involved in several plant developmental processes
551 (Xiao *et al.*, 2021).

552

553 **Combined data resources reveal variation in leaf base angle**

554 Two SNPs from the SwAsp OCR GWAS were associated with leaf base angle (W75/Width).
555 Both of these SNPs are located in an intron of Potra2n5c11907 (Supplementary Figure 3A),
556 which is annotated as LLGL scribble cell polarity complex, a transcription factor that in *A.*
557 *thaliana* is a Transducin/WD40 repeat-like superfamily protein (AT4G35560). The *WD40*-like
558 transcription factors have roles in various developmental processes including organ size
559 determination (Gachomo *et al.*, 2014; Guerriero *et al.*, 2015; Yang *et al.*, 2018). The phenotypic
560 BLUP values for leaf base angle were significantly partitioned by the chr5_13736867 SNP allele
561 groups in the SwAsp collection (Supplementary Figure 3B), and the individuals with the
562 greatest and smallest phenotypic values (SwAsp 114 and SwAsp 4, which belong to the
563 contrasting allele groups), can be identified using the phenotype files at the Figshare data
564 repository. The cropped LAMINA output images of these can be downloaded from Figshare and
565 leaf shape features compared. In this particular case, the two genotypes differed markedly in leaf

566 base angle (Supplementary Figure 3B). The phenotypic values were, however, somewhat
567 variable for the allele groups for this SNP, which is consistent with the polygenic nature of leaf
568 shape determination. As such, not all ScotAsp genotypes with two recessive alleles for this SNP
569 had a steep leaf base angle. Following a similar approach, the expression of Potran2n5c11907 in
570 the data set from developing SwAsp leaf buds can be partitioned by SNP alleles for
571 chr5_13736867 (Supplementary Figure 3C). While in this case the interpretation is not
572 straightforward, it serves to demonstrate the integration of available data resources to explore
573 characteristics of identified candidate genes and to help prioritise among candidates.

574

575 **A 177-kbp region associated with leaf shape phenotypes in Scottish aspen**

576 The All-SNP associations for ScotAsp indent width SD included 122 SNPs on chromosome 9,
577 which intersected with significant SNPs in the ScotAsp OCR GWAS for the same trait, as well
578 as indent density and indent depth SD (Supplementary table S13). These SNPs were located
579 within a region spanning ~177 kbp on chromosome 9 (Supplementary Figure 3). Many of
580 the SNPs in this region were in linkage disequilibrium (LD) and of the 15 genes in this region,
581 12 were associated with SNPs in the ScotAsp GWAS at q -value < 0.05 (Supplementary table
582 S13; Table 3). The proportion of variance explained (PVE) by any single SNP among these
583 significant associations was moderate, ranging from 0.23 to 0.30 (Supplementary table S13).
584 These SNPs were distributed across various genomic contexts in the 12 genes, all with
585 functions suggestive of roles in leaf development. These included a *SIZ1*-like isoform that is
586 a *PHD* transcription factor (Potra2n9c199982), involved in cell division and expansion
587 (Catala *et al.*, 2007; Miura *et al.*, 2010; Mouriz *et al.*, 2015), an *ARF10* auxin response factor
588 (Potra2n9c199984) involved in auxin signalling during leaf development (Hendelman *et al.*,
589 2012; Liu *et al.*, 2007; Ben-Gera *et al.*, 2016), and two periphriins/tetraspanins
590 (Potra2n9c199975, Potra2n9c199981), involved in numerous cell proliferation and tissue
591 patterning processes (Wang *et al.*, 2015; Reimann *et al.*, 2017). Expression in the AspLeaf
592 dataset, as observed using the exImage tool at PantGenIE.org, showed a gradient of relative
593 expression across the developmental stages of the terminal leaves in eight of these 12 genes,
594 which was most pronounced for Potra2n9c199975, Potra2n9c199981, Potra2n9c199982,
595 Potra2n9c199984 and Potra2n9c199985. This suggests that these genes are
596 developmentally regulated. While the 12 genes were significantly associated with only four

597 traits, each of the genes occurred in the top-ranked 1000 genes of at least three, and up to
598 13, ScotAsp traits (Supplementary table S13), suggesting that these genes contribute to
599 multiple leaf physiognomy phenotypes in Scottish aspens. In contrast to ScotAsp, these 12
600 genes were not highly ranked in the SwAsp and UmAsp GWAS and would thus appear to
601 make a negligible contribution to leaf size and shape variation in Swedish aspens. In SwAsp
602 only Potra2n9c199985 and Potra2n9c19972 were present in the top-ranked 1000 genes for
603 two traits, Area and Length:Width ratio respectively (Supplementary table S13), and for
604 UmAsp, none of these 12 genes were ranked in the top 1000 genes. This reflects the
605 demographics of SNPs at this locus in the other collections; of the 122 significant SNPs for
606 this trait in ScotAsp, only 25 SNPs were present in the SwAsp in the SwAsp VCF, with a
607 median minor allele frequency (MAF) of 0.122, and while 119 of the 122 SNPs were present
608 in UmAsp the median MAF was 0.092, indicating that the variation at these sites is higher in
609 ScotAsp (median MAF = 0.302). Only two of the top 1000 genes for Indent width SD for this
610 trait intersected among all three collections, however these (Potra2n1c1769 and
611 Potra2n3c8236) did not have apparent annotations relevant to leaf developmental
612 processes. This example suggests that there is substantial control of natural variation in leaf
613 shape phenotypes determined by SNPs at this locus on chromosome 9 and that this is specific
614 to Scottish aspen. Since ScotAsp separates from SwAsp and UmAsp in the SNP PCA (Figure
615 2C), it is not unexpected that the complex leaf phenotypes in the Swedish and Scottish
616 populations do not share this GWAS locus.

617

618 **Combined resources aid genomic exploration of SNP-phenotype associations**

619 Many of the gene annotations in the GWAS results have plausible biological links to leaf
620 physiognomy traits. However, these interpretations are speculative, especially for
621 associations of relatively low PVE and where few individuals are homozygous for the minor
622 allele. In such cases it can be useful to consult several lines of evidence to evaluate the
623 plausibility of the functional link. To demonstrate utility of the Potra v2.2 genomics data
624 available within PlantGenIE.org for such explorative analyses, we examined the associations
625 to Potra2n10c20533, one of the genes associated with indent width SD in the ScotAsp All-
626 SNP GWAS, appearing as a small peak on the Manhattan plot for this trait (Figure 5A). The
627 annotation of Potra2n10c20533 is a putative protein transport protein Sec24A, with the

628 most sequence-similar gene in *A. thaliana* (AT3G07100) having a role in endoplasmic
629 reticulum maintenance and cell size regulation in sepals (Nakano *et al.*, 2009; Qu *et al.*, 2014).
630 The Potra2n10c20533 gene harbours a significant SNP 1962 bp upstream from the
631 annotated transcription start site, and eight SNPs in the intergenic region between
632 Potra2n10c20532 (a Cation efflux family protein associated with manganese tolerance in *A.*
633 *thaliana*; Peiter *et al.*, 2007) and Potra2n10c20533 (Supplementary table S13). To reveal the
634 potential biological function of these associations, we used the exNet tool at a lenient
635 threshold *P*-value 10^{-1} to identify first degree neighbours of Potra2n10c20533 in the AspLeaf
636 dataset co-expression network (Figure 5B). Functional enrichment of these co-expressed
637 genes identified GO categories for cell expansion (Figure 5C). The network visualisation
638 using exNet (Figure 5B) showed that the set of 205 co-expressed genes included 29
639 transcription factors (TFs; i.e. 14 % were TFs) and two lincRNAs. Using the gene expression
640 visualisation tools available at PlantGenIE.org we explored the expression of these lincRNAs
641 within the AspLeaf datasets, revealing a gradient of expression across the terminal leaf
642 development stages (Figure 5D). This revealed that the two lincRNAs were negatively
643 correlated to more than 100 of the first-degree neighbours of Potra2n10c20533. Use of the
644 JBrowse tool at PlantGenIE.org also enabled us to view the significant SNPs in the GWAS
645 region around Potra2n10c20533 in the context of the Potra v2.2. gene models and co-
646 locating eQTL (Figure 5E). Mapping of eQTL was conducted using two different methods;
647 using Matrix eQTL, we identified 466,966 significant ($FDR < 0.05$) eQTL, whereas the more
648 conservative method using fastJIT identified 173,080 significant eQTL (Supplementary table
649 S14). The JBrowse tool enabled the easy visualisation of *trans* eQTL acting on ten genes
650 identified using Matrix eQTL that co-located with intergenic SNPs in the GWAS between
651 Potra2n10c20532 and Potra2n10c20533. Use of the Enrichment tool of PlantGenIE.org for
652 this set of ten *trans* eQTL genes showed Pfam enrichment terms for categories relevant to
653 plant organ development (Figure 5F), including Phosphatidylinositol-4-phosphate 5-
654 Kinases (Watari *et al.*, 2022), MORN repeats (Lee *et al.*, 2010), and K-Box regions (Uchida *et*
655 *al.*, 2007). In the same intergenic region, there was one *cis* eQTL ($FDR = 0.023$), for the
656 expression of Potra2n10c20525, which is annotated as dirigent protein; this gene class is
657 involved in cell wall biosynthesis and growth as well as stress resistance (Paniagua *et al.*,
658 2017). Overall, these relatively straightforward uses of the available data sets enable us to

659 establish that the significant SNPs on chromosome 10 in ScotAsp are associated with
660 lincRNAs and transcripts potentially involved in leaf development processes, that these vary
661 in expression during leaf development, and that local SNPs are associated with the
662 expression (eQTL) of developmental genes in SwAsp. While speculative, this demonstrates
663 how *in silico* tools can be used to integrate evidence from a diverse range of genomics and
664 population genetics data to develop hypotheses and to prioritise among candidate genes for
665 downstream characterisation work.

666

667

668 **Conclusions**

669 The improved genome assembly and population genetics data presented here, and from
670 numerous existing studies, have been updated to the v2.2 genome and integrated into
671 PlantGenIE (Sundell *et al.*, 2015) to serve as a comprehensive community resource to
672 facilitate hypothesis exploration and generation. To demonstrate the value and utility of the
673 improved genome resource detailed here we performed GWAS for leaf physiognomy
674 phenotypes in three aspen collections. We demonstrate use of the PlantGenIE.org resource
675 to explore the Potra2n10c20533 gene that harbours a SNP associated to the standard
676 deviation of leaf indent width. This is coupled with a complete phenotype data resource for
677 the leaf physiognomy traits studied. The data presented is all publicly available, as
678 summarised in Figure 6. Genomic resources in aspen have facilitated the characterisation of
679 adaptive traits (Wang *et al.*, 2018), omnigenic traits (Mähler *et al.*, 2020), and the use of
680 GWAS as a tool to guide candidate gene discovery (Grimberg *et al.*, 2018) in addition to
681 functional genomics insights into wood formation (Sundell *et al.*, 2017) and sex
682 determination (Muller *et al.*, 2020), among others. Integration of these data in
683 PlantGenIE.org enables rapid exploration of hypotheses, for example the potential functional
684 role of candidate genes and can help in selecting among candidates for downstream studies
685 to investigate and elucidate their functional and adaptive significance.

686

687 **Author contributions**

688 Conducted the experiments: KMR, BS, VK, KHR, SA, KC, NRS.

689 Analysed and/or interpreted the data: KMR, BS, HL, SMW, MR-A, TAK, VK, CC, CB, ND, TD,
690 CM, JW, NM, SA, KC, NRS.

691 Provided materials and resources: JJ, VS, JC, KV, E-JP, SP, SJ, PKI, NRS.

692 Wrote the manuscript: KMR, BS and NRS with contributions from all authors. All authors
693 read and approved the manuscript.

694

695 **Acknowledgements**

696 Optical map production and analysis were performed by the VIB Nucleomics Core
697 (www.nucleomics.be). The authors would like to acknowledge support from Science for Life
698 Laboratory, the National Genomics Infrastructure, NGI, and Uppmax for providing assistance
699 in massive parallel sequencing and computational infrastructure. The UmAsp sequences
700 were funded by a grant from The Swedish Biodiversity Program at SciLife to Stefan Jansson.
701 Computations were performed on resources provided by SNIC through Uppsala
702 Multidisciplinary Centre for Advanced Computational Science (UPPMAX) under projects
703 SNIC 2019/8-60, b2017115, b2010014, sllstore2017050, sllstore2017059, SNIC 2017/1-
704 499, SNIC 2017/7-219, SNIC 2018/3-552, SNIC 2019/3-597, and SNIC 2021/5-62. We
705 particularly thank Olga Pettersson at the Science for Life Laboratory for efforts, discussion
706 and input. We thank Michiel Van Bel at the VIB_Ugent Center for Plant Systems Biology for
707 assistance with the PLAZA platform. We thank the UPSC bioinformatics platform (UPSCb) for
708 computational infrastructure. The SwAsp and UmAsp common gardens were hosted and
709 maintained by Skogforsk. We thank Zulema Carracedo Lorenzo for assistance in the field and
710 laboratory. The ScotAsp clone garden was planted and maintained by Forest Research
711 Technical Services Unit, with funding from the Forestry Commission. This work was
712 supported by the Knut and Alice Wallenberg Foundation, VINNOVA UPSC Centre for Forest
713 Biotechnology, the Research and Development Program for Forestry Technology (Project
714 S111416L0710) provided by Korea Forest Service, and the Trees for the Future (T4F)
715 project, The Swedish Research Council for Environment, Agricultural Science, and The
716 Swedish Research Council to NRS. Hui Liu thanks the China Scholarship Council (CSC) for the
717 financial support (No. 201906510022).

718

719

720 **Data availability and FAIR (Findable Accessible Interoperable Reusable)**
721 **compliance**

722 Data used to generate the genome assembly are available as European Nucleotide Archive
723 (ENA; <https://www.ebi.ac.uk/ena/browser/home>) accession PRJEB41363, and the UmAsp
724 re-sequencing data are available as accession PRJEB47451. The ATAC-Seq data are available
725 as accession: in progress. The genome data are available to browse at
726 <https://plantgenie.org/>. The VCF files for the UmAsp, SwAsp and ScotAsp collections are
727 available at the European Variant Archive: in progress. Significant genome-wide association
728 results (at q -value < 0.05), SNP variant files and regions under positive and balancing
729 selection are available at https://plantgenie.org/JBrowse_new. Raw and processed
730 phenotype files, top-ranked GWAS results and ATAC-Seq peaks are available at: the SciLife
731 Data Repository Figshare: doi:10.17044/scilifelab.25335448.

732
733

734 **Reference list**

- 735 **Adebali O, Ortega DR, Zhulin IB. 2015.** CDvist: a webserver for identification and
736 visualization of conserved domains in protein sequences. *Bioinformatics* **31**: 1475–1477.
737 <https://doi.org/10.1093/bioinformatics/btu836>
- 738
- 739 **Alpers DH, Appel SH, Tomkins GM. 1965.** A spectrophotometric assay for thiogalactoside
740 transacetylase. *The Journal of Biological Chemistry* **240**: 10–13.
741 [https://doi.org/10.1016/S0021-9258\(18\)97606-4](https://doi.org/10.1016/S0021-9258(18)97606-4)
- 742
- 743 **Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990.** Basic local alignment search
744 tool. *Journal of Molecular Biology* **215**: 403–410. [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)
- 745
- 746 **Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. 2020.** Opportunities and
747 challenges in long-read sequencing data analysis. *Genome Biology* **21**: 1–16.
748 <https://doi.org/10.1186/s13059-020-1935-5>
- 749
- 750 **An X, Gao K, Chen Z, et al. 2020.** Hybrid origin of *Populus tomentosa* Carr. identified
751 through genome sequencing and phylogenomic analysis. *bioRxiv*, 2020.04.07.030692.
752 Available at: <https://www.biorxiv.org/content/10.1101/2020.04.07.030692v1>
- 753
- 754 **Apuli R-P, Bernhardsson C, Schiffthaler B, Robinson KM, Jansson S, Street NR,
755 Ingvarsson PK. 2020.** Inferring the genomic landscape of recombination rate variation in
European Aspen (*Populus tremula*). *Genes/Genomes/Genetics* **10**: 299–309.
<https://doi.org/10.1534/g3.119.400504>

- 756 **Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S,**
757 **Toriyama K. 2004.** Disruption of the novel plant protein NEF1 affects lipid accumulation
758 in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in
759 *Arabidopsis thaliana*. *The Plant Journal* **39**: 170-181. <https://doi.org/10.1111/j.1365-313X.2004.02118.x>
- 760
- 761 **Bae, EK, Kang, MJ, Lee, SJ, Park EJ, Kim KT. 2023.** Chromosome-level genome assembly
762 of the Asian aspen *Populus davidiana* Dode. *Sci Data* **10**: 431.
763 <https://doi.org/10.1038/s41597-023-02350-5>
- 764 **Bai S, Wu H, Zhang J, Pan Z, Zhao W, Li Z, Tong C. 2021.** Genome Assembly of Salicaceae
765 *Populus deltoides* (Eastern Cottonwood) I-69 Based on Nanopore Sequencing and Hi-C
766 Technologies. *Journal of Heredity* **112**: 303–310. <https://doi.org/10.1093/jhered/esab010>
- 767 **Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S,**
768 **Nelissen H, Inzé D. 2015.** Correlation analysis of the transcriptome of growing leaves with
769 mature leaf parameters in a maize RIL population. *Genome Biol.* **16**: 168. doi:
770 [10.1186/s13059-015-0735-9](https://doi.org/10.1186/s13059-015-0735-9)
- 771 **Bååth R. 2016.** bayesboot: an implementation of Rubin's (1981) Bayesian Bootstrap.
772 <https://CRAN.R-project.org/package=bayesboot>.
- 773 **Ben-Gera H, Dafna A, Alvarez JP, Bar M, Mauerer M, Ori N. 2016.** Auxin-mediated
774 lamina growth in tomato leaves is restricted by two parallel mechanisms. *Plant J.* **86**: 443-
775 57. doi: [10.1111/tpj.13188](https://doi.org/10.1111/tpj.13188)
- 776 **Bernhardsson C, Robinson KM, Abreu IN, Jansson S, Albrechtsen BR, Ingvarsson PK.**
777 **2013.** Geographic structure in metabolome and herbivore community co-occurs with
778 genetic structure in plant defence genes. *Ecology Letters* **16**: 791–798.
779 <https://doi.org/10.1111/ele.12114>
- 780 **Boeckler GA, Gershenzon J, Unsicker SB. 2011.** Phenolic glycosides of the Salicaceae and
781 their role as anti-herbivore defenses. *Phytochemistry* **72**: 1497–1509.
782 <https://doi.org/10.1016/j.phytochem.2011.01.038>
- 783 **Bolger AM, Lohse M, Usadel B. 2014.** Trimmomatic: A flexible trimmer for Illumina
784 sequence data. *Bioinformatics* **30**: 2114–2120.
785 <https://doi.org/10.1093/bioinformatics/btu170>
- 786 **Bresadola L, Caseys C, Castiglione S, Buerkle CA, Wegmann D, Lexer C. 2019.**
787 Admixture mapping in interspecific *Populus* hybrids identifies classes of genomic
788 architectures for phytochemical, morphological and growth traits. *New Phytologist* **223**:
789 2076–2089. <https://doi.org/10.1111/nph.15930>
- 790 **Browning BL, Zhou Y, Browning SR. 2018.** A one-penny imputed genome from next
791 generation reference panels. *Am. J. Hum. Genet.* **103**: 338–348.
792 doi: [10.1016/j.ajhg.2018.07.015](https://doi.org/10.1016/j.ajhg.2018.07.015)
- 793 **Bucchini F, Del Cortona A, Kreft L, Botzki A, Van Bel M, Vandepoele K. 2021.** TRAPID
794 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes.
795 *Nucleic Acids Research* **49**: e101. <https://doi.org/10.1093/nar/gkab565>
- 796 **Buchfink B, Xie C, Huson DH. 2014.** Fast and sensitive protein alignment using DIAMOND.

- 797 **Nature Methods** **12**: 59–60. <https://doi.org/10.1038/s41592-021-01101-x>
- 798 **Bylesjö M, Segura V, Soolanayakanahally RY, Rae AM, Trygg J, Gustafsson P, Jansson S, Street NR. 2008.** LAMINA: a tool for rapid quantification of leaf size and shape parameters. *BMC Plant Biol.* **81**: 1–9. <https://doi.org/10.1186/1471-2229-8-82>
- 801 **Campbell MS, Holt C, Moore B, Yandell M. 2014.** Genome Annotation and Curation Using MAKER and MAKER-P. *Current Protocols in Bioinformatics* **2014**: 4.11.1-4.11.39. <https://doi.org/10.1002/0471250953.bi0411s48>
- 804 **Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH. 2007.** The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. *Plant Cell.* **19**: 2952–66. doi: 10.1105/tpc.106.049981
- 807 **Chang S, Puryear J, Cairney J. 1993.** A simple and efficient method for isolating RNA from pine trees. *Plant Mol Biol Rep* **11**: 113–116. <https://doi.org/10.1007/BF02670468>
- 809
- 810 **Chedgy RJ, Köllner TG, Constabel CP. 2015.** Functional characterization of two acyltransferases from *Populus trichocarpa* capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis. *Phytochemistry* **113**: 149–159. <https://doi.org/10.1016/j.phytochem.2014.10.018>
- 814 **Chen S, Yu Y, Wang X, Wang S, Zhang T, Zhou Y, He R, Meng N, Wang Y, Liu W, Liu Z, Liu J, Guo Q, Huang H, Sederoff RR, Wang G, Qu G, Chen S. 2023.** Chromosome-level genome assembly of a triploid poplar *Populus alba* 'Berolinensis'. *Molecular Ecology Resources* **23**: 1092–1107. <https://doi.org/10.1111/1755-0998.13770>
- 818 **Chen L, Zhu QH. 2022.** The evolutionary landscape and expression pattern of plant lincRNAs. *RNA Biology* **19**: 1190–1207. <https://doi.org/10.1080/15476286.2022.2144609>
- 820 **Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O'Malley R, Figueroa-Balderas R, Morales-Cruz A, et al. 2016.** Phased diploid genome assembly with single-molecule real-time sequencing. *Nature Methods* **13**: 1050–1054. <https://doi.org/10.1038/nmeth.4035>
- 824 **Cho HK, Ahn CS, Lee HS, Kim JK, Pai HS. 2013.** Pescadillo plays an essential role in plant cell growth and survival by modulating ribosome biogenesis. *Plant J.* **76**: 393–405. doi: 10.1111/tpj.12302
- 827 **Coscia M, Neffke FMH. 2017.** Network backboning with noisy data. *Proceedings - International Conference on Data Engineering*, 425–436. <https://doi.org/10.1109/ICDE.2017.100>
- 830 **Cromer L, Jolivet S, Singh DK, Berthier F, De Winne N, De Jaeger G, Komaki S, Prusicki MA, Schnittger A, Guérois R, Mercier R. 2019.** Patronus is the elusive plant securin, preventing chromosome separation by antagonizing separase. *Proc Natl Acad Sci USA* **116**: 16018–16027. doi: 10.1073/pnas.1906237116
- 834 **Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011.** The variant call format and VCFtools. *Bioinformatics* **27**: 2156–2158. <https://doi.org/10.1093/bioinformatics/btr330>

- 838 **Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane**
839 **T, McCarthy SA, Davies RM, Li H. 2021.** Twelve years of SAMtools and BCFtools.
840 *GigaScience* **10:** giab008, <https://doi.org/10.1093/gigascience/giab008>
- 841 **Davies C, Ellis CJ, Iason GR, Ennos RA. 2014.** Genotypic variation in a foundation tree
842 (*Populus tremula* L.) explains community structure of associated epiphytes. *Biol. Lett.* **10:**
843 20140190. <https://doi.org/10.1098/rsbl.2014.0190>
- 844 **De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006.** CAFE: a computational tool for the
845 study of gene family evolution. *Bioinformatics* **22:** 1269–71.
846 <https://doi.org/10.1093/bioinformatics/btl097>
- 847 **de Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, Macaya-Sanz D, Cottrell J,**
848 **Heinze B, Schanzer I, Lexer C. 2010.** Admixture facilitates adaptation from standing
849 variation in the European aspen (*Populus tremula* L.), a widespread forest tree. *Mol. Ecol.*
850 **19:**1638–1650. <https://doi.org/10.1111/j.1365-294X.2010.04595.x>
- 851 **Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,**
852 **Gingeras TR. 2013.** STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29:** 15–21.
853 <https://doi.org/10.1093/bioinformatics/bts635>
- 854 **Dóczi R, Hatzimasoura E, Bögre L. 2011.** Mitogen-activated protein kinase activity and
855 reporter gene assays in plants. In: Dissmeyer N, Schnittger A. (eds) Plant Kinases. Methods
856 in Molecular Biology (Methods and Protocols), vol 779. Humana, Totowa, NJ.
857 https://doi.org/10.1007/978-1-61779-264-9_5
- 858 **Donaldson JR, Stevens MT, Barnhill HR, Lindroth RL. 2006.** Age-related shifts in leaf
859 chemistry of clonal aspen (*Populus tremuloides*). *Journal of Chemical Ecology* **32:** 1415–
860 1429. <https://doi.org/10.1007/s10886-006-9059-2>
- 861 **El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson**
862 **LJ, Salazar GA, Smart A, et al. 2018.** The Pfam protein families database in 2019. *Nucleic*
863 *Acids Research* **47:** 427–432. <https://doi.org/10.1093/nar/gkaa913>
- 864 **Emms DM, Kelly S. 2015.** OrthoFinder: solving fundamental biases in whole genome
865 comparisons dramatically improves orthogroup inference accuracy. *Genome Biology* **16:**
866 <https://doi.org/10.1186/s13059-015-0721-2>
- 867 **Fox J, Weisberg S. 2019.** *An R Companion to Applied Regression*, Third edition. Sage,
868 Thousand Oaks CA. <https://socialsciences.mcmaster.ca/jfox/Books/Companion/>
- 869 **Fracheboud Y, Luquez V, Björkén L, Sjödin A, Tuominen H, Jansson S. 2009.** The
870 control of autumn senescence in European aspen. *Plant physiology* **149:** 1982–1991.
871 <https://doi.org/10.1104/pp.108.133249>
- 872 **Gachomo EW, Jimenez-Lopez JC, Baptiste LJ, Kotchoni SO. 2014.** GIGANTUS1 (GTS1), a
873 member of Transducin/WD40 protein superfamily, controls seed germination, growth and
874 biomass accumulation through ribosome-biogenesis protein interactions in *Arabidopsis*
875 *thaliana*. *BMC Plant Biol.* **14:** 37. doi: 10.1186/1471-2229-14-37
- 876 **Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. 2003.** ExPASy: the
877 proteomics server for in-depth protein knowledge and analysis. *Nucleic Acids Research* **31:**
878 3784–3788. <https://doi.org/10.1093/nar/gkg563>

- 879 **Gautier M, Klassmann A, Vitalis R. 2017.** rehh 2.0: a reimplementation of the R package
880 rehh to detect positive selection from haplotype structure. *Molecular Ecology Resources* **17**:
881 78–90. <https://doi.org/10.1111/1755-0998.12634>
- 882 **Gehlenborg N. 2014.** UpSetR: A More Scalable Alternative to Venn and Euler Diagrams for
883 Visualizing Intersecting Sets. R package version 1.4.0. [https://CRAN.R-
884 project.org/package=UpSetR](https://CRAN.R-project.org/package=UpSetR).
- 885 **Gel B, Serra E. 2017.** karyoploteR: an R/Bioconductor package to plot customizable
886 genomes displaying arbitrary data and 2 CIBERONC. *Bioinformatics* **33**: 3088–3090.
887 <https://doi.org/10.1093/bioinformatics/btx346>
- 888 **Ghurye J, Pop M. 2019.** Modern technologies and algorithms for scaffolding assembled
889 genomes. *PLoS Computational Biology* **15**: e1006994.
890 <https://doi.org/10.1371/journal.pcbi.1006994>
- 891 **Ghurye J, Rhie A, Walenz BP, Schmitt A, Selvaraj S, Pop M, Phillippy AM, Koren S.**
892 **2019.** Integrating Hi-C links with assembly graphs for chromosome-scale assembly (I
893 Ioshikhes, Ed.). *PLOS Computational Biology* **15**: e1007273.
894 <https://doi.org/10.1371/journal.pcbi.1007273>
- 895 **Goel M, Sun H, Jiao W-B, Schneeberger K. 2019.** SyRI: finding genomic rearrangements
896 and local sequence differences from whole-genome assemblies. *Genome biology* **20**: 277.
897 <https://doi.org/10.1186/s13059-019-1911-0>
- 898 **Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón
899 M, Dopazo J, Conesa A. 2008.** High-throughput functional annotation and data mining
900 with the Blast2GO suite. *Nucleic acids research* **36**: 3420–35.
901 <https://doi.org/10.1093/nar/gkn176>
- 902 **Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
903 Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma
904 F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011.** Trinity:
905 reconstructing a full-length transcriptome without a genome from RNA-Seq data. *Nature
906 Biotechnology* **29**: 644. <https://doi.org/10.1038/NBT.1883>
- 907 **Grimberg Å, Lager I, Street NR, Robinson KM, Marttila S, Mähler N, Ingvarsson PK,
908 Bhalerao RP. 2018.** Storage lipid accumulation is controlled by photoperiodic signal acting
909 via regulators of growth cessation and dormancy in hybrid aspen. *New Phytologist* **219**:
910 619–630. <https://doi.org/10.1111/nph.15197>
- 911 **Gruner K, Leissing F, Sinitzki D, Thieron H, Axstmann C, Baumgarten K, Reinstädler A,
912 Winkler P, Altmann M, Flatley A, Jaouannet M, Zienkiewicz K, Feussner I, Keller H,
913 Coustau C, Falter-Braun P, Feederle R, Bernhagen J, Panstruga R. 2021.** Chemokine-
914 like MDL proteins modulate flowering time and innate immunity in plants. *J Biol Chem.*
915 **296**: 100611. doi: 10.1016/j.jbc.2021.100611
- 916 **Guerriero G, Hausman JF, Ezcurra I. 2015.** WD40-Repeat Proteins in Plant Cell Wall
917 Formation: Current Evidence and Research Prospects. *Front Plant Sci.* **6**: 1112. doi:
918 10.3389/fpls.2015.01112
- 919 **Guo R, Hu Y, Aoi Y, Hira H, Ge C, Dai X, Kasahara H, Zhao Y. 2022.** Local conjugation of

- 920 auxin by the GH3 amido synthetases is required for normal development of roots and
921 flowers in *Arabidopsis*. *Biochem Biophys Res Commun.* **589**: 16-22. doi:
922 10.1016/j.bbrc.2021.11.109
- 923 **Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013.** Genome analysis QUAST: quality
924 assessment tool for genome assemblies. *Bioinformatics* **29**: 1072–1075.
925 <https://doi.org/10.1093/bioinformatics/btt086>
- 926 **Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB,**
927 **Eccles D, Li B, Lieber M, et al. 2013.** De novo transcript sequence reconstruction from
928 RNA-seq using the Trinity platform for reference generation and analysis. *Nature Protocols*
929 **8**: 1494–1512. <https://doi.org/10.1038/nprot.2013.084>
- 930 **Harrison A. 2009.** Aspen growth trials: showing the species' potential in Scotland. The
931 biodiversity and management of aspen woodlands (eds Cosgrove P, Amphlett A).
932 Grantown-on-Spey, UK: The Cairngorms Local Biodiversity Action Plan. pp. 49–51.
- 933 **Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. 2012.** Inhibition of lamina
934 outgrowth following *Solanum lycopersicum* AUXIN RESPONSE FACTOR 10 (SIARF10)
935 derepression. *Plant Mol Biol.* **78**: 561-76. doi: 10.1007/s11103-012-9883-4
- 936 **Hirano T, Matsuzawa T, Takegawa K, Sato MH. 2011.** Loss-of-function and gain-of-
937 function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic
938 developmental abnormalities in *Arabidopsis*. *Plant Physiol.* **155**: 797-807. doi:
939 10.1104/pp.110.167981.
- 940 **Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. 2016.** BRAKER1: Unsupervised
941 RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS *Bioinformatics* **32**:
942 767–769. <https://doi.org/10.1093/bioinformatics/btv661>
- 943 **Hou Z, Wang Z, Ye Z, Du S, Liu S, Zhang J. 2018.** Phylogeographic analyses of a widely
944 distributed *Populus davidiana*: Further evidence for the existence of glacial refugia of cool-
945 temperate deciduous trees in northern East Asia. *Ecology and Evolution* **8**: 13014–13026.
946 <https://doi.org/10.1002/ece3.4755>
- 947 **Huang S, Kang M, Xu A. 2017.** HaploMerger2: rebuilding both haploid sub-assemblies
948 from high-heterozygosity diploid genome assembly. *Bioinformatics* **33**: 2577–2579.
949 <https://doi.org/10.1093/bioinformatics/btx220>
- 950 **Jansson S, Douglas CJ. 2007.** *Populus*: A Model System for Plant Biology. *Annual Review of*
951 *Plant Biology* **58**: 435–458. <https://doi.org/10.1146/annurev.arplant.58.032806.103956>
- 952 **Jiao WB, Schneeberger K. 2017.** The impact of third generation genomic technologies on
953 plant genome assembly. *Current Opinion in Plant Biology* **36**: 64–70.
954 <https://doi.org/10.1016/j.pbi.2017.02.002>
- 955 **Kanehisa M, Goto S. 2000.** KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids*
956 *Research* **28**: 27–30. <https://doi.org/10.1093/nar/28.1.27>
- 957 **Katoh K, Standley DM. 2013.** MAFFT multiple sequence alignment software version 7:
958 Improvements in performance and usability. *Molecular Biology and Evolution* **30**: 772–780.
959 <https://doi.org/10.1093/molbev/mst010>

- 960 **Kersten B, Faivre Rampant P, Mader M, Le Paslier M-C, Bounon R, Berard A, Vettori C,**
961 **Schroeder H, Leplé J-C, Fladung M.** 2016. Genome Sequences of *Populus*
962 *tremula* Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding. *PLoS*
963 *ONE* **11**: e0147209. <https://doi.org/10.1371/journal.pone.0147209>.
964 <https://doi.org/10.1371/journal.pone.0147209>
965
- 966 **Kolde R.** 2019. *pheatmap*: Pretty Heatmaps. R package version 1.0.12. <https://CRAN.R-project.org/package=pheatmap>.
- 967
- 968 **Kopylova E, Noé L, Touzet H.** 2012. SortMeRNA: fast and accurate filtering of ribosomal
969 RNAs in metatranscriptomic data. *Bioinformatics* **28**: 3211–7.
970 <https://doi.org/10.1093/bioinformatics/bts611>
- 971 **Korf I.** 2004. Gene finding in novel genomes. *BMC Bioinformatics* **5**: 59.
972 <https://doi.org/10.1186/1471-2105-5-59>
- 973 **Kruijer W.** 2019. *heritability*: Marker-Based Estimation of Heritability Using Individual
974 Plant or Plot Data. R package version 1.3. <https://CRAN.R-project.org/package=heritability>.
- 975 **Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R, Keurentjes JJB, Van**
976 **Eeuwijk FA.** 2015. Marker-based estimation of heritability in immortal populations.
977 *Genetics* **199**: 379–398. <https://doi.org/10.1534/genetics.114.167916>
- 978 **Kulasekaran S, Cerezo-Medina S, Harflett C, Lomax C, de Jong F, Rendour A, Ruvo G,**
979 **Hanley SJ, Beale MH, Ward JL.** 2021. A willow UDP-glycosyltransferase involved in
980 salicinoid biosynthesis (J Rohwer, Ed.). *Journal of Experimental Botany* **72**: 1634–1648.
981 <https://doi.org/10.1093/jxb/eraa562>
- 982 **Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, Gao G.** 2017. CPC2: a fast and
983 accurate coding potential calculator based on sequence intrinsic features. *Nucleic Acids*
984 *Research* **45**: W12–W16. <https://doi.org/10.1093/NAR/GKX428>
- 985 **Lee J, Han CT, Hur Y.** 2010. Overexpression of BrMORN, a novel 'membrane occupation
986 and recognition nexus' motif protein gene from Chinese cabbage, promotes vegetative
987 growth and seed production in *Arabidopsis*. *Mol Cells*. **29**: 113–22. doi: 10.1007/s10059-
988 010-0006-2
- 989 **Li H.** 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
990 MEM. [arXiv:1303.3997v2 \[q-bio.GN\]](https://arxiv.org/abs/1303.3997v2)
991
- 992 **Li H.** 2018. Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics* **34**:
993 3094–3100. <https://doi.org/10.1093/bioinformatics/bty191>
- 994 **Li A, Zhang J, Zhou Z.** 2014. PLEK: A tool for predicting long non-coding RNAs and
995 messenger RNAs based on an improved k-mer scheme. *BMC Bioinformatics* **15**: 1–10.
996 <https://doi.org/10.1186/1471-2105-15-311>
- 997 **Lin J, Sibley A, Shterev I, Nixon A, Innocenti F, Chan C, Owzar K.** 2019. fastJT: An R
998 package for robust and efficient feature selection for machine learning and genome-wide
999 association studies. *BMC Bioinformatics* **20**: 333. <https://doi.org/10.1186/s12859-019-2869-3>

- 1001 **Lin YC, Wang J, Delhomme N, Schiffthaler B, Sundström G, Zuccolo A, Nystedt B,**
1002 **Hvidsten TR, de la Torre A, Cossu RM, et al. 2018.** Functional and evolutionary genomic
1003 inferences in *Populus* through genome and population sequencing of American and
1004 European aspen. *Proceedings of the National Academy of Sciences of the United States of*
1005 *America* **115**: E10970–E10978. <https://doi.org/10.1073/pnas.1801437115>
- 1006 **Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. 2007.**
1007 Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed
1008 germination and post-germination stages. *Plant J.* **52**: 133-46. doi: 10.1111/j.1365-
1009 313X.2007.03218.x
- 1010 **Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. 2005.** Gene
1011 identification in novel eukaryotic genomes by self-training algorithm. *Nucleic acids research*
1012 **33**: 6494–6506. <https://doi.org/10.1093/nar/gki937>
- 1013 **Love MI, Huber W, Anders S. 2014.** Moderated estimation of fold change and dispersion
1014 for RNA-seq data with DESeq2. *Genome Biology* **15**: 1–21.
1015 <https://doi.org/10.1186/s13059-014-0550-8>
- 1016 **Luquez V, Hall D, Albrechtsen BR, Karlsson J, Ingvarsson P, Jansson S. 2008.** Natural
1017 phenological variation in aspen (*Populus tremula*): The SwAsp collection. *Tree Genetics and*
1018 *Genomes* **4**: 279–292. <https://doi.org/10.1007/s11295-007-0108-y>
- 1019 **Ma, J., Wan, D., Duan, B., Bai, X., Bai, Q., Chen, N. and Ma, T.** (2019) Genome sequence
1020 and genetic transformation of a widely distributed and cultivated poplar. *Plant Biotechnol.*
1021 *J.*, **17**, 451–460. <https://doi.org/10.1111/pbi.12989>
- 1022 **Mähler N, Wang J, Terebieniec BK, Ingvarsson PK, Street NR, Hvidsten TR. 2017.** Gene
1023 co-expression network connectivity is an important determinant of selective constraint.
1024 *PLoS Genetics* **13**: e1006402. <https://doi.org/10.1371/journal.pgen.1006402>
- 1025 **Mähler N, Schiffthaler B, Robinson KM, Terebieniec BK, Vučak M, Mannapperuma C,**
1026 **Bailey MES, Jansson S, Hvidsten TR, Street NR. 2020.** Leaf shape in *Populus tremula* is a
1027 complex, omnigenic trait. *Ecol Evol* **10**:11922–11940. <https://doi.org/10.1002/ece3.6691>
- 1028 **Marçais G, Kingsford C. 2011.** A fast, lock-free approach for efficient parallel counting of
1029 occurrences of k-mers. *Bioinformatics* **27**: 764–770.
1030 <https://doi.org/10.1093/bioinformatics/btr011>
- 1031 **McKenna, A., Hanna, M., Banks, E., et al. 2010.** The Genome Analysis Toolkit: A
1032 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.*
1033 **20**: 1297–1303. <https://doi.org/10.1101/gr.107524.110>
- 1034 **Michael TP, VanBuren R. 2020.** Building near-complete plant genomes. *Current Opinion in*
1035 *Plant Biology* **54**: 26–33. <https://doi.org/10.1016/j.pbi.2019.12.009>
- 1036 **Michelson IH, Ingvarsson PK, Robinson KM, Edlund E, Eriksson ME, Nilsson O,**
1037 **Jansson S. 2018.** Autumn senescence in aspen is not triggered by day length. *Physiologia*
1038 *Plantarum* **162**: 123–134. <https://doi.org/10.1111/ppl.12593>
- 1039 **Miura K, Lee J, Miura T, Hasegawa PM. 2010.** SIZ1 controls cell growth and plant
1040 development in *Arabidopsis* through salicylic acid. *Plant Cell Physiol.* **51**:103-13. doi:

- 1041 10.1093/pcp/pcp171
- 1042 **Mouriz A, López-González L, Jarillo JA, Piñeiro M. 2015.** PHDs govern plant
1043 development. *Plant Signal Behav.* **10**:e993253. doi: 10.4161/15592324.2014.993253
- 1044 **Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C, et al. 2020.** A
1045 single gene underlies the dynamic evolution of poplar sex determination. *Nat.*
1046 *Plants* **6**: 630–637. <https://doi.org/10.1038/s41477-020-0672-9>
- 1047 **Myking T, Böhler F, Austrheim G, Solberg EJ. 2011.** Life history strategies of aspen
1048 (Populus tremula L.) and browsing effects: A literature review. *Forestry* **84**: 61–71.
1049 <https://doi.org/10.1093/forestry/cpq044>
- 1050 **Nakano RT, Matsushima R, Ueda H, Tamura K, Shimada T, Li L, Hayashi Y, Kondo M,**
1051 **Nishimura M, Hara-Nishimura I. 2009.** GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 are
1052 required for maintenance of endoplasmic reticulum morphology in *Arabidopsis thaliana*.
1053 *Plant Cell* **21**: 3672-85. doi: 10.1105/tpc.109.068270
- 1054 **Ou S, Chen J, Jiang N. 2018.** Assessing genome assembly quality using the LTR Assembly
1055 Index (LAI). *Nucleic acids research* **46**: e126. <https://doi.org/10.1093/nar/gky730>
- 1056 **Pakull B, Kersten B, Lüneburg J, Fladung M. 2015.** A simple PCR-based marker to
1057 determine sex in aspen. *Plant Biol J* **17**: 256-261. <https://doi.org/10.1111/plb.12217>
- 1058 **Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. 2023.** Linking discoveries,
1059 mechanisms, and technologies to develop a clearer perspective on plant long noncoding
1060 RNAs. *The Plant Cell* **35**: 1762–1786. <https://doi.org/10.1093/plcell/koad027>
- 1061 **Pan W, Jiang T, Lonardi S. 2019.** OMGS: Optical Map-Based Genome Scaffolding. *Journal of*
1062 *Computational Biology* **27**: cmb.2019.0310. <https://doi.org/10.1089/cmb.2019.0310>
- 1063 **Paniagua C, Bilkova A, Jackson P, Dabrowski S, Riber W, Didi V, Houser J, Gigli-
1064 Bisceglia N, Wimmerova M, Budínská E, Hamann T, Hejatko J. 2017.** Dirigent proteins
1065 in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. *J Exp*
1066 *Bot.* **68**: 3287-3301. doi: 10.1093/jxb/erx141
- 1067 **Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017.** Salmon provides fast and
1068 bias-aware quantification of transcript expression. *Nature Methods* **14**: 417–419.
1069 <https://doi.org/10.1038/nmeth.4197>
- 1070 **Patterson N, Price AL, Reich D. 2006.** Population Structure and Eigenanalysis. *PLoS Genet*
1071 **2**: e190. <https://doi.org/10.1371/journal.pgen.0020190>
- 1072 **Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJ, Blaudez D, Chalot M,
1073 Sanders D. A secretory pathway-localized cation diffusion facilitator confers plant
1074 manganese tolerance. 2007. *Proc Natl Acad Sci USA.* **104**: 8532-7. doi:
1075 10.1073/pnas.0609507104**
- 1076 **Peterson RA, Cavanaugh JE. 2020.** Ordered quantile normalization: a semiparametric
1077 transformation built for the cross-validation era. *Journal of Applied Statistics* **47**: 2312-
1078 2327. doi: 10.1080/02664763.2019.1630372.
- 1079 **Philippe RN, Bohlmann J. 2007.** Poplar defense against insect herbivores. *Canadian*
1080 *Journal of Botany* **85**: 1111-1126. <https://doi.org/10.1139/B07-109>

- 1081 **Pinosio S, Giacomello S, Faivre-Rampant P, Taylor G, Jorge V, Le Paslier MC, Zaina G,**
1082 **Bastien C, Cattonaro F, Marroni F, Morgante M. 2016.** Characterization of the poplar
1083 pan-genome by genome-wide identification of structural variation. *Molecular Biology and*
1084 *Evolution* **33**: 2706–2719. <https://doi.org/10.1093/molbev/msw161>
- 1085 **Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar**
1086 **P, De Bakker PIW, Daly MJ, et al. 2007.** PLINK: A tool set for whole-genome association
1087 and population-based linkage analyses. *American Journal of Human Genetics* **81**: 559–575.
1088 <https://doi.org/10.1086/519795>
- 1089 **Qu X, Chatty PR, Roeder AHK. 2014.** Endomembrane Trafficking Protein SEC24A
1090 Regulates Cell Size Patterning in Arabidopsis. *Plant Physiology* **166**: 1877–1890.
1091 <https://doi.org/10.1104/pp.114.246033>
- 1092 **Quinlan AR, Hall IM. 2010.** BEDTools: a flexible suite of utilities for comparing genomic
1093 features. *Bioinformatics* **26**: 841–842.
1094 <https://doi.org/10.1093/BIOINFORMATICS/BTQ033>
- 1095 **R Core Team. 2019.** A Language and Environment for Statistical Computing. *R Foundation*
1096 *for Statistical Computing*, Vienna, Austria. <https://www.R-project.org/>
- 1097 **Reimann R, Kost B, Dettmer J. 2017.** TETRASPININs in Plants. *Front Plant Sci.* **18**: 545.
1098 doi: 10.3389/fpls.2017.00545
- 1099 **Rendón-Anaya M, Wilson J, Sveinsson S, Cottrell J, Bailey ME, Runçgis D, Lexer C,**
1100 **Jansson S, Robinson KM, Street NR, Ingvarsson PK. 2021.** Adaptive Introgression
1101 Facilitates Adaptation to High Latitudes in European Aspen (*Populus tremula* L.). *Molecular*
1102 *Biology and Evolution* **38**: 5034–5050. <https://doi.org/10.1093/molbev/msab229>
- 1103 **Robinson KM, Delhomme N, Mähler N, Schiffthaler B, Onskog J, Albrechtsen BR,**
1104 **Ingvarsson PK, Hvidsten TR, Jansson S, Street NR. 2014.** *Populus tremula* (European
1105 aspen) shows no evidence of sexual dimorphism. *BMC plant biology* **14**: 276.
1106 <https://doi.org/10.1186/s12870-014-0276-5>
- 1107 **Robinson KM, Hauzy C, Loeuille N, Albrechtsen BR. 2015.** Relative impacts of
1108 environmental variation and evolutionary history on the nestedness and modularity of
1109 tree-herbivore networks. *Ecology and Evolution* **5**: 2898– 2915.
1110 <https://doi.org/10.1002/ece3.1559>
- 1111 **Robinson KM, Ingvarsson PK, Jansson S, Albrechtsen BR. 2012.** Genetic variation in
1112 functional traits influences arthropod community composition in aspen (*Populus tremula*
1113 L.). *PLoS ONE* **7**: 1–12. <https://doi.org/10.1371/journal.pone.0037679>
- 1114 **Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES. 2016.** Open chromatin reveals the
1115 functional maize genome. *Proc Natl Acad Sci USA* **113**: E3177-84. doi:
1116 10.1073/pnas.1525244113
- 1117 **Sanderson MJ. 2003.** r8s: inferring absolute rates of molecular evolution and divergence
1118 times in the absence of a molecular clock. *Bioinformatics* **19**: 301–2.
1119 <https://doi.org/10.1093/bioinformatics/19.2.301>
- 1120 **Shabalin AA. 2012.** Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
1121 *Bioinformatics* **28**: 1353–8. doi: 10.1093/bioinformatics/bts163

- 1122
1123 **Schiffthaler B, Van Zalen E, Serrano AR, Street NR, Delhomme N. (2023).** SeiÃ°r:
1124 Efficient calculation of robust ensemble gene networks. *Heliyon*, **9**: e16811.
1125 <https://doi.org/10.1016/j.heliyon.2023.e16811>
- 1126
1127 **Shevchenko A, Wilm M, Vorm O, Mann M. 1996.** Mass spectrometric sequencing of
1128 proteins from silver-stained polyacrylamide gels. *Analytical Chemistry* **68**: 850-858.
1129 <https://doi.org/10.1021/ac950914h>
- 1130
1131 **Shi TL, Jia KH, Bao YT, Nie S, Tian XC, Yan XM, Chen ZY, Li ZC, Zhao SW, Ma HY, Zhao Y, Li X, Zhang RG, Guo J, Zhao W, El-Kassaby YA, Müller N, Van de Peer Y, Wang XR, Street NR, Porth I, An X, Mao JF. 2024.** High-quality genome assembly enables prediction
1132 of allele-specific gene expression in hybrid poplar. *Plant Physiol.* **27**:kiae078. doi:
1133 [10.1093/plphys/kiae078](https://doi.org/10.1093/plphys/kiae078)
- 1134
1135
1136
1137 **Siewert KM, Voight BF. 2017.** Detecting Long-Term Balancing Selection Using Allele
1138 Frequency Correlation. *Mol Biol Evol* **2017**, **34**: 2996-3005.
1139 <https://doi.org/10.1093/molbev/msx209>
- 1140 **Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V, Zdobnov EM. 2015.** BUSCO:
1141 user guide. *Bioinformatics* **31**: 3210-3212.
1142 <https://doi.org/10.1093/bioinformatics/btv351>
- 1143 **Slaten ML, Chan YO, Shrestha V, Lipka AE, Angelovici R. 2020.** HAPPI GWAS: Holistic
1144 Analysis with Pre- and Post Integration GWAS. *Bioinformatics* **36**: 4655-4657.
1145 <https://doi.org/10.1093/bioinformatics/btaa589>
- 1146 **Slavov GT, Zhelev P. 2010.** Salient Biological Features, Systematics, and Genetic Variation
1147 of *Populus*. In: *Genetics and Genomics of Populus*. Springer New York, 15-38.
- 1148 **Sobuja N, Nissinen K, Virjamo V, Salonen A, Sivadasan U, Randriamanana T, Ikonen V-P, Kilpeläinen K, Julkunen-Tiitto R, Nybakken L, Mehtätalo L, Peltola H.**
1149 **2021.** Accumulation of phenolics and growth of dioecious *Populus tremula* (L.) seedlings
1150 over three growing seasons under elevated temperature and UVB radiation. *Plant
1151 Physiology and Biochemistry* **165**: 114-122. <https://doi.org/10.1016/j.plaphy.2021.05.012>
- 1152
1153 **Soolanayakanahally R, Guy R, Street N, Robinson K, Silim S, Albrechtsen B, Jansson S.**
1154 **2015.** Comparative physiology of allopatric *Populus* species: geographic clines in
1155 photosynthesis, height growth, and carbon isotope discrimination in common gardens.
1156 *Frontiers in Plant Science* **6**: 528. <https://doi.org/10.3389/fpls.2015.00528>
- 1157 **Stanke M, Diekhans M, Baertsch R, Haussler D. 2008.** Using native and syntenically
1158 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics* **24**: 637-44.
1159 <https://doi.org/10.1093/bioinformatics/btn013>
- 1160 **Storey JD, Bass AJ, Dabney A, Robinson D. 2021.** qvalue: Q-value estimation for false
1161 discovery rate control. R package version 2.26.0, <http://github.com/jdstorey/qvalue>.
- 1162 **Street NR, Ingvarsson PK. 2011.** Association genetics of complex traits in plants. *New
1163 Phytologist* **189**:909-922. <https://doi.org/10.1111/j.1469-8137.2010.03593.x>

- 1164 **Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin Y-C, Sjödin A, Van de Peer Y,**
1165 **Jansson S, Hvidsten TR, Street NR. 2015.** The Plant Genome Integrative Explorer
1166 Resource: PlantGenIE.org. *New Phytologist* **208**: 1149–1156.
1167 <https://doi.org/10.1111/nph.13557>
- 1168 **Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C, Kumar V,**
1169 **Mannapperuma C, Delhomme N, Nilsson O, et al. 2017.** Aspwood: High-spatial-
1170 resolution transcriptome profiles reveal uncharacterized modularity of wood formation in
1171 *Populus tremula*. *Plant Cell* **29**: 1585–1604. <https://doi.org/10.1105/tpc.17.00153>
- 1172 **Supek F, Bošnjak M, Škunca N, Šmuc T. 2011.** REVIGO summarizes and visualizes long
1173 lists of gene ontology terms. *PLoS One*. **6**: e21800. doi: 10.1371/journal.pone.0021800
- 1174 **Taguchi G, Ubukata T, Nozue H, Kobayashi Y, Takahi M, Yamamoto H, Hayashida N.**
1175 **2010.** Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in
1176 *Arabidopsis* and tobacco. *The Plant Journal* **63**: 1031–1041.
1177 <https://doi.org/10.1111/j.1365-313X.2010.04298.x>
- 1178 **Tajima F. 1989.** Statistical method for testing the neutral mutation hypothesis by DNA
1179 polymorphism. *Genetics* **123**: 585–595. <https://doi.org/10.1093/genetics/123.3.585>
- 1180 **Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, Schnable PS, Lyons E, Lu J.**
1181 **2015.** ALLMAPS: Robust scaffold ordering based on multiple maps. *Genome Biology* **16**: 3.
1182 <https://doi.org/10.1186/s13059-014-0573-1>
- 1183 **The UniProt Consortium. 2019.** UniProt: a worldwide hub of protein knowledge The
1184 UniProt Consortium. *Nucleic Acids Research* **47**: D506–D515.
1185 <https://doi.org/10.1093/nar/gky1049>
- 1186 **Tibbits JFG, McManus LJ, Spokevicius A V., Bossinger G. 2006.** A rapid method for tissue
1187 collection and high-throughput isolation of genomic DNA from mature trees. *Plant*
1188 *Molecular Biology Reporter* **24**: 81–91. <https://doi.org/10.1007/BF02914048>
- 1189 **Turner S. 2017.** qqman: Q-Q and Manhattan Plots for GWAS Data. R package version 0.1.4.
1190 <https://CRAN.R-project.org/package=qqman>.
- 1191 **Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam M, Ralph**
1192 **S, Rombauts S, Salamov A, et al. 2006.** The genome of black cottonwood, *Populus*
1193 *trichocarpa* (Torr. & Gray). *Science* **313**: 1596–1604.
1194 <https://doi.org/10.1126/science.1128691>
1195
- 1196 **Tuskan GA, DiFazio S, Faivre-Rampant P, Gaudet M, Harfouche A, Jorge V, Labbé JL,**
1197 **Ranjan P, Sabatti M, Slavov G, Street N, Tschaplinski TJ, Yin T. 2012.** The obscure
1198 events contributing to the evolution of an incipient sex chromosome in *Populus*: a
1199 retrospective working hypothesis. *Tree Genetics & Genomes* **8**, 559–571.
1200 <https://doi.org/10.1007/s11295-012-0495-6>
- 1201 **Tylewicz S, Tsuji H, Miskolczi P, Petterle A, Azeez A, Jonsson K, Shimamoto K,**
1202 **Bhalerao RP. 2015.** Dual role of tree florigen activation complex component FD in
1203 photoperiodic growth control and adaptive response pathways. *Proceedings of the National*
1204 *Academy of Sciences* **112**: 3140–3145. <https://doi.org/10.1073/pnas.1423440112>

- 1205
1206 **Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van de Peer Y, Coppens F, Vandepoele K.** 2018. PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. *Nucleic acids research* **46**: D1190–D1196.
1209 <https://doi.org/10.1093/nar/gkx1002>
- 1210 **Veeckman E, Ruttink T, Vandepoele K.** 2016. Are we there yet? Reliably estimating the completeness of plant genome sequences. *The Plant Cell* **28**: 1759–1768.
1212 <https://doi.org/10.1105/tpc.16.00349>
- 1213 **Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al.** 2014. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS ONE* **9**: e112963.
1216 <https://doi.org/10.1371/journal.pone.0112963>
- 1217 **Wang J, Ding J, Tan B, Robinson KM, Michelson IH, Johansson A, Nystedt B, Scofield DG, Nilsson O, Jansson S, et al.** 2018. A major locus controls local adaptation and adaptive life history variation in a perennial plant. *Genome Biology* **19**: 1–17.
1220 <https://doi.org/10.1186/s13059-018-1444-y>
- 1221 **Wang J, Street NR, Scofield DG, Ingvarsson PK.** 2016a. Natural selection and recombination rate variation shape nucleotide polymorphism across the genomes of three related *Populus* species. *Genetics* **202**: 1185–1200.
1224 <https://doi.org/10.1534/genetics.115.183152>
- 1225 **Wang J, Street NR, Scofield DG, Ingvarsson PK.** 2016b. Variation in linked selection and recombination drive genomic divergence during allopatric speciation of European and American aspens. *Molecular Biology and Evolution* **33**: 1754–1767.
1228 <https://doi.org/10.1093/molbev/msw051>
- 1229 **Wang F, Muto A, Van de Velde J, Neyt P, Himanen K, Vandepoele K, Van Lijsebettens M.** 2015. Functional Analysis of the *Arabidopsis* TETRASPAVIN Gene Family in Plant Growth and Development. *Plant Physiol.* **169**: 2200–2214. doi: 10.1104/pp.15.01310
- 1232 **Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, et al.** 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic acids research* **40**: e49. <https://doi.org/10.1093/nar/gkr1293>
- 1235 **Watari M, Kato M, Blanc-Mathieu R, Tsuge T, Ogata H, Aoyama T.** 2022. Functional Differentiation among the *Arabidopsis* Phosphatidylinositol 4-Phosphate 5-Kinase Genes PIP5K1, PIP5K2 and PIP5K3. *Plant Cell Physiol.* **63**: 635–648. doi: 10.1093/pcp/pcac025
- 1238 **Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, et al.** 2007. Database resources of the National Center for Biotechnology Information. *Nucleic acids research* **35**: D5–D12.
1241 <https://doi.org/10.1093/nar/gkl1031>
- 1242 **Weir BS, Cockerham CC.** 1984. Estimating F-statistics for the analysis of population structure. *Evolution* **38**: 1358–1370. <https://doi.org/10.1111/j.1558-5646.1984.tb05657.x>
- 1244 **Weisman CM, Murray AW, Eddy SR.** 2020. Many, but not all, lineage-specific genes can be

- 1245 explained by homology detection failure. *PLoS Biol.* **18**: e3000862.
1246 <https://doi.org/10.1371/journal.pbio.3000862>
- 1247 **Wickham H, François R, Henry L, Müller K. 2020.** dplyr: A Grammar of Data
1248 Manipulation. R package version 0.8.4. <https://CRAN.R-project.org/package=dplyr>.
- 1249 **Wright MN, Ziegler A. 2017.** ranger: A Fast Implementation of Random Forests for High
1250 Dimensional Data in C++ and R. *Journal of Statistical Software* **77**: 1–17.
1251 <https://doi.org/10.18637/jss.v077.i01>
- 1252 **Wu, H., Yao, D., Chen, Y., Yang, W., Zhao, W., Gao, H. and Tong, C. 2020.** De Novo
1253 Genome assembly of *Populus simonii* further supports that *Populus simonii* and *Populus*
1254 *trichocarpa* belong to different sections. *G3 Genes|Genomes|Genetics* **10**: 455–466.
1255 <https://doi.org/10.1534/g3.119.400913>
- 1256 **Xiao C, Guo H, Tang J, Li J, Yao X, Hu H. 2021.** Expression Pattern and Functional Analyses
1257 of Arabidopsis Guard Cell-Enriched GDSL Lipases. *Front Plant Sci.* **12**: 748543. doi:
1258 10.3389/fpls.2021.748543
- 1259 **Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow CD, Wen C, Zhang X, Weng Y. 2018.**
1260 LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with
1261 organ size variation in cucumber. *Plant J.* **95**: 834–847 doi: 10.1111/tpj.13991
- 1262 **Yang, W., Wang, K., Zhang, J., Ma, J., Liu, J. and Ma, T. 2017.** The draft genome sequence
1263 of a desert tree *Populus pruinosa*. *Gigascience* **6**: 1–7.
1264 <https://doi.org/10.1093/gigascience/gix075>
- 1265 **Yang Z. 2007.** PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Molecular Biology*
1266 *and Evolution* **24**: 1586–1591. <https://doi.org/10.1093/molbev/msm088>
- 1267 **Yates TB, Feng K, Zhang J, Singan V, Jawdy SS, Ranjan P, Abraham PE, Barry K, Lipzen
1268 A, Pan C, Schmutz J, Chen J-G, Tuskan GA, Muchero W. 2021.** The Ancient Salicoid
1269 Genome Duplication Event: A Platform for Reconstruction of De Novo Gene Evolution
1270 in *Populus trichocarpa*. *Genome Biology and Evolution* **13**: evab198.
1271 <https://doi.org/10.1093/gbe/evab198>
- 1272 **Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers
1273 RM, Brown M, Li W. 2008.** Model-based analysis of ChIP-Seq (MACS). *Genome biology* **9**: 1–
1274 9.
- 1275 **Zhang, M., Zhang, Y., Scheuring, C. et al. 2012.** Preparation of megabase-sized DNA from
1276 a variety of organisms using the nuclei method for advanced genomics research. *Nat.
1277 Protoc.* **7**: 467–478
- 1278
- 1279 **Zhang J, Yang Y, Zheng K, Xie M, Feng K, Jawdy SS, Gunter LE, Ranjan P, Singan VR,
1280 Engle N, et al. 2018.** Genome-wide association studies and expression-based quantitative
1281 trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation
1282 by defense-responsive transcription factors in *Populus*. *New Phytologist* **220**: 502–516.
1283 <https://doi.org/10.1111/nph.15297>
- 1284 **Zhang B, Zhu W, Diao S, Wu X, Lu J, Ding CJ, Su X. 2019.** The poplar pangenome provides

- 1285 insights into the evolutionary history of the genus. *Commun Biol* **2**: 215.
1286 <https://doi.org/10.1038/s42003-019-0474-7>
- 1287 **Zhang C, Dong SS, Xu J-Y, He W-M, Yang TL. 2019.** PopLDdecay: a fast and effective tool
1288 for linkage disequilibrium decay analysis based on variant call format files. *Bioinformatics*
1289 **35**: 1786–1788. <https://doi.org/10.1093/bioinformatics/bty875>
- 1290 **Zhang Z, Chen Y, Zhang J, Ma X, Li Y, Li M, Wang D, Kang M, Wu H, Yang Y, et al. 2020.**
1291 Improved genome assembly provides new insights into genome evolution in a desert
1292 poplar (*Populus euphratica*). *Molecular Ecology Resources* **20**: 781– 794.
1293 <https://doi.org/10.1111/1755-0998.13142>
- 1294 **Zheng Z, Guo Y, Novák O, Chen W, Ljung K, Noel JP, Chory J. 2016.** Local auxin
1295 metabolism regulates environment-induced hypocotyl elongation. *Nat Plants*. **21**: 16025.
1296 doi: 10.1038/nplants.2016.25
- 1297 **Zhong R, Allen JD, Xiao G, Xie Y. 2014.** Ensemble-Based Network Aggregation Improves
1298 the Accuracy of Gene Network Reconstruction. *PLoS ONE* **9**: e106319.
1299 <https://doi.org/10.1371/JOURNAL.PONE.0106319>
- 1300 **Zhou R, Jenkins JW, Zeng Y, Shu S, Jang H, Harding SA, Williams M, Plott C, Barry KW,
1301 Koriabine M, Amirebrahimi M, Talag J, Rajasekar S, Grimwood J, Schmitz RJ, Dawe
1302 RK, Schmutz J, Tsai C-J. 2023.** Haplotype-resolved genome assembly of *Populus tremula* ×
1303 *P. alba* reveals aspen-specific megabase satellite DNA. *Plant J.*
1304 <https://doi.org/10.1111/tpj.16454s>
- 1305 **Zhou X, Carbonetto P, Stephens M. 2013.** Polygenic Modeling with Bayesian Sparse
1306 Linear Mixed Models. *PLoS Genetics* **9**: 1003264.
1307 <https://doi.org/10.1371/journal.pgen.1003264>
- 1308 **Zhou X, Stephens M. 2012.** Genome-wide efficient mixed-model analysis for association
1309 studies. *Nature genetics* **44**: 821–4. <https://doi.org/10.1038/ng.2310>
- 1310
- 1311
- 1312

1313 **Table 1.** Summary statistics for *Populus tremula* genome assemblies v1.1 (Lin *et al.*, 2018)
1314 and v2.2. GC content statistics were calculated using the unmasked genome.
1315

Statistic	<i>P. tremula</i> v1.1	<i>P. tremula</i> v2.2
# contigs (>= 0 bp)	204318	1601
# contigs (>= 1000 bp)	31632	1584
# contigs (>= 5000 bp)	7267	1339
# contigs (>= 10000 bp)	5151	986
# contigs (>= 25000 bp)	3209	491
# contigs (>= 50000 bp)	1789	255
Total length (>= 0 bp)	386236512	408834716
Total length (>= 1000 bp)	328536064	408824553
Total length (>= 5000 bp)	277117215	407999588
Total length (>= 10000 bp)	262322877	405364617
Total length (>= 25000 bp)	231504505	397478443
Total length (>= 50000 bp)	180499961	389097052
# contigs	12044	1489
Largest contig	418873	53234430
Total length	294670244	408605800
GC (%)	33.56	33.87
N50	69979	16928776
N75	29987	13637973
L50	1227	9
L75	2826	15
# N's per 100 Kbp	5428.58	6573.91
Reads aligned (%)	97.77%	96.40%
Reads properly paired (%)	92.33%	94.19%

1316

1317

Table 2. Comparison of SNP-trait associations ranked by significance (by association *P*-value) in the genome wide association (GWAS) analysis of leaf physiognomy traits in the ScotAsp, SwAsp and UmAsp collections. For each association significant at *q*-value < 0.05, the rank of the SNP is shown in the OCR GWAS (GWAS using SNPs filtered to open chromatin regions) compared to the rank in the All-SNP GWAS (using SNPs filtered only by excess heterozygosity, Hardy-Weinberg Equilibrium *P*-value and minor allele frequency, see materials and methods for details).

Population	Trait	SNP	OCR GWAS rank	All-SNP GWAS rank
ScotAsp	Indent density	chr9_10684216_G_A	1	3
		chr9_10684306_T_A	2	4
		chr9_10684389_C_T	3	5
	Indent depth SD	chr9_10684114_T_G	1	2
		chr9_10684216_G_A	2	4
		chr9_10684306_T_A	3	5
	Indent width SD	chr9_10684216_G_A	1	15
		chr9_10684306_T_A	2	16
		chr9_10684389_C_T	3	19
		chr9_10646677_G_C	4	90
	Length 75% / Width	chr5_13736867_T_G	1	5
		chr5_13736875_A_C	2	7
SwAsp	Indent width SD	chr1_31893859_G_A	1	6
		chr1_31894106_A_T	2	7
UmAsp	Indent density	chr16_10033126_C_G	1	4
		chr16_10033093_C_T	2	10
		chr16_10033097_C_T	3	11
		chr16_10032951_G_T	4	15
	Squared Perimeter/ Area	chr11_432652_C_A	1	2

Table 3. Summary of significant (q -value < 0.05) association mapping statistics of leaf physiognomy traits in separate Genome-Wide Association Studies (GWAS), in each of the Swedish (SwAsp), Umeå (UmAsp) and Scottish (ScotAsp) aspen collections. Traits are described in detail in Appendix S2. ‘Gene’ = *Potra* v2.2 gene model associated with the genomic context of the significant SNP(s). ‘Gene Description’ and ‘TF’ respectively indicate the functional description of the gene and its transcription factor family (if applicable). ‘GWAS’ indicates the SNP background for the GWAS: ‘All’ = all filtered (minor allele frequency > 0.05) SNPs in the genome; ‘OCR’ = all SNPs subset to only those in open chromatin regions. ‘No. SNPs’ = number of significant SNP-phenotype associations at q -value < 0.05 . ‘PVE’ = maximum proportion of phenotypic variation explained by an individual SNP associated with the gene and trait. ‘ q -value’ = minimum association q -value for any SNP associated with the gene and trait. ‘Genomic context’ = position of the gene relative to genomic features; if intergenic the minimum distance (bp) is stated.

Gene	Gene description	TF	Trait	Collection	GWAS	No. SNPs	PVE	q -value	Genomic context(s)
Potra2n1c1388, Potra2n1c1389	Galactinol synthase 3; NA		Indent width SD	ScotAsp	All	1	0.232	0.049	intergenic Potra2n1c1388 (12517), Potra2n1c1389 (3271)
Potra2n1c1433	1-phosphatidylinositol- 3-phosphate 5-kinase FAB1B-like isoform X3	PHD	Indent width SD	ScotAsp	All	1	0.246	0.027	upstream
Potra2n1c2680	GDSL esterase/lipase		Indent width SD	SwAsp	OCR	2	0.223	0.032	UTR5
Potra2n3c7046	No exine formation 1		Length 75%	UmAsp	All	11	0.251	0.047	intron; exon (synonymous SNV, nonsynonymous SNV); upstream; UTR5; intergenic (297)
Potra2n3c7047	Auxin-responsive GH3 family protein		Length 75%	UmAsp	All	2	0.251	0.047	intergenic (4017)
Potra2n4c9542	Pescadillo homolog		Indent width SD	ScotAsp	All	1	0.238	0.037	upstream
Potra2n5c11907	Lgl_C domain- containing protein	WD40- like	Length 75% / Width	SwAsp	OCR	2	0.250	0.01	intron
Potra2n9c19972, Potra2n9c19973	Protein FANTASTIC FOUR 3, U-box domain-containing protein 56		Indent width SD						
Potra2n9c19974	U-box domain- containing protein 57		Indent width SD	ScotAsp	All	1	0.232	0.048	Intergenic Potra2n9c19974 (5722), Potra2n9c19975 (2725)

Potra2n9c19975	RNA 3'-terminal phosphate cyclase		Indent width SD	ScotAsp	All	1	0.250	0.023	UTR3; intergenic (2725)
Potra2n9c19979	Mitochondrial transcription termination factor-related		Indent width SD	ScotAsp	OCR	1	0.240	0.024	UTR3
Potra2n9c19981	Putative tetraspanin/Peripherin		Indent width SD	ScotAsp	All	9	0.031	0.241	downstream; UTR3
		Indent density	ScotAsp	OCR	3	0.260	0.013	UTR5	
		Indent depth SD	ScotAsp	OCR	3	0.252	0.024	UTR5	
		Indent width SD	ScotAsp	All	10	0.300	0.015	intron; upstream; UTR5; intergenic (8076)	
				OCR	4	0.278	0.004	UTR5	
Potra2n9c19982	SUMO-protein ligase SIZ1-like isoform X2	PHD	Indent width SD	ScotAsp	All	6	0.249	0.02	intron; upstream; intergenic (3221)
Potra2n9c19983	Transmembrane protein 209		Indent width SD	ScotAsp	All	80	0.300	0.015	UTR3; intergenic (11593)
Potra2n9c19984	AP2/ERF and B3 domain-containing protein	ARF	Indent width SD	ScotAsp	All	91	0.300	0.015	Exon (nonsynonymous SNV, stoploss); upstream; UTR3; intergenic (2032)
Potra2n9c19985	Uncharacterized LOC102615152 (LOC102615152), transcript variant X9, mRNA		Indent width SD	ScotAsp	All	2	0.281	0.015	downstream; upstream&downstream;
Potra2n9c19986	Serine/threonine-protein phosphatase 6 regulatory subunit		Indent width SD	ScotAsp	All	1	0.248	0.026	downstream
Potra2n10c20532, Potra2n10c20533	Cation efflux family protein; Sec23/Sec24 protein transport family protein		Indent width SD	ScotAsp	All	9	0.248	0.026	upstream; intergenic Potra2n10c20532 (2451), Potra2n10c20533 (2756)
Potra2n11c22413, Potra2n11c22414	Kinesin-like protein costa; Uridine kinase	Squared Perimeter/Area	UmAsp	OCR	1	0.118	0.021	intergenic Potra2n10c20532 (2875); intergenic Potra2n10c20533 (3890)	
Potra2n16c30252	Lectin_legB domain-containing protein	Indent density	UmAsp	OCR	4	0.110	0.046	upstream	
Potra2n17c30934	PATRONUS 1-like isoform X1	Circularity	ScotAsp	All	3	0.295	0.035	intron; exon (nonsynonymous SNV)	

Figure legends

Figure 1. Overview of the *P. tremula* v2.2 genome. **(A)** Comparison of a 47.1 Kbp region of *P. tremula* chromosome 1 showing the *P. tremula* v2.2 gene models and a liftover of the *P. tremula* v1.1 genome and transcripts, rendered in the JBrowse tool in PlantGenIE. The region in turquoise highlights an example of a longer scaffold in *P. tremula* v1.1 containing a gene. **(B)** Synteny and structural rearrangements between *P. tremula* and *P. trichocarpa*. **(C)** Venn diagram created using the Venn tool in PlantGenIE, showing the intersection of genes in *P. tremula*-specific regions and the *P. tremula*-specific genes identified from synteny analysis.

Figure 2. Overview of genome-wide association study using three aspen collections. **(A)** Map indicating the original sampling locations of the individual wild trees in the aspen collections from Scotland (ScotAsp), Sweden (SwAsp) and the Umeå municipality in Sweden (UmAsp) that were included the genetic analyses after removal of related samples. **(B)** Number of biallelic SNPs, filtered by Hardy-Weinberg Equilibrium *P*-value $> 1e^{-6}$ and missingness $< 5\%$, in the ScotAsp, SwAsp and UmAsp collections. Coloured bars on the left indicate total number of SNPs in each collection, linked points indicate membership of intersections among collection, with numbers in intersections shown in the vertical bars above. Single points indicate sets of SNPs exclusive to one population. **(C)** Principal components plot of the first two principal components (PCs) of pruned, unrelated SNPs ($LD^2 < 0.2$) to show population structure in the ScotAsp, SwAsp and UmAsp collections. Proportion of variance explained by each PC is indicated in parentheses. **(D)** Rates of linkage disequilibrium decay in the ScotAsp, SwAsp and UmAsp collections.

Figure 3. Overview of leaf physiognomy metrics. **(A)** Example processed leaf image from LAMINA software, with annotations indicating the Indent width, Indent depth, the Length and Width axes, and length and width at 25% (L25, W25) and 75% (L75 and L25) along each perpendicular axis. **(B)** Heatmap of genetic correlations of measured leaf physiognomy traits in the Umeå aspen (UmAsp) collection. Composite traits are excluded to reduce redundancy.

Scale bar indicates genetic correlation r_G values. Coloured bars indicate category of either 'Size' (leaf shape metrics) or 'Shape/Indent' (size and indent metrics). Hierarchical clustering between the clusters uses the complete linkage method. **(C)** Marker-based heritability, h^2 , of 26 shape and size/indent leaf physiognomy metrics in the UmAsp collection. All trait metrics are described in Appendix S1. **(D)** Principal components loadings plot indicating the loading scores of size and shape metrics indicated in Appendix S2 and the associated Principal Components Analysis (PCA) plot **(E)** for 26 leaf physiognomy metrics in Scottish (ScotAsp), Swedish (SwAsp) and UmAsp (UmAsp) collections. Proportion of variance explained by each component is in parenthesis. In all cases, means are omitted for Indent length and Indent width to avoid redundancy, since medians are included for these traits.

Figure 4. Comparison of the percentage of SNPs located in different genomic contexts in two GWAS backgrounds in the SwAsp collection. GWAS was first conducted using "All SNPs" (all the genome-wide SNPs filtered on SNP quality including Excess Heterozygosity, Hardy Weinberg P -value, and minor allele frequency > 0.05) (left panel). The set of 6,806,717 "All SNPs" was filtered to those only those 185,616 SNPs in open chromatin regions ("SNPs in OCRs", right panel). The percentage of SNPs in each genomic context category was calculated from the total number in the set used for the GWAS. Genomic contexts were assigned using ANNOVAR with flanking regions defined as 2000 bp.

Figure 5. Genome-wide Single Nucleotide Polymorphism (SNP) associations for leaf shape in the Scottish Aspen collection (ScotAsp) and exploration of results in PlantGenIE. **(A)** Manhattan plot distribution of SNP associations for leaf indent width standard deviation (SD) in ScotAsp, where the red line indicates significance at q -value < 0.05 and the blue line is 'suggestive significance' at q -value < 0.1 . Significant SNPs/groups of SNPs are annotated with the name of the associated Potra v2.2 gene; full details in Table 3. **(B)** A peak in the Manhattan plot indicates significant Single Nucleotide Polymorphisms from the Genome-Wide Association Study for leaf indent width SD on chromosome 10 comprises nine associated SNPs significant at q -value < 0.05 , eight of which are located in an intergenic region between Potra2n10c20532 and Potra2n10c20533, and one located upstream of

Potra2n10c20533, annotated as a Sec23/Sec24 transport family protein. The genes co-expressed with Potra2n10c20533 were examined in the exNet tool using the "Expand network" button to visualise first degree neighbours selected at P -value threshold 10^{-1} with genes shown as circles, transcription factors shown as triangles, and lincRNAs shown as yellow diamonds. **(C)** The resulting list of co-expressed 205 genes was tested using the Enrichment Tool to perform a gene ontology (GO) over-enrichment test and visualised using REVIGO. Circles representing the GO categories are scaled to the size of the term in the gene ontology database and coloured by enrichment $-\log_{10}(P\text{-value})$. **(D)** Co-expressed genes of Potra2n10c20533 were examined using the exImage tool, where it is possible to view the expression of the gene in the AspLeaf dataset of gene expression in terminal leaves; the example here is a lincRNA, TRINITY_DN12299_c0_g1_i2, with contrasting relative expression across the leaf development series. Shading of the exImage dataset is scaled as the relative mean difference between the greatest and least expression values. **(E)** Example of the use of JBrowse showing the region of chromosome 10 including Potra2n10c20532 and Potra2n10c20533, with tracks showing the co-location of significant GWAS results (q -value <0.05) for leaf indent width SD in ScotAsp, one *cis*-eQTL in Potra2n10c20533, ten *trans*-eQTL in the intergenic regions acting on ten individual genes, and an open chromatin region. **(F)** Use of the Enrichment tool showing Pfam enrichments for the set of ten genes acted on by *trans*-eQTL shown in (E).

Figure 6. Overview of data accessibility for the genome and population genetics resource. The datasets that we present are grouped into three main sections: the Genome, Gene family analyses and population genetics, and Phenotype data. Boxes with each data set presented here are linked by arrows showing related data types and coloured by source of data accessibility: PlantGenIE.org = as a browsable tool / flat file available in at PlantGenIE.org; ENA = file available at the European Nucleotide Archive; FigShare = files available for download from FigShare at the SciLife Data Repository; Supplementary file = supplementary files available with this article at the publisher's website. Samples from which the data files are derived are: SwAsp, the Swedish Aspen collection; UmAsp, the Umeå aspen collection; ScotAsp, the Scottish Aspen collection; Genome, the original tree that was

sequenced for the genome assembly; LeafDev, the gene expression data set from developing aspen leaves described in Mähler *et al.* (2020).

Supporting information files

Appendix S1. References to Table S2 of the plant genomes included in the gene family analysis.

Appendix S2. An overview of the metrics measured along the proximodistal and centrolateral leaf axis by default in the LAMINA software. Additional leaf physiognomy measurements to LAMINA defaults. All leaf metrics in the LAMINA analyses, phenotype data, trait names, types, and inclusion Genome-Wide Association study. Narrow-sense or ‘chip’-heritability estimates for leaf size and shape traits measured in the Umeå Aspen (UmAsp) collection.

Supplementary table S1. Plant genomes included in the gene family analysis.

Supplementary table S2. Details of samples from the UmAsp collection for DNA-Seq analysis and details of SwAsp and ScotAsp samples.

Supplementary table S3. Benchmarking Universal Single-Copy Orthologue (BUSCO) genome statistics and core Gene Family (coreGF) transcript statistics for *Populus tremula* assemblies v1.1 (Lin *et al.*, 2018) and v2.2.

Supplementary table S4. Genomic regions (I), genes within those regions (II) and GO enrichment results (III) of *P. tremula* specific genes identified from synteny analysis.

Supplementary table S5. Structural rearrangements.

Supplementary table S6. Genes (I) GO enrichment (II) of *P. tremula* genes with Ka/Ks>1.

Supplementary table S7. Species- and clade-specific gene families.

Supplementary table 8. Genes (I) and GO enrichment results (II) of *P. tremula* specific genes identified from gene family analysis.

Supplementary table S9. Genes (I) and GO enrichment results (II) of *P. tremula* expanded gene families.

Supplementary table S10. Novel lincRNAs in aspen leaves.

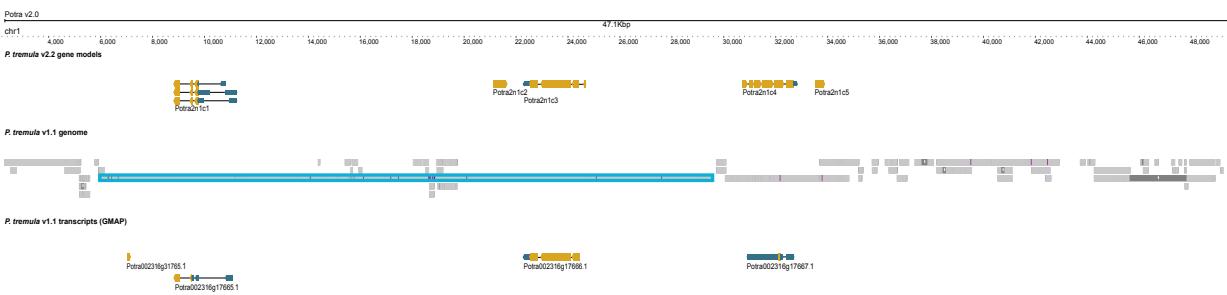
Supplementary table S11. Climate data for the SwAcp, UmAcp and ScotAcp.

Supplementary table S12. Genomic regions under selection in SwAcp and UmAcp (I), genes within those regions (II) and GO (III) and Pfam (IV) enrichment of those genes.

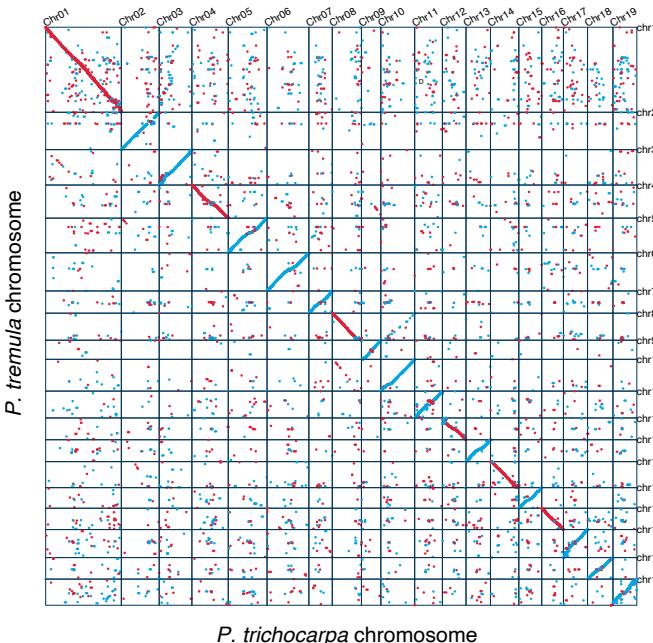
Supplementary table S13. Significant genome-wide association results, comparison of ranks in the All-SNP GWAS for SNPs significant in the OCR GWAS, and details of linkage disequilibrium in the region of chromosome 9 in the All-SNP indent width SD GWAS in ScotAcp. SNPs and genes in linkage disequilibrium in this region.

Supplementary table S14. Significant eQTL at FDR < 0.05.

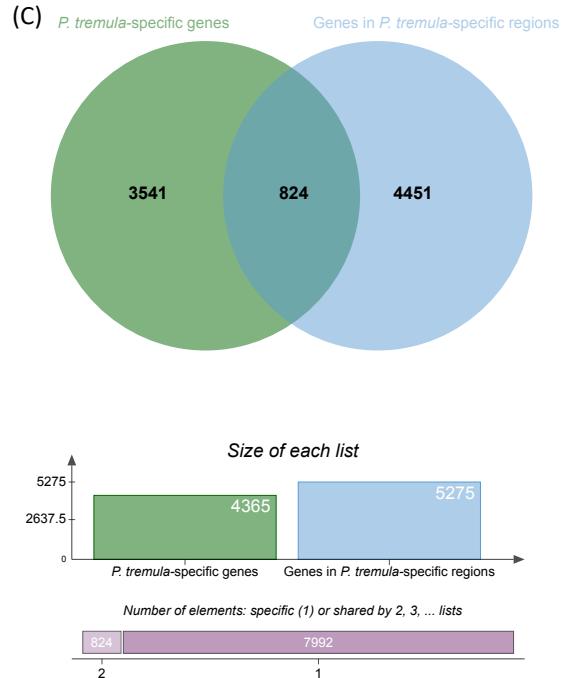
Supplementary table S15. Lists of the top-ranked genes from the All-SNP GWAS.

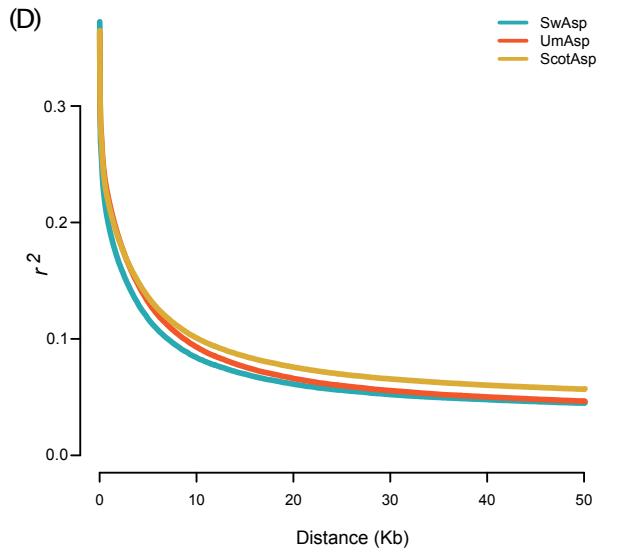
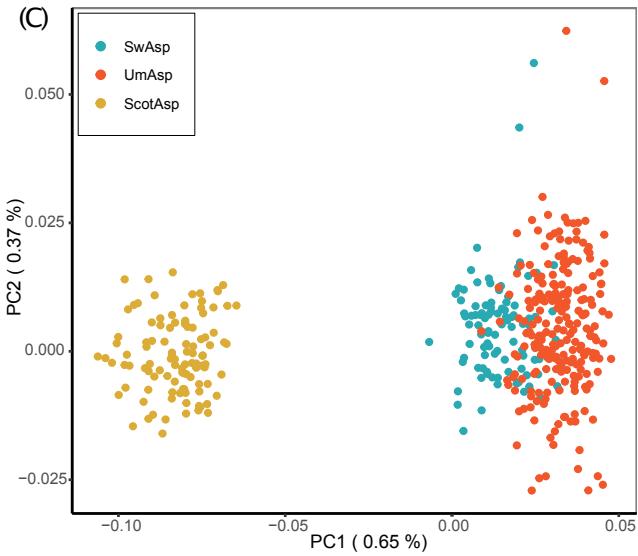
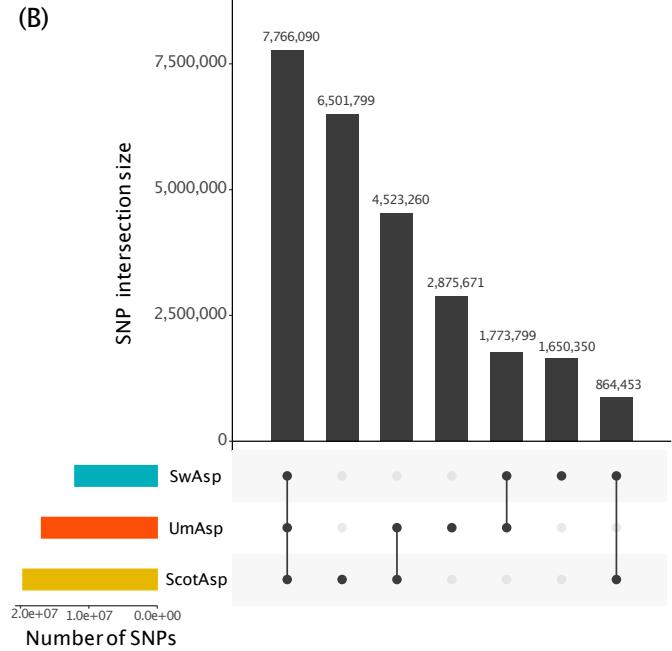
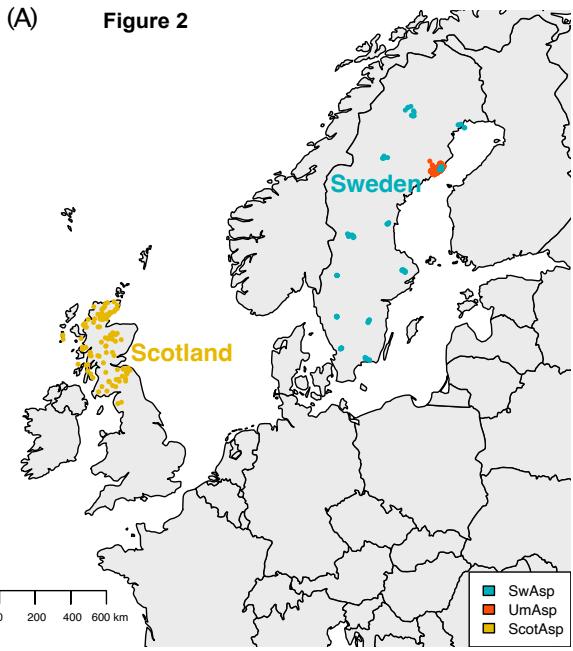

Supplementary figure S1. Ks distribution of *P. tremula* and *P. trichocarpa*.

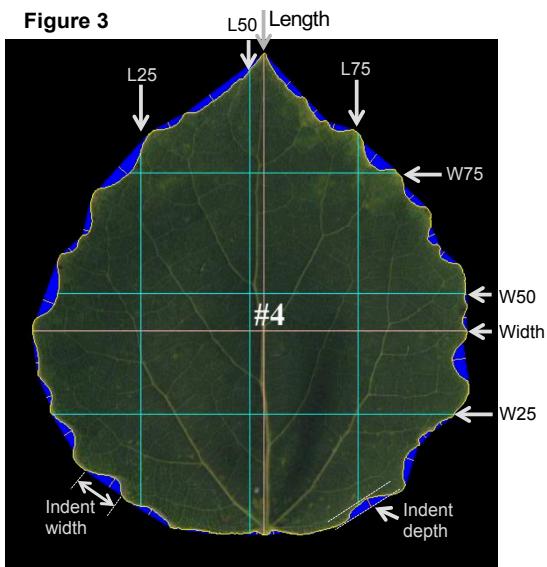
Supplementary figure S2. Phylogenetic tree used to infer the analyse expansion and contraction of gene families.

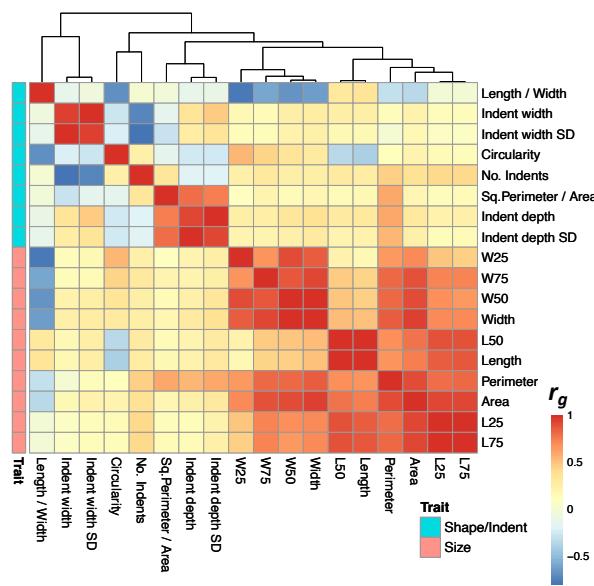

Supplementary figure S4. JBrowse view for a 246 Kbp region of chromosome 9 with tracks displayed including Potra v2.2 gene models, Manhattan view of significant SNPs in the GWAS in All-SNP and OCR GWAS, *P. tremula*-specific regions, SNPs under balancing selection, and eQTL associations.

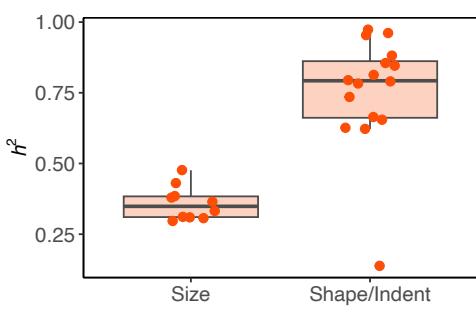
(A)


Figure 1

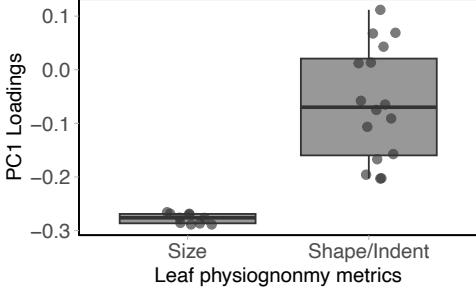





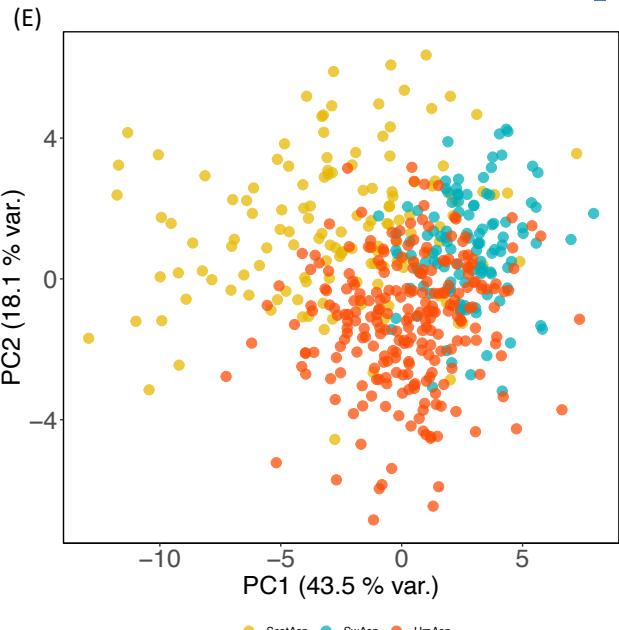

(B)


(C)



(A) **Figure 3**


(B)


(C)

(D)

(E)

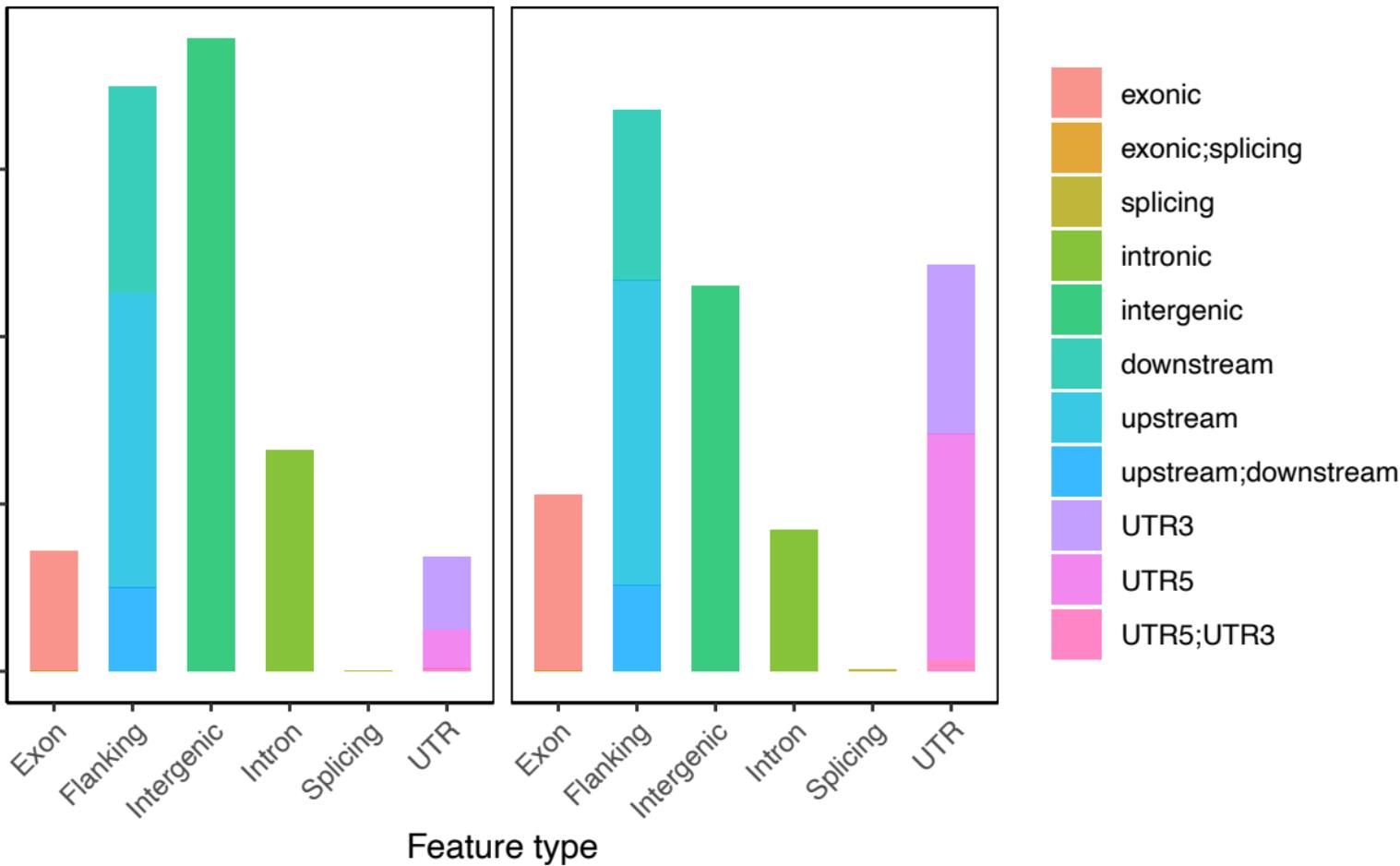
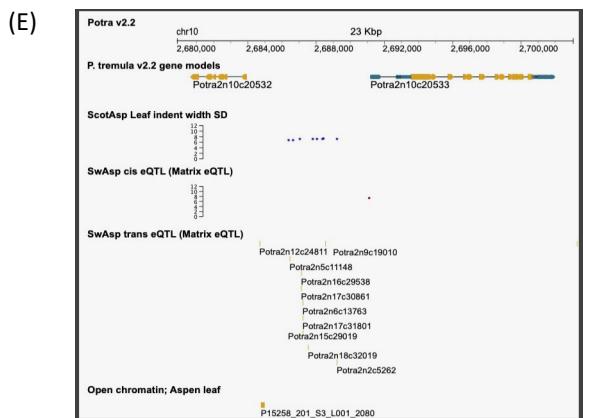
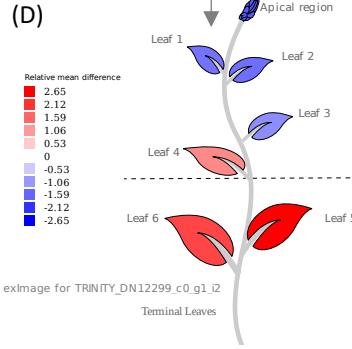
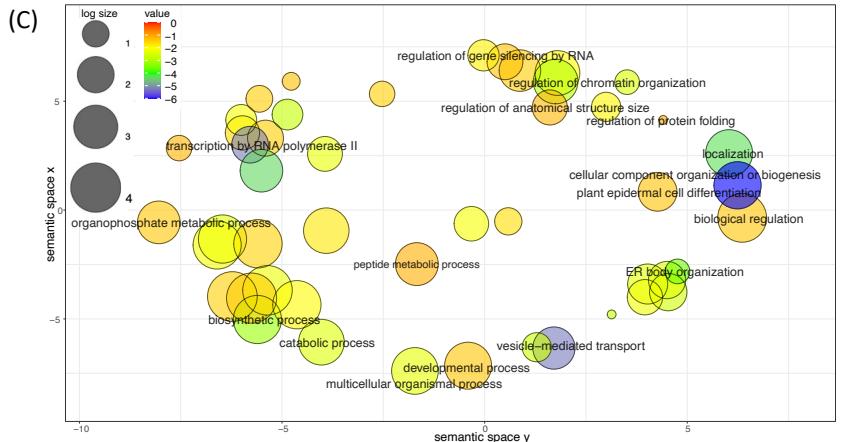
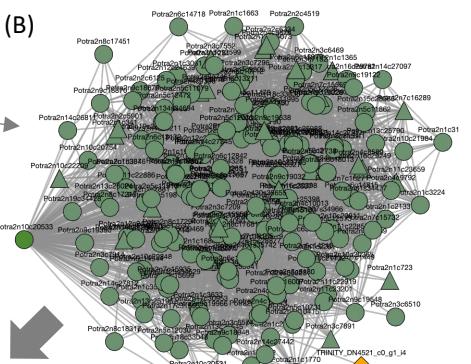
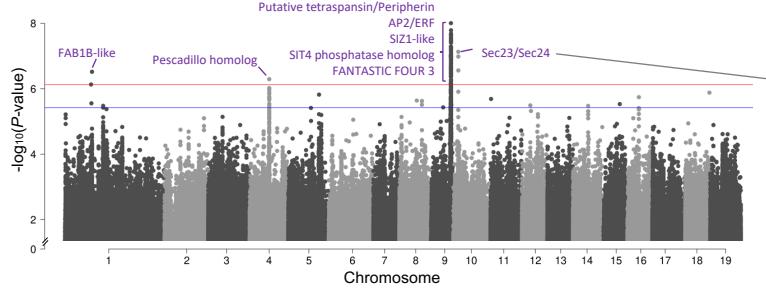
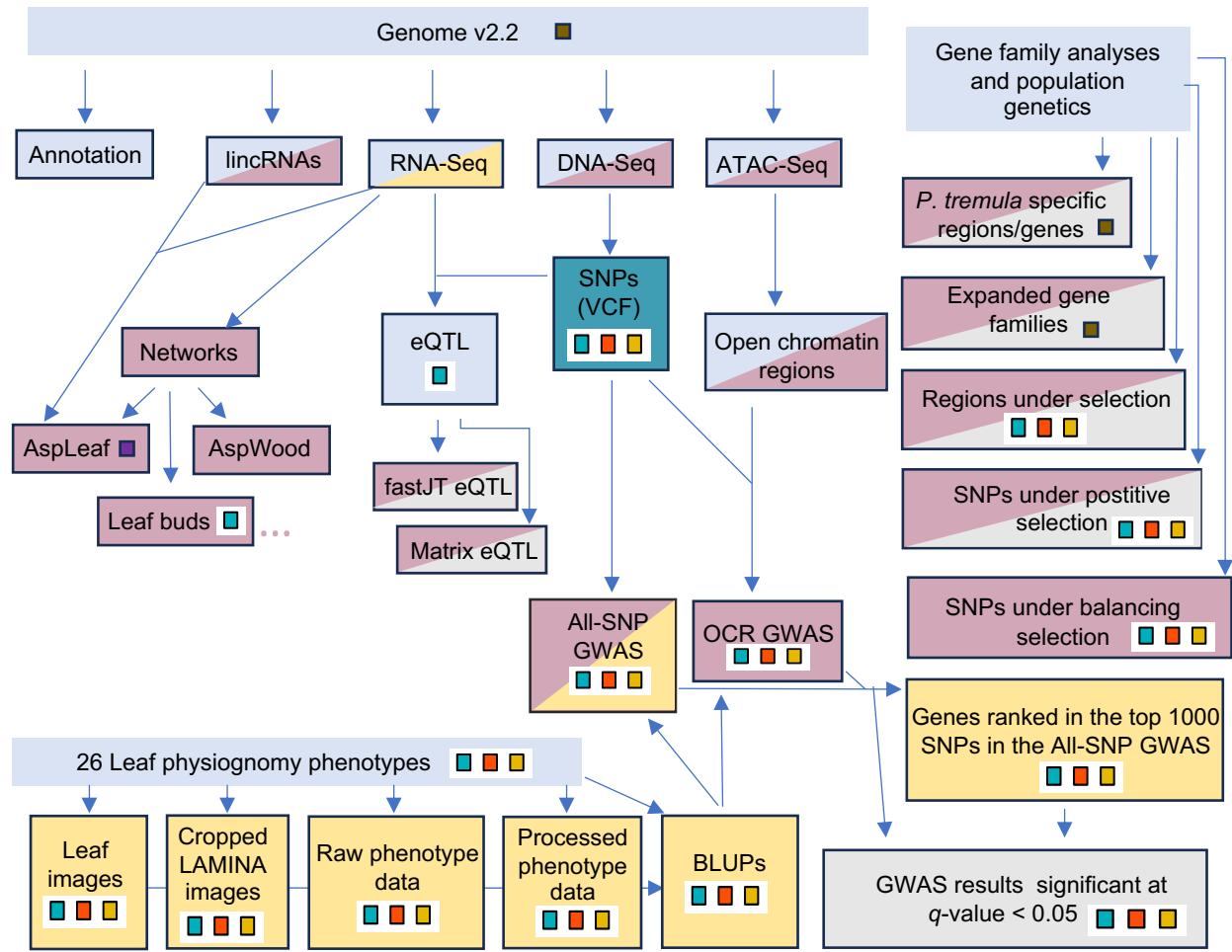

ScotAsp SwAsp UmAsp

Figure 4






All SNPs

SNPs in OCRs

Percentage of SNPs



(A) **Figure 5**

(F)	ID	Description	Statistics	P-value	q-value
PF00029	SCP-2 sterol transfer family	2/25277 1/5	0.0003950	0.002769	
PF00030	SCP-2 sterol transfer family	2/23990 1/5	0.0004168	0.002918	
PF00679	Protein of unknown function (DUF679)	9/25277 1/5	0.001779	0.006227	
PF00679	Protein of unknown function (DUF679)	9/23990 1/5	0.001875	0.006561	
PF01504	Phosphatidylinositol-4-phosphate 5-Kinase	18/25277 1/5	0.003556	0.007258	
PF01504	Phosphatidylinositol-4-phosphate 5-Kinase	18/23990 1/5	0.003746	0.007283	
PF02493	MORN repeat	21/25277 1/5	0.004147	0.007258	
PF02493	MORN repeat	20/23990 1/5	0.004162	0.007283	
PF01486	K-box region	46/25277 1/5	0.009067	0.01269	
PF01486	K-box region	45/23990 1/5	0.009345	0.01308	
PF00170	bZIP transcription factor	71/25277 1/5	0.01397	0.01629	
PF00170	bZIP transcription factor	68/23990 1/5	0.01409	0.01616	
PF00310	SRF-type transcription factor (DNA-binding and dimerisation domain)	78/23990 1/5	0.01615	0.01615	
PF00310	SRF-type transcription factor (DNA-binding and dimerisation domain)	86/25277 1/5	0.01690	0.01690	

Figure 6

Data availability

PlantGenIE.org

European Variation Archive (EVA)

FigShare

Supplementary files

Samples

- SwAsp
- UmAsp
- ScotAsp

- Genome
- LeafDev