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Abstract

Aspen (Populus tremula L.) is a widely distributed keystone species and a model system for
forest tree genomics, with extensive resources developed for population genetics and
genomics. Here we present an updated resource comprising a chromosome-scale assembly
of P. tremula and population genetics and genomics data integrated into the PlantGenlE.org
web resource. We demonstrate use of the diverse data types included to explore the genetic
basis of natural variation in leaf size and shape as examples of traits with complex genetic

architecture.

We present a chromosome-scale genome assembly generated using long-read sequencing,
optical and high-density genetic maps containing 39,894 annotated genes with functional
annotations for 73,765 transcripts from 37,184 gene loci. We conducted whole-genome
resequencing of the Umea Aspen (UmAsp) collection comprising 227 aspen individuals. We
utilised the assembly, the UmAsp re-sequencing data and existing whole genome re-
sequencing data from the Swedish Aspen (SwAsp) and Scottish Aspen (ScotAsp) collections
to perform genome-wide association analyses (GWAS) using Single Nucleotide
Polymorphisms (SNPs) for leaf physiognomy phenotypes. We conducted Assay of
Transposase Accessible Chromatin sequencing (ATAC-Seq) and identified genomic regions
of accessible chromatin and subset SNPs to these regions, which improved the GWAS
detection rate. We identified candidate long non-coding RNAs in leaf samples and quantified
their expression in an updated co-expression network (AspLeaf, available in
PlantGenlE.org), which we further used to explore the functions of candidate genes

identified from the GWAS.
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75 We examined synteny to the reference P. trichocarpa assembly and identified P. tremula-
76  specific regions. Analysis of whole-genome duplication indicated differential substitution
77  rates for the two Populus species, indicating more rapid evolution in P. tremula. A GWAS of
78 26 leaf physiognomy traits and all SNPs in each of the three aspen collections found
79  significant associations for only two traits in ScotAsp collection and one in UmAsp, whereas
80  subsetting SNPs to those in open chromatin regions revealed associations for a further four
81 traits among all three aspen collections. The significant SNPs were associated with genes
82  annotated for developmental and growth functions, which represent candidates for further
83  study. Of particular interest was a 177-kbp region of chromosome 9 harbouring SNPs
84  associated with multiple leaf phenotypes in ScotAsp, with the set of SNPs in linkage
85  disequilibrium explaining 24 to 30 % of the phenotypic variation in leaf indent depth
86  variation.

87

88  We have incorporated the assembly, population genetics, genomics and leaf physiognomy
89  GWAS data into the PlantGenlE.org web resource, including updating existing genomics data
90  to the new genome version. This enables easy exploration and visualisation of the genomics
91 data and exploration of GWAS results. We provide all raw and processed data used for the

92  presented analyses to facilitate reuse in future studies.

93

94 Introduction

95 The Populus genus encompasses around thirty broad-leaved, fast-growing tree species that
96 occur naturally across most of the Northern hemisphere. Populus species are used
97  extensively in short-rotation forestry and landscaping worldwide and are pioneer, keystone
98 species. The black cottonwood, P. trichocarpa, was the first tree genome to be sequenced
99  (Tuskan et al, 2006) after which the genomes of several other poplars, aspens and
100  cottonwoods have been published (Yang et al, 2017; Lin et al., 2018; Ma et al., 2019; An et
101  al., 2020; Wu et al., 2020; Zhang et al, 2020; Bai et al., 2021; Chen et al, 2023a; Bae et al,
102 2023, Zhou et al.,, 2023, Shi et al., 2024), firmly establishing Populus as a model system for
103 foresttree research with a mature genomics resource (Jansson & Douglas, 2007). The aspens

104  (section Populus) include P. tremula and P. alba, which have ranges spanning northern
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105 Eurasia, P. tremuloides and P. grandidenta, native to North America, and P. adenopoda, P.
106  giongdaoensis and P. davidiana, distributed in northern and eastern Asia (Slavov & Zhelev,
107  2010; Hou et al, 2018). They are recognised by their capacity for clonal regeneration,
108 particularly after environmental perturbation such as fire or intense browsing (Myking et
109  al, 2011). Other distinguishing features of aspens are their characteristic leaf tremble, and
110  abundant variation in spring and autumn leaf colouration.

111

112  The availability of a reference genome can be transformative in enabling research of a
113  species, opening possibilities for a range of functional genomics, population genetics and
114  comparative genomics studies. We previously described a reference genome for P. tremula
115 (Lin et al, 2018) produced using short-read, second generation sequencing technologies.
116 = While this genome assembly provided high quality and comprehensive representation of the
117  gene space, it was highly fragmented and lacked long-range contiguity. Such fragmentation
118 is a common limitation of using short read sequencing technologies to assemble highly
119  heterozygous, repeat-rich or polyploid genomes (Jiao & Schneeberger, 2017). These
120 limitations can be alleviated or overcome, depending on the scale of the challenge, by use of
121  third generation sequencing technologies such as those commercialised by Pacific
122  Bioscience or Oxford Nanopore Technologies, which produce vastly longer individual
123  sequence reads (Jiao & Schneeberger, 2017). These long reads simplify assembly, with
124  individual sequencing reads often being sufficiently long to span a repeat element or a
125 heterozygous region, although such haplotype resolved assembly ability also introduces its
126  own set of challenges (Amarasinghe et al, 2020; Michael & VanBuren, 2020). These
127  technologies can be combined with newly developed or improved methods for scaffolding,
128  such as Hi-C or optical mapping, to further improve long-range assembly contiguity (Ghurye
129 & Pop, 2019; Ghurye et al, 2019; Pan et al, 2019). The vastly improved contiguity achieved
130 also facilitates use of genetic maps to anchor and orient assembled scaffolds to produce
131 chromosome scale assemblies. Improved contiguity is essential for synteny and other
132  comparative genome-based analyses and highly contiguous and accurate assemblies provide
133 a more reliable resource for performing gene family and orthology analyses and for
134  designing guide sequencing to perform genome editing using approaches such as CRISPR-

135 Cas.
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136

137  We previously reported the evolutionary divergence of P. trichocarpa from the aspens,
138 showing how natural variation has shaped genetic relationships among the
139  European/Eurasian (P. tremula) and American (P. tremuloides and P. grandidentata) aspens
140 (Wang et al., 2016a; Wang et al, 2016b; Lin et al., 2018; Apuli et al., 2020). An important
141  resource for such work is the Swedish Aspen (SwAsp) collection, which exhibits considerable
142  heritable variation in numerous phenotypes including phenology, leaf shape, specialised
143  metabolite composition and ecological interactions (Luquez et al, 2008; Robinson et al.,
144 2012; Bernhardsson et al., 2013; Wang et al., 2018; Mahler et al, 2020) in addition to gene
145  expression (Mahler et al. 2017). While we previously reported GWAS resulting in the
146  discovery of a major locus for an adaptive phenological trait (Wang et al., 2018), most of the
147  phenotypes considered to date have not yielded significant SNP-phenotype associations
148  (Grimberg et al. 2018; Mahler et al, 2020), likely indicative of complex and highly polygenic
149  geneticarchitecture (e.g., Mahler et al.,, 2020). However, other factors such as the fragmented
150 nature of the v1.1 genome assembly (Lin et al, 2018), rare or non-SNP variants and a
151 relatively small population size are also likely to contribute to the limited ability to detect
152  significant associations (Street & Ingvarsson, 2011).

153

154  Here we present a chromosome-scale genome assembly for P. tremula, which we refer to as
155  P. tremula v2.2, generated using long-read sequences and optical and genetic maps. We
156 demonstrate utility of this improved genome assembly by performing SNP calling and GWAS
157  for selected leaf physiognomy traits with complex genetic architecture in three collections
158  ofwild aspen trees grown in common gardens, including the Umea Aspen (UmAsp) collection
159 for which we here present whole-genome resequencing data. To facilitate community access
160 and utilisation of the various datasets available for P. tremula we have integrated them into
161  the PlantGenlE.org web resource (Sundell et al, 2015) in addition to making all raw and
162  processed data available at public repositories. We provide examples of how these genetics
163 and genomics datasets can be used to explore or develop hypotheses and how the tools
164  available at PlantGenlE.org can be used to gain additional biological insight for identified

165 candidate genes.
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166
167 Materials and Methods

168 We extracted DNA from the individual used to generate the v1.1 assembly presented in Lin
169 et al (2018). For genome assembly and correction, we generated two libraries: “PacBio
170  data”: 28,874,072,954 bases (filtered subreads, ~60x coverage), Pacific Biosciences on the
171  RSII platform (sequencing performed by Science for Life Laboratory, Uppsala, Sweden); and
172 “Illumina data”: 108,353,739,802 bases (226x coverage), lllumina HiSeq2500. We also
173  utilised five existing RNA-Seq datasets to support gene annotation. We purified nuclei and
174  produced an ATAC-library. We used five RNA-Seq datasets from P. tremula as supporting
175 evidence for gene annotation. We called ATAC-Seq peaks using MACS2 v2.2.7.1 (Zhang et al,,
176 2008).

177

178 To flag sequences originating from the chloroplast, we matched all unplaced scaffolds to
179  published chloroplast sequences (Kersten et al, 2016), using blast+.

180 We created a custom de novo repeat library using RepeatModeler v1.0.11 and subsequently
181 masked the genome using RepeatMasker4.0.8. (http://www.repeatmasker.org). We used
182  Trinity assemblies from all RNA-Seq datasets in conjunction with all annotated transcripts
183  from the v1 assembly as evidence for gene annotation. We provided proteins from the v1 P.
184  tremula assembly and the v3.0 assembly of P. trichocarpa (Tuskan et al., 2006) as protein
185 evidence. We performed the lift-over alignments of v1.1 scaffolds to the v2.2 assembly using
186  minimap 2 (v2.2.2, Li, 2018). We aligned the PacBio data to both the v1.1 and v2.2 assemblies
187 using pbmm2 (v1.1.0), which uses minimap2 internally. We then performed variant

188  detection using pbsv (v2.2.2, https://github.com/PacificBiosciences/pbsv). We aligned the

189 transcripts and protein-coding sequences retrieved from MAKER to the NCBI nt (Wheeler et
190 al,2007) and UniRef90 (The UniProt Consortium, 2019) databases. For transcripts, we used
191  Blast+ version 2.6.0+ (Altschul et al, 1990) with the non-default parameters: -e-value 1e>.
192  For proteins, we used Diamond version 0.9.26 (Buchfink et al, 2014). We identified and
193  extracted the sequences aligning solely to the NCBI nt database to complement the UniRef90
194  alignments using an ad-hoc script (available upon request). We then imported the resulting

195 alignment files into Blast2GO (Gotz et al, 2008) version 5.2. Finally, we used Blast2GO to
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196  generate Gene Ontology (both GO and GO-Slim), Pfam (El-Gebali et al, 2018) and KEGG
197 (Kanehisa & Goto, 2000) annotations.

198

199 To calculate summary statistics of the assembly, we used QUAST v5.0.2 (Gurevich et al,
200 2013), aligning a 20X coverage subset (generated by truncating the library to a total count
201  of 8 * 10e? nucleotides) of the aspen V1 2x150 PE library data (ENA: PRJEB23581) to
202  calculate mapping percentages. We ran BUSCO v3.0.2 for both the genomic and transcript
203  sequences.

204

205 To identify homologous chromosomes between P. tremula and P. trichocarpa genomes, we
206  used minimap2 (Li, 2018). We performed an all-versus-all BLASTP using protein sequences
207  of P. tremula and P. trichocarpa to identify homologous gene pairs between the two species.
208 We used MCscanX (Wang et al, 2012) to identify syntenic gene blocks. We aligned the
209 protein sequences for duplicate gene pairs in syntenic blocks using MAFFT (Katoh &
210  Standley, 2013). We used the PAML package (Yang, 2007) to estimate the Ks and Ka/Ks
211  for each gene pair.

212

213  We used 32 plant genomes, (Supplementary table S1, Appendix S1) to perform gene family
214 analysis. We used Orthofinder v2.2.7 (Emms & Kelly, 2015) to cluster the genes into gene
215  families. Gene family trees were constructed using the PLAZA pipeline (Van Bel et al., 2018),
216  for multiple sequence alignment and tree inference. We used muscle as the multiple
217  sequence alignment method and fasttree as the tree construction method. The species tree

218 was inferred using STAG (https://github.com/davidemms/STAG). To estimate the

219  divergence time, we first calibrated the species tree based on the divergence dates

220  from Timetree (http://www.timetree.org/) and inferred the divergence time on each

221  clade using r8s (Sanderson, 2003). We inferred the expansion and contraction of the gene
222  families using CAFE (De Bie et al., 2006) and the species tree.

223

224  We reprocessed the RNA-Seq data in developing terminal leaves of aspen from Mahler et al.
225 (2020), using the v2.2 genome assembly with salmon/1.0.0 (Patro et al., 2017). We mapped
226  expression quantitative trait loci (eQTL) using two different methods: (1) following the
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227  method and settings used in Mahler et al. (2020) using Matrix eQTL (Shabalin, 2012), and
228  (2) using fast]T (Lin et al, 2019) which has no underlying assumption of the phenotypic
229  distribution. For both methods, the eQTL were considered significant at FDR < 0.05.

230

231  Weimplemented a pipeline to identify putative long intergenic non-coding RNAs (lincRNAs)
232  on the pre-processed RNA-Seq data. We first in silico-normalised the reads to reduce data
233  redundancy and then reconstructed the transcriptome using a de novo assembler, Trinity (v.
234  2.8.3; Grabherr et al, 2011; Haas et al, 2013), on which other programs were run. We
235 retained only transcripts being expressed in the dataset, that were identified as having no
236  coding potential by PLEK (predictor of long non-coding RNAs and messenger RNAs based on
237  an improved k-mer scheme; v. 1.2; settings -minlength 200; A. Li et al., 2014), CNCI (Coding-
238 Non-Coding Index; v. 2; Sun et al., 2013), and CPC2 (Coding Potential Calculator version 2; v.
239 2.0 beta; settings -r TRUE; Kang et al, 2017) and being longer than 200 nt. We kept only
240 transcripts identified as having no coding potential by TransDecoder (version 2.8.3;
241  https://github.com/TransDecoder/TransDecoder/wiki; Haas et al., 2013), and at a distance
242 > 1000 nt from any annotated gene using BEDTools closest (v. 2.30.0;
243  https://bedtools.readthedocs.io/en/latest/content/tools/closest.html; Quinlan & Hall,
244 2010). The DESeq2 package (v. 1.42.0; Love et al., 2014) was used for differential expression
245  analysis with the formula based on consecutive leaf developmental series, both for genes and
246  lincRNAs. Then, lincRNAs and gene expression data were transformed to homoscedastic,
247  asymptotical logz counts using the variance stabilising transformation as implemented in
248 DESeq2 (setting blind=FALSE). We retained all the genes and lincRNAs being different from
249 na in the dds results and used their values from the ‘aware’ variance stabilising
250 transformation as an input for the co-expression network. Thereafter, ten network inference
251 methods were run using the Seidr toolkit (Schiffthaler et al., 2023). The networks were
252  aggregated using the inverse rank product method (Zhong et al, 2014) and edges were
253 filtered according to the noise-corrected backbone (Coscia & Neffke, 2017). We selected
254  backbone8 to be used for further analyses.

255

256 We measured phenotypic traits in three aspen (P. tremula) collections, two of which

257  originate from Sweden and one from Scotland. The Swedish Aspen (SwAsp) collection of 113
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258 individuals, collected across ten degrees of latitude and longitude (Luquez et al, 2008), is
259  replicated in two common gardens in Sweden, one in the north (Savar, ~64 °N) and one in
260  the south (Ekebo, ~56 °N). The Umea Aspen (UmAsp) collection comprises 242 individuals
261  originating from the Umed municipality in northern Sweden (Fracheboud et al, 2009;
262  Robinson et al, 2014) growing in a common garden at Savar (~64 °N). The Scottish Aspen
263  (ScotAsp) collection of 138 trees originating from across Scotland, was cloned and grown in
264  plots of five trees per clone, in a common garden at Forest Research, Roslin, UK (~56 °N)
265 Harrison (2009).

266

267  Details of the SwAsp and ScotAsp DNA sequencing and SNP calling have been described
268  previously (Rendén-Anaya et al., 2021, Supplementary table S2). Samples sequenced from
269  the previously generated data set comprising 94 genotypes from the SwAsp collection (Wang
270 et al, 2018) have been complemented with a further five genotypes re-sequenced for P.
271  tremula v2.2. We called SNPs and generated VCF files independently for SwAsp, UmAsp and
272 ScotAsp (with 99,227 and 105 unrelated individuals, respectively), containing biallelic, high
273  quality sites along the 19 chromosomes. We also created a VCF for each collection containing
274  asubsetof all SNPs by intersecting with open chromatin regions identified by ATAC-Seq. The
275  intersection was performed using bcftools (Danecek et al, 2021).

276

277  We measured leaf physiognomy (shape and size) parameters in six leaves of three clonal
278  replicate trees in the UmAsp common garden, and fifteen leaves sampled across five clonal
279 replicates per genotype in the ScotAsp Roslin common garden. We sampled mature,
280 undamaged leaves, scanned them using a flatbed scanner, and measured using LAMINA
281  software (Bylesjo et al, 2008) following methods described in Mahler et al. (2020). We
282  presentleaves sampled from the SwAsp common gardens as reported in Mahler et al. (2020)
283  for leaf area, leaf circularity and leaf indent depth, and a further 23 leaf shape and size
284  metrics for the analysis with SNPs called from P. tremula v2.2. We estimated Best Linear
285 Unbiased Predictor (BLUP) values for each of the 26 phenotypes used in the GWAS (i.e. 26
286  phenotypes from each collection) using a custom pipeline. We used these BLUP estimates as
287  phenotypic values to carry out GWAS in 99 SwAsp, 227 UmAsp, or 105 ScotAsp individuals

288  for which SNP data were available and that remained after removing some samples due to
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289  high relatedness (IDB, identity by descent > 0.4). For the GWAS, we filtered SNPs with a
290  minor allele frequency above 5% and Hardy-Weinberg equilibrium P-value threshold of 1e-
291 ¢ using PLINK version 1.9. (Purcell et al, 2007). We investigated genome-wide associations
292  using linear mixed models in GEMMA v0.98.1 (Zhou & Stephens, 2012), on (1) all SNPs, and
293  (2) on SNPs subset to open chromatin regions. We used a 5% false discovery rate (g-value)
294  to define associations as significant, calculated in the 'qvalue’ package in R (Storey et al,
295 2021). We annotated the SNPs using ANNOVAR v20190ct24 to produce GWAS summary
296 tables, adding A. thaliana homologues of the P. tremula v2.2 gene models from
297  PlantGenlE.org. We estimated the proportion of phenotypic variation explained (PVE) by an
298 individual SNP using the equation stated in Wang et al. (2018). We calculated marker-based
299  heritability (h%, Kruijer et al, 2015) using ‘marker_h2’ function, in the ‘heritability’ package
300 version 1.3 (Kruijer, 2019) in R. We visualised the gene ontology enrichments using the
301 PlantGenlE.org tool and additional visualisation using default R scripts exported from
302  REVIGO (Supeketal, 2011)

303

304  For population genetic analysis, we discarded SNPs in SwAsp, UmAsp, and ScotAsp failing
305 the Hardy-Weinberg equilibrium test (P-value < 1le¢) and/or with missing rate > 5%. We
306 used SNPs with minor allele frequency >10% and missing rate <20% for linkage
307  disequilibrium (LD) analysis. We calculated squared correlation coefficients (r?) between all
308 pairs of SNPs that were within 50 Kbp using PopLDdecay v3.41 (Zhang et al., 2019). To
309 analyse the population structure based on the PCA, we pruned SNPs by removing one SNP
310 from each pair of SNPs with a between SNP correlation coefficient (r2) > 0.2 in windows of
311 50 SNPs with a step of 5 SNPs using PLINK v1.90b6.16 (Purcell et al., 2007). We then used
312  the smartpca program in EIGENSOFT v6.1.4 (Patterson et al, 2006) to perform a principal
313 components analysis (PCA) on the reduced set of genome-wide independent SNPs.

314

315 We calculated the composite likelihood ratio (CLR) statistic in 10 Kbp non-overlapping
316  windows using SweepFinder2 and iHH12 (Integrated Haplotype Homozygosity Pooled)
317  using selscan v1.3. To identify regions under positive selection, we used sliding windows
318 containing atleast 10 SNPs as input to a range of inference methods. We considered windows

319  with the lowest 5% Tajima’s D values or highest 5% values for other as those windows

10
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320 displaying evidence of signals of positive selection. We assumed genes or SNPs within these
321  selected regions to be under selection. We ran Betascan (Siewert et al., 2017) (-fold -m 0.1)
322 to detect possible signals of balancing selection in the ScotAsp, UmAsp and SwAsp
323  collections.

324
325 Resource overview

326  The resource comprises the new P. tremula v2.2 genome assembly and gene annotation,
327 genomic data sets (for example, P. tremula-specific regions, open chromatin regions, and
328 lincRNAs), population genetics resources (SNPs and regions/SNPs under selection), both
329 raw and processed leaf physiognomy phenotype data, and results of the leaf physiognomy
330 GWAS analyses. The genomic resources are available at PlantGenlE.org where the genome
331 assembly, gene annotation, gene expression data and associated co-expression networks are
332  available through interactive tools and as flat files on the File Transfer Protocol (FTP) site

333  (https://plantgenie.org/FTP). The assembly, open chromatin regions, lincRNAs, gene

334  models, SNP variants and sites under selection have been made available as tracks in the
335 JBrowse genome browser tool. The SwAsp leaf bud gene expression data and expression
336  quantitative trait loci (eQTL) analysis presented in Mahler et al. (2017) have been updated
337  to P. tremula v2.2. The AspLeaf dataset (Mahler et al. 2020) was used to identify lincRNAs
338 and an updated co-expression network including these has been included in the exNet tool.
339  Expression data sets can also be viewed in the exImage, exPlot and exHeatmap tools. The
340 Potra v2.2 SNPs in SwAsp, UmAsp and ScotAsp are available in VCF format at the European
341  Variation Archive (EVA, https: //www.ebi.ac.uk/eva/). The phenotype data can be accessed

342  atthe SciLifeLab Data Repository (https://figshare.scilifelab.se/): this includes original raw

343  leaf images used for phenotyping, the images processed by the LAMINA software, raw and
344  processed leaf physiognomy metrics, and genotypic BLUP values, in addition to the raw
345  GWAS output tables. Scripts used to generate the results presented here, including a BLUP
346  pipeline for preparing phenotype data for GWAS, are available at
347  https://github.com/bschiffthaler/aspen-v2 and at

348  https://github.com/sarawestman/Genome paper.

349
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350 Results and discussion

351 A high-quality reference genome for Populus tremula

352  The previously available version of the P. tremula genome (v1.1) was highly fragmented
353  despite having good representation of the gene space (Lin et al, 2018; Supplementary table
354  3). Such fragmentation was a common characteristic of assemblies produced using short-
355 read sequencing technologies and was especially problematic for repeat-rich and highly
356  heterozygous genomes. The extent of fragmentation prohibited or limited analyses requiring
357 long-range contiguity, such as synteny, made gene-family analysis error-prone and
358  presented challenges for accurate SNP calling in hard to assemble regions. Here, we used a
359  combination of long-read sequencing, optical and genetic maps to generate a high-quality
360  and highly contiguous genome assembly for P. tremula. Integration with a genetic map Apuli
361 et al (2020) enabled anchoring and orienting of assembled contigs to form pseudo-
362 chromosomes (Figure 1A), with the final assembly having a contig N50 of 16.9 MB (Table 1),
363 representing an order of magnitude improvement compared to the previous v1.1 genome
364  assembly (Lin et al., 2018).

365

366 Genome Assembly

367 ThevZ2.2 P. tremula genome assembly contains 19 pseudo-chromosomes and 1,582 unplaced
368  scaffolds with a combined length of 408,834,716 bp and an N50 of 16.9 Mb (Supplementary
369  table S3). Alignment of ~95 million [llumina reads (~20X coverage) yielded a mapping rate
370  of 96.4% (compared to 97.77% in v1.1) with 94.19% (compared to 92.33% in v1.1) of
371  paired-end reads mapped as proper pairs. The increase in proper pairs and decrease in
372  overall mapping reflects expectations for an assembly with higher contiguity but lower per-
373  base accuracy, which is a characteristic of the PacBio sequencing reads utilised. Analysis of
374  the genome using Benchmarking Universal Single-Copy Orthologue (BUSCO) with the
375 embryophyta_odb10 ortholog set (Simdo et al, 2015) to assess gene-space completeness
376  identified 96% (96% in v1.1) complete BUSCOs, of which 81.7% (82.5% in v1.1) were single
377  copy and 15.1% (14.3% in v1.1) duplicated (Supplementary table S3). The long terminal
378  repeat (LTR) index for the assembly (Ou et al.,, 2018) was 6.65, with 1.42% of intact LTRs
379  and 20.66% of total LTRs, indicative of a high-quality assembly. The improved contiguity of
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380 the new assembly is clear when examining multiple sequences from v1.1 that align, for
381 example, to a region of chromosome 1 (Figure 1A).

382

383  Gene annotation

384  There are 39,894 identified gene models, 37,184 of which are located on pseudo-
385 chromosomes and 2,710 on unplaced scaffolds. There are 77,949 annotated transcripts,
386 73,765 on pseudo-chromosomes and 4,184 on unplaced scaffolds (~1.95 transcripts per
387  gene). Functional annotations were assigned for 73,765 transcripts in 37,184 genes. Analysis
388  of the predicted transcripts using BUSCO with the embryophyta_odb10 ortholog set showed
389  98.1% (96.8% in v1.1) complete BUSCOs, of which 35.7% (30.2% in v1.1) were single copy
390 and 62.4% (66.6% in v1.1) duplicated (Supplementary table S3). Similarly, the PLAZA core
391  Gene Family (coreGF) set of genes (Veeckman et al. 2016; Bucchini et al., 2021) indicated
392  99% completeness (99% in v1.1; Supplementary table S3).

393

394  Comparative genomics analyses

395 We utilised the improved assembly to perform gene family and comparative genomics
396 analyses, identifying syntenic and species-specific genomic regions of P. tremula compared
397  to P. trichocarpa. (Figure 1B). There were a large number of aspen- and P. tremula-specific
398 genes and genomic regions (Supplementary table S4) in addition to a set of highly diverged
399 regions (Supplementary table S5), although we acknowledge that lineage specific (orphan)
400 genes should be viewed with caution (Weisman et al, 2020). Similar analyses to identify
401 orphan genes in P. trichocarpa were recently reported (Yates et al, 2021), but using a far
402  more stringent definition of orphan genes, showing that orphan genes are polymorphic in a
403  GWAS population and integrated within co-expression networks. Species- and clade-specific
404  gene families were identified (Supplementary tables S6), and P. tremula-specific genomic
405 regions were enriched for the terms “non-membrane-bounded organelle” and “cell
406 differentiation” among the set of expanded gene families (Supplementary tables S7 S8, S9).
407  We used the tools in PlantGenlE to explore these groups of genes and their gene ontology
408 (GO) enrichments. For example, we used the Venn tool to view the intersection of lists of P.
409 tremula specific genes and genes in P. tremula-specific regions (Figure 1C). While this

410 exploration did not provide us with specific insights into leaf physiognomy traits, which we
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411 focus on below, the comparative genomics resource is available for exploration in future
412  studies of P. tremula.

413

414  Long intergenic non-coding RNAs

415 Long non-coding RNAs (IncRNAs) are arbitrarily defined as transcripts longer than 200 nt,
416  not producing functional proteins. If they are located entirely in the intergenic space, they
417  are sub-classified as long intergenic non-coding RNAs (lincRNAs). In general, IncRNAs have
418 low expression levels and tissue-specific expression. They are also characterised by a rapid
419  evolution and a low sequence conservation between species (Chen & Zhu, 2022; Palos et al.,
420  2023). Recent reports have shown that IncRNAs participate in plant developmental

421  regulation (Kramer et al, 2022; Chen et al, 2023b). We identified 902 putative lincRNAs in
422  developing aspen leaves (Supplementary table S10) and integrated them into the Aspen
423  Leaf (AspLeaf )expression data resources at PlantGenlE.org.

424
425 Population genetics of SwWAsp, UmAsp and ScotAsp

426  The original locations of the samples (Figure 2A) differed among the aspen collections in
427  climatic variables, with Scottish samples drawn from a milder, maritime climate and Swedish
428  samples from a colder, more continental climate (Supplementary table 11). Based on whole-
429 genome re-sequencing data, and after removal of related samples and the batch correction
430 described in Rend6n-Anaya et al. (2021), we identified 12,054,692 SNPs for 99 individuals
431  from SwAsp, 16,938,820 SNPs for 227 individuals from UmAsp, and 19,655,602 SNPs for 105
432  individuals from ScotAsp, on chromosomes, after discarding SNPs with missing rate >5%
433  and failing the Hardy-Weinberg equilibrium test (P-value < 1e-¢). Of these SNPs, 27.4% were
434  found within gene boundaries for SwAsp, 31.1% for UmAsp, and 31.8% for ScotAsp while
435  33.6% were in gene flanking regions for SwAsp, 30.8% for UmAsp, and 30.6% for ScotAsp.
436 The remaining sites were in intergenic regions. The SNP density was 33.3 SNPs/Kbp for
437  SwAsp, 48.8 SNPs/Kbp for UmAsp and 54.3 SNPs/Kbp for ScotAsp across the 19
438 chromosomes and was highest in the flanking regions and lowest in the CDS regions for the
439  three aspen collections. The three collections harboured substantial levels of nucleotide
440  diversity (m) across the genome (0.0061 in SwAsp, 0.0080 in UmAsp, and 0.0082 in ScotAsp).
441  While the majority of SNPs (13,153,803) were shared between Swedish (UmAsp or SwAsp)
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44?2  and Scottish aspens (Figure 2B), 9,539,889 SNPs were shared only between SwAsp and
443  UmAsp, indicating the potential utility of a combined Swedish aspen resource, and there
444  were 6,501,799 SNPs unique to ScotAsp, highlighting its differences from the Swedish
445  collections.

446

447  We used seven measures calculated in 10 Kbp non-overlapping windows to identify regions
448  under selection in SwWAsp and UmAsp using ScotAsp as an outgroup. Signatures of positive
449  selection were identified for 589 and 653 regions, corresponding to 7.46 Mbp and 8.60 Mbp
450 in SwAsp and UmAsp, respectively (Table S12). Only 1.57 Mbp of regions under selection
451  were shared between SwAsp and UmAsp. Based on genome annotation, we identified 621
452  and 633 genes under selection in SwAsp and UmAsp, respectively (Table S12) of which 123
453  genes were in common.

454

455  Population structure based on PCA clearly separated at least two independent clusters of
456 individuals, one corresponding to ScotAsp with the other comprising SwAsp and UmAsp
457  (Figure 2C), indicating that ScotAsp is a suitable outgroup to identify signatures of selection
458  in SwAsp and UmAsp. This clustering pattern is consistent with previous observations by de
459  Carvalho et al. (2010) and Renddn-Anaya et al. (2021), which have shown that the aspens
460 from the British Isles are diverged from aspens in continental Europe. In agreement with
461  previous results (Lin et al,, 2018), genome-wide mean linkage disequilibrium (LD) measured
462 by r? was largest between adjacent SNP pairs (0.36 to 0.37) in the three aspen groups and
463  decreased rapidly to 0.1 within 10 Kbp (Figure 2D). The population genetic data are available
464  in JBrowse in PlantGenlE, where tracks can be loaded and viewed in the context of other
465  genomic features and significant GWAS results.

466

467  Natural genetic variation in leaf physiognomy phenotypes

468  The leaves of P. tremula are rounded with irregular serrations, hereafter termed indents. In
469 previous leaf physiognomy analyses we reported natural genetic variation in ten traits
470  (Bylesjo et al, 2008), and three representative traits (‘leaf area’, ‘circularity’, and ‘ident
471  depth’; Mahler et al, 2020) in the SwAsp collection. Here we present 26 traits (Appendix S2)

472  measured in the two SwAsp common gardens in each of two years, and in the UmAsp and
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473  ScotAsp common gardens in a single year. The raw image files of the sampled leaves, the
474  annotated images indicating measured parameters (Figure 3A) and data output from the
475 measurement software (LAMINA, Bylesjo et al, 2008), are available at the associated
476  Figshare data repository (see data availability statement for details). There was a clear
477  shared genetic component among indent traits and shape traits (Figure 3B), with high
478  genetic correlations between ‘Squared Perimeter/Area’ and each of ‘indent depth’ and
479  ‘indent depth standard deviation (SD)’. Leaf size traits were all positively genetically
480 correlated, with high correlations among length traits and among width traits, and to a
481 moderate extent between length and width traits (Figure 3B). Narrow-sense (‘chip’)
482  heritability was greater for shape and indent traits than size traits (3C, Appendix S2), with
483  the exception of the composite trait ‘indent density,” which had low heritability (h2 = 0.138).
484  There was clear separation of size traits from shape and indent traits in the first principal
485  component (PC1) of a PCA of all 26 leaf metrics in the three populations. While PC1 explained
486  43.5 % of the variation in this combined data set and an overall intersection among ScotAsp,
487  SwAsp and UmAsp, there was a tendency towards larger leaves (i.e. smaller values of PC1)
488  in ScotAsp. The heritability estimates and shared multivariate space among the three aspen
489  collections, together with number of common SNPs, favour the integration of these traits and
490 collections in genetic analyses. The processed phenotype data, including composite leaf
491  physiognomy traits (Appendix S2) and BLUPs are available at Figshare.

492

493 GWAS in open chromatin regions enhances detection of SNP-phenotype associations
494  Leaf physiognomy traits appear to be highly polygenic, yet highly heritable, with variation
495 among individuals resulting from numerous small-scale effects (Mahler et al., 2020). In such
496  cases it is common that no significant genetic associations are identified, with huge sample
497  sizes needed to detect such small-scale effects. Other factors, such as incomplete genome
498 assembly, can also prohibit detection of sequence-based genetic markers in hard-to-
499  assemble regions of the genome. While we previously reported our GWAS study in three leaf
500 physiognomy traits in SwAsp using the previous genome assembly version, here we
501  conducted GWAS on 26 leaf physiognomy metrics in each of the SwAsp, UmAsp and ScotAsp
502  populations, taking advantage of the substantially higher number of SNP markers called
503 using the improved v2.2 genome assembly. In the GWAS including all SNPs (All-SNP GWAS),
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504  we detected significant (g-value < 0.05) associations for vertical size 75% (L75) in UmAsp,
505 while in ScotAsp there were associations for ‘indent width SD’ (the standard deviation of
506 indent width) and circularity (Supplementary table S13). No significant associations were
507 identified in the SwAsp All-SNP GWAS. A GWAS that includes several million SNPs in a
508 relatively small population may fail to detect associations for complex traits due to
509  adjustments for multiple testing. Inspired by work in maize (Rodgers-Melnick et al, 2016)
510 demonstrating that open chromatin regions harbour much of the genetic variation for
511  quantitative traits, we generated ATAC-Seq data from P. tremula leaves to identify regions of
512  open chromatin (open chromatin regions, OCRs). We then subset SNPs to only those regions,
513 and ran GWAS using these SNP subsets (OCR GWAS). This resulted in 212,902 SNPs in
514  ScotAsp, 185,616 in SwAsp and 220,009 in UmAsp. The genomic context distribution
515 differed between the All-SNP and OCR-SNP sets with a greater proportion of SNPs in
516  up/downstream, UTR and exonic regions, and a lower proportion of SNPs in intergenic
517  regions, in the OCR-SNP set (Figure 4). OCR GWAS resulted in ten, five and four significant
518 associations (g-value > 0.05) in ScotAsp, UmAsp and SwAsp respectively for three, two and
519  two leaf traits respectively (Supplementary table S13). These associations ranked highly in
520 the All-SNP GWAS, despite in most cases falling below the g-value threshold (Table 2).
521  Significant OCR-GWAS associations intersected with significant All-SNP GWAS associations
522  in the case of only one ScotAsp trait (indent width SD).

523

524  Genome-wide associations suggestive of leaf development processes

525 We looked for signals of leaf developmental processes in the GWAS results, first by
526  examining expression patterns in the AspLeaf data set for all genes with significant SNPs in
527  the GWAS. Of the 25 genes associated with SNPs in the GWAS, 24 had expression data in the
528  AsplLeaf data resource, and 18 of those had a clear gradient of expression from the apex or
529  youngest leaf to the oldest leaf. Next, we examined the annotations of genes associated with
530 significant SNPs in both the All-SNP and OCR GWAS and noted that the majority are
531 annotated with functions that include plant developmental processes (Table 3). Significant
532  SNPs for ScotAsp indent width SD in the All-SNP GWAS (Supplementary table S13) included
533 a pescadillo homologue (PotraZzn4c9542), important in leaf growth, in particular through

534  control of ribosomal biogenesis affecting leaf cell division, expansion, and pavement cell
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535 differentiation and (Cho et al, 2013; Ahn et al, 2016),and a FAB1-like gene (Potra2zn1c1433)
536 also annotated as a phosphatidylinositol-3-phosphate 5-kinase, important for auxin
537  signalling and normal plant development (Hirano et al, 2011; Baute et al, 2015). The three
538  significant SNP associations for ScotAsp circularity in the All-SNP GWAS were in linkage
539 disequilibrium and located on chromosome 17 in intronic and exonic regions of
540 Potra2zn17c¢30934, which is annotated as a "PATRONUS 1-like isoform X1 protein" and
541  carries the GO identifier, "regulation of mitotic cell cycle." PATRONUS1 is reported to have
542  animportantrole in cell division in plants (Cromer et al, 2019). In the UmAsp All-SNP GWAS,
543  the 11 significant SNPs were located in upstream, exonic, intronic and 5’ UTR regions of
544  Potra2n3c7046 and in an intergenic region with PotraZn3c7047 (Supplementary table S13).
545  The A. thaliana homologues of these two genes are, respectively, AT5G13390 (‘No exine
546  formation 1), important in pollen wall development (Ariizumi et al,, 2004), and AT1G28130,
547  an Auxin-responsive GH3 family protein that regulates auxin metabolism and distribution
548  and plant development (Zheng et al, 2016; Guo et al, 2022). In the SwAsp OCR-GWAS, two
549  SNPs in the 5’ UTR region of Potra2n1c2680 were associated with indent width SD. The A.
550 thaliana homologue of Potra2n1c2680 is involved in several plant developmental processes
551 (Xiaoetal, 2021).

552

553 Combined data resources reveal variation in leaf base angle

554  Two SNPs from the SwAsp OCR GWAS were associated with leaf base angle (W75/Width).
555  Both of these SNPs are located in an intron of Potra2n5c¢11907 (Supplementary Figure 3A),
556  which is annotated as LLGL scribble cell polarity complex, a transcription factor that in A.
557  thaliana is a Transducin/WD40 repeat-like superfamily protein (AT4G35560). The WD40-like
558  transcription factors have roles in various developmental processes including organ size
559  determination (Gachomo et al, 2014; Guerriero et al, 2015; Yang et al,, 2018). The phenotypic
560  BLUP values for leaf base angle were significantly partitioned by the chr5_13736867 SNP allele
561  groups in the SwAsp collection (Supplementary Figure 3B), and the individuals with the
562  greatest and smallest phenotypic values (SwAsp 114 and SwAsp 4, which belong to the
563  contrasting allele groups), can be identified using the phenotype files at the Figshare data
564  repository. The cropped LAMINA output images of these can be downloaded from Figshare and

565 leafshape features compared. In this particular case, the two genotypes differed markedly in leaf
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566  base angle (Supplementary Figure 3B). The phenotypic values were, however, somewhat
567  variable for the allele groups for this SNP, which is consistent with the polygenic nature of leaf
568  shape determination. As such, not all ScotAsp genotypes with two recessive alleles for this SNP
569  had a steep leaf base angle. Following a similar approach, the expression of Potran2n5c11907 in
570 the data set from developing SwAsp leaf buds can be partitioned by SNP alleles for
571  chr5_13736867 (Supplementary Figure 3C). While in this case the interpretation is not
572  straightforward, it serves to demonstrate the integration of available data resources to explore
573  characteristics of identified candidate genes and to help prioritise among candidates.

574

575 A 177-Kkbp region associated with leaf shape phenotypes in Scottish aspen

576  The All-SNP associations for ScotAsp indent width SD included 122 SNPs on chromosome 9,
577  which intersected with significant SNPs in the ScotAsp OCR GWAS for the same trait, as well
578 asindent density and indent depth SD (Supplementary table S13). These SNPs were located
579  within a region spanning ~177 kbp on chromosome 9 (Supplementary Figure 3). Many of
580 the SNPsin thisregion were in linkage disequilibrium (LD) and of the 15 genes in this region,
581 12 were associated with SNPs in the ScotAsp GWAS at g-value < 0.05 (Supplementary table
582  S13; Table 3). The proportion of variance explained (PVE) by any single SNP among these
583  significant associations was moderate, ranging from 0.23 to 0.30 (Supplementary table S13).
584  These SNPs were distributed across various genomic contexts in the 12 genes, all with
585 functions suggestive of roles in leaf development. These included a SIZ1-like isoform that is
586 a PHD transcription factor (PotraZzn9c199982), involved in cell division and expansion
587 (Catala etal, 2007; Miura et al, 2010; Mouriz et al, 2015), an ARF10 auxin response factor
588  (PotraZ2n9c199984) involved in auxin signalling during leaf development (Hendelman et al,
589 2012; Liu et al, 2007; Ben-Gera et al, 2016), and two periphrins/tetraspanins
590 (PotraZzn9c¢199975, Potra2zn9c199981), involved in numerous cell proliferation and tissue
591  patterning processes (Wang et al, 2015; Reimann et al, 2017). Expression in the AspLeaf
592  dataset, as observed using the exImage tool at PantGenlE.org, showed a gradient of relative
593  expression across the developmental stages of the terminal leaves in eight of these 12 genes,
594  which was most pronounced for Potra2n9c199975, Potra2zn9c199981, Potra2n9c199982,
595 PotraZzn9c199984 and Potra2zn9c¢199985. This suggests that these genes are

596  developmentally regulated. While the 12 genes were significantly associated with only four
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597  traits, each of the genes occurred in the top-ranked 1000 genes of at least three, and up to
598 13, ScotAsp traits (Supplementary table S13), suggesting that these genes contribute to
599  multiple leaf physiognomy phenotypes in Scottish aspens. In contrast to ScotAsp, these 12
600 genes were not highly ranked in the SwAsp and UmAsp GWAS and would thus appear to
601 make a negligible contribution to leaf size and shape variation in Swedish aspens. In SwAsp
602  only Potrazn9c199985 and PotraZzn9c19972 were present in the top-ranked 1000 genes for
603  two traits, Area and Length:Width ratio respectively (Supplementary table S13), and for
604  UmAsp, none of these 12 genes were ranked in the top 1000 genes. This reflects the
605 demographics of SNPs at this locus in the other collections; of the 122 significant SNPs for
606 this trait in ScotAsp, only 25 SNPs were present in the SwAsp in the SwAsp VCF, with a
607 median minor allele frequency (MAF) of 0.122, and while 119 of the 122 SNPs were present
608 in UmAsp the median MAF was 0.092, indicating that the variation at these sites is higher in
609  ScotAsp (median MAF = 0.302). Only two of the top 1000 genes for Indent width SD for this
610 trait intersected among all three collections, however these (Potra2znlcl1769 and
611 PotraZzn3c8236) did not have apparent annotations relevant to leaf developmental
612  processes. This example suggests that there is substantial control of natural variation in leaf
613  shape phenotypes determined by SNPs at this locus on chromosome 9 and that this is specific
614  to Scottish aspen. Since ScotAsp separates from SwAsp and UmAsp in the SNP PCA (Figure
615 2(C), it is not unexpected that the complex leaf phenotypes in the Swedish and Scottish
616 populations do not share this GWAS locus.

617

618 Combined resources aid genomic exploration of SNP-phenotype associations

619 Many of the gene annotations in the GWAS results have plausible biological links to leaf
620 physiognomy traits. However, these interpretations are speculative, especially for
621  associations of relatively low PVE and where few individuals are homozygous for the minor
622  allele. In such cases it can be useful to consult several lines of evidence to evaluate the
623  plausibility of the functional link. To demonstrate utility of the Potra v2.2 genomics data
624  available within PlantGenlE.org for such explorative analyses, we examined the associations
625 to Potra2n10c20533, one of the genes associated with indent width SD in the ScotAsp All-
626  SNP GWAS, appearing as a small peak on the Manhattan plot for this trait (Figure 5A). The
627 annotation of PotraZn10c20533 is a putative protein transport protein Sec24A, with the
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628 most sequence-similar gene in A. thaliana (AT3G07100) having a role in endoplasmic
629  reticulum maintenance and cell size regulation in sepals (Nakano et al, 2009; Qu et al, 2014).
630 The Potra2zn10c20533 gene harbours a significant SNP 1962 bp upstream from the
631 annotated transcription start site, and eight SNPs in the intergenic region between
632 Potra2n10c20532 (a Cation efflux family protein associated with manganese tolerance in A.
633  thaliana; Peiter et al, 2007) and Potra2zn10c20533 (Supplementary table S13). To reveal the
634  potential biological function of these associations, we used the exNet tool at a lenient
635 threshold P-value 10-1to identify first degree neighbours of PotraZn10c20533 in the AspLeaf
636  dataset co-expression network (Figure 5B). Functional enrichment of these co-expressed
637 genes identified GO categories for cell expansion (Figure 5C). The network visualisation
638 using exNet (Figure 5B) showed that the set of 205 co-expressed genes included 29
639 transcription factors (TFs; i.e. 14 % were TFs) and two lincRNAs. Using the gene expression
640 visualisation tools available at PlantGenlIE.org we explored the expression of these lincRNAs
641  within the AspLeaf datasets, revealing a gradient of expression across the terminal leaf
642  development stages (Figure 5D). This revealed that the two lincRNAs were negatively
643  correlated to more than 100 of the first-degree neighbours of Potra2n10c20533. Use of the
644  ]Browse tool at PlantGenlE.org also enabled us to view the significant SNPs in the GWAS
645 region around Potra2zn10c20533 in the context of the Potra v2.2. gene models and co-
646 locating eQTL (Figure 5E). Mapping of eQTL was conducted using two different methods;
647  using Matrix eQTL, we identified 466,966 significant (FDR < 0.05) eQTL, whereas the more
648  conservative method using fast]T identified 173,080 significant eQTL (Supplementary table
649 S14). The JBrowse tool enabled the easy visualisation of trans eQTL acting on ten genes
650 identified using Matrix eQTL that co-located with intergenic SNPs in the GWAS between
651 PotraZzn10c20532 and PotraZzn10c20533. Use of the Enrichment tool of PlantGenlE.org for
652  this set of ten trans eQTL genes showed Pfam enrichment terms for categories relevant to
653 plant organ development (Figure 5F), including Phosphatidylinositol-4-phosphate 5-
654  Kinases (Watari et al, 2022), MORN repeats (Lee et al, 2010), and K-Box regions (Uchida et
655 al, 2007). In the same intergenic region, there was one cis eQTL (FDR = 0.023), for the
656  expression of Potra2zn10c20525, which is annotated as dirigent protein; this gene class is
657 involved in cell wall biosynthesis and growth as well as stress resistance (Paniagua et al,

658 2017). Overall, these relatively straightforward uses of the available data sets enable us to
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659 establish that the significant SNPs on chromosome 10 in ScotAsp are associated with
660 lincRNAs and transcripts potentially involved in leaf development processes, that these vary
661 in expression during leaf development, and that local SNPs are associated with the
662  expression (eQTL) of developmental genes in SwAsp. While speculative, this demonstrates
663  how in silico tools can be used to integrate evidence from a diverse range of genomics and
664  population genetics data to develop hypotheses and to prioritise among candidate genes for
665 downstream characterisation work.

666

667

668 Conclusions

669 The improved genome assembly and population genetics data presented here, and from
670 numerous existing studies, have been updated to the v2.2 genome and integrated into
671  PlantGenlE (Sundell et al, 2015) to serve as a comprehensive community resource to
672 facilitate hypothesis exploration and generation. To demonstrate the value and utility of the
673 improved genome resource detailed here we performed GWAS for leaf physiognomy
674  phenotypes in three aspen collections. We demonstrate use of the PlantGenlE.org resource
675 to explore the Potra2zn10c20533 gene that harbours a SNP associated to the standard
676  deviation of leaf indent width. This is coupled with a complete phenotype data resource for
677 the leaf physiognomy traits studied. The data presented is all publicly available, as
678 summarised in Figure 6. Genomic resources in aspen have facilitated the characterisation of
679 adaptive traits (Wang et al, 2018), omnigenic traits (Mahler et al, 2020), and the use of
680 GWAS as a tool to guide candidate gene discovery (Grimberg et al, 2018) in addition to
681 functional genomics insights into wood formation (Sundell et al, 2017) and sex
682 determination (Muller et al, 2020), among others. Integration of these data in
683  PlantGenlE.org enables rapid exploration of hypotheses, for example the potential functional
684 role of candidate genes and can help in selecting among candidates for downstream studies
685 to investigate and elucidate their functional and adaptive significance.
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720 Data availability and FAIR (Findable Accessible Interoperable Reusable)

721 compliance

722  Data used to generate the genome assembly are available as European Nucleotide Archive
723  (ENA; https://www.ebi.ac.uk/ena/browser/home) accession PRJEB41363, and the UmAsp
724  re-sequencing data are available as accession PRJEB47451. The ATAC-Seq data are available
725 as accession: in progress. The genome data are available to browse at
726  https://plantgenie.org/. The VCF files for the UmAsp, SwAsp and ScotAsp collections are
727  available at the European Variant Archive: in progress. Significant genome-wide association
728  results (at g-value < 0.05), SNP variant files and regions under positive and balancing
729  selection are available at https://plantgenie.org/]Browse_new. Raw and processed
730  phenotype files, top-ranked GWAS results and ATAC-Seq peaks are available at: the SciLife
731  Data Repository Figshare: doi:10.17044 /scilifelab.25335448.
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Table 1. Summary statistics for Populus tremula genome assemblies v1.1 (Lin et al, 2018)
and v2.2. GC content statistics were calculated using the unmasked genome.

Statistic

P. tremula v1.1

P. tremula v2.2

# contigs (>= 0 bp)

# contigs (>= 1000 bp)

# contigs (>= 5000 bp)

# contigs (>= 10000 bp)

# contigs (>= 25000 bp)

# contigs (>= 50000 bp)
Total length (>= 0 bp)
Total length (>= 1000 bp)
Total length (>= 5000 bp)
Total length (>= 10000 bp)
Total length (>= 25000 bp)
Total length (>= 50000 bp)
# contigs

Largest contig

Total length

GC (%)

N50

N75

L50

L75

# N’s per 100 Kbp

Reads aligned (%)

Reads properly paired (%)

204318
31632
7267

5151

3209

1789
386236512
328536064
277117215
262322877
231504505
180499961
12044
418873
294670244
33.56
69979
29987
1227

2826
5428.58
97.77%
92.33%

1601

1584

1339

986

491

255
408834716
408824553
407999588
405364617
397478443
389097052
1489
53234430
408605800
33.87
16928776
13637973
9

15
6573.91
96.40%
94.19%
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Table 2. Comparison of of SNP-trait associations ranked by signficance (by association P-
value) in the genome wide association (GWAS) analysis of leaf physiognomy traits in the
ScotAsp, SwAsp and UmAsp collections. For each association significant at g-value < 0.05, the
rank of the SNP is shown in the OCR GWAS (GWAS using SNPs filtered to open chromatin
regions) compared to the rank in the All-SNP GWAS (using SNPs filtered only by excess
heterozygosity, Hardy-Weinberg Equlibrium P-value and minor allele fregency, see

materials and methods for details).

OCR GWAS  All-SNP GWAS

Population Trait SNP rank rank
ScotAsp Indent density chr9_10684216_G_A 1 3
chr9_10684306_T_A 2 4
chr9_10684389_C_T 3 5
Indent depth SD chr9_10684114_T_G 1 2
chr9_10684216_G_A 2 4
chr9_10684306_T_A 3 5
Indent width SD chr9_.10684216_G_A 1 15
chr9_10684306_T_A 2 16
chr9_10684389_C_T 3 19
chr9_10646677_G_C 4 90
SwAsp Length 75% / Width chr5_13736867_T_G 1 5
chr5_13736875_A_C 2 7
SwAsp Indent width SD chr1_31893859_G_A 1 6
chr1_31894106_A T 2 7
UmAsp Indent density chr16_10033126_C_G 1 4
chr16_10033093_C_T 2 10
chr16_10033097_C_T 3 11
chr16_10032951_G_T 4 15
UmAsp Squared Perimeter/ Area chrl1 432652 C_A 1 2
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Table 3. Summary of significant (g-value < 0.05) association mapping statistics of leaf physiognomy traits in separate Genome-

Wide Association Studies (GWAS), in each of the Swedish (SwAsp), Umea (UmAsp) and Scottish (ScotAsp) aspen collections.

Traits are described in detail in Appendix S2. ‘Gene’ = Potra v2.2 gene model associated with the genomic context of the

significant SNP(s). ‘Gene Description’ and ‘TF’ respectively indicate the functional description of the gene and its transcription

factor family (if applicable). ‘GWAS’ indicates the SNP background for the GWAS: ‘All’ = all filtered (minor allele frequency >0.05)

SNPs in the genome; ‘OCR’ = all SNPs subset to only those in open chromatin regions. 'No. SNPs' = number of significant SNP-

phenotype associations at g-value < 0.05. ‘PVE’ = maximum proportion of phenotypic variation explained by an individual SNP

associated with the gene and trait. ‘g-value’ = minimum association g-value for any SNP associated with the gene and trait.

‘Genomic context’ = position of the gene relative to genomic features; if intergenic the minimum distance (bp) is stated.

Gene Gene description TF Trait Collection GWAS No. PVE g-value Genomic context(s)
SNPs

Potra2n1c1388, Galactinol synthase 3; Indent width SD  ScotAsp All 1 0.232 0.049 intergenic Potra2n1c1388 (12517),
Potra2n1c1389 NA Potra2n1c1389 (3271)
Potra2n1c1433 1-phosphatidylinositol-  PHD Indent width SD  ScotAsp All 1 0.246 0.027 upstream

3-phosphate 5-kinase

FAB1B-like isoform X3
Potra2n1c2680 GDSL esterase/lipase Indent width SD  SwAsp OCR 2 0.223 0.032 UTRS5
Potra2n3c7046 No exine formation 1 Length 75% UmAsp All 11 0.251 0.047 intron; exon (synonymous SNV,

nonsynonymous SNV); upstream;
UTRS5; intergenic (297)

Potra2n3c7047 Auxin-responsive GH3 Length 75% UmAsp All 2 0.251 0.047 intergenic (4017)

family protein
Potra2n4c9542 Pescadillo homolog Indent width SD  ScotAsp All 1 0.238 0.037 upstream
Potra2n5¢11907 Lgl_C domain- WD40-  Length 75% / SwASsp OCR 2 0.250 0.01 intron

containing protein like Width
Potra2n9c19972, Protein FANTASTIC Indent width SD  ScotAsp All 1 0.230 0.046 intergenic Potra2n9c19972 (73022),
Potra2n9c19973 FOUR 3, U-box Potra2n9c19973 (9137)

domain-containing

protein 56
Potra2n9c19974 U-box domain- Indent width SD  ScotAsp All 1 0.232 0.048 Intergenic Potra2n9c19974 (5722),

containing protein 57

Potra2n9c¢19975 (2725)
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Potra2n9¢19975

Potra2n9c¢19979

Potra2n9c19981

Potra2n9c19982
Potra2n9c19983

Potra2n9c19984

Potra2n9c19985

Potra2n9c19986

Potra2n10c20532,
Potra2n10c20533

Potra2n11c22413,
Potra2nllc22414
Potra2n16¢30252

Potra2n17¢30934

RNA 3'-terminal
phosphate cyclase

Mitochodrial
transcription
termination factor-
related

Putative
tetraspanin/Peripherin

SUMO-protein ligase
SIZ1-like isoform X2
Transmembrane protein
209

AP2/ERF and B3
domain-containing
protein
Uncharacterized
LOC102615152
(LOC102615152),
transcript variant X9,
mMRNA
Serine/threonine-protein
phosphatase 6
regulatory subunit
Cation efflux family
protein; Sec23/Sec24
protein transport family
protein

Kinesin-like protein
costa; Uridine kinase
Lectin_legB domain-
containing protein
PATRONUS 1-like
isoform X1

PHD

ARF

Indent width SD

Indent width SD
Indent width SD

Indent density

Indent depth SD
Indent width SD

Indent width SD
Indent width SD

Indent width SD

Indent width SD

Indent width SD

Indent width SD

Squared
Perimeter/Area
Indent density

Circularity

ScotAsp

ScotAsp
ScotAsp

ScotAsp

ScotAsp
ScotAsp

ScotAsp
ScotAsp

ScotAsp

ScotAsp

ScotAsp

ScotAsp

UmAsp

UmAsp

ScotAsp

All

OCR
All

OCR

OCR
All

OCR
All

All

All

All

All

All

OCR

OCR

All

80

91

0.250

0.240
0.031

0.260

0.252
0.300

0.278
0.249

0.300

0.300

0.281

0.248

0.248

0.118

0.110

0.295

0.023

0.024
0.241

0.013

0.024
0.015

0.004
0.02

0.015

0.015

0.015

0.026

0.026

0.021

0.046

0.035

UTRS3; intergenic (2725)

UTR3
downstream; UTR3

UTR5

UTR5

intron; upstream; UTR5; intergenic
(8076)
UTR5

intron; upstream; intergenic (3221)
UTRS3; intergenic (11593)

Exon (nonsynonymous SNV,
stoploss); upstream; UTR3;
intergenic (2032)
downstream;
upstream&downstream;

downstream

upstream; intergenic
Potra2n10c20532 (2451),
Potra2n10c20533 (2756)

intergenic Potra2n10c20532 (2875);
intergenic Potra2n10c20533 (3890)
upstream

intron; exon (nonsynonymous SNV)
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Figure legends

Figure 1. Overview of the P. tremula v2.2. genome. (A) Comparison of a 47.1 Kbp region
of P. tremula chromosome 1 showing the P. tremula v2.2 gene models and a liftover of the P.
tremula v1.1 genome and transcripts, rendered in the JBrowse tool in PlantGenIE. The region
in turquoise highlights an example of a longer scaffold in P. tremula v1.1 containing a gene.
(B) Synteny and structural rearrangements between P. tremula and P. trichocarpa. (C) Venn
diagram created using the Venn tool in PlantGenlE, showing the intersection of genes in P.

tremula-specific regions and the P. tremula-specific genes identified from synteny analysis.

Figure 2. Overview of genome-wide association study using three aspen collections.
(A) Map indicating the original sampling locations of the individual wild trees in the aspen
collections from Scotland (ScotAsp), Sweden (SwAsp) and the Umea municipality in
Sweden (UmAsp) that were included the genetic analyses after removal of related samples.
(B) Number of biallelic SNPs, filtered by Hardy-Weinberg Equilibrium P-value > 1e-¢ and
missingness < 5%, in the ScotAsp, SwWAsp and UmAsp collections. Coloured bars on the left
indicate total number of SNPs in each collection, linked points indicate membership of
intersections among collection, with numbers in intersections shown in the vertical bars
above. Single points indicate sets of SNPs exclusive to one population. (C) Principal
components plot of the first two principal components (PCs) of pruned, unrelated SNPs (LD
r? <0.2) to show population structure in the ScotAsp, SwAsp and UmAsp collections.
Proportion of variance explained by each PC is indicated in parentheses. (D) Rates of

linkage disequilibrium decay in the ScotAsp, SwAsp and UmAsp collections.

Figure 3. Overview of leaf physiognomy metrics. (A) Example processed leaf image from
LAMINA software, with annotations indicating the Indent width, Indent depth, the Length
and Width axes, and length and width at 25% (L25, W25) and 75% (L75 and L25) along each
perpendicular axis. (B) Heatmap of genetic correlations of measured leaf physiognomy traits

in the Umea aspen (UmAsp) collection. Composite traits are excluded to reduce redundancy.
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Scale bar indicates genetic correlation r¢ values. Coloured bars indicate category of either
‘Size’ (leaf shape metrics) or ‘Shape/Indent’ (size and indent metrics). Hierarchical
clustering between the clusters uses the complete linkage method. (C) Marker-based
heritability, hZ, of 26 shape and size/indent leaf physiognomy metrics in the UmAsp
collection. All trait metrics are described in Appendix S1. (D) Principal components loadings
plot indicating the loading scores of size and shape metrics indicated in Appendix S2 and the
associated Principal Components Analysis (PCA) plot (E) for 26 leaf physiognomy metrics in
Scottish (ScotAsp), Swedish (SwAsp) and UmAsp (UmAsp) collections. Proportion of
variance explained by each component is in parenthesis. In all cases, means are omitted for
Indent length and Indent width to avoid redundancy, since medians are included for these

traits.

Figure 4. Comparison of the percentage of SNPs located in different genomic contexts
in two GWAS backgrounds in the SwAsp collection. GWAS was first conducted using “All
SNPs” (all the genome-wide SNPs filtered on SNP quality including Excess Heterozygosity,
Hardy Weinberg P-value, and minor allele frequency > 0.05) (left panel). The set of 6,806,717
“All SNPs” was filtered to those only those 185,616 SNPs in open chromatin regions (“SNPs
in OCRs”, right panel). The percentage of SNPs in each genomic context category was
calculated from the total number in the set used for the GWAS. Genomic contexts were

assigned using ANNOVAR with flanking regions defined as 2000 bp.

Figure 5. Genome-wide Single Nucleotide Polymorphism (SNP) associations for leaf
shape in the Scottish Aspen collection (ScotAsp) and exploration of results in
PlantGenlE. (A) Manhattan plot distribution of SNP associations for leaf indent width
standard deviation (SD) in ScotAsp, where the red line indicates significance at g-value <
0.05 and the blue line is ‘suggestive significance’ at g-value < 0.1. Significant SNPs/groups of
SNPs are annotated with the name of the associated Potra v2.2 gene; full details in Table 3.
(B) A peakin the Manhattan plot indicates significant Single Nucleotide Polymorphisms from
the Genome-Wide Association Study for leaf indent width SD on chromosome 10 comprises
nine associated SNPs significant at g-value < 0.05, eight of which are located in an intergenic

region between Potra2n10c20532 and Potra2n10c20533, and one located upstream of
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Potra2n10c20533, annotated as a Sec23/Sec24 transport family protein. The genes co-
expressed with Potra2zn10c20533 were examined in the exNet tool using the "Expand
network"” button to visualise first degree neighbours selected at P-value threshold 10-1 with
genes shown as circles, transcription factors shown as triangles, and lincRNAs shown as
yellow diamonds. (C) The resulting list of co-expressed 205 genes was tested using the
Enrichment Tool to perform a gene ontology (GO) over-enrichment test and visualised using
REVIGO. Circles representing the GO categories are scaled to the size of the term in the gene
ontology database and coloured by enrichment -logio(P-value). (D) Co-expressed genes of
Potra2n10c20533 were examined using the exImage tool, where it is possible to view the
expression of the gene in the AspLeaf dataset of gene expression in terminal leaves; the
example here is a lincRNA, TRINITY_DN12299_c0_gl1_i2, with contrasting relative
expression across the leaf development series. Shading of the exImage dataset is scaled as
the relative mean difference between the greatest and least expression values. (E) Example
of the use of ]Browse showing the region of chromosome 10 including PotraZzn10c¢20532 and
Potra2n10c20533, with tracks showing the co-location of significant GWAS results (g-value
<0.05) for leaf indent width SD in ScotAsp, one cis-eQTL in PotraZn10c20533, ten trans-eQTL
in the intergenic regions acting on ten individual genes, and an open chromatin region. (F)
Use of the Enrichment tool showing Pfam enrichments for the set of ten genes acted on by

trans-eQTL shown in (E).

Figure 6. Overview of data accessibility for the genome and population genetics
resource. The datasets that we present are grouped into three main sections: the Genome,
Gene family analyses and population genetics, and Phenotype data. Boxes with each data set
presented here are linked by arrows showing related data types and coloured by source of
data accessibility: PlantGenlE.org = as a browsable tool / flat file available in at
PlantGenlE.org; ENA = file available at the European Nucleotide Archive; FigShare = files
available for download from FigShare at the SciLife Data Repository; Supplementary file =
supplementary files available with this article at the publisher’s website. Samples from
which the data files are derived are: SwAsp, the Swedish Aspen collection; UmAsp, the Umea

aspen collection; ScotAsp, the Scottish Aspen collection; Genome, the original tree that was
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sequenced for the genome assembly; LeafDev, the gene expression data set from developing

aspen leaves described in Mahler et al. (2020).

Supporting information files

Appendix S1. References to Table S2 of the plant genomes included in the gene family

analysis.

Appendix S2. An overview of the metrics measured along the proximodistal and
centrolateral leaf axis by default in the LAMINA software. Additional leaf physiognomy
measurements to LAMINA defaults. All leaf metrics in the LAMINA analyses, phenotype data,
trait names, types, and inclusion Genome-Wide Association study. Narrow-sense or ‘chip’-
heritability estimates for leaf size and shape traits measured in the Umea Aspen (UmAsp)

collection.

Supplementary table S1. Plant genomes included in the gene family analysis.

Supplementary table S2. Details of samples from the UmAsp collection for DNA-Seq

analysis and details of SwAsp and ScotAsp samples.
Supplementary table S3. Benchmarking Universal Single-Copy Orthologue (BUSCO)
genome statistics and core Gene Family (coreGF) transcript statistics for Populus tremula

assemblies v1.1 (Lin et al, 2018) and v2.2.

Supplementary table S4. Genomic regions (I), genes within those regions (II) and GO

enrichment results (III) of P. tremula specific genes identified from synteny analysis.

Supplementary table S5. Structural rearrangements.
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Supplementary table S6. Genes (I) GO enrichment (II) of P. tremula genes with Ka/Ks>1.

Supplementary table S7. Species- and clade-specific gene families.

Supplementary table 8. Genes (I) and GO enrichment results (II) of P. tremula specific genes

identified from gene family analysis.

Supplementary table S9. Genes (I) and GO enrichment results (II) of P. tremula expanded

gene families.

Supplementary table S10. Novel lincRNAs in aspen leaves.

Supplementary table S11. Climate data for the SwAsp, UmAsp and ScotAsp.

Supplementary table S12. Genomic regions under selection in SwAsp and UmAsp (I), genes

within those regions (II) and GO (III) and Pfam (IV) enrichment of those genes.
Supplementary table S13. Significant genome-wide association results, comparison of
ranks in the All-SNP GWAS for SNPs significant in the OCR GWAS, and details of linkage
disequilibrium in the region of chromosome 9 in the All-SNP indent width SD GWAS in
ScotAsp. SNPs and genes in linkage disequilibrium in this region.

Supplementary table S14. Significant eQTL at FDR < 0.05.

Supplementary table S15. Lists of the top-ranked genes from the All-SNP GWAS.

Supplementary figure S1. Ks distribution of P. tremula and P. trichocarpa.

Supplementary figure S2. Phylogenetic tree used to infer the analyse expansion and

contraction of gene families.
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Supplementary figure S4. |Browse view for a 246 Kbp region of chromosome 9 with tracks
displayed including Potra v2.2 gene models, Manhattan view of significant SNPs in the GWAS
in All-SNP and OCR GWAS, P. tremula-specific regions, SNPs under balancing selection, and

eQTL associations.
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