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Abstract 51 

Aspen (Populus tremula L.) is a widely distributed keystone species and a model system for 52 

forest tree genomics, with extensive resources developed for population genetics and 53 

genomics. Here we present an updated resource comprising a chromosome-scale assembly 54 

of P. tremula and population genetics and genomics data integrated into the PlantGenIE.org 55 

web resource. We demonstrate use of the diverse data types included to explore the genetic 56 

basis of natural variation in leaf size and shape as examples of traits with complex genetic 57 

architecture. 58 

 59 

We present a chromosome-scale genome assembly generated using long-read sequencing, 60 

optical and high-density genetic maps containing 39,894 annotated genes with functional 61 

annotations for 73,765 transcripts from 37,184 gene loci. We conducted whole-genome 62 

resequencing of the Umeå Aspen (UmAsp) collection comprising 227 aspen individuals. We 63 

utilised the assembly, the UmAsp re-sequencing data and existing whole genome re-64 

sequencing data from the Swedish Aspen (SwAsp) and Scottish Aspen (ScotAsp) collections 65 

to perform genome-wide association analyses (GWAS) using Single Nucleotide 66 

Polymorphisms (SNPs) for leaf physiognomy phenotypes. We conducted Assay of 67 

Transposase Accessible Chromatin sequencing (ATAC-Seq) and identified genomic regions 68 

of accessible chromatin and subset SNPs to these regions, which improved the GWAS 69 

detection rate. We identified candidate long non-coding RNAs in leaf samples and quantified 70 

their expression in an updated co-expression network (AspLeaf, available in 71 

PlantGenIE.org), which we further used to explore the functions of candidate genes 72 

identified from the GWAS. 73 

 74 
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We examined synteny to the reference P. trichocarpa assembly and identified P. tremula-75 

specific regions. Analysis of whole-genome duplication indicated differential substitution 76 

rates for the two Populus species, indicating more rapid evolution in P. tremula. A GWAS of 77 

26 leaf physiognomy traits and all SNPs in each of the three aspen collections found 78 

significant associations for only two traits in ScotAsp collection and one in UmAsp, whereas 79 

subsetting SNPs to those in open chromatin regions revealed associations for a further four 80 

traits among all three aspen collections. The significant SNPs were associated with genes 81 

annotated for developmental and growth functions, which represent candidates for further 82 

study. Of particular interest was a 177-kbp region of chromosome 9 harbouring SNPs 83 

associated with multiple leaf phenotypes in ScotAsp, with the set of SNPs in linkage 84 

disequilibrium explaining 24 to 30 % of the phenotypic variation in leaf indent depth 85 

variation.  86 

 87 

We have incorporated the assembly, population genetics, genomics and leaf physiognomy 88 

GWAS data into the PlantGenIE.org web resource, including updating existing genomics data 89 

to the new genome version. This enables easy exploration and visualisation of the genomics 90 

data and exploration of GWAS results. We provide all raw and processed data used for the 91 

presented analyses to facilitate reuse in future studies.  92 

 93 

Introduction 94 

The Populus genus encompasses around thirty broad-leaved, fast-growing tree species that 95 

occur naturally across most of the Northern hemisphere. Populus species are used 96 

extensively in short-rotation forestry and landscaping worldwide and are pioneer, keystone 97 

species. The black cottonwood, P. trichocarpa, was the first tree genome to be sequenced 98 

(Tuskan et al., 2006) after which the genomes of several other poplars, aspens and 99 

cottonwoods have been published (Yang et al., 2017; Lin et al., 2018; Ma et al., 2019; An et 100 

al., 2020; Wu et al., 2020; Zhang et al., 2020; Bai et al., 2021; Chen et al., 2023a; Bae et al., 101 

2023, Zhou et al., 2023, Shi et al., 2024), firmly establishing Populus as a model system for 102 

forest tree research with a mature genomics resource (Jansson & Douglas, 2007). The aspens 103 

(section Populus) include P. tremula and P. alba, which have ranges spanning northern 104 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2024. ; https://doi.org/10.1101/805614doi: bioRxiv preprint 

https://doi.org/10.1101/805614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Eurasia, P. tremuloides and P. grandidenta, native to North America, and P. adenopoda, P. 105 

qiongdaoensis and P. davidiana, distributed in northern and eastern Asia (Slavov & Zhelev, 106 

2010; Hou et al., 2018). They are recognised by their capacity for clonal regeneration, 107 

particularly after environmental perturbation such as fire or intense browsing (Myking et 108 

al., 2011). Other distinguishing features of aspens are their characteristic leaf tremble, and 109 

abundant variation in spring and autumn leaf colouration.  110 

 111 

The availability of a reference genome can be transformative in enabling research of a 112 

species, opening possibilities for a range of functional genomics, population genetics and 113 

comparative genomics studies. We previously described a reference genome for P. tremula 114 

(Lin et al., 2018) produced using short-read, second generation sequencing technologies. 115 

While this genome assembly provided high quality and comprehensive representation of the 116 

gene space, it was highly fragmented and lacked long-range contiguity. Such fragmentation 117 

is a common limitation of using short read sequencing technologies to assemble highly 118 

heterozygous, repeat-rich or polyploid genomes (Jiao & Schneeberger, 2017). These 119 

limitations can be alleviated or overcome, depending on the scale of the challenge, by use of 120 

third generation sequencing technologies such as those commercialised by Pacific 121 

Bioscience or Oxford Nanopore Technologies, which produce vastly longer individual 122 

sequence reads (Jiao & Schneeberger, 2017). These long reads simplify assembly, with 123 

individual sequencing reads often being sufficiently long to span a repeat element or a 124 

heterozygous region, although such haplotype resolved assembly ability also introduces its 125 

own set of challenges (Amarasinghe et al., 2020; Michael & VanBuren, 2020). These 126 

technologies can be combined with newly developed or improved methods for scaffolding, 127 

such as Hi-C or optical mapping, to further improve long-range assembly contiguity (Ghurye 128 

& Pop, 2019; Ghurye et al., 2019; Pan et al., 2019). The vastly improved contiguity achieved 129 

also facilitates use of genetic maps to anchor and orient assembled scaffolds to produce 130 

chromosome scale assemblies. Improved contiguity is essential for synteny and other 131 

comparative genome-based analyses and highly contiguous and accurate assemblies provide 132 

a more reliable resource for performing gene family and orthology analyses and for 133 

designing guide sequencing to perform genome editing using approaches such as CRISPR-134 

Cas. 135 
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 136 

We previously reported the evolutionary divergence of P. trichocarpa from the aspens, 137 

showing how natural variation has shaped genetic relationships among the 138 

European/Eurasian (P. tremula) and American (P. tremuloides and P. grandidentata) aspens 139 

(Wang et al., 2016a; Wang et al., 2016b; Lin et al., 2018; Apuli et al., 2020). An important 140 

resource for such work is the Swedish Aspen (SwAsp) collection, which exhibits considerable 141 

heritable variation in numerous phenotypes including phenology, leaf shape, specialised 142 

metabolite composition and ecological interactions (Luquez et al., 2008; Robinson et al., 143 

2012; Bernhardsson et al., 2013; Wang et al., 2018; Mähler et al., 2020) in addition to gene 144 

expression (Mähler et al. 2017). While we previously reported GWAS resulting in the 145 

discovery of a major locus for an adaptive phenological trait (Wang et al., 2018), most of the 146 

phenotypes considered to date have not yielded significant SNP-phenotype associations 147 

(Grimberg et al. 2018; Mähler et al., 2020), likely indicative of complex and highly polygenic 148 

genetic architecture (e.g., Mähler et al., 2020). However, other factors such as the fragmented 149 

nature of the v1.1 genome assembly (Lin et al., 2018), rare or non-SNP variants and a 150 

relatively small population size are also likely to contribute to the limited ability to detect 151 

significant associations (Street & Ingvarsson, 2011).  152 

 153 

Here we present a chromosome-scale genome assembly for P. tremula, which we refer to as 154 

P. tremula v2.2, generated using long-read sequences and optical and genetic maps. We 155 

demonstrate utility of this improved genome assembly by performing SNP calling and GWAS 156 

for selected leaf physiognomy traits with complex genetic architecture in three collections 157 

of wild aspen trees grown in common gardens, including the Umeå Aspen (UmAsp) collection 158 

for which we here present whole-genome resequencing data. To facilitate community access 159 

and utilisation of the various datasets available for P. tremula we have integrated them into 160 

the PlantGenIE.org web resource (Sundell et al., 2015) in addition to making all raw and 161 

processed data available at public repositories. We provide examples of how these genetics 162 

and genomics datasets can be used to explore or develop hypotheses and how the tools 163 

available at PlantGenIE.org can be used to gain additional biological insight for identified 164 

candidate genes. 165 
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 166 

Materials and Methods 167 

We extracted DNA from the individual used to generate the v1.1 assembly presented in Lin 168 

et al. (2018). For genome assembly and correction, we generated two libraries: “PacBio 169 

data”: 28,874,072,954 bases (filtered subreads, ~6̃0x coverage), Pacific Biosciences on the 170 

RSII platform (sequencing performed by Science for Life Laboratory, Uppsala, Sweden); and 171 

“Illumina data”: 108,353,739,802 bases (2̃26x coverage), Illumina HiSeq2500. We also 172 

utilised five existing RNA-Seq datasets to support gene annotation. We purified nuclei and 173 

produced an ATAC-library. We used five RNA-Seq datasets from P. tremula as supporting 174 

evidence for gene annotation. We called ATAC-Seq peaks using MACS2 v2.2.7.1 (Zhang et al., 175 

2008). 176 

 177 

To flag sequences originating from the chloroplast, we matched all unplaced scaffolds to 178 

published chloroplast sequences (Kersten et al., 2016), using blast+.  179 

We created a custom de novo repeat library using RepeatModeler v1.0.11 and subsequently 180 

masked the genome using RepeatMasker4.0.8. (http://www.repeatmasker.org). We used 181 

Trinity assemblies from all RNA-Seq datasets in conjunction with all annotated transcripts 182 

from the v1 assembly as evidence for gene annotation. We provided proteins from the v1 P. 183 

tremula assembly and the v3.0 assembly of P. trichocarpa (Tuskan et al., 2006) as protein 184 

evidence. We performed the lift-over alignments of v1.1 scaffolds to the v2.2 assembly using 185 

minimap 2 (v2.2.2, Li, 2018). We aligned the PacBio data to both the v1.1 and v2.2 assemblies 186 

using pbmm2 (v1.1.0), which uses minimap2 internally. We then performed variant 187 

detection using pbsv (v2.2.2, https://github.com/PacificBiosciences/pbsv). We aligned the 188 

transcripts and protein-coding sequences retrieved from MAKER to the NCBI nt (Wheeler et 189 

al., 2007) and UniRef90 (The UniProt Consortium, 2019) databases. For transcripts, we used 190 

Blast+ version 2.6.0+ (Altschul et al., 1990) with the non-default parameters: -e-value 1e-5. 191 

For proteins, we used Diamond version 0.9.26 (Buchfink et al., 2014). We identified and 192 

extracted the sequences aligning solely to the NCBI nt database to complement the UniRef90 193 

alignments using an ad-hoc script (available upon request). We then imported the resulting 194 

alignment files into Blast2GO (Götz et al., 2008) version 5.2. Finally, we used Blast2GO to 195 
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generate Gene Ontology (both GO and GO-Slim), Pfam (El-Gebali et al., 2018) and KEGG 196 

(Kanehisa & Goto, 2000) annotations. 197 

 198 

To calculate summary statistics of the assembly, we used QUAST v5.0.2 (Gurevich et al., 199 

2013), aligning a 20X coverage subset (generated by truncating the library to a total count 200 

of 8 * 10e9 nucleotides) of the aspen V1 2x150 PE library data (ENA: PRJEB23581) to 201 

calculate mapping percentages. We ran BUSCO v3.0.2 for both the genomic and transcript 202 

sequences. 203 

 204 

To identify homologous chromosomes between P. tremula and P. trichocarpa genomes, we 205 

used minimap2 (Li, 2018). We performed an all-versus-all BLASTP using protein sequences 206 

of P. tremula and P. trichocarpa to identify homologous gene pairs between the two species. 207 

We used MCscanX (Wang et al., 2012) to identify syntenic gene blocks. We aligned the 208 

protein sequences for duplicate gene pairs in syntenic blocks using MAFFT (Katoh & 209 

Standley, 2013). We used the PAML package (Yang, 2007) to estimate the Ks and Ka/Ks 210 

for each gene pair. 211 

 212 

We used 32 plant genomes, (Supplementary table S1, Appendix S1) to perform gene family 213 

analysis. We used Orthofinder v2.2.7 (Emms & Kelly, 2015) to cluster the genes into gene 214 

families. Gene family trees were constructed using the PLAZA pipeline (Van Bel et al., 2018), 215 

for multiple sequence alignment and tree inference. We used muscle as the multiple 216 

sequence alignment method and fasttree as the tree construction method. The species tree 217 

was inferred using STAG (https://github.com/davidemms/STAG). To estimate the 218 

divergence time, we first calibrated the species tree based on the divergence dates 219 

from Timetree (http://www.timetree.org/) and inferred the divergence time on each 220 

clade using r8s (Sanderson, 2003). We inferred the expansion and contraction of the gene 221 

families using CAFÉ (De Bie et al., 2006) and the species tree.  222 

 223 

We reprocessed the RNA-Seq data in developing terminal leaves of aspen from Mähler et al. 224 

(2020), using the v2.2 genome assembly with salmon/1.0.0 (Patro et al., 2017). We mapped 225 

expression quantitative trait loci (eQTL) using two different methods: (1) following the 226 
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method and settings used in Mähler et al. (2020) using Matrix eQTL (Shabalin, 2012), and 227 

(2) using fastJT (Lin et al., 2019) which has no underlying assumption of the phenotypic 228 

distribution. For both methods, the eQTL were considered significant at FDR < 0.05.  229 

 230 

We implemented a pipeline to identify putative long intergenic non-coding RNAs (lincRNAs) 231 

on the pre-processed RNA-Seq data. We first in silico-normalised the reads to reduce data 232 

redundancy and then reconstructed the transcriptome using a de novo assembler, Trinity (v. 233 

2.8.3; Grabherr et al., 2011; Haas et al., 2013), on which other programs were run. We 234 

retained only transcripts being expressed in the dataset, that were identified as having no 235 

coding potential by PLEK (predictor of long non-coding RNAs and messenger RNAs based on 236 

an improved k-mer scheme; v. 1.2; settings -minlength 200; A. Li et al., 2014), CNCI (Coding-237 

Non-Coding Index; v. 2; Sun et al., 2013), and CPC2 (Coding Potential Calculator version 2; v. 238 

2.0 beta; settings -r TRUE; Kang et al., 2017) and being longer than 200 nt. We kept only 239 

transcripts identified as having no coding potential by TransDecoder (version 2.8.3;  240 

https://github.com/TransDecoder/TransDecoder/wiki; Haas et al., 2013), and at a distance 241 

> 1000 nt from any annotated gene using BEDTools closest (v. 2.30.0; 242 

https://bedtools.readthedocs.io/en/latest/content/tools/closest.html; Quinlan & Hall, 243 

2010). The DESeq2 package (v. 1.42.0; Love et al., 2014) was used for differential expression 244 

analysis with the formula based on consecutive leaf developmental series, both for genes and 245 

lincRNAs. Then, lincRNAs and gene expression data were transformed to homoscedastic, 246 

asymptotical log2 counts using the variance stabilising transformation as implemented in 247 

DESeq2 (setting blind=FALSE). We retained all the genes and lincRNAs being different from 248 

na in the dds results and used their values from the ‘aware’ variance stabilising 249 

transformation as an input for the co-expression network. Thereafter, ten network inference 250 

methods were run using the Seidr toolkit (Schiffthaler et al., 2023). The networks were 251 

aggregated using the inverse rank product method (Zhong et al., 2014) and edges were 252 

filtered according to the noise-corrected backbone (Coscia & Neffke, 2017). We selected 253 

backbone8 to be used for further analyses.  254 

 255 

We measured phenotypic traits in three aspen (P. tremula) collections, two of which 256 

originate from Sweden and one from Scotland. The Swedish Aspen (SwAsp) collection of 113 257 
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individuals, collected across ten degrees of latitude and longitude (Luquez et al., 2008), is 258 

replicated in two common gardens in Sweden, one in the north (Sävar, ~64 °N) and one in 259 

the south (Ekebo, ~56 °N). The Umeå Aspen (UmAsp) collection comprises 242 individuals 260 

originating from the Umeå municipality in northern Sweden (Fracheboud et al., 2009; 261 

Robinson et al., 2014) growing in a common garden at Sävar (~64 °N). The Scottish Aspen 262 

(ScotAsp) collection of 138 trees originating from across Scotland, was cloned and grown in 263 

plots of five trees per clone, in a common garden at Forest Research, Roslin, UK (~56 °N) 264 

Harrison (2009).  265 

 266 

Details of the SwAsp and ScotAsp DNA sequencing and SNP calling have been described 267 

previously (Rendón-Anaya et al., 2021, Supplementary table S2). Samples sequenced from 268 

the previously generated data set comprising 94 genotypes from the SwAsp collection (Wang 269 

et al., 2018) have been complemented with a further five genotypes re-sequenced for P. 270 

tremula v2.2. We called SNPs and generated VCF files independently for SwAsp, UmAsp and 271 

ScotAsp (with 99, 227 and 105 unrelated individuals, respectively), containing biallelic, high 272 

quality sites along the 19 chromosomes. We also created a VCF for each collection containing 273 

a subset of all SNPs by intersecting with open chromatin regions identified by ATAC-Seq. The 274 

intersection was performed using bcftools (Danecek et al., 2021).  275 

 276 

We measured leaf physiognomy (shape and size) parameters in six leaves of three clonal 277 

replicate trees in the UmAsp common garden, and fifteen leaves sampled across five clonal 278 

replicates per genotype in the ScotAsp Roslin common garden. We sampled mature, 279 

undamaged leaves, scanned them using a flatbed scanner, and measured using LAMINA 280 

software (Bylesjö et al., 2008) following methods described in Mähler et al. (2020). We 281 

present leaves sampled from the SwAsp common gardens as reported in Mähler et al. (2020) 282 

for leaf area, leaf circularity and leaf indent depth, and a further 23 leaf shape and size 283 

metrics for the analysis with SNPs called from P. tremula v2.2. We estimated Best Linear 284 

Unbiased Predictor (BLUP) values for each of the 26 phenotypes used in the GWAS (i.e. 26 285 

phenotypes from each collection) using a custom pipeline. We used these BLUP estimates as 286 

phenotypic values to carry out GWAS in 99 SwAsp, 227 UmAsp, or 105 ScotAsp individuals 287 

for which SNP data were available and that remained after removing some samples due to 288 
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high relatedness (IDB, identity by descent > 0.4). For the GWAS, we filtered SNPs with a 289 

minor allele frequency above 5% and Hardy-Weinberg equilibrium P-value threshold of 1e-290 

6 using PLINK version 1.9. (Purcell et al., 2007). We investigated genome-wide associations 291 

using linear mixed models in GEMMA v0.98.1 (Zhou & Stephens, 2012), on (1) all SNPs, and 292 

(2) on SNPs subset to open chromatin regions. We used a 5% false discovery rate (q-value) 293 

to define associations as significant, calculated in the 'qvalue' package in R (Storey et al., 294 

2021). We annotated the SNPs using ANNOVAR v2019Oct24 to produce GWAS summary 295 

tables, adding A. thaliana homologues of the P. tremula v2.2 gene models from 296 

PlantGenIE.org. We estimated the proportion of phenotypic variation explained (PVE) by an 297 

individual SNP using the equation stated in Wang et al. (2018). We calculated marker-based 298 

heritability (h2, Kruijer et al., 2015) using ‘marker_h2’ function, in the ‘heritability’ package 299 

version 1.3 (Kruijer, 2019) in R. We visualised the gene ontology enrichments using the 300 

PlantGenIE.org tool and additional visualisation using default R scripts exported from 301 

REVIGO (Supek et al., 2011)  302 

 303 

For population genetic analysis, we discarded SNPs in SwAsp, UmAsp, and ScotAsp failing 304 

the Hardy–Weinberg equilibrium test (P-value < 1e-6) and/or with missing rate > 5%. We 305 

used SNPs with minor allele frequency >10% and missing rate <20% for linkage 306 

disequilibrium (LD) analysis. We calculated squared correlation coefficients (r2) between all 307 

pairs of SNPs that were within 50 Kbp using PopLDdecay v3.41 (Zhang et al., 2019). To 308 

analyse the population structure based on the PCA, we pruned SNPs by removing one SNP 309 

from each pair of SNPs with a between SNP correlation coefficient (r2) > 0.2 in windows of 310 

50 SNPs with a step of 5 SNPs using PLINK v1.90b6.16 (Purcell et al., 2007). We then used 311 

the smartpca program in EIGENSOFT v6.1.4 (Patterson et al., 2006) to perform a principal 312 

components analysis (PCA) on the reduced set of genome-wide independent SNPs. 313 

 314 

We calculated the composite likelihood ratio (CLR) statistic in 10 Kbp non-overlapping 315 

windows using SweepFinder2 and iHH12 (Integrated Haplotype Homozygosity Pooled) 316 

using selscan v1.3. To identify regions under positive selection, we used sliding windows 317 

containing at least 10 SNPs as input to a range of inference methods. We considered windows 318 

with the lowest 5% Tajima’s D values or highest 5% values for other as those windows 319 
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displaying evidence of signals of positive selection. We assumed genes or SNPs within these 320 

selected regions to be under selection. We ran Betascan (Siewert et al., 2017) (-fold -m 0.1) 321 

to detect possible signals of balancing selection in the ScotAsp, UmAsp and SwAsp 322 

collections. 323 

 324 

Resource overview  325 

The resource comprises the new P. tremula v2.2 genome assembly and gene annotation, 326 

genomic data sets (for example, P. tremula-specific regions, open chromatin regions, and 327 

lincRNAs), population genetics resources (SNPs and regions/SNPs under selection), both 328 

raw and processed leaf physiognomy phenotype data, and results of the leaf physiognomy 329 

GWAS analyses. The genomic resources are available at PlantGenIE.org where the genome 330 

assembly, gene annotation, gene expression data and associated co-expression networks are 331 

available through interactive tools and as flat files on the File Transfer Protocol (FTP) site 332 

(https://plantgenie.org/FTP). The assembly, open chromatin regions, lincRNAs, gene 333 

models, SNP variants and sites under selection have been made available as tracks in the 334 

JBrowse genome browser tool. The SwAsp leaf bud gene expression data and expression 335 

quantitative trait loci (eQTL) analysis presented in Mähler et al. (2017) have been updated 336 

to P. tremula v2.2. The AspLeaf dataset (Mähler et al. 2020)  was used to identify lincRNAs 337 

and an updated co-expression network including these has been included in the exNet tool. 338 

Expression data sets can also be viewed in the exImage, exPlot and exHeatmap tools. The 339 

Potra v2.2 SNPs in SwAsp, UmAsp and ScotAsp are available in VCF format at the European 340 

Variation Archive (EVA, https://www.ebi.ac.uk/eva/). The phenotype data can be accessed 341 

at the SciLifeLab Data Repository (https://figshare.scilifelab.se/): this includes original raw 342 

leaf images used for phenotyping, the images processed by the LAMINA software, raw and 343 

processed leaf physiognomy metrics, and genotypic BLUP values, in addition to the raw 344 

GWAS output tables. Scripts used to generate the results presented here, including a BLUP 345 

pipeline for preparing phenotype data for GWAS, are available at 346 

https://github.com/bschiffthaler/aspen-v2 and at 347 

https://github.com/sarawestman/Genome_paper.  348 

 349 
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Results and discussion 350 

A high-quality reference genome for Populus tremula 351 

The previously available version of the P. tremula genome (v1.1) was highly fragmented 352 

despite having good representation of the gene space (Lin et al., 2018; Supplementary table 353 

3). Such fragmentation was a common characteristic of assemblies produced using short-354 

read sequencing technologies and was especially problematic for repeat-rich and highly 355 

heterozygous genomes. The extent of fragmentation prohibited or limited analyses requiring 356 

long-range contiguity, such as synteny, made gene-family analysis error-prone and 357 

presented challenges for accurate SNP calling in hard to assemble regions. Here, we used a 358 

combination of long-read sequencing, optical and genetic maps to generate a high-quality 359 

and highly contiguous genome assembly for P. tremula. Integration with a genetic map Apuli 360 

et al. (2020) enabled anchoring and orienting of assembled contigs to form pseudo-361 

chromosomes (Figure 1A), with the final assembly having a contig N50 of 16.9 MB (Table 1), 362 

representing an order of magnitude improvement compared to the previous v1.1 genome 363 

assembly (Lin et al., 2018).  364 

 365 

Genome Assembly 366 

The v2.2 P. tremula genome assembly contains 19 pseudo-chromosomes and 1,582 unplaced 367 

scaffolds with a combined length of 408,834,716 bp and an N50 of 16.9 Mb (Supplementary 368 

table S3). Alignment of ~95 million Illumina reads (~20X coverage) yielded a mapping rate 369 

of 96.4% (compared to 97.77% in v1.1) with 94.19% (compared to 92.33% in v1.1) of 370 

paired-end reads mapped as proper pairs. The increase in proper pairs and decrease in 371 

overall mapping reflects expectations for an assembly with higher contiguity but lower per-372 

base accuracy, which is a characteristic of the PacBio sequencing reads utilised. Analysis of 373 

the genome using Benchmarking Universal Single-Copy Orthologue (BUSCO) with the 374 

embryophyta_odb10 ortholog set (Simão et al., 2015) to assess gene-space completeness 375 

identified 96% (96% in v1.1) complete BUSCOs, of which 81.7% (82.5% in v1.1) were single 376 

copy and 15.1% (14.3% in v1.1) duplicated (Supplementary table S3). The long terminal 377 

repeat (LTR) index for the assembly (Ou et al., 2018) was 6.65, with 1.42% of intact LTRs 378 

and 20.66% of total LTRs, indicative of a high-quality assembly. The improved contiguity of 379 
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the new assembly is clear when examining multiple sequences from v1.1 that align, for 380 

example, to a region of chromosome 1 (Figure 1A).  381 

 382 

Gene annotation 383 

There are 39,894 identified gene models, 37,184 of which are located on pseudo-384 

chromosomes and 2,710 on unplaced scaffolds. There are 77,949 annotated transcripts, 385 

73,765 on pseudo-chromosomes and 4,184 on unplaced scaffolds (~1.95 transcripts per 386 

gene). Functional annotations were assigned for 73,765 transcripts in 37,184 genes. Analysis 387 

of the predicted transcripts using BUSCO with the embryophyta_odb10 ortholog set showed 388 

98.1% (96.8% in v1.1) complete BUSCOs, of which 35.7% (30.2% in v1.1) were single copy 389 

and 62.4% (66.6% in v1.1) duplicated (Supplementary table S3). Similarly, the PLAZA core 390 

Gene Family (coreGF) set of genes (Veeckman et al. 2016; Bucchini et al., 2021) indicated 391 

99% completeness (99% in v1.1; Supplementary table S3). 392 

  393 

Comparative genomics analyses 394 

We utilised the improved assembly to perform gene family and comparative genomics 395 

analyses, identifying syntenic and species-specific genomic regions of P. tremula compared 396 

to P. trichocarpa. (Figure 1B). There were a large number of aspen- and P. tremula-specific 397 

genes and genomic regions (Supplementary table S4) in addition to a set of highly diverged 398 

regions (Supplementary table S5), although we acknowledge that lineage specific (orphan) 399 

genes should be viewed with caution (Weisman et al., 2020). Similar analyses to identify 400 

orphan genes in P. trichocarpa were recently reported (Yates et al., 2021), but using a far 401 

more stringent definition of orphan genes, showing that orphan genes are polymorphic in a 402 

GWAS population and integrated within co-expression networks. Species- and clade-specific 403 

gene families were identified (Supplementary tables S6), and P. tremula-specific genomic 404 

regions were enriched for the terms “non-membrane-bounded organelle” and “cell 405 

differentiation” among the set of expanded gene families (Supplementary tables S7 S8, S9). 406 

We used the tools in PlantGenIE to explore these groups of genes and their gene ontology 407 

(GO) enrichments. For example, we used the Venn tool to view the intersection of lists of P. 408 

tremula specific genes and genes in P. tremula-specific regions (Figure 1C). While this 409 

exploration did not provide us with specific insights into leaf physiognomy traits, which we 410 
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focus on below, the comparative genomics resource is available for exploration in future 411 

studies of P. tremula.  412 

 413 

Long intergenic non-coding RNAs 414 

Long non-coding RNAs (lncRNAs) are arbitrarily defined as transcripts longer than 200 nt, 415 

not producing functional proteins. If they are located entirely in the intergenic space, they 416 

are sub-classified as long intergenic non-coding RNAs (lincRNAs). In general, lncRNAs have 417 

low expression levels and tissue-specific expression. They are also characterised by a rapid 418 

evolution and a low sequence conservation between species (Chen & Zhu, 2022; Palos et al., 419 

2023). Recent reports have shown that lncRNAs participate in plant developmental 420 

regulation (Kramer et al., 2022; Chen et al., 2023b). We identified 902 putative lincRNAs in 421 

developing aspen leaves (Supplementary table S10) and integrated them into the Aspen 422 

Leaf (AspLeaf )expression data resources at PlantGenIE.org.  423 

 424 

Population genetics of SwAsp, UmAsp and ScotAsp 425 

The original locations of the samples (Figure 2A) differed among the aspen collections in 426 

climatic variables, with Scottish samples drawn from a milder, maritime climate and Swedish 427 

samples from a colder, more continental climate (Supplementary table 11). Based on whole-428 

genome re-sequencing data, and after removal of related samples and the batch correction 429 

described in Rendón-Anaya et al. (2021), we identified 12,054,692 SNPs for 99 individuals 430 

from SwAsp, 16,938,820 SNPs for 227 individuals from UmAsp, and 19,655,602 SNPs for 105 431 

individuals from ScotAsp, on chromosomes, after discarding SNPs with missing rate >5% 432 

and failing the Hardy–Weinberg equilibrium test (P-value < 1e-6). Of these SNPs, 27.4% were 433 

found within gene boundaries for SwAsp, 31.1% for UmAsp, and 31.8% for ScotAsp while 434 

33.6% were in gene flanking regions for SwAsp, 30.8% for UmAsp, and 30.6% for ScotAsp. 435 

The remaining sites were in intergenic regions. The SNP density was 33.3 SNPs/Kbp for 436 

SwAsp, 48.8 SNPs/Kbp for UmAsp and 54.3 SNPs/Kbp for ScotAsp across the 19 437 

chromosomes and was highest in the flanking regions and lowest in the CDS regions for the 438 

three aspen collections. The three collections harboured substantial levels of nucleotide 439 

diversity (π) across the genome (0.0061 in SwAsp, 0.0080 in UmAsp, and 0.0082 in ScotAsp). 440 

While the majority of SNPs (13,153,803) were shared between Swedish (UmAsp or SwAsp) 441 
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and Scottish aspens (Figure 2B), 9,539,889 SNPs were shared only between SwAsp and 442 

UmAsp, indicating the potential utility of a combined Swedish aspen resource, and there 443 

were 6,501,799 SNPs unique to ScotAsp, highlighting its differences from the Swedish 444 

collections.   445 

 446 

We used seven measures calculated in 10 Kbp non-overlapping windows to identify regions 447 

under selection in SwAsp and UmAsp using ScotAsp as an outgroup. Signatures of positive 448 

selection were identified for 589 and 653 regions, corresponding to 7.46 Mbp and 8.60 Mbp 449 

in SwAsp and UmAsp, respectively (Table S12). Only 1.57 Mbp of regions under selection 450 

were shared between SwAsp and UmAsp. Based on genome annotation, we identified 621 451 

and 633 genes under selection in SwAsp and UmAsp, respectively (Table S12) of which 123 452 

genes were in common.  453 

 454 

Population structure based on PCA clearly separated at least two independent clusters of 455 

individuals, one corresponding to ScotAsp with the other comprising SwAsp and UmAsp 456 

(Figure 2C), indicating that ScotAsp is a suitable outgroup to identify signatures of selection 457 

in SwAsp and UmAsp. This clustering pattern is consistent with previous observations by de 458 

Carvalho et al. (2010) and Rendón-Anaya et al. (2021), which have shown that the aspens 459 

from the British Isles are diverged from aspens in continental Europe. In agreement with 460 

previous results (Lin et al., 2018), genome-wide mean linkage disequilibrium (LD) measured 461 

by r2 was largest between adjacent SNP pairs (0.36 to 0.37) in the three aspen groups and 462 

decreased rapidly to 0.1 within 10 Kbp (Figure 2D). The population genetic data are available 463 

in JBrowse in PlantGenIE, where tracks can be loaded and viewed in the context of other 464 

genomic features and significant GWAS results.  465 

 466 

Natural genetic variation in leaf physiognomy phenotypes 467 

The leaves of P. tremula are rounded with irregular serrations, hereafter termed indents. In 468 

previous leaf physiognomy analyses we reported natural genetic variation in ten traits 469 

(Bylesjö et al., 2008), and three representative traits (‘leaf area’, ‘circularity’, and ‘ident 470 

depth’; Mähler et al., 2020) in the SwAsp collection. Here we present 26 traits (Appendix S2) 471 

measured in the two SwAsp common gardens in each of two years, and in the UmAsp and 472 
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ScotAsp common gardens in a single year. The raw image files of the sampled leaves, the 473 

annotated images indicating measured parameters (Figure 3A) and data output from the 474 

measurement software (LAMINA, Bylesjö et al., 2008), are available at the associated 475 

Figshare data repository (see data availability statement for details). There was a clear 476 

shared genetic component among indent traits and shape traits (Figure 3B), with high 477 

genetic correlations between ‘Squared Perimeter/Area’ and each of ‘indent depth’ and 478 

‘indent depth standard deviation (SD)’. Leaf size traits were all positively genetically 479 

correlated, with high correlations among length traits and among width traits, and to a 480 

moderate extent between length and width traits (Figure 3B). Narrow-sense (‘chip’) 481 

heritability was greater for shape and indent traits than size traits (3C, Appendix S2), with 482 

the exception of the composite trait ‘indent density,’ which had low heritability (h2 = 0.138). 483 

There was clear separation of size traits from shape and indent traits in the first principal 484 

component (PC1) of a PCA of all 26 leaf metrics in the three populations. While PC1 explained 485 

43.5 % of the variation in this combined data set and an overall intersection among ScotAsp, 486 

SwAsp and UmAsp, there was a tendency towards larger leaves (i.e. smaller values of PC1) 487 

in ScotAsp. The heritability estimates and shared multivariate space among the three aspen 488 

collections, together with number of common SNPs, favour the integration of these traits and 489 

collections in genetic analyses. The processed phenotype data, including composite leaf 490 

physiognomy traits (Appendix S2) and BLUPs are available at Figshare.  491 

 492 

GWAS in open chromatin regions enhances detection of  SNP-phenotype associations 493 

Leaf physiognomy traits appear to be highly polygenic, yet highly heritable, with variation 494 

among individuals resulting from numerous small-scale effects (Mähler et al., 2020). In such 495 

cases it is common that no significant genetic associations are identified, with huge sample 496 

sizes needed to detect such small-scale effects. Other factors, such as incomplete genome 497 

assembly, can also prohibit detection of sequence-based genetic markers in hard-to-498 

assemble regions of the genome. While we previously reported our GWAS study in three leaf 499 

physiognomy traits in SwAsp using the previous genome assembly version, here we 500 

conducted GWAS on 26 leaf physiognomy metrics in each of the SwAsp, UmAsp and ScotAsp 501 

populations, taking advantage of the substantially higher number of SNP markers called 502 

using the improved v2.2 genome assembly. In the GWAS including all SNPs (All-SNP GWAS), 503 
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we detected significant (q-value < 0.05) associations for vertical size 75% (L75) in UmAsp, 504 

while in ScotAsp there were associations for ‘indent width SD’ (the standard deviation of 505 

indent width) and circularity (Supplementary table S13). No significant associations were 506 

identified in the SwAsp All-SNP GWAS. A GWAS that includes several million SNPs in a 507 

relatively small population may fail to detect associations for complex traits due to 508 

adjustments for multiple testing. Inspired by work in maize (Rodgers-Melnick et al., 2016) 509 

demonstrating that open chromatin regions harbour much of the genetic variation for 510 

quantitative traits, we generated ATAC-Seq data from P. tremula leaves to identify regions of 511 

open chromatin (open chromatin regions, OCRs). We then subset SNPs to only those regions, 512 

and ran GWAS using these SNP subsets (OCR GWAS). This resulted in 212,902 SNPs in 513 

ScotAsp, 185,616 in SwAsp and 220,009 in UmAsp. The genomic context distribution 514 

differed between the All-SNP and OCR-SNP sets with a greater proportion of SNPs in 515 

up/downstream, UTR and exonic regions, and a lower proportion of SNPs in intergenic 516 

regions, in the OCR-SNP set (Figure 4). OCR GWAS resulted in ten, five and four significant 517 

associations (q-value > 0.05) in ScotAsp, UmAsp and SwAsp respectively for three, two and 518 

two leaf traits respectively (Supplementary table S13). These associations ranked highly in 519 

the All-SNP GWAS, despite in most cases falling below the q-value threshold (Table 2). 520 

Significant OCR-GWAS associations intersected with significant All-SNP GWAS associations 521 

in the case of only one ScotAsp trait (indent width SD).  522 

 523 

Genome-wide associations suggestive of leaf development processes 524 

We looked for signals of leaf developmental processes in the GWAS results, first by 525 

examining expression patterns in the AspLeaf data set for all genes with significant SNPs in 526 

the GWAS. Of the 25 genes associated with SNPs in the GWAS, 24 had expression data in the 527 

AspLeaf data resource, and 18 of those had a clear gradient of expression from the apex or 528 

youngest leaf to the oldest leaf. Next, we examined the annotations of genes associated with 529 

significant SNPs in both the All-SNP and OCR GWAS and noted that the majority are 530 

annotated with functions that include plant developmental processes (Table 3). Significant 531 

SNPs for ScotAsp indent width SD in the All-SNP GWAS (Supplementary table S13) included 532 

a pescadillo homologue (Potra2n4c9542), important in leaf growth, in particular through 533 

control of ribosomal biogenesis affecting leaf cell division, expansion, and pavement cell 534 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2024. ; https://doi.org/10.1101/805614doi: bioRxiv preprint 

https://doi.org/10.1101/805614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

differentiation and (Cho et al., 2013; Ahn et al., 2016), and  a FAB1-like gene (Potra2n1c1433) 535 

also annotated as a phosphatidylinositol-3-phosphate 5-kinase,  important for auxin 536 

signalling and normal plant development (Hirano et al., 2011; Baute et al., 2015). The three 537 

significant SNP associations for ScotAsp circularity in the All-SNP GWAS were in linkage 538 

disequilibrium and located on chromosome 17 in intronic and exonic regions of 539 

Potra2n17c30934, which is annotated as a "PATRONUS 1-like isoform X1 protein" and 540 

carries the GO identifier, "regulation of mitotic cell cycle." PATRONUS1 is reported to have 541 

an important role in cell division in plants (Cromer et al., 2019). In the UmAsp All-SNP GWAS, 542 

the 11 significant SNPs were located in upstream, exonic, intronic and 5’ UTR regions of 543 

Potra2n3c7046 and in an intergenic region with Potra2n3c7047 (Supplementary table S13). 544 

The A. thaliana homologues of these two genes are, respectively, AT5G13390 (‘No exine 545 

formation 1’), important in pollen wall development (Ariizumi et al., 2004), and AT1G28130, 546 

an Auxin-responsive GH3 family protein that regulates auxin metabolism and distribution 547 

and plant development (Zheng et al., 2016; Guo et al., 2022). In the SwAsp OCR-GWAS, two 548 

SNPs in the 5’ UTR region of Potra2n1c2680 were associated with indent width SD. The A. 549 

thaliana homologue of Potra2n1c2680 is involved in several plant developmental processes 550 

(Xiao et al., 2021).  551 

 552 

Combined data resources reveal variation in leaf base angle 553 

Two SNPs from the SwAsp OCR GWAS were associated with leaf base angle (W75/Width). 554 

Both of these SNPs are located in an intron of Potra2n5c11907 (Supplementary Figure 3A), 555 

which is annotated as LLGL scribble cell polarity complex, a transcription factor that in A. 556 

thaliana is a Transducin/WD40 repeat-like superfamily protein (AT4G35560). The WD40-like 557 

transcription factors have roles in various developmental processes including organ size 558 

determination (Gachomo et al., 2014; Guerriero et al., 2015; Yang et al., 2018). The phenotypic 559 

BLUP values for leaf base angle were significantly partitioned by the chr5_13736867 SNP allele 560 

groups in the SwAsp collection (Supplementary Figure 3B), and the individuals with the 561 

greatest and smallest phenotypic values (SwAsp 114 and SwAsp 4, which belong to the 562 

contrasting allele groups), can be identified using the phenotype files at the Figshare data 563 

repository. The cropped LAMINA output images of these can be downloaded from Figshare and 564 

leaf shape features compared. In this particular case, the two genotypes differed markedly in leaf 565 
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base angle (Supplementary Figure 3B). The phenotypic values were, however, somewhat 566 

variable for the allele groups for this SNP, which is consistent with the polygenic nature of leaf 567 

shape determination. As such, not all ScotAsp genotypes with two recessive alleles for this SNP 568 

had a steep leaf base angle. Following a similar approach, the expression of Potran2n5c11907 in 569 

the data set from developing SwAsp leaf buds can be partitioned by SNP alleles for 570 

chr5_13736867 (Supplementary Figure 3C). While in this case the interpretation is not 571 

straightforward, it serves to demonstrate the integration of available data resources to explore 572 

characteristics of identified candidate genes and to help prioritise among candidates. 573 

 574 

A 177-kbp region associated with leaf shape phenotypes in Scottish aspen 575 

The All-SNP associations for ScotAsp indent width SD included 122 SNPs on chromosome 9, 576 

which intersected with significant SNPs in the ScotAsp OCR GWAS for the same trait, as well 577 

as indent density and indent depth SD (Supplementary table S13). These SNPs were located 578 

within a region spanning ~177 kbp on chromosome 9 (Supplementary Figure 3). Many of 579 

the SNPs in this region were in linkage disequilibrium (LD) and of the 15 genes in this region, 580 

12 were associated with SNPs in the ScotAsp GWAS at q-value < 0.05 (Supplementary table 581 

S13; Table 3). The proportion of variance explained (PVE) by any single SNP among these 582 

significant associations was moderate, ranging from 0.23 to 0.30 (Supplementary table S13). 583 

These SNPs were distributed across various genomic contexts in the 12 genes, all with 584 

functions suggestive of roles in leaf development. These included a SIZ1-like isoform that is 585 

a PHD transcription factor (Potra2n9c199982), involved in cell division and expansion 586 

(Catala  et al., 2007; Miura et al., 2010; Mouriz et al., 2015), an ARF10 auxin response factor 587 

(Potra2n9c199984) involved in auxin signalling during leaf development (Hendelman et al., 588 

2012; Liu et al., 2007; Ben-Gera et al., 2016), and two periphrins/tetraspanins 589 

(Potra2n9c199975, Potra2n9c199981), involved in numerous cell proliferation and tissue 590 

patterning processes (Wang et al., 2015; Reimann et al., 2017).  Expression in the AspLeaf 591 

dataset, as observed using the exImage tool at PantGenIE.org, showed a gradient of relative 592 

expression across the developmental stages of the terminal leaves in eight of these 12 genes, 593 

which was most pronounced for Potra2n9c199975, Potra2n9c199981, Potra2n9c199982, 594 

Potra2n9c199984 and Potra2n9c199985. This suggests that these genes are 595 

developmentally regulated. While the 12 genes were significantly associated with only four 596 
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traits, each of the genes occurred in the top-ranked 1000 genes of at least three, and up to 597 

13, ScotAsp traits (Supplementary table S13), suggesting that these genes contribute to 598 

multiple leaf physiognomy phenotypes in Scottish aspens. In contrast to ScotAsp, these 12 599 

genes were not highly ranked in the SwAsp and UmAsp GWAS and would thus appear to 600 

make a negligible contribution to leaf size and shape variation in Swedish aspens. In SwAsp 601 

only Potra2n9c199985 and Potra2n9c19972 were present in the top-ranked 1000 genes for 602 

two traits, Area and Length:Width ratio respectively (Supplementary table S13), and for 603 

UmAsp, none of these 12 genes were ranked in the top 1000 genes.  This reflects the 604 

demographics of SNPs at this locus in the other collections; of the 122 significant SNPs for 605 

this trait in ScotAsp, only 25 SNPs were present in the SwAsp in the SwAsp VCF, with a 606 

median minor allele frequency (MAF) of 0.122, and while 119 of the 122 SNPs were present 607 

in UmAsp the median MAF was 0.092, indicating that the variation at these sites is higher in 608 

ScotAsp (median MAF = 0.302). Only two of the top 1000 genes for Indent width SD for this 609 

trait intersected among all three collections, however these (Potra2n1c1769 and 610 

Potra2n3c8236) did not have apparent annotations relevant to leaf developmental 611 

processes. This example suggests that there is substantial control of natural variation in leaf 612 

shape phenotypes determined by SNPs at this locus on chromosome 9 and that this is specific 613 

to Scottish aspen. Since ScotAsp separates from SwAsp and UmAsp in the SNP PCA (Figure 614 

2C), it is not unexpected that the complex leaf phenotypes in the Swedish and Scottish 615 

populations do not share this GWAS locus. 616 

 617 

Combined resources aid genomic exploration of SNP-phenotype associations 618 

Many of the gene annotations in the GWAS results have plausible biological links to leaf 619 

physiognomy traits. However, these interpretations are speculative, especially for 620 

associations of relatively low PVE and where few individuals are homozygous for the minor 621 

allele. In such cases it can be useful to consult several lines of evidence to evaluate the 622 

plausibility of the functional link. To demonstrate utility of the Potra v2.2 genomics data 623 

available within PlantGenIE.org for such explorative analyses, we examined the associations 624 

to Potra2n10c20533, one of the genes associated with indent width SD in the ScotAsp All-625 

SNP GWAS, appearing as a small peak on the Manhattan plot for this trait (Figure 5A). The 626 

annotation of Potra2n10c20533 is a putative protein transport protein Sec24A, with the 627 
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most sequence-similar gene in A. thaliana (AT3G07100) having a role in endoplasmic 628 

reticulum maintenance and cell size regulation in sepals (Nakano et al., 2009; Qu et al., 2014). 629 

The Potra2n10c20533 gene harbours a significant SNP 1962 bp upstream from the 630 

annotated transcription start site, and eight SNPs in the intergenic region between 631 

Potra2n10c20532 (a Cation efflux family protein associated with manganese tolerance in A. 632 

thaliana; Peiter et al., 2007) and Potra2n10c20533 (Supplementary table S13). To reveal the 633 

potential biological function of these associations, we used the exNet tool at a lenient 634 

threshold P-value 10-1 to identify first degree neighbours of Potra2n10c20533 in the AspLeaf 635 

dataset co-expression network (Figure 5B). Functional enrichment of these co-expressed 636 

genes identified GO categories for cell expansion (Figure 5C). The network visualisation 637 

using exNet (Figure 5B) showed that the set of 205 co-expressed genes included 29 638 

transcription factors (TFs; i.e. 14 % were TFs) and two lincRNAs. Using the gene expression 639 

visualisation tools available at PlantGenIE.org we explored the expression of these lincRNAs 640 

within the AspLeaf datasets, revealing a gradient of expression across the terminal leaf 641 

development stages (Figure 5D). This revealed that the two lincRNAs were negatively 642 

correlated to more than 100 of the first-degree neighbours of Potra2n10c20533. Use of the 643 

JBrowse tool at PlantGenIE.org also enabled us to view the significant SNPs in the GWAS 644 

region around Potra2n10c20533 in the context of the Potra v2.2. gene models and co-645 

locating eQTL (Figure 5E). Mapping of eQTL was conducted using two different methods; 646 

using Matrix eQTL, we identified 466,966 significant (FDR < 0.05) eQTL, whereas the more 647 

conservative method using fastJT identified 173,080 significant eQTL (Supplementary table 648 

S14). The JBrowse tool enabled the easy visualisation of trans eQTL acting on ten genes 649 

identified using Matrix eQTL that co-located with intergenic SNPs in the GWAS between 650 

Potra2n10c20532 and Potra2n10c20533. Use of the Enrichment tool of PlantGenIE.org for 651 

this set of ten trans eQTL genes showed Pfam enrichment terms for categories relevant to 652 

plant organ development (Figure 5F), including Phosphatidylinositol-4-phosphate 5-653 

Kinases (Watari et al., 2022), MORN repeats (Lee et al., 2010), and K-Box regions (Uchida et 654 

al., 2007). In the same intergenic region, there was one cis eQTL (FDR = 0.023), for the 655 

expression of Potra2n10c20525, which is annotated as dirigent protein; this gene class is 656 

involved in cell wall biosynthesis and growth as well as stress resistance (Paniagua et al., 657 

2017). Overall, these relatively straightforward uses of the available data sets enable us to 658 
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establish that the significant SNPs on chromosome 10 in ScotAsp are associated with 659 

lincRNAs and transcripts potentially involved in leaf development processes, that these vary 660 

in expression during leaf development, and that local SNPs are associated with the 661 

expression (eQTL) of developmental genes in SwAsp. While speculative, this demonstrates 662 

how in silico tools can be used to integrate evidence from a diverse range of genomics and 663 

population genetics data to develop hypotheses and to prioritise among candidate genes for 664 

downstream characterisation work. 665 

 666 

 667 

Conclusions 668 

The improved genome assembly and population genetics data presented here, and from 669 

numerous existing studies, have been updated to the v2.2 genome and integrated into 670 

PlantGenIE (Sundell et al., 2015) to serve as a comprehensive community resource to 671 

facilitate hypothesis exploration and generation. To demonstrate the value and utility of the 672 

improved genome resource detailed here we performed GWAS for leaf physiognomy 673 

phenotypes in three aspen collections. We demonstrate use of the PlantGenIE.org resource 674 

to explore the Potra2n10c20533 gene that harbours a SNP associated to the standard 675 

deviation of leaf indent width. This is coupled with a complete phenotype data resource for 676 

the leaf physiognomy traits studied. The data presented is all publicly available, as 677 

summarised in Figure 6. Genomic resources in aspen have facilitated the characterisation of 678 

adaptive traits (Wang et al., 2018), omnigenic traits (Mähler et al., 2020), and the use of 679 

GWAS as a tool to guide candidate gene discovery (Grimberg et al., 2018) in addition to 680 

functional genomics insights into wood formation (Sundell et al., 2017) and sex 681 

determination (Muller et al., 2020), among others. Integration of these data in 682 

PlantGenIE.org enables rapid exploration of hypotheses, for example the potential functional 683 

role of candidate genes and can help in selecting among candidates for downstream studies 684 

to investigate and elucidate their functional and adaptive significance.  685 
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Table 1. Summary statistics for Populus tremula genome assemblies v1.1 (Lin et al., 2018) 1313 

and v2.2. GC content statistics were calculated using the unmasked genome. 1314 

 1315 
Statistic P. tremula v1.1 P. tremula v2.2 

# contigs (>= 0 bp) 204318 1601 

# contigs (>= 1000 bp) 31632 1584 

# contigs (>= 5000 bp) 7267 1339 

# contigs (>= 10000 bp) 5151 986 

# contigs (>= 25000 bp) 3209 491 

# contigs (>= 50000 bp) 1789 255 

Total length (>= 0 bp) 386236512 408834716 

Total length (>= 1000 bp) 328536064 408824553 

Total length (>= 5000 bp) 277117215 407999588 

Total length (>= 10000 bp) 262322877 405364617 

Total length (>= 25000 bp) 231504505 397478443 

Total length (>= 50000 bp) 180499961 389097052 

# contigs 12044 1489 

Largest contig 418873 53234430 

Total length 294670244 408605800 

GC (%) 33.56 33.87 

N50 69979 16928776 

N75 29987 13637973 

L50 1227 9 

L75 2826 15 

# N’s per 100 Kbp 5428.58 6573.91 

Reads aligned (%) 97.77% 96.40% 

Reads properly paired (%) 92.33% 94.19% 

 1316 

 1317 
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Table 2. Comparison of of SNP-trait associations ranked by signficance (by association P-

value) in the genome wide association (GWAS) analysis of leaf physiognomy traits in the 

ScotAsp, SwAsp and UmAsp collections. For each association significant at q-value < 0.05, the 

rank of the SNP is shown in the OCR GWAS (GWAS using SNPs filtered to open chromatin 

regions) compared to the rank in the All-SNP GWAS (using SNPs filtered only by excess 

heterozygosity, Hardy-Weinberg Equlibrium P-value and minor allele freqency, see 

materials and methods for details).  

Population Trait SNP 
OCR GWAS 
rank 

All-SNP GWAS 
rank 

ScotAsp Indent density chr9_10684216_G_A 1 3 

  chr9_10684306_T_A 2 4 

  chr9_10684389_C_T 3 5 

 Indent depth SD chr9_10684114_T_G 1 2 

  chr9_10684216_G_A 2 4 

  chr9_10684306_T_A 3 5 

 Indent width SD chr9_10684216_G_A 1 15 

  chr9_10684306_T_A 2 16 

  chr9_10684389_C_T 3 19 

  chr9_10646677_G_C 4 90 

SwAsp Length 75% / Width chr5_13736867_T_G 1 5 

  chr5_13736875_A_C 2 7 

SwAsp Indent width SD chr1_31893859_G_A 1 6 

  chr1_31894106_A_T 2 7 

UmAsp Indent density chr16_10033126_C_G 1 4 

  chr16_10033093_C_T 2 10 

  chr16_10033097_C_T 3 11 

  chr16_10032951_G_T 4 15 

UmAsp Squared Perimeter/ Area chr11_432652_C_A 1 2 
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Table 3. Summary of significant (q-value < 0.05) association mapping statistics of leaf physiognomy traits in separate Genome-

Wide Association Studies (GWAS), in each of the Swedish (SwAsp), Umeå (UmAsp) and Scottish (ScotAsp) aspen collections. 

Traits are described in detail in Appendix S2. ‘Gene’ = Potra v2.2 gene model associated with the genomic context of the 

significant SNP(s). ‘Gene Description’ and ‘TF’ respectively indicate the functional description of the gene and its transcription 

factor family (if applicable). ‘GWAS’ indicates the SNP background for the GWAS: ‘All’ = all filtered (minor allele frequency >0.05) 

SNPs in the genome; ‘OCR’ = all SNPs subset to only those in open chromatin regions. 'No. SNPs' = number of significant SNP-

phenotype associations at q-value < 0.05. ‘PVE’ = maximum proportion of phenotypic variation explained by an individual SNP 

associated with the gene and trait. ‘q-value’ = minimum association q-value for any SNP associated with the gene and trait. 

‘Genomic context’ = position of the gene relative to genomic features; if intergenic the minimum distance (bp) is stated. 

Gene Gene description TF Trait Collection GWAS No. 

SNPs 

PVE q-value Genomic context(s) 

Potra2n1c1388, 

Potra2n1c1389 

Galactinol synthase 3; 

NA 

  Indent width SD ScotAsp All 1 0.232 0.049 intergenic Potra2n1c1388 (12517), 

Potra2n1c1389 (3271) 

Potra2n1c1433 1-phosphatidylinositol-

3-phosphate 5-kinase 

FAB1B-like isoform X3 

PHD Indent width SD ScotAsp All 1 0.246 0.027 upstream 

Potra2n1c2680 GDSL esterase/lipase 
 

Indent width SD SwAsp OCR 2 0.223 0.032 UTR5 

Potra2n3c7046 No exine formation 1 
 

Length 75% UmAsp All 11 0.251 0.047 intron; exon (synonymous SNV, 

nonsynonymous SNV); upstream; 

UTR5; intergenic (297) 

Potra2n3c7047 Auxin-responsive GH3 

family protein 

 
Length 75% UmAsp All 2 0.251 0.047 intergenic (4017) 

Potra2n4c9542 Pescadillo homolog 
 

Indent width SD ScotAsp All 1 0.238 0.037 upstream 

Potra2n5c11907 Lgl_C domain-

containing protein 

WD40-

like 

Length 75% /  

Width 

SwAsp OCR 2 0.250 0.01 intron 

Potra2n9c19972, 

Potra2n9c19973 

Protein FANTASTIC 

FOUR 3,  U-box 

domain-containing 

protein 56 

 
Indent width SD ScotAsp All 1 0.230 0.046 intergenic Potra2n9c19972 (73022), 

Potra2n9c19973 (9137) 

Potra2n9c19974 U-box domain-

containing protein 57 

 
Indent width SD ScotAsp All 1 0.232 0.048 Intergenic Potra2n9c19974 (5722), 

Potra2n9c19975 (2725) 
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Potra2n9c19975 RNA 3'-terminal 

phosphate cyclase 

 
Indent width SD ScotAsp All 1 0.250 0.023 UTR3; intergenic (2725) 

   
Indent width SD ScotAsp OCR 1 0.240 0.024 UTR3 

Potra2n9c19979 Mitochodrial 

transcription 

termination factor-

related 

 
Indent width SD ScotAsp All 9 0.031 0.241 downstream; UTR3 

Potra2n9c19981 Putative 

tetraspanin/Peripherin 

 
Indent density ScotAsp OCR 3 0.260 0.013 UTR5 

   
Indent depth SD ScotAsp OCR 3 0.252 0.024 UTR5 

   
Indent width SD ScotAsp All 10 0.300 0.015 intron; upstream; UTR5; intergenic 

(8076)      
OCR 4 0.278 0.004 UTR5 

Potra2n9c19982 SUMO-protein ligase 

SIZ1-like isoform X2 

PHD Indent width SD ScotAsp All 6 0.249 0.02 intron; upstream; intergenic (3221) 

Potra2n9c19983 Transmembrane protein 

209 

 
Indent width SD ScotAsp All 80 0.300 0.015 UTR3; intergenic (11593) 

Potra2n9c19984 AP2/ERF and B3 

domain-containing 

protein 

ARF Indent width SD ScotAsp All 91 0.300 0.015 Exon (nonsynonymous SNV, 

stoploss); upstream; UTR3; 

intergenic (2032) 

Potra2n9c19985 Uncharacterized 

LOC102615152 

(LOC102615152), 

transcript variant X9, 

mRNA 

 
Indent width SD ScotAsp All 2 0.281 0.015 downstream; 

upstream&downstream;  

Potra2n9c19986 Serine/threonine-protein 

phosphatase 6 

regulatory subunit  

 
Indent width SD ScotAsp All 1 0.248 0.026 downstream 

Potra2n10c20532, 

Potra2n10c20533 

Cation efflux family 

protein; Sec23/Sec24 

protein transport family 

protein 

 
Indent width SD ScotAsp All 9 0.248 0.026 upstream; intergenic 

Potra2n10c20532 (2451), 

Potra2n10c20533 (2756) 

Potra2n11c22413, 

Potra2n11c22414 

Kinesin-like protein 

costa; Uridine kinase 

 
Squared 

Perimeter/Area 

UmAsp OCR 1 0.118 0.021 intergenic Potra2n10c20532 (2875); 

intergenic Potra2n10c20533 (3890) 

Potra2n16c30252 Lectin_legB domain-

containing protein 

 
Indent density UmAsp OCR 4 0.110 0.046 upstream 

Potra2n17c30934 PATRONUS 1-like 

isoform X1 

  Circularity ScotAsp All 3 0.295 0.035 intron; exon (nonsynonymous SNV) 
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Figure legends 

 

Figure 1. Overview of the P. tremula v2.2. genome. (A) Comparison of a 47.1 Kbp region 

of P. tremula chromosome 1 showing the P. tremula v2.2 gene models and a liftover of the P. 

tremula v1.1 genome and transcripts, rendered in the JBrowse tool in PlantGenIE. The region 

in turquoise highlights an example of a longer scaffold in P. tremula v1.1 containing a gene. 

(B) Synteny and structural rearrangements between P. tremula and P. trichocarpa. (C) Venn 

diagram created using the Venn tool in PlantGenIE, showing the intersection of genes in P. 

tremula-specific regions and the P. tremula-specific genes identified from synteny analysis.   

 

Figure 2. Overview of genome-wide association study using three aspen collections. 

(A) Map indicating the original sampling locations of the individual wild trees in the aspen 

collections from Scotland (ScotAsp), Sweden (SwAsp) and the Umeå municipality in 

Sweden (UmAsp) that were included the genetic analyses after removal of related samples.  

(B) Number of biallelic SNPs, filtered by Hardy-Weinberg Equilibrium P-value > 1e-6 and 

missingness < 5%, in the ScotAsp, SwAsp and UmAsp collections. Coloured bars on the left 

indicate total number of SNPs in each collection, linked points indicate membership of 

intersections among collection, with numbers in intersections shown in the vertical bars 

above. Single points indicate sets of SNPs exclusive to one population. (C) Principal 

components plot of the first two principal components (PCs) of pruned, unrelated SNPs (LD 

r2 <0.2) to show population structure in the ScotAsp, SwAsp and UmAsp collections. 

Proportion of variance explained by each PC is indicated in parentheses. (D) Rates of 

linkage disequilibrium decay in the ScotAsp, SwAsp and UmAsp collections.  

 

Figure 3. Overview of leaf physiognomy metrics. (A) Example processed leaf image from 

LAMINA software, with annotations indicating the Indent width, Indent depth, the Length 

and Width axes, and length and width at 25% (L25, W25) and 75% (L75 and L25) along each 

perpendicular axis. (B) Heatmap of genetic correlations of measured leaf physiognomy traits 

in the Umeå aspen (UmAsp) collection. Composite traits are excluded to reduce redundancy. 
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Scale bar indicates genetic correlation rG values. Coloured bars indicate category of either 

‘Size’ (leaf shape metrics) or ‘Shape/Indent’ (size and indent metrics). Hierarchical 

clustering between the clusters uses the complete linkage method. (C) Marker-based 

heritability, h2, of 26 shape and size/indent leaf physiognomy metrics in the UmAsp 

collection.  All trait metrics are described in Appendix S1. (D) Principal components loadings 

plot indicating the loading scores of size and shape metrics indicated in Appendix S2 and the 

associated Principal Components Analysis (PCA) plot (E) for 26 leaf physiognomy metrics in 

Scottish (ScotAsp), Swedish (SwAsp) and UmAsp (UmAsp) collections. Proportion of 

variance explained by each component is in parenthesis. In all cases, means are omitted for 

Indent length and Indent width to avoid redundancy, since medians are included for these 

traits. 

 

Figure 4. Comparison of the percentage of SNPs located in different genomic contexts 

in two GWAS backgrounds in the SwAsp collection. GWAS was first conducted using “All 

SNPs” (all the genome-wide SNPs filtered on SNP quality including Excess Heterozygosity, 

Hardy Weinberg P-value, and minor allele frequency > 0.05) (left panel). The set of 6,806,717 

“All SNPs” was filtered to those only those 185,616 SNPs in open chromatin regions (“SNPs 

in OCRs”, right panel). The percentage of SNPs in each genomic context category was 

calculated from the total number in the set used for the GWAS. Genomic contexts were 

assigned using ANNOVAR with flanking regions defined as 2000 bp.  

 

Figure 5. Genome-wide Single Nucleotide Polymorphism (SNP) associations for leaf 

shape in the Scottish Aspen collection (ScotAsp) and exploration of results in 

PlantGenIE. (A) Manhattan plot distribution of SNP associations for leaf indent width 

standard deviation (SD) in ScotAsp, where the red line indicates significance at q-value < 

0.05 and the blue line is ‘suggestive significance’ at q-value < 0.1. Significant SNPs/groups of 

SNPs are annotated with the name of the associated Potra v2.2 gene; full details in Table 3. 

(B) A peak in the Manhattan plot indicates significant Single Nucleotide Polymorphisms from 

the Genome-Wide Association Study for leaf indent width SD on chromosome 10 comprises 

nine associated SNPs significant at q-value < 0.05, eight of which are located in an intergenic 

region between Potra2n10c20532 and Potra2n10c20533, and one located upstream of 
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Potra2n10c20533, annotated as a Sec23/Sec24 transport family protein. The genes co-

expressed with Potra2n10c20533 were examined in the exNet tool using the "Expand 

network" button to visualise first degree neighbours selected at P-value threshold 10-1 with 

genes shown as circles, transcription factors shown as triangles, and lincRNAs shown as 

yellow diamonds. (C) The resulting list of co-expressed 205 genes was tested using the 

Enrichment Tool to perform a gene ontology (GO) over-enrichment test and visualised using 

REVIGO. Circles representing the GO categories are scaled to the size of the term in the gene 

ontology database and coloured by enrichment -log10(P-value). (D) Co-expressed genes of 

Potra2n10c20533 were examined using the exImage tool, where it is possible to view the 

expression of the gene in the AspLeaf dataset of gene expression in terminal leaves; the 

example here is a lincRNA, TRINITY_DN12299_c0_g1_i2, with contrasting relative 

expression across the leaf development series. Shading of the exImage dataset is scaled as 

the relative mean difference between the greatest and least expression values. (E) Example 

of the use of JBrowse showing the region of chromosome 10 including Potra2n10c20532 and 

Potra2n10c20533, with tracks showing the co-location of significant GWAS results (q-value 

<0.05) for leaf indent width SD in ScotAsp, one cis-eQTL in Potra2n10c20533, ten trans-eQTL 

in the intergenic regions acting on ten individual genes, and an open chromatin region. (F) 

Use of the Enrichment tool showing Pfam enrichments for the set of ten genes acted on by 

trans-eQTL  shown in (E).  

 

Figure 6. Overview of data accessibility for the genome and population genetics 

resource. The datasets that we present are grouped into three main sections: the Genome, 

Gene family analyses and population genetics, and Phenotype data. Boxes with each data set 

presented here are linked by arrows showing related data types and coloured by source of 

data accessibility: PlantGenIE.org = as a browsable tool / flat file available in at 

PlantGenIE.org; ENA = file available at the European Nucleotide Archive; FigShare = files 

available for download from FigShare at the SciLife Data Repository; Supplementary file = 

supplementary files available with this article at the publisher’s website. Samples from 

which the data files are derived are: SwAsp, the Swedish Aspen collection; UmAsp, the Umeå 

aspen collection; ScotAsp, the Scottish Aspen collection; Genome, the original tree that was 
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sequenced for the genome assembly; LeafDev, the gene expression data set from developing 

aspen leaves described in Mähler et al. (2020).   

 

 

Supporting information files 

 

Appendix S1. References to Table S2 of the plant genomes included in the gene family 

analysis. 

 

Appendix S2. An overview of the metrics measured along the proximodistal and 

centrolateral leaf axis by default in the LAMINA software. Additional leaf physiognomy 

measurements to LAMINA defaults. All leaf metrics in the LAMINA analyses, phenotype data, 

trait names, types, and inclusion Genome-Wide Association study. Narrow-sense or ‘chip’-

heritability estimates for leaf size and shape traits measured in the Umeå Aspen (UmAsp) 

collection.  

 

Supplementary table S1. Plant genomes included in the gene family analysis. 

 

Supplementary table S2. Details of samples from the UmAsp collection for DNA-Seq 

analysis and details of SwAsp and ScotAsp samples.  

 

Supplementary table S3. Benchmarking Universal Single-Copy Orthologue (BUSCO)  

genome statistics and core Gene Family (coreGF) transcript statistics for Populus tremula 

assemblies v1.1 (Lin et al., 2018) and v2.2.  

 

Supplementary table S4. Genomic regions (I), genes within those regions (II) and GO 

enrichment results (III) of P. tremula specific genes identified from synteny analysis. 

 

Supplementary table S5. Structural rearrangements. 
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Supplementary table S6. Genes (I) GO enrichment (II) of P. tremula genes with Ka/Ks>1. 

 

Supplementary table S7. Species- and clade-specific gene families. 

 

Supplementary table 8. Genes (I) and GO enrichment results (II) of P. tremula specific genes 

identified from gene family analysis. 

 

Supplementary table S9. Genes (I) and GO enrichment results (II) of P. tremula expanded 

gene families. 

 

Supplementary table S10. Novel lincRNAs in aspen leaves.  

 

Supplementary table S11. Climate data for the SwAsp, UmAsp and ScotAsp. 

 

Supplementary table S12. Genomic regions under selection in SwAsp and UmAsp (I), genes 

within those regions (II) and GO (III) and Pfam (IV) enrichment of those genes. 

 

Supplementary table S13. Significant genome-wide association results, comparison of 

ranks in the All-SNP GWAS for SNPs significant in the OCR GWAS, and details of linkage 

disequilibrium in the region of chromosome 9 in the All-SNP indent width SD GWAS in 

ScotAsp. SNPs and genes in linkage disequilibrium in this region.  

 

Supplementary table S14. Significant eQTL at FDR < 0.05. 

 

Supplementary table S15. Lists of the top-ranked genes from the All-SNP GWAS.  

 

Supplementary figure S1. Ks distribution of P. tremula and P. trichocarpa. 

 

Supplementary figure S2. Phylogenetic tree used to infer the analyse expansion and 

contraction of gene families.  
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 6 

Supplementary figure S4. JBrowse view for a 246 Kbp region of chromosome 9 with tracks 

displayed including Potra v2.2 gene models, Manhattan view of significant SNPs in the GWAS 

in All-SNP and OCR GWAS, P. tremula-specific regions, SNPs under balancing selection, and 

eQTL associations.   
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