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Abstract: Venoms are a diverse and complex group of natural toxins that have been adapted to treat 1

many types of human disease, but rigorous computational approaches for discovering new therapeu- 2

tic activities are scarce. We have designed and validated a new platform—named VenomSeq—to sys- 3

tematically identify putative associations between venoms and drugs/diseases via high-throughput 4

transcriptomics and perturbational differential gene expression analysis. In this study, we describe the 5

architecture of VenomSeq and its evaluation using the crude venoms from 25 diverse animal species 6

and 9 purified teretoxin peptides. By integrating comparisons to public repositories of differential 7

expression, associations between regulatory networks and disease, and existing knowledge of venom 8

activity, we provide a number of new therapeutic hypotheses linking venoms to human diseases 9

supported by multiple layers of preliminary evidence. 10

Keywords: Venoms; transcriptomics; RNA-Seq; translational bioinformatics; systems biology; drug 11

discovery 12

Key Contribution: In this study, we describe a new technology—named VenomSeq—for discovering 13

therapeutic activities in animal venoms. VenomSeq is based on exposing human cells in culture 14

to dilute concentrations of venoms and venom peptides, and using the resulting differential gene 15

expression patterns to compare to existing drugs. 16

1. Introduction 17

Venoms are complex mixtures of organic macromolecules and inorganic cofactors 18

that are used for both predatory and defensive purposes. Since the dawn of recorded 19

history, humans have exploited venoms and venom components for treating a wide array 20

of illnesses and conditions, a trend which has continued into modern times [1]. Currently, 21

approximately 20 venom-derived drugs are in use world-wide, with 6 approved by the 22

US Food and Drug Administration for clinical use, and many more currently undergoing 23

clinical trials [2]. As new discovery of synthetic small-molecule drugs has slowed con- 24

siderably in recent decades, venoms and other natural products hold great promise for 25

discovering innovative treatments for disease and injury, especially for diseases that have 26

evaded treatment through conventional medical science. 27

Furthermore, venoms are incredibly diverse. Depending on the species, a single 28

venom can contain hundreds of distinct compounds [3]. Current estimates suggest that 29
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approximately 200,000 venomous animals exist across the tree of life. As a result, venom- 30

derived compounds are an immense library of evolutionarily optimized candidates for 31

drug discovery [4,5]. 32

Toxinologists have applied modern high-throughput sequencing (HTS) methodolo- 33

gies to the study of venoms (a field that has come to be known as venomics) [5]. Ven- 34

omics generally involves the sequencing and structural identification of multiple types 35

of macromolecules—genomic DNA, venom gland mRNA transcripts, and/or venom 36

proteins—to best evaluate which genes, transcripts, and polypeptides (including post- 37

translational modifications) are present in a venom and responsible for its activity. 38

Venomics has become a popular framework for drug discovery in recent years. How- 39

ever, other applications of HTS and biomedical data science beyond discovery/evaluation 40

of venom components can be used for drug discovery. One such application is data-driven 41

analysis of perturbational gene expression data, in which human cells are exposed in vitro 42

to controlled dosages of candidate compounds and then profiled for differential gene 43

expression via RNA sequencing (RNA-Seq). In this paper, we present VenomSeq—a new in- 44

formatics workflow for discovering associations between venoms and therapeutic avenues 45

of treatment for disease. 46

Briefly, VenomSeq involves exposing human cells to dilute venoms, and then generating 47

differential expression profiles for each venom, comprised of the significantly up- and 48

down-regulated genes in cells perturbed by the venom. We then compare the differential 49

expression profiles to data from public compendia of perturbational gene expression data 50

and gene regulatory data corresponding to disease states. VenomSeq works in the absence 51

of any predefined hypotheses, instead allowing the data to suggest hypotheses that can 52

then be explored comprehensively using rigorous traditional approaches. 53

Figure 1. Graphical abstract outlining the VenomSeq workflow.
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Figure 2. Growth inhibition plots for each of the 25 venoms. GI80 values are provided, unless growth
inhibition was not observed (in which case sequencing was instead performed at 2 mg µL−1).

2. Results 54

2.1. Venom dosages 55

In order to optimize the exposure concentrations of each venom, we performed growth 56

inhibition assays on human cells exposed to varying concentrations of the venoms. This is 57

necessary to minimize the impact of toxicity while ensuring the venom is in high enough 58

concentration to exert an effect on the human cells. Since each venom is comprised of 59

many (largely unknown) molecular components, we performed the assays on samples of 60

venom measured in mass per volume, rather than compound concentration (molarity). We 61

used GI20—the concentration of a venom at which it inhibits growth of the human cells by 62

20%—as the effective treatment dose in all subsequent experiments. 63

The experimental GI20 values and complete dose-response data for each of the 25 64

venoms are provided in Appendix A (Table A1), a sample of which is reproduced (for 65

S. maurus) in Table 1. The resulting growth inhibition curves for all venoms are shown 66

in Figure 2. Venoms from L. colubrina, D. polylepis, S. verrucosa, S. horrida, C. marmoreus, 67

O. macropus, and P. volitans did not demonstrate substantial growth inhibition at any tested 68
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Table 1. Statistics for S. maurus growth inhibition data.

S. maurus venom vs. IMR-32
GI20(µg µL−1) 0.0926

R2 0.991

Hill slope

Bottom −2.096
Top 92.572
log GI50 −0.640
Slope (h) −1.928

Table 2. Experimental conditions for RNA-Seq.

Venoms 25 species
Cell line IMR-32 (Human neuroblastoma)
Dosage GI20 for each venom
Time points 6/24/36 hours post-treatment
Replicates 3 per time point per venom
Controls 12 water controls, 9 untreated
Solvent Water

concentration, so for those venoms we instead performed sequencing at 1.0 µg µL−1, which 69

is the highest concentration used in the growth inhibition curves. 70

2.2. mRNA sequencing of venom-perturbed human cells 71

After determining appropriate dose concentrations for each venom, we performed 72

RNA-Seq on human IMR-32 cells exposed to the individual venoms. Table 2 summarizes 73

the experimental conditions used for sequencing. After transforming the raw sequencing 74

reads to gene counts (see §5.5), we compiled the results into a matrix, where rows represent 75

genes, columns represent samples, and cells represent counts of a gene in a sample. For 76

detailed quality control data, refer to Appendix A, which includes links to related files. 77

The raw (i.e., FASTQ files produced by the sequencer) and processed (i.e., gene counts 78

per sample) data files are available for download and reuse on NCBI’s Gene Expression 79

Omnibus database; accession GSE126575. 80

2.3. Differential expression profiles of venom-perturbed human cells 81

We constructed differential expression signatures for each of the 25 venoms as de- 82

scribed in §5.6, where each signature consists of a list (length ≥ 0) of significantly upregu- 83

lated genes, and a list (length ≥ 0) of significantly downregulated genes. The specific expres- 84

sion signatures are available on FigShare at https://doi.org/10.6084/m9.figshare.7609160. 85

An excerpt from the expression signature for O. macropus is shown in Table 3. The total 86

number of differentially expressed genes for each venom ranges from 2 genes (Laticauda 87

colubrina and Dendroaspis polylepis polylepis) to 1494 genes (Synanceia verrucosa). 88

Gene-wise statistical significance is a function of both log2 fold change and the number 89

of observed counts. This relationship is illustrated in Figure A7, which is derived from the 90

same data shown in Table 3 (for O. macropus). 91

2.4. Differential expression profiles of purified teretoxins 92

To assess the performance of VenomSeq on individual venom-derived peptides, we 93

also constructed differential expression signatures for IMR-32 cells perturbed by 9 purified 94

teretoxin peptides. Of the 9 teretoxins, 4 yielded statistically significant gene expression 95

changes in IMR-32 cells. One of these, named Mki 8.7, produced a robust expression 96

signature with 25 differentially expressed genes. All teretoxin expression signatures are 97

available on FigShare at https://doi.org/10.6084/m9.figshare.22757963. 98
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Table 3. Partial differential expression signature for O. macropus. Most of the significantly differentially
expressed genes (35 of 41 total) are omitted for brevity.

Gene Base mean log2-FC Wald statistic p-adj

SPRY4 37.38 -2.27534 -3.3084 0.0991
REPIN1 38.30 -0.95256 -4.3326 0.0061
DUSP14 33.88 -0.91311 -3.3327 0.0991

...
...

...
...

...
BRD3 130.81 1.37645 4.115 0.0096
RSRC1 63.48 1.38140 4.2042 0.0091
BAZ1B 120.05 1.69463 5.0846 0.0003

2.5. Associations between venoms and existing drugs 99

Using publicly-available differential expression profiles for existing drugs—many 100

with known effects and/or disease associations—we were able to identify statistically 101

significant associations between venoms and classes of drugs. These associations are based 102

on the methods developed by the Connectivity Map (CMap) project [6], and utilize their 103

perturbational differential expression data as the “gold standard” against which to evaluate 104

the venom expression data. In short, this approach uses a Kolmogorov-Smirnov–like 105

signed enrichment statistic to compare a query signature (i.e., venoms) to all signatures in 106

a reference database (i.e., known drugs), normalizing for cell lines and other confounding 107

variables, and finally aggregating scores of ‘like’ signatures (i.e., drug Mechanisms of 108

Action (MoAs)) using a maximum-quantile procedure. Complete details of these methods 109

are provided in §5.7.1. 110

Different venoms yield different profiles of connectivity scores based on the genes 111

present in their differential expression signatures. For example, all connectivity scores 112

between B. occitanus and CMap perturbagens are zero, and all connectivity scores between 113

S. horrida and CMap perturbagens are negative, which suggest that these venoms either 114

behave like no known perturbagen classes, or that the venoms have no therapeutic activity 115

on IMR-32 cells. Kernel density plots of the connectivity scores for each venom are shown in 116

Figure 4. In Figure 3, we show several visualizations of the connectivity analysis results that 117

highlight characteristics of the data. Interestingly, when hierarchical clustering is performed 118

on the connectivity scores by venom perturbation, the venom perturbations form robust 119

clustering patterns that persist across multiple non-overlapping subsets of the connectivity 120

data. This suggests that the clustering corresponds to meaningful characteristics of the 121

venom perturbations in comparison to known drugs, although these characteristics are not 122

readily apparent (i.e., the clustering does not reproduce taxonomy, or other obvious traits 123

of the venoms). 124

The associations we identified are shown in Table 4. As we anticipated, only some 125

venoms show strong associations to any classes of drugs. Interestingly, only one venom 126

(S. subspinipes dehaani) was linked to an ion channel inhibition MoA—venoms, in general, 127

tend to have powerful ion channel blocking or activating effects. However, this may be due 128

to a preponderance of non-ion channel MoAs in the CMap data rather than an actual lack 129

of ability to identify ion channel activity. 130

Many of these MoAs comprise either well-established or emerging classes of cancer 131

drugs. Some that have been used extensively as chemotherapeutic agents include CDK 132

inhibitors (palbociclib, ribociclib, and abemaciclib), topoisomerase inhibitors (doxorubicin, 133

teniposide, and irinotecan, among others), and DNA synthesis inhibitors (mitomycin C, 134

fludarabine, and floxuridine). Meanwhile, PI3K inhibitors and FGFR inhibitors are classes 135

of “emerging” chemotherapy drugs, each recently leading to many high-impact research 136

studies and early-stage clinical trials. 137

The other classes are indicated for a diverse range of diseases, including circulatory 138

and mental conditions (calcium channel blockers), and cardiac abnormalities (ATPase 139
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a.)

b.)

c.)

Figure 3. Connectivity analysis results. a.) Heatmap of τ-scores between the 25 venom perturbations
and the 500 Connectivity Map signatures with the highest variance across all venoms. A distinct
hierarchical clustering pattern is evident across the venom perturbations, although it does not
conform to any obvious grouping pattern of the venoms. b.) Principle component analysis of the
25 venom perturbations, where features are all τ-scores between the venom and signatures from
the Connectivity Map reference database. 4 distinct outliers are labeled—these venoms correspond
to outliers in the heatmap. Also shown are the ratios of variance explained by each of the first 21
principle components—after the first principle component, the distribution is characterized by a
long tail, suggesting that much of the variance is spread across many dimensions, underscoring the
complexity of the connectivity score data. c.) Barplot showing the number of significant differentially
expressed genes for IMR-32 cells exposed to each of the 25 venoms.

Table 4. Venom–drug class associations.

Venom Drug class (MoA)

Synanceia horrida ATPase inhibitor
CDK inhibitor
DNA synthesis inhibitor

Scolopendra subspinipes dehaani T-type Ca2+ channel inhibitor

Pterois volitans Topoisomerase inhibitor

Argiope lobata ATPase inhibitor
PI3K inhibitor
PPARγ agonist

Scorpio maurus FGFR inhibitor

Rhinella marina HIV protease inhibitor
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Figure 4. Kernel density plots of normalized connectivity scores (NCSs) for each of the 25 venoms.
Note the tendency to introduce sparsity by setting NCS to zero if the quantities a and b have opposite
signs (see §5.7.1). Text labels indicate proportion of NCSs for a single venom that are negative, zero,
or positive. Each plot is based on 473,647 NCSs (all differential expression profiles in GSE92742 [7]).
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Table 5. Drugs used to validate PLATE-Seq and the IMR-32 cell line for connectivity analysis. Not
all compounds of a given mechanism of action will necessarily map to that mechanism’s associated
PCL—PCLs consist of compounds that are members of the same functional class and also have high
transcriptional impact.

Drug Mechanism of Action CMap perturbagen class (PCL)

Mibefradil T-type Ca2+ channel inhibitor CP_T_TYPE_CALCIUM_CHANNEL_BLOCKER
Isradipine L-type Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Nifedipine L-type Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Diltiazem Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Verapamil Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Fendiline Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Topiramate Na+ and Ca2+ channel modulator CP_SODIUM_CHANNEL_BLOCKER
Ionomycin Ca2+ channel signal inducer
1-EBIO Ca2+-gated K+ channel activator CP_POTASSIUM_CHANNEL_ACTIVATOR
Forskolin Adenylyl cyclase activator

Pregabalin Increases GABA biosynthesis
Gabapentin Increases GABA biosynthesis
Baclofen GABAB-receptor agonist

Memantine Glu-receptor inhibitor
Acamprostate Glu-receptor inhibitor CP_GABA_RECEPTOR_ANTAGONIST
MTEP Glu-receptor inhibitor
Ivermectin Glu-gated Cl− channel inhibitor

Carbenoxolone Glucocorticoid metabolism inhibitor
Mifepristone Glucocorticoid receptor inhibitor CP_PROGESTERONE_RECEPTOR_ANTAGONIST
Dexamethasone Glucocorticoid receptor agonist CP_GLUCOCORTICOID_RECEPTOR_AGONIST
Aldosterone Mineralocorticoid receptor agonist
Spironolactone Mineralocorticoid receptor inhibitor

Olanzapine Dopamine receptor inhibitor CP_DOPAMINE_RECEPTOR_ANTAGONIST
Eticlopride Dopamine receptor inhibitor CP_DOPAMINE_RECEPTOR_ANTAGONIST
Ondansetron 5-HT3 serotonin receptor inhibitor CP_SEROTONIN_RECEPTOR_AGONIST
Naltrexone Opioid receptor inhibitor

Disulfiram Acetaldehyde dehydrogenase inhibitor

Cerlitinib ALK inhibitor
Crizotinib ALK inhibitor

Sirolimus mTOR inhibitor CP_MTOR_INHIBITOR

Manumycin a Farnesyltransferase inhibitor CP_NFKB_PATHWAY_INHIBITOR

Vorinostat HDAC (I/II/IV) inhibitor CP_HDAC_INHIBITOR

Prazosin Adrenergic receptor inhibitor CP_BETA_ADRENERGIC_RECEPTOR_AGONIST

Rolipram Phosphodiesterase-4 inhibitor

Minocycline NOS inhibitor
Pioglitazone PPARγ/α inhibitor CP_PPAR_RECEPTOR_AGONIST
Fenofibrate PPARα agonist CP_PPAR_RECEPTOR_AGONIST

inhibitors). PPAR receptor agonists have been used to treat diabetes, hyperlipidemia, 140

pulmonary inflammation, and cholesterol disorders. 141

2.6. VenomSeq technical validation 142

Following the procedures described in §5.8, we used a secondary PLATE-Seq dataset 143

of 37 existing drugs (with known effects) tested on IMR-32 cells to assess whether the 144

sequencing technology (PLATE-Seq) and cell line (IMR-32) employed by VenomSeq are 145

compatible with connectivity analysis and the CMap reference dataset. In this dataset, we 146

were able to map 20 of the 37 drugs to a single existing CMap perturbational class (PCL). 147

The drugs, their modes of action, and the PCLs of which they are members are listed in 148

Table 5. 149

2.6.1. VenomSeq technical validation: Recovering connectivity by integrating cell lines 150

When we aggregated all connectivity scores between a known drug and members 151

of the same PCL in the CMap dataset, irrespective of cell line, the connectivity scores are 152
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VenomSeq data Validation data CMap reference data

Technology PLATE-Seq PLATE-Seq L1000

Measurement type Gene counts Gene counts Gene relative abundance

Human cell line(s) IMR-32 IMR-32 9 core cell lines

Exposure 
compounds

25 crude venoms 37 small molecule 
drugs

19,811 small molecule 
compounds

E ects known No Yes Some

Drug class 
annotations

None CMap perturbagen 
classes (“PCLs”)

CMap perturbagen 
classes (“PCLs”)

a.) b.)

c.)

d.)

Figure 5. Results of applying the VenomSeq sequencing and connectivity analysis workflow to 37
existing drugs with known effects, to validate the compatibility of PLATE-Seq and IMR-32 cells with
the connectivity analysis algorithm and dataset. a.) Scatter plot showing validation drugs that are
members of a CMap PCL and the mean differences between within-PCL connectivity scores and
a null distribution of random connectivity scores for the same drug (Table 6). Verticle axis shows
the p-value of a Student’s t-test comparing the within-PCL and null connectivity score distributions
(corrected for multiple testing). Statistically significant drugs are labeled by name. b.) Summary
of the validation strategy, showing that the validation dataset bridges certain gaps between the
VenomSeq data and the CMap reference data. c.) Distributions of rank percentiles of expected (“true”)
PCLs within the list of all PCLs ordered by average connectivity score (Table 7), aggregated by CMap
dataset cell lines, and d.) validation drugs. Green distributions indicate a shift towards the front
of the rank ordered list, indicating stronger compatibility with the PLATE-Seq/IMR-32 query data,
based on expected connections, and “*” indicates statistically significant shifts.
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Table 6. Enrichment of strong connections in expected PCL annotations . p-values correspond to
independent, two-sample Student’s t-tests between “within-PCL” connectivities and a null model of
randomly sampled compound connectivities (see text) for the same query drug, and are corrected
for multiple testing using the Benjamini-Hochberg procedure. Effect size is the difference of means
between those two groups, such that larger effect sizes correspond to higher expected connectivity
scores between the query drug and members of its same drug class. Note that effect sizes are relatively
small in most cases—this is due in part to the sparsity of connectivity scores.

Drug PCL p-value Effect size

Topiramate CP_SODIUM_CHANNEL_BLOCKER 1.018e-31 13.168
Vorinostat CP_HDAC_INHIBITOR 5.952e-22 1.717
Sirolimus CP_MTOR_INHIBITOR 2.240e-17 1.232
Eticlopride CP_DOPAMINE_RECEPTOR_ANTAGONIST 1.278e-11 4.175
Olanzapine CP_DOPAMINE_RECEPTOR_ANTAGONIST 8.117e-09 2.640
Fenofibrate CP_PPAR_RECEPTOR_AGONIST 1.012e-07 1.775
Pioglitazone CP_PPAR_RECEPTOR_AGONIST 1.158e-07 3.252
Manumycin a CP_NFKB_PATHWAY_INHIBITOR 4.124e-07 5.983
Dexamethasone CP_GLUCOCORTICOID_RECEPTOR_AGONIST 2.741e-06 2.462
Prazosin CP_BETA_ADRENERGIC_RECEPTOR_AGONIST 2.476e-02 2.083
Acamprosate CP_GABA_RECEPTOR_ANTAGONIST 4.290e-02 2.260
Mibefradil CP_T_TYPE_CALCIUM_CHANNEL_BLOCKER 6.871e-02 0.355
1-EBIO CP_POTASSIUM_CHANNEL_ACTIVATOR 2.573e-01 2.597
Fendiline CP_CALCIUM_CHANNEL_BLOCKER 2.854e-01 2.636
Diltiazem CP_CALCIUM_CHANNEL_BLOCKER 2.929e-01 5.719
Isradipine CP_CALCIUM_CHANNEL_BLOCKER 4.062e-01 0.683
Nifedipine CP_CALCIUM_CHANNEL_BLOCKER 4.100e-01 1.932
Mifepristone CP_PROGESTERONE_RECEPTOR_ANTAGONIST 4.309e-01 3.160
Verapamil CP_CALCIUM_CHANNEL_BLOCKER 5.404e-01 5.880
Ondansetron CP_SEROTONIN_RECEPTOR_AGONIST 5.710e-01 2.659

significantly greater than those in a null model in 12 out of 20 instances, which indicates 153

that drugs within the same functional class tend to have more similarities in the query 154

and reference datasets than if the compounds are chosen at random. In all 20 cases, the 155

average effect size1 was positive, regardless of statistical significance. These—and their 156

corresponding measures of significance—are shown in Figure 5 and Table 6. Overall, these 157

data are congruent with those made by the Connectivity Map team in [7]—namely, that 158

expected connections between query drugs and reference compounds can be recovered for 159

some PCLs, but not for others. Importantly, in both our observations and the observations 160

in [7], PCLs related to highly conserved core cellular functions perform better under this 161

approach. 162

2.6.2. VenomSeq technical validation: Impact of reference cell lines and query drugs on 163

expected PCL percentile ranks 164

Since IMR-32 cells are not present in the CMap reference dataset, we were particularly 165

interested in seeing which cell lines present in the reference dataset (if any) performed 166

better than others at the task of recovering expected connections. Using the PCL ranking 167

strategy described in §5.8, 7 of the 9 core cell lines show at least a moderate tendency to 168

place the true PCL towards the front of the ranked list of all PCLs, indicating that at least 169

some of the ability to recover expected connections is retained when looking at those 7 cell 170

lines individually. PCL rankings stratified by drug (rather than cell line) show a similar 171

pattern—15 of 20 PCL-annotated drugs tend to have the expected PCL ranked towards the 172

1 Effect size is defined as the average difference between connectivities within the expected PCL and the null
model of random connectivities for the same query
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Table 7. Correct PCL ranks aggregated by cell line. Mean rank percentile is the mean rank of the
correct (“true”) PCL, aggregated over all query drugs and divided by the total number of PCLs (92),
reported by cell line.

CMap cell line Mean rank percentile FDR-corrected p-value

HA1E 0.326087 0.001663
A375 0.375000 0.004926
PC3 0.431522 0.109226
HCC515 0.446739 0.193877
HEPG2 0.461957 0.258068
MCF7 0.465217 0.279325
VCAP 0.492935 0.443995
A549 0.503804 0.468387
HT29 0.075445 0.591304

front of the list (“enrichment”), while 5 tend to have the expected PCL show up towards 173

the back of the list (“depletion”). Of these 20, the only It should be noted that—due to the 174

rather small number of profiles in the reference dataset that are annotated to PCLs—these 175

two analyses were limited in terms of statistical power, and deserve a follow up analysis 176

in the future, when more PCLs and members of those PCLs are present in the reference 177

database. 178

2.7. Associations between venoms and disease regulatory networks 179

Direct observations of expressed genes (via mRNA counts) provide an incomplete 180

image of the regulatory mechanisms present in a cell. To complement the CMap approach 181

that focuses on perturbations at the gene level, we designed a parallel approach that uses cell 182

regulatory network data to investigate perturbations at the regulatory module (e.g., pathways 183

and metabolic networks) level; an approach we refer to as master regulator analysis. 184

In master regulator analysis, the ARACNe algorithm [8] is used to obtain regulatory 185

network data for our cell line of interest (in this case, IMR-32), consisting a list of regulons— 186

overlapping sets of proteins whose expression is governed by a master regulator (e.g., a 187

transcription factor). The msVIPER algorithm [9] is then used to determine the activity 188

of each regulon by computing enrichment scores from observed expression levels of the 189

genes/proteins contained in that regulon (here, using the RNA-Seq results described in 190

§2.2). 191

We matched the significantly up- and down-regulated master regulators for each 192

venom to diseases using high-confidence TF-disease associations in DisGeNET [10]—a 193

publicly available database of associations between diseases and gene network component. 194

This approach is based on the idea that diseases caused by disregulation of metabolic and 195

signaling networks can be treated by administering drugs that “reverse” the cause (i.e., 196

abnormal master regulator activity) of disregulation. Since we are interested in discovering 197

associations with multiple corroborating pieces of evidence, we specifically filtered for 198

diseases where two or more linked TFs are disregulated when perturbed by the venom. 199

The complete list of associations are provided on figshare at https://doi.org/10.6084/m9 200

.figshare.7609793; here, we describe a handful of interesting observations. 201

The most prevalent class of illness (comprising 19.7% of all associations across all 202

venoms) is DISEASES OF THE NERVOUS SYSTEM AND SENSE ORGANS. This is not surprising, 203

considering many of the 25 venoms have neurotoxic effects, and IMR-32 is a cell line 204

derived from neuroblast cells. One source of bias in these results is that similar diseases 205

tend to be associated with the same regulatory mechanisms [11]. For example, associations 206

between a venom and schizophrenia will often be co-reported with associations to other 207

mental conditions, such as bipolar disorder and alcoholism. 208
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2.8. Argiope lobata venom versus cardiopulmonary and psychiatric diseases 209

A. lobata is a species of spider in the same genus as the common garden spider. The 210

species is relatively understudied, largely due to its lack of interaction with humans, 211

despite being distributed across Africa and much of Europe and Asia. The venom from 212

species of Argiope spiders contain toxins known as argiotoxins [12], which are harmless 213

to humans, in spite of having inhibitory effects on AMPA, NMDA, kainite, and nicotinic 214

acetylcholine receptors, which have been implicated in neurodegenerative and cardiac 215

diseases. VenomSeq provides supporting evidence for therapeutic activity in each of these 216

classes. 217

Connectivity analysis links A. lobata venom to ATPase inhibitor drugs (see Figure A5), 218

which include digoxin, ouabain, cymarin, and other cardiac glycosides, and are used to 219

treat a variety of heart conditions. Another venom-derived compound—bufalin (from 220

the venom of toads in the genus Bufo) [13]—is considered an ATPase inhibitor, and has 221

demonstrated powerful cardiotonic effects. Connectivity analysis also links the venom to 222

PPAR agonist drugs, which are used to treat cholesterol disorders, metabolic syndrome, and 223

pulmonary inflammation. Interestingly, PPARγ activation results in cellular protection from 224

NMDA toxicity. Given the known inhibitory effect of argiotoxins on NMDA receptors [14], 225

this is striking and biologically plausible evidence for toxin synergism, where two or more 226

venom components target multiple cellular structures with related functions in order to 227

incite a more powerful response [15]. 228

Master regulator analysis supports these findings, as well. We found that A. lobata 229

venom is associated with a number of circulatory diseases, including hypertension, heart 230

failure, cardiomegaly, myocardial ischemia, and others. Additionally, it reveals strong 231

associations with an array of mental conditions, such as schizophrenia, bipolar disorder, 232

and psychosis. These associations are supported by recent research into argiotoxins (and 233

other polyamine toxins), showing that their affinity for iGlu receptors can be exploited to 234

treat both psychiatric diseases and Alzheimer disease [12]. 235

2.9. Scorpio maurus venom for cancer treatment via FGFR inhibition 236

S. maurus—the Israeli gold scorpion—is a species native to North Africa and the 237

Middle East. Its venom is not harmful to humans, but it is known to contain a specific 238

toxin, named maurotoxin, which blocks a number of types of voltage-gated potassium 239

channels—an activity that is under investigation for treatment of gastrointestinal motility 240

disorders [16]. 241

Our connectivity analysis suggests an additional association with FGFR inhibitor 242

drugs. FGFR inhibitors are an emerging class of drugs with promising anticancer activity, 243

and much research focused on them aims to understand and counteract their adverse 244

effects (see Figure A6). Although there is no prior mention of FGFR-related activity from 245

this or related species of scorpions, descriptions of unexpected side effects of S. maurus 246

venom on mice provide evidence that such activity could be true. In particular, the venom 247

has been shown to have biphasic effects on blood pressure: When injected, it causes rapid 248

hypotension, followed by an extended period of hypertension. The fast hypotension is 249

known to be caused by a phospholipase A2 in the venom, but no known components elicit 250

hypertension when administered in purified form [17]. The observed FGFR inhibitor-like 251

effects on gene expression suggest that an unknown component (or group of components) 252

may cause the hypertensive effect via FGFR inhibition. 253

3. Discussion 254

3.1. MOAs of venoms versus synthetic small-molecule drugs 255

In the connectivity analysis portion of VenomSeq, we demonstrated that these tech- 256

niques can identify novel venom–drug class associations, and corroborate known venom 257

activity. One distinct advantage of performing queries against the CMap reference dataset 258

is their inclusion of manually-curated perturbagen classes (PCLs), which allow for normal- 259

ization of data gathered from multiple perturbagens and multiple cell lines, aggregated 260
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at a class level that corresponds approximately with drug mode of action. For this reason, 261

hypotheses generated by the connectivity analysis portion of VenomSeq are often testable at 262

the protein level. 263

One important caveat is that venom components have a tendency to interact with cell 264

surface receptors (e.g., ion channels or GPCRs), inciting various signaling cascades and 265

therefore acting indirectly on downstream therapeutic targets. While this is certainly the 266

case for many drugs as well (GPCRs are considered the most heavily investigated class 267

of drug targets [18]), small molecules often can be designed to enter the cell and interact 268

directly with the downstream therapeutic target. This has important implications regarding 269

assay selection for in vitro validation of associations learned through the connectivity 270

analysis. For example, if the MoA of interest is inhibition of an intracellular protein (e.g., 271

topoisomerase), a cell-based assay should be considered when testing venom hypotheses, 272

since the venom likely is not interacting directly with the topoisomerase (and, therefore, 273

the effect would not occur in non-cell based assays). 274

3.2. Venoms versus human diseases 275

The master regulator analysis portion of VenomSeq discovers associations between ven- 276

oms and the diseases they may be able to treat, rather than to drugs. This could be especially 277

useful for discovering treatments to diseases with no or few existing indicated drugs (or 278

drugs that are not present in public differential expression databases). Additionally, since 279

the master regulator approach is sensitive to complex metabolic network relationships, it is 280

(theoretically) more sensitive to patterns, as well as more suited to diseases with complex 281

genetic etiologies that are not explainable by observed gene counts alone. 282

Currently, the primary drawback to the master regulator approach is that criteria for 283

statistical significance are not well established. Therefore, it is challenging to determine 284

which venom-disease associations are most likely to reflect actual therapeutic efficacy. As a 285

temporary alternative, we used several heuristics to ensure there are multiple corroborating 286

sources of evidence for the reported associations. 287

As discussed previously, the connectivity analysis produces hypotheses that are rela- 288

tively straightforward to validate experimentally, using affordable, widely available assay 289

kits and reagents. Since the master regulator workflow gives hypotheses at the disease 290

level (where the underlying molecular etiologies can be unknown), validation instead 291

needs to be performed at the phenotype level, either using animal models of disease, or 292

carefully engineered, cell-based phenotypic assays that measure response at multiple points 293

in disease-related metabolic pathways (e.g., DiscoverX’s BioMAP® platform [19]). 294

3.3. Specific therapeutic hypotheses 295

VenomSeq contains multiple types of data analysis for two reasons: (1) This allows us 296

to cover diseases with a wider array of molecular etiologies, and (2) it provides a means 297

for obtaining multiple pieces of corroborating evidence for a given hypothesis. If a link 298

between a venom and a drug/disease is suggested by both connectivity analysis and master 299

regulator analysis, and there is additional literature evidence that lends biological or clinical 300

plausibility, this increases our confidence that the suggested therapeutic effect is robust. 301

3.4. Accessing and querying VenomSeq data 302

VenomSeq is designed as a general and extensible platform for drug discovery, and we 303

encourage secondary use of both the technology as well as the data produced using the 25 304

venoms and 11 synthesized teretoxins tested on IMR-32 cells described in this manuscript. 305

We maintain the data in two publicly-accessible locations: (1.) a “frozen” copy of the data, as 306

it exists at the time of writing (on figshare, at https://doi.org/10.6084/m9.figshare.7611662), 307

and (2.) a copy hosted on venomkb.org, available both graphically and programmatically, 308

and designed to be expanded as new data and features are added to VenomKB. 309
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3.5. Transitioning from venoms to venom components 310

VenomSeq is a technology for discovering early evidence that a venom has a certain 311

therapeutic effect. However, most successful approved drugs derived from venoms make 312

use of the activity of a single component within that venom, rather than the entire (crude) 313

venom. As previously mentioned, venoms can be comprised of hundreds of unique 314

components, each with a unique function and molecular target. Following this observation, 315

we applied the VenomSeq pipeline to 9 purified peptides from snails in the family Terebridae, 316

to assess whether VenomSeq can effectively produce differential expression profiles for 317

individual venom components. We describe the resulting expression profiles in §2.4 and 318

experimental methods in §5.3. 319

Of the 9 teretoxins, 5 caused no significant changes in gene expression. This is consis- 320

tent with our expectations—marine snail venoms components tend to have highly targeted 321

modes of action, and any single cell line will respond to only some of the active components 322

in a venom. Of the remaining 4 teretoxin peptides, 1—named Mki8.7, from the venom 323

of Myurella kilburni—produced a robust signature with 13 genes down-regulated and 12 324

up-regulated. We feel this merits further investigation, and typifies the type of workflow 325

we would like to see used with VenomSeq in the future: Both crude venoms and individual 326

venom components should be broadly screened for therapeutic effects, and in diverse 327

human cell lines. Since isolating venoms and purifying their individual components is 328

both laborious and expensive, a production-scale application of VenomSeq will be a costly 329

endeavor, but one with significant potential for improving human health. 330

Furthermore, although most existing venom-derived drugs consist of a single compo- 331

nent, crude venoms in nature use the synergistic effects of multiple components to cause 332

specific phenotypic effects [15]. Therefore, testing each venom component individually 333

using the VenomSeq workflow might fail to capture all of the clinically beneficial activities 334

demonstrated by the crude venom. A brute-force solution is to perform VenomSeq on all 335

combinations of the isolated venom components, but doing so requires a massive number 336

of experiments (2n − 1, where n is the number of components in the venom). Therefore, it 337

will be necessary to establish a protocol for prioritizing combinations of venom components. 338

One potential solution is to fractionate the venom (i.e., using gel filtration) and perform 339

VenomSeq on combinations of the fractions, but this will need to be tested. Alternatively, 340

integrative systems biology techniques could be used to predict which components act 341

synergistically, via similarity to structures with well-established activities. 342

3.6. Applying the VenomSeq framework to other natural product classes 343

VenomSeq was designed for the purpose of discovering therapeutic activities from 344

venoms, but it could be feasibly extended to other types of natural products, including 345

plant and bacterial metabolites, and immunologic components. Venoms provide a number 346

of advantages and simplifying assumptions that were useful in designing the technology, 347

but a broader application of VenomSeq will enable the relaxation of these assumptions with 348

some minor modifications to experimental protocol and data analysis. For example, non- 349

venom toxins may have less-targeted MoAs, disrupting biological systems indiscriminantly 350

(e.g., by interrupting cell membranes regardless of cell type). Additionally, the kinetics 351

of non-venom natural products may be more subtle than venoms, which tend to have 352

powerful binding and catalytic properties. 353

3.7. Interpreting connectivity analysis validation results 354

In §2.6, we described the results of the connectivity analysis procedure applied to 355

PLATE-Seq expression data from IMR-32 cells treated with 37 existing drugs that have 356

known effects, many of which are members of Connectivity Map PCLs. Since VenomSeq 357

uses an expression analysis technology that is different from the Connectivity Map’s L1000 358

platform, as well as a cell line that is not present in the Connectivity Map reference dataset, 359

this is crucial for establishing that one can discover meaningful associations between crude 360

venoms and profiles in the reference data within the VenomSeq framework. 361
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Overall, the findings of our analysis are congruent with those made by the Connectivity 362

Map team in [7]. Specifically, PCLs that affect highly conserved, core cellular functions 363

(such as HDAC inhibitors, mTOR inhibitors, and PPAR receptors) tend to form strong 364

connectivities with members of the same class regardless of cell line. Therefore, associations 365

discovered between crude venoms and these drug classes are likely “true associations”, 366

even when using IMR-32 cells in the analysis. Furthermore, by virtue of leveraging data 367

corresponding to drugs with known effects, but using a new cell line and different assay 368

technology, we have made the following novel findings: 369

Although IMR-32 is not present in the reference dataset, similarities between IMR-32 370

and cell lines that are present in the reference data can be leveraged to select reference 371

expression profiles that are more likely to reproduce true associations. For example, HA1E 372

and A375 cells produce expression profiles that form reasonably strong connectivities 373

between IMR-32 query signatures and members of the same drug classes. More cell 374

lines need to be included in the Connectivity Map data in order to better understand 375

correlation structures in cell-specific expression, as well as to better capture therapeutic 376

associations that are specific to cell types underrepresented in current datasets. Similarly, 377

continued effort should be devoted to adding new PCL annotations. Currently, only 12.3% 378

of compound signatures in the reference dataset are annotated to at least one PCL, and 379

some PCLs contain only a few signatures. A more rigorous definition of what specifically 380

comprises a PCL would allow secondary research groups to contribute to this effort, 381

ultimately improving the utility of the CMap data and increasing the sensitivity of the 382

algorithms used to discover new putative therapeutic associations. 383

In spite of the large amount of corroborating evidence these results provide (e.g., 384

every drug in our validation set produced a positive average effect on within-PCL con- 385

nectivities versus corresponding null distributions), we cannot definitively state whether 386

the associations discovered for crude venoms reflect real therapeutic activities. Although 387

our confidence in the novel associations would be improved by more PCL annotations to 388

allow our analyses to attain greater statistical power, the ultimate test is to perform in vitro 389

(and eventually in vivo) tests on individual venom components to detect these predicted 390

therapeutic mechanisms of action. Initial cellular and protein-based assays suggest the 391

associations we found are real, but toxicity of the crude venoms damages cells and mem- 392

branes before the experiments can be run to completion. Aside from larger quantities of 393

reference data against which to run the validation analyses, we also hope to employ other 394

data science techniques involving network analysis and more advanced applications of 395

master regulator analysis (see, e.g., §2.7) to further understand the dynamic interactions 396

between cell types, gene expression, and perturbational signals that underly therapeutic 397

processes. 398

4. Conclusions 399

Venoms provide an immensely valuable opportunity for drug discovery, but the 400

enormous quantity and variety of compounds found in each venom arsenal requires a 401

revision of the techniques used for identifying new therapeutic leads from venom natural 402

products. Traditional methods—involving rigorous experimental validation and high cost— 403

are necessary for validating associations between venoms and their respective therapeutic 404

effects in living systems. However, data-driven computational approaches can make this 405

process easier by generating new hypotheses backed by existing evidence and multiple 406

levels of statistical validation. VenomSeq is an early example of such an approach. 407

VenomSeq takes a two-pronged approach, combining connectivity analysis and master 408

regulator analysis to provide two orthogonal views of the effects venoms have on human 409

cells, where likely therapeutic effects are validated using publicly available knowledge 410

representations and databases. In this study, we tested the VenomSeq workflow on 25 411

diverse venoms and 9 purified terebrid venom components applied to human IMR-32 cells, 412

and discovered a number of new therapeutic hypotheses supported by existing literature 413

evidence. 414
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To reinforce the validity of the hypotheses found by VenomSeq, future work is merited 415

in applying the pipeline to new venoms and new human cell lines, and to test the pipeline on 416

additional venoms, venom fractions, and isolated venom components with well-understood 417

therapeutic modes of action. 418

5. Materials and Methods 419

Obtain 25 crude venoms

Human (IMR-32) cells

Expose cells to venoms Reverse transcribe,
barcode, and pool cDNA

cDNA

Barcoded

Extraction and
reverse transcription

Venom collection
and lyophilization 

mRNA Sequencing
and binning

CCCCTCCTCGCGAGTT…Pooled
samples

RNA-Seq

v1 v3

v2 v4

Reads by venom

PLATE-Seq

Figure 6. RNA-Seq strategy for VenomSeq. Crude venoms are extracted and lyophilized. IMR-32 cells
in culture are then treated with predetermined dosages of reconstituted venoms, and PLATE-Seq [20]
is used to isolate, sequence, and count reads corresonding to cellular mRNA.

5.1. Reagents and materials 420

We performed growth inhibition assays and perturbation experiments using IMR-32 421

cells—an adherent, metastatic neuroblastoma cell line used in previous applications of 422

PLATE-Seq and VIPER—grown in FBS-supplemented Eagle’s Minimum Essential Medium 423

(EMEM). All venoms were provided in lyophilized form and stored at -20 C. Since ven- 424

oms naturally exist in aqueous solution, we reconstituted them in ddH2O at ambient 425

temperature. 426

5.2. Obtaining 25 venoms 427

VenomSeq is designed to apply to all venomous species across all taxonomic clades. 428

Accordingly, we validated the workflow using 25 venoms sampled from a diverse range 429

of species distributed across the tree of life. We selected the 25 species based on avail- 430

ability and compliance with international law, and sought to balance maximal cladistic 431

diversity with minimal expected cytotoxicity (e.g., snakes in the genus Bitis are known for 432

inducing tissue death and necrosis, and are therefore challenging to use for drug discovery 433

applications [21]). We purchased the 25 venoms from Alpha Biotoxine in lyophilized form, 434

and obtained prior approval from the US Centers for Disease Control (CDC) through the 435

Federal Select Agent Program [22] for importing venoms containing α-conotoxins. The 25 436

venoms we selected are shown in Table 8. Note that we assigned a numeric identifier to 437

each venom for convenience—these numbers show up numerous places in the data for 438

VenomSeq. We also have included a rooted cladogram of the 25 species in Figure 7. 439

5.3. Obtaining 9 purified teretoxins 440

To assess the performance of VenomSeq on individual venom components, we selected 441

9 teretoxins from an in-house library of peptide sequences isolated from snails in the Tere- 442

bridæfamily and synthesized purified samples using a method described previously [23]. 443

5.4. Growth inhibition assays 444

A major challenge in generating differential gene expression data for discovery pur- 445

poses is finding appropriate dosages for the compounds being tested. This is done to 446

ensure the compound is in sufficient concentration to be exerting an observable effect 447

on the cells, while also mitigating processes that result from toxicity (e.g., apoptosis). In 448

practice, determining an appropriate dosage concentration usually makes use of previous 449

experimental evidence and/or biochemical constants, but since these are generally not 450

available for crude venoms, we instead determined dosages based on growth inhibition. 451
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Table 8. 25 venoms used to validate the VenomSeq workflow. Numbers in the right column are used
as placeholder names for the venoms in data files.

Species name Common name Venom number

Naja nivea Cape cobra 1
Laticauda colubrina Banded sea krait 2
Montivipera xanthina Ottoman viper 3
Dendroaspis polylepis polylepis Black mamba 4
Crotalus scutulatus scutulatus Mojave rattlesnake 5
Atractaspis sp. Burrowing asp 6

Macrothele gigas Japanese funnel web spider 7
Linothele fallax Tiger spider 8
Poecilotheria fasciata Sri Lanka ornamental spider 9
Argiope lobata — 10

Synanceia verrucosa Reef stonefish 11
Synanceia horrida Estuarine stonefish 12

Buthus occitanus Common yellow scorpion 13
Leiurus quinquestriatus Deathstalker 14
Scorpio maurus Large-clawed scorpion 15

Bufo bufo Common toad 16
Rhinella marina Cane toad 17
Bombina variegata Yellow-bellied toad 18

Apis mellifera Western honey bee 19
Vespa crabro European hornet 20
Scolopendra subspinipes dehaani Vietnamese centipede 21

Conus marmoreus Marbled cone snail 22
Conus imperialis Imperial cone snail 23
Octopus macropus Atlantic white-spotted octopus 24
Pterois volitans Red lionfish 25
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Figure 7. Rooted cladogram showing the 25 species used in VenomSeq. Clades corresponding to major
taxonomic groups are labeled as indicated.
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We prepared 2-fold serial dilutions of each venom, starting from 2.0 mg µL−1. We 452

seeded 96-well plates with IMR-32 cells and exposed them to the serial dilutions of the 453

venoms after 24 hours of incubation. 48 hours after exposure, we quantified growth 454

inhibition of the IMR-32 cells via cell viability luminesence assays. 455

For each venom, we fit these data to the Hill equation:

y = Bottom +
(Top − Bottom)

1 + 10(log GI50−x)×h

where x is venom concentration, y is response (i.e., percent growth compared to untreated 456

cells), Top and Bottom are the maximum and minimum values of y, respectively, and h is a 457

constant that controls the shape of the sigmoidal curve. We used the resulting GI20 values 458

(i.e., the value of x such that y = 100%− 20% = 80%) as the venom exposure concentrations 459

for the following sequencing experiments. Since some of the curves had very steep slopes 460

(indicating rapid loss of total cell viability after miniscule changes in venom concentration), 461

we confirmed the accuracy of the GI20 concentrations via secondary viability assays using 462

the exact GI20 values extrapolated from the growth inhibition curves. 463

5.5. mRNA Sequencing 464

We prepared samples of human IMR-32 cells in 96-well cell culture plates, allowing 465

for 3 replicates at each of 3 time points (6, 24, and 36 hours post-treatment) for each of the 466

25 venoms. The layout of the samples across 2 96-well plates is available in Appendix A. 467

We reconstituted the crude venoms in water, and treated the samples with corresponding 468

venoms at the previously determined GI20 values. We additionally prepared 12 control 469

samples treated with water only, and 9 control samples that were untreated. Following 470

total mRNA extraction, we carried out the PLATE-Seq protocol [20] to obtain gene counts 471

for each sample. All sequencing was performed on the Illumina HiSeq platform. We used 472

STAR [24] to (1) map the demultiplexed reads to the human genome (build GRCh38 [25]) 473

and (2) count the reads mapping to known genes. For detailed quality control data for the 474

sequencing experiments, refer to Appendix A. 475

5.6. Constructing expression signatures 476

We constructed differential gene expression signatures using the DESeq2 [26] library 477

for the R programming language. DESeq2 fits observed counts for each gene to a negative 478

binomial distribution with mean µij and dispersion (variance) αi, which we find to be a 479

more robust model than traditional approaches based on the Poisson distribution (i.e., 480

by allowing for unequal means and dispersions). In practice, users can substitute any 481

method for determining significantly up- and down-regulated genes from count data. We 482

filtered for genes with an FDR-corrected p-value < 0.05, and recorded their respective mean 483

log2-fold change values, noting whether expression increased (up-regulated) or decreased 484

(down-regulated). 485

5.7. Comparing venoms to known drugs and diseases 486

5.7.1. Comparing to known drugs using the Connectivity Map 487

We retrieved the most recently published Connectivity Map dataset from the Clue.io 488

Data Library (GSE92742), which contains 473,647 perturbational signatures, each consist- 489

ing of robust Z-scores for 12,328 genes, along with relevant metadata. We then used the 490

procedure described by the Connectivity Map team [7] to generate connectivity scores 491

between each of the VenomSeq gene expression signatures and each of the reference expres- 492

sion profiles in the Connectivity Map database. This procedure, adapted for VenomSeq, is 493

summarized below. 494

Let a query qi be the two lists of up- and down-regulated genes corresponding to the 495

differential expression signature for venom i, and rj ∈ R be a vector of gene-wise Z-scores 496
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Figure 8. Strategy for discovering new associations from VenomSeq data. After obtaining processed
gene counts per sample, we generated differential expression signatures for each venom, and then
used the signatures in two parallel analyses: connectivity analysis, and master regulator analysis.

in reference expression signature j. We first generate a Weighted Connectivity Score (WCS) 497

w between qi and rj: 498

wqr =

{
(ESq,r

up − ESq,r
down)/2 if sgn(ESq,r

up) ̸= sgn(ESq,r
down)

0 otherwise

where sgn denotes the sign function d
dx |x|, and ESqr

· is the signed enrichment score for 499

either the up- or down-regulated genes in the signature, calculated separately (see Ap- 500

pendix 5.7.1.1 for details). 501

Although we validated VenomSeq on only a single human cell line, the reference 502

database provided by the Connectivity Map provides expression profiles on 9 core cell 503

lines, across multiple classes of perturbagens. Therefore, we compute normalized versions 504

of WCS called Normalized Connectivity Scores (NCSs): 505

NCSq,r =

{
wq,r/µ+

c,t if sgn(wq,r) > 0
wq,r/µ−

c,t otherwise

where µ+
c,t and µ−

c,t are the means of all positive or negative WCSs (respectively) for the 506

given cell line and perturbagen type. 507

The final step in computing connectivity scores between a venom q and a reference r 508

is to convert NCSq,r into a value named τ, which represents the signed quantile score in 509

the context of all positive or negative NCSs: 510

τq,r = sgn(NCSq,r)
100
N

N

∑
i=1

[
|NCSi,r| < |NCSi,r|

]
where N is the number of all expression signatures in the reference database and |NCS| is 511

the absolute magnitude of an NCS. 512
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Enrichment Score computation 513

For a venom q and reference expression signature r, the enrichment score ESqr
· is a 514

signed Kolmogorov–Smirnov-like statistic indicating whether the subset of up- or down- 515

regulated genes in q tend to occur towards the beginning or the end of a list of all genes 516

ranked by expression level in r. We follow a procedure similar to that described by Lamb 517

et al. in [6]. Specifically, we compute the following two values: 518

a =
t

max
j=1

[
j
t
−

Vqr(j)
n

]
519

b =
t

max
j=1

[
Vqr(j)

n
− (j − 1)

t

]
where Vqr is the vector of nonnegative integers that gives the indexes of the genes in q 520

within the list of all genes ordered corresponding to their assumed values in r, t is the 521

number of genes in q, and n is the number of genes reported in the reference database (in 522

practice, t ≪ n). We then set ES as follows: 523

ESqr
· =

{
a if a > b
−b if a < b

Since each query q consists of two lists—one of up-regulated and one of down-regulated 524

genes—we compute both ESqr
up and ESqr

down, respectively, and use these two values to 525

compute wqr, as described above. 526

5.7.2. Comparing to known diseases using master regulator analysis 527

We discovered associations between the venom expression profiles and known dis- 528

eases (coded as UMLS concept IDs) as the result of two sequential steps: (1) algorithmic 529

determination of substantially perturbed cell regulatory modules (called regulons), and (2) 530

mapping master regulators to diseases using high-confidence associations distributed in 531

the DisGeNET database. These took as input the same differential expression data used 532

in the connectivity analysis. IMR-32 regulon data (in the form of an adjacency matrix, 533

where nodes are genes and edges are measures of mutual information with respect to their 534

coexpression) were provided by the authors of the ARACNe algorithm. 535

In order to identify perturbed regulons, we first performed a 2-tailed Student’s t-test 536

between the genes’ expression in the ‘test’ set (samples perturbed by venoms) and the 537

‘reference’ set (control samples). To make the final expression signatures, we then converted 538

the results of the t-tests to Z-scores, to make them consistent with the models used by 539

downstream algorithms. We generated null scores by performing the same test on the 540

expression data with permuted sample labels, to account for correlation structures between 541

genes. Once we had computed Z-scores, we ran the msVIPER algorithm, which derives 542

enrichment statistics for each regulon based on the expression levels of the genes contained 543

in the regulon. The result of msVIPER is a table of regulons (labeled by their master 544

regulator), with enrichment scores, p-values, and FDR-corrected adjusted p-values. 545

We then compared the significantly upregulated regulons to the manually curated 546

subset of TF–disease associations from the DisGeNET database. To do so, we mapped the 547

statistically significant master regulator TFs for each venom to TFs reported in DisGeNET, 548

and then mapped those TFs to their associated diseases. To help with filtering venom– 549

disease associations with low evidence, we only retained diseases where at least two of the 550

regulons that were significantly disregulated by the venom are associated with the same 551

disease. Accordingly, we considered diseases with the highest number of significantly 552

disregulated master regulators to comprise the associations with the greatest amount of 553

evidence. 554

Similarly to how we mapped drugs to drug classes, we mapped diseases to disease 555

categories. To do so, we identified the set of ICD-9 codes for each disease, based on 556
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the diseases’ entries in the UMLS (UMLS CUIs were provided by DisGeNET). We then 557

identified the disease category as the top-level ICD-9 ‘chapter’ corresponding to that 558

ICD-9 code (e.g., NEOPLASMS, MENTAL DISORDERS, DISEASES OF THE RESPIRATORY SYSTEM, 559

etc.). In rare instances where a disease or condition was present in two locations (e.g., 560

‘hypertension’ is found in 2 chapters: DISEASES OF THE CIRCULATORY SYSTEM (401), and 561

INJURY AND POISONING (997.91)), we opted for the more specific of the two (e.g., avoiding 562

entries containing “not elsewhere classified”). 563

5.8. Assessing sequencing technology and cell type compatibility 564

Since VenomSeq uses a sequencing technology (PLATE-Seq) and a cell line (IMR-32) 565

that have not been used previously with the connectivity analysis approach, we evaluated 566

their compatibility using a secondary dataset consisting of IMR-32 cells perturbed with 567

37 drugs and sequenced using PLATE-Seq. Since these drugs have known effects—and 568

since many are present in the L1000 reference dataset—we sought to determine the extent 569

to which connectivity analysis captures functional similarities between these drug data and 570

the L1000 reference expression profiles. The 37 drugs are listed in Table 5. For the purposes 571

of this discussion, a “query signature” is an expression signature corresponding to one 572

of the 37 drugs in the validation dataset, and a “reference profile” is an L1000 expression 573

profile from the dataset (GSE92742) published by the Connectivity Map team and used in 574

the crude venom connectivity analysis. 575

Using these data (consisting of gene count matrices with several technical replicates per 576

drug), we constructed differential expression signatures and performed the connectivity 577

analysis algorithm in the same manner as we had for IMR-32 cells exposed to the 25 578

crude venoms. We annotated each of the 37 drugs (where possible) with perturbagen 579

classes (PCLs) defined by the Connectivity Map team, which allowed us to identify L1000 580

expression profiles that come from the same drug classes as the drugs in our validation 581

dataset. We then evaluated connectivity scores among members of the same PCL from 582

two perspectives: (1) By aggregating all τ scores for reference profiles corresponding to a 583

given compound, integrating evidence from all cell lines, and (2) by aggregating τ scores 584

within individual cell lines, allowing us to assess the degrees to which specific cell lines are 585

compatible with IMR-32/PLATE-Seq query signatures. 586

For the first of these two approaches, we collected all values of τ connecting query 587

signatures in a PCL to reference profiles in the same PCL, and constructed null models 588

by retrieving τ scores between the same query signature and all reference profiles that 589

are members of any PCL. We defined the “effect size” of each PCL annotation as the 590

difference of the mean of the scores within the true PCL and the mean of the scores in 591

the null model. Additionally, we determined statistical significance using independent 592

two-sample Student’s t-tests. To correct for multiple testing, we adjusted p-values using 593

the Benjamini-Hochberg procedure (α = 0.05). 594

For the second approach—in which we evaluated each of the 9 core L1000 cell lines 595

separately for each query signature—we retrieved τ scores between query signatures and 596

each of the 92 PCLs in the reference dataset. Then, for each of the 9 cell lines and each of 597

the query signatures annotated to a PCL, we constructed ordered lists of all PCLs ranked 598

by their mean τ score in descending order (highest to lowest connectivity). In each of those 599

lists, we determined the rank corresponding to the expected (“true”) PCL—which we call 600

the rank percentiles—and aggregated these ranks separately by (a) the drug corresponding 601

to the query signature and (b) cell line of the reference profile. These two strategies allow 602

us to separately assess the effects of drugs and cell lines on the behavior of connectivity 603

scores. Under the null hypothesis that there is no selective preference for the true PCL 604

in the connectivity data, the mean rank percentiles would follow a continuous uniform 605

distribution in the range [0, 1]. Alternatively, if there is a selective preference for the 606

expected PCL in the connectivity data, this rank will tend to occur towards the front of the 607

list of ranks (and vice-versa). 608
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DNA Deoxyribonucleic acid
EMEM Eagle’s minimum essential medium
ES Enrichment score
FGFR Fibroblast growth factor receptor
GEO Gene Expression Omnibus
GPCR G-protein-coupled receptor
HTS High-throughput sequencing
MoA Mechanism of action
msVIPER Multiple sample virtual inference of protein-activity by enriched regulon analysis
mRNA Messenger ribonucleic acid
mTOR Mammalian target of rapamycin
NCBI National Center for Biotechnology Information
NCS Normalized connectivity score
NMDA N-methyl-D-aspartate
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PLATE-Seq Pooled library amplification for transcriptome expression sequencing
PPAR Peroxisome proliferator-activated receptor
RNA-Seq Ribonucleic acid sequencing
TF Transcription factor
UMLS Unified medical language system
WCS Weighted connectivity score
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Appendix A. PLATE-Seq quality control data 632

Plate 1:
Well Venom Conc. (uG/uL) Time (Hrs)
A1 1 0.008 6 6
B1 2 2.000 0 6
C1 3 0.001 9 6
D1 4 2.000 0 6
E1 5 0.001 6 6
F1 6 0.007 9 6
G1 7 0.003 6 6
H1 8 0.124 7 6
A2 9 0.531 9 6
B2 10 1.085 4 6
C2 11 2.000 0 6
D2 12 2.000 0 6
E2 13 0.754 4 6
F2 14 0.949 1 6
G2 15 0.092 6 6
H2 16 0.000 2 6
A3 17 0.000 2 6
B3 18 0.157 9 6
C3 19 0.024 2 6
D3 20 0.838 2 6
E3 21 0.008 2 6
F3 22 2.000 0 6
G3 23 0.709 7 6
H3 24 2.000 0 6
A4 25 2.000 0 6
B4 Water − 6
C4 Water − 6
D4 Water − 6
E4 Water − 6
F4 Untreated − 6
G4 Untreated − 6
H4 Untreated − 6
A5 1 0.008 6 24
B5 2 2.000 0 24
C5 3 0.001 9 24
D5 4 2.000 0 24
E5 5 0.001 6 24
F5 6 0.007 9 24
G5 7 0.003 6 24
H5 8 0.124 7 24
A6 9 0.531 9 24
B6 10 1.085 4 24
C6 11 2.000 0 24
D6 12 2.000 0 24
E6 13 0.754 4 24
F6 14 0.949 1 24
G6 15 0.092 6 24
H6 16 0.000 2 24
A7 17 0.000 2 24
B7 18 0.157 9 24
C7 19 0.024 2 24
D7 20 0.838 2 24
E7 21 0.008 2 24
F7 22 2.000 0 24
G7 23 0.709 7 24
H7 24 2.000 0 24
A8 25 2.000 0 24
B8 Water − 24
C8 Water − 24
D8 Water − 24
E8 Water − 24
F8 Untreated − 24
G8 Untreated − 24
H8 Untreated − 24
A9 1 0.008 6 36
B9 2 2.000 0 36
C9 3 0.001 9 36
D9 4 2.000 0 36
E9 5 0.001 6 36
F9 6 0.007 9 36
G9 7 0.003 6 36
H9 8 0.124 7 36
A10 9 0.531 9 36
B10 10 1.085 4 36
C10 11 2.000 0 36
D10 12 2.000 0 36
E10 13 0.754 4 36
F10 14 0.949 1 36
G10 15 0.092 6 36
H10 16 0.000 2 36
A11 17 0.000 2 36
B11 18 0.157 9 36
C11 19 0.024 2 36
D11 20 0.838 2 36
E11 21 0.008 2 36
F11 22 2.000 0 36
G11 23 0.709 7 36
H11 24 2.000 0 36
A12 25 2.000 0 36
B12 Water − 36
C12 Water − 36
D12 Water − 36
E12 Water − 36
F12 Untreated − 36
G12 Untreated − 36
H12 Untreated − 36

Plate 2:
Well Venom Conc. (uG/uL) Time (Hrs)
A1 1 0.008 6 6
B1 2 2.000 0 6
C1 3 0.001 9 6
D1 4 2.000 0 6
E1 5 0.001 6 6
F1 6 0.007 9 6
G1 7 0.003 6 6
H1 8 0.124 7 6
A2 9 0.531 9 6
B2 10 1.085 4 6
C2 11 2.000 0 6
D2 12 2.000 0 6
E2 13 0.754 4 6
F2 14 0.949 1 6
G2 15 0.092 6 6
H2 16 0.000 2 6
A3 17 0.000 2 6
B3 18 0.157 9 6
C3 19 0.024 2 6
D3 20 0.838 2 6
E3 21 0.008 2 6
F3 22 2.000 0 6
G3 23 0.709 7 6
H3 24 2.000 0 6
A4 25 2.000 0 6
B4 Water − 6
C4 Water − 6
D4 Water − 6
E4 Water − 6
F4 Untreated − 6
G4 Untreated − 6
H4 Untreated − 6
A5 1 0.008 6 24
B5 2 2.000 0 24
C5 3 0.001 9 24
D5 4 2.000 0 24
E5 5 0.001 6 24
F5 6 0.007 9 24
G5 7 0.003 6 24
H5 8 0.124 7 24
A6 9 0.531 9 24
B6 10 1.085 4 24
C6 11 2.000 0 24
D6 12 2.000 0 24
E6 13 0.754 4 24
F6 14 0.949 1 24
G6 15 0.092 6 24
H6 16 0.000 2 24
A7 17 0.000 2 24
B7 18 0.157 9 24
C7 19 0.024 2 24
D7 20 0.838 2 24
E7 21 0.008 2 24
F7 22 2.000 0 24
G7 23 0.709 7 24
H7 24 2.000 0 24
A8 25 2.000 0 24
B8 Water − 24
C8 Water − 24
D8 Water − 24
E8 Water − 24
F8 Untreated − 24
G8 Untreated − 24
H8 Untreated − 24
A9 1 0.008 6 36
B9 2 2.000 0 36
C9 3 0.001 9 36
D9 4 2.000 0 36
E9 5 0.001 6 36
F9 6 0.007 9 36
G9 7 0.003 6 36
H9 8 0.124 7 36
A10 9 0.531 9 36
B10 10 1.085 4 36
C10 11 2.000 0 36
D10 12 2.000 0 36
E10 13 0.754 4 36
F10 14 0.949 1 36
G10 15 0.092 6 36
H10 16 0.000 2 36
A11 17 0.000 2 36
B11 18 0.157 9 36
C11 19 0.024 2 36
D11 20 0.838 2 36
E11 21 0.008 2 36
F11 22 2.000 0 36
G11 23 0.709 7 36
H11 24 2.000 0 36
A12 25 2.000 0 36
B12 Water − 36
C12 Water − 36
D12 Water − 36
E12 Water − 36
F12 Untreated − 36
G12 Untreated − 36
H12 Untreated − 36

Table A1. Layout of samples in 2 96-well plates for PLATE-Seq.

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2023. ; https://doi.org/10.1101/699280doi: bioRxiv preprint 

https://doi.org/10.1101/699280
http://creativecommons.org/licenses/by-nd/4.0/


26 of 30

0.2 0.5 1.0 2.0

2
4

6
8

10
12

Mapped Reads (Millions)

D
et

ec
te

d 
G

en
es

(T
ho

us
an

ds
)

(a) Library Complexity

0.005 0.020 0.100 0.500 2.000

1
2

5
10

Mapped Reads (Millions)

D
et

ec
te

d 
G

en
es

(T
ho

us
an

ds
)

(b) Saturation Analysis

0.05 0.10 0.20 0.50 1.00 2.00
2

4
6

8
10

12

D
et

ec
te

d 
G

en
es

(T
ho

us
an

ds
)

0.005 0.020 0.100 0.500 2.000

1
2

5
10

D
et

ec
te

d 
G

en
es

(T
ho

us
an

ds
)

Plate 1

Plate 2

Figure A1. Quality control plots. (a.) Number of detected genes (mapped reads ≥ 2) as a function
of the total number of mapped reads per sample. (b.) Saturation analysis by in silico subsampling.
Original data points are indicated by the black dots.
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Figure A2. Barplot showing the number of mapped reads per sample.
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Figure A3. Barplot showing the number of detected genes per sample.
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Figure A4. Detected genes and spike-ins. (a.) Association between the number of mapped reads
and detected genes for each of the 96 analyzed samples. (b.) Heatmap showing the number of reads
(thousands) mapping to spike-ins for each of the samples.
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Appendix B. Mechanism diagrams 633

The following mechanisms—from the Reactome web resource—describe the molecular 634

functions for ATPase inhibitor and FGFR inhibitor drugs, which have similar effects on 635

global gene expression as A. lobata and S. maurus venom, respectively (see §3.3). 636

Figure A5. Structure of digoxin (left), a cardiac glycoside that inhibits the function of the Na+/K+
ATPase (ATP1A; right) in the myocardium, which causes a decrease in heart rate [27]. A. lobata venom
has similar differential expression effects to those of digoxin and other ATPase inhibitor drugs, based
on connectivity analysis. Diagram from Reactome [28].

Figure A6. Diagram of FGFR signaling pathways. FGFR inhibitors target 1 of the 4 types of FGFR
complexes, abnormal activity of which are involved in angiogenesis. VenomSeq suggests therapeutic
similarity between S. maurus venom and existing FGFR inhibitor drugs. Pathway diagram from
Reactome [29].
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Appendix C. Miscellaneous supplemental figures 637

1e−02 1e+00 1e+02 1e+04

−
2

−
1

0
1

2

mean of normalized counts

lo
g 

fo
ld

 c
ha

ng
e

O. macropus vs. untreated

Figure A7. MA plot showing genewise relationship between log2 fold change and mean of normalized
counts in samples corresponding to O. macropus venom. Each point represents one gene. Points in
red indicate statistically significant genes with regard to differential expression.
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