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Abstract: Venoms are a diverse and complex group of natural toxins that have been adapted to treat
many types of human disease, but rigorous computational approaches for discovering new therapeu-
tic activities are scarce. We have designed and validated a new platform—named VenomSeq—to sys-
tematically identify putative associations between venoms and drugs/diseases via high-throughput
transcriptomics and perturbational differential gene expression analysis. In this study, we describe the
architecture of VenomSeq and its evaluation using the crude venoms from 25 diverse animal species
and 9 purified teretoxin peptides. By integrating comparisons to public repositories of differential
expression, associations between regulatory networks and disease, and existing knowledge of venom
activity, we provide a number of new therapeutic hypotheses linking venoms to human diseases
supported by multiple layers of preliminary evidence.

Keywords: Venoms; transcriptomics; RNA-Seq; translational bioinformatics; systems biology; drug
discovery

Key Contribution: In this study, we describe a new technology—named VenomSeq—for discovering
therapeutic activities in animal venoms. VenomSeq is based on exposing human cells in culture
to dilute concentrations of venoms and venom peptides, and using the resulting differential gene
expression patterns to compare to existing drugs.

1. Introduction

Venoms are complex mixtures of organic macromolecules and inorganic cofactors
that are used for both predatory and defensive purposes. Since the dawn of recorded
history, humans have exploited venoms and venom components for treating a wide array
of illnesses and conditions, a trend which has continued into modern times [1]. Currently,
approximately 20 venom-derived drugs are in use world-wide, with 6 approved by the
US Food and Drug Administration for clinical use, and many more currently undergoing
clinical trials [2]. As new discovery of synthetic small-molecule drugs has slowed con-
siderably in recent decades, venoms and other natural products hold great promise for
discovering innovative treatments for disease and injury, especially for diseases that have
evaded treatment through conventional medical science.

Furthermore, venoms are incredibly diverse. Depending on the species, a single
venom can contain hundreds of distinct compounds [3]. Current estimates suggest that
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approximately 200,000 venomous animals exist across the tree of life. As a result, venom-
derived compounds are an immense library of evolutionarily optimized candidates for
drug discovery [4,5].

Toxinologists have applied modern high-throughput sequencing (HTS) methodolo-
gies to the study of venoms (a field that has come to be known as venomics) [5]. Ven-
omics generally involves the sequencing and structural identification of multiple types
of macromolecules—genomic DNA, venom gland mRNA transcripts, and/or venom
proteins—to best evaluate which genes, transcripts, and polypeptides (including post-
translational modifications) are present in a venom and responsible for its activity.

Venomics has become a popular framework for drug discovery in recent years. How-
ever, other applications of HTS and biomedical data science beyond discovery/evaluation
of venom components can be used for drug discovery. One such application is data-driven
analysis of perturbational gene expression data, in which human cells are exposed in vitro
to controlled dosages of candidate compounds and then profiled for differential gene
expression via RNA sequencing (RNA-Seq). In this paper, we present VenomSeq—a new in-
formatics workflow for discovering associations between venoms and therapeutic avenues
of treatment for disease.

Briefly, VenomSeq involves exposing human cells to dilute venoms, and then generating
differential expression profiles for each venom, comprised of the significantly up- and
down-regulated genes in cells perturbed by the venom. We then compare the differential
expression profiles to data from public compendia of perturbational gene expression data
and gene regulatory data corresponding to disease states. VenomSeq works in the absence
of any predefined hypotheses, instead allowing the data to suggest hypotheses that can
then be explored comprehensively using rigorous traditional approaches.

Figure 1. Graphical abstract outlining the VenomSeq workflow.
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Figure 2. Growth inhibition plots for each of the 25 venoms. Glgj values are provided, unless growth
inhibition was not observed (in which case sequencing was instead performed at 2mguL~!).

2. Results
2.1. Venom dosages

In order to optimize the exposure concentrations of each venom, we performed growth
inhibition assays on human cells exposed to varying concentrations of the venoms. This is
necessary to minimize the impact of toxicity while ensuring the venom is in high enough
concentration to exert an effect on the human cells. Since each venom is comprised of
many (largely unknown) molecular components, we performed the assays on samples of
venom measured in mass per volume, rather than compound concentration (molarity). We
used GIyp—the concentration of a venom at which it inhibits growth of the human cells by
20%—as the effective treatment dose in all subsequent experiments.

The experimental Gl values and complete dose-response data for each of the 25
venoms are provided in Appendix A (Table A1), a sample of which is reproduced (for
S. maurus) in Table 1. The resulting growth inhibition curves for all venoms are shown
in Figure 2. Venoms from L. colubrina, D. polylepis, S. verrucosa, S. horrida, C. marmoreus,
O. macropus, and P. volitans did not demonstrate substantial growth inhibition at any tested
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Table 1. Statistics for S. maurus growth inhibition data.

S. maurus venom vs. IMR-32
Glp(uguL~T) 0.0926

R? 0.991

Bottom —2.096

. To 92.572
Hill slope logp Glsy | —0.640
Slope (h) | —1.928

Table 2. Experimental conditions for RNA-Seq.

Venoms 25 species
Cell line IMR-32 (Human neuroblastoma)
Dosage GlIy for each venom
Time points 6/24/36 hours post-treatment
Replicates 3 per time point per venom
Controls 12 water controls, 9 untreated
Solvent Water

concentration, so for those venoms we instead performed sequencing at 1.0 pg uL. !, which
is the highest concentration used in the growth inhibition curves.

2.2. mRNA sequencing of venom-perturbed human cells

After determining appropriate dose concentrations for each venom, we performed
RNA-Seq on human IMR-32 cells exposed to the individual venoms. Table 2 summarizes
the experimental conditions used for sequencing. After transforming the raw sequencing
reads to gene counts (see §5.5), we compiled the results into a matrix, where rows represent
genes, columns represent samples, and cells represent counts of a gene in a sample. For
detailed quality control data, refer to Appendix A, which includes links to related files.
The raw (i.e., FASTQ files produced by the sequencer) and processed (i.e., gene counts
per sample) data files are available for download and reuse on NCBI's Gene Expression
Omnibus database; accession GSE126575.

2.3. Differential expression profiles of venom-perturbed human cells

We constructed differential expression signatures for each of the 25 venoms as de-
scribed in §5.6, where each signature consists of a list (length > 0) of significantly upregu-
lated genes, and a list (length > 0) of significantly downregulated genes. The specific expres-
sion signatures are available on FigShare at https://doi.org/10.6084/m9.figshare.7609160.
An excerpt from the expression signature for O. macropus is shown in Table 3. The total
number of differentially expressed genes for each venom ranges from 2 genes (Laticauda
colubrina and Dendroaspis polylepis polylepis) to 1494 genes (Synanceia verrucosa).

Gene-wise statistical significance is a function of both log, fold change and the number
of observed counts. This relationship is illustrated in Figure A7, which is derived from the
same data shown in Table 3 (for O. macropus).

2.4. Differential expression profiles of purified teretoxins

To assess the performance of VenomSeq on individual venom-derived peptides, we
also constructed differential expression signatures for IMR-32 cells perturbed by 9 purified
teretoxin peptides. Of the 9 teretoxins, 4 yielded statistically significant gene expression
changes in IMR-32 cells. One of these, named Mki 8.7, produced a robust expression
signature with 25 differentially expressed genes. All teretoxin expression signatures are
available on FigShare at https:/ /doi.org/10.6084/m9.figshare.22757963.

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98


https://doi.org/10.6084/m9.figshare.7609160
https://doi.org/10.6084/m9.figshare.22757963
https://doi.org/10.1101/699280
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/699280; this version posted June 1, 2023. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

5 of 30

Table 3. Partial differential expression signature for O. macropus. Most of the significantly differentially
expressed genes (35 of 41 total) are omitted for brevity.

Gene Base mean log,-FC Wald statistic =~ p-adj
SPRY4 37.38 -2.27534 -3.3084  0.0991
REPIN1 38.30 -0.95256 -4.3326  0.0061
DUSP14 33.88 -0.91311 -3.3327  0.0991
BRD3 130.81  1.37645 4115 0.0096
RSRC1 63.48  1.38140 42042 0.0091
BAZ1B 120.05  1.69463 5.0846  0.0003
2.5. Associations between venoms and existing drugs %

Using publicly-available differential expression profiles for existing drugs—many 10
with known effects and/or disease associations—we were able to identify statistically o
significant associations between venoms and classes of drugs. These associations are based 1
on the methods developed by the Connectivity Map (CMap) project [6], and utilize their 105
perturbational differential expression data as the “gold standard” against which to evaluate 10
the venom expression data. In short, this approach uses a Kolmogorov-Smirnov-like 10
signed enrichment statistic to compare a query signature (i.e., venoms) to all signatures in 105
a reference database (i.e., known drugs), normalizing for cell lines and other confounding 17
variables, and finally aggregating scores of ‘like” signatures (i.e., drug Mechanisms of s
Action (MoAs)) using a maximum-quantile procedure. Complete details of these methods 1
are provided in §5.7.1. 110

Different venoms yield different profiles of connectivity scores based on the genes
present in their differential expression signatures. For example, all connectivity scores
between B. occitanus and CMap perturbagens are zero, and all connectivity scores between 13
S. horrida and CMap perturbagens are negative, which suggest that these venoms either 14
behave like no known perturbagen classes, or that the venoms have no therapeutic activity —us
on IMR-32 cells. Kernel density plots of the connectivity scores for each venom are shownin 1
Figure 4. In Figure 3, we show several visualizations of the connectivity analysis results that 17
highlight characteristics of the data. Interestingly, when hierarchical clustering is performed  us
on the connectivity scores by venom perturbation, the venom perturbations form robust  us
clustering patterns that persist across multiple non-overlapping subsets of the connectivity 120
data. This suggests that the clustering corresponds to meaningful characteristics of the 12
venom perturbations in comparison to known drugs, although these characteristics are not 12
readily apparent (i.e., the clustering does not reproduce taxonomy, or other obvious traits 1
of the venoms). 124

The associations we identified are shown in Table 4. As we anticipated, only some 1
venoms show strong associations to any classes of drugs. Interestingly, only one venom 1
(S. subspinipes dehaani) was linked to an ion channel inhibition MoA—venoms, in general, 1
tend to have powerful ion channel blocking or activating effects. However, this may be due 12
to a preponderance of non-ion channel MoAs in the CMap data rather than an actual lack 12
of ability to identify ion channel activity. 130

Many of these MoAs comprise either well-established or emerging classes of cancer 1
drugs. Some that have been used extensively as chemotherapeutic agents include CDK 1
inhibitors (palbociclib, ribociclib, and abemaciclib), topoisomerase inhibitors (doxorubicin, 13
teniposide, and irinotecan, among others), and DNA synthesis inhibitors (mitomycin C, 1
fludarabine, and floxuridine). Meanwhile, PI3K inhibitors and FGFR inhibitors are classes 13
of “emerging” chemotherapy drugs, each recently leading to many high-impact research 13
studies and early-stage clinical trials. 137

The other classes are indicated for a diverse range of diseases, including circulatory s
and mental conditions (calcium channel blockers), and cardiac abnormalities (ATPase 13
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Figure 3. Connectivity analysis results. a.) Heatmap of T-scores between the 25 venom perturbations
and the 500 Connectivity Map signatures with the highest variance across all venoms. A distinct
hierarchical clustering pattern is evident across the venom perturbations, although it does not
conform to any obvious grouping pattern of the venoms. b.) Principle component analysis of the
25 venom perturbations, where features are all T-scores between the venom and signatures from
the Connectivity Map reference database. 4 distinct outliers are labeled—these venoms correspond
to outliers in the heatmap. Also shown are the ratios of variance explained by each of the first 21
principle components—after the first principle component, the distribution is characterized by a
long tail, suggesting that much of the variance is spread across many dimensions, underscoring the
complexity of the connectivity score data. ¢.) Barplot showing the number of significant differentially
expressed genes for IMR-32 cells exposed to each of the 25 venoms.

Table 4. Venom-drug class associations.

Venom Drug class (MoA)
Synanceia horrida ATPase inhibitor

CDK inhibitor

DNA synthesis inhibitor
Scolopendra subspinipes dehaani ~ T-type Ca?* channel inhibitor
Pterois volitans Topoisomerase inhibitor
Argiope lobata ATPase inhibitor

PI3K inhibitor

PPARy agonist
Scorpio maurus FGFR inhibitor

Rhinella marina HIV protease inhibitor
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N. nivea L. colubrina M. xanthina D. polylepis
negative: 0.15 negative: 0.19 negative: 0.22 negative: 0.0
zero: 0.57 zero: 0.75 zero: 0.52 zero: 0.76
positive: 0.28 positive: 0.057 positive: 0.26 positive: 0.24
C. scutulatus Atractaspis sp. M. gigas L. fallax
negative: 0.12 negative: 0.23 negative: 0.11 negative: 0.17
zero: 0.71 zero: 0.56 zero: 0.63 zero: 0.78
positive: 0.18 positive: 0.2 positive: 0.27 positive: 0.057
P. fasciata A. lobata S. verrucosa S. horrida
negative: 0.0 negative: 0.22 negative: 0.027 negative: 1.0
zero: 0.79 zero: 0.52 zero: 0.97 zero: 0.0
positive: 0.21 positive: 0.26 positive: 0.0 positive: 0.0
B. occitanus L. quinquestriatus S. maurus B. bufo
negative: 0.0 negative: 0.14 negative: 0.21 negative: 0.15
zero: 1.0 zero: 0.73 zero: 0.57 zero: 0.7
positive: 0.0 positive: 0.12 positive: 0.21 positive: 0.16
2
@
c
3
) LA /\_J
R. marina B. variegata A. mellifera V. crabro
negative: 0.15 negative: 0.055 negative: 0.11 negative: 1.0
zero: 0.6 zero: 0.74 zero: 0.58 zero: 0.0
positive: 0.25 positive: 0.2 positive: 0.31 positive: 0.0
S. subspinipes C. marmoreus C. imperialis 0. macropus
negative: 0.22 negative: 0.096 negative: 0.24 negative: 0.18
zero: 0.53 zero: 0.82 zero: 0.53 zero: 0.64
positive: 0.25 positive: 0.08 positive: 0.23 positive: 0.18
-2 0 2 -2 0 2
P. volitans
negative: 0.17
zero: 0.56
positive: 0.27
0 0 3 Normalized connectivity score (NCS)

Figure 4. Kernel density plots of normalized connectivity scores (NCSs) for each of the 25 venoms.
Note the tendency to introduce sparsity by setting NCS to zero if the quantities 2 and b have opposite
signs (see §5.7.1). Text labels indicate proportion of NCSs for a single venom that are negative, zero,
or positive. Each plot is based on 473,647 NCSs (all differential expression profiles in GSE92742 [7]).
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Table 5. Drugs used to validate PLATE-Seq and the IMR-32 cell line for connectivity analysis. Not
all compounds of a given mechanism of action will necessarily map to that mechanism’s associated
PCL—PCLs consist of compounds that are members of the same functional class and also have high
transcriptional impact.

Drug Mechanism of Action CMap perturbagen class (PCL)
Mibefradil T-type Ca?" channel inhibitor CP_T_TYPE_CALCIUM_CHANNEL_BLOCKER
Isradipine L-type Ca?* channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Nifedipine L-type Ca®* channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Diltiazem Ca’* channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Verapamil Ca?* channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Fendiline Ca2* channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER
Topiramate Na* and Ca®* channel modulator CP_SODIUM_CHANNEL_BLOCKER
Ionomycin Ca?* channel signal inducer

1-EBIO Ca2*-gated KT channel activator CP_POTASSIUM_CHANNEL_ACTIVATOR
Forskolin Adenylyl cyclase activator

Pregabalin Increases GABA biosynthesis

Gabapentin Increases GABA biosynthesis

Baclofen GABAg-receptor agonist

Memantine Glu-receptor inhibitor

Acamprostate Glu-receptor inhibitor CP_GABA_RECEPTOR_ANTAGONIST
MTEP Glu-receptor inhibitor

Ivermectin Glu-gated C1~ channel inhibitor

Carbenoxolone  Glucocorticoid metabolism inhibitor

Mifepristone Glucocorticoid receptor inhibitor CP_PROGESTERONE_RECEPTOR_ANTAGONIST
Dexamethasone  Glucocorticoid receptor agonist CP_GLUCOCORTICOID_RECEPTOR_AGONIST
Aldosterone Mineralocorticoid receptor agonist

Spironolactone  Mineralocorticoid receptor inhibitor

Olanzapine Dopamine receptor inhibitor CP_DOPAMINE_RECEPTOR_ANTAGONIST
Eticlopride Dopamine receptor inhibitor CP_DOPAMINE_RECEPTOR_ANTAGONIST
Ondansetron 5-HT3 serotonin receptor inhibitor CP_SEROTONIN_RECEPTOR_AGONIST
Naltrexone Opioid receptor inhibitor

Disulfiram Acetaldehyde dehydrogenase inhibitor

Cerlitinib ALK inhibitor

Crizotinib ALK inhibitor

Sirolimus mTOR inhibitor CP_MTOR_INHIBITOR

Manumycin a

Vorinostat HDAC (I/11/1V) inhibitor CP_HDAC_INHIBITOR

Prazosin Adrenergic receptor inhibitor CP_BETA_ADRENERGIC_RECEPTOR_AGONIST
Rolipram Phosphodiesterase-4 inhibitor

Minocycline NOS inhibitor

Pioglitazone PPAR‘y/« inhibitor CP_PPAR_RECEPTOR_AGONIST

Fenofibrate PPAR« agonist CP_PPAR_RECEPTOR_AGONIST

Farnesyltransferase inhibitor

CP_NFKB_PATHWAY_INHIBITOR

inhibitors). PPAR receptor agonists have been used to treat diabetes, hyperlipidemia,
pulmonary inflammation, and cholesterol disorders.

2.6. VenomSeq technical validation

Following the procedures described in §5.8, we used a secondary PLATE-Seq dataset
of 37 existing drugs (with known effects) tested on IMR-32 cells to assess whether the
sequencing technology (PLATE-Seq) and cell line (IMR-32) employed by VenomSeq are
compatible with connectivity analysis and the CMap reference dataset. In this dataset, we
were able to map 20 of the 37 drugs to a single existing CMap perturbational class (PCL).
The drugs, their modes of action, and the PCLs of which they are members are listed in
Table 5.

2.6.1. VenomSeq technical validation: Recovering connectivity by integrating cell lines

When we aggregated all connectivity scores between a known drug and members
of the same PCL in the CMap dataset, irrespective of cell line, the connectivity scores are
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a) b.)
14
10 VenomSeq data Validation data CMap reference data
a=0.05)
P ( ! Technology PLATE-Seq PLATE-Seq L1000
10-2 4 prazosin"acamprosate
Measurement type | Gene counts Gene counts Gene relative abundance
Human cell line(s) | IMR-32 IMR-32 9 core cell lines
-5
10 ) edexamethasone manumycin a Exposure 25 crude venoms | 37 small molecule | 19,811 small molecule
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Figure 5. Results of applying the VenomSeq sequencing and connectivity analysis workflow to 37
existing drugs with known effects, to validate the compatibility of PLATE-Seq and IMR-32 cells with
the connectivity analysis algorithm and dataset. a.) Scatter plot showing validation drugs that are
members of a CMap PCL and the mean differences between within-PCL connectivity scores and
a null distribution of random connectivity scores for the same drug (Table 6). Verticle axis shows
the p-value of a Student’s t-test comparing the within-PCL and null connectivity score distributions
(corrected for multiple testing). Statistically significant drugs are labeled by name. b.) Summary
of the validation strategy, showing that the validation dataset bridges certain gaps between the
VenomSeq data and the CMap reference data. c.) Distributions of rank percentiles of expected (“true”)
PCLs within the list of all PCLs ordered by average connectivity score (Table 7), aggregated by CMap
dataset cell lines, and d.) validation drugs. Green distributions indicate a shift towards the front
of the rank ordered list, indicating stronger compatibility with the PLATE-Seq/IMR-32 query data,
based on expected connections, and “*” indicates statistically significant shifts.
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Table 6. Enrichment of strong connections in expected PCL annotations . p-values correspond to
independent, two-sample Student’s ¢-tests between “within-PCL” connectivities and a null model of
randomly sampled compound connectivities (see text) for the same query drug, and are corrected
for multiple testing using the Benjamini-Hochberg procedure. Effect size is the difference of means
between those two groups, such that larger effect sizes correspond to higher expected connectivity
scores between the query drug and members of its same drug class. Note that effect sizes are relatively

small in most cases—this is due in part to the sparsity of connectivity scores.

Drug PCL p-value Effect size
Topiramate CP_SODIUM_CHANNEL_BLOCKER 1.018e-31 13.168
Vorinostat CP_HDAC_INHIBITOR 5.952e-22 1.717
Sirolimus CP_MTOR_INHIBITOR 2.240e-17 1.232
Eticlopride CP_DOPAMINE_RECEPTOR_ANTAGONIST 1.278e-11 4.175
Olanzapine CP_DOPAMINE_RECEPTOR_ANTAGONIST 8.117e-09 2.640
Fenofibrate CP_PPAR_RECEPTOR_AGONIST 1.012e-07 1.775
Pioglitazone CP_PPAR_RECEPTOR_AGONIST 1.158e-07 3.252
Manumycin a CP_NFKB_PATHWAY_INHIBITOR 4.124e-07 5.983
Dexamethasone CP_GLUCOCORTICOID_RECEPTOR_AGONIST 2.741e-06 2.462
Prazosin CP_BETA_ADRENERGIC_RECEPTOR_AGONIST 2.476e-02 2.083
Acamprosate CP_GABA_RECEPTOR_ANTAGONIST 4.290e-02 2.260
Mibefradil CP_T_TYPE_CALCIUM_CHANNEL_BLOCKER 6.871e-02 0.355
1-EBIO CP_POTASSIUM_CHANNEL_ACTIVATOR 2.573e-01 2.597
Fendiline CP_CALCIUM_CHANNEL_BLOCKER 2.854e-01 2.636
Diltiazem CP_CALCIUM_CHANNEL_BLOCKER 2.929e-01 5.719
Isradipine CP_CALCIUM_CHANNEL_BLOCKER 4.062e-01 0.683
Nifedipine CP_CALCIUM_CHANNEL_BLOCKER 4.100e-01 1.932
Mifepristone CP_PROGESTERONE_RECEPTOR_ANTAGONIST 4.309e-01 3.160
Verapamil CP_CALCIUM_CHANNEL_BLOCKER 5.404e-01 5.880
Ondansetron CP_SEROTONIN_RECEPTOR_AGONIST 5.710e-01 2.659

significantly greater than those in a null model in 12 out of 20 instances, which indicates
that drugs within the same functional class tend to have more similarities in the query
and reference datasets than if the compounds are chosen at random. In all 20 cases, the
average effect size! was positive, regardless of statistical significance. These—and their
corresponding measures of significance—are shown in Figure 5 and Table 6. Overall, these
data are congruent with those made by the Connectivity Map team in [7]—namely, that
expected connections between query drugs and reference compounds can be recovered for
some PCLs, but not for others. Importantly, in both our observations and the observations
in [7], PCLs related to highly conserved core cellular functions perform better under this
approach.

2.6.2. VenomSeq technical validation: Impact of reference cell lines and query drugs on
expected PCL percentile ranks

Since IMR-32 cells are not present in the CMap reference dataset, we were particularly
interested in seeing which cell lines present in the reference dataset (if any) performed
better than others at the task of recovering expected connections. Using the PCL ranking
strategy described in §5.8, 7 of the 9 core cell lines show at least a moderate tendency to
place the true PCL towards the front of the ranked list of all PCLs, indicating that at least
some of the ability to recover expected connections is retained when looking at those 7 cell
lines individually. PCL rankings stratified by drug (rather than cell line) show a similar
pattern—15 of 20 PCL-annotated drugs tend to have the expected PCL ranked towards the

1 Effect size is defined as the average difference between connectivities within the expected PCL and the null

model of random connectivities for the same query
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Table 7. Correct PCL ranks aggregated by cell line. Mean rank percentile is the mean rank of the
correct (“true”) PCL, aggregated over all query drugs and divided by the total number of PCLs (92),
reported by cell line.

CMap cell line Mean rank percentile FDR-corrected p-value

HAI1E 0.326087 0.001663
A375 0.375000 0.004926
PC3 0.431522 0.109226
HCC515 0.446739 0.193877
HEPG2 0.461957 0.258068
MCF7 0.465217 0.279325
VCAP 0.492935 0.443995
A549 0.503804 0.468387
HT29 0.075445 0.591304

front of the list (“enrichment”), while 5 tend to have the expected PCL show up towards
the back of the list (“depletion”). Of these 20, the only It should be noted that—due to the
rather small number of profiles in the reference dataset that are annotated to PCLs—these
two analyses were limited in terms of statistical power, and deserve a follow up analysis
in the future, when more PCLs and members of those PCLs are present in the reference
database.

2.7. Associations between venoms and disease regulatory networks

Direct observations of expressed genes (via mRNA counts) provide an incomplete
image of the regulatory mechanisms present in a cell. To complement the CMap approach
that focuses on perturbations at the gene level, we designed a parallel approach that uses cell
regulatory network data to investigate perturbations at the regulatory module (e.g., pathways
and metabolic networks) level; an approach we refer to as master regulator analysis.
In master regulator analysis, the ARACNe algorithm [8] is used to obtain regulatory
network data for our cell line of interest (in this case, IMR-32), consisting a list of requlons—
overlapping sets of proteins whose expression is governed by a master regulator (e.g., a
transcription factor). The msVIPER algorithm [9] is then used to determine the activity
of each regulon by computing enrichment scores from observed expression levels of the
genes/proteins contained in that regulon (here, using the RN A-Seq results described in
§2.2).

We matched the significantly up- and down-regulated master regulators for each
venom to diseases using high-confidence TF-disease associations in DisGeNET [10]—a
publicly available database of associations between diseases and gene network component.
This approach is based on the idea that diseases caused by disregulation of metabolic and
signaling networks can be treated by administering drugs that “reverse” the cause (i.e.,
abnormal master regulator activity) of disregulation. Since we are interested in discovering
associations with multiple corroborating pieces of evidence, we specifically filtered for
diseases where two or more linked TFs are disregulated when perturbed by the venom.
The complete list of associations are provided on figshare at https://doi.org/10.6084/m9
figshare.7609793; here, we describe a handful of interesting observations.

The most prevalent class of illness (comprising 19.7% of all associations across all
venoms) is DISEASES OF THE NERVOUS SYSTEM AND SENSE ORGANS. This is not surprising,
considering many of the 25 venoms have neurotoxic effects, and IMR-32 is a cell line
derived from neuroblast cells. One source of bias in these results is that similar diseases
tend to be associated with the same regulatory mechanisms [11]. For example, associations
between a venom and schizophrenia will often be co-reported with associations to other
mental conditions, such as bipolar disorder and alcoholism.
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2.8. Argiope lobata venom versus cardiopulmonary and psychiatric diseases

A. lobata is a species of spider in the same genus as the common garden spider. The
species is relatively understudied, largely due to its lack of interaction with humans,
despite being distributed across Africa and much of Europe and Asia. The venom from
species of Argiope spiders contain toxins known as argiotoxins [12], which are harmless
to humans, in spite of having inhibitory effects on AMPA, NMDA, kainite, and nicotinic
acetylcholine receptors, which have been implicated in neurodegenerative and cardiac
diseases. VenomSeq provides supporting evidence for therapeutic activity in each of these
classes.

Connectivity analysis links A. lobata venom to ATPase inhibitor drugs (see Figure A5),
which include digoxin, ouabain, cymarin, and other cardiac glycosides, and are used to
treat a variety of heart conditions. Another venom-derived compound—bufalin (from
the venom of toads in the genus Bufo) [13]—is considered an ATPase inhibitor, and has
demonstrated powerful cardiotonic effects. Connectivity analysis also links the venom to
PPAR agonist drugs, which are used to treat cholesterol disorders, metabolic syndrome, and
pulmonary inflammation. Interestingly, PPARy activation results in cellular protection from
NMDA toxicity. Given the known inhibitory effect of argiotoxins on NMDA receptors [14],
this is striking and biologically plausible evidence for toxin synergism, where two or more
venom components target multiple cellular structures with related functions in order to
incite a more powerful response [15].

Master regulator analysis supports these findings, as well. We found that A. lobata
venom is associated with a number of circulatory diseases, including hypertension, heart
failure, cardiomegaly, myocardial ischemia, and others. Additionally, it reveals strong
associations with an array of mental conditions, such as schizophrenia, bipolar disorder,
and psychosis. These associations are supported by recent research into argiotoxins (and
other polyamine toxins), showing that their affinity for iGlu receptors can be exploited to
treat both psychiatric diseases and Alzheimer disease [12].

2.9. Scorpio maurus venom for cancer treatment via FGFR inhibition

S. maurus—the Israeli gold scorpion—is a species native to North Africa and the
Middle East. Its venom is not harmful to humans, but it is known to contain a specific
toxin, named maurotoxin, which blocks a number of types of voltage-gated potassium
channels—an activity that is under investigation for treatment of gastrointestinal motility
disorders [16].

Our connectivity analysis suggests an additional association with FGFR inhibitor
drugs. FGFR inhibitors are an emerging class of drugs with promising anticancer activity,
and much research focused on them aims to understand and counteract their adverse
effects (see Figure A6). Although there is no prior mention of FGFR-related activity from
this or related species of scorpions, descriptions of unexpected side effects of S. maurus
venom on mice provide evidence that such activity could be true. In particular, the venom
has been shown to have biphasic effects on blood pressure: When injected, it causes rapid
hypotension, followed by an extended period of hypertension. The fast hypotension is
known to be caused by a phospholipase A; in the venom, but no known components elicit
hypertension when administered in purified form [17]. The observed FGFR inhibitor-like
effects on gene expression suggest that an unknown component (or group of components)
may cause the hypertensive effect via FGFR inhibition.

3. Discussion
3.1. MOAs of venoms versus synthetic small-molecule drugs

In the connectivity analysis portion of VenomSeq, we demonstrated that these tech-
niques can identify novel venom-drug class associations, and corroborate known venom
activity. One distinct advantage of performing queries against the CMap reference dataset
is their inclusion of manually-curated perturbagen classes (PCLs), which allow for normal-
ization of data gathered from multiple perturbagens and multiple cell lines, aggregated
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at a class level that corresponds approximately with drug mode of action. For this reason,
hypotheses generated by the connectivity analysis portion of VenomSeq are often testable at
the protein level.

One important caveat is that venom components have a tendency to interact with cell
surface receptors (e.g., ion channels or GPCRs), inciting various signaling cascades and
therefore acting indirectly on downstream therapeutic targets. While this is certainly the
case for many drugs as well (GPCRs are considered the most heavily investigated class
of drug targets [18]), small molecules often can be designed to enter the cell and interact
directly with the downstream therapeutic target. This has important implications regarding
assay selection for in vitro validation of associations learned through the connectivity
analysis. For example, if the MoA of interest is inhibition of an intracellular protein (e.g.,
topoisomerase), a cell-based assay should be considered when testing venom hypotheses,
since the venom likely is not interacting directly with the topoisomerase (and, therefore,
the effect would not occur in non-cell based assays).

3.2. Venoms versus human diseases

The master regulator analysis portion of VenomSeq discovers associations between ven-
oms and the diseases they may be able to treat, rather than to drugs. This could be especially
useful for discovering treatments to diseases with no or few existing indicated drugs (or
drugs that are not present in public differential expression databases). Additionally, since
the master regulator approach is sensitive to complex metabolic network relationships, it is
(theoretically) more sensitive to patterns, as well as more suited to diseases with complex
genetic etiologies that are not explainable by observed gene counts alone.

Currently, the primary drawback to the master regulator approach is that criteria for
statistical significance are not well established. Therefore, it is challenging to determine
which venom-disease associations are most likely to reflect actual therapeutic efficacy. As a
temporary alternative, we used several heuristics to ensure there are multiple corroborating
sources of evidence for the reported associations.

As discussed previously, the connectivity analysis produces hypotheses that are rela-
tively straightforward to validate experimentally, using affordable, widely available assay
kits and reagents. Since the master regulator workflow gives hypotheses at the disease
level (where the underlying molecular etiologies can be unknown), validation instead
needs to be performed at the phenotype level, either using animal models of disease, or
carefully engineered, cell-based phenotypic assays that measure response at multiple points
in disease-related metabolic pathways (e.g., DiscoverX’s BloMAP® platform [19]).

3.3. Specific therapeutic hypotheses

VenomSeq contains multiple types of data analysis for two reasons: (1) This allows us
to cover diseases with a wider array of molecular etiologies, and (2) it provides a means
for obtaining multiple pieces of corroborating evidence for a given hypothesis. If a link
between a venom and a drug/disease is suggested by both connectivity analysis and master
regulator analysis, and there is additional literature evidence that lends biological or clinical
plausibility, this increases our confidence that the suggested therapeutic effect is robust.

3.4. Accessing and querying VenomSeq data

VenomSeq is designed as a general and extensible platform for drug discovery, and we
encourage secondary use of both the technology as well as the data produced using the 25
venoms and 11 synthesized teretoxins tested on IMR-32 cells described in this manuscript.
We maintain the data in two publicly-accessible locations: (1.) a “frozen” copy of the data, as
it exists at the time of writing (on figshare, at https://doi.org/10.6084/m9.figshare.7611662),
and (2.) a copy hosted on venomkb.org, available both graphically and programmatically,
and designed to be expanded as new data and features are added to VenomKB.
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3.5. Transitioning from venoms to venom components 310

VenomSeq is a technology for discovering early evidence that a venom has a certain  su
therapeutic effect. However, most successful approved drugs derived from venoms make s
use of the activity of a single component within that venom, rather than the entire (crude) s
venom. As previously mentioned, venoms can be comprised of hundreds of unique
components, each with a unique function and molecular target. Following this observation, s
we applied the VenomSeq pipeline to 9 purified peptides from snails in the family Terebridae, s
to assess whether VenomSeq can effectively produce differential expression profiles for a7
individual venom components. We describe the resulting expression profiles in §2.4 and s
experimental methods in §5.3. 319

Of the 9 teretoxins, 5 caused no significant changes in gene expression. This is consis- 0
tent with our expectations—marine snail venoms components tend to have highly targeted sz
modes of action, and any single cell line will respond to only some of the active components sz
in a venom. Of the remaining 4 teretoxin peptides, 1—named Mki8.7, from the venom s
of Myurella kilburni—produced a robust signature with 13 genes down-regulated and 12 s
up-regulated. We feel this merits further investigation, and typifies the type of workflow s
we would like to see used with VenomSeq in the future: Both crude venoms and individual s
venom components should be broadly screened for therapeutic effects, and in diverse
human cell lines. Since isolating venoms and purifying their individual components is s
both laborious and expensive, a production-scale application of VenomSeq will be a costly s
endeavor, but one with significant potential for improving human health. 330

Furthermore, although most existing venom-derived drugs consist of a single compo- s
nent, crude venoms in nature use the synergistic effects of multiple components to cause sz
specific phenotypic effects [15]. Therefore, testing each venom component individually s
using the VenomSeq workflow might fail to capture all of the clinically beneficial activities s
demonstrated by the crude venom. A brute-force solution is to perform VenomSeq on all 33
combinations of the isolated venom components, but doing so requires a massive number s
of experiments (2" — 1, where 7 is the number of components in the venom). Therefore, it s
will be necessary to establish a protocol for prioritizing combinations of venom components. s
One potential solution is to fractionate the venom (i.e., using gel filtration) and perform s
VenomSeq on combinations of the fractions, but this will need to be tested. Alternatively, s
integrative systems biology techniques could be used to predict which components act s«
synergistically, via similarity to structures with well-established activities. 342

3.6. Applying the VenomSeq framework to other natural product classes 343

VenomSeq was designed for the purpose of discovering therapeutic activities from s
venoms, but it could be feasibly extended to other types of natural products, including s
plant and bacterial metabolites, and immunologic components. Venoms provide a number s
of advantages and simplifying assumptions that were useful in designing the technology, s«
but a broader application of VenomSeq will enable the relaxation of these assumptions with s
some minor modifications to experimental protocol and data analysis. For example, non- s«
venom toxins may have less-targeted MoAs, disrupting biological systems indiscriminantly s
(e.g., by interrupting cell membranes regardless of cell type). Additionally, the kinetics 3=
of non-venom natural products may be more subtle than venoms, which tend to have =
powerful binding and catalytic properties. 353

3.7. Interpreting connectivity analysis validation results 354

In §2.6, we described the results of the connectivity analysis procedure applied to s
PLATE-Seq expression data from IMR-32 cells treated with 37 existing drugs that have 15
known effects, many of which are members of Connectivity Map PCLs. Since VenomSeq s
uses an expression analysis technology that is different from the Connectivity Map’s L1000 35
platform, as well as a cell line that is not present in the Connectivity Map reference dataset, s
this is crucial for establishing that one can discover meaningful associations between crude s
venoms and profiles in the reference data within the VenomSeq framework. 361


https://doi.org/10.1101/699280
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/699280; this version posted June 1, 2023. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

15 of 30

Overall, the findings of our analysis are congruent with those made by the Connectivity e
Map team in [7]. Specifically, PCLs that affect highly conserved, core cellular functions e
(such as HDAC inhibitors, mTOR inhibitors, and PPAR receptors) tend to form strong  se
connectivities with members of the same class regardless of cell line. Therefore, associations  ses
discovered between crude venoms and these drug classes are likely “true associations”, ses
even when using IMR-32 cells in the analysis. Furthermore, by virtue of leveraging data  ser
corresponding to drugs with known effects, but using a new cell line and different assay se
technology, we have made the following novel findings: 369

Although IMR-32 is not present in the reference dataset, similarities between IMR-32 37
and cell lines that are present in the reference data can be leveraged to select reference sn
expression profiles that are more likely to reproduce true associations. For example, HAIE s
and A375 cells produce expression profiles that form reasonably strong connectivities a7
between IMR-32 query signatures and members of the same drug classes. More cell s
lines need to be included in the Connectivity Map data in order to better understand s
correlation structures in cell-specific expression, as well as to better capture therapeutic s
associations that are specific to cell types underrepresented in current datasets. Similarly, s
continued effort should be devoted to adding new PCL annotations. Currently, only 12.3% s
of compound signatures in the reference dataset are annotated to at least one PCL, and 37
some PCLs contain only a few signatures. A more rigorous definition of what specifically sz
comprises a PCL would allow secondary research groups to contribute to this effort, s
ultimately improving the utility of the CMap data and increasing the sensitivity of the s
algorithms used to discover new putative therapeutic associations. 383

In spite of the large amount of corroborating evidence these results provide (e.g., s
every drug in our validation set produced a positive average effect on within-PCL con- s
nectivities versus corresponding null distributions), we cannot definitively state whether  sa
the associations discovered for crude venoms reflect real therapeutic activities. Although s
our confidence in the novel associations would be improved by more PCL annotations to  sss
allow our analyses to attain greater statistical power, the ultimate test is to perform in vitro  sa
(and eventually in vivo) tests on individual venom components to detect these predicted 0
therapeutic mechanisms of action. Initial cellular and protein-based assays suggest the s
associations we found are real, but toxicity of the crude venoms damages cells and mem- s
branes before the experiments can be run to completion. Aside from larger quantities of s
reference data against which to run the validation analyses, we also hope to employ other 30
data science techniques involving network analysis and more advanced applications of 30
master regulator analysis (see, e.g., §2.7) to further understand the dynamic interactions 10
between cell types, gene expression, and perturbational signals that underly therapeutic s
processes. 398

4. Conclusions 399

Venoms provide an immensely valuable opportunity for drug discovery, but the 0
enormous quantity and variety of compounds found in each venom arsenal requires a o
revision of the techniques used for identifying new therapeutic leads from venom natural 4o
products. Traditional methods—involving rigorous experimental validation and high cost— 4
are necessary for validating associations between venoms and their respective therapeutic 4
effects in living systems. However, data-driven computational approaches can make this 4o
process easier by generating new hypotheses backed by existing evidence and multiple s
levels of statistical validation. VenomSeq is an early example of such an approach. 407

VenomSeq takes a two-pronged approach, combining connectivity analysis and master 40
regulator analysis to provide two orthogonal views of the effects venoms have on human 0
cells, where likely therapeutic effects are validated using publicly available knowledge o
representations and databases. In this study, we tested the VenomSeq workflow on 25
diverse venoms and 9 purified terebrid venom components applied to human IMR-32 cells, 2
and discovered a number of new therapeutic hypotheses supported by existing literature s
evidence. a4
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To reinforce the validity of the hypotheses found by VenomSeq, future work is merited s
in applying the pipeline to new venoms and new human cell lines, and to test the pipelineon 4
additional venoms, venom fractions, and isolated venom components with well-understood a7

therapeutic modes of action. a1
5. Materials and Methods a19
Obtain 25 crude venoms Expose cells to venoms Reverse transcribe, mRNA Sequencing
barcode, and pool cDNA and binning

\
é ))m g E‘ ﬁ /_w Extraction and Reads by venom
P E‘ E‘ ﬁl reverse transcription i E_%

oo

e Q.

gj ham [ cDNA@ T::A—Seq

i v Pooled
Venom collection Human (IMR-32) cells i N o1 Barcoded / 0ol eles 1M CCCCTCCTCGCGAGTT...

and lyophilization | sampl ,

°

X

PLATE-Seq

Figure 6. RNA-Seq strategy for VenomSeq. Crude venoms are extracted and lyophilized. IMR-32 cells
in culture are then treated with predetermined dosages of reconstituted venoms, and PLATE-Seq [20]
is used to isolate, sequence, and count reads corresonding to cellular mRINA.

5.1. Reagents and materials 420

We performed growth inhibition assays and perturbation experiments using IMR-32 s
cells—an adherent, metastatic neuroblastoma cell line used in previous applications of
PLATE-Seq and VIPER—grown in FBS-supplemented Eagle’s Minimum Essential Medium 42
(EMEM). All venoms were provided in lyophilized form and stored at -20 C. Since ven-
oms naturally exist in aqueous solution, we reconstituted them in ddH,O at ambient s
temperature. 426

5.2. Obtaining 25 venoms 427

VenomSeq is designed to apply to all venomous species across all taxonomic clades. 4
Accordingly, we validated the workflow using 25 venoms sampled from a diverse range  «
of species distributed across the tree of life. We selected the 25 species based on avail- 4.0
ability and compliance with international law, and sought to balance maximal cladistic 4
diversity with minimal expected cytotoxicity (e.g., snakes in the genus Bitis are known for s
inducing tissue death and necrosis, and are therefore challenging to use for drug discovery s
applications [21]). We purchased the 25 venoms from Alpha Biotoxine in lyophilized form, 4.
and obtained prior approval from the US Centers for Disease Control (CDC) through the 43
Federal Select Agent Program [22] for importing venoms containing a-conotoxins. The 25 4
venoms we selected are shown in Table 8. Note that we assigned a numeric identifier to  4x
each venom for convenience—these numbers show up numerous places in the data for s
VenomSeq. We also have included a rooted cladogram of the 25 species in Figure 7. 439

5.3. Obtaining 9 purified teretoxins a40

To assess the performance of VenomSeq on individual venom components, we selected 4
9 teretoxins from an in-house library of peptide sequences isolated from snails in the Tere-
brideefamily and synthesized purified samples using a method described previously [23]. s

5.4. Growth inhibition assays 444

A major challenge in generating differential gene expression data for discovery pur- s
poses is finding appropriate dosages for the compounds being tested. This is done to s
ensure the compound is in sufficient concentration to be exerting an observable effect s
on the cells, while also mitigating processes that result from toxicity (e.g., apoptosis). In s
practice, determining an appropriate dosage concentration usually makes use of previous 4o
experimental evidence and/or biochemical constants, but since these are generally not s
available for crude venoms, we instead determined dosages based on growth inhibition.
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Table 8. 25 venoms used to validate the VenomSeq workflow. Numbers in the right column are used

as placeholder names for the venoms in data files.

Species name

Common name

Venom number

Naja nivea

Laticauda colubrina
Montivipera xanthina
Dendroaspis polylepis polylepis
Crotalus scutulatus scutulatus
Atractaspis sp.

Macrothele gigas
Linothele fallax
Poecilotheria fasciata
Argiope lobata

Synanceia verriucosa
Synanceia horrida

Buthus occitanus
Leiurus quinquestriatus
Scorpio maurus

Bufo bufo
Rhinella marina
Bombina variegata

Apis mellifera
Vespa crabro
Scolopendra subspinipes dehaani

Conus marmoreus
Conus imperialis
Octopus macropus
Pterois volitans

Cape cobra
Banded sea krait
Ottoman viper
Black mamba
Mojave rattlesnake
Burrowing asp

Japanese funnel web spider
Tiger spider
Sri Lanka ornamental spider

Reef stonefish
Estuarine stonefish

Common yellow scorpion
Deathstalker
Large-clawed scorpion

Common toad
Cane toad
Yellow-bellied toad

Western honey bee
European hornet
Vietnamese centipede

Marbled cone snail

Imperial cone snail

Atlantic white-spotted octopus
Red lionfish

X3 OO WN -
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Figure 7. Rooted cladogram showing the 25 species used in VenomSeq. Clades corresponding to major
taxonomic groups are labeled as indicated.
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We prepared 2-fold serial dilutions of each venom, starting from 2.0mguL~!. We
seeded 96-well plates with IMR-32 cells and exposed them to the serial dilutions of the
venoms after 24 hours of incubation. 48 hours after exposure, we quantified growth
inhibition of the IMR-32 cells via cell viability luminesence assays.

For each venom, we fit these data to the Hill equation:

(Top — Bottom)

y= Bottom + 1+ 10(logGI5ofx)><h

where x is venom concentration, y is response (i.e., percent growth compared to untreated
cells), Top and Bottom are the maximum and minimum values of y, respectively, and & is a
constant that controls the shape of the sigmoidal curve. We used the resulting Gl values
(i.e., the value of x such that y = 100% — 20% = 80%) as the venom exposure concentrations
for the following sequencing experiments. Since some of the curves had very steep slopes
(indicating rapid loss of total cell viability after miniscule changes in venom concentration),
we confirmed the accuracy of the Glpp concentrations via secondary viability assays using
the exact Glpg values extrapolated from the growth inhibition curves.

5.5. mRNA Sequencing

We prepared samples of human IMR-32 cells in 96-well cell culture plates, allowing
for 3 replicates at each of 3 time points (6, 24, and 36 hours post-treatment) for each of the
25 venoms. The layout of the samples across 2 96-well plates is available in Appendix A.
We reconstituted the crude venoms in water, and treated the samples with corresponding
venoms at the previously determined Glo values. We additionally prepared 12 control
samples treated with water only, and 9 control samples that were untreated. Following
total mRNA extraction, we carried out the PLATE-Seq protocol [20] to obtain gene counts
for each sample. All sequencing was performed on the Illumina HiSeq platform. We used
STAR [24] to (1) map the demultiplexed reads to the human genome (build GRCh38 [25])
and (2) count the reads mapping to known genes. For detailed quality control data for the
sequencing experiments, refer to Appendix A.

5.6. Constructing expression signatures

We constructed differential gene expression signatures using the DESeq2 [26] library
for the R programming language. DESeq?2 fits observed counts for each gene to a negative
binomial distribution with mean y;; and dispersion (variance) «;, which we find to be a
more robust model than traditional approaches based on the Poisson distribution (i.e.,
by allowing for unequal means and dispersions). In practice, users can substitute any
method for determining significantly up- and down-regulated genes from count data. We
filtered for genes with an FDR-corrected p-value < 0.05, and recorded their respective mean
log,-fold change values, noting whether expression increased (up-regulated) or decreased
(down-regulated).

5.7. Comparing venoms to known drugs and diseases
5.7.1. Comparing to known drugs using the Connectivity Map

We retrieved the most recently published Connectivity Map dataset from the Clue.io
Data Library (GSE92742), which contains 473,647 perturbational signatures, each consist-
ing of robust Z-scores for 12,328 genes, along with relevant metadata. We then used the
procedure described by the Connectivity Map team [7] to generate connectivity scores
between each of the VenomSeq gene expression signatures and each of the reference expres-
sion profiles in the Connectivity Map database. This procedure, adapted for VenomSeq, is
summarized below.

Let a query g; be the two lists of up- and down-regulated genes corresponding to the
differential expression signature for venom 7, and r; € R be a vector of gene-wise Z-scores
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Figure 8. Strategy for discovering new associations from VenomSeq data. After obtaining processed
gene counts per sample, we generated differential expression signatures for each venom, and then
used the signatures in two parallel analyses: connectivity analysis, and master regulator analysis.

in reference expression signature j. We first generate a Weighted Connectivity Score (WCS)
w between g; and 1;:

o { (ESt, —ESY )/2  if sgn(ESky) # sgn(EST )
710 otherwise

where sgn denotes the sign function % |x|, and ES”" is the signed enrichment score for

either the up- or down-regulated genes in the signature, calculated separately (see Ap-

pendix 5.7.1.1 for details).

Although we validated VenomSeq on only a single human cell line, the reference
database provided by the Connectivity Map provides expression profiles on 9 core cell
lines, across multiple classes of perturbagens. Therefore, we compute normalized versions
of WCS called Normalized Connectivity Scores (NCSs):

NCS,, = { g /1ty it sgn(wy,) >0

’ Wq,r /ey Otherwise
where V;t and p_, are the means of all positive or negative WCSs (respectively) for the
given cell line and perturbagen type.

The final step in computing connectivity scores between a venom g and a reference
is to convert NCSg » into a value named 7, which represents the signed quantile score in
the context of all positive or negative NCSs:

100 &
Ty = sgn(NCS;,) — N Y [INCS;,| <|NCS;,|]

i=1

where N is the number of all expression signatures in the reference database and |[NCS| is
the absolute magnitude of an NCS.
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Enrichment Score computation 513

For a venom g and reference expression signature 7, the enrichment score ES” isa  su
signed Kolmogorov-Smirnov-like statistic indicating whether the subset of up- or down- s
regulated genes in g tend to occur towards the beginning or the end of a list of all genes s
ranked by expression level in r. We follow a procedure similar to that described by Lamb 57
et al. in [6]. Specifically, we compute the following two values: si8

a = max {] - Vqr(j)]
=1 |t n

519

b = max
j=1

n t

t [Vqr(f) <f—1>}

where V,, is the vector of nonnegative integers that gives the indexes of the genes in g s
within the list of all genes ordered corresponding to their assumed values in 7, t is the sa
number of genes in ¢, and 7 is the number of genes reported in the reference database (in s
practice, t < n). We then set ES as follows: 523

qr a ifa>b
ES. { ~b  ifa<b

Since each query g consists of two lists—one of up-regulated and one of down-regulated s
genes—we compute both ESﬁ; and ESZ:)WH, respectively, and use these two values to s
compute wy,, as described above. 526

5.7.2. Comparing to known diseases using master regulator analysis 527

We discovered associations between the venom expression profiles and known dis- s
eases (coded as UMLS concept IDs) as the result of two sequential steps: (1) algorithmic sz
determination of substantially perturbed cell regulatory modules (called regulons), and (2) s
mapping master regulators to diseases using high-confidence associations distributed in sz
the DisGeNET database. These took as input the same differential expression data used s
in the connectivity analysis. IMR-32 regulon data (in the form of an adjacency matrix, s
where nodes are genes and edges are measures of mutual information with respect to their s
coexpression) were provided by the authors of the ARACNe algorithm. 535

In order to identify perturbed regulons, we first performed a 2-tailed Student’s t-test s
between the genes’ expression in the ‘test’ set (samples perturbed by venoms) and the s
‘reference’ set (control samples). To make the final expression signatures, we then converted s
the results of the t-tests to Z-scores, to make them consistent with the models used by s
downstream algorithms. We generated null scores by performing the same test on the s«
expression data with permuted sample labels, to account for correlation structures between sa
genes. Once we had computed Z-scores, we ran the msVIPER algorithm, which derives s
enrichment statistics for each regulon based on the expression levels of the genes contained s
in the regulon. The result of msVIPER is a table of regulons (labeled by their master s«
regulator), with enrichment scores, p-values, and FDR-corrected adjusted p-values. 545

We then compared the significantly upregulated regulons to the manually curated s«
subset of TF-disease associations from the DisGeNET database. To do so, we mapped the s
statistically significant master regulator TFs for each venom to TFs reported in DisGeNET, s
and then mapped those TFs to their associated diseases. To help with filtering venom—  sss
disease associations with low evidence, we only retained diseases where at least two of the  sso
regulons that were significantly disregulated by the venom are associated with the same s
disease. Accordingly, we considered diseases with the highest number of significantly s
disregulated master regulators to comprise the associations with the greatest amount of s
evidence. 554

Similarly to how we mapped drugs to drug classes, we mapped diseases to disease s
categories. To do so, we identified the set of ICD-9 codes for each disease, based on sz
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the diseases’ entries in the UMLS (UMLS CUIs were provided by DisGeNET). We then
identified the disease category as the top-level ICD-9 ‘chapter” corresponding to that
ICD-9 code (e.g., NEOPLASMS, MENTAL DISORDERS, DISEASES OF THE RESPIRATORY SYSTEN,
etc.). In rare instances where a disease or condition was present in two locations (e.g.,
‘hypertension” is found in 2 chapters: DISEASES OF THE CIRCULATORY SYSTEM (401), and
INJURY AND POISONING (997.91)), we opted for the more specific of the two (e.g., avoiding
entries containing “not elsewhere classified”).

5.8. Assessing sequencing technology and cell type compatibility

Since VenomSeq uses a sequencing technology (PLATE-Seq) and a cell line (IMR-32)
that have not been used previously with the connectivity analysis approach, we evaluated
their compatibility using a secondary dataset consisting of IMR-32 cells perturbed with
37 drugs and sequenced using PLATE-Seq. Since these drugs have known effects—and
since many are present in the L1000 reference dataset—we sought to determine the extent
to which connectivity analysis captures functional similarities between these drug data and
the L1000 reference expression profiles. The 37 drugs are listed in Table 5. For the purposes
of this discussion, a “query signature” is an expression signature corresponding to one
of the 37 drugs in the validation dataset, and a “reference profile” is an L1000 expression
profile from the dataset (GSE92742) published by the Connectivity Map team and used in
the crude venom connectivity analysis.

Using these data (consisting of gene count matrices with several technical replicates per
drug), we constructed differential expression signatures and performed the connectivity
analysis algorithm in the same manner as we had for IMR-32 cells exposed to the 25
crude venoms. We annotated each of the 37 drugs (where possible) with perturbagen
classes (PCLs) defined by the Connectivity Map team, which allowed us to identify L1000
expression profiles that come from the same drug classes as the drugs in our validation
dataset. We then evaluated connectivity scores among members of the same PCL from
two perspectives: (1) By aggregating all T scores for reference profiles corresponding to a
given compound, integrating evidence from all cell lines, and (2) by aggregating T scores
within individual cell lines, allowing us to assess the degrees to which specific cell lines are
compatible with IMR-32 /PLATE-Seq query signatures.

For the first of these two approaches, we collected all values of T connecting query
signatures in a PCL to reference profiles in the same PCL, and constructed null models
by retrieving T scores between the same query signature and all reference profiles that
are members of any PCL. We defined the “effect size” of each PCL annotation as the
difference of the mean of the scores within the true PCL and the mean of the scores in
the null model. Additionally, we determined statistical significance using independent
two-sample Student’s t-tests. To correct for multiple testing, we adjusted p-values using
the Benjamini-Hochberg procedure (« = 0.05).

For the second approach—in which we evaluated each of the 9 core L1000 cell lines
separately for each query signature—we retrieved T scores between query signatures and
each of the 92 PCLs in the reference dataset. Then, for each of the 9 cell lines and each of
the query signatures annotated to a PCL, we constructed ordered lists of all PCLs ranked
by their mean T score in descending order (highest to lowest connectivity). In each of those
lists, we determined the rank corresponding to the expected (“true”) PCL—which we call
the rank percentiles—and aggregated these ranks separately by (a) the drug corresponding
to the query signature and (b) cell line of the reference profile. These two strategies allow
us to separately assess the effects of drugs and cell lines on the behavior of connectivity
scores. Under the null hypothesis that there is no selective preference for the true PCL
in the connectivity data, the mean rank percentiles would follow a continuous uniform
distribution in the range [0,1]. Alternatively, if there is a selective preference for the
expected PCL in the connectivity data, this rank will tend to occur towards the front of the
list of ranks (and vice-versa).
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The following abbreviations are used in this manuscript:

ARACNe Algorithm for the reconstruction of accurate cellular networks
CDC Centers for Disease Control

CMap Connectivity map

DNA Deoxyribonucleic acid

EMEM Eagle’s minimum essential medium

ES Enrichment score

FGFR Fibroblast growth factor receptor

GEO Gene Expression Omnibus

GPCR G-protein-coupled receptor

HTS High-throughput sequencing

MoA Mechanism of action

msVIPER Multiple sample virtual inference of protein-activity by enriched regulon analysis
mRNA Messenger ribonucleic acid

mTOR Mammalian target of rapamycin

NCBI National Center for Biotechnology Information

NCS Normalized connectivity score

NMDA N-methyl-D-aspartate

PCL Perturbagen class

PLATE-Seq Pooled library amplification for transcriptome expression sequencing
PPAR Peroxisome proliferator-activated receptor

RNA-Seq Ribonucleic acid sequencing

TF Transcription factor

UMLS Unified medical language system

WCS Weighted connectivity score
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Appendix A. PLATE-Seq quality control data

Plate 1: Plate 2:

Well Venom Conc. (uG/uL)  Time (Hrs) Well Venom Conc. (uG/uL)  Time (Hrs)
Al 1 0.0086 6 A1 1 0.0086 6
B1 2 2.0000 6 B1 2 2.0000 6
C1 3 0.0019 6 C1 3 0.0019 6
D1 4 2.0000 6 D1 4 2.0000 6
E1 5 0.0016 6 E1 5 0.0016 6
F1 6 0.0079 6 F1 6 0.0079 6
G1 7 0.0036 6 G1 7 0.0036 6
H1 8 0.1247 6 H1 8 0.1247 6
A2 9 05319 6 A2 9 0.5319 6
B2 10 1.0854 6 B2 10 1.0854 6
C2 11 2.0000 6 C2 11 2.0000 6
D2 12 2.0000 6 D2 12 2.0000 6
E2 13 0.7544 6 E2 13 0.7544 6
F2 14 0.9491 6 F2 14 0.9491 6
G2 15 0.0926 6 G2 15 0.0926 6
H2 16 0.0002 6 H2 16 0.0002 6
A3 17 0.0002 6 A3 17 0.0002 6
B3 18 0.1579 6 B3 18 0.1579 6
c3 19 0.0242 6 C3 19 0.0242 6
D3 20 0.8382 6 D3 20 0.8382 6
E3 21 0.0082 6 E3 21 0.0082 6
F3 22 2.0000 6 F3 22 2.0000 6
G3 23 0.7097 6 G3 23 0.7097 6
H3 24 2.0000 6 H3 24 2.0000 6
A4 25 2.0000 6 A4 25 2.0000 6
B4 Water - 6 B4 Water - 6
C4 Water - 6 C4 Water - 6
D4 Water - 6 D4 Water - 6
E4 Water - 6 E4 Water - 6
F4 Untreated — — 6 F4 Untreated  — 6
G4 Untreated — — 6 G4 Untreated  — 6
H4 Untreated  — 6 H4 Untreated  — 6
A5 1 0.0086 24 A5 1 0.0086 24
B5 2 2.0000 24 B5 2 2.0000 24
Cs5 3 0.0019 24 C5 3 0.0019 24
D5 4 2.0000 24 D5 4 2.0000 24
E5 5 0.0016 24 E5 5 0.0016 24
F5 6 0.0079 24 F5 6 0.0079 24
G5 7 0.0036 24 G5 7 0.0036 24
H5 8 0.1247 24 H5 8 0.1247 24
A6 9 05319 24 A6 9 0.5319 24
B6 10 1.0854 24 B6 10 1.0854 24
Cé 11 2.0000 24 C6 11 2.0000 24
D6 12 2.0000 24 D6 12 2.0000 24
E6 13 0.7544 24 E6 13 0.7544 24
F6 14 0.9491 24 Fo 14 0.9491 24
G6 15 0.0926 24 G6 15 0.0926 24
Heé 16 0.0002 24 Heé 16 0.0002 24
A7 17 0.0002 24 A7 17 0.0002 24
B7 18 0.1579 24 B7 18 0.1579 24
c7 19 0.0242 24 Cc7 19 0.0242 24
D7 20 0.8382 24 D7 20 0.8382 24
E7 21 0.0082 24 E7 21 0.0082 24
F7 22 2.0000 24 F7 22 2.0000 24
G7 23 0.7097 24 G7 23 0.7097 24
H7 24 2.0000 24 H7 24 2.0000 24
A8 25 2.0000 24 A8 25 2.0000 24
B8 Water — 24 B8 Water — 24
Cc8 Water - 24 c8 Water — 24
D8 Water — 24 D8 Water — 24
E8 Water - 24 E8 Water — 24
F8 Untreated  — 24 F8 Untreated  — 24
G8 Untreated — 24 G8 Untreated  — 24
H8 Untreated  — 24 H8 Untreated  — 24
A9 1 0.0086 36 A9 1 0.0086 36
B9 2 2.0000 36 B9 2 2.0000 36
C9 3 0.0019 36 9 3 0.0019 36
D9 4 2.0000 36 D9 4 2.0000 36
E9 5 0.0016 36 E9 5 0.0016 36
F9 6 0.0079 36 F9 6 0.0079 36
G9 7 0.0036 36 G9 7 0.0036 36
H9 8 0.1247 36 H9 8 0.1247 36
A10 9 0.5319 36 A10 9 0.5319 36
B10 10 1.0854 36 B10 10 1.0854 36
C10 11 2.0000 36 C10 11 2.0000 36
D10 12 2.0000 36 D10 12 2.0000 36
E10 13 0.7544 36 E10 13 0.7544 36
F10 14 0.9491 36 F10 14 0.9491 36
G10 15 0.0926 36 G10 15 0.0926 36
H10 16 0.0002 36 H10 16 0.0002 36
A11 17 0.0002 36 A11 17 0.0002 36
B11 18 0.1579 36 B11 18 0.1579 36
C11 19 0.0242 36 C11 19 0.0242 36
D11 20 0.8382 36 D11 20 0.8382 36
E11 21 0.0082 36 E11 21 0.0082 36
F11 22 2.0000 36 F11 22 2.0000 36
G11 23 0.7097 36 G11 23 0.7097 36
H11 24 2.0000 36 H11 24 2.0000 36
A12 25 2.0000 36 A12 25 2.0000 36
B12 Water - 36 B12 Water - 36
C12 Water - 36 C12 Water - 36
D12 Water - 36 D12 Water - 36
E12 Water - 36 E12 Water - 36
F12 Untreated — 36 F12 Untreated  — 36
G12 Untreated — 36 G12 Untreated — — 36
H12 Untreated — 36 H12 Untreated — — 36

Table Al. Layout of samples in 2 96-well plates for PLATE-Seq.
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Figure A1. Quality control plots. (a.) Number of detected genes (mapped reads > 2) as a function
of the total number of mapped reads per sample. (b.) Saturation analysis by in silico subsampling.
Original data points are indicated by the black dots.
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Figure A2. Barplot showing the number of mapped reads per sample.
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Figure A4. Detected genes and spike-ins. (a.) Association between the number of mapped reads

and detected genes for each of the 96 analyzed samples. (b.) Heatmap showing the number of reads
(thousands) mapping to spike-ins for each of the samples.
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Appendix B. Mechanism diagrams

The following mechanisms—from the Reactome web resource—describe the molecular
functions for ATPase inhibitor and FGFR inhibitor drugs, which have similar effects on
global gene expression as A. lobata and S. maurus venom, respectively (see §3.3).
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Figure A5. Structure of digoxin (left), a cardiac glycoside that inhibits the function of the Na+/K+
ATPase (ATP1A; right) in the myocardium, which causes a decrease in heart rate [27]. A. lobata venom
has similar differential expression effects to those of digoxin and other ATPase inhibitor drugs, based
on connectivity analysis. Diagram from Reactome [28].
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Figure A6. Diagram of FGFR signaling pathways. FGFR inhibitors target 1 of the 4 types of FGFR
complexes, abnormal activity of which are involved in angiogenesis. VenomSeq suggests therapeutic
similarity between S. maurus venom and existing FGFR inhibitor drugs. Pathway diagram from
Reactome [29].
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Appendix C. Miscellaneous supplemental figures

O. macropus vs. untreated
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Figure A7. MA plot showing genewise relationship between log, fold change and mean of normalized
counts in samples corresponding to O. macropus venom. Each point represents one gene. Points in
red indicate statistically significant genes with regard to differential expression.
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