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Synopsis 

Background  

Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis, however antibiotic 

susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily 

driven by genetic variation in pncA, an enzyme that converts pyrazinamide into its active form. 

Methods 

We curated a dataset of 664 non-redundant, missense amino acid mutations in pncA with 

associated high-confidence phenotypes from published studies and then trained three different 

machine learning models to predict pyrazinamide resistance. All models had access to a range 

of protein structural-, chemical- and sequence-based features. 

Results 

The best model, a gradient-boosted decision tree, achieved a sensitivity of 80.2% and a 

specificity of 76.9% on the hold-out Test dataset. The clinical performance of the models was 

then estimated by predicting the binary pyrazinamide resistance phenotype of 4,027 samples 

harboring 367 unique missense mutations in pncA derived from 24,231 clinical isolates. 

Conclusions 

This work demonstrates how machine learning can enhance the sensitivity/specificity of 

pyrazinamide resistance prediction in genetics-based clinical microbiology workflows, highlights 

novel mutations for future biochemical investigation, and is a proof of concept for using this 

approach in other drugs. 
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Introduction 

 Mycobacterium tuberculosis is an evolutionarily ancient human pathogen that is the 

leading cause of death by infectious disease worldwide, except during the SARS-CoV-2 

pandemic. In 2021, tuberculosis was responsible for 1.6 million deaths and 10.6 million new 

infections1. Tuberculosis control efforts have been hampered by the evolution of resistance to 

antibiotics, threatening the efficacy of the standard four drug antibiotic regimen consisting of 

rifampicin, isoniazid, ethambutol, and pyrazinamide. Pyrazinamide plays a critical role in 

tuberculosis treatment through its specific action on slow-growing, “persister” bacteria that often 

tolerate other drugs due to their reduced metabolism2–6. Due to its unique sterilizing effect and 

its synergy with new tuberculosis drugs such as bedaquiline, pyrazinamide is also included in 

new treatment regimens targeting drug-resistant tuberculosis7–12. Therefore, accurately and 

rapidly determining whether a clinical isolate is resistant to pyrazinamide is critically important 

for the treatment of tuberculosis. 

Most culture-based laboratory methods to determine pyrazinamide resistance are 

technically challenging, requiring highly trained technicians. Even then, results are often not 

reproducible, meaning these methods are rarely employed in low-resource and/or high-burden 

clinical settings13. Even the current gold standard, the Mycobacteria Growth Indicator Tube 

(MGIT), which is relatively simple to use, can suffer from low precision, with false-resistance 

rates of 1-68% reported14–20. As the prevalence of multidrug-resistant and extensively drug-

resistant TB increases, this lack of precision will become more of a problem.  

Resistance to rifampicin or isoniazid can be predicted in most isolates (90-95% and 50-

97%, respectively) by the presence of a small number of highly-penetrant genetic variants in 

short and well-delineated regions of one or two genes (rpoB and katG/fabG1, respectively)3. 

However, despite pyrazinamide being used to treat tuberculosis since 1952, comparatively less 

is known about which genetic variants confer resistance compared to other first-line drugs4. In 

the recent catalogue of resistance-associated mutations of M. tuberculosis published by the 
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World Health Organization, the performance for pyrazinamide was markedly lower (72.3% 

sensitivity and 98.8% specificity) than either rifampicin or isoniazid (93.8% and 98.2% or 91.2% 

and 98.4% sensitivity and specificity respectively)21,22. While some of this poor performance is 

likely due to inaccuracies in phenotypic testing, a comprehensive genetic catalogue for 

pyrazinamide resistance mutations remains elusive.  

Pyrazinamide is a pro-drug that is converted to its active form of pyrazinoic acid by the 

action of PncA, a pyrazinamidase/nicotinamidase encoded by the pncA gene23. While other 

genetic loci have been implicated in pyrazinamide resistance (notably rpsA, panD, clpC1, and 

the putative efflux pumps Rv0191, Rv3756c, Rv3008, and Rv1667c), the majority (70-97%) of 

pyrazinamide-resistant clinical isolates harbor genetic variants in either the promoter region or 

coding sequence of pncA21,24–34. In contrast to the well-delineated and relatively restricted 

“resistance-determining regions” found in rpoB (rifampicin, 27 codons) and katG (isoniazid, 

single codon), pyrazinamide-resistant variants have been identified along the entire length of the 

pncA gene (Figure 1A) with no single variant predominating. Hence, while targeted- or whole-

genome sequencing approaches are capable of assaying the entire pncA gene, the number and 

diversity of resistance-conferring variants in pncA fundamentally limits the sensitivity and 

specificity of heuristic approaches that aim to predict the effectiveness of pyrazinamide based 

on a catalogue of previously-observed genetic variants3,13,24,29,30,35,36.  

Genetics-based clinical microbiology for tuberculosis currently depends on being able to 

infer the effect of any likely occurring pncA mutation on pyrazinamide susceptibility. Recent 

studies to identify pyrazinamide-resistance determining mutations have focused on either 

classifying mutations from previously observed clinical isolates or discovering novel mutations 

through in vitro/in vivo screening approaches21,22,30,37–39. However, these strategies are 

constrained, respectively, by the relative paucity of sequenced clinical isolates compared to the 

number of potential resistance-causing mutations and the lack of laboratory capacity to 

systematically generate and test mutants. Computational modelling approaches40 can 
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potentially predict the effect of a significant number of missense mutations41–44 before they are 

observed in clinical isolates. Several studies have already trained machine learning models on a 

number of anti-tuberculars45–48, including pyrazinamide49. 

As PncA is not essential and can be inactivated through defects in protein folding, 

reduced stability, distortion of active site geometry, abrogation of metal binding, or some 

combination of these, we expected a machine-learning approach to be ideally suited to 

simultaneously consider all these possible mechanisms of PncA inactivation, and hence more 

accurately predict pyrazinamide resistance/susceptibility. In this paper, we confirm using the 

largest Train/Test and Validation datasets used to date that machine-learning models that learn 

from a range of structural, chemical and evolutionary features can robustly and accurately 

predict the effect of missense amino acid mutations on pyrazinamide susceptibility.  
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Figure 1. Distribution of PncA mutations from published datasets. (A) Barplot of the impact of 

possible missense mutations in PncA by amino acid position. High confidence resistant (red) and 

susceptible (blue) mutations are overlaid on the possible missense mutations whose effect on 

resistance is unknown or unclear (grey). (B) Distribution of the types of mutations reported by the 

CRyPTIC consortium et al. (C) Missense mutations from the dataset plotted onto the PncA structure 

(PDB ID: 3PL1) in dark grey. A pyrazinamide molecule (orange) has been modeled into the active site.  
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Materials and Methods  

We first constructed independent Train, Test and Validation datasets (Table 1). The first 

two were built by combining a comprehensive in vitro/in vivo mutagenesis study38 with two 

published catalogues of M. tuberculosis genetic variants associated with resistance21,39 resulting 

in a Train/Test dataset of 664 non-redundant missense mutations (349 associated with 

resistance) where there was no discrepancy in the predicted phenotype. This was then split 

70:30 to produce independent Train and Test datasets containing 464 and 200 mutations, 

respectively (Methods, Table 1). The Validation dataset was constructed by aggregating 

24,231 clinical samples from three collections13,30,50 resulting in 4,027 samples containing one of 

367 non-redundant missense PncA mutations. Briefly, phenotypes for strains with single 

missense mutations in pncA were aggregated by mutation, tallying the results of the phenotypic 

testing. Mutations that were resistant or susceptible at least 75% of the time and that had been 

phenotyped at least 4 times were included. Additionally, mutations that had been phenotyped at 

least twice with no discrepancies were also added. Finally, a further independent Quantitative 

Dataset Phenotype # Isolates 
# non-redundant missense 

mutations 

Train R/S n/a 464 

Test R/S n/a 200 

Validation R/U/S 24,231 
367  

(199 with an R/S phenotype) 

Quantitative MIC 71 57 

 
Table 1. Description of datasets employed in this study. (R=resistant to antibiotic, 

S=susceptible, U=inconsistent results, MIC=Minimum inhibitory concentration) 
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dataset was created by measuring the minimum inhibitory concentration (MIC) on a small 

number of missense mutations to test if our models can predict the magnitude of the effect.  

  

Pyrazinamide minimum inhibitory concentration determination 

 Isolates used for MIC determination came from the EXIT-RIF study and US Centers for 

Disease Control. Of the 366 Mycobacterium tuberculosis clinical isolates, 333 were collected as 

part of a prospective cohort study (“EXIT-RIF”) between November 2012 and December 2013 in 

three South African provinces (Free State, Eastern Cape and Gauteng). A Mycobacterium 

tuberculosis databank housed at the SAMRC Centre for Tuberculosis Research, consisting of 

~45,000 drug resistant isolates collected in the Western Cape province since 2001, was queried 

to identify isolates containing both PZA MIC data and pncA genotypic data, this produced the 

remaining 33 Mycobacterium tuberculosis clinical isolates. Isolates that harbored single amino 

acid substitutions in PncA (39 out of 366 total) were selected for comparison to model 

predictions. An additional 32 clinical isolates (collected from 2000 to 2008) harboring single 

missense mutations in pncA came from the culture collection at the Laboratory Branch, Division 

of Tuberculosis Elimination, US CDC.   

All MICs were determined using the non-radiometric BACTEC MGIT 960 method (BD 

Diagnostic Systems, NJ, USA) with manufactured-supplied pyrazinamide medium/supplement 

as previously described51. This system makes use of modified test media which supports the 

growth of mycobacteria at a pH of 5.9. Isolates from the EXIT-RIF study were tested at 100, 75, 

50, 25 µg/ml whilst the Center for Disease Control used PZA concentrations of 50, 100, 200, 

300, 400, 600 and 800 µg/ml. A fully susceptible MTB laboratory strain H37Rv (ATCC 27294) 

was included as a control for all isolates tested. The resulting 71 isolates contained one of 59 

missense mutations; of the ten mutations measured more than once, two had inconsistent 

phenotypes and were removed, leaving 57 missense mutations of which 50 were resistant and 

7 susceptible. 
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Determination of structural-, chemical- and evolutionary features 

Since the M. tuberculosis structure of PncA52 (PDB: 3PL1) does not contain electron 

density for pyrazinamide, we first fitted it onto the A. baunmanii PncA structure53 and retained 

the coordinates of PZA. A wide range of structural, chemical, thermodynamic and evolutionary 

features were added54, including the change in mass, volume, isoelectric point, hydrophobicity 

and chemistry55 and the distances from the Fe2+ ion and pyrazinamide molecule, solvent 

accessibility, backbone angles, secondary structure, temperature factor, depth and degree of 

hydrogen bonding. To assess a pncA mutation’s impact on the stability of PncA, we added 

scores from three meta-predictors (RaSP56, mCSM57 and DeepDDG58). Finally we added MAPP 

scores, which aims to quantify the evolutionary constraints imposed on a given position in a 

protein59, and SNAP2 scores. SNAP2 is a neural network trained to predict whether protein 

mutations are neutral or have a deleterious effect on function60.  

 

Training and Reproducibility 

 Logistic regression (LR), a multi-layer perceptron classifier (NN) and a gradient-boosted 

decision tree (XB) were all trained as described in our online code and data repository – this 

also contains saved states of the final models and Python3 jupyter-notebooks allowing one to 

reproduce in a web browser all results and figures61. 
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Results  

Observed genetic variation in pncA 

Since it includes the results of an in vitro mutagenesis study, the Train/Test dataset 

captures the most genetic variation in pncA. Mutations are observed at every codon bar one 

(Figure 1A) and all possible amino acids arising from a single nucleotide substitution are 

observed at several codons. Interestingly, there were a significant number of pncA codons 

where mutations associated with either resistance or susceptibility were seen, confirming that 

the change in local chemistry introduced by the mutant amino acid is an important factor in 

determining resistance (Figure 1A). The codons with the greatest mutational diversity in the 

dataset were all residues involved in active site formation or metal binding, suggesting that, 

consistent with our hypothesis, loss or alteration of these functions is a common mechanism for 

gaining pyrazinamide resistance. Indeed, previous studies have noted a negative correlation 

between a mutation’s distance from the active site and its tendency to cause resistance30,38,52.  

 

Clinically-observed association between genetic variation in pncA and pyrazinamide resistance  

Overall 3,351 samples (14.7%) in the CRyPTIC dataset are resistant to pyrazinamide 

and 6,851 samples have one or more genetic variants in either the promoter and/or open 

reading frame of pncA. The majority (6,622 samples / 96.7%) have a single genetic variant with 

93.9% (6,221 samples) of these being substitutions. The remaining 401 samples (6.1%) 

contained insertions, deletions and frameshifts and these were strongly associated with 

resistance (343 samples, 85.5%)21,39, consistent with their likely disruption of the PncA enzyme. 

Most synonymous substitutions (present in 3,288, 49.7% of the single variant strains, Figure 

1B) were not associated with resistance, however seven variants were observed in resistant 

isolates. S65S (19 resistant isolates) is a phylogenetic SNP present in Lineage 1; however, it is 

susceptible in 3,204 strains, suggesting that these 19 isolates are either phenotyping errors or 

that there is an alternative mechanism of pyrazinamide resistance at play in these strains. The 
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remaining mutations—R2R, L19L, A46A, D63D, 131V and V155V—are each present a single 

time (twice for A46A), limiting our ability to associate these variants with resistance. Thus, non-

synonymous substitution variants (present in 2,766, 41.8% of single variant strains) appear to 

be associated with most of the pyrazinamide resistance in M. tuberculosis.  

 

  

 
Figure 2: Structural and evolutionary traits correlate with mutational impact on pyrazinamide 

susceptibility. (A) Amino acids where >80% of mutations confer resistance are more likely to be 

found in the core of PncA. (B) There is only a moderate correlation between RaSP & DeepDDG, 

which both predict the effect of a mutation on protein stability, and MAPP and SNAP2. Resistant and 

susceptible mutations are plotted in red and blue, respectively. (C) The performance of individual 

features, as measured by the area under curve (AUC) of the receiver operator characteristic of a 

univariable logistic regression. The dashed line denotes random guessing. 
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Feature determination using Test/Train dataset 

To understand the structural features that determine a mutation’s effect on pyrazinamide 

susceptibility, we mapped our combined Train/Test dataset onto the PncA structure. No obvious 

clustering was revealed, consistent with the previously observed distribution of resistant 

mutations across the gene sequence and protein structure (Figure 1A,C) 13,24,29,30,38. Examining 

the PncA structure also suggested that resistant mutations were more likely to be buried in the 

hydrophobic core of the protein and therefore likely destablising, consistent with findings from 

previous in vitro and in vivo screens (Figure 2A)30,38. Indeed, some pyrazinamide-resistant 

mutations result in reduced production of functional PncA, perhaps due to impaired protein 

folding/stability38,62. Despite having a similar learning objective there was only a moderate level 

of correlation between the different models that predicted the effect of a mutation on the protein 

stability (Figure 2B). Other more accurate methods exist, but these require several orders of 

magnitude of computational resource63. Since SNAP2 uses evolutionary information derived 

from a multiple sequence alignment, one might expect some similarity to MAPP, but again there 

is only a moderate degree of correlation between the two scores (Figure 2B). 

 

Machine-learning models accurately predict pyrazinamide resistance 

Univariable logistic regression over the derivation dataset revealed that most of the 

individual predictors were associated with resistance (Figure 2C, S1). The SNAP2 score and 

DeepDDG protein stability scores proved to be the most discriminatory individual features and 

six features (change in molecular weight, volume and isoelectric point along with the secondary 

structure, φ backbone angle and number of hydrogen bond acceptors) were discarded at this 

point since their AUC lay below an arbitrary threshold of 0.55. 

Following hyperparameter tuning, three different machine learning models (logistic 

regression, LR, a gradient-boosted decision tree, XB and a single layer neural network, NN) 

were trained on the Train dataset using 10-fold cross-validation (Methods). All three models 
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performed similarly when applied to the Train dataset (Figure 3) with sensitivities of 78-79% 

and specificities in the range 83-86%. As expected, the models performed less well on the Test 

dataset and the LR model had a superior sensitivity (81.1%) than both the XB (80.2%) and the 

LR (73.8%) model, whilst the XB model had an improved specificity (76.9%) than either the LR 

or NN models (69.9% & 56.5%, respectively). We conclude that the gradient-boosted decision 

tree (XB) model performed best since it resulted in the fewest number of resistant samples 

incorrectly classified as susceptible (so-called very major errors, VMEs) and had the highest  

diagnostic odds ratio (Figure 3B,C). 

 

Most residues that were incorrectly predicted as susceptible are surface-exposed 

  The models predicted 20-25 VMEs and misclassified a further 21-40 susceptible 

samples as resistant (major errors, ME). Collectively 12 VMEs and 11 MEs were shared 

between all three models (Figure 4A). Although the mutations responsible for the shared VMEs 

were dispersed throughout the protein structure, most (11/12) were surface exposed (Figure 

4B). All these mutations were predicted by DeepDDG, mCSM and RasP to minimally decrease 

the stability of PncA compared to mutations correctly predicted to confer resistance, suggesting 

these errors may be partly due to inaccuracies in the predicted free energy change of unfolding 

(Figure 4C), although other features also contributed (Figure S2). Major errors were also 

dispersed throughout the protein and were more likely to be buried and to be predicted by 

SNAP2 to not have a functional effect compared to mutations correctly predicted to have no 

effect (Figure 4C), although again other features played a part (Figure S2).  

Examining the feature importances of the gradient-boosted decision tree (XB) models 

(Figure S3) shows that whilst all 16 features are incorporated to some extent, the first four are 

all scores from other machine learning models (MAPP, DeepDDG, RaSP and SNAP2), with the 

next four all being derived from the protein structure (ψ backbone angle, residue depth and 

residue solvent accessible surface area) or describing the change in chemistry55.  
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Figure 3: Machine learning models predict pyrazinamide resistance from structural, chemical 

and evolutionary features. Performance of logistic regression (LR), a simple neural network (NN) 

and gradient-boosted decision tree (XB) models on the (A) Training and (B) Test sets. Error bars 

represent 95% confidence intervals from bootstrapping (n=10) and brackets indicate a significant 

difference (z-test, p < 0.05) (C) Confusion matrices are shown for the Test set. Very major errors 

(VME, predicted S but R) are considered worse than major errors (ME, predicted R but S) and hence 

VMEs and MEs are shaded red and pink, respectively. 
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Figure 4. Very major errors are concentrated on the surface of PncA. (A) The majority of very 

major (VME) and major (ME) errors are shared between the three models. (B) PncA with the 

corresponding residues highlighted where the shared very major (orange) and major (blue) errors 

are found. (C) The shared very major and major errors are predicted to have less and more effect, 

respectively, on the stability of the protein, as exemplified by DeepDDG and the function of the 

protein, according to SNAP2. 
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Gradient-boosted decision tree model predictions generalize to a large clinical dataset 

A Validation dataset was derived from 24,231 pncA gene sequences with MGIT 

antibiotic susceptibility results (Table 1). Most samples contained no mutations in pncA: only 

4,027 samples had one of 367 missense mutations. We assume this dataset is representative of 

the genetic diversity in PncA existing in clinical infections but it is likely biased due to 

oversampling of outbreak strains and other factors. Until very large unselected clinical datasets 

are collected and made publicly available, however, it is the best dataset available.  

Applying the gradient-boosted decision tree (XB) model to this dataset (Figure 5A) 

resulted in a high sensitivity (97.2%) but a modest specificity (46.0%). The presence of a 

substantial number of samples in this dataset (908 samples, 22.5%) contained one of 168 

(45.8%) mutations that either were only observed once, or whose phenotype varied between 

isolates was a key contributor to this reduction in performance. Whilst this dataset therefore 

captures the real-world variability of culture-based phenotypic methods for pyrazinamide 

susceptibility testing, it is not a good basis on which to assess performance and removing these 

samples improved the specificity to 63.1% (Figure 5B). Slightly over half (116, 58.3%) of 

remaining mutations were also present in the Train dataset and accounted for 2,044 out of the 

remaining 3,119 samples. The predictions for the samples in this group had a sensitivity of 

98.3% and a specificity of 75.6%. As expected, the other 83 mutations found in 1,075 samples 

had a lower performance, with the specificity notably being 22.9%. Examining the performance 

at the level of the mutations (rather than samples) yields a specificity of 48.0%, however the 

size of the dataset is now small with only 25 out of 83 mutations having a susceptible 

phenotype. The XB model also outperforms a previously published model49 applied to this same 

dataset; SUSPECT-PZA achieved a sensitivity of 93.7% and a specificity of 44.3% on the 

original 4,027 samples. Only considering the 199 mutations with a consistent phenotype 

improved the specificity to 47.7% with a slight fall in sensitivity (92.3%), however this is less 

predictive than the performance of the gradient boosted decision tree. 
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Figure 5. Performance on a real set of clinical samples. (A) Whilst the sensitivity is high, the 

specificity of the gradient-boosted decision tree model on the Validation dataset is lower than 

observed on the Test dataset. (B) Removing samples containing a mutation that has an 

experimentally inconsistent phenotype increases the specificity. As expected, splitting into 

samples whose mutation either (C) belongs or (D) does not belong to the Train dataset further 

stratifies performance. 
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Comparison of model predictions with pyrazinamide minimum inhibitory concentrations in vitro 

Since it is difficult to assess how much of the discordance in the previous section can be 

attributed to either error in the measured clinical phenotype or deficiencies in our model, we 

compared its predictions to minimum inhibitory concentration (MIC) data taken from a small but 

high-quality dataset of 71 M. tuberculosis isolates (59 unique missense mutations, quantitative 

dataset, Methods).  This also enabled us to test the model’s capacity to predict the degree of 

pyrazinamide resistance conferred by a particular mutation, by comparing the calls and 

predicted probabilities of our model with the pyrazinamide MICs. Overall, our model correctly 

predicted the binary (R/S) phenotype for 51 of 57 missense mutations in PncA (Figure S4), and, 

crucially, predicted the correct phenotype for 6 out of 8 mutations that were not in either the 

Train or Test datasets. Utimately, many more samples with a wide range of pyrazinamide MICs 

will be needed to accurately assess if quantitative prediction is possible for this drug. 
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Discussion  

We have shown that machine learning models trained on structural, chemical and 

evolutionary features can predict whether missense amino acid mutations in pncA confer 

resistance to pyrazinamide, adding to the growing body of work that is exploring different ways 

of predicting antibiotic resistance from genetics41–49. While improvements to the model are 

necessary to achieve the sensitivity and specificity required for routine clinical use, this work 

increases our ability to classify rare resistance mutations, thereby potentially increasing the 

capability of whole genome sequencing based diagnostic susceptibility testing to respond to 

emerging and rare resistance patterns, as well as prioritizing rare resistance mutations for in 

vitro validation. Additionally, improving the classification of susceptible pncA mutations will allow 

us to begin to disentangle the involvement of other genes in pyrazinamide resistance, including 

determining the effect of mutations in other pyrazinamide resistance-associated genes such as 

panD and rpsA. 

 There are two principal limitations of our approach: (1) since the training set uses a 

binary resistant/susceptible phenotype, the models can only predict whether a mutation confers 

high-level resistance (>100 µg/mL64) or not and (2) it can only make predictions for missense 

mutations in the coding sequence of pncA. It is known that genetic variation can lead to small 

changes in MIC for pyrazinamide and other first-line antitubercular compounds and that, whilst 

these may not change the binary phenotype, they do affect clinical outcome65,66. In addition, 

while we have shown that missense mutations represent most of the possible resistant genetic 

variants in pncA, insertions/deletions and nonsense mutations must also be considered, as they 

are generally associated with resistance. Likewise, promoter mutations that result in reduced 

transcription of pncA will likely also lead to resistance. 

 Our predictive capabilities will improve with time: the largest potential improvement is 

likely to come from the availability of larger datasets, preferably with pyrazinamide minimum 

inhibitory concentrations. Quantitative labels would help delineate mutations that result in an 
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MIC similar to the 100 µg/mL breakpoint as one suspects that this effect is the reason why many 

mutations test inconsistently in the laboratory which has complicated both our training and 

validation. New machine learning approaches and better general-purpose predictors, especially 

those that aim to predict the effect of a mutation on protein stability, will no doubt come. 

Even before that, predictions made by this or similar models could potentially provide 

clinicians with an initial estimate of pyrazinamide susceptibility after a novel mutation is 

observed but before traditional phenotypic testing has been completed. Given the latter can take 

weeks or even months, this could help guide initial therapy and further antibiotic susceptibility 

testing. In addition, the putative classification of additional pncA mutations potentially enables 

genetic variants conferring pyrazinamide resistance that do not involve the pncA gene to be 

discovered. The identification of pyrazinamide-susceptible mutations is also crucial, as it has 

been suggested that any non-synonymous mutation in pncA that is not cataloged as susceptible 

confers resistance, an incorrect assumption that would lead to overprediction of pyrazinamide 

resistance67. 

The approach used here should be extensible to any pro-drug system where the enzyme 

is non-essential, such as delaminid, protaminid, or ethionamide, as well as to pro-drug systems 

in other pathogens. One promising area for future work is in the anti-tubercular bedaquiline, 

where resistance is caused in part by mutations in a transcriptional repressor (Rv0678) that 

cause loss of DNA binding and upregulation of efflux pumps68,69. Predictive methods, as shown 

here, will help accelerate the rate at which whole genome sequencing approaches move to the 

forefront of global tuberculosis control efforts. 
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