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Synopsis
Background
Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis, however antibiotic
susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily
driven by genetic variation in pncA, an enzyme that converts pyrazinamide into its active form.
Methods
We curated a dataset of 664 non-redundant, missense amino acid mutations in pncA with
associated high-confidence phenotypes from published studies and then trained three different
machine learning models to predict pyrazinamide resistance. All models had access to a range
of protein structural-, chemical- and sequence-based features.
Results
The best model, a gradient-boosted decision tree, achieved a sensitivity of 80.2% and a
specificity of 76.9% on the hold-out Test dataset. The clinical performance of the models was
then estimated by predicting the binary pyrazinamide resistance phenotype of 4,027 samples
harboring 367 unique missense mutations in pncA derived from 24,231 clinical isolates.
Conclusions
This work demonstrates how machine learning can enhance the sensitivity/specificity of
pyrazinamide resistance prediction in genetics-based clinical microbiology workflows, highlights
novel mutations for future biochemical investigation, and is a proof of concept for using this

approach in other drugs.
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Introduction

Mycobacterium tuberculosis is an evolutionarily ancient human pathogen that is the
leading cause of death by infectious disease worldwide, except during the SARS-CoV-2
pandemic. In 2021, tuberculosis was responsible for 1.6 million deaths and 10.6 million new
infections'. Tuberculosis control efforts have been hampered by the evolution of resistance to
antibiotics, threatening the efficacy of the standard four drug antibiotic regimen consisting of
rifampicin, isoniazid, ethambutol, and pyrazinamide. Pyrazinamide plays a critical role in
tuberculosis treatment through its specific action on slow-growing, “persister” bacteria that often
tolerate other drugs due to their reduced metabolism?=. Due to its unique sterilizing effect and
its synergy with new tuberculosis drugs such as bedaquiline, pyrazinamide is also included in
new treatment regimens targeting drug-resistant tuberculosis’'2. Therefore, accurately and
rapidly determining whether a clinical isolate is resistant to pyrazinamide is critically important
for the treatment of tuberculosis.

Most culture-based laboratory methods to determine pyrazinamide resistance are
technically challenging, requiring highly trained technicians. Even then, results are often not
reproducible, meaning these methods are rarely employed in low-resource and/or high-burden
clinical settings'. Even the current gold standard, the Mycobacteria Growth Indicator Tube
(MGIT), which is relatively simple to use, can suffer from low precision, with false-resistance
rates of 1-68% reported'*2°. As the prevalence of multidrug-resistant and extensively drug-
resistant TB increases, this lack of precision will become more of a problem.

Resistance to rifampicin or isoniazid can be predicted in most isolates (90-95% and 50-
97%, respectively) by the presence of a small number of highly-penetrant genetic variants in
short and well-delineated regions of one or two genes (rpoB and katG/fabG1, respectively)®.
However, despite pyrazinamide being used to treat tuberculosis since 1952, comparatively less
is known about which genetic variants confer resistance compared to other first-line drugs®*. In

the recent catalogue of resistance-associated mutations of M. tuberculosis published by the


https://doi.org/10.1101/518142
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/518142; this version posted November 14, 2023. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

World Health Organization, the performance for pyrazinamide was markedly lower (72.3%
sensitivity and 98.8% specificity) than either rifampicin or isoniazid (93.8% and 98.2% or 91.2%
and 98.4% sensitivity and specificity respectively)?*'?2. While some of this poor performance is
likely due to inaccuracies in phenotypic testing, a comprehensive genetic catalogue for
pyrazinamide resistance mutations remains elusive.

Pyrazinamide is a pro-drug that is converted to its active form of pyrazinoic acid by the
action of PncA, a pyrazinamidase/nicotinamidase encoded by the pncA gene®. While other
genetic loci have been implicated in pyrazinamide resistance (notably rpsA, panD, clpC1, and
the putative efflux pumps Rv0191, Rv3756¢, Rv3008, and Rv1667c), the majority (70-97%) of
pyrazinamide-resistant clinical isolates harbor genetic variants in either the promoter region or
coding sequence of pncA?'?4**_In contrast to the well-delineated and relatively restricted
“resistance-determining regions” found in rpoB (rifampicin, 27 codons) and katG (isoniazid,
single codon), pyrazinamide-resistant variants have been identified along the entire length of the
pncA gene (Figure 1A) with no single variant predominating. Hence, while targeted- or whole-
genome sequencing approaches are capable of assaying the entire pncA gene, the number and
diversity of resistance-conferring variants in pncA fundamentally limits the sensitivity and
specificity of heuristic approaches that aim to predict the effectiveness of pyrazinamide based
on a catalogue of previously-observed genetic variants®'3:24:29.3035.36

Genetics-based clinical microbiology for tuberculosis currently depends on being able to
infer the effect of any likely occurring pncA mutation on pyrazinamide susceptibility. Recent
studies to identify pyrazinamide-resistance determining mutations have focused on either
classifying mutations from previously observed clinical isolates or discovering novel mutations

2122303739 However, these strategies are

through in vitro/in vivo screening approaches
constrained, respectively, by the relative paucity of sequenced clinical isolates compared to the
number of potential resistance-causing mutations and the lack of laboratory capacity to

systematically generate and test mutants. Computational modelling approaches*® can
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potentially predict the effect of a significant number of missense mutations*'=** before they are
observed in clinical isolates. Several studies have already trained machine learning models on a

4548 "including pyrazinamide®.

number of anti-tuberculars
As PncA is not essential and can be inactivated through defects in protein folding,
reduced stability, distortion of active site geometry, abrogation of metal binding, or some
combination of these, we expected a machine-learning approach to be ideally suited to
simultaneously consider all these possible mechanisms of PncA inactivation, and hence more
accurately predict pyrazinamide resistance/susceptibility. In this paper, we confirm using the
largest Train/Test and Validation datasets used to date that machine-learning models that learn

from a range of structural, chemical and evolutionary features can robustly and accurately

predict the effect of missense amino acid mutations on pyrazinamide susceptibility.
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Figure 1. Distribution of PncA mutations from published datasets. (A) Barplot of the impact of

possible missense mutations in PncA by amino acid position. High confidence resistant (red) and
susceptible (blue) mutations are overlaid on the possible missense mutations whose effect on
resistance is unknown or unclear (grey). (B) Distribution of the types of mutations reported by the
CRyPTIC consortium et al. (C) Missense mutations from the dataset plotted onto the PncA structure

(PDB ID: 3PL1) in dark grey. A pyrazinamide molecule (orange) has been modeled into the active site.
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Materials and Methods
We first constructed independent Train, Test and Validation datasets (Table 1). The first
two were built by combining a comprehensive in vitrolin vivo mutagenesis study>? with two

published catalogues of M. tuberculosis genetic variants associated with resistance?'°

resulting
in a Train/Test dataset of 664 non-redundant missense mutations (349 associated with
resistance) where there was no discrepancy in the predicted phenotype. This was then split
70:30 to produce independent Train and Test datasets containing 464 and 200 mutations,
respectively (Methods, Table 1). The Validation dataset was constructed by aggregating

24,231 clinical samples from three collections'%**°

resulting in 4,027 samples containing one of
367 non-redundant missense PncA mutations. Briefly, phenotypes for strains with single
missense mutations in pncA were aggregated by mutation, tallying the results of the phenotypic
testing. Mutations that were resistant or susceptible at least 75% of the time and that had been

phenotyped at least 4 times were included. Additionally, mutations that had been phenotyped at

least twice with no discrepancies were also added. Finally, a further independent Quantitative

# non-redundant missense
Dataset Phenotype # Isolates
mutations
Train R/S n/a 464
Test R/S n/a 200
367
Validation R/U/S 24,231
(199 with an R/S phenotype)
Quantitative MIC 71 57

Table 1. Description of datasets employed in this study. (R=resistant to antibiotic,

S=susceptible, U=inconsistent results, MIC=Minimum inhibitory concentration)
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dataset was created by measuring the minimum inhibitory concentration (MIC) on a small

number of missense mutations to test if our models can predict the magnitude of the effect.

Pyrazinamide minimum inhibitory concentration determination

Isolates used for MIC determination came from the EXIT-RIF study and US Centers for
Disease Control. Of the 366 Mycobacterium tuberculosis clinical isolates, 333 were collected as
part of a prospective cohort study (“EXIT-RIF”) between November 2012 and December 2013 in
three South African provinces (Free State, Eastern Cape and Gauteng). A Mycobacterium
tuberculosis databank housed at the SAMRC Centre for Tuberculosis Research, consisting of
~45,000 drug resistant isolates collected in the Western Cape province since 2001, was queried
to identify isolates containing both PZA MIC data and pncA genotypic data, this produced the
remaining 33 Mycobacterium tuberculosis clinical isolates. Isolates that harbored single amino
acid substitutions in PncA (39 out of 366 total) were selected for comparison to model
predictions. An additional 32 clinical isolates (collected from 2000 to 2008) harboring single
missense mutations in pncA came from the culture collection at the Laboratory Branch, Division
of Tuberculosis Elimination, US CDC.

All MICs were determined using the non-radiometric BACTEC MGIT 960 method (BD
Diagnostic Systems, NJ, USA) with manufactured-supplied pyrazinamide medium/supplement
as previously described®'. This system makes use of modified test media which supports the
growth of mycobacteria at a pH of 5.9. Isolates from the EXIT-RIF study were tested at 100, 75,
50, 25 pg/ml whilst the Center for Disease Control used PZA concentrations of 50, 100, 200,
300, 400, 600 and 800 pg/ml. A fully susceptible MTB laboratory strain H37Rv (ATCC 27294)
was included as a control for all isolates tested. The resulting 71 isolates contained one of 59
missense mutations; of the ten mutations measured more than once, two had inconsistent
phenotypes and were removed, leaving 57 missense mutations of which 50 were resistant and

7 susceptible.
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Determination of structural-, chemical- and evolutionary features

Since the M. tuberculosis structure of PncA® (PDB: 3PL1) does not contain electron
density for pyrazinamide, we first fitted it onto the A. baunmanii PncA structure®® and retained
the coordinates of PZA. A wide range of structural, chemical, thermodynamic and evolutionary
features were added®, including the change in mass, volume, isoelectric point, hydrophobicity
and chemistry®® and the distances from the Fe®* ion and pyrazinamide molecule, solvent
accessibility, backbone angles, secondary structure, temperature factor, depth and degree of
hydrogen bonding. To assess a pncA mutation’s impact on the stability of PncA, we added
scores from three meta-predictors (RaSP*, mCSM®*" and DeepDDG®®). Finally we added MAPP
scores, which aims to quantify the evolutionary constraints imposed on a given position in a
protein®®, and SNAP2 scores. SNAP2 is a neural network trained to predict whether protein

mutations are neutral or have a deleterious effect on function®®.

Training and Reproducibility

Logistic regression (LR), a multi-layer perceptron classifier (NN) and a gradient-boosted
decision tree (XB) were all trained as described in our online code and data repository — this
also contains saved states of the final models and Python3 jupyter-notebooks allowing one to

reproduce in a web browser all results and figures®'.
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Results
Observed genetic variation in pncA

Since it includes the results of an in vitro mutagenesis study, the Train/Test dataset
captures the most genetic variation in pncA. Mutations are observed at every codon bar one
(Figure 1A) and all possible amino acids arising from a single nucleotide substitution are
observed at several codons. Interestingly, there were a significant number of pncA codons
where mutations associated with either resistance or susceptibility were seen, confirming that
the change in local chemistry introduced by the mutant amino acid is an important factor in
determining resistance (Figure 1A). The codons with the greatest mutational diversity in the
dataset were all residues involved in active site formation or metal binding, suggesting that,
consistent with our hypothesis, loss or alteration of these functions is a common mechanism for
gaining pyrazinamide resistance. Indeed, previous studies have noted a negative correlation

between a mutation’s distance from the active site and its tendency to cause resistance®*3¢2,

Clinically-observed association between genetic variation in pncA and pyrazinamide resistance
Overall 3,351 samples (14.7%) in the CRyPTIC dataset are resistant to pyrazinamide
and 6,851 samples have one or more genetic variants in either the promoter and/or open
reading frame of pncA. The majority (6,622 samples / 96.7%) have a single genetic variant with
93.9% (6,221 samples) of these being substitutions. The remaining 401 samples (6.1%)
contained insertions, deletions and frameshifts and these were strongly associated with

resistance (343 samples, 85.5%)?"°

, consistent with their likely disruption of the PncA enzyme.
Most synonymous substitutions (present in 3,288, 49.7% of the single variant strains, Figure
1B) were not associated with resistance, however seven variants were observed in resistant
isolates. S65S (19 resistant isolates) is a phylogenetic SNP present in Lineage 1; however, it is

susceptible in 3,204 strains, suggesting that these 19 isolates are either phenotyping errors or

that there is an alternative mechanism of pyrazinamide resistance at play in these strains. The


https://doi.org/10.1101/518142
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/518142; this version posted November 14, 2023. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

remaining mutations—R2R, L19L, A46A, D63D, 131V and V155V—are each present a single
time (twice for A46A), limiting our ability to associate these variants with resistance. Thus, non-
synonymous substitution variants (present in 2,766, 41.8% of single variant strains) appear to

be associated with most of the pyrazinamide resistance in M. tuberculosis.
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Figure 2: Structural and evolutionary traits correlate with mutational impact on pyrazinamide
susceptibility. (A) Amino acids where >80% of mutations confer resistance are more likely to be
found in the core of PncA. (B) There is only a moderate correlation between RaSP & DeepDDG,
which both predict the effect of a mutation on protein stability, and MAPP and SNAP2. Resistant and
susceptible mutations are plotted in red and blue, respectively. (C) The performance of individual
features, as measured by the area under curve (AUC) of the receiver operator characteristic of a

univariable logistic regression. The dashed line denotes random quessing.
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Feature determination using Test/Train dataset

To understand the structural features that determine a mutation’s effect on pyrazinamide
susceptibility, we mapped our combined Train/Test dataset onto the PncA structure. No obvious
clustering was revealed, consistent with the previously observed distribution of resistant
mutations across the gene sequence and protein structure (Figure 1A,C) 324293038 'Examining
the PncA structure also suggested that resistant mutations were more likely to be buried in the
hydrophobic core of the protein and therefore likely destablising, consistent with findings from
previous in vitro and in vivo screens (Figure 2A)*°**. Indeed, some pyrazinamide-resistant
mutations result in reduced production of functional PncA, perhaps due to impaired protein
folding/stability*®®2. Despite having a similar learning objective there was only a moderate level
of correlation between the different models that predicted the effect of a mutation on the protein
stability (Figure 2B). Other more accurate methods exist, but these require several orders of
magnitude of computational resource®. Since SNAP2 uses evolutionary information derived
from a multiple sequence alignment, one might expect some similarity to MAPP, but again there

is only a moderate degree of correlation between the two scores (Figure 2B).

Machine-learning models accurately predict pyrazinamide resistance

Univariable logistic regression over the derivation dataset revealed that most of the
individual predictors were associated with resistance (Figure 2C, S1). The SNAP2 score and
DeepDDG protein stability scores proved to be the most discriminatory individual features and
six features (change in molecular weight, volume and isoelectric point along with the secondary
structure, @ backbone angle and number of hydrogen bond acceptors) were discarded at this
point since their AUC lay below an arbitrary threshold of 0.55.

Following hyperparameter tuning, three different machine learning models (logistic
regression, LR, a gradient-boosted decision tree, XB and a single layer neural network, NN)

were trained on the Train dataset using 10-fold cross-validation (Methods). All three models
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performed similarly when applied to the Train dataset (Figure 3) with sensitivities of 78-79%
and specificities in the range 83-86%. As expected, the models performed less well on the Test
dataset and the LR model had a superior sensitivity (81.1%) than both the XB (80.2%) and the
LR (73.8%) model, whilst the XB model had an improved specificity (76.9%) than either the LR
or NN models (69.9% & 56.5%, respectively). We conclude that the gradient-boosted decision
tree (XB) model performed best since it resulted in the fewest number of resistant samples
incorrectly classified as susceptible (so-called very major errors, VMEs) and had the highest

diagnostic odds ratio (Figure 3B,C).

Most residues that were incorrectly predicted as susceptible are surface-exposed

The models predicted 20-25 VMEs and misclassified a further 21-40 susceptible
samples as resistant (major errors, ME). Collectively 12 VMEs and 11 MEs were shared
between all three models (Figure 4A). Although the mutations responsible for the shared VMEs
were dispersed throughout the protein structure, most (11/12) were surface exposed (Figure
4B). All these mutations were predicted by DeepDDG, mCSM and RasP to minimally decrease
the stability of PncA compared to mutations correctly predicted to confer resistance, suggesting
these errors may be partly due to inaccuracies in the predicted free energy change of unfolding
(Figure 4C), although other features also contributed (Figure S2). Major errors were also
dispersed throughout the protein and were more likely to be buried and to be predicted by
SNAP2 to not have a functional effect compared to mutations correctly predicted to have no
effect (Figure 4C), although again other features played a part (Figure S2).

Examining the feature importances of the gradient-boosted decision tree (XB) models
(Figure S3) shows that whilst all 16 features are incorporated to some extent, the first four are
all scores from other machine learning models (MAPP, DeepDDG, RaSP and SNAP2), with the
next four all being derived from the protein structure (y backbone angle, residue depth and

residue solvent accessible surface area) or describing the change in chemistry®®.
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Figure 3: Machine learning models predict pyrazinamide resistance from structural, chemical

and evolutionary features. Performance of logistic regression (LR), a simple neural network (NN)

and gradient-boosted decision tree (XB) models on the (A) Training and (B) Test sets. Error bars

represent 95% confidence intervals from bootstrapping (n=10) and brackets indicate a significant

difference (z-test, p < 0.05) (C) Confusion matrices are shown for the Test set. Very major errors

(VME, predicted S but R) are considered worse than major errors (ME, predicted R but S) and hence

VMEs and MEs are shaded red and pink, respectively.
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Figure 4. Very major errors are concentrated on the surface of PncA. (A) The majority of very
major (VME) and major (ME) errors are shared between the three models. (B) PncA with the
corresponding residues highlighted where the shared very major (orange) and major (blue) errors
are found. (C) The shared very major and major errors are predicted to have less and more effect,
respectively, on the stability of the protein, as exemplified by DeepDDG and the function of the

protein, according to SNAP2.
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Gradient-boosted decision tree model predictions generalize to a large clinical dataset

A Validation dataset was derived from 24,231 pncA gene sequences with MGIT
antibiotic susceptibility results (Table 1). Most samples contained no mutations in pncA: only
4,027 samples had one of 367 missense mutations. We assume this dataset is representative of
the genetic diversity in PncA existing in clinical infections but it is likely biased due to
oversampling of outbreak strains and other factors. Until very large unselected clinical datasets
are collected and made publicly available, however, it is the best dataset available.

Applying the gradient-boosted decision tree (XB) model to this dataset (Figure 5A)
resulted in a high sensitivity (97.2%) but a modest specificity (46.0%). The presence of a
substantial number of samples in this dataset (908 samples, 22.5%) contained one of 168
(45.8%) mutations that either were only observed once, or whose phenotype varied between
isolates was a key contributor to this reduction in performance. Whilst this dataset therefore
captures the real-world variability of culture-based phenotypic methods for pyrazinamide
susceptibility testing, it is not a good basis on which to assess performance and removing these
samples improved the specificity to 63.1% (Figure 5B). Slightly over half (116, 58.3%) of
remaining mutations were also present in the Train dataset and accounted for 2,044 out of the
remaining 3,119 samples. The predictions for the samples in this group had a sensitivity of
98.3% and a specificity of 75.6%. As expected, the other 83 mutations found in 1,075 samples
had a lower performance, with the specificity notably being 22.9%. Examining the performance
at the level of the mutations (rather than samples) yields a specificity of 48.0%, however the
size of the dataset is now small with only 25 out of 83 mutations having a susceptible
phenotype. The XB model also outperforms a previously published model*® applied to this same
dataset; SUSPECT-PZA achieved a sensitivity of 93.7% and a specificity of 44.3% on the
original 4,027 samples. Only considering the 199 mutations with a consistent phenotype
improved the specificity to 47.7% with a slight fall in sensitivity (92.3%), however this is less

predictive than the performance of the gradient boosted decision tree.
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Figure 5. Performance on a real set of clinical samples. (A) Whilst the sensitivity is high, the
specificity of the gradient-boosted decision tree model on the Validation dataset is lower than
observed on the Test dataset. (B) Removing samples containing a mutation that has an
experimentally inconsistent phenotype increases the specificity. As expected, splitting into
samples whose mutation either (C) belongs or (D) does not belong to the Train dataset further

stratifies performance.
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Comparison of model predictions with pyrazinamide minimum inhibitory concentrations in vitro
Since it is difficult to assess how much of the discordance in the previous section can be
attributed to either error in the measured clinical phenotype or deficiencies in our model, we
compared its predictions to minimum inhibitory concentration (MIC) data taken from a small but
high-quality dataset of 71 M. tuberculosis isolates (59 unique missense mutations, quantitative
dataset, Methods). This also enabled us to test the model’s capacity to predict the degree of
pyrazinamide resistance conferred by a particular mutation, by comparing the calls and
predicted probabilities of our model with the pyrazinamide MICs. Overall, our model correctly
predicted the binary (R/S) phenotype for 51 of 57 missense mutations in PncA (Figure S4), and,
crucially, predicted the correct phenotype for 6 out of 8 mutations that were not in either the
Train or Test datasets. Utimately, many more samples with a wide range of pyrazinamide MICs

will be needed to accurately assess if quantitative prediction is possible for this drug.
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Discussion

We have shown that machine learning models trained on structural, chemical and
evolutionary features can predict whether missense amino acid mutations in pncA confer
resistance to pyrazinamide, adding to the growing body of work that is exploring different ways
of predicting antibiotic resistance from genetics*'~*°. While improvements to the model are
necessary to achieve the sensitivity and specificity required for routine clinical use, this work
increases our ability to classify rare resistance mutations, thereby potentially increasing the
capability of whole genome sequencing based diagnostic susceptibility testing to respond to
emerging and rare resistance patterns, as well as prioritizing rare resistance mutations for in
vitro validation. Additionally, improving the classification of susceptible pncA mutations will allow
us to begin to disentangle the involvement of other genes in pyrazinamide resistance, including
determining the effect of mutations in other pyrazinamide resistance-associated genes such as
panD and rpsA.

There are two principal limitations of our approach: (1) since the training set uses a
binary resistant/susceptible phenotype, the models can only predict whether a mutation confers
high-level resistance (>100 ug/mL®*) or not and (2) it can only make predictions for missense
mutations in the coding sequence of pncA. It is known that genetic variation can lead to small
changes in MIC for pyrazinamide and other first-line antitubercular compounds and that, whilst
these may not change the binary phenotype, they do affect clinical outcome®®®. In addition,
while we have shown that missense mutations represent most of the possible resistant genetic
variants in pncA, insertions/deletions and nonsense mutations must also be considered, as they
are generally associated with resistance. Likewise, promoter mutations that result in reduced
transcription of pncA will likely also lead to resistance.

Our predictive capabilities will improve with time: the largest potential improvement is
likely to come from the availability of larger datasets, preferably with pyrazinamide minimum

inhibitory concentrations. Quantitative labels would help delineate mutations that result in an
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MIC similar to the 100 pg/mL breakpoint as one suspects that this effect is the reason why many
mutations test inconsistently in the laboratory which has complicated both our training and
validation. New machine learning approaches and better general-purpose predictors, especially
those that aim to predict the effect of a mutation on protein stability, will no doubt come.

Even before that, predictions made by this or similar models could potentially provide
clinicians with an initial estimate of pyrazinamide susceptibility after a novel mutation is
observed but before traditional phenotypic testing has been completed. Given the latter can take
weeks or even months, this could help guide initial therapy and further antibiotic susceptibility
testing. In addition, the putative classification of additional pncA mutations potentially enables
genetic variants conferring pyrazinamide resistance that do not involve the pncA gene to be
discovered. The identification of pyrazinamide-susceptible mutations is also crucial, as it has
been suggested that any non-synonymous mutation in pncA that is not cataloged as susceptible
confers resistance, an incorrect assumption that would lead to overprediction of pyrazinamide
resistance®’.

The approach used here should be extensible to any pro-drug system where the enzyme
is non-essential, such as delaminid, protaminid, or ethionamide, as well as to pro-drug systems
in other pathogens. One promising area for future work is in the anti-tubercular bedaquiline,
where resistance is caused in part by mutations in a transcriptional repressor (Rv0678) that
cause loss of DNA binding and upregulation of efflux pumps®®°. Predictive methods, as shown
here, will help accelerate the rate at which whole genome sequencing approaches move to the

forefront of global tuberculosis control efforts.
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