

1 Letter

2 **Ecological causes of uneven mammal diversity**

3

4 Short title: Causes of uneven species diversity

5

6 **Nathan S. Upham^{1,2}, Jacob A. Esselstyn³, and Walter Jetz²**

7

8 Author affiliations:

9 ¹School of Life Sciences, Arizona State University, Tempe, AZ 85281 USA;

10 ²Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511 USA;

11 ³Department of Biological Sciences and Museum of Natural Science, Louisiana State University,

12 Baton Rouge, LA 70803 USA.

13

14 **Statement of authorship:** NSU and WJ conceived the study; NSU and JAE collected and
15 curated the data; NSU performed all analyses and wrote the first draft of the manuscript, with
16 contributions to revisions from WJ and JAE.

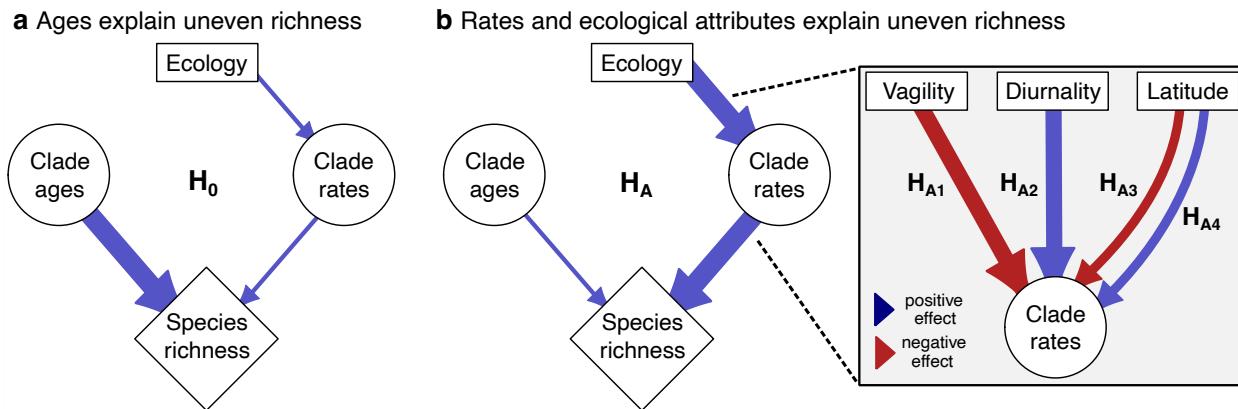
17 **Data and material availability:** All data and code are available in the manuscript and after
18 publication on Zenodo (also to be available at github.com/n8upham/).

19

20 **Keywords:** phylogenetics, macroevolution, trait-associated diversification, dispersal, latitude,
21 activity, lineage turnover, persistence

22 **Length:** abstract 194 words; 7,195 main text words; 135 references; 5 figures, 1 table.

23 **ABSTRACT**

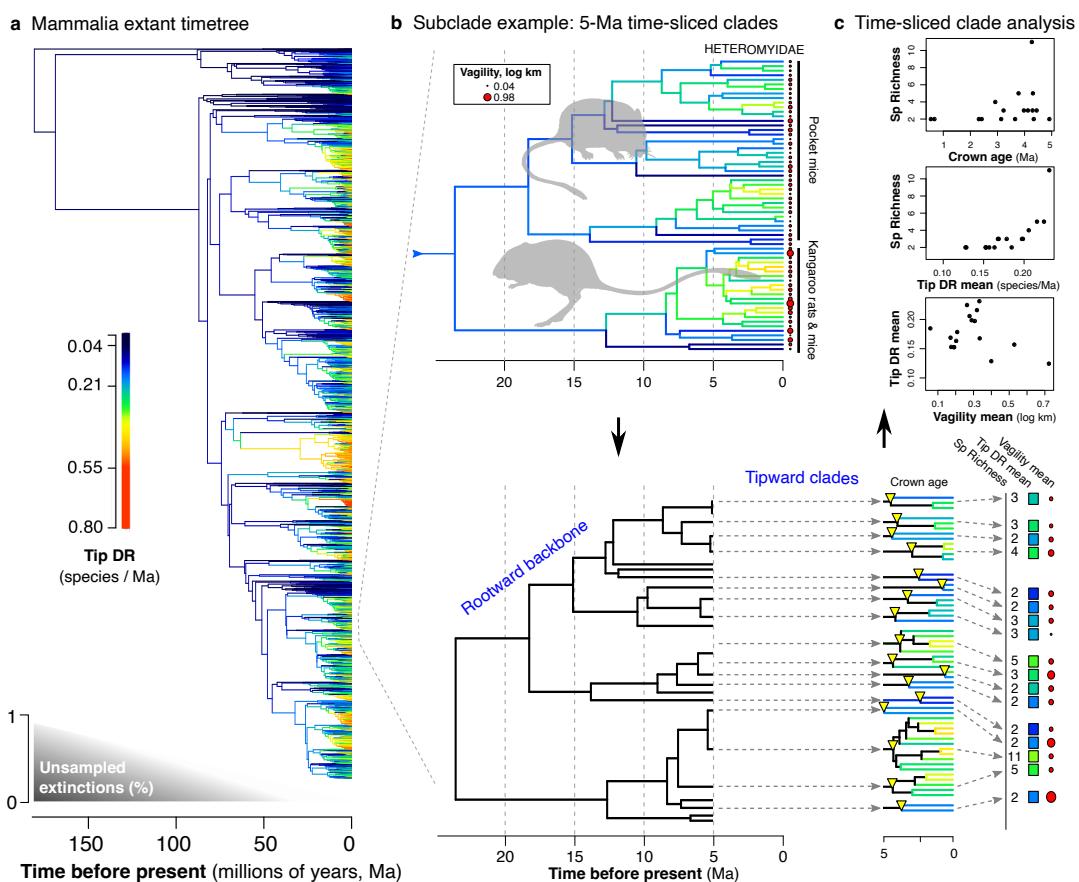

24 The uneven distributions of species over geography (e.g., tropical versus temperate
25 regions) and phylogeny (e.g., rodents and bats versus the aardvark) are prominent biological
26 patterns for which causal interconnections remain enigmatic. Here we investigate this central
27 issue for living mammals using time-sliced clades sampled from a comprehensive recent
28 phylogeny ($N=5,911$ species, ~70% with DNA) to assess how different levels of unsampled
29 extinction impact the inferred causes of species richness variation. Speciation rates are found to
30 strongly exceed crown age as a predictor of clade species richness at every time slice, rejecting a
31 clock-like model in which the oldest clades are the most speciose. Instead, mammals that are
32 low-vagility or daytime-active show the fastest recent speciation and greatest extant richness.
33 This suggests primary roles for dispersal limitation leading to geographic speciation (peripatric
34 isolation) and diurnal adaptations leading to ecological speciation (time partitioning). Rates of
35 speciation are also faster in temperate than tropical lineages, but only among older clades,
36 consistent with the idea that many temperate lineages are ephemeral. These insights, enabled by
37 our analytical framework, offer straightforward support for ecological effects on speciation-rate
38 variation among clades as the primary cause of uneven phylogenetic richness patterns.

39

40 INTRODUCTION

41 Biological diversity is concentrated more at the equator than the poles, and more in some
42 clades than others. Yet whether the latitudinal pattern of variation causes the phylogenetic one is
43 an open question. The latitudinal diversity gradient is generally attributed to tropical biomes
44 being stable, productive, and old (Fine & Ree 2006; Jablonski *et al.* 2006; Mittelbach *et al.* 2007;
45 Jetz & Fine 2012; Jansson *et al.* 2013; Pontarp *et al.* 2019), but there is less consensus regarding
46 why species richness is distributed unevenly across the tree of life. Phylogenetic tree shape was
47 first characterized taxonomically (Willis 1922) and later formalized under the concept of tree
48 imbalance or unevenness (Mooers & Heard 1997). To arise, more speciose clades must derive
49 from faster net diversification (speciation – extinction), older ages (earlier divergences), or both.
50 However, the relative contribution of clade rates and ages to species richness is widely disputed
51 (e.g., (McPeek & Brown 2007; Wiens 2011; Rabosky *et al.* 2012; Hedges *et al.* 2015)).
52 Empirical phylogenies might record diversification-rate variation due to stochastic factors,
53 determinism (e.g., via ecological factors), or artifacts of how we reconstruct evolutionary history
54 (Ricklefs 2003; Blum & François 2006; Phillimore & Price 2008; Rabosky 2009; Venditti *et al.*
55 2010; Davies *et al.* 2011; Purvis *et al.* 2011; Price *et al.* 2012; Moen & Morlon 2014; Castro-
56 Insua *et al.* 2018; Machac *et al.* 2018; Diaz *et al.* 2019; Louca & Pennell 2020). Latitude might
57 alter the rates at which new species originate, persist, or go extinct (Jablonski *et al.* 2006; Weir &
58 Schlüter 2007; Cutter & Gray 2016; Machac & Graham 2017; Silvestro *et al.* 2020), but so too
59 might species' intrinsic traits (Jablonski 2008), some of which are correlated with latitude (e.g.,
60 (Alroy 2019)). Thus, understanding the processes underpinning uneven species richness requires
61 connecting direct (e.g., rates, ages) and indirect (e.g., ecological) causes to tease apart their joint
62 influences upon the phylogenetic distribution of species richness.

63 The challenge of disentangling the relative importance of clade ages (time) versus rates
64 of speciation and extinction (whether stochastic or ecologically deterministic) suggests the need
65 to establish a hierarchical framework uniting these direct and indirect potential causes of uneven
66 species richness (Fig. 1). To do so, we propose the following set of hypotheses: H_0 , speciation
67 and extinction rates among clades do not vary substantially, so clade ages best explain uneven
68 species richness; or, H_A , differences in among-clade diversification rates explain species richness
69 better than clade age. If the alternative hypothesis is supported, then certain ecological attributes
70 (e.g., patterns of space use, activity period, or environment niche) may explain changes in
71 diversification rates, and thereby indirectly cause patterns of uneven species richness (Fig. 1b).
72



74 **Fig. 1. Hypotheses for uneven species richness among branches in the tree of life.** The
75 observation that different groups of species (clades) have differing numbers of extant species is
76 generally explained in one of two ways: (a) by uneven clade ages, in which younger clades have
77 few species while older clades are the most speciose (null hypothesis, H_0); or (b) by uneven
78 macroevolutionary rates (speciation – extinction = net diversification), in which the most
79 speciose clades have the fastest rates (alternative, H_A). H_A implies that some varying ecological
80 attributes of species are, in turn, responsible for the observed variation in clade rates. We
81 specifically assess three aspects of ecology (inset): vagility, a measure of individual dispersal
82 ability in a species (H_{A1}); diurnality, or the propensity for individuals in a species to be active
83 during daylight hours (H_{A2}); and centroid latitude of a species' geographic range, a surrogate
84 metric capturing abiotic conditions such as environmental stability (H_{A3} and H_{A4}). See the main
85 text for explanations of each attribute's expected directions of influence upon clade rates.
86

87 This framework can be tested using phylogenetic path analysis (von Hardenberg &
88 Gonzalez-Voyer 2013), which unifies macro-scale approaches from ecology and evolution. In
89 macroecology, environmental variables or species traits are often related directly to species
90 richness (e.g., associations between clade richness and mean body size; (Gittleman & Purvis
91 1998; Isaac *et al.* 2005)). In macroevolution, measurements of clade rates or ages are either
92 compared to species richness (e.g., (Scholl & Wiens 2016; Sánchez-Reyes *et al.* 2017)) or
93 ecological traits (e.g., (Beaulieu & O'Meara 2016; Harvey & Rabosky 2018)), but usually not
94 both. Recently, Harvey *et al.* (2020) used a path analysis of geographic regions to establish
95 causality between environmental variables, species richness, and speciation rates in suboscine
96 birds, which revealed the spatial context of uneven species diversification. However, the
97 phylogenetic context of why species richness varies so dramatically among clades remains
98 enigmatic, particularly regarding the relative causality of temporal and ecological factors.

99 A major limitation to studying among-clade diversity has been the reliance, as units of
100 analysis, on higher taxa (e.g., (Rabosky *et al.* 2012; Castro-Insua *et al.* 2018)), which often have
101 vast differences in age. For example, crown ages of mammal families range from 3.8 to 59.0
102 million years (Ma; (Upham *et al.* 2019)). To avoid comparing heterogeneously defined clades,
103 we propose an objective strategy for delimiting analytically equivalent clades, i.e., ‘time-sliced
104 clades.’ By slicing a phylogeny at a given time, we can then take the tipward groups as objective
105 units of analysis. As shown for an example family of mammals (Fig. 2), slicing the tree at 5 Ma
106 results in the delimitation of 17 clades containing two or more species. Those clades are united
107 by having (i) a stem age >5 Ma and crown age < 5 Ma; and (ii) a rootward backbone of shared
108 evolutionary history. However, because each clade varies in estimated crown age, species
109 richness, clade summaries of species attributes, and species-specific ‘tip’ speciation rates, there

110 is a key opportunity for identifying partial associations (Fig. 2c). Critically, defining time-sliced
111 clades at successively older time-points within a phylogeny of extant species yields the
112 expectation for progressively greater bias from unsampled extinction events — i.e., Marshall’s
113 (2017) ‘fifth law of palaeobiology’ (Fig. 2a). As a result, speciation rates will be increasingly
114 underestimated or ‘pulled’ from the actual rates of the birth-death process in older clades (Kubo
115 & Iwasa 1995; Louca & Pennell 2020). This general expectation has been confirmed in crown
116 Mammalia, for which fossil- and molecular-based speciation rates overlap only between 0 and
117 ~10 Ma (Upham *et al.* 2021). Thus, analyzing clades from shallow to deep time slices of an
118 extant phylogeny presents a further opportunity for assessing the impact of unsampled
119 extinctions on among-clade correlations in species attributes, rates, ages, and diversities.

121 **Fig. 2. Approach of using time-sliced clades to test eco-evolutionary hypotheses.** (a) The
122 mammal timetree is painted with species-specific (tip) speciation rates calculated using the tip
123 DR metric across the full tree. The fraction of unsampled extinction events is expected to
124 increase at deeper levels of the extant timetree, with only two surviving lineages (leading to
125 extant therians and monotremes) sampled at the root of crown Mammalia. (b) Example of how a
126 subclade of mammals can be divided into time-sliced clades, here the rodent family
127 Heteromyidae (64 species) with clades delimited tipward of an arbitrary line drawn at 5-million
128 years (Ma; branch colors correspond to tip DR). (c) The crown age of those clades with two or
129 more species are by definition < 5 Ma (yellow triangles), and the species richness values range
130 from 1-11 species in this example. Also summarized are the clade harmonic mean of tip DR (tip
131 DR mean), and the clade geometric mean of vagility values (or other ecological traits). The
132 rootward backbone of those time-sliced clades represents their expected covariance structure for
133 use in comparative analyses (e.g., phylogenetic generalized least squares). Analyses conducted in
134 Fig. 4 and 5 are based upon summary values for time-sliced clades delimited in this manner.

135

136 Here, we apply this novel clade-level framework to the investigation of temporal and
137 ecological causes of uneven diversification in Mammalia. Considering the ~6,500 recognized
138 living species of mammals (Burgin *et al.* 2018; MDD 2023), we see that similarly aged clades
139 range from mega-diverse rodents (~2,600 living species) and bats (~1,400 species) to species-
140 poor groups like treeshrews (23 species) and pangolins (8 species, all four clades share stem ages
141 of ~60-70 Ma; (Meredith *et al.* 2011; Upham *et al.* 2019; Álvarez-Carretero *et al.* 2022; Foley *et*
142 *al.* 2023)). We here focus on three ecological factors hypothesized to influence rates of mammal
143 speciation — vagility, diurnality, and latitude (Fig. 1b) — as measured on extant time-calibrated
144 phylogenies (i.e., timetree). First, we tested whether low-vagility species have faster speciation
145 than more dispersive species given their greater likelihood of forming peripheral isolates (H_{A1})
146 (Mayr 1963; Kisel & Barraclough 2010). For this test, we developed an allopatric index of
147 organismal vagility for all mammals (i.e., maximum natal dispersal distance; (Whitmee & Orme
148 2013)). Vagility effects have never been assessed across all mammals, although evidence in birds
149 (e.g., (Belluire *et al.* 2000; Claramunt *et al.* 2012)) and reef fishes (Donati *et al.* 2019) supports
150 an inverse vagility-to-speciation rate relationship. Second, we tested whether clades with greater

151 diurnality have increased speciation rates relative to nocturnal clades, following evidence that
152 mammalian ancestors were likely nocturnal until daytime niches evolved ~35 Ma (H_{A2})
153 (Gerkema *et al.* 2013; Maor *et al.* 2017). A positive influence of diurnality on speciation rates
154 has been found across major tetrapod lineages (Anderson & Wiens 2017), and in primates
155 specifically (Magnuson-Ford & Otto 2012; Santini *et al.* 2015), but has yet to be investigated at
156 the species-level in all mammals (only ancestral diel states have been examined (Maor *et al.*
157 2017)). Lastly, we examine the effects of latitude on speciation rates, which could either have a
158 negative or positive association (fastest rates at low latitudes, H_{A3} , or high latitudes, H_{A4} ,
159 respectively). Previous work in mammals has supported faster tropical than temperate speciation
160 among orders (Rolland *et al.* 2014), but has been inconclusive among genera (Soria-Carrasco &
161 Castresana 2012) and found the opposite pattern among sister species (Weir & Schluter 2007).
162 Faster temperate than tropical speciation contrasts with the observed pattern of peak tropical
163 mammal richness, meaning that H_{A4} additionally implies higher temperate rates of extinction and
164 thus species turnover (extinction / speciation). This type of ‘ephemeral speciation’ (Rosenblum
165 *et al.* 2012) is supported by observations of faster tip speciation in high-latitude marine fishes
166 (Rabosky *et al.* 2018) and rosid angiosperms (Sun *et al.* 2020), as well as high-elevation birds
167 (Quintero & Jetz 2018), but this hypothesis is so far untested in mammals (reviewed in (Cutter &
168 Gray 2016; Schluter & Pennell 2017)). Drawing upon a comprehensive time-calibrated
169 phylogeny of mammals and tip rates of speciation calculated across a credible set of 10,000 trees
170 (Upham *et al.* 2019), we assembled a corresponding set of species-level ecological traits to query
171 whether factors predicted to cause newly formed species to persist or go extinct are, in turn,
172 causing the observed patterns of uneven species richness among clades.
173

174 **METHODS**

175 **Mammalian phylogeny and species trait data.** We used the species-level mammal trees
176 of Upham et al. (2019) to conduct all analyses. Briefly, these phylogenies include 5,804 extant
177 and 107 recently extinct species in credible sets of 10,000 trees. They were built using a
178 ‘backbone-and-patch’ framework that applies two stages of Bayesian inference to integrate age
179 and topological uncertainty, and incorporates 1,813 DNA-lacking species using probabilistic
180 constraints (available at vertlife.org/phylosubsets). We compared credible sets of trees built
181 using node-dated backbones (17 fossil calibrations) and tip-dated backbones (matrix of modern
182 and Mesozoic mammals), as well as taxonomically completed trees (5,911 species) versus DNA-
183 only trees (4,098 species) without topology constraints. We calculated phylogenetic signal and
184 tree imbalance statistics using maximum clade credibility (MCC) consensus trees and the R
185 packages “phytools” (Revell 2012) and “apTreeshape” (Bortolussi *et al.* 2006), respectively.

186 Our workflow for gathering trait data involved (i) unifying multiple trait taxonomies
187 (e.g., EltonTraits v1.0 (Wilman *et al.* 2014), PanTHERIA (Jones *et al.* 2009)) to our phylogeny’s
188 master taxonomy; and (ii) interpolating home range area and vagility to the species level using
189 known allometric relationships in mammals (Fig. S1). Vagility was interpolated as an index
190 value for each species following our updated version of Whitmee and Orme’s (2013) best-fit
191 equation, which applies species means of body mass, home range, and geographic range to
192 calculate the maximum natal dispersal distance per individual (km; Fig. S2). Note that our
193 vagility index does not account for locomotor abilities (e.g., flying or arboreality), but rather
194 captures aspects of space use that scale allometrically across mammals. Collinearity among trait
195 variables was examined using the “corrplot” package in R (Wei 2017).

196 We identified three species-level traits that are directly related to core hypotheses of
197 ecological diversification while also having minimal collinearity (Fig. S3). These traits are: (i) an
198 allometric index of vagility based on a best-fitting equation of $\log(\text{maximum natal dispersal}$
199 $\text{distance, km}) = -2.496 + 0.206 \log(\text{body mass, g}) + 0.323 \log(\text{home range size, km}) + 0.216$
200 $\log(\text{geographic range size, km})$; (ii) diurnality as a binary trait of 0 = nocturnal / cathemeral /
201 crepuscular, and 1 = diurnal; and (iii) latitude calculated as the absolute value of the centroid of a
202 species' expert geographic range map. As expected (Jetz *et al.* 2004; Whitmee & Orme 2013),
203 the vagility index captures a multivariate signal of average individual space use per species
204 (correlation of $r=0.5-0.8$ with its component variables; Fig. S3). Diurnality and latitude inform
205 two additional ecological axes, each having low collinearity with vagility or other variables
206 (maximum $r=0.34$ and 0.13, respectively).

207 **Tip-level speciation rates.** We calculated per-species estimates of expected pure-birth
208 diversification rates for the instantaneous present moment (tips of the tree) using the inverse of
209 the equal splits measure (Steel & Mooers 2010; Jetz *et al.* 2012). This metric has been called
210 'tip-level diversification rate' (tip DR) because it measures recent diversification processes
211 among extant species (Quintero & Jetz 2018). However, to avoid confusion with 'net
212 diversification', for which tip DR is not suited when extinction is very high (relative extinction
213 >0.8 (Title & Rabosky 2019)), we here use tip DR as a tip-level speciation rate metric. At the tip
214 level, we confirm that tip DR is tightly associated with model-based estimators of tip speciation
215 and tip net diversification rates in the mammal trees (Fig. S4). At the clade level, Upham *et al.*
216 (2021) showed that (i) the clade-level harmonic mean of tip speciation rates, as measured by tip
217 DR (here called 'tip DR mean') approximates the pulled speciation rate for that clade at the
218 instantaneous present (λ_0), which is an identifiable value (Louca & Pennell 2020); and (ii) the

219 skewness of tip DR in a clade (here called ‘tip DR skew’) approximates that clade’s extent of
220 past diversification-rate shifts, as measured using BAMM rate-shift factors (Rabosky 2014).
221 Thus, we expect tip DR mean and skew to illuminate the speed and heterogeneity of past
222 speciation in a clade, respectively. A critical caveat here, following the demonstration in fig. 4b
223 of Upham *et al.* (2021), is that we only expect the most recent ~10 Ma of branching in the extant
224 mammal timetree to carry a reliable signal of past speciation-rate dynamics as compared to the
225 fossil record.

226 **Time-sliced clades and clade-level tests of species richness variation.** To objectively
227 define clades, we arbitrarily drew lines (referred to as “time slices”) at 5-Ma intervals and took
228 the resulting *tipward* (all the way to the extant tip) clades as non-nested units of analysis. The
229 *rootward* relationships of those clades (the “rootward backbone”) was retained for each interval,
230 giving the expected covariance structure among clades when performing phylogenetic
231 generalized least squares (PGLS) analyses (see Fig. 2 for illustration). We used the “treeSlice”
232 function in phytools to construct clade sets across mammal timetrees and three sets of rate-
233 constant birth-death (RCBD) simulated trees. These RCBD simulations were run using the
234 “pbtree” function in phytools under scenarios of extinction fraction, ε , matching the empirical
235 median ($\varepsilon=0.65$) versus low ($\varepsilon=0.2$) or high ($\varepsilon=0.8$) values, and with simulations set to 5,911
236 species and re-scaled to crown age of 188 Ma to approximate the branching history of extant
237 mammals. We also compared the time-sliced clade results to analyses based on traditional named
238 clades (genera, families, and orders). All PGLS analyses were performed excluding extinct
239 species, using Pagel’s “lambda” transformation in phylolm (optimized for large trees (Ho & Ané
240 2014)), and repeating the analysis on 100 or 1,000 trees. We also performed multivariate

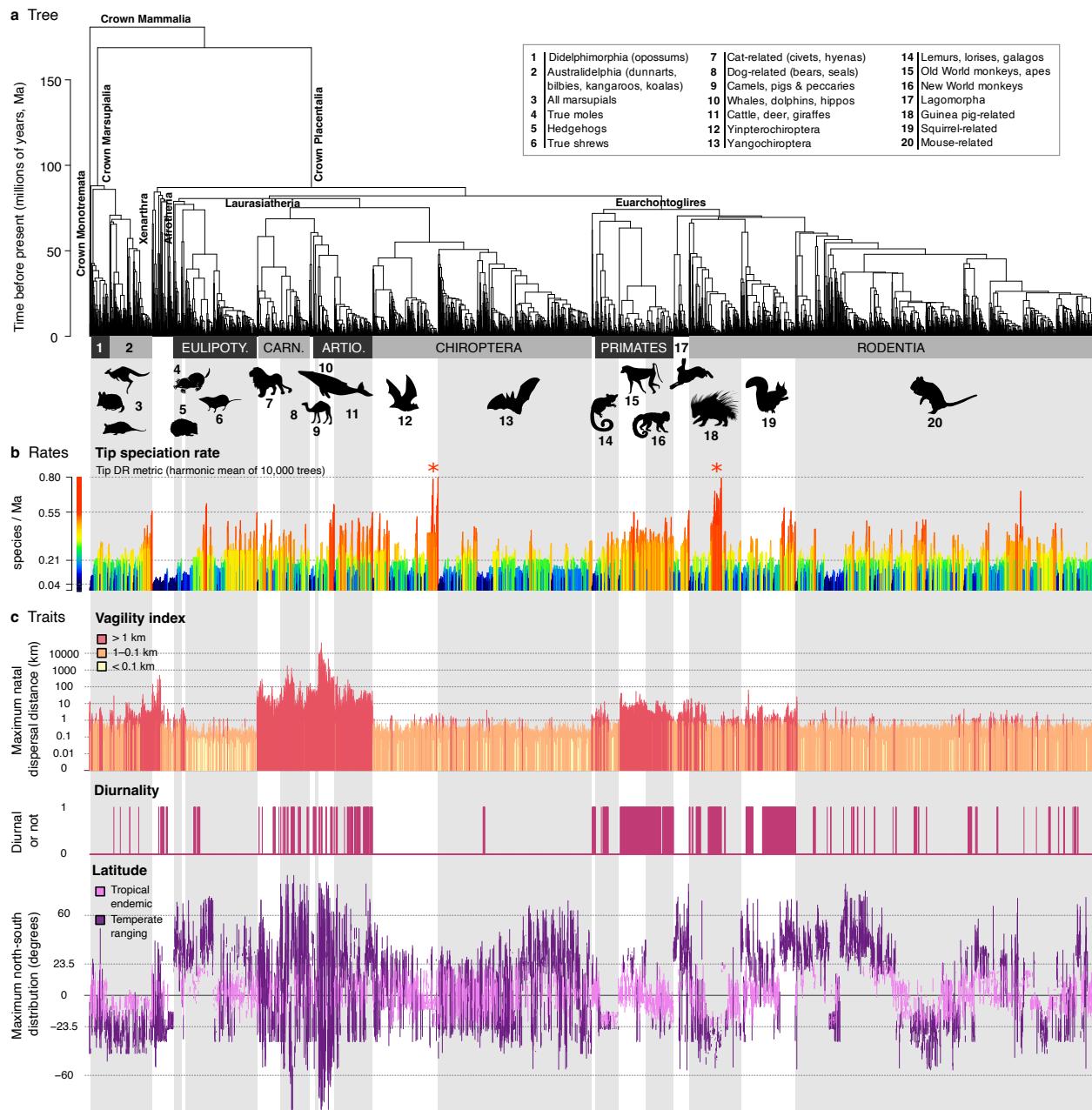
241 analyses including percent of DNA-sampled species per clade (for the completed trees) to test
242 whether any results were affected by the proportion of taxonomically imputed species.

243 **Tip-level tests of speciation-rate correlates.** To examine correlative structures
244 underlying observed tip-rate variation, we performed tip-level PGLS analyses between species'
245 ecological traits and tip DR values across 1000 trees, focusing on a 5,675-species data set that
246 excluded all extinct (n=107) and marine (n=129) species. We followed Freckleton et al. (2008)
247 in using trait ~ rate models in our tip-level PGLS analyses to avoid identical residuals in the
248 dependent variable (i.e., sister species have identical tip DR values, which otherwise violates the
249 assumed within-variable data independence in bivariate normal distributions). The trait ~ rate
250 approach was previously applied using tip DR in univariate contexts (Harvey *et al.* 2017), and
251 performs well compared to QuaSSE (Harvey & Rabosky 2018).

252 **Clade-level tests of speciation-rate correlates.** At the clade level, univariate PGLS was
253 performed typically (rate ~ trait models), since clade tip DR mean gave independent values to
254 sister clades. These analyses were conducted on 1,000 trees as above, except that per-clade trait
255 summaries were standardized (mean centered, standard deviation scaled) using geometric means
256 for vagility and arithmetic means otherwise. For focal species attributes, we took clade-level
257 average values to be robust ecological summaries of clades in relation to other clade metrics.

258 **Phylogenetic path analyses.** We performed path analysis aiming to fully resolve
259 correlational structures and thereby translate from the language of statistical association to
260 causality. For phylogenetic path analyses, we used PGLS to test statements of conditional
261 independence (von Hardenberg & Gonzalez-Voyer 2013) across 27 pre-selected path models
262 (Fig. S5). For each tree and clade set, we used the “phylopath” R package (van der Bijl 2018) to
263 analyze models and perform conditional model averaging. Time-sliced clades at 10-, 30-, and 50-

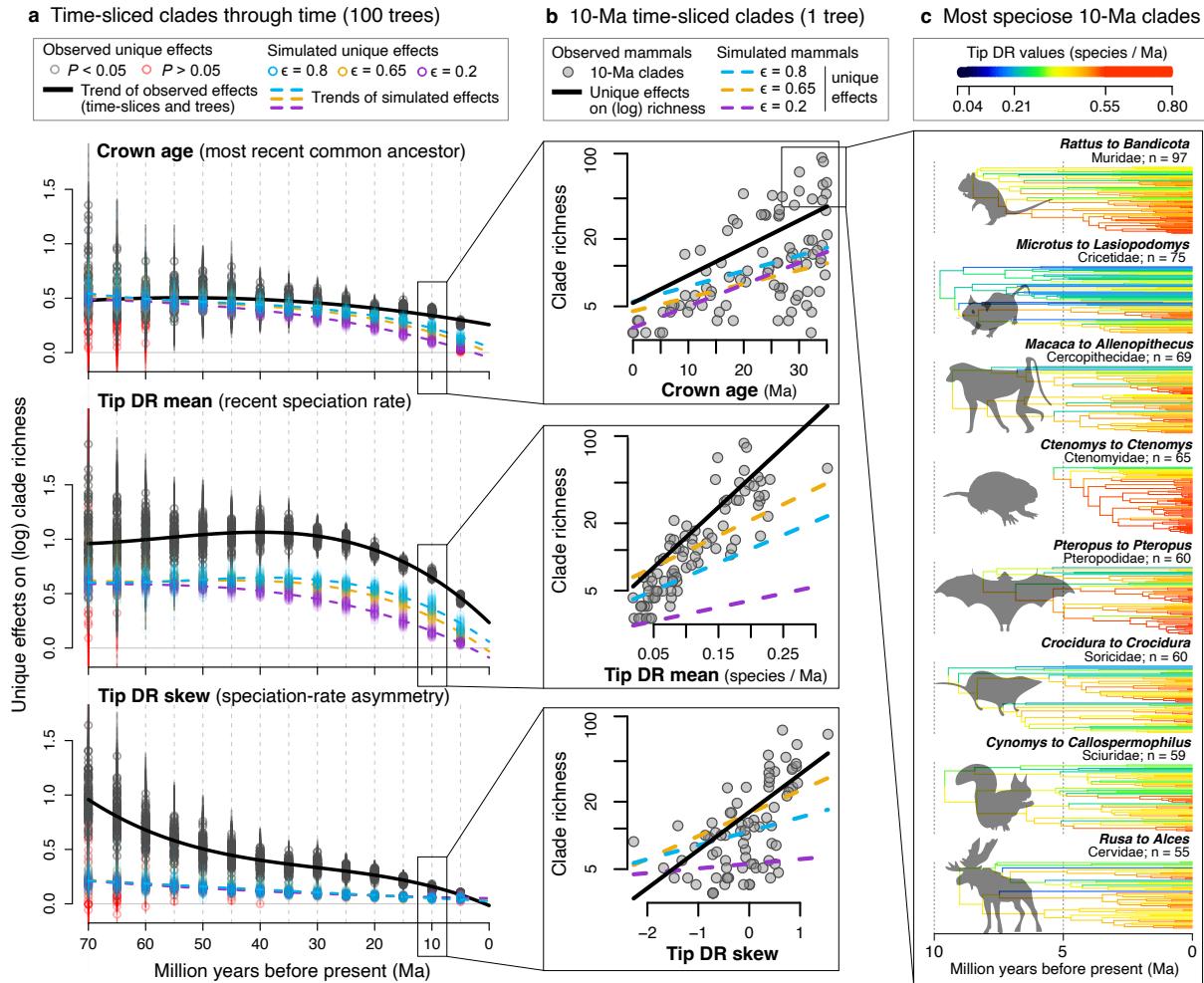
264 Ma intervals were analyzed and compared to somewhat analogous taxon-based clades of genera,
265 families, and orders, with the expectation that older clades will contain greater unmeasured
266 extinction and thus be less reliable indicators of historical speciation rates.


267

268 RESULTS

269 **Unevenness of traits, rates, and species in the mammal timetree.** We find dramatic
270 variation in the phylogenetic distribution of mammal biodiversity (Fig. 3). The shape of the
271 extant phylogeny is highly imbalanced, either as measured on the DNA-only or completed MCC
272 tree (Colless' I values of 53591 and 82550, respectively) as compared to Yule expectations (test
273 statistics of 5.872 and 6.397; $P < 0.001$). For speciation-rate estimates, we similarly find the tip
274 DR values are non-uniform with respect to taxonomic orders (Kruskal-Wallis $\chi^2 = 1085.3$, $df =$
275 26, $P < 0.001$) and families ($\chi^2 = 2564.4$, $df = 161$, $P < 0.001$). Variation among species
276 attributes is also non-uniform, as illustrated by significant phylogenetic signal with respect to
277 vagility ($K = 0.045$, $P = 0.034$ [1,000 randomizations]), diurnality ($K = 0.137$, $P = 0.001$), and
278 latitude ($K = 0.062$, $P = 0.001$; using the DNA-only MCC tree, as imputed species can bias
279 studies of trait evolution, see (Rabosky 2015)).

280 Visually, mapping rates and traits on the timetree reveals a macroscopic view of global
281 mammal diversification history. Two major pulses of recent speciation are apparent in bats and
282 rodents, corresponding to the largest and most reliable diversification-rate shifts in mammals
283 ((Upham *et al.* 2021); Fig. 3b, red asterisks in clades 12 and 18). We find greater vagility and
284 latitudinal extents within Carnivora and Artiodactyla (clades 7–11; Fig. 3c) as compared to other
285 mammal orders, along with a more heterogenous mix of diurnal or non-diurnal activity. In
286 contrast, simian primates and squirrel-related rodents show clade-wide sweeps of diurnality

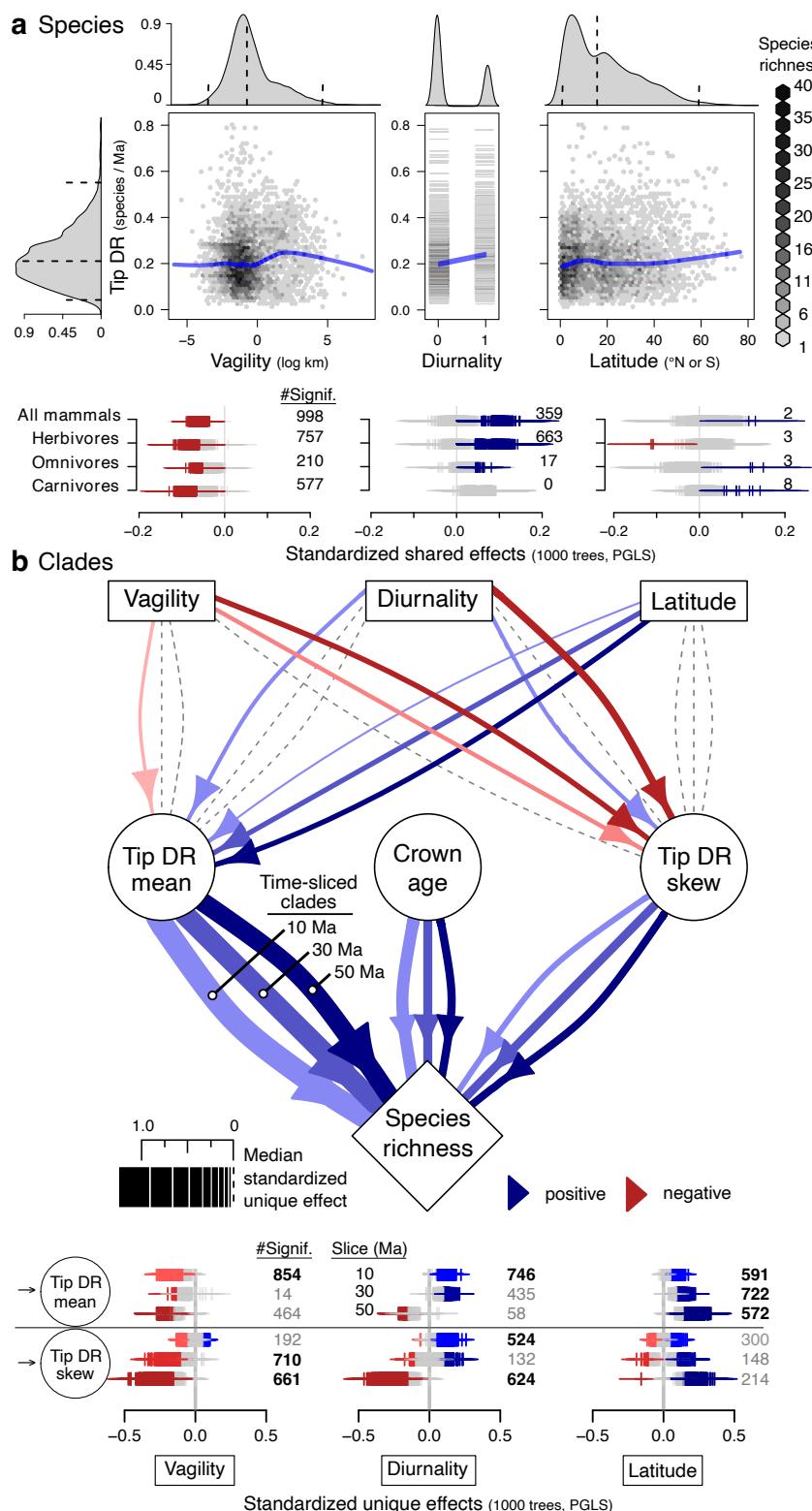

287 (clades 15, 16, 19). We also find a conspicuous latitudinal pattern of alternating north-south-
288 north-south endemism from Lagomorpha to Rodentia (clades 17–20), which is difficult to
289 dismiss as randomness given the clade-wise sorting of traits, so it may reflect biogeographic
290 incumbency effects. We also note the clear signal of Madagascar visible from 12 to 24 degrees
291 south latitude, representative of endemic radiations of tenrec afrotherians, euplerid carnivorans,
292 strepsirrhine primates, and nesomyid rodents.

293

294 **Fig. 3. Species-level relationships, rates, and traits for 5,911 living species of mammals**
295 **globally. (a)** The maximum clade credibility topology of 10,000 node-dated timetrees, with
296 numbered clade labels corresponding to orders and subclades listed in the plot periphery:
297 Eulipoty., Eulipotyphla; Carn., Carnivora; Artio., Artiodactyla. Scale in millions of years, Ma.
298 **(b)** Tip speciation rates, as measured using tip DR values that correspond to the expected rate of
299 species formation at the instantaneous present for each species (red asterisks refer to the bat
300 clade *Pteropus*, left, and the rodent clade *Ctenomys*, right, which display significantly elevated
301 rates of recent speciation). **(c)** Per-species ecological attributes: allometric index of vagility
302 (dispersal ability), diurnality (predominant daytime activity), and north-to-south latitudinal
303 extent of geographic range map. Silhouettes are from phylopic.org and open-source fonts.
304

305 **Effects of ages and rates on clade species richness.** To separate the putative temporal
306 causes of among-clade richness differences, we performed PGLS analyses on time-sliced clades.
307 Univariate analyses show that crown age, tip DR mean, and tip DR skew are consistently the best
308 predictors of log clade richness across time slices and trees (Fig. S7a, b; largest shared effects
309 using standardized data). The percent of DNA-sampled species per clade is not important for
310 explaining richness differences in multivariate models (Fig. S7c), indicating that completed
311 mammal trees are unbiased for this question. In multivariate analyses (top three predictors across
312 100 mammal trees), we find that crown age has unique effects across all time slices, but not
313 different to those found in 3 sets of RCBD simulated phylogenies (Fig. 4a, top panel). While
314 crown age can nominally explain differences in mammal richness, its effect is no larger than
315 expected if tree-wide speciation rates were constant through time. In contrast, tip DR mean
316 explains more variation in mammal richness than expected (and double that of crown age),
317 especially from 5–30 Ma (Fig. 4a, center panel; non-overlapping 95% confidence intervals [CIs]
318 between mammal trees and simulations). Similarly, tip DR skew has unique effects on mammal
319 richness that increase for older time slices, especially at >50 Ma (Fig. 4a, bottom panel). Taken
320 together, these results show that (i) recent speciation-rate variation in mammals is greater than
321 expected from RCBD rate stochasticity alone; (ii) clade richness differences are better explained
322 by recent speciation rates (tip DR mean and skew) than origin times (crown ages); and (iii)
323 variation in both rates and ages is nonetheless important for explaining richness. Named clades
324 show mostly similar results, but lack a way to generate null RCBD expectations (Fig. S8).

325


326 **Fig. 4. Temporal causes of species richness variation across time-sliced clades. (a)**
327 Phylogenetic generalized least squares (PGLS) analyses of tipward time-sliced clades (delimited
328 as in Fig. 2) at 5-million-year (Ma) intervals from 5–70 Ma. Analyses are repeated across 100
329 mammal trees and compared to analogous results from trees simulated under a model of rate-
330 constant birth-death (RCBD). For all clades, partial unique effects are examined on clade
331 richness (PGLS of log clade species richness \sim crown age + tip DR mean + tip DR skew;
332 predictors are standardized). Tip DR mean has consistently stronger unique effects than does
333 crown age, and stronger than expected from the stochastic rate variation in RCBD simulations
334 (95% confidence intervals do not overlap from 5–30 Ma). At deeper time slices, tip DR skew
335 also explains more variation in clade richness than expected from simulations. **(b)** Each gray
336 point in part **a** represents the unique-effect PGLS slope (solid black line) for a set of mammal
337 time-sliced clades, here shown for an example of 10-Ma clades in 1 mammal tree compared to
338 analogous clades from RCBD simulations (dotted colored lines under different extinction
339 fractions, ϵ). Note the clade-level predictors are shown with original (non-standardized) values
340 for illustration purposes only. **(c)** Illustration of the most speciose 10-Ma clades delimited from 1
341 mammal tree (n = species richness of clade). Branches are colored relative to species' tip DR
342 values (interior nodes painted for visualization purposes using a Brownian motion
343 reconstruction). Silhouettes are from phylopic.org and open-source fonts.

344 **Ecological effects on speciation rates.** We analyzed the shared effects of standardized
345 species' ecological traits on tip DR values across 1,000 mammal trees (Fig. 5a, tip-level PGLS
346 for 5,675 extant non-marine species). We find that vagility is inversely related to tip DR such
347 that lower vagility mammals have faster recent speciation rates, both overall and especially for
348 herbivores ($N = 1,637$) and carnivores ($N = 1,565$) versus omnivores ($N = 1,852$). For diurnality,
349 daytime-active mammal species ($N = 1,037$) also have faster recent speciation, especially for
350 diurnal herbivores ($N = 450$) as compared to omnivores ($N = 478$) or carnivores ($N = 109$).
351 Lastly, species' absolute latitudinal centroids are unrelated to their tip DR values, either across
352 all mammals or within trophic categories ($P > 0.05$ for nearly all comparisons; Fig. 5a).
353 Sensitivity analyses show that these tip-level PGLS results are robust to a range of alternatives
354 (Fig. S9): using tip-dated mammal trees, using node density for recent speciation rates, removing
355 taxonomically imputed species from completed trees, and removing island endemic species.

356 Phylogenetic path analyses of time-sliced clades and including species attributes confirm
357 that the unique effects of tip DR mean on clade richness are consistently ~2x greater than crown
358 age or tip DR skew (Fig. 5b), as found without considering attributes (Fig. 4a). We find that
359 among 10-Ma clades, low vagility leads to faster rates of recent speciation (Fig. 5b), similar to
360 the pattern seen at tree tips (Fig. 5a). Vagility effects are weaker among older clades, where
361 vagility instead shows negative effects on tip DR skew (Fig. 5b), which is similar to the shared
362 effects pattern seen in univariate PGLS (Fig. S10a). Diurnality shows positive effects on tip DR
363 mean among 10-Ma clades, which is also analogous to the pattern at tree tips (Fig. 5a, b), and
364 inconsistent effects on tip DR skew that are similar to the shared effects pattern (Fig. 5b; S10a).
365 Latitude shows consistent, positive effects on tip DR mean among 10-Ma and older clades (Fig.
366 5b), which contrasts with the lack of tip-level latitudinal effect (Fig. 5a, S9) and inconsistent

367 clade-level effects seen in univariate analyses (Fig. S10a). Both the time-sliced and taxon-based
368 path analyses (Fig. S11) differ markedly from the univariate ecological analyses (Fig. S10),
369 highlighting the importance of connecting both ecological and temporal factors in the
370 investigation of uneven clade richness patterns. Sensitivity tests show that path analyses of time-
371 sliced clades are robust to the exclusion of island endemics and imputed species, use of the tip-
372 instead of node-dated backbone trees, and the use of node density instead of tip DR to
373 summarize clade-level rate mean and skew (Fig. S12).

374

375
376
377
378
379

Fig. 5. Connecting ecological and temporal causes of rate and richness variation in the mammal timetree. (a, top panels) Distribution of tip-level speciation rates (tip DR metric, shown is the harmonic mean of 10,000 trees) relative to per-species estimates of vagility (allometric index of maximum natal dispersal distance), diurnality (0=nocturnal or cathemeral,

380 1=diurnal), and absolute value of latitude (centroid of expert maps). Loess smoothing lines
381 visualize general trends without considering phylogeny (blue, span=0.33). **(a)**, bottom panels
382 Species-level effects considering phylogeny between tip DR and ecological attributes, as subset
383 across trophic levels of herbivores, omnivores, and carnivores (univariate PGLS [phylogenetic
384 generalized least squares] conducted on standardized predictors across 1,000 trees, showing 95%
385 confidence intervals of slopes; colored if effects are significant, red for negative, blue for
386 positive, else gray). **(b)** Phylogenetic path analysis conducted across time-sliced clades at 10-,
387 30-, and 50-Ma intervals, delimited as illustrated in Fig. 2. Path thickness, color, and
388 directionality denote median coefficients of model-averaged analyses across 1,000 trees (time-
389 sliced clades of 10-, 30-, and 50-Ma proceed from left to right as labeled). The bottom panels
390 provide per-estimate uncertainty across time slices (slope \pm SE), with non-zero estimates totaled
391 as '#Signif.' in the right margin. Paths present in >500 trees are bolded and displayed in the
392 upper path model diagram whereas other paths are dashed lines.
393

394 DISCUSSION

395 Our investigations establish a primary role for ecological over temporal factors in causing
396 uneven patterns of species richness in living mammals, suggesting that similar processes are
397 likely also active in other branches of life. To reach this conclusion, we tested a hierarchical set
398 of causal hypotheses (Fig. 1) for which types and speeds of macroevolutionary processes are
399 occurring across phylogenetic levels, using an innovative time-slicing approach to define clades
400 (Fig. 2). This framework enabled us to query evolutionary questions from shallow to deep levels
401 of the extant timetree, recording macroevolutionary signals in recently diverged clades where
402 inferences are more accurate and in more ancient clades where unobserved extinctions have
403 accumulated (Kubo & Iwasa 1995; Marshall 2017; Louca & Pennell 2020; Upham *et al.* 2021).
404 By connecting clade-level variation in ages and rates to species' ecological attributes—both
405 intrinsic (vagility, diurnality) and extrinsic (latitude)—this framework also connects two ideas
406 that are usually investigated separately: phylogenetic unevenness (PU) and the latitudinal
407 diversity gradient (LDG). Thus, applying this causal time-slice framework quantifies the relative
408 roles of the PU, LDG, and intrinsic trait-rate processes in producing extant mammal biodiversity.

409 Considering varying clade ages, rates, and attributes of mammals (Fig. 3), we found
410 evidence that speciation rates explain more of the variation in among-clade species richness than
411 do crown ages (Fig. 4). This result refutes the idea that ‘clocklike’ rates of speciation
412 predominate (contra (Ricklefs 2003; Venditti *et al.* 2010; Hedges *et al.* 2015)). We then ask why
413 some clades have faster rates of speciation than others, finding that vagility and diurnality are
414 greater causes of recent speciation-rate variation than is latitude (Fig. 5). Low-vagility and
415 daytime-active species of mammals show the fastest recent speciation rates (supports H_{A1} and
416 H_{A2} , respectively), which suggests respective roles for dispersal limitation leading to peripatric
417 speciation (Jablonski 1986; Kisel & Barraclough 2010) and diurnal adaptations leading to
418 ecological speciation via time partitioning (Gerkema *et al.* 2013; Maor *et al.* 2017). In contrast,
419 latitude positively affects speciation rates as measured in older clades, suggesting that faster
420 speciation in temperate clades—coupled with the extinction of many nascent lineages—has
421 helped produce the LDG pattern of greater tropical than temperate richness (supports H_{A4} over
422 H_{A3}). Thus, we here present evidence for contrasting modes of nonadaptive and adaptive
423 speciation occurring in the same large radiation of mammals (*sensu* Czekanski-Moir & Rundell
424 (2019)). We present arguments to justify these interpretations in the sections below.

425 **Time-sliced clades to test age and rate effects on richness.** Original claims that uneven
426 trees are random outcomes of constant-rate diversification (Wright 1941) have been refuted by
427 several authors (Blum & François 2006; Davies *et al.* 2011; Rabosky *et al.* 2012), but with others
428 continuing to support constant rates of speciation, extinction, or both (Ricklefs 2003; Venditti *et*
429 *al.* 2010; Hedges *et al.* 2015). Ranked taxa have been the typical units for testing the relative
430 effects of ages and rates on species richness differences. However, high variance in the crown
431 ages of same-rank taxa (e.g., Table S1) has yielded proposals for time-standardizing higher taxa

432 to make them comparably aged units (e.g., (Avise & Johns 1999; Dubois *et al.* 2021)). Time-
433 standardization is both impractical due to regular phylogenetic flux (e.g., see (Franz *et al.* 2016,
434 2019)) and would disrupt the core principle of prevailing usage in taxonomic classification
435 (Simpson 1945). Thus, we here embrace an alternative strategy of using tree-wide time slices to
436 delimit comparable units of phylogenetic analysis (Fig. 2). A key feature of time-sliced clades is
437 that they are readily delimited across a *sample of trees*—rather than a single consensus tree—so
438 that clade sets on each tree can be iteratively used in comparative analyses. Doing so propagates
439 confidence in node ages and relationships into modeled predictor effects, avoiding problems
440 from assuming that the analyzed tree is the true tree (Huelsenbeck *et al.* 2000).

441 Under this time-slicing approach, we find a greater role for clade-level speciation rates
442 (tip DR mean and skew) than time since most recent common ancestor (crown age) as the direct
443 cause of mammal richness unevenness (Fig. 4a; Table 1). However, this explanatory role for
444 speciation-rate variation is also greater than expected if Mammalia-wide birth and death rates
445 were constant through time and among clades. Hence, these findings support arguments that
446 ‘ecology’ (broadly defined as including any non-temporal factor that alters macroevolutionary-
447 rate processes, including sexual selection and geographic factors) is a greater cause of species
448 richness variation than is ‘time’ (here as crown age; (Price *et al.* 2012; Castro-Insua *et al.* 2018;
449 Machac *et al.* 2018)). However, the ‘ecology’ vs. ‘time’ dichotomy is misleading. Variation in
450 both rate and age clearly contribute to richness.

451 The dual roles of rate and age variation are intuitively illustrated by separating out those
452 10-Ma clades within 1 tree (Fig. 4b) and comparing subtrees of the most speciose clades (Fig.
453 4c). A rapid proliferation of species-level branches is needed for a given clade to be among the
454 most speciose of a particular time slice, but some speciose clades are also near the 10-Ma

455 maximum crown age for that example. Thus, while speciation-rate variation appears to cause the
456 majority of the mammal PU pattern, it is only warranted to claim a greater *relative role* for
457 ‘ecology’ over ‘time’ to the extent that rate-covarying ecological factors can also be identified.

458

459 **Table 1. Summary of findings.** Hypotheses refer to those in Fig. 1, and primary claims
460 regarding how uneven clade richness (N) is explained by crown ages (A), speciation rates (S),
461 and/or species’ attributes (traits). Levels of support refer to findings in Fig. 4 (H_0 vs. H_A) and
462 Fig. 5 (H_{A1-4}), while explanations include the interpretations of *trait-associated lineage turnover*
463 (TALT) and *key innovation / ecological opportunity* (KIEO) discussed in the main text.

Hypotheses	Primary claims	Levels of support	Explanation
H_0	$N \sim A$	rejected	less support than for H_A
H_A	$N \sim S$ and $S \sim$ traits	5-70 Ma clades	rates vary non-randomly
H_{A1}	$S \sim$ vagility (negative)	tips, 10 Ma clades	TALT
H_{A2}	$S \sim$ diurnality (positive)	tips, 10 Ma clades	KIEO
H_{A3}	$S \sim$ latitude (negative)	rejected	no support
H_{A4}	$S \sim$ latitude (positive)	10-, 30-, 50-Ma clades	TALT, but not at the tips

464

465 **How do ecological differences lead to uneven speciation rates and richness?** Given
466 the known greater influence of unsampled extinction events at deeper levels (older time slices) of
467 the mammal timetree (Upham *et al.* 2021), we wanted to test how trait-to-speciation rate
468 relationships differ depending on phylogenetic depth. We find that tip-level rate relationships
469 with vagility (negative, H_{A1}) and diurnality (positive, H_{A2}) are only recovered for species’ tip
470 rates and shallow 10-Ma clade rates, and not among clades at 30- or 50-Ma time slices (Fig. 5).
471 This finding can be explained in two main ways. Either (i) the trait-to-rate signatures exist in
472 older clades, but are invisible in the timetree due to unsampled extinct lineages; or (ii) the trait
473 originated more recently than the 30- or 50-Ma cutoff point, so that the trait-to-rate signatures do
474 not exist among older clades (younger signatures are swamped out in old clades).

475 In the first explanation, fast trait-associated speciation at the level of tips and 10-Ma
476 clades is linked to similarly rapid extinction (*trait-associated lineage turnover* model; TALT).

477 This view extends from models of ephemeral speciation, in which incipient species are
478 frequently forming and going extinct (Mayr 1963; Stanley 1985; Rosenblum *et al.* 2012).
479 However, here TALT further posits that lineage turnover is non-random with respect to certain
480 trait or attribute states. In the second explanation, fast speciation among tips and young clades is
481 a recent phenomenon caused by a trait adaptation that influences macroevolutionary rates (*key*
482 *innovation / ecological opportunity* model; KIEO). This view stems from adaptive radiation
483 theory, in which trait innovations can release certain lineages from competition, opening new
484 ecological space that both promotes speciation and reduces extinction risk (Schluter 2000; Yoder
485 *et al.* 2010; Gillespie *et al.* 2020). These contrasting TALT and KIEO views both posit that
486 speciation rates have been higher in lineages with certain trait states, but they differ in their
487 assumptions about unmeasured extinction rates (higher in TALT, lower in KIEO) and potentially
488 the timing of historical onset in the trait-to-rate signatures (more recent onset of KIEO would
489 explain the lack of older clade relationships, but TALT could have begun at any time). This
490 TALT-or-KIEO framework therefore provides criteria for speculating about how species'
491 attributes are most likely influencing tree-wide speciation rates (Table 1).

492 **Vagility and turnover.** The negative effects of vagility on tree-wide speciation rates
493 indicate that low-vagility mammals—here proxied by smaller average body size and
494 home/geographic ranges—are speciating faster than more vagile, wide-ranging species. The
495 extremes of vagility within mammals help illustrate this dynamic, from low-vagility subterranean
496 rodents like *Ctenomys* Tuco-Tucos—for which 68 range-restricted species are currently
497 recognized ((MDD 2023); see Fig. 3, asterisk in clade 18 is the largest rate shift detected in
498 Upham *et al.* (2021))—to the single species of highly vagile Mountain Lion, *Puma concolor*,
499 which ranges from southern Alaska, USA to Tierra del Fuego, Argentina. This observed dynamic

500 is consistent with long-standing theory linking individual-level dispersal ability (i.e., vagility) to
501 lineage-level dynamics of gene flow versus isolation among geographic populations (Mayr 1963;
502 Jablonski 1986; Slatkin 1987; Bohonak 1999; Kisel & Barraclough 2010). In this theory, less
503 frequent dispersal leads to less gene flow and more genetic isolation in peripheral populations,
504 promoting peripatric speciation (as distinct from allopatric speciation given the latter's emphasis
505 on physical barriers; (Mayr 1954; Carson & Templeton 1984)). Negative vagility-to-speciation
506 rate relationships have been shown using the hand-wing index in birds (Claramunt *et al.* 2012;
507 Sheard *et al.* 2020) and larval ecology in reef fishes (Riginos *et al.* 2014) and bivalves (Jablonski
508 1986). However, in the TALT-or-KIEO framework, we suggest that low-vagility lineages are apt
509 to also experience high rates of *extinction* and thus high turnover (i.e., TALT). This is because
510 the small ranges of low-vagility incipient species should present greater stochastic risk (Jablonski
511 1986; Kisel & Barraclough 2010), leading to the effects of vagility being erased at deeper levels
512 of extant timetrees. If correct, the long branch leading to crown *Ctenomys* in the timetree (~13
513 Ma; (Upham *et al.* 2019)) should be populated by many unsampled extinct taxa, a supposition
514 that paleontological studies in fact support (6 genera of stem ctenomyids are known; (Verzi *et al.*
515 2013; De Santi *et al.* 2021)). Thus, we interpret the short-lived effects of vagility on speciation
516 rates—only recorded at levels of tip species and shallow clades before subsiding—as evidence
517 for TALT, implying that many low-vagility lineages older than 10 Ma have already gone extinct.

518 How, then, to explain the high rates of speciation detected in *Pteropus* Flying Foxes,
519 which are among the largest-bodied and most vagile of all bats? We suggest that the influence of
520 vagility on mammal diversification might be non-linear as hypothesized in birds (e.g., humped
521 (Mayr 1963) or sigmoidal (Claramunt *et al.* 2012)), in which case our results among shallow
522 clades and tip species may only be capturing one side of the vagility-to-rate relationship. The 57

523 living species of *Pteropus* (MDD 2023) originate from second highest rate shift in Upham et al.
524 (2021) (Fig. 3, asterisk in clade 12). Their long-distance dispersal ability (Oleksy *et al.* 2015) has
525 enabled *Pteropus* to reach most Indo-Pacific islands, a pattern of diversification that best fits a
526 founder-event model of speciation (Tsang *et al.* 2020) and highlights the additional role of
527 landscape heterogeneity in determining the shape of vagility-to-speciation rate relationships.
528 Wing morphology is known to contribute to bat vagility (Norberg & Rayner 1987), similar to the
529 hand-wing index in birds (Sheard *et al.* 2020), but bat flying abilities are not explicitly modeled
530 by our vagility index. Instead, we rely on allometric scaling relationships as a rough proxy of
531 dispersal distances across all mammals (Sutherland *et al.* 2000; Whitmee & Orme 2013). No
532 morphological trait has yet been identified as a Mammalia-wide vagility metric, but
533 physiological scaling relationships may offer additional resolution (e.g., the maximal sustainable
534 metabolic rate divided by the metabolic cost of transport; (Hillman *et al.* 2014)). Nonetheless,
535 the vagility patterns described here are robust to multiple sensitivity tests (including the
536 exclusion of island endemics; Fig. S9, S12), and thus convey reliable macroevolutionary
537 signatures of mammalian space use relative to speciation rates.

538 **Diurnality and persistence.** In contrast, the KIEO perspective of adaptive diversification
539 following a trait innovation best explains the observed pattern of faster speciation among diurnal
540 tip species and 10-Ma clades and not thereafter (Fig. 5). The multiple independent origins of
541 daytime activity started ~35 Ma after a ‘nocturnal bottleneck’ among K-Pg-surviving mammals
542 (Gerkema *et al.* 2013; Maor *et al.* 2017). This pattern of diurnal-associated speciation has been
543 described at broader phylogenetic scales across major extant lineages of tetrapods (family-level
544 sampling for mammals (Anderson & Wiens 2017)), as well as for narrower radiations of diurnal
545 primates (Magnuson-Ford & Otto 2012; Santini *et al.* 2015; Arbour & Santana 2017) and whales

546 (Morlon *et al.* 2011), but not before at the species level for all mammals. Fossil evidence
547 suggests that non-mammalian synapsids may also have evolved diurnality (Angielczyk &
548 Schmitz 2014), but those lineages are extinct and thus unobserved in the molecular timetree.

549 The coordinated eco-physiological changes required to evolve diurnality (e.g., eye
550 pigments and corneal size (Gerkema *et al.* 2013)) have presumably carried with them fitness
551 benefits from access to novel resources in the daytime niche. In this context, we posit that
552 evolving diurnality has led to differential lineage persistence (i.e., low rates of species turnover =
553 low extinction / high or moderate speciation) relative to nocturnality because novel niche
554 resources have presumably improved organismal fitness (Yoder *et al.* 2010; Gerkema *et al.*
555 2013). The KIEO model implies that persistence-driven speciation—i.e., speciation rates that
556 appear high in extant timetrees mainly because extinction rates are reduced—underlies the
557 diurnal rate signature, in contrast to the turnover-driven speciation which we suggest is
558 associated with low-vagility lineages and high latitudes. Interestingly, the acquisition of diurnal
559 behavior has likely evolved and persisted at least ten times in crown mammals (Maor *et al.*
560 2017), from diurnal primates and squirrels to elephant shrews. However, there appears to be no
561 characteristic secondary axis of resource specialization that is common across these groups (e.g.,
562 diet or locomotor diversity); rather, allopatric/peripatric speciation—and persistence of those
563 isolated diurnal lineages—is likely the secondary driver of diurnal diversity (e.g., (Zelditch *et al.*
564 2015)). Overall, we show that faster diurnal than nocturnal speciation is a consistent signature
565 among recent lineages of mammals, and suggest that it is caused by greater persistence (lower
566 turnover) of lineages due to ecological opportunity in new daytime niches.

567 **Latitude and uneven clade-level speciation.** Latitude-related hypotheses of climatic
568 stability accelerating local adaptation and low-latitude speciation (H_{A3} ; (Mittelbach *et al.* 2007;

569 Etienne *et al.* 2019)) or climatic instability spurring isolation and high-latitude speciation (H_{A4};
570 (Cutter & Gray 2016; Schluter & Pennell 2017)) align with the aforementioned KIEO or TALT
571 models of speciation, respectively. However, tropical net diversification must have been greater
572 than at temperate latitudes to produce the LDG. We find no consistent influence of latitude upon
573 tip-level speciation rates (Fig. 5a, S9), contrary to evidence from marine fishes (Rabosky *et al.*
574 2018) and angiosperms (Igea & Tanentzap 2020; Sun *et al.* 2020) that supported negative
575 latitude-to-tip speciation rate relationships. Instead, we find only a clade-level inverse gradient in
576 mammals: positive latitudinal effects on speciation rates are increasingly strong among 10-, 30-,
577 and 50-Ma clades (Fig. 5b, S12) as well as among taxonomic orders (Fig. S11b). However, those
578 clade-level latitudinal patterns are apparent only in multivariate path analyses (Fig. S10). Thus,
579 our results bring nuance to the extant timetree-based perspective on the mammal LDG by
580 showing that (i) the negative latitude-to-rate pattern is mainly present at deeper timetree levels
581 (older clades); (ii) the pattern may be an artifact of unobserved extinctions biasing speciation-
582 rate estimates in older clades; and (iii) whether artifact or not, the pattern is hidden unless
583 covariation in other ecological causes of uneven speciation rates is considered.

584 Our latitudinal results compare to similarly mixed findings from other studies of birds
585 and mammals. In timetrees of extant birds, latitude-to-tip rate effects are also absent at the global
586 level (Jetz *et al.* 2012; Rabosky *et al.* 2015), but New World suboscines show faster temperate
587 than tropical speciation (Kennedy *et al.* 2014; Harvey *et al.* 2020). New World sister species of
588 birds and mammals similarly show higher turnover rates at temperate than tropical latitudes
589 using mitochondrial DNA clocks (Weir & Schluter 2007; Schluter & Pennell 2017), but reliance
590 on molecular clocks is more questionable for mammals than birds given their greater breadth of
591 generation times (Nabholz *et al.* 2009). Other studies have shown inconsistent results with a

592 variety of methods, including: (i) higher mammal subspecies counts in harsher temperate
593 environments ((Botero *et al.* 2014); but the opposite pattern in birds (Martin & Tewksbury
594 2008)); (ii) no latitude-to-rate effects at the genus level (Soria-Carrasco & Castresana 2012)
595 using consensus ages from the Bininda-Emonds *et al.* (2007) supertree of mammals; and (iii)
596 greater rates of temperate extinction and tropical speciation (Rolland *et al.* 2014) using a
597 modified version of that same mammal supertree. Here, using credible sets of mammal timetrees
598 from the supermatrix-based Bayesian study of Upham *et al.* (2019) we find faster speciation rates
599 in temperate than tropical clades, but weak relationships among tip species and shallow clades
600 where speciation rates are most confidently inferred (Louca & Pennell 2020; Upham *et al.* 2021).

601 We speculate that the extinction-filtered lens of extant mammal diversity retains true
602 signals of faster temperate than tropical lineage turnover, but that greater paleo-to-neontological
603 synthesis will be needed to corroborate this pattern. Our use of species' geographic range
604 centroid distance from the equator is likely not capturing dependencies on environmental
605 stability for widespread species with postglacial range expansions (e.g., red deer (Doan *et al.*
606 2022)). However, the latitudinal 'essence' of a given clade should be summarized increasingly
607 well at deeper timetree levels by averaging the values of more modern species. This may be why
608 we found the strongest latitude-to-rate patterns among 50 Ma clades and taxonomic orders. The
609 'clades only' pattern of faster high-latitude speciation is also biologically feasible if (i) high-
610 latitude glaciations during the last ~4 Ma (Mudelsee & Raymo 2005; Clague *et al.* 2020) led to a
611 pulse of mammal extinctions, and (ii) those extinctions were phylogenetically dispersed enough
612 to erase only the tip-level portion of the latitude-to-speciation rate effect. Under that scenario,
613 clade-level signatures of faster temperate speciation are possible as long as temperate lineages
614 were not fully extirpated during climatic oscillations (e.g., persisting in glacial refugia (Hewitt

615 2000)). This scenario is supported by the North American fossil record, in which mammal
616 richness and latitude are not strongly correlated until ~4 Ma (Marcot *et al.* 2016), as well as
617 fossil evidence that high-latitude extinctions steepened the LDG for bivalves and reptiles
618 (Jablonski *et al.* 2016; Meseguer & Condamine 2020). Overall, we contend that the traditionally
619 invoked ‘cradle’ (higher tropical speciation) and ‘museum’ (lower tropical extinction (Mittelbach
620 *et al.* 2007)) should instead re-focus upon the *turnover ratio* of those processes, more similar to
621 Stebbens’ (1974) original meaning, as was emphasized by Vasconcelos *et al.* (2022). Testing
622 whether mammal lineages have ‘cycled’ faster (i.e., shorter durations) outside than inside the
623 tropics is the key question to resolve.

624

625 CONCLUSION

626 By taking a broad view on the evolutionary history of Mammalia, from recent species’
627 tips to ancient clade-level processes, we uncover commonalities in the ecological causes of
628 uneven species diversification over geography as well as phylogeny. We provide evidence that
629 ecological factors have had non-random influences on mammalian macroevolutionary rates: far
630 from stochastic, speciation rates are likely higher in clades that contain more low-vagility,
631 diurnal, and temperate-distributed species. Ecologically linked speciation rates have, in turn,
632 driven the majority of the PU pattern of uneven among-clade species richness. The LDG is not
633 separate from this PU pattern, but rather interconnected with it—both types of unevenness share
634 underlying causes, both direct (macroevolutionary rates and ages) and indirect (factors affecting
635 gene flow, isolation, and adaptation). Species’ ecological attributes appear to provide the most
636 reliable predictor for whether a given lineage will tend to speciate, go extinct, or persist in the
637 near future (i.e., ‘species selection’ *sensu* Jablonski (2008)). Thus, the extent to which we can

638 reliably unite the ecological, taxonomic, and phylogenetic knowledge of all mammal species—
639 over 40% of which has only been described since 1993 (Burgin *et al.* 2018; MDD 2023)—is
640 likely to dictate our ability to determine which aspects of extinction risk are inherent to species
641 versus external and human-caused (Pyron & Pennell 2022).

642 Overall, we hypothesize that two main macroevolutionary processes are at work in
643 mammals. First, we identify rate signatures that are consistent with turnover-driven speciation
644 (TALT model) at shallow levels of the timetree due to greater geographic isolation among low-
645 vagility species. Second, we hypothesize that persistence-driven speciation (KIEO model) is
646 occurring in diurnal lineages because of access to new daytime niches and release from nocturnal
647 competitors. We speculate different explanations for the same speciation signatures due to the
648 differing circumstantial evidence of vagility acting on space use and diurnality acting on
649 resource use. However, the value of applying the TALT-or-KIEO framework to our extant
650 timetree-based analyses lies in it generating plausible hypotheses for more direct future
651 evaluation using fossil-based extinction rates and species attributes. Developing physiological or
652 skeletal metrics of mammalian vagility (as opposed to the allometric index used here) along with
653 cranial correlates of diurnal vision (e.g., (Angielczyk & Schmitz 2014)) will be critical for
654 assessing whether the relative frequency of turnover- and persistence-driven speciation has
655 changed from fossil to modern ecosystems. Connecting evolutionary levels from individuals and
656 species to clades appears promising for explaining uneven diversification across the tree of life.
657

658 **Acknowledgments:** We thank the Upham Lab of Phylogenetic Ecology for discussions that
659 improved this work. We also thank members of the VertLife Terrestrial grant (A. Pyron, G.
660 Thomas, R. Bowie, R. Guralnick, M. Koo, D. Wake, T. Colston, M. Moura, A. Ranipeta) for
661 initiating these efforts. Special thanks to I. Quintero, M. Landis, D. Schluter, A. Mooers, D.
662 Greenberg, S. Upham and E. Florsheim for valuable conceptual input, as well as B. Patterson, K.
663 Rowe, J. Brown, T. Peterson, D. Field, T. Stewart, and three anonymous reviewers for comments
664 on earlier drafts of this study. M. Duong, G. Amatulli, and J. Hart provided technical support.
665 Artwork from phylopic.org and open-source fonts. **Funding:** This work was supported by NSF
666 VertLife Terrestrial grant to W.J. and J.A.E. (DEB 1441737 and 1441634), NSF grant DBI-
667 1262600 to W.J., and NIH grant 1R21AI164268-01 and Arizona State University start-up funds
668 to N.S.U. **Competing interests:** None.

669 REFERENCES

670 Alroy, J. (2019). Small mammals have big tails in the tropics. *Glob. Ecol. Biogeogr.*, 0.

671 Álvarez-Carretero, S., Tamuri, A.U., Battini, M., Nascimento, F.F., Carlisle, E., Asher, R.J., *et*
672 *al.* (2022). A species-level timeline of mammal evolution integrating phylogenomic data.
673 *Nature*, 602, 263–267.

674 Anderson, S.R. & Wiens, J.J. (2017). Out of the dark: 350 million years of conservatism and
675 evolution in diel activity patterns in vertebrates. *Evolution*, 71, 1944–1959.

676 Angielczyk, K.D. & Schmitz, L. (2014). Nocturnality in synapsids predates the origin of
677 mammals by over 100 million years. *Proc. R. Soc. B Biol. Sci.*, 281, 20141642.

678 Arbour, J.H. & Santana, S.E. (2017). A major shift in diversification rate helps explain
679 macroevolutionary patterns in primate species diversity. *Evolution*, 71, 1600–1613.

680 Avise, J.C. & Johns, G.C. (1999). Proposal for a standardized temporal scheme of biological
681 classification for extant species. *Proc. Natl. Acad. Sci.*, 96, 7358–7363.

682 Beaulieu, J.M. & O'Meara, B.C. (2016). Detecting Hidden Diversification Shifts in Models of
683 Trait-Dependent Speciation and Extinction. *Syst. Biol.*, 65, 583–601.

684 Belliure, Sorci, Møller, & Clobert. (2000). Dispersal distances predict subspecies richness in
685 birds. *J. Evol. Biol.*, 13, 480–487.

686 van der Bijl, W. (2018). phylopath: Easy phylogenetic path analysis in R. *PeerJ*, 6, e4718.

687 Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer,
688 R., *et al.* (2007). The delayed rise of present-day mammals. *Nature*, 446, 507–512.

689 Blum, M.G.B. & François, O. (2006). Which Random Processes Describe the Tree of Life? A
690 Large-Scale Study of Phylogenetic Tree Imbalance. *Syst. Biol.*, 55, 685–691.

691 Bohonak, A.J. (1999). Dispersal, Gene Flow, and Population Structure. *Q. Rev. Biol.*, 74, 21–45.

692 Bortolussi, N., Durand, E., Blum, M. & François, O. (2006). apTreeshape: statistical analysis of
693 phylogenetic tree shape. *Bioinformatics*, 22, 363–364.

694 Botero, C.A., Dor, R., McCain, C.M. & Safran, R.J. (2014). Environmental harshness is
695 positively correlated with intraspecific divergence in mammals and birds. *Mol. Ecol.*, 23,
696 259–268.

697 Burgin, C.J., Colella, J.P., Kahn, P.L. & Upham, N.S. (2018). How many species of mammals
698 are there? *J. Mammal.*, 99, 1–14.

699 Carson, H.L. & Templeton, A.R. (1984). Genetic Revolutions in Relation to Speciation
700 Phenomena: The Founding of New Populations, 36.

701 Castro-Insua, A., Gómez-Rodríguez, C., Wiens, J.J. & Baselga, A. (2018). Climatic niche
702 divergence drives patterns of diversification and richness among mammal families. *Sci.
703 Rep.*, 8, 8781.

704 Clague, J.J., Barendregt, R.W., Menounos, B., Roberts, N.J., Rabassa, J., Martínez, O., *et al.*
705 (2020). Pliocene and Early Pleistocene glaciation and landscape evolution on the
706 Patagonian Steppe, Santa Cruz province, Argentina. *Quat. Sci. Rev.*, 227, 105992.

707 Claramunt, S., Derryberry, E.P., Remsen, J.V. & Brumfield, R.T. (2012). High dispersal ability
708 inhibits speciation in a continental radiation of passerine birds. *Proc. R. Soc. Lond. B
709 Biol. Sci.*, 279, 1567–1574.

710 Cutter, A.D. & Gray, J.C. (2016). Ephemeral ecological speciation and the latitudinal
711 biodiversity gradient. *Evolution*, 70, 2171–2185.

712 Czekanski-Moir, J.E. & Rundell, R.J. (2019). The Ecology of Nonecological Speciation and
713 Nonadaptive Radiations. *Trends Ecol. Evol.*, 0.

714 Davies, T.J., Allen, A.P., Borda-de-Água, L., Regetz, J. & Melián, C.J. (2011). Neutral
715 Biodiversity Theory Can Explain the Imbalance of Phylogenetic Trees but Not the
716 Tempo of Their Diversification. *Evolution*, 65, 1841–1850.

717 De Santi, N.A., Verzi, D.H., Olivares, A.I., Piñero, P., Álvarez, A. & Morgan, C.C. (2021). A
718 new Pleistocene *Ctenomys* and divergence dating of the hyperdiverse South American
719 rodent family Ctenomyidae. *J. Syst. Palaeontol.*, 19, 377–392.

720 Diaz, L.F.H., Harmon, L.J., Sugawara, M.T.C., Miller, E.T. & Pennell, M.W. (2019).
721 Macroevolutionary diversification rates show time dependency. *Proc. Natl. Acad. Sci.*,
722 201818058.

723 Doan, K., Niedziałkowska, M., Stefaniak, K., Sykut, M., Jędrzejewska, B., Ratajczak-Skrzatek,
724 U., *et al.* (2022). Phylogenetics and phylogeography of red deer mtDNA lineages during
725 the last 50 000 years in Eurasia. *Zool. J. Linn. Soc.*, 194, 431–456.

726 Donati, G.F.A., Parravicini, V., Leprieur, F., Hagen, O., Gaboriau, T., Heine, C., *et al.* (2019). A
727 process-based model supports an association between dispersal and the prevalence of
728 species traits in tropical reef fish assemblages. *Ecography*, 42, 2095–2106.

729 Dubois, A., Ohler, A. & Pyron, R.A. (2021). New concepts and methods for phylogenetic
730 taxonomy and nomenclature in zoology, exemplified by a new ranked cladonomy of
731 recent amphibians (Lissamphibia). *Megataxa*, 5, 1–738.

732 Etienne, R.S., Cabral, J.S., Hagen, O., Hartig, F., Hurlbert, A.H., Pellissier, L., *et al.* (2019). A
733 Minimal Model for the Latitudinal Diversity Gradient Suggests a Dominant Role for
734 Ecological Limits. *Am. Nat.*, 194, E122–E133.

735 Fine, P.V.A. & Ree, R.H. (2006). Evidence for a Time-Integrated Species-Area Effect on the
736 Latitudinal Gradient in Tree Diversity. *Am. Nat.*, 168, 796–804.

737 Foley, N.M., Mason, V.C., Harris, A.J., Bredemeyer, K.R., Damas, J., Lewin, H.A., *et al.* (2023).
738 A genomic timescale for placental mammal evolution. *Science*, 380, eabl8189.

739 Franz, N.M., Musher, L.J., Brown, J.W., Yu, S. & Ludäscher, B. (2019). Verbalizing
740 phylogenomic conflict: Representation of node congruence across competing
741 reconstructions of the neoavian explosion. *PLOS Comput. Biol.*, 15, e1006493.

742 Franz, N.M., Pier, N.M., Reeder, D.M., Chen, M., Yu, S., Kianmajd, P., *et al.* (2016). Two
743 Influential Primate Classifications Logically Aligned. *Syst. Biol.*, 65, 561–582.

744 Freckleton, R.P., Phillimore, A.B. & Pagel, M. (2008). Relating Traits to Diversification: A
745 Simple Test. *Am. Nat.*, 172, 102–115.

746 Gerkema, M.P., Davies, W.I.L., Foster, R.G., Menaker, M. & Hut, R.A. (2013). The nocturnal
747 bottleneck and the evolution of activity patterns in mammals. *Proc R Soc B*, 280,
748 20130508.

749 Gillespie, R.G., Bennett, G.M., De Meester, L., Feder, J.L., Fleischer, R.C., Harmon, L.J., *et al.*
750 (2020). Comparing Adaptive Radiations Across Space, Time, and Taxa. *J. Hered.*, 111,
751 1–20.

752 Gittleman, J. I. & Purvis, A. (1998). Body size and species–richness in carnivores and primates.
753 *Proc. R. Soc. Lond. B Biol. Sci.*, 265, 113–119.

754 von Hardenberg, A. & Gonzalez-Voyer, A. (2013). Disentangling Evolutionary Cause-Effect
755 Relationships with Phylogenetic Confirmatory Path Analysis. *Evolution*, 67, 378–387.

756 Harvey, M.G., Bravo, G.A., Claramunt, S., Cuervo, A.M., Derryberry, G.E., Battilana, J., *et al.*
757 (2020). The evolution of a tropical biodiversity hotspot. *Science*, 370, 1343–1348.

758 Harvey, M.G. & Rabosky, D.L. (2018). Continuous traits and speciation rates: Alternatives to
759 state-dependent diversification models. *Methods Ecol. Evol.*, 9, 984–993.

760 Harvey, M.G., Seeholzer, G.F., Smith, B.T., Rabosky, D.L., Cuervo, A.M. & Brumfield, R.T.
761 (2017). Positive association between population genetic differentiation and speciation
762 rates in New World birds. *Proc. Natl. Acad. Sci.*, 114, 6328–6333.

763 Hedges, S.B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. (2015). Tree of life reveals clock-
764 like speciation and diversification. *Mol. Biol. Evol.*, msv037.

765 Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. *Nature*, 405, 907–913.

766 Hillman, S.S., Drewes, R.C., Hedrick, M.S. & Hancock, T.V. (2014). Physiological vagility and
767 its relationship to dispersal and neutral genetic heterogeneity in vertebrates. *J. Exp. Biol.*,
768 217, 3356–3364.

769 Ho, L.S.T. & Ané, C. (2014). A Linear-Time Algorithm for Gaussian and Non-Gaussian Trait
770 Evolution Models. *Syst. Biol.*, 63, 397–408.

771 Huelsenbeck, J.P., Rannala, B. & Masly, J.P. (2000). Accommodating Phylogenetic Uncertainty
772 in Evolutionary Studies. *Science*, 288, 2349–2350.

773 Igea, J. & Tanentzap, A.J. (2020). Angiosperm speciation cools down in the tropics. *Ecol. Lett.*,
774 23, 692–700.

775 Isaac, N.J.B., Jones, K.E., Gittleman, J.L. & Purvis, A. (2005). Correlates of Species Richness in
776 Mammals: Body Size, Life History, and Ecology. *Am. Nat.*, 165, 600–607.

777 Jablonski, D. (1986). Larval ecology and macroevolution in marine invertebrates. *Bull. Mar. Sci.*,
778 39, 565–587.

779 Jablonski, D. (2008). Species Selection: Theory and Data. *Annu. Rev. Ecol. Evol. Syst.*, 39, 501–
780 524.

781 Jablonski, D., Huang, S., Roy, K. & Valentine, J.W. (2016). Shaping the Latitudinal Diversity
782 Gradient: New Perspectives from a Synthesis of Paleobiology and Biogeography. *Am.*
783 *Nat.*, 189, 1–12.

784 Jablonski, D., Roy, K. & Valentine, J.W. (2006). Out of the Tropics: Evolutionary dynamics of
785 the latitudinal diversity gradient. *Science*, 314, 102–106.

786 Jansson, R., Rodríguez-Castañeda, G. & Harding, L.E. (2013). What Can Multiple Phylogenies
787 Say About the Latitudinal Diversity Gradient? A New Look at the Tropical
788 Conservatism, Out of the Tropics, and Diversification Rate Hypotheses. *Evolution*, 67,
789 1741–1755.

790 Jetz, W., Carbone, C., Fulford, J. & Brown, J.H. (2004). The scaling of animal space use.
791 *Science*, 306, 266–268.

792 Jetz, W. & Fine, P.V.A. (2012). Global Gradients in Vertebrate Diversity Predicted by Historical
793 Area-Productivity Dynamics and Contemporary Environment. *PLOS Biol.*, 10, e1001292.

794 Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012). The global diversity of
795 birds in space and time. *Nature*, 491, 444–448.

796 Jones, K.E., Bielby, J., Cardillo, M., Fritz, S.A., O'Dell, J., Orme, C.D.L., *et al.* (2009).
797 PanTHERIA: a species-level database of life history, ecology, and geography of extant
798 and recently extinct mammals. *Ecology*, 90, 2648–2648.

799 Kennedy, J.D., Wang, Z., Weir, J.T., Rahbek, C., Fjeldså, J. & Price, T.D. (2014). Into and out of
800 the tropics: the generation of the latitudinal gradient among New World passerine birds.
801 *J. Biogeogr.*, 41, 1746–1757.

802 Kisiel, Y. & Barraclough, T.G. (2010). Speciation Has a Spatial Scale That Depends on Levels of
803 Gene Flow. *Am. Nat.*, 175, 316–334.

804 Kubo, T. & Iwasa, Y. (1995). Inferring the Rates of Branching and Extinction from Molecular
805 Phylogenies. *Evolution*, 49, 694–704.

806 Louca, S. & Pennell, M.W. (2020). Extant timetrees are consistent with a myriad of
807 diversification histories. *Nature*, 1–4.

808 Machac, A. & Graham, C.H. (2017). Regional Diversity and Diversification in Mammals. *Am.*
809 *Nat.*, 189, E1–E13.

810 Machac, A., Graham, C.H. & Storch, D. (2018). Ecological controls of mammalian
811 diversification vary with phylogenetic scale. *Glob. Ecol. Biogeogr.*, 27, 32–46.

812 Magnuson-Ford, K. & Otto, S.P. (2012). Linking the Investigations of Character Evolution and
813 Species Diversification. *Am. Nat.*, 180, 225–245.

814 Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K.E. (2017). Temporal niche expansion in
815 mammals from a nocturnal ancestor after dinosaur extinction. *Nat. Ecol. Evol.*, 1, 1889.

816 Marcot, J.D., Fox, D.L. & Niebuhr, S.R. (2016). Late Cenozoic onset of the latitudinal diversity
817 gradient of North American mammals. *Proc. Natl. Acad. Sci.*, 113, 7189–7194.

818 Marshall, C.R. (2017). Five palaeobiological laws needed to understand the evolution of the
819 living biota. *Nat. Ecol. Evol.*, 1, 1–6.

820 Martin, P.R. & Tewksbury, J.J. (2008). Latitudinal Variation in Subspecific Diversification of
821 Birds. *Evolution*, 62, 2775–2788.

822 Mayr, E. (1954). Change of genetic environment and evolution. In: *Evolution as a Process* (eds.
823 Huxley, J., Hardy, A.C. & Ford, E.B.). Allen & Unwin, London, pp. 157–180.

824 Mayr, E. (1963). *Animal species and evolution*. Belknap, Cambridge, MA.

825 McPeek, M.A. & Brown, J.M. (2007). Clade age and not diversification rate explains species
826 richness among animal taxa. *Am. Nat.*, 169.

827 MDD. (2023). Mammal Diversity Database v1.11.

828 Meredith, R.W., Janečka, J.E., Gatesy, J., Ryder, O.A., Fisher, C.A., Teeling, E.C., *et al.* (2011).
829 Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal
830 Diversification. *Science*, 334, 521–524.

831 Meseguer, A. & Condamine, F.L. (2020). Ancient tropical extinctions at high latitudes
832 contributed to the latitudinal diversity gradient. *Evolution*, evo.13967.

833 Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B., *et al.*
834 (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and
835 biogeography. *Ecol. Lett.*, 10, 315–331.

836 Moen, D.S. & Morlon, H. (2014). Why does diversification slow down? *Trends Ecol. Evol.*, 29,
837 190–197.

838 Molina-Venegas, R. (2020). What are “tippy” and “stemmy” phylogenies? Resolving a
839 phylogenetic terminological tangle. *J. Syst. Evol.*, 59.

840 Mooers, A.O. & Heard, S.B. (1997). Inferring Evolutionary Process from Phylogenetic Tree
841 Shape. *Q. Rev. Biol.*, 72, 31–54.

842 Morlon, H., Parsons, T.L. & Plotkin, J.B. (2011). Reconciling molecular phylogenies with the
843 fossil record. *Proc. Natl. Acad. Sci.*, 108, 16327–16332.

844 Mudelsee, M. & Raymo, M.E. (2005). Slow dynamics of the Northern Hemisphere glaciation.
845 *Paleoceanography*, 20.

846 Nabholz, B., Glémin, S. & Galtier, N. (2009). The erratic mitochondrial clock: variations of
847 mutation rate, not population size, affect mtDNA diversity across birds and mammals.
848 *BMC Evol. Biol.*, 9, 54.

849 Norberg, U.M.L. & Rayner, J. (1987). Ecological morphology and flight in bats (Mammalia;
850 Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation.
851 *Philos. Trans. R. Soc. Lond. B Biol. Sci.*, 316, 335–427.

852 Oleksy, R., Racey, P.A. & Jones, G. (2015). High-resolution GPS tracking reveals habitat
853 selection and the potential for long-distance seed dispersal by Madagascan flying foxes
854 *Pteropus rufus*. *Glob. Ecol. Conserv.*, 3, 678–692.

855 Phillimore, A.B. & Price, T.D. (2008). Density-dependent cladogenesis in birds. *PLoS Biol.*, 6,
856 e71.

857 Pontarp, M., Bunnefeld, L., Cabral, J.S., Etienne, R.S., Fritz, S.A., Gillespie, R., *et al.* (2019).
858 The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-
859 evolutionary Models. *Trends Ecol. Evol.*, 34, 211–223.

860 Price, S.A., Hopkins, S.B., Smith, K.K. & Roth, V.L. (2012). Tempo of trophic evolution and its
861 impact on mammalian diversification. *Proc. Natl. Acad. Sci. USA*, 109, 7008–7012.

862 Purvis, A., Fritz, S.A., Rodríguez, J., Harvey, P.H. & Grenyer, R. (2011). The shape of
863 mammalian phylogeny: patterns, processes and scales. *Philos. Trans. R. Soc. Lond. B
864 Biol. Sci.*, 366, 2462–2477.

865 Pyron, R.A. & Pennell, M. (2022). Macroevolutionary perspectives on Anthropocene extinction.
866 *Biol. Conserv.*, 274, 109733.

867 Quintero, I. & Jetz, W. (2018). Global elevational diversity and diversification of birds. *Nature*.

868 Rabosky, D.L. (2009). Ecological limits and diversification rate: alternative paradigms to explain
869 the variation in species richness among clades and regions. *Ecol. Lett.*, 12, 735–743.

870 Rabosky, D.L. (2014). Automatic Detection of Key Innovations, Rate Shifts, and Diversity-
871 Dependence on Phylogenetic Trees. *PLOS ONE*, 9, e89543.

872 Rabosky, D.L. (2015). No substitute for real data: A cautionary note on the use of phylogenies
873 from birth–death polytomy resolvers for downstream comparative analyses. *Evolution*,
874 69, 3207–3216.

875 Rabosky, D.L., Chang, J., Title, P.O., Cowman, P.F., Sallan, L., Friedman, M., *et al.* (2018). An
876 inverse latitudinal gradient in speciation rate for marine fishes. *Nature*, 1.

877 Rabosky, D.L., Slater, G.J. & Alfaro, M.E. (2012). Clade age and species richness are decoupled
878 across the eukaryotic tree of life. *PLoS Biol.*, 10, e1001381.

879 Rabosky, D.L., Title, P.O. & Huang, H. (2015). Minimal effects of latitude on present-day
880 speciation rates in New World birds. *Proc R Soc B*, 282, 20142889.

881 Revell, L.J. (2012). phytools: an R package for phylogenetic comparative biology (and other
882 things). *Methods Ecol. Evol.*, 3, 217–223.

883 Ricklefs, R.E. (2003). Global diversification rates of passerine birds. *Proc. R. Soc. Lond. B-Biol.
884 Sci.*, 270, 2285–2291.

885 Riginos, C., Buckley, Y.M., Blomberg, S.P., Treml, E.A., Heard, A.E.S.B. & Bronstein, E.J.L.
886 (2014). Dispersal Capacity Predicts Both Population Genetic Structure and Species
887 Richness in Reef Fishes. *Am. Nat.*, 184, 52–64.

888 Rohlf, F.J., Chang, W.S., Sokal, R.R. & Kim, J. (1990). Accuracy of Estimated Phylogenies:
889 Effects of Tree Topology and Evolutionary Model. *Evolution*, 44, 1671–1684.

890 Rolland, J., Condamine, F.L., Jiguet, F. & Morlon, H. (2014). Faster Speciation and Reduced
891 Extinction in the Tropics Contribute to the Mammalian Latitudinal Diversity Gradient.
892 *PLOS Biol.*, 12, e1001775.

893 Rosenblum, E.B., Sarver, B.A.J., Brown, J.W., Roches, S.D., Hardwick, K.M., Hether, T.D., *et
894 al.* (2012). Goldilocks Meets Santa Rosalia: An Ephemeral Speciation Model Explains
895 Patterns of Diversification Across Time Scales. *Evol. Biol.*, 39, 255–261.

896 Sánchez-Reyes, L.L., Morlon, H. & Magallón, S. (2017). Uncovering Higher-Taxon
897 Diversification Dynamics from Clade Age and Species-Richness Data. *Syst. Biol.*, 66,
898 367–378.

899 Santini, L., Rojas, D. & Donati, G. (2015). Evolving through day and night: origin and
900 diversification of activity pattern in modern primates. *Behav. Ecol.*, 26, 789–796.

901 Schlüter, D. (2000). *The ecology of adaptive radiation*. Oxford University Press, Oxford, UK.

902 Schlüter, D. & Pennell, M.W. (2017). Speciation gradients and the distribution of biodiversity.
903 *Nature*, 546, 48–55.

904 Scholl, J.P. & Wiens, J.J. (2016). Diversification rates and species richness across the Tree of
905 Life. *Proc. R. Soc. B Biol. Sci.*, 283, 20161334.

906 Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vincent, C., MacGregor,
907 H.E.A., *et al.* (2020). Ecological drivers of global gradients in avian dispersal inferred
908 from wing morphology. *Nat. Commun.*, 11, 2463.

909 Silvestro, D., Castiglione, S., Mondanaro, A., Serio, C., Melchionna, M., Piras, P., *et al.* (2020).
910 A 450 million years long latitudinal gradient in age-dependent extinction. *Ecol. Lett.*, 23,
911 439–446.

912 Simpson, G.G. (1945). The principles of classification and a classification of mammals. *Bull.
913 Am. Mus. Nat. Hist.*, 85, xvi-350 p.

914 Slatkin, M. (1987). Gene Flow and the Geographic Structure of Natural Populations. *Science*,
915 236, 787–792.

916 Soria-Carrasco, V. & Castresana, J. (2012). Diversification rates and the latitudinal gradient of
917 diversity in mammals. *Proc. R. Soc. B Biol. Sci.*, 279, 4148–4155.

918 Stanley, S.M. (1985). Rates of evolution. *Paleobiology*, 11, 13–26.

919 Stebbins, G.L. (1974). *Flowering plants: evolution above the species level*. Belknap Press of
920 Harvard University Press, Cambridge, Mass.

921 Steel, M. & Mooers, A. (2010). The expected length of pendant and interior edges of a Yule tree.
922 *Appl. Math. Lett.*, 23, 1315–1319.

923 Sun, M., Folk, R.A., Gitzendanner, M.A., Soltis, P.S., Chen, Z., Soltis, D.E., *et al.* (2020).
924 Recent accelerated diversification in rosids occurred outside the tropics. *Nat. Commun.*,
925 11, 3333.

926 Sutherland, G.D., Harestad, A.S., Price, K. & Lertzman, K. (2000). Scaling of Natal Dispersal
927 Distances in Terrestrial Birds and Mammals. *Conserv. Ecol.*, 4, art16.

928 Title, P.O. & Rabosky, D.L. (2019). Tip rates, phylogenies and diversification: What are we
929 estimating, and how good are the estimates? *Methods Ecol. Evol.*, 10, 821–834.

930 Tsang, S.M., Wiantoro, S., Veluz, M.J., Sugita, N., Nguyen, Y.-L., Simmons, N.B., *et al.* (2020).
931 Dispersal out of Wallacea spurs diversification of Pteropus flying foxes, the world's
932 largest bats (Mammalia: Chiroptera). *J. Biogeogr.*, 47, 527–537.

933 Upham, N.S., Esselstyn, J.A. & Jetz, W. (2019). Inferring the mammal tree: species-level sets of
934 phylogenies for questions in ecology, evolution, and conservation. *PLOS Biol.*

935 Upham, N.S., Esselstyn, J.A. & Jetz, W. (2021). Molecules and fossils tell distinct yet
936 complementary stories of mammal diversification. *Curr. Biol.*, 31, 4195-4206.e3.

937 Vasconcelos, T., O'Meara, B.C. & Beaulieu, J.M. (2022). Retiring “Cradles” and “Museums” of
938 Biodiversity. *Am. Nat.*, 199, 194–205.

939 Venditti, C., Meade, A. & Pagel, M. (2010). Phylogenies reveal new interpretation of speciation
940 and the Red Queen. *Nature*, 463, 349–352.

941 Verzi, D.H., Olivares, A.I. & Morgan, C.C. (2013). Phylogeny and Evolutionary Patterns of
942 South American Octodontoid Rodents. *Acta Palaeontol. Pol.*, 59, 757–769.

943 Wei, T. (2017). *An introduction to corrplot package*. Available at: <https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html>. Last accessed 11 May
944 2018.

945 Weir, J.T. & Schlüter, D. (2007). The Latitudinal Gradient in Recent Speciation and Extinction
946 Rates of Birds and Mammals. *Science*, 315, 1574–1576.

947 Whitmee, S. & Orme, C.D.L. (2013). Predicting dispersal distance in mammals: a trait-based
948 approach. *J. Anim. Ecol.*, 82, 211–221.

949 Wiens, J.J. (2011). The causes of species richness patterns across space, time, and clades and the
950 role of “ecological limits”. *Q. Rev. Biol.*, 86, 75–96.

951 Willis, J.C. (1922). *Age and Area*. Cambridge University Press, Cambridge.

952 Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M. & Jetz, W. (2014).
953 EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals.
954 *Ecology*, 95, 2027–2027.

955 Wright, S. (1941). The “Age and Area” Concept Extended. *Ecology*, 22, 345–347.

956 Yoder, J.B., Clancey, E., Des Roches, S., Eastman, J.M., Gentry, L., Godsoe, W., *et al.* (2010).
957 Ecological opportunity and the origin of adaptive radiations. *J. Evol. Biol.*, 23, 1581–
958 1596.

959 Zelditch, M.L., Li, J., Tran, L.A.P. & Swiderski, D.L. (2015). Relationships of diversity,
960 disparity, and their evolutionary rates in squirrels (Sciuridae). *Evolution*, 69, 1284–1300.

961

962