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Abstract  

To enable robust patterning, morphogen systems should be resistant to variations in gene expression 

and tissue size. Here we explore how the Sonic Hedgehog (Shh) morphogen gradient in the ventral 

neural tube enables scaled patterning in embryos of varying sizes. Using zebrafish eggs that have 

been surgically reduced in size, we find that ventral neural tube patterning remains proportional in 

smaller embryos. Intriguingly, a secreted protein implicated in Shh release, Scube2, is expressed in 

the dorsal-intermediate neural tube far from Shh producing cells. Overexpression of scube2 expands 

the Shh gradient whereas loss of scube2 causes gradient contraction. Conversely, upregulation of Shh 

represses scube2 expression while Shh downregulation increases scube2 expression thus 

establishing a negative feedback loop. This regulatory feedback is necessary for scaling, as 

demonstrated by its loss in scube2 overexpressing embryos. Using mathematical modeling, we show 

that feedback control on diffusion and release rates of Shh allows the morphogen gradient to be 

robust to differences in field length and Shh gene dosage. We conclude that Scube2 promotes release 

and diffusion of Shh to allow gradient scaling in an extension to the expander-repressor model. 

 

Introduction 

When Lewis Wolpert first posed the “French Flag Problem”, he was seeking the answer to this 

fundamental question: What systems enable proportional patterning in embryos independent of 

embryo size? By the time Wolpert formalized this problem, developmental biologists had long known 

that embryos scale their patterning programs in response to changes in embryo size (Wolpert, 1969). 

For example, sea urchin larva pattern normally from a single isolated blastomere up to the four-cell 

stage and amphibian embryos can survive bisection and pattern proportionally at a reduced size 

(Driesch, 1892; Morgan, 1895; Spemann, 1938; Cooke, 1981). Significant scaling of pattern formation 

to tissue availability seems to be a near universal property of developing organisms. Yet, 50 years after 
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Wolpert’s statement of the French Flag Problem, how morphogen gradients scale to pattern domains 

of varied sizes remains unclear in many systems.  

Recent theoretical studies have proposed a variety of mechanisms that could account for 

scaling of morphogen-mediated patterning (Ben-Zvi and Barkai, 2010; Umulis and Othmer, 2013). 

Some ways of adjusting morphogen gradient to size involve tuning production, degradation, or 

distribution of the morphogen. For example, models show scaling occurs when morphogen flux is 

size-dependent or when a morphogen enhances its degradation (Umulis and Othmer, 2013). Scaling 

could also be achieved if concentrations at the source and sink are fixed (Čapek and Müller, 2019). 

There is support for this source-sink mechanism in zebrafish dorsoventral patterning (Zinski et al., 

2017).  Other proposed mechanisms involve size-dependent players that affect morphogen 

distribution: modulators that change degradation or diffusion of the morphogen with or without 

feedback from the morphogen (Ben-Zvi and Barkai, 2010; Umulis and Othmer, 2013; Shilo and Barkai, 

2017; Čapek and Müller, 2019). One of these models involving feedback interaction is termed 

expander-repressor integral feedback control (Ben-Zvi and Barkai, 2010). In this model, a morphogen 

represses the expression of another secreted protein, known as the expander, that affects the range 

of the morphogen such as by increasing its diffusion rate or decreasing its degradation rate. In such 

models, morphogen signaling will expand until it has reached an encoded equilibrium. This equilibrium 

is controlled by the morphogen’s repression of the expander, thus enabling “measurement” of the size 

of the domain in need of patterning. The first biological example of this mechanism was proposed in 

Xenopus axial patterning. In this original model, Chordin expands BMP signaling by binding BMP 

ligand (ADMP) and allowing shuttling of BMP ligands toward the ventral side (Ben-Zvi et al., 2008). 

Subsequent experimental work implicated another factor, Sizzled, as playing a central role in scaling in 

a mathematically equivalent manner to the expander-repressor model (Ben-Zvi et al., 2014; Inomata et 

al., 2013). However, recent work argues against an expander-repressor mechanism for BMP gradient 

formation, and supports a source-sink mechanism focused on control of Chordin proteolysis with 
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Sizzled being dispensable (Tuazon et al., 2020). Expander-like relationships have also been proposed 

to regulate scaling of Dpp gradients during wing disc growth (Ben-Zvi et al., 2011; Hamaratoglu et al., 

2011), although several other mechanisms have more recently been reported (Averbukh et al., 2014; 

Zhu et al., 2020; Romanova-Michaelides et al., 2022). While expander-like feedback circuits have been 

suggested to lead to scale invariance from synthetic patterns in bacterial colonies to vertebrate axial 

patterning (Cao et al., 2016; Ben-Zvi et al., 2008; Inomata et al., 2013; Ben-Zvi et al., 2014), the 

biochemical details of how proposed expanders alter morphogen spread and to what extent the 

expander-repressor model fits experimental results compared with other models for scaling is still not 

clear in many systems.  

Though scaling of early axis patterning following size reduction has been extensively studied, 

the molecular mechanisms through which tissues and organs subsequently scale their patterning have 

received less attention (Ben-Zvi et al., 2008; Inomata et al., 2013). Previously, scaling of patterning 

during organ growth has been considered in the fly wing disc, which grows remarkably in size while 

maintaining proportion (Averbukh et al., 2014; Ben-Zvi et al., 2011; Hamaratoglu et al., 2011). In 

vertebrates, the developing neural tube has been a powerful model to study morphogen-mediated 

patterning (Briscoe and Small, 2015). While neural tube patterning does not expand isometrically over 

time with growth, embryos of different species maintain consistent embryonic proportions in the face 

of significant variation in organ size during initial patterning (Kicheva et al., 2014; Uygur et al., 2016).  

The vertebrate ventral neural tube is patterned by the morphogen Sonic Hedgehog (Shh; Marti 

et al., 1995; Roelink et al., 1995). Shh is produced by the notochord and floorplate and induces ventral 

cell fates over a long range in a dose-dependent manner (Briscoe et al., 2001; Zeng et al., 2001). 

Various modes of Shh transport have been reported including free diffusion, lipoprotein particles, 

extracellular vesicles, and along cytonemes (Petrov et al., 2017; Sanders et al., 2013). While 

mechanisms of Shh transport have long been disputed, biochemical evidence supports soluble Shh as 

a primary component of long-range signaling. However, Shh ligands are dually lipid-modified and are 
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highly lipophilic (Pepinsky et al., 1998; Porter et al., 1996a; Porter et al., 1996b), and thus require 

mechanisms to be released from the membrane and move through extracellular space. Shh release 

was largely thought to be achieved by the protein Dispatched, but more recent work has identified 

Scube2 as an additional factor in promoting Shh release (Burke et al., 1999; Creanga et al., 2012; 

Kawakami et al., 2002; Tukachinsky et al., 2012). Furthermore, release of Shh from sender cells was 

shown to occur as a complex with Scube2, and coreceptors in receiving cells aid in the transfer of Shh 

from Scube2 to the receptor Patched1 in mammalian cell culture (Wierbowski et al., 2020).  

Scube2 is a Signal sequence containing protein with a CUB domain and EGF-like repeats. The 

role of Scube2 in Shh signaling was first identified from work using the zebrafish you mutant which 

corresponds to scube2 (Hollway et al., 2006; Kawakami et al., 2005; van Eeden et al., 1996; Woods 

and Talbot, 2005; Yang et al., 2002). Interestingly, while scube2 mutants have defects in ventral 

patterning, scube2 is predominantly expressed in the dorsal and intermediate neural tube in both mice 

and zebrafish (Grimmond et al., 2001; Kawakami et al., 2005; Woods and Talbot, 2005). Additionally, 

epistasis experiments indicated that Scube2 acts upstream of Patched to stimulate Shh signaling 

(Woods and Talbot, 2005). This effect was also found to be cell-non-autonomous, as mosaic injection 

of scube2 mRNA was capable of rescuing Shh-signaling defects over a long range (Hollway et al., 

2006; Woods and Talbot, 2005). Studies in cell culture then demonstrated that Scube2 facilitates 

release of Shh from secreting cells cell non-autonomously (Creanga et al., 2012; Tukachinsky et al., 

2012). Recent work concluded that Scube2 may be responsible for catalyzing the shedding of lipids 

from Shh ligands, but this model is disputed by findings that released Shh remains dually lipid-

modified and that a Scube2-Shh complex was shown to interact via lipid modifications on Shh 

(Creanga et al., 2012; Jakobs et al., 2014; Jakobs et al., 2016; Tukachinsky et al., 2012; Wierbowski et 

al., 2020). Biochemical evidence for the cell non-autonomous role of Scube2 in Shh release and its 

unexpected expression pattern in the zebrafish neural tube led us to wonder whether Scube2 may 

regulate pattern scaling by acting as an expander, as also hypothesized elsewhere (Shilo and Barkai, 
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2017) or in an expander-like role. In this work, we use quantitative imaging, genetic perturbations, and 

mathematical modeling to investigate the scaling of ventral neural patterning in size-reduced zebrafish 

embryos. We propose that Scube2 scales the Shh morphogen gradient with tissue size through 

feedback regulation of both morphogen release and diffusion in an extension to the expander-

repressor model.  

Results 

Ventral neural patterning scales with embryo size 

Studying mechanisms of scaling during growth or between species of different sizes is difficult 

because many properties of the patterning system depend on stage or species-specific variables. To 

study scaling of pattern formation in embryos with comparable genetic backgrounds at matched time 

points, we developed a technique to reduce the size of zebrafish embryos inspired by classical work in 

amphibians, as we previously described (Ishimatsu et al., 2018, 2019; Morgan, 1895; Spemann, 1938). 

Two lateral cuts are made across the blastula stage embryo: one to remove cells near the animal pole, 

to avoid damaging signaling centers crucial to early D-V patterning, and a second to remove yolk near 

the vegetal pole. (Fig. 1A). With this technique, a significant fraction of embryos patterns normally and 

develop at a reduced size (Fig. 1B-C).  

We measured scaling of neural patterning in size-reduced embryos using quantitative imaging 

(Megason, 2009; Xiong et al., 2013). High-resolution image-stacks of 18-24 hours postfertilization (hpf) 

stage-matched zebrafish embryos were collected under identical settings, during the same imaging 

session, from matched Anterior-Posterior positions in control and experimentally perturbed embryos 

(Fig. 1D-E). Imaging volumes were analyzed with custom software to demarcate the dorsoventral axis 

and width of the neural tube along the length of the dataset (Fig. 1F, Fig. S1). Image intensity values 

were extracted in a set number of bins along the D-V axis for the left and right halves of the neural 
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tube to normalize for variability in neural tube height. This system allowed for the quantitative and 

unbiased comparison of 3-4 somite lengths of neural imaging data from multiple embryos.  

We quantified the Shh response gradient based on the expression of patched2, a direct 

transcriptional target of Shh, using the Tg(ptch2:kaede) reporter in wild type and size-reduced 

embryos (Fig. 1G-J) (Huang et al., 2012) . When quantified relative to their respective neural tube 

dorsal-ventral heights, Tg(ptch2:kaede) response gradients maintained nearly identical intensity 

distributions despite the neural tube height being 15.0% (+/- 2.8%) smaller in size-reduced embryos in 

this dataset (N=5), indicating that Shh responses scale following size reduction (Fig. 1I-J). When 

viewed on an absolute scale, control and size-reduced embryos show clear shifts in the response 

gradient as measured by the position at which 50% of mean control maximum intensity is reached 

(p=0.0076) (Fig. 1J). To quantify this effect at the level of cell fate specification, we utilized a triple 

transgenic reporter line to simultaneously mark three major ventral neural fates: nkx2.2a (p3 

progenitors), olig2 (pMN and some p3 progenitors), and dbx1b (p0, d6 progenitors) (Fig. 1K-L) (Gribble 

et al., 2007; Jessen et al., 1998; Kinkhabwala et al., 2011; Kucenas et al., 2008). Anterior-posterior 

averaged intensity profiles were then segmented to form cell fate profiles which can be compared 

between embryos (Fig. S2). After normalizing for their altered D-V height (which was reduced in this 

group by 12.2% +/- 2.4% compared to controls), the average of these cell fate profiles in size-reduced 

embryos were virtually indistinguishable from those of full-sized embryos (Fig. 1M). Furthermore, 

differences between progenitor domain boundary positions were visible when size normalization was 

removed (Fig. 1N). Statistically significant shifts in the positions of the p2 and pMN upper boundaries 

were observed only when compared in their absolute coordinates (Fig. 1N). This further demonstrates 

that ventral neural patterning adjusts to changes in total D-V height. 
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Figure 1- Neural tube patterning scales following embryonic size reduction. 

(A) Surgical size reduction of 128-256 cell stage embryos in which cells and yolk are removed 

to produce smaller embryos (adapted from Ishimatsu et al. 2018). (B) Size-reduced embryo at 24 hpf 

(lower) with a normal-sized sibling (upper). (C) Size-reduced larva at six days post fertilization (lower) 

with a normal-sized sibling (upper). (D) Schematic of an embryo mounted for imaging; anterior-
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posterior length of the imaging window is shown with blue lines. Red lines indicate the 3-D extent of 

the imaging window. (E) 3-D rendering of a confocal z-stack of Tg(ptch2:kaede) mem-mCherry mRNA 

injected embryo. Scale bar represents 100 μm. (F) Flattened “fillet” profile of segmented imaging data 

from a z-stack imaged as in E (See methods). (G,H,K,L) Scale bar represents 20 μm. (G-H) Transverse 

view of 20 hpf Tg(ptch2:kaede), mem-mCherry mRNA injected control (G) and size-reduced embryos 

(H). Size reduction led to a decrease in DV height of 15.0% +/- 2.8% in this dataset. (I-J) ptch2:kaede 

intensity profiles from segmented imaging data of embryos from G-H plotted either normalizing for D-

V neural tube height (I) or to their absolute neural tube heights (J). Error bars indicate standard 

deviation. No significant shift is observed in the position of 50% mean maximum control intensity on a 

relative scale between control and size-reduced embryos(I) (unpaired t-test p=0.5981) while a 

statistically significant shift in the position is observed when comparing absolute positional values (J) 

(unpaired t-test p=0.0076; Control N=5, Size Reduced N=5). (K-L) Transverse views of mem-

mtagBFP2 mRNA injected 24 hpf Tg(nkx2:mGFP; olig2:dsred; dbx1b:GFP) control (K) and size-

reduced (L) embryos. Size reduced embryos had an average 12.2% +/- 2.4% reduction in neural tube 

DV height relative to control embryos in this dataset. (M-N) Progenitor domain segmentation analysis 

(See methods) of embryos treated as in K-L plotted either normalizing for differences in neural tube 

height (relative scale) (M) or with respect to their absolute heights (absolute scale) (N). Only when 

compared on an absolute scale are statistically significant shifts seen in the dorsal boundaries of the 

p2-1 and pMN domains (absolute heights unpaired t-test pp2-1=1.0172e-4 and ppMN =0.0016, Control 

N=5, Size Reduced N=4). Thresholds for P value significance asterisks: significant with p < 0.0001 

noted with ****, with p = 0.0001 to 0.001 noted with ***; with p = 0.001 to 0.01 noted with **; with p = 

0.01 to 0.05 noted with *. 
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Scube2 levels control Shh signaling 

Based on its role in the cell-non-autonomous regulation of Shh release and its dorsal 

expression pattern, we hypothesized a potential role for Scube2 in enabling scaling of Shh gradients 

(Kawakami et al., 2005; Woods and Talbot, 2005). This hypothesis depends on scube2 expression 

levels having a dose-dependent effect on Shh signaling. However, previous work concluded that 

Scube2 is only required for Shh signaling as a permissive factor (Kawakami et al., 2005; Woods and 

Talbot, 2005). To examine the role of Scube2 in ventral neural patterning, we performed a morpholino 

knockdown of scube2 in Tg(ptch2:kaede) reporter embryos using a previously validated translation 

inhibiting morpholino (Fig. 2A-C) (Woods and Talbot, 2005). We observed a decrease in Shh signaling 

following morpholino injection, as demonstrated by a statistically significant suppression of maximum 

ptch2:kaede intensity (Fig. 2C). Such a decrease in the amplitude of Shh signaling is consistent with a 

role of Scube2 in Shh release. Additionally, quantification of nkx2.2a, olig2, and dbx1b domain sizes in 

embryos injected with scube2 morpholino showed a contraction of ventral progenitor domains (Fig. 

2D-F). Ventral shifts in the upper boundaries of the pMN and p3 domains were statistically significant, 

due in part to near complete elimination of the nkx2.2a+ p3 domain (Fig. 2F). Unexpectedly, expansion 

of the p2-1 domain dorsally was also observed, potentially implying long range Shh signaling is 

required for complete p2-1 induction.  

Previous work concluded that Scube2 was a permissive factor based on a lack of change in 

expression of downstream Shh signaling markers as observed by whole mount in situ hybridization 

following scube2 overexpression (Woods and Talbot, 2005). However, quantitative imaging reveals 

that injection of scube2 mRNA leads to the expansion of Shh signaling, as shown by broader 

distributions of Tg(ptch2:kaede) fluorescence (Fig. 2G-I). Embryos injected with scube2 mRNA showed 

significant dorsal shifts in the position of half maximum Tg(ptch2:kaede) intensity of the control 

(p=0.0047), a measure of absolute Shh signaling range (Fig. 2H). Maximum Tg(ptch2:kaede) 

fluorescence in scube2 overexpressing embryos appeared higher on average but was not statistically 
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significant (p=0.0512). In addition, scube2 overexpression affected cell type patterning in the ventral 

neural tube, as measured in triple transgenic nkx2.2a, olig2, and dbx1b reporter embryos (Fig. 2J-L). 

Quantification of these cell fate profiles revealed large increases in p3 and pMN domain sizes, a 

decrease in the size of the p2-1 domains, and unchanged patterning of the p0-d6 domains and more 

dorsal cell types. Ventralization was measured by comparing the dorsal boundaries of the p3 and 

pMN, which were statistically significantly shifted (Fig. 2L). These data indicate that not only is Scube2 

required for long range Shh signaling, but that scube2 overexpression amplifies endogenous Shh 

signaling. Additionally, this suggests that Scube2-stimulated Shh release is a limiting factor in normal 

patterning. 
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Figure 2- Scube2 expression levels regulate Shh signaling in the ventral neural tube. 

(A-B,D-E, G-H, J-K) Transverse view of a confocal z-stack, scale bar represents 20 μm (A-B) 22 hpf 

Tg(ptch2:kaede) embryos injected with (A) mem-mCherry mRNA with a control morpholino or (B) 
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injected with mem-mCherry mRNA and scube2 morpholino. (C) Mean intensity distributions in 

segmented neural tissue from z-stacks of embryos as treated in A-B. Maximum intensities of 

morpholino treated embryos were statistically significantly reduced compared to controls (p= 0.0040). 

(D-E) 20 hpf Tg(dbx1b:GFP, olig2:dsred, nkx2.2a:memGFP) embryos injected with (D) mem-

mTagBFP2 mRNA alone or (E) co-injected with scube2 morpholino. (F) Mean result of automated 

segmentation of progenitor domain sizes (see methods for details) for embryos treated as in D-E. p1-2 

domain upper boundaries were shifted dorsally following morpholino treatment (pp2-1= 0.0019), while 

the upper boundary of pMN and p3 domains were both significantly contracted in morpholino injected 

embryos (ppMN= 0.0158 and pp3= 9.87e-9). (G-H) Representative image of 20 hpf Tg(ptch2:kaede) 

reporter line embryos injected with (G) mem-mcardinal mRNA alone or (H) co-injected with scube2 

mRNA. (I) Quantification of mean intensity distributions of embryos as treated in G-H. Dorsoventral 

position at which half of average control maximum intensity was reached was significantly shifted in 

Scube2 overexpressing embryos (unpaired t-test p=0.00470). (J-K) 20 hpf Tg(dbx1b:GFP, olig2:dsred, 

nkx2.2:mGFP) embryos injected with (J) mem-mTagBFP2 mRNA alone or (K) co-injected with scube2 

mRNA. (L) Mean results of automated progenitor domain segmentation of J-K. pMN and p3 domains 

were drastically shifted dorsally in scube2 mRNA injected embryos (pMN=8.6748e-04, and pp3=0.0034 

respectively).   
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Shh negatively regulates Scube2 expression over a long-range 

To study the regulation of Scube2 expression, we developed the Tg(scube2:moxNG) reporter 

line containing 7.6KB of the endogenous regulatory sequences driving  moxNeonGreen fluorescent 

protein (Fig. 3A) (Costantini et al., 2015). The expression of Tg(scube2:moxNG) we observed is 

consistent with previously reported in situ hybridizations (Grimmond et al., 2001; Kawakami et al., 

2005; Woods and Talbot, 2005). Tg(scube2:moxNG) embryos showed very low expression close to the 

sources of Shh in the floor plate and notochord—as visualized with a transgenic Tg(shha:memCherry) 

reporter line—and high levels of expression in the dorsal-intermediate neural tube (Fig. 3A-C). Time 

lapse imaging of Tg(scube2:moxNG) embryos revealed weak mesodermal expression in the early 

embryo, which faded during the onset of neurulation and was replaced by high levels of expression in 

the dorsal and intermediate neural tube (Fig. 3D-G, Movie S1-2).  

To test whether Shh signaling downregulates Scube2 expression, we injected mRNA encoding 

a potent activator of Shh signaling, dnPKA, at the single cell stage (Hammerschmidt et al., 1996). 

Embryos injected with dnpka mRNA showed near complete ablation of neural Tg(scube2:moxNG) 

expression (Fig. 4 A-C). To test whether Shha ligands themselves were capable of suppressing 

Scube2 expression at a distance, we mosaically overexpressed shha in Tg(scube2:moxNG) embryos 

by injecting a single blastomere at the 16-cell stage with either mem-mTagBFP2 alone or with shha 

mRNA (Fig. 4 D-F). We expected local inhibition of Scube2 reporter activity near secreting cells within 

a few cell diameters. Surprisingly, Tg(scube2:moxNG) expression was nearly completely eliminated in 

these embryos indicating potent cell-non-autonomous repression of Scube2 by Shh. When quantified, 

these embryos demonstrate a significant reduction of peak Tg(scube2:moxNG) intensities (Fig. 4F). To 

test whether Shh’s inhibition of Scube2 is required for its endogenous low ventral expression, we 

treated embryos with sonidegib, a potent Smoothened antagonist starting at the dome stage. 

Resulting embryos showed expanded scube2 expression towards the floor plate and notochord (Fig. 

4G-I). Shifts in ventral boundaries were statistically significant, as quantified by the D-V position at  
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which half maximum intensity of the control population was reached (Fig. 4I). A ventral expansion 

Tg(scube2:moxNG) was also observed following cyclopamine treatment, which is consistent with the 

previous findings of a genome-wide screen for genes regulated by Shh signaling (Fig. S3) (Xu et al., 

2006). These results indicate that endogenous Shh signaling is responsible for a lack of ventral scube2 

expression.  

To further probe the transcriptional regulation of Scube2’s expression we performed a small 

scale CRISPR mutagenesis screen and found that Pax6a/b are necessary for driving Scube2 

expression. Co-injection of pax6a and pax6b sgRNAs with Cas9 caused significant downregulation of 

Tg(scube2:moxNG) relative to control embryos injected with a sgRNA targeting tyrosinase, an 

unrelated pigment gene (Fig. S4). These data support a model in which the expression domain of 

scube2 is based on activation by Pax6a/b and repression by Shh. 
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Figure 3- Scube2 is expressed distantly from Shh 

secreting cells.  

(A) Schematic of the scube2:moxNG transgenic 

expression reporter construct used to generate the 

Tg(scube2:moxNG) line. (B) Wide-field fluorescence 

image of Tg(scube2:moxNG) embryo at 20 hpf. (C) 

Transverse view of mem-mTagBFP2 mRNA-injected 

Tg(scube2:moxNG; shha:mem-mCherry) embryo at 

20 hpf. Scale bar represents 20 μm. (D-G) 

Transverse view from a time-lapse imaging dataset 

of Tg(scube2:moxNG; shha:memCherry) embryo 

which was injected at the single cell stage with 

mem-mTagBFP2 mRNA. Time in hours post 

fertilization is displayed in the bottom right corner. 

Scale bar represents 50 μm. (D) At early neurulation 

stages there is weak mesodermal expression of 

scube2:moxNG in the notochord. In addition, 

expression of scube2:moxNG is visible in neural 

progenitors as the neural plate converges. (E) By 

12.5 hpf a pronounced gap in expression of neural 

progenitors between shha:mem-mCherry and 

scube2:moxNG cells is visible. (F) Expansion of the 

scube2+ domain dorsally is visible as cells continue 

to converge. (G) scube2 expression is constricted to the dorsal-intermediate neural tube.   
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Figure- 4 Shh signaling represses Scube2 expression. 

 (A-B, D-E, G-H) Scale bar represents 20 μm (A-B) Transverse view of 18 hpf Tg(scube2:moxNG) 

embryos injected with (A) mem-mTagBFP2 mRNA alone or (B) co-injected with dnpka mRNA. (C) 

Quantification of mean reporter intensity of embryos as treated in A-B. Maximum scube2:moxNG 

intensity values were significantly reduced in dnpka mRNA-injected embryos (p= 0.0014). (D-E) 

Transverse view 20 hpf Tg(scube2:moxNG) embryos injected at the single cell stage with mem-

mCherry mRNA and then injected in one blastomere at the 8-16 cell stage with either (D) mem-

mTagBFP2 mRNA alone or (E) co-injected with shha mRNA. (F) Quantification of mean reporter 
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intensity of embryos as treated in D-E. Maximum scube2:moxNG reporter intensity is significantly 

reduced in shha injected embryos (p= 9.14e-06). (G-H) Transverse view 22 hpf Tg(scube2:moxNG; 

mem:mCherry) embryos treated with a DMSO control (G) or treated with 50 μm sonidegib (H). (I) 

Quantification of mean reporter intensity of embryos as treated in G-H. The black bracket marks the 

position of half control maximum intensity used for statistical testing. These values were significantly 

shifted ventrally in drug treated embryos relative to control (unpaired t-test p=0.0014.). 
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Scube2 diffuses over long distances during patterning 

While Scube2 is known to act cell non-autonomously from transplantation experiments and 

Scube2-conditioned media has a potent Shh release stimulating effect in vitro, the localization of 

Scube2 protein during development is unknown (Woods and Talbot, 2005; Creanga et al., 2012). In 

vitro, Scube2 is thought to associate with Heparan Sulfate Proteoglycans, and Scube2 had been 

hypothesized to diffuse from secreting cells in the dorsal neural tube, the need for which was later 

disputed (Jakobs et al., 2016; Kawakami et al., 2005; Hollway et al., 2006). To examine Scube2’s 

localization, we developed Scube2 fluorescent fusion proteins by tagging the C-terminus as previously 

validated in cell culture with other tags (Fig. 5A) (Creanga et al., 2012). The resulting Scube2-mCitrine 

fusion proteins were functional and rescued Scube2 CRISPR mutants at comparable rates to wildtype 

Scube2 (Fig. S5). Mosaic injection of scube2-mCitrine mRNA into 1 cell at the 32-64 cell stage 

revealed that Scube2-mCitrine diffuses distantly from producing cells (Fig. 5B) and does not remain 

associated with cell membranes, as demonstrated by its presence in the extracellular space between 

cells marked with mem-mCherry (Fig. 5C).  

To assay Scube2’s rate of diffusion we performed Fluorescence Recovery After 

Photobleaching (FRAP) at the dome stage, during which cell movement is minimal. FRAP was 

performed in a 100µm x 100µm region and recovery was observed at 10 second intervals over 5 

minutes (Fig. 5 D-E, Movie S3-4). Scube2-mCitrine fluorescence recovers almost as quickly as a 

secreted version of mCitrine generated using the Scube2 signal sequence (Fig. 5 F-G, see methods). 

These data indicate that Scube2 diffuses rapidly in the extracellular space, at a comparable rate to 

secreted mCitrine alone. 

To observe distributions of Scube2 protein during development, we generated a transgenic line 

expressing the full-length Scube2 protein fused to moxNeonGreen under control of Scube2 regulatory 

sequences (Fig. 5H-K). We validated the functionality of this Tg(scube2:scube2-moxNG) line using a 

morpholino which bound only endogenous scube2 RNA at the splice junction of exon6, and not 
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Tg(scube2:scube2-moxNG) derived RNA which lacks this splice junction (Figure S6). 

Tg(scube2:scube2-moxNG) embryos were markedly resistant to treatment with this morpholino, 

validating the in vivo functionality of this transgene (Figure S6). Tg(scube2:scube2-moxNG) embryos 

showed broad distributions of Scube2 protein during patterning (Fig. 5H-K). Throughout early 

patterning, Scube2-moxNeonGreen is visible near ventral cells marked by Tg(shha:mem-mCherry), 

although scube2 mRNA is expressed largely in the dorsal neuroectoderm at this timepoint (Fig. 5H-I, 

Movie S5-6). By 24 hpf Tg(scube2:scube2-moxNG) fluorescence is found distributed throughout the 

embryo, although expression from Tg(scube2:moxNG) is localized to the dorsal-intermediate 

neuroectoderm. These data further suggest that Scube2’s long range of effect can be explained by 

diffusion from secreting cells in the intermediate and dorsal neural tube to the source of Shh in the 

floor plate and notochord.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2023. ; https://doi.org/10.1101/469239doi: bioRxiv preprint 

https://doi.org/10.1101/469239
http://creativecommons.org/licenses/by/4.0/


22 
 

 

Figure 5- Scube2 diffuses from secreting cells and is broadly distributed during patterning. 

(A) Schematic of Scube2-mCitrine fluorescent fusion protein design. (B-C) Scale bar represents 100 

μm. (B) Scube2-mCitrine fluorescence at the sphere stage from embryos injected in one blastomere at 

the 64-cell stage with scube2-mCitrine mRNA. Cells from the injected clone are marked by 

intracellular (secretory system) fluorescence. (C) Scube2-mCitrine fluorescence from embryos injected 
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at the single cell stage with scube2-mCitrine and membrane-mCherry mRNA. (D-E) Fluorescence 

recovery after photobleaching at the dome stage of Scube2-mCitrine (D) and Secreted-mCitrine (E). (F) 

FRAP recovery traces normalized to maximum intensity pre-bleach and minimum intensity following 

bleaching. Red lines represent Secreted-mCitrine while blue lines represent Scube2-mCitrine. (G) 

Comparison of calculated mobile fraction values from dome stage FRAP data (unpaired t-test 

p=0.0698). (H-K) Scale bar represents 20 μm. (H) Transverse view of an 11.5 hpf Tg(scube2:scube2-

moxNG;shha:mem-mCherry) embryo. (I) Transverse view of a 14 hpf Tg(scube2:scube2-moxNG; 

shha:mem-mCherry) embryo. (G) Transverse view of a 24 hpf Tg(scube2:scube2-moxNG) embryo. (K) 

Horizontal view of the embryo from J. 
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Feedback regulation of Scube2 levels is necessary for pattern scaling 

To examine the regulation of Scube2 in size-reduced embryos, we performed size reduction on 

Tg(scube2:moxNG; shha:mem-mCherry) embryos and imaged them at 20 hpf. Unlike other observed 

patterning genes, scube2 expression levels did not scale in size-reduced embryos but were instead 

severely reduced (Fig. 6A-C). This finding is consistent with an expander-repressor-like model of 

Scube2-Shh. In this regime, inhibition of scube2 expression in size-reduced embryos would contract 

Shh signaling, enabling adjustment of Shh signaling for a decreased tissue size (Fig. 6D-E).  

Next, we examined whether feedback control of scube2 expression levels by Shh signaling is 

required for pattern scaling. To bypass the feedback regulation, we overexpressed scube2 at 

saturation level via mRNA injection into ptch2:kaede reporter embryos. If Scube2 is responsible for 

adjusting Shh signaling during scaling, we would expect scube2-overexpressing size-reduced 

embryos to have the same absolute Shh response profiles as controls, which would fail to scale 

following size normalization (Fig. 6F-G). If scaling of ventral patterning is not dependent on Scube2, 

we would expect maintenance of pattern scaling with size-proportionate increases in ptch2:kaede 

distributions in both populations. When normalized for differences in D-V heights, size-reduced 

scube2-overexpressing embryos showed a disproportionate expansion of the ptch2:kaede gradient 

compared to normal-sized scube2-overexpressing embryos (Fig. 6H-K). Dorsal expansion of Shh 

signaling is quantified using the position of 50% of average maximum control intensity, which is 

statistically significantly shifted dorsally in size-reduced embryos (Fig. 6J). Importantly, when 

Tg(ptch2:kaede) response profiles are plotted on an absolute rather than relative scale, they nearly 

exactly overlap (Fig. 6K). This overlap without size normalization suggests that scube2 overexpression 

encodes a response profile which is independent of embryo size and is not secondarily tuned by 

another scaling related factor. This strongly suggests that control of scube2 expression levels is 

required for scaling the Shh signaling gradient.   
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Figure 6- Scube2 expression is size-dependent and required for pattern scaling.  

(A-B) Transverse view of mem-mTagBFP2 mRNA-injected Tg(scube2:moxNG; shha:mem-mCherry) 

control (A) or size-reduced (height reduction of 17.1% +/- 7.7%) (B) embryos at 20 hpf. (C) 

Quantification of mean Tg(scube2:moxNG) intensity versus ventral-to-dorsal position of embryos from  

A-B. Maximum intensity values are statistically significantly reduced in treated embryos (p=3.03e-4). 

(D-E) Schematic of expander-repressor-like feedback control of Shh signaling by Scube2 and its 

ability to enable pattern scaling. Repression of Scube2 by Shh encodes an equilibrium level of Shh 

signaling across the tissue by linking morphogen spread to tissue size. (F-G) Schematic representation 
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of the experiment as performed in H-K, where Scube2 levels are at saturation due to overexpression, 

and size-reduced embryos (G) are disproportionately affected.  (H-I) Transverse view of 20 hpf 

Tg(ptch2:kaede) control (H) and size-reduced (I) embryos injected with mem-mCherry and scube2 

mRNA. (J) Quantification of mean Tg(ptch2:kaede) intensity versus normalized ventral-to-dorsal 

position of embryos treated as in H-I. Significant shifts are observed in the dorsal position of 50% of 

the maximum intensity value (unpaired t-test p=0.0092). (K) Intensity profiles from J rescaled to reflect 

the absolute scale of the measurements (DV height reduction of 15.2% +/- 2.1%). When measured in 

these coordinates, no difference is observed in the position of half of maximum intensity (p= 0.9760). 
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Increase in Shh release and diffusion by Scube2 produces scaling in silico 

To examine how Scube2 contributes to scaling, we constructed mathematical models to 

capture the feedback between Scube2 and Shh, and asked how the biophysical nature of Scube2-

Shh protein interaction influences scaling. Like the original expansion-repression model (Ben-Zvi and 

Barkai, 2010), our experimental results show that the morphogen Shh represses production of Scube2 

while Scube2 expands the range of Shh. However, how Scube2 expands the range of Shh remains 

unclear. In the original expansion-repression model, the expander increases the spread of the 

morphogen by increasing the diffusion coefficient or decreasing the degradation rate of the 

morphogen (Ben-Zvi and Barkai, 2010), but does not affect its rate of release. In the case of Scube2, 

biochemical studies have shown that Scube2 can promote Shh release and Shh is secreted as a 

complex with Scube2 (Tukachinsky et al., 2012; Wierbowski et al., 2020). However, whether Scube2 

increases the diffusion coefficient of Shh or decreases the degradation rate of Shh remains to be 

experimentally tested. We sought to computationally examine how the Shh and Scube2 feedback 

circuit would affect scaling when Scube2 acts on 1) release of Shh and 2) release and diffusion of Shh.  

We assume that Shh (HH) is released into the patterning field at one boundary at rate κH, 

diffuses with diffusion constant DH, and is degraded uniformly throughout the field (Fig. 7A). Scube2 (S) 

is initially produced uniformly throughout the field, but Shh signal activation represses Scube2 

production. Scube2 can bind to Shh to form a complex (C), which has possibly modified release rate 

and diffusion constant, κHS and DHS, respectively. In this generic model, Scube2 can modulate the Shh 

gradient by increasing its release rate into the patterning field (κHS > κH) and/or promoting its diffusion 

within the field (DHS  > DH). Under assumptions that (1) Scube2 and Shh binding is fast, (2) Scube2 has 

a fast diffusion constant, and (3) Scube2 concentration is large, Shh concentration becomes an 

ordinary diffusion first-order degradation equation with a modified diffusion constant and flux (SI Text). 

To evaluate the scaling capacity of the model, we measure scaling as the average fractional shift in 
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morphogen concentrations at 75%, 50%, and 25% field length, when the field size is reduced from 

300 µm to 200 µm (Ben-Zvi and Barkai, 2010). We refer to this as the “domain” scaling metric (h), 

where a smaller h corresponds to better scaling (SI Text).  

We investigate how the effects of Scube on Shh release and on diffusion influence scaling, 

first, in a uniform degradation model in which Shh experiences first-order degradation. We ask 

whether Scube modulation of Shh release alone is sufficient to produce the observed scaling 

behavior. We found that only models where Scube2 plays both roles (κHS > κH, DHS > DH) could produce 

scaling behavior as modulation of the amplitude and length scale are required (Fig. 7C-D). In 

particular, “release-only” models (κHS > κH, DHS = DH) did not scale (Fig. 7C, Fig. 7E). Likewise, 

“expander-only” models (κHS = κH, DHS > DH) also did not perform as well as models that do both. 

These results held over a wide range of parameters characterizing Scube2 (Fig. 7F, Fig. S7). 

The Hedgehog (Hh) pathway has a unique feedback architecture in which Hh upregulates the 

expression of its own receptor Patched (Ptch; Chen and Struhl 1996; Goodrich et al., 1996). This 

evolutionarily conserved feedback architecture provides the system robustness against perturbations 

in Hh production rate, partly through enhancing ligand degradation and partly through direct 

suppression of intracellular signaling activity (Goodrich et al., 1997; Denef et al., 2000; Li et al., 2018). 

Self-enhanced ligand degradation has been implicated in scaling (Eldar et al., 2003; Lander et al., 

2009). To ask if self-enhanced ligand degradation could change the requirement for increasing Shh 

diffusion in the scaling model, we allowed Hh to promote its own degradation. In such models, we 

found again that a simple increase in Hh release alone was not sufficient to produce scaling (Fig. 7G, 

Fig. S8). Instead, increasing the diffusion constant could lead to scaling throughout much of the field, 

but (1) not near the source and (2) only when morphogen release is high enough (ε << L) (SI Text). To 

capture differences along the entire length of the gradient we also used a “profile” metric which is the 

mean squared difference between the two gradients at all points (SI Text). Using this more stringent 

profile scaling metric, Scube2 acting as a releaser in addition to expander allowed modulation of the 
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amplitude which led to better scaling near the source. Further analysis revealed that models where 

Scube2 increases both diffusion and release led to scaling over a larger set of Hh production rates 

when compared to models where Scube2 increases only diffusion (Fig. 7H). The requirement for 

Scube2 to accelerate Shh diffusion in order to scale also remains when considering the self-enhanced 

degradation feedback mediated by the Hh receptor PTCH (Fig. S8).  

Morphogen systems are frequently robust to gene dosage. For example, mouse mutants for 

one allele for Shh are phenotypically wildtype (Chiang et al., 1996). To explore a potential role for the 

expander-repressor-releasor model in gene dosage robustness, we screened parameter space for 

models that are robust to halving the Shh production rate. We found that models in which Scube2 

enhances the release of Shh promote dosage robustness (Fig. S9, SI Text), which can be in addition to 

robustness already provided by self-enhanced degradation (Eldar et al., 2003). 

In the classic expansion-repression model, the “expander” can also extend the morphogen 

gradient by repressing the degradation of the morphogen (Ben-Zvi and Barkai, 2010). If Scube2 

expands the Hedgehog gradient by decreasing the HH degradation rate, in order to leave the 

amplitude invariant, Scube2 must also decrease the release rate from the HH secreting cells, which is 

inconsistent with observed biochemical data (Fig. S10, SI Text).  Alternatively, when the size of an 

animal is decreased, it is possible that the number of ligand-producing cells is correspondingly 

decreased (“flux scaling”), which could potentially lead to a scaled Hedgehog release rate. However, 

because the lengthscale of the gradient depends on the diffusion constant and not the rate of 

Hedgehog flux, the gradient cannot be scaled by simply changing Hedgehog release only (Fig. S11). 

Taken together, our modeling results suggest that Shh gradient scaling is best achieved by Scube2 

both increasing the release of Shh from sender cells, and the diffusion of Shh throughout the field.  

 

 

               

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2023. ; https://doi.org/10.1101/469239doi: bioRxiv preprint 

https://doi.org/10.1101/469239
http://creativecommons.org/licenses/by/4.0/


30 
 

       

  

 

Figure 7- Investigation of effects on scaling by Scube2’s role in release in Hh-Scube feedback  

(A) Cartoon of the simplified model representing key interactions. Hedgehog (Hh) in purple and 

Scube in green. From Hh sending cells, Hh and Hh-Scube complex are released. Thicker arrows 

indicate that Scube increases the release rate or diffusion constant of Hh. Flux of total Hh (Φ) is 

dependent on the relative release rates of Hh and of the Hh-Scube complex (κH, κHS), Scube 

concentration at the source, and the threshold at which Scube affects Hh. In the extracellular space, 
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Hh and Hh-Scube complex diffuse with diffusion rates (DH and DHS, respectively). Hh represses Scube 

expression, as indicated by the inhibition arrow leading to the Scube-producing cell. Hh and Hh-

Scube complex degrade throughout the field at respective rates (γH and γHS). Detailed description and 

mathematical derivations can be found in supplemental text (SI Text). (B) Example gradient profiles for 

the scaling metric. Scaling metric (η) is an average of fractional shift in domain boundaries at L3/4, L/2, 

and L/4. Morphogen profiles and their scaling metrics are shown for 3 example sets of parameters. 

Orange line indicates ligand concentration (y-axis) by the relative position in the simulated patterning 

field (x-axis) where patterning field length = 300 μm. Blue line indicates ligand concentration where 

patterning field length is reduced to 200 μm. (C) Heatmap of scaling metric as a function of relative 

changes in Hh release rate and diffusion constant, with Hh degradation being uniformly first-order. (D) 

An example of a set of parameters that produce scaling when Scube affects both release and diffusion 

of Hh in the uniform degradation model. Orange line indicates ligand concentration (y-axis) by the 

relative position in the simulated patterning field (x-axis) where patterning field length = 300 μm. Blue 

line indicates ligand concentration where the patterning field length is reduced to 200 μm. Inset shows 

the ligand concentration by absolute position from the same simulation. (E) Gradient profile for a 

model with the same parameters as (D), except Scube does not affect diffusion of Hh. As in (D), the 

orange line indicates ligand concentration where patterning field length = 300 μm and the blue line for 

field length 200 μm. Inset shows the ligand concentration by absolute position from the same 

simulation. (F) Plot of parameter sets that produce scaling (x-axis) from a relative change in the 

diffusion constant (left) or release rate (right) of 1, 3, 10, and 30 (y-axis). Grey line indicates an arbitrary 

threshold to the left of which are sets of parameters that produce better scaling. (G) Heatmap of 

scaling metric as a function of relative changes in Hh release rate and diffusion constant, with Hh 

degradation being self-enhanced. (H) Plot of scaling metric (y-axis) by Hh production rate (x-axis) 

when Scube affects diffusion only (blue line) and when Scube affects diffusion and release (orange 

line) in self-enhanced degradation model. 
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Discussion 

Our work uncovers that the morphogen Sonic Hedgehog can self-regulate to enable scale-

invariant patterning through linking morphogen signaling to inhibition of Scube2. We discovered that 

patterning of the neural tube adjusts to tissue availability following surgical size reduction in zebrafish 

embryos. Using overexpression experiments we demonstrate that Scube2’s activity during patterning 

is not just permissive—overexpression of scube2 instead enhances Shh signaling (Woods and Talbot, 

2005). Utilizing a transgenic reporter line which we developed, we characterized the expression of 

Scube2 during neural patterning and found that Shh signaling is responsible for its repression in the 

ventral neural tube. Using Scube2 fluorescent fusion proteins we found that Scube2 is broadly 

distributed from secreting cells, explaining its previously reported cell non-autonomous activity 

(Creanga et al., 2012; Woods and Talbot, 2005). Unlike other patterning genes, scube2 responds to 

reduction in neural tube height by disproportionately decreasing its expression, and overexpression of 

Scube2 inhibits scaling of the Shh signaling gradient by circumventing its feedback control. The 

expression of scube2 thus can be seen as a “size-dependent factor”, which can enable scaling by 

tuning expression levels to embryo size through feedback inhibition (Inomata et al., 2013).  

The relationship between Scube2 and Shh has important similarities to proposed “expander-

repressor” models of morphogen scaling (Barkai and Ben-Zvi, 2009; Ben-Zvi and Barkai, 2010; 

Inomata et al., 2013). As with expanders in these models, scube2 enhances morphogen range, is 

repressed by morphogen signaling, and acts cell non-autonomously at a distance from its source. 

However, the reported role of Scube2 in morphogen release is distinct from the proposed mechanism 

of expanders. Expanders extend the range of morphogens such as by promoting their diffusion or 

inhibiting their degradation (Ben-Zvi and Barkai, 2010).  

We examined the effect of release on scaling through mathematical modeling. Our results 

show that while increasing release alone does not allow for scaling, Scube2’s role in release allows for 
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modulation of gradient amplitude in uniform and self-enhanced degradation models, where production 

of Hh is not otherwise coupled to the size of the field, and we find that models in which Scube2 acts 

as both an expander and releaser perform better. In vivo, we showed that decreasing scube2 levels 

via morpholino knockdown led to a significant decrease in the amplitude of Tg(ptch2:kaede) gradient 

(Fig. 2C), which aligns with Scube2’s effect on gradient amplitude in the modeling.  Furthermore, in 

our model, Scube2’s effect on release in addition to diffusion broadens the range of Shh production 

rate over which scaling is achieved. However, since we made certain simplifying assumptions and 

evaluated scaling once equilibrium was reached, there may be other contributions to gradient scaling 

from the release role of Scube2. In our model, we did not include other pathway features, such as 

Patched negative regulation of Shh (Chen and Struhl, 1996; Goodrich et al., 1996). In models 

examining the negative feedback architecture, Patched adds robustness to Shh production rate and 

allows steady state to be reached more quickly (Li et al., 2018). Additionally, our model does not 

explore the effects on dynamics of gradient formation. Dessaud et al. showed that signal duration of 

Shh, in addition to the concentration, impacts downstream transcriptional activity and differentiation 

(Dessaud et al., 2007). How Scube2’s interaction with Shh affects the temporal features of Shh 

gradient formation would be an interesting avenue for further study.   

While the focus of this work is on how morphogen gradients can be robust to changes in the 

size of the patterning field, it is also important for morphogen systems to be robust to variation in gene 

expression such as those caused by noise or gene dosage. Notably, despite being proposed to 

encode information in their quantitative levels, heterozygous mutants in key morphogens are generally 

phenotypically normal. Mice heterozygous for Shh are reported to develop normally (Chiang et al., 

1996). The situation in zebrafish is more difficult to analyze as there are two paralogs shha and shhb. 

We speculate that feedback systems such as the releaser-expander-repressor model presented here 

allow for robustness to expression levels. Our model supports that feedback on release can give 

additional robustness to gene dosage on top of that given by self-enhanced degradation (Eldar et al., 
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2003; Li et al. 2018). Overall, our model shows feedback on morphogen release directly affects 

gradient amplitude while feedback on morphogen diffusion and degradation primarily affects 

morphogen length scale. Although, for Scube2, its role in regulating the release and diffusion rate may 

be biochemically coupled, other morphogen systems may use different regulators to achieve 

robustness to tissue size.  

We began this work in part due to interest in the discrepancy between the area of Scube2 

activity in the ventral neural tube and its expression in the dorsal neural tube. Our work with Scube2 

fluorescent protein fusions revealed that Scube2 is highly diffusive and is distributed broadly from 

producing cells (Figure 5). Diffusion of Scube2 from producing cells could easily account for the 

distance between its expression domain and area of effect. Scube2’s broad distribution and 

considerable extracellular diffusivity bolsters the hypothesis that Scube2 may serve as a chaperone for 

Shh during its transport as hypothesized previously (Tukachinsky et al., 2012). Cell culture 

experiments have indicated that Scube2 cooperates with Dispatched in a cholesterol-dependent 

“hand off” by binding different domains on Shh’s cholesterol moiety (Tukachinsky et al., 2012). 

Furthermore, in cell culture, Scube2 complexes with Shh during release via Shh’s lipid modifications, 

and this lipid-mediated interaction is later dissociated to form Shh-Ptch by coreceptors in the 

responding cells (Wierbowski et al., 2020). Continued binding of Scube2 to the hydrophobic sterol 

domain may facilitate the diffusion of Shh through the extracellular millieu. This model is consistent 

with the dose dependency we observe in our Scube2 overexpression experiments (Figure 2G-L) and 

may help solve the puzzle of the long-range transport of dually lipid modified hedgehog in vertebrates. 

Further investigation of the strength and duration of Scube2 and Shh’s binding in vivo and Scube2’s 

effects on diffusion rates of Shh may shed light on this relationship. Unfortunately, direct imaging of 

this phenomenon is hampered by the lack of fully functional Shh fluorescent protein fusions 

(Chamberlain et al., 2008). 
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While some evidence suggests that Scube2 plays a role in lipid-shedding, these observations 

conflict with previous HPLC analysis and the findings of independent groups which demonstrated that 

Shh species released by Scube2 are dually lipid modified (Creanga et al., 2012; Tukachinsky et al., 

2012). Additionally, Shh and Scube2 were shown to comigrate in native gel electrophoresis 

(Wierbowski et al., 2020). If correct, a model of Scube2 in which it acts only transiently at the cell 

surface of producing cells—either by enabling the formation of multimeric Shh complexes or lipid 

shedding—would have interesting implications for its role as an expander. Expanders are often 

formalized as having a dose dependent reversible effect on morphogen spread, while a transient role 

of Scube2 in Shh multimeric complex formation or shedding would be localized and irreversible. In our 

mathematical modeling, we found that increasing release alone did not produce scaling (Fig. 7C, Fig. 

7G), suggesting that there would need to be another mechanism by which lengthscale of Shh could be 

modulated if Scube2 were to affect release only.  

Scube2 is one of several recently identified elements of the Shh signaling pathway that exerts 

cell non-autonomous effects. Recent work has shown that Hhip—initially characterized as a 

membrane-tethered Hedgehog antagonist—acts over a long range that cannot be explained by ligand 

sequestration (Kwong et al., 2014). Additionally, the Hedgehog receptor, Patched, may also have cell 

non-autonomous inhibitory effects on Smoothened through regulating inhibitory sterols or sterol 

availability (Bidet et al., 2011; Roberts et al., 2016). Together with known feedback relationships and 

the diffusivity of Scube2 that we demonstrated here, these mechanisms interlink Shh signaling 

between neighboring cells and may enable tissue level properties, such as the scaling of pattern 

formation we observed.  

 

 

 

Methods 
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Generation of Transgenic Lines 

The construct used to make Tg(scube2:moxNG) was generated by isothermal assembly of 

PCR-amplified scube2 regulatory elements obtained from the CHORI-211 BAC library. Regulatory 

elements were in part chosen based on annotations of H3K4me1 and H3K4me3 binding (Aday et al., 

2011). Selected regulatory sequences spanned 1677bp of upstream intergenic sequence and 5962bp 

of the area spanning exons 1-5 scube2. Regulatory sequences were cloned into a pMT backbone by 

placing a zebrafish codon-optimized moxNeonGreen fluorescent protein and sv40 poly-A tail just 

downstream of the endogenous scube2 Kozak sequence (Costantini et al., 2015). The construct used 

to make Tg(scube2:scube2-moxNG) was generated using the same regulatory sequences as 

Tg(scube2:moxNG), with the addition of cDNA corresponding to exons 6-23 of the Scube2 coding 

sequence downstream of exon 5 and moxNeonGreen attached at the c-terminus with a 10 amino acid 

long GA rich linker. The construct used to make Tg(shha:mem-mCherry) was derived from the 

previously reported Tg(shh:GFP), by replacement of GFP with mem-mCherry (Megason, 2009; 

Shkumatava et al., 2004). 

Transgenic lines were generated by injecting plasmid DNA for each construct along with Tol2 

mRNA into wild type (AB) embryos at the single cell stage, as described previously (Kawakami, 2004). 

moxNeonGreen positive embryos were then selected for raising. Upon reaching sexual maturity, F0s 

were outcrossed and screened for founders. Founders were isolated and raised as single alleles. 

Monoallelic versions of each line are shown throughout the paper.  

Zebrafish Strains 

For wild type lines, AB fish were used. All fish were kept at 28°C on a 14-hour-light/10-hour-

dark cycle. Embryos were collected from natural crosses. All fish-related procedures were carried out 

with the approval of Institutional Animal Care and Use Committee (IACUC) at Harvard University. 

TgBAC(ptch2:kaede) (Huang et al., 2012; renamed from ptch1 due to a change in zebrafish gene 
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nomenclature), Tg(nkx2.2a:mGFP) (Jessen et al., 1998), Tg(olig2:GFP) (Shin et al., 2003), 

Tg(olig2:dsRed) (Kucenas et al., 2008), and TgBAC(dbx1b:GFP) (Kinkhabwala et al., 2011) have been 

described previously. 

Size Reduction Technique  

Size reduction was performed as described in our previous report (Ishimatsu et al., 2018, 2019). 

Embryo sizes were reduced by sequentially removing ~1/3 of the cells from the animal cap, then 

wounding the yolk. These surgeries are performed in 1/3 ringers solution, and embryos are 

immobilized in a thin layer of 2% methyl cellulose. Surgeries can be performed either with glass 

needles – as previously described – or using a loop of thin stainless-steel wire that is inserted through 

a glass capillary tube and mounted on a halved chopstick as done here. Healthy uninjected embryos 

show a maximum success rate of ~60% while embryos which have undergone injection or were 

spawned by older females have significantly lower success rates. In each size reduction experiment, 

embryos are screened for health and the largest size reductions; those with insufficient size reduction 

or with morphological defects are discarded. 

Construct Generation and Injections of mRNAs and Morpholinos 

Scube2-mCitrine was generated from cDNA obtained from the Talbot lab (Woods and Talbot, 2005). 

Fluorescent protein fusions were made by attaching mCitrine or moxNeonGreen with a 10 amino acid 

GA rich linker to the c-terminus of Scube2. Membrane-mTagBFP2 constructs were generated using 

membrane localization tags reported previously (Megason, 2009; Subach et al., 2011). These 

constructs were each sub-cloned into a pMTB backbone. mRNA for all experiments was synthesized 

from pCS or pMTB backbones via in vitro transcription using the mMESSAGE mMACHINE system 

(Ambion). Embryos were injected at the single cell stage using a Nanoject system set to 2.3nl of 

injection volume containing 70-90pg of RNA for each mRNA injected. Injected embryos were then 
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screened for brightness, and damaged embryos were removed. Scube2 morpholino injections were 

performed with 7ng of Scube2 MO2 and 3.5ng of p53 MO to control for phenotypic variability, while 

control morpholino injections were performed using 10.5ng of p53 MO only (Gerety and Wilkinson, 

2011; Woods and Talbot, 2005). 

Sonidegib and Cyclopamine Treatment 

Stock solution of 1 mM Sonidegib suspended in DMSO was used for treatment as generously given 

by the lab of Rosalind Segal. Embryos were placed in egg water containing a concentration of 50μM 

for the treatment condition, and equal parts DMSO were added to the sham control. Cyclopamine was 

dissolved in 100% ethanol to make 50mM stock solution and was diluted for treatment in egg water to 

100 μM. Treatment began at 7 hpf and continued until imaging at 22 hpf. 

Confocal Imaging 

For quantitative imaging, embryos were staged and mounted in our previously described dorsal mount 

(Kimmel et al., 1995; Megason, 2009; Xiong et al., 2013) in egg water with 0.01% tricaine (Western 

Chemical, Inc.). Embryos were manipulated for proper positioning with hair loops, before gently 

lowering the coverslip. Embryos were not depressed by the coverslip or impinged by the mold, 

enabling imaging of their normal proportions. Imaging was performed on embryos staged at 18-24 

hpf, unless otherwise noted in corresponding figure legends. Live imaging was performed using a 

Zeiss 710 confocal/2-photon microscope, Zen image acquisition software, and C-Apochromat 40X 1.2 

NA objective. For fluorescent protein excitation, 405 nm (BFP), 488 nm (GFP/moxNeonGreen), 514 nm 

(mCitrine), 561 nm (mCherry/dsRed) and 594 nm (mCardinal) lasers were used. The imaging field was 

centered in each embryo on the somite 6/7 boundary for consistent positioning between images. For 

quantitative analysis, imaging datasets are only compared between sibling embryos imaged on the 

same day with the same settings. This approach aims to avoid clutch effects or variability in detector 
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sensitivity and laser power that occur over time. Typical imaging settings with the 40x objective were 

as follows: image size of 1024x1024 pixels with .21μm per pixel and an interval of 1μm in the Z 

direction. For display purposes, images are rendered in cross sectional views (X-Z axis) which are then 

rotated for display, with image intensities for co-injection markers adjusted evenly within datasets for 

displayable brightness. FRAP, early stage embryo imaging and time-lapses were performed using a 

1.0 NA 20x objective. Brightfield and widefield fluorescence images of whole embryos were obtained 

using an Olympus MVX10 and a Leica MZ12.5 dissecting microscope. 

 

FRAP Experiments and Analysis 

Imaging for FRAP was performed using a 1.0 NA 20x objective at dome stage. Bleaching was 

performed for two minutes in a 100umx100um area in the center of the frame with a 488nm Argon 

laser. Imaging was performed with a low laser power to reduce bleaching, and images were obtained 

at 10 second intervals over five minutes to quantify recovery.  FRAP data in the bleached region was 

then normalized to the minimum and maximum intensity for each respective time trace. Normalized 

recovery intensities were then fitted to the following exponential to determine the mobile fraction (A) in 

matlab: 𝑦 = 𝐴(1 − 𝑒!"#) (Munjal et al., 2015). 

Image Analysis 

Images were analyzed using a custom MATLAB-based image analysis software that enables rapid 

segmentation of neural tube imaging data. Neural imaging data is segmented by the user sequentially 

from anterior to posterior. Over a set step size (usually 50 pixels), the user selects points at the base of 

the floor plate cell and top of the roof plate cell that divide the neural tube into its two halves (Fig. 

S1A). The user then selects the widest point of the neural tube in each image. Imaging data from 

mature neurons, found laterally, and within the lumen of the neural tube, found medially, are 

disregarded using a set percentage of neural width (Fig. S1B). Once these positions are recorded, 
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imaging data is then recovered as average pixel intensity in 25 bins from ventral to dorsal across 3-4 

somites of A-P length. This binning and averaging strategy enables comparison of data between 

embryos that accounts for variations in neural tube D-V height. During the segmentation process, the 

researcher is blinded to the title of the dataset which contains information about its treatment 

condition. For distribution plots, binned intensities are reported for each embryo as the average 

intensities for each bin along the entire AP axis of the imaging volume. Each embryo’s average 

intensity profile is then treated as an independent sample and averaged for displayed distribution 

profiles and standard deviations. To avoid artifacts caused by rounding in the calculations of half 

maximum control intensity positional values are extracted from the spline-interpolated intensity 

profiles for each individual dataset. 

Progenitor domain segmentation is performed on average intensity profiles from each embryo 

in a dataset in the following manner: first, all intensity profiles in the data set undergo background 

subtraction and cross channel fluorescence caused by the extreme brightness of the dbx1b:GFP line 

is removed from the olig2:dsred channel. Intensity profiles are then fed to a peak finding algorithm to 

identify local maxima. Both dbx1b+ and nkx2.2a+ progenitor domains are found in the green channel, 

so a maximum of two peaks is allowed. In the red channel, only one peak is specified to identify 

olig2:dsred signal. Average peak intensity values for each domain are then calculated for the entire 

control dataset, and 50% of this value in the case of the nkx2.2a and dbx1b domains is used as the 

threshold for calculating domain width. Given its greater spread along the D-V axis, a threshold of 

25% of peak height is used in calculating width of the olig2+ domain. Domain widths are then 

extracted from spline-interpolated intensity profiles to avoid errors introduced by rounding to the next 

bin. Segmented widths and positions of nkx2.2a, olig2, and dbx1b expression are then averaged for 

plotting purposes. Domain plots are generated by assigning all nkx2.2a+ progenitors to the p3 fate, 

olig2+ progenitors lacking nkx2.2a expression overlap to the pMN fate, and dbx1b+ progenitors to the 

p0-d6 fate. These domain sizes and positions are then used to reconstruct domains in-between or 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2023. ; https://doi.org/10.1101/469239doi: bioRxiv preprint 

https://doi.org/10.1101/469239
http://creativecommons.org/licenses/by/4.0/


41 
 

flanking them, which include the p2-p1 domain between pMN and p0-d6, the floorplate below p3, and 

the d5-roofplate above p0-d6. These heights and positions are then used to generate the stacked bar 

plots shown.  

Statistical Analysis  

Statistical comparisons of maximum average intensity and position of 50% maximum intensity 

are performed by an unpaired T-test. Although each dataset contains hundreds of measurements of 

each binned intensity value over the A-P axis of a z-stack, only the average of these measurements for 

each embryo is treated as a data-point for calculation of the standard deviation and statistical 

significance tests. This is done to avoid oversampling that would exaggerate statistical significance. In 

all measurements, statistical significance is markedly increased if analysis is performed by treating all 

underlying intensity measurements as samples. Thresholds for calculating the position of half 

maximum are determined from the average maximum of the corresponding control dataset for each 

experiment. Position is then determined from the fitted trend-line to avoid inaccuracies due to 

rounding. To calculate the significance of shifts in boundary positions, upper domain boundaries for 

each embryo were compared in an unpaired t-test between embryos from each population. When the 

progenitor domain segmentation algorithm finds there is no domain present, the boundary is set to 0. 

CRISPR Screen for Scube2 Regulators 

Cas9 protein was generated and purified in lab as described (Gagnon et al., 2014). Three guide RNA 

sequences targeting the first one-to-three exons of each gene were selected based on their quality 

using the web-tool CHOP-CHOP and synthesized using standard methods (Gagnon et al., 2014). 

Equivalent guide RNA and Cas9 protein concentrations were used in all samples for mosaic knockout. 

Phenotypes were assessed at 18-20 hpf by confocal microscopy.  
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Mathematical modeling 

See SI Text for full details.  
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