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Abstract

Rich data from large biobanks, coupled with increasingly accessible association statistics from
genome-wide association studies (GWAS), provide great opportunities to dissect the complex
relationships among human traits and diseases. We introduce BADGERS, a powerful method to
perform polygenic score-based biobank-wide association scans. Compared to traditional
approaches, BADGERS uses GWAS summary statistics as input and does not require multiple
traits to be measured in the same cohort. We applied BADGERS to two independent datasets
for late-onset Alzheimer’s disease (AD; N=61,212). Among 1,738 traits in the UK biobank, we
identified 48 significant associations for AD. Family history, high cholesterol, and numerous
traits related to intelligence and education showed strong and independent associations with AD.
Further, we identified 41 significant associations for a variety of AD endophenotypes. While
family history and high cholesterol were strongly associated with AD subgroups and pathologies,
only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These
results provide novel insights into the distinct biological processes underlying various risk

factors for AD.
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Introduction

Late-onset Alzheimer's disease (AD) is a prevalent, complex, and devastating
neurodegenerative disease without a current cure. Millions of people are currently living with AD
worldwide, and the number is expected to grow rapidly as the population continues to age [1, 2].
With the failure of numerous drug trials, it is of great interest to identify modifiable risk factors
that can be potential targets in the therapeutics development for AD [3-5]. Epidemiological
studies that directly test associations between measured risk factors and AD are difficult to
conduct and interpret because identified associations are, in many cases, affected by
confounding and reverse causality. Despite being ubiquitous challenges in risk factor studies for
complex diseases, these issues are particularly critical for AD due to its extended pre-clinical
stage — irreversible pathologic changes have already occurred in the decade or two prior to
clinical symptoms [6]. On the other hand, Mendelian randomization methods [7-9] have been
developed to identify causal risk factors for disease using data from genome-wide association
studies (GWAS). Despite the favorable theoretical properties in identifying causal relationships,
these methods have limited statistical power, thereby not suitable for hypothesis-free screening

of risk factors.

Motivated by transcriptome-wide association study — an analysis strategy that identifies genes
whose genetically regulated expression values are associated with disease [10-12], we seek a
systematic and statistically powerful approach to identify risk factors using summary association
statistics from large-scale GWAS. GWAS for late-onset AD has been successful, and dozens of
associated loci have been identified to date [13-18]. Although direct information on risk factors is
limited in these studies, dense genotype data on a large number of samples, in conjunction with
independent reference datasets for thousands of complex human traits such as the UK biobank
[19], make it possible to genetically impute potential risk factors and test their associations with
AD. This strategy allows researchers to study risk factors that are not directly measured in AD
studies. Furthermore, it reduces the reverse causality because the imputation models are
trained on independent, younger, and mostly dementia-free reference cohorts, thereby

improving the interpretability of findings.

Here, we introduce BADGERS (Biobank-wide Association Discovery using GEnetic Risk

Scores), a statistically-powerful and computationally-efficient method to identify associations
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between a disease of interest and a large number of genetically-imputed complex traits using
GWAS summary statistics. We applied BADGERS to identify associated risk factors for AD from
1,738 heritable traits in the UK biobank and replicated our findings in independent samples.
Furthermore, we performed multivariate conditional analysis, Mendelian randomization, and
follow-up association analysis with a variety of AD biomarkers, pathologies, and pre-clinical

cognitive phenotypes to provide mechanistic insights into our findings.


https://doi.org/10.1101/468306
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/468306; this version posted August 7, 2023. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 1. BADGERS Workflow. BADGERS takes (a) Alzheimer’s disease GWAS, (b) LD reference panel, and (c)
Human traits GWAS from the UK biobank as input. The generated result will be the (d) Association between

Alzheimer’s disease and human traits. In graph (d), each triangle represents one human trait, and different colors
represent different trait categories.

(a) Alzheimer's disease GWAS (b) LD reference panel (c) Human traits GWAS
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Results

Method overview

Here, we briefly introduce the BADGERS model. The workflow of BADGERS is shown in Figure
1. A brief flowchart including all the analyses we contained in the manuscript was shown in the
supplementary material (Supplementary Figure 1). Complete statistical details are discussed
in the Methods section. BADGERS is a two-stage method to test associations between traits.
First, polygenic risk scores (PRS) are trained to impute complex traits using genetic data. Next,
we test the association between a disease or trait of interest and various genetically-imputed
traits. Given a PRS model, the imputed trait can be denoted as
T=xw

where Xy is the genotype matrix for N individuals in a GWAS, and W), is the Mx1 matrix
denotes pre-calculated weight values on SNPs in the PRS model. Then, we test the association
between measured trait Y and imputed trait T via a univariate linear model

Y=a+Ty+4
The test statistic for y can be expressed as:

~

14
Z=—r
se(7)

where 7 is the vector of SNP-level association z-scores for trait Y, and I is a diagonal matrix

~WTrz

with the | diagonal element being the ratio between standard deviation of the j" SNP and that

of T.

This model can be further generalized to perform multivariate analysis. If K imputed traits are
included in the analysis, we use a similar notation as in univariate analysis:
T =Xxw*
Here, Wy« is a matrix and each column of W” is the pre-calculated weight values on SNPs for
each imputed trait. Then, the associations between Y and K imputed traits T; (1 < i < K) are
tested via a multivariate linear model
Y=a' +Ty" +6"
where y* = (y4, ..., yx)T is the vector of regression coefficients. The z-score fory; (1 <i <K)

can be denoted as:
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where U is the inverse variance-covariance matrix of 7*; I;is the K x 1 vector with the "

element being 1 and all other elements equal to 0; ® is a M x M diagonal matrix with the i

diagonal element being /var(X;); and Z is defined the same as the univariate case as the

vector of SNP-level association z-scores for trait Y.
Simulations

We used real genotype data from the Genetic Epidemiology Research on Adult Health and
Aging (GERA) to conduct simulation analyses (Methods). First, we evaluated the performance
of our method on data simulated under the null hypothesis. We tested the associations between
randomly simulated traits and 1,738 PRS from the UK biobank and did not observe inflation in
type-l error (Supplementary Table 1). Similar results were also observed when we simulated
traits that are heritable but not directly associated with any PRS. Since BADGERS only uses
summary association statistics and externally estimated linkage disequilibrium (LD) as input, we
also compared effect estimates in BADGERS with those of traditional regression analysis based
on individual-level data. Regression coefficient estimates and association p-values from these
two methods were highly consistent in both simulation settings (Figure 2A and Supplementary
Figures 2-4), showing minimal information loss in summary statistics compared to individual-
level data indicating highly consistent performance compared to methods based on individual-
level data. To evaluate the statistical power of BADGERS, we simulated traits by combining
effects from randomly selected PRS and a polygenic background (Methods). We set the effect
size of PRS to be 0.02, 0.015, 0.01, 0.008, and 0.005. BADGERS showed comparable
statistical power to the regression analysis based on individual-level genotype and phenotype
data (Figure 2B, Supplementary Table 2). Overall, our results suggest that using summary
association statistics and externally estimated LD as a proxy for individual-level genotype and
phenotype data does not inflate type-l error rate or decrease power. The performance of
BADGERS is comparable to regression analysis based on individual-level data. We also studied
if more sophisticated polygenic risk prediction methods could potentially lead to higher statistical
power in downstream association tests. We compared the performance of PRS based on
marginal effect sizes with that of LDpred, a more sophisticated PRS model that jointly estimates
SNP effects via a Bayesian framework [20]. Imputation models based on multivariate analysis

indeed improved the results. When using marginal PRS to impute traits, the correlation between
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7 and y, was 0.79. This correlation improved to 0.91 when using LDpred PRS (Supplementary

Figure 5). However, such improvement did not substantially affect the statistical power in
association testing. Using marginal PRS, our analysis achieved a statistical power of 86% to
identify associations at a type-l error rate of 0.05, and the power was 88% when using
multivariate effect estimates to calculate PRS. These results suggest that while more
sophisticated PRS methods can improve the results in BADGERS, simple PRS based on

marginal effects also shows reasonably good performance.

Figure 2. Simulation results. BADGERS and regression analysis based on individual-level data showed (A) highly
consistent effect size estimates for 1,738 PRS in simulation and (B) comparable statistical power (setting 3).
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Identify risk factors for late-onset AD among 1,738 heritable traits in the UK
biobank

We applied BADGERS to conduct a biobank-wide association scan (BWAS) for AD risk factors
from 1,738 heritable traits (p<0.05; Methods) in the UK biobank. We repeated the analysis on
two independent GWAS datasets for AD and further combined the statistical evidence via meta-
analysis (Supplementary Figure 6). We used stage-l association statistics from the
International Genomics of Alzheimer's Project (IGAP; N=54,162) as the discovery phase, then
replicated the findings using 7,050 independent samples from the Alzheimer’'s Disease Genetics
Consortium (ADGC). We identified 50 significant trait-AD associations in the discovery phase
after correcting for multiple testing, among which 14 had p<0.05 in the replication analysis.
Despite the considerably smaller sample size in the replication phase, top traits identified in the
discovery stage showed strong enrichment for p<0.05 in the replication analysis
(enrichment=2.5, p=2.2e-5; hypergeometric test). In the meta-analysis, a total of 48 traits
reached Bonferroni-corrected statistical significance and showed consistent effect directions in

the discovery and replication analyses (Figure 3 and Supplementary Table 3).

Unsurprisingly, many identified associations were related to dementia and cognition. Family
history of AD and dementia showed the most significant associations with AD (p=3.7e-77 and
5.2e-28 for illnesses of mother and father, respectively). Having any dementia diagnosis is also
strongly and positively associated (p=8.5e-11). In addition, we observed consistent and
negative associations between better performance in cognition test and AD risk. These traits
include fluid intelligence score (p=2.4e-14), time to complete round in cognition test (p=2.8e-9),
correct final attempt (p=9.1e-11), and many others. Consistently, education attainment showed
strong associations with AD. Age completed full time education (p=2.5e-7) was associated with
lower AD risk. Four out of seven traits based on a survey about education and qualifications
were significantly associated with AD (Supplementary Figure 7). Higher education such as
having a university degree (p=4.4e-12), A levels/AS levels or equivalent (p=6.9e-9), and
professional qualifications (p=7.1e-6) were associated with lower AD risk. In contrast, choosing
“none of the above” in this survey was associated with a higher risk (p=1.6e-11). Other notable
strong associations include high cholesterol (p=2.5e-15; positive), lifestyle traits such as cheese
intake (p=2.5e-10; negative), occupation traits such as job involving heavy physical work

(p=2.7e-10; positive), anthropometric traits including height (p=5.3e-7; negative), and traits
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related to pulmonary function, e.g. forced expiratory volume in 1 second (FEV1; p=1.9e-6;

negative). Detailed information on all associations is summarized in Supplementary Table 3.
Figure 3. PRS-based BWAS identifies risk factors for AD. Meta-analysis p-values for 1,738 heritable traits in the

UK biobank are shown in the figure. P-values are truncated at 1e-15 for visualization purposes. The horizontal line
marks the Bonferroni-corrected significance threshold (i.e. p=0.05/1738). Positive associations point upward, and

negative associations point downward.
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Multivariate conditional analysis identifies independently associated risk factors

Of note, associations identified in the marginal analysis are not guaranteed to be independent.
We observed clear correlational structures among the identified traits (Figure 4). For example,
PRS of various intelligence and cognition-related traits are strongly correlated, and consumption
of cholesterol-lowering medication is correlated with self-reported high cholesterol. To account
for the correlations among traits and identify risk factors that are independently associated with
AD, we performed multivariate conditional analysis using GWAS summary statistics (Methods).
First, we applied hierarchical clustering to the 48 traits we identified in marginal association
analysis and divided these traits into 15 representative clusters. The traits showing the most
significant marginal association in each cluster were included in the multivariate analysis
(Supplementary Figure 8). Similar to the marginal analysis, we analyzed IGAP and ADGC
data separately and combined the results using meta-analysis (Supplementary Table 4). All 15
representative traits remained nominally significant (p<0.05) and showed consistent effect

directions between marginal and conditional analyses (Supplementary Table 5). However,
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several traits showed substantially reduced effect estimates and inflated p-values in multivariate
analysis, including fluid intelligence score, mother still alive, unable to work because of sickness
or disability, duration of moderate activity, and intake of cholesterol-lowering spread.
Interestingly, major trait categories that showed the strongest marginal associations with AD (i.e.
family history, high cholesterol, and education/cognition) were independent from each other.
Paternal and maternal family history also showed independent associations with AD, consistent

with the low correlation between their genetic risk scores (correlation= 0.052).

Figure 4. PRS correlation matrix for the 48 traits identified in marginal association analysis. Trait categories
and association directions with AD are annotated. The dendrogram indicates the results of hierarchical clustering. We
used 1000 Genomes samples with European ancestry to calculate PRS and evaluate their correlations. Label “irnt”

means that trait values were standardized using rank-based inverse normal transformation in the GWAS analysis.
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Influence of the APOE region on identified associations

Further, we evaluated the impact of APOE on identified associations. We removed the extended
APOE region (chrl9: 45,147,340-45,594,595; hgl9) from summary statistics of the 48 traits
showing significant marginal associations with AD and repeated the analysis. We observed a
substantial drop in the significance level of many traits, especially family history of AD, dementia
diagnosis, and high cholesterol (Figure 5, Supplementary Figure 9, and Supplementary
Table 6). 38 out of 48 traits remained significant under stringent Bonferroni correction after
APOE removal. Interestingly, the associations between AD and almost all cognition/intelligence

traits were virtually unchanged, suggesting a limited role of APOE in these associations.

Figure 5. Influence of the APOE region on trait-AD associations. The horizontal and vertical axes denote
association p-values before and after removal of the APOE region, respectively. Original p-values (i.e. the x-axis)

were truncated at 1e-20 for visualization purposes.
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Causal inference via Mendelian randomization

Next, we investigated the evidence for causality among identified associations. We performed
Mendelian randomization (MR-IVW; Methods) in IGAP and ADGC datasets separately and
meta-analyzed the results on the complete set of 1,738 heritable traits from the UK biobank. A
total of 48 traits reached Bonferroni-corrected statistical significance and showed consistent
effect directions in the discovery and replication analyses using BADGERS. In contrast, MR-
IVW only identified 9 traits with Bonferroni-corrected statistical significance. Among these 9
traits, 7 were also identified by BADGERS (Supplementary Table 7). The signs of all significant
causal effects identified by MR-IVW were consistent with results from BADGERS. The most
significant effect was family history (p=1.1e-233 and 1.7e-69 for maternal and paternal history,
respectively). Dementia diagnosis (p=9.1e-7), high cholesterol (p=4.1e-6), A levels/AS levels
education (p=1.7e-4), and time spent watching television (p=2.4e-4) were also among the top
significant effects. Of note, the fluid intelligence score, one of the most significant associations
identified by BADGERS, did not reach statistical significance in MR (p=0.06), which may be
explained by its polygenic genetic architecture. It is also worth noting that if we scan all 1,738
traits using BADGERS and then apply MR-IVW on the 48 Bonferroni-corrected significant traits,
23 could reach nominal significance (p<0.05) in MR, and 7 could reach significance under

Bonferroni correction (p<0.05/48; Supplementary Table 8).

We also compared BADGERS with another more recent method GSMR [9]. Due to the smaller
sample size in the ADGC dataset, we only applied GSMR to the IGAP summary statistics. In
total, 18 traits reached statistical significance under Bonferroni correction (Supplementary
Table 9). However, these results showed only moderate consistency with MR-IVW and
BADGERS. Among the 18 significant traits, only 1 trait, maternal family history of Alzheimer’s
disease and dementia, overlapped with significant traits identified by MR-IVW. Six out of 18
traits overlapped with significant traits identified by BADGERS. Among the 18 significant traits, 8
are related to body fat mass and 2 are related to educational attainment. The most significant
effect was illnesses of mother (p=2.4e-294). College or University degree (p=4.84e-6),
education; none of the above(p=3.6e-4), A levels/AS levels education (p=3.8e-6), and time
spent watching television (p=4.0e-3) were also among top significant effects. Notably, GSMR
failed to identify paternal family history or high cholesterol as risk factors for Alzheimer’s disease.
If we only consider the 48 significant traits identified by BADGERS, 11 were nominally

significant (p<0.05). However, 23 traits did not have enough significant SNPs to perform the
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GSMR analysis (at least 10 SNPs are required). The signs of all significant causal effects

identified by GSMR were consistent between association effects in BADGERS.

Additionally, we included GSMR analysis results after removing APOE region from the 48
identified traits. Only maternal family history reached Bonferroni-corrected statistical significance,
further demonstrating the lack of statistical power in MR when performing biobank-wide scans
(Supplementary Table 10).

Associations with AD subgroups, biomarkers, and pathologies

To further investigate the mechanistic pathways for the identified risk factors, we applied
BADGERS to a variety of AD subgroups, biomarkers, and neuropathologic features
(Supplementary Table 11). Overall, 29 significant associations were identified under a false
discovery rate (FDR) cutoff of 0.05, and these endophenotypes showed distinct association
patterns with AD risk factors (Figure 6; Supplementary Figure 10). First, we tested the
associations between the 48 AD-associated traits and five AD subgroups defined in the
Executive Prominent Alzheimer’s Disease (EPAD) study, i.e. memory, language, visuospatial,
none, and mix (Methods) [21, 22]. Maternal family history of AD and dementia was strongly and
consistently associated with all five EPAD subgroups (Supplementary Table 12), with memory
subgroup showing the strongest association (p=3.3e-16), which is consistent with the higher
frequency of APOE €4 in this subgroup [21]. Paternal family history was not strongly associated
with any subgroups, but the effect directions were consistent. Interestingly, intelligence and
cognition-related traits such as correct final attempt in cognitive test (p=2.7e-5) and fluid
intelligence score (p=6.8e-5) were specifically associated with the “none” subgroup — AD
samples without relative impairment in any of the four cognitive domains. High cholesterol and
related traits were associated with language, memory, and mix (i.e. AD samples with relative
impairment in two or more domains) subgroups but showed weaker associations with the

visuospatial and none subgroups.
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Figure 6. Associations between identified AD risk factors and various AD subgroups, CSF biomarkers, and

neuropathologic features. Asterisks denote significant associations based on an FDR cutoff of 0.05. P-values are

truncated at 1le-5 for visualization purposes.
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Next, we extended our analysis to three biomarkers of AD in cerebrospinal fluid (CSF): amyloid

beta (AB42), tau, and phosphorylated tau (ptauss:) [23]. Somewhat surprisingly, AD risk factors

did not show strong associations with AB,, and tau (Supplementary Table 13). Maternal family

history of AD and dementia was associated with ptauig; (p=4.2e-4), but associations were

absent for ABs, and tau. It has been recently suggested that CSF biomarkers have a sex-

specific genetic architecture [24]. However, no association passed an FDR cutoff of 0.05 in our

sex-stratified analyses (Supplementary Table 14).

Further, we applied BADGERS to a variety of neuropathologic features of AD and related

dementias (Methods), including neuritic plaques (NPs), neurofibrillary tangles (NFTs), cerebral
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amyloid angiopathy (CAA), lewy body disease (LBD), hippocampal sclerosis (HS), and vascular
brain injury (VBI) [25]. Family history of AD/dementia (p=3.8e-8, maternal; p=1.4e-5, paternal)
and high cholesterol (p=2.1e-5) were strongly associated with NFT Braak stages
(Supplementary Table 15). NP also showed very similar association patterns with these traits
(p=2.7e-19, maternal family history; p=2.6e-7, paternal family history; p=0.001, high cholesterol).
The other neuropathologic features did not show strong associations. Of note, despite not being
statistically significant, family history of AD/dementia was negatively associated with VBI, and
multiple intelligence traits were positively associated with LBD, showing distinct patterns with
other pathologies (Supplementary Figure 11). We also note that various versions of the same
pathologies all showed consistent associations in our analyses (Supplementary Figure 11).
The complete association results for all the endophenotypes and all the traits are summarized in
Supplementary Table 16. We further identified the influence of the APOE region in these
results. The association results for all the endophenotypes with APOE Region being removed

are summarized in Supplementary Table 17.
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Associations with cognitive traits in a pre-clinical cohort

Finally, we studied the associations between AD risk factors and pre-clinical cognitive
phenotypes using 1,198 samples from the Wisconsin Registry for Alzheimer's Prevention
(WRAP), a longitudinal study of initially dementia-free middle-aged adults [26]. Assessed
phenotypes include mild cognitive impairment (MCI) status and three cognitive composite
scores for executive function, delayed recall, and learning (Methods). A total of 12 significant
associations reached an FDR cutoff of 0.05 (Supplementary Table 18). Somewhat surprisingly,
parental history and high cholesterol, the risk factors that showed the strongest associations
with various AD endophenotypes, were not associated with MCI or cognitive composite scores
in WRAP. Instead, education and intelligence-related traits strongly predicted pre-clinical
cognition (Figure 7). A-levels education and no education both showed highly significant
associations with delayed recall (p=4.0e-5 and 7.7e-7) and learning (p=7.6e-6 and 5.0e-8). No
education was also associated with higher risk of MCI (p=2.5e-4). Additionally, fluid intelligence
score was positively associated with the learning composite score (p=7.5e-4), and time to
complete round in cognition test was negatively associated with the executive function (p=1.1e-
5).

Figure 7. Associations between six traits and pre-clinical cognitive phenotypes in WRAP. Error bars denote

the standard error of effect estimates.
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Discussion

In this work, we introduced BADGERS, a new method to perform association scans at the
biobank scale using genetic risk scores and GWAS association statistics. Through simulations,
we demonstrated that our method provides consistent effect estimates and similar statistical
power compared to regression analysis based on individual-level data. Additionally, we applied
BADGERS to two large and independent GWAS datasets for late-onset AD. In our analyses, we
used GWAS summary statistics from the UK biobank, one of the largest genetic cohort in the
world, to generate PRS for complex traits. We estimated heritability for all available traits in the
UK biobank and only included traits with nominally significant heritability (p<0.05) in our
analyses. The GWAS summary statistics for Alzheimer’s disease were also obtained from the
largest available study — International Genomics of Alzheimer’'s Project (IGAP) and we further
sought replication using a large, independent dataset from the Alzheimer's Disease Genetics
Consortium (ADGC). Overall, we are confident that these quality control procedures largely
controlled the false findings in our study. Among 1,738 heritable traits in the UK biobank, we
identified 48 traits showing statistically significant associations with AD. These traits covered a
variety of categories, including family history, cholesterol, intelligence, education, occupation,
and lifestyle. Although many of the identified traits are genetically correlated, multivariate
conditional analysis confirmed multiple strong and independent associations for AD. Family
history showing strong associations with AD is not a surprise, and many other associations are
supported by the literature as well. The protective effect of higher educational and occupational
attainment on the risk and onset of dementia is well studied [27, 28]. Cholesterol buildup is also

known to associate with B-amyloid plaques in the brain and higher AD risk [29-31].

More interestingly, these identified traits had distinct association patterns with various AD
subgroups, biomarkers, pathologies, and pre-clinical cognitive traits. Five cognitively-defined AD
subgroups were consistently associated with maternal family history, but only the group without
substantial relative impairment in any domain (i.e. EPAD_none) was associated with intelligence
and education. In addition, family history and high cholesterol were strongly associated with
classic AD neuropathologies, including NP and NFT, while intelligence and educational
attainment predicted pre-clinical cognitive scores and MCI. These results suggest that various
AD risk factors may affect the disease course at different time points and via distinct biological
processes, and genetically predicted risk factors for clinical AD include at least two separate

components. While some risk factors (e.g. high cholesterol and APOE) may directly contribute
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to the accumulation of pathologies, other factors (e.qg. intelligence and education) may buffer the
adverse effect of brain pathology on cognition [28]. One possible scenario is that family history
and high cholesterol are like the fundamental cause of AD while education level and intelligence
are like the parameter of such factors. While if one didn’t have such a factor in the first stage,
they are protected from getting AD, if someone with such factor and also has high score in
education attainment or intelligence, they can also get rid of the possibility of getting AD. We
also investigated the influence of APOE on the identified associations. Effects of family history
and high cholesterol were substantially reduced after APOE removal. In contrast, associations
with cognition and education were virtually unchanged. These results suggest that various AD
risk factors may affect the disease course at different time points and via distinct biological
processes. While some risk factors (e.g. high cholesterol and APOE) may directly contribute to
the accumulation of pathologies, other factors (e.g. intelligence and education) reduce the

adverse effect of brain pathology on cognition [28].

Further, we note that the association results in BADGERS need to be interpreted with caution.
Although PRS-based association analysis is sometimes treated as causal inference in the
literature [32], we do not see BADGERS as a tool to identify causal factors. Key assumptions in
causal inference are in many cases, violated when analyzing complex, highly polygenic traits,
which may lead to complications when interpreting results. In our analysis, BADGERS showed
superior statistical power than MR-IVW — among 1738 heritable traits, 48 reached Bonferroni
significance in BADGERS, 9 and 18 traits reached Bonferroni significance in MR-IVW and
GSMR, respectively. Among the 48 traits identified by BADGERS, 23 reached nominal
statistical significance in MR-IVW and 11 were nominally significant in GSMR. BADGERS is a
statistically powerful and computationally efficient method for identifying associations between a
disease of interest and genetically imputed complex traits. Due to the capability of utilizing PRS
with a large number of SNPs to impute complex traits, BADGERS has substantially improved
statistical power compared to MR methods. And because of this, it can serve as a hypothesis-
free method to screen for candidate risk factors from biobank-scale datasets with an
overwhelming number of traits. After a list of candidate risk factors is identified using BADGERS,
MR methods can be applied to carefully demonstrate causality. We envision BADGERS as a
tool to prioritize associations among a large number of candidate risk factors so that robust
causal inference methods can be applied to carefully assess causal effects. In addition,
BADGERS requires a reference panel to provide LD estimates as a summary statistics-based

method. If the population in the reference panel does not match that of the GWAS, it may create
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bias in the analysis. Our simulation results suggest that 1000 Genomes European samples is
sufficient for our analysis when the GWAS was also conducted on European samples. Our
implemented BADGERS software is flexible on the choice of LD reference panel. It allows users

to change the reference dataset when they see fit.

What's more, environmental factors may play a big role in the identified associations. There is
little doubt that environment could influence many complex traits, including the ones highlighted
by the reviewer. However, this does not necessarily mean that these traits cannot also have a
genetic component (or be genetically heritable). we summarized the heritability estimates for the
48 traits identified in our BADGERS meta-analysis of two independent datasets for Alzheimer's
disease (Supplementary Table 19), and all of them have nominally significant heritability
estimates (p<0.05) based on our selection criteria. Nevertheless, we do acknowledge that the
high heritability of these traits is influenced by correlations with other traits. For example, job
involving heavy manual or physical work is genetically correlated with educational attainment
(Figure 3), which indicates that the association between this trait and Alzheimer’s disease may
not be direct. Therefore, it is important to note that association results from BADGERS analysis

need to be interpreted with caution.

Limited sample size in AD endophenotypes is another limitation in our study. We have used
data from the largest available GWAS for CSF biomarkers and neuropathologies. Still, small
sample size made it challenging to assess the effects of traits that were weakly associated with
AD. When an independent validation dataset is available, it would be of interest to assess the
prediction accuracy of PRS on each trait. However, external validation datasets rarely exist in
real applications. In that case, the users may choose to use heritability estimates to filter traits
with a substantial genetic component. Further, in the BADGERS framework, PRS are
independent variables in the regression analysis. If the PRS has limited predictive power, such
noise is similar to measurement errors in standard regression analysis. This may decrease the
statistical power in association tests but does not inflate the type-I error rate. Finally, emerging
evidence has highlighted sex-specific genetic architecture of AD [24, 33]. In our analysis,
maternal family history of AD showed stronger associations with various phenotypes than
paternal family history. However, we note that this may be explained by the sample size
difference in the UK biobank (N¢ase=28,507 and 15,022 for samples with maternal and paternal
family history, respectively). We also performed sex-stratified analyses for CSF biomarkers but

identified limited associations, possibly due to the small sample size. Overall, sex-specific
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effects of risk factors remain to be investigated in the future using larger datasets. In total,
BADGERS requires the training data for genetic prediction models and the downstream disease
GWAS to be independent but of similar genetic ancestry. Development of methods that are
more robust to sample overlap and diverse genetic ancestry remains an open problem for future

research.

In conclusion, BADGERS is a statistically powerful method to identify associated risk factors for
complex diseases. Large-scale biobanks continue to provide rich data on various human traits
that may be of interest in disease research. Our method uses GWAS to bridge large biobanks
with studies on specific diseases, lessens the limitation of insufficient disease cases in biobanks
and lack of risk factor measurements in disease studies, and provides a statistically-justified
approach to identifying risk factors for disease. We have demonstrated the effectiveness of
BADGERS through extensive simulations, a two-stage BWAS for late-onset AD, and various
follow-up analyses on identified risk factors. Our results provided new insights into the genetic
basis of AD, and revealed distinct mechanisms for the involvement of risk factors in AD
etiologies. The ever-growing sample size in GWAS and biobanks, in conjunction with
increasingly accessible summary association statistics, makes BADGERS a powerful and

valuable tool in human genetics research.
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Methods

BADGERS framework

The goal of this method is to study the association between Y, a measured trait in the study, and
T, a trait imputed from genetic data via a linear prediction model:
T=Xxw

Here, Xyxu is the genotype matrix for N individuals in a study of trait Y. Wy, is the pre-
calculated weight values on SNPs in the imputation model. M denotes the number of SNPs. We
use Y, a N x 1 vector, to denote the trait values measured on the same group of individuals. We
test the association between Y and T via a linear model

Y=a+Ty+4
where « is the intercept, § is the term for random noise, and regression coefficient y is the

parameter of interest. The ordinary least squares (OLS) estimator for y can be denoted as

_cov(T,Y) cov(XW,Y) 1 T(COV()_Q;Y))
y: — —

var(T) var(T) — var(T) cov();’M, Y)

Here, X; is the jth column of X. Additionally, we derive the formula for the standard error of y:

se()?)=\/ var(6) ~J var(Y)

N xvar(T) N xvar(T)

The approximation in this formula is based on the assumption that trait Y has complex etiology
and imputed trait T only explains a small proportion of its phenotypic variance. When an
accurate estimate of var(s) is difficult to obtain, this approximation approach provides

conservative results and controls type-I error in the analysis.

In practice, individual-level genotype (i.e. X) and phenotype data (i.e. Y) may not be accessible
due to policy and privacy concerns. Therefore, it is of practical interest to perform the
aforementioned association analysis using summary association statistics. Standard genetic
association analysis tests the association between trait Y and each SNP via the following linear
model:

Y=p+XiBj+e(1<j<M)

The OLS estimator for §; and its standard error have the following forms.
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. cov(X;,Y)
7 var(X;)

A var(g;) var(Y)
se(B;) = ~
N x var(X;) N X var(X;)
Again, the approximation is based on the empirical observation in complex trait genetics — each
SNP explains little variability of Y [34].

Next, we derive the test statistic (i.e. z-score) for y:
_ 7
se(¥)

N cov(Xy,Y)
=~ ~w
\/var(Y) X var(T) (cov(XM, Y)>

Vvar(X);

Z

1 se(By)
~——WT :
jvar(T) Jvar Xu) B
se(Bu)
=wT'rz

where I" is a diagonal matrix with the j" diagonal element being

ro- var(X;)

and 7 is the vector of SNP-level z-scores obtained from the GWAS of trait Y, i.e.

P

. B
7506

Without access of individual-level genotype data, var(X;) and var(T‘) need to be estimated

using an external panel with a similar ancestry background. We use X to denote the genotype
matrix from an external cohort, then var(X;) can be approximated using the sample variance of
X;. Variance of T can be approximated as follows

var(?A") ~WTDw
where D is the variance-covariance matrix of all SNPs estimated using X. However, when the
number of SNPs is large in the imputation model for trait T, calculation of D is computationally

intractable. Instead, we use an equivalent but computationally more efficient approach. We first

impute trait T in the external panel using the same imputation model
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T=Xw

Then, var(T) can be approximated by sample variance var(T).

Thus, we can test association between Y and T without having access to individual-level
genotype and phenotype data from the GWAS. The required input variables for BADGERS
include a linear imputation model for trait T, SNP-level summary statistics from a GWAS of trait

Y, and an external panel of genotype data. With these, association test can be performed.
Multivariate analysis in BADGERS

To adjust for potential confounding effects, it may be of interest to include multiple imputed traits
in the same BADGERS model. We still use Y to denote the measured trait of interest. The goal
is to perform a multiple regression analysis using K imputed traits (i.e. Ty, ..., Tx) as predictor
variables:
Y =T +6
Here, we use T* = (T}, .., Tx) to denote a N x K matrix for K imputed traits. Regression
coefficients y* = (y,...,yx)" are the parameters of interest. To simplify algebra, we also
assume trait Y and all SNPs in the genotype matrix X are centered so there is no intercept term
in the model, but the conclusions apply to the general setting. Similar to univariate analysis,
traits 7, ..., Ty are imputed from genetic data via linear prediction models:
T =Xxw~
where W;,., are imputation weights assigned to SNPs. The i™ column of W denotes the
imputation model for trait 7;. Then, the OLS estimator y* and its variance-covariance matrix can
be denoted as follows:
Pt = ((T*)TT*)_I(T*)TY
cov(?") ~ var(Y)((TH'T)™*
The approximation is based on the assumption that imputed traits 7, ..., T collectively explain
little variance in Y, which is reasonable in complex trait genetics if K is not too large. We further
denote:
var(T)) - cov(Ty, Ty) -

U= N(PHT) " = : . ;
cov(Tg, T)) - var(Ty)

All elements in matrix U can be approximated using a reference panel X [35]:
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cov(T;, T)) = cov(T;, T)
Therefore, the z-score fory, (1 <k <K) s
_ W
se([Pr)
_UWHTXTY

JNUvar(Y)

1 -
rFuwHTez
v Ukk

where I, is the K x 1 vector with the k™ element being 1 and all other elements equal to 0, @ is a

k

M x M diagonal matrix with the i"" diagonal element being \/var(X;), and similar to the notation
in univariate analysis, Z is the vector of SNP-level z-scores from the GWAS of trait Y. Given
imputation models for K traits (i.e. W*), GWAS summary statistics for trait Y (i.e. Z), and an
external genetic dataset to estimate U and ©, multivariate association analysis can be

performed without genotype and phenotype data from the GWAS.
Genetic prediction

Any linear prediction model can be used in the BADGERS framework. With access to individual-
level genotype and phenotype data, the users can train their preferred statistical learning
models, e.g. penalized regression or linear mixed model. When only GWAS summary statistics
are available for risk factors (i.e. T), PRS can be used for imputation. We used PRS to impute
complex traits in all analyses throughout the paper. Of note, more advanced PRS methods that
explicity model LD [36] and functional annotations [37] to improve prediction accuracy have
been developed. However, additional independent datasets may be needed if there are tuning
parameters in PRS. In general, higher imputation accuracy will improve statistical power in
association testing [12]. The BADGERS software allows users to choose their preferred

imputation model.
Simulation settings

We simulated quantitative traits using genotype data of 62,313 individuals from the GERA
cohort (dbGap accession: phs000674). Summary association statistics were generated using
PLINK [38]. We ran BADGERS on summary statistics based on the simulated traits and PRS of
1,738 traits in the UK biobank. To compare BADGERS with the traditional approach that uses
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individual-level data as input, we also directly regressed simulated traits on the PRS of UK

biobank traits to estimate association effects.

Setting 1. We simulated quantitative trait values as i.i.d. samples from normal distribution with
mean 0 and variance 1. In this setting, simulated trait values were independent from genotype

data.

Setting 2. We simulated quantitative trait values based on an additive random effect model
commonly used in heritability estimation [39]. We fixed heritability to be 0.1. In this setting, the

simulated trait is associated with SNPs, but is not directly related to PRS of UK biobank traits.

Setting 3. We selected 100 traits from 1,738 UK-Biobank traits to calculate PRS on GERA data.
For each of these 100 PRS, we simulated a quantitative trait by summing up the effect of PRS,
a polygenic genetic background, and a noise term.
Y=XB+ pP+ ¢

Here, X denotes the genotype of samples; j is the effect size of each variant; P is the PRS of
one of the selected traits; p is the effect size of PRS; and ¢ is the error term following a standard
normal distribution. The polygenic background and random noise (i.e. X + €) were simulated
using the same model described in setting 2. This term and the PRS were normalized
separately. The standardized effect size (i.e. p) was set as 0.02, 0.015, 0.01, 0.008, and 0.005
in our simulations. In this setting, simulated traits are directly associated with SNPs and PRS.
For each value of p, statistical power was calculated as the proportion of significant results
(p<0.05) out of 100 traits.

Setting 4. We simulated 100 quantitative traits Ty, ..., ;oo based on an additive random effect
model commonly used with heritability fixed as 0.1. And the response traits Y, ..., Y190 Were
simulated by adding a noise termto T.

Yi=yTi+ ¢
Where y,~N(0,2), and &~N(0,Var(T;)). The data set was split into two subsets, one with
31,162 (subset 1) and another with 31,163 samples (subset 2). Marginal summary statistics
correspond to 7;'s and Y;'s were derived using subset 1 and subset 2, respectively. We applied

LDpred to jointly estimate all SNPs’ effects using marginal summary statistics from subset 1.
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Then, we ran BADGERS to identify associations between 100 pairs of ¥; and T; using two

methods to impute T;’s (i.e. marginal PRS and LDpred).

GWAS datasets

Summary statistics for 4,357 UK biobank traits were generated by Dr. Benjamin Neale's group
and were downloaded from (http://www.nealelab.is/uk-biobank). AD summary statistics from the
IGAP stage-l analysis were downloaded from the IGAP website (http://web.pasteur-
lille.fr/len/recherche/u744/igap/igap_download.php). ADGC phase 2 summary statistics were
generated by first analyzing individual datasets using logistic regression adjusting for age, sex
and the first three principal components in the program SNPTest v2 [40]. Meta-analysis of the
individual dataset results was then performed using the inverse-variance weighted approach
[41].

GWAS summary statistics for neuropathologic features of AD and related dementias were
obtained from the ADGC. Details on these data have been previously reported [25]. We
analyzed a total of 13 neuropathologic features, including four NP traits, two traits for NFT Braak
stages, three traits for LBD, CAA, HS, and two VBI traits. Among different versions of the same
pathology, we picked one dataset for each pathologic feature to show in our primary analyses.
Six AD subgroups were defined in the recent EPAD paper [21] on the basis of relative
performance in memory, executive functioning, visuospatial functioning, and language at the
time of Alzheimer’s diagnosis. Four subgroups include AD samples with an isolated substantial
relative impairment in one of four domains; the “none” subgroup includes samples without
substantial relative impairment; the “mix” subgroup includes samples with relative impairment in
multiple domains. Each domain was compared with healthy controls in case-control association
analyses. We did not include the executive functioning subgroup in our analysis due to its small
sample size in cases. Detailed information about the design of CSF biomarker GWAS and the
recent sex-stratified analysis has been described previously [23, 24]. Details on the association
statistics for AD subgroups, CSF biomarkers, and neuropathological features are summarized in

Supplementary Table 17.

Analysis of GWAS summary statistics
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We applied LD score regression implemented in the LDSC software [42] to estimate the
heritability of each trait. Among 4,357 traits, we selected 1,738 with nominally significant
heritability (p<0.05) to include in our analyses. We removed SNPs with association p-values
greater than 0.01 from each of the 1,738 summary statistics files, clumped the remaining SNPs
using a LD cutoff of 0.1 and a radius of 1 Mb in PLINK [38], and built PRS for each trait using
the effect size estimates of remaining SNPs.

Throughout the paper, we used samples of European ancestry in the 1000 Genomes Project as
a reference panel to estimate LD [43]. In univariate analyses, we tested marginal associations
between each PRS and AD using the IGAP stage-| dataset and replicated the findings using the
ADGC summary statistics. Association results in two stages were combined using an inverse
variance-weighted meta-analysis [41]. A stringent Bonferroni-corrected significance threshold
was used to identify AD-associated risk factors. For associations between identified risk factors
and AD endophenotypes, we used an FDR cutoff of 0.05 to claim statistical significance. We
applied hierarchical clustering to the covariance of 48 traits we identified from marginal
association analysis, then divided the result into 15 clusters and selected one most significant
trait from each cluster and used them to perform multivariate conditional analysis. We analyzed

IGAP and ADGC datasets separately, and combined the results using meta-analysis.

We used MR-IVW approach [44] implemented in the Mendelian Randomization R package [45]
to study the causal effects of 48 risk factors identified by BADGERS. For each trait, we selected
instrumental SNP variables as the top 30 most significant SNPs after clumping all SNPs using a
LD cutoff of 0.1.

Analysis of WRAP data

WRAP is a longitudinal study of initially dementia-free middle-aged adults that allows for the
enrollment of siblings and is enriched for a parental history of AD. Details of the study design
and methods used have been previously described [26, 46]. After quality control, a total of 1,198
participants whose genetic ancestry was primarily of European descent were included in our
analysis. On average, participants were 53.7 years of age (SD=6.6) at baseline and had a
bachelor's degree, and 69.8% (n=836) were female. Participants had two to six longitudinal
study visits, with an average of 4.3 visits, leading to a total of 5,184 observations available for

analyses.
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DNA samples were genotyped using the lllumina Multi-Ethnic Genotyping Array at the
University of Wisconsin Biotechnology Center. Thirty-six blinded duplicate samples were used
to calculate a concordance rate of 99.99%, and discordant genotypes were set to missing.
Imputation was performed with the Michigan Imputation Server v1.0.3 [47], using the Haplotype
Reference Consortium (HRC) v. r1.1 2016 [48] as the reference panel and Eagle2 v2.3 [49] for
phasing. Variants with a quality score R?<0.80, MAF<0.001, or that were out of HWE were
excluded, leading to 10,499,994 imputed and genotyped variants for analyses. Data cleaning
and file preparation were completed using PLINK v1.9 [50] and VCFtools v0.1.14 [51].
Coordinates are based on the hgl9 genome build. Due to the sibling relationships present in the
WRAP cohort, genetic ancestry was assessed and confirmed using Principal Components
Analysis in Related Samples (PC-AIR), a method that makes robust inferences about population

structure in the presence of relatedness [52].

Composite scores were calculated for executive function, delayed recall, and learning based on
a previous analysis [53]. Each composite score was calculated from three neuropsychological
tests, which were each converted to z-scores using baseline means and standard deviations.
These z-scores were then averaged to derive executive function and delayed recall composite
scores at each visit for each individual. Cognitive impairment status was determined based on a
consensus review by a panel of dementia experts. Resulting cognitive statuses included
cognitively normal, early MCI, clinical MCI, impairment that was not MCI, or dementia, as
previously defined [54]. Participants were considered cognitively impaired if their worst
consensus conference diagnosis was early MCI, clinical MCI, or dementia (n=387). Participants
were considered cognitively stable if their consensus conference diagnosis was cognitively

normal across all visits (n=803).

The 48 PRSs were developed within the WRAP cohort using PLINK v1.9 [50] and tested for
associations with the three composite scores (i.e. executive function, delayed recall, and
learning) and cognitive impairment statuses. MCI status was tested using logistic regression
models in R, while all other associations, which utilized multiple study visits, were tested using
linear mixed regression models implemented in the Ime4 package in R [55]. All models included
fixed effects for age and sex, and cognitive composite scores additionally included a fixed effect

for practice effect (using visit number). Mixed models included random intercepts for within-
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subject correlations due to repeated measures and within-family correlations due to the

enroliment of siblings.
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Software availability

The BADGERS software is freely available at https://github.com/qglu-lab/BADGERS
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