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Abstract 

 

Rich data from large biobanks, coupled with increasingly accessible association statistics from 

genome-wide association studies (GWAS), provide great opportunities to dissect the complex 

relationships among human traits and diseases. We introduce BADGERS, a powerful method to 

perform polygenic score-based biobank-wide association scans. Compared to traditional 

approaches, BADGERS uses GWAS summary statistics as input and does not require multiple 

traits to be measured in the same cohort. We applied BADGERS to two independent datasets 

for late-onset Alzheimer’s disease (AD; N=61,212). Among 1,738 traits in the UK biobank, we 

identified 48 significant associations for AD. Family history, high cholesterol, and numerous 

traits related to intelligence and education showed strong and independent associations with AD. 

Further, we identified 41 significant associations for a variety of AD endophenotypes. While 

family history and high cholesterol were strongly associated with AD subgroups and pathologies, 

only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These 

results provide novel insights into the distinct biological processes underlying various risk 

factors for AD. 
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Introduction 

 
Late-onset Alzheimer’s disease (AD) is a prevalent, complex, and devastating 

neurodegenerative disease without a current cure. Millions of people are currently living with AD 

worldwide, and the number is expected to grow rapidly as the population continues to age [1, 2]. 

With the failure of numerous drug trials, it is of great interest to identify modifiable risk factors 

that can be potential targets in the therapeutics development for AD [3-5]. Epidemiological 

studies that directly test associations between measured risk factors and AD are difficult to 

conduct and interpret because identified associations are, in many cases, affected by 

confounding and reverse causality. Despite being ubiquitous challenges in risk factor studies for 

complex diseases, these issues are particularly critical for AD due to its extended pre-clinical 

stage – irreversible pathologic changes have already occurred in the decade or two prior to 

clinical symptoms [6]. On the other hand, Mendelian randomization methods [7-9] have been 

developed to identify causal risk factors for disease using data from genome-wide association 

studies (GWAS). Despite the favorable theoretical properties in identifying causal relationships, 

these methods have limited statistical power, thereby not suitable for hypothesis-free screening 

of risk factors. 

 

Motivated by transcriptome-wide association study – an analysis strategy that identifies genes 

whose genetically regulated expression values are associated with disease [10-12], we seek a 

systematic and statistically powerful approach to identify risk factors using summary association 

statistics from large-scale GWAS. GWAS for late-onset AD has been successful, and dozens of 

associated loci have been identified to date [13-18]. Although direct information on risk factors is 

limited in these studies, dense genotype data on a large number of samples, in conjunction with 

independent reference datasets for thousands of complex human traits such as the UK biobank 

[19], make it possible to genetically impute potential risk factors and test their associations with 

AD. This strategy allows researchers to study risk factors that are not directly measured in AD 

studies. Furthermore, it reduces the reverse causality because the imputation models are 

trained on independent, younger, and mostly dementia-free reference cohorts, thereby 

improving the interpretability of findings. 

 

Here, we introduce BADGERS (Biobank-wide Association Discovery using GEnetic Risk 

Scores), a statistically-powerful and computationally-efficient method to identify associations 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2023. ; https://doi.org/10.1101/468306doi: bioRxiv preprint 

https://doi.org/10.1101/468306
http://creativecommons.org/licenses/by-nc-nd/4.0/


between a disease of interest and a large number of genetically-imputed complex traits using 

GWAS summary statistics. We applied BADGERS to identify associated risk factors for AD from 

1,738 heritable traits in the UK biobank and replicated our findings in independent samples. 

Furthermore, we performed multivariate conditional analysis, Mendelian randomization, and 

follow-up association analysis with a variety of AD biomarkers, pathologies, and pre-clinical 

cognitive phenotypes to provide mechanistic insights into our findings.  
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Figure 1. BADGERS Workflow. BADGERS takes (a) Alzheimer’s disease GWAS, (b) LD reference panel, and (c) 

Human traits GWAS from the UK biobank as input. The generated result will be the (d) Association between 

Alzheimer’s disease and human traits. In graph (d), each triangle represents one human trait, and different colors 

represent different trait categories.  
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Results 

 

Method overview 

 

Here, we briefly introduce the BADGERS model. The workflow of BADGERS is shown in Figure 

1. A brief flowchart including all the analyses we contained in the manuscript was shown in the 

supplementary material (Supplementary Figure 1). Complete statistical details are discussed 

in the Methods section. BADGERS is a two-stage method to test associations between traits. 

First, polygenic risk scores (PRS) are trained to impute complex traits using genetic data. Next, 

we test the association between a disease or trait of interest and various genetically-imputed 

traits. Given a PRS model, the imputed trait can be denoted as �� �  �� 

where ���� is the genotype matrix for � individuals in a GWAS, and ���� is the Mx1 matrix 

denotes pre-calculated weight values on SNPs in the PRS model. Then, we test the association 

between measured trait � and imputed trait �� via a univariate linear model  � �  	 
 ��� 
 � 

The test statistic for � can be expressed as: 


 � �������� � ���
� 

where 
� is the vector of SNP-level association z-scores for trait �, and � is a diagonal matrix 

with the jth diagonal element being the ratio between standard deviation of the jth SNP and that 

of ��.  

 

This model can be further generalized to perform multivariate analysis. If � imputed traits are 

included in the analysis, we use a similar notation as in univariate analysis:  ��� � ��� 

Here, ����
�  is a matrix and each column of �� is the pre-calculated weight values on SNPs for 

each imputed trait. Then, the associations between � and � imputed traits ���  �1 � � � �� are 

tested via a multivariate linear model � �  	� 
 ����� 
 �� 
where �� � ���, … , ����  is the vector of regression coefficients. The z-score for ��  �1 � � � �� 

can be denoted as: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2023. ; https://doi.org/10.1101/468306doi: bioRxiv preprint 

https://doi.org/10.1101/468306
http://creativecommons.org/licenses/by-nc-nd/4.0/



� � ���������� � 1����

���������Θ
� 

where �  is the inverse variance-covariance matrix of ��� ;  �� is the �  1  vector with the ith 

element being 1 and all other elements equal to 0; Θ is a !  ! diagonal matrix with the ith 

diagonal element being �"#$����; and 
� is defined the same as the univariate case as the 

vector of SNP-level association z-scores for trait �. 

 

Simulations 

 

We used real genotype data from the Genetic Epidemiology Research on Adult Health and 

Aging (GERA) to conduct simulation analyses (Methods). First, we evaluated the performance 

of our method on data simulated under the null hypothesis. We tested the associations between 

randomly simulated traits and 1,738 PRS from the UK biobank and did not observe inflation in 

type-I error (Supplementary Table 1). Similar results were also observed when we simulated 

traits that are heritable but not directly associated with any PRS. Since BADGERS only uses 

summary association statistics and externally estimated linkage disequilibrium (LD) as input, we 

also compared effect estimates in BADGERS with those of traditional regression analysis based 

on individual-level data. Regression coefficient estimates and association p-values from these 

two methods were highly consistent in both simulation settings (Figure 2A and Supplementary 

Figures 2-4), showing minimal information loss in summary statistics compared to individual-

level data indicating highly consistent performance compared to methods based on individual-

level data. To evaluate the statistical power of BADGERS, we simulated traits by combining 

effects from randomly selected PRS and a polygenic background (Methods). We set the effect 

size of PRS to be 0.02, 0.015, 0.01, 0.008, and 0.005. BADGERS showed comparable 

statistical power to the regression analysis based on individual-level genotype and phenotype 

data (Figure 2B, Supplementary Table 2). Overall, our results suggest that using summary 

association statistics and externally estimated LD as a proxy for individual-level genotype and 

phenotype data does not inflate type-I error rate or decrease power. The performance of 

BADGERS is comparable to regression analysis based on individual-level data. We also studied 

if more sophisticated polygenic risk prediction methods could potentially lead to higher statistical 

power in downstream association tests. We compared the performance of PRS based on 

marginal effect sizes with that of LDpred, a more sophisticated PRS model that jointly estimates 

SNP effects via a Bayesian framework [20]. Imputation models based on multivariate analysis 

indeed improved the results. When using marginal PRS to impute traits, the correlation between 
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γ�
�
 and γ

�
 was 0.79. This correlation improved to 0.91 when using LDpred PRS (Supplementary 

Figure 5). However, such improvement did not substantially affect the statistical power in 

association testing. Using marginal PRS, our analysis achieved a statistical power of 86% to 

identify associations at a type-I error rate of 0.05, and the power was 88% when using 

multivariate effect estimates to calculate PRS. These results suggest that while more 

sophisticated PRS methods can improve the results in BADGERS, simple PRS based on 

marginal effects also shows reasonably good performance. 

 

Figure 2. Simulation results. BADGERS and regression analysis based on individual-level data showed (A) highly 

consistent effect size estimates for 1,738 PRS in simulation and (B) comparable statistical power (setting 3).  
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Identify risk factors for late-onset AD among 1,738 heritable traits in the UK 

biobank 

 

We applied BADGERS to conduct a biobank-wide association scan (BWAS) for AD risk factors 

from 1,738 heritable traits (p<0.05; Methods) in the UK biobank. We repeated the analysis on 

two independent GWAS datasets for AD and further combined the statistical evidence via meta-

analysis (Supplementary Figure 6). We used stage-I association statistics from the 

International Genomics of Alzheimer’s Project (IGAP; N=54,162) as the discovery phase, then 

replicated the findings using 7,050 independent samples from the Alzheimer’s Disease Genetics 

Consortium (ADGC). We identified 50 significant trait-AD associations in the discovery phase 

after correcting for multiple testing, among which 14 had p<0.05 in the replication analysis. 

Despite the considerably smaller sample size in the replication phase, top traits identified in the 

discovery stage showed strong enrichment for p<0.05 in the replication analysis 

(enrichment=2.5, p=2.2e-5; hypergeometric test). In the meta-analysis, a total of 48 traits 

reached Bonferroni-corrected statistical significance and showed consistent effect directions in 

the discovery and replication analyses (Figure 3 and Supplementary Table 3).  

 

Unsurprisingly, many identified associations were related to dementia and cognition. Family 

history of AD and dementia showed the most significant associations with AD (p=3.7e-77 and 

5.2e-28 for illnesses of mother and father, respectively). Having any dementia diagnosis is also 

strongly and positively associated (p=8.5e-11). In addition, we observed consistent and 

negative associations between better performance in cognition test and AD risk. These traits 

include fluid intelligence score (p=2.4e-14), time to complete round in cognition test (p=2.8e-9), 

correct final attempt (p=9.1e-11), and many others. Consistently, education attainment showed 

strong associations with AD. Age completed full time education (p=2.5e-7) was associated with 

lower AD risk. Four out of seven traits based on a survey about education and qualifications 

were significantly associated with AD (Supplementary Figure 7). Higher education such as 

having a university degree (p=4.4e-12), A levels/AS levels or equivalent (p=6.9e-9), and 

professional qualifications (p=7.1e-6) were associated with lower AD risk. In contrast, choosing 

“none of the above” in this survey was associated with a higher risk (p=1.6e-11). Other notable 

strong associations include high cholesterol (p=2.5e-15; positive), lifestyle traits such as cheese 

intake (p=2.5e-10; negative), occupation traits such as job involving heavy physical work 

(p=2.7e-10; positive), anthropometric traits including height (p=5.3e-7; negative), and traits 
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related to pulmonary function, e.g. forced expiratory volume in 1 second (FEV1; p=1.9e-6;

negative). Detailed information on all associations is summarized in Supplementary Table 3. 

Figure 3. PRS-based BWAS identifies risk factors for AD. Meta-analysis p-values for 1,738 heritable traits in the

UK biobank are shown in the figure. P-values are truncated at 1e-15 for visualization purposes. The horizontal line

marks the Bonferroni-corrected significance threshold (i.e. p=0.05/1738). Positive associations point upward, and

negative associations point downward.  

 

 

Multivariate conditional analysis identifies independently associated risk factors 

Of note, associations identified in the marginal analysis are not guaranteed to be independent.

We observed clear correlational structures among the identified traits (Figure 4). For example,

PRS of various intelligence and cognition-related traits are strongly correlated, and consumption

of cholesterol-lowering medication is correlated with self-reported high cholesterol. To account

for the correlations among traits and identify risk factors that are independently associated with

AD, we performed multivariate conditional analysis using GWAS summary statistics (Methods).

First, we applied hierarchical clustering to the 48 traits we identified in marginal association

analysis and divided these traits into 15 representative clusters. The traits showing the most

significant marginal association in each cluster were included in the multivariate analysis

(Supplementary Figure 8). Similar to the marginal analysis, we analyzed IGAP and ADGC

data separately and combined the results using meta-analysis (Supplementary Table 4). All 15

representative traits remained nominally significant (p<0.05) and showed consistent effect

directions between marginal and conditional analyses (Supplementary Table 5). However,
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several traits showed substantially reduced effect estimates and inflated p-values in multivariate 

analysis, including fluid intelligence score, mother still alive, unable to work because of sickness 

or disability, duration of moderate activity, and intake of cholesterol-lowering spread. 

Interestingly, major trait categories that showed the strongest marginal associations with AD (i.e. 

family history, high cholesterol, and education/cognition) were independent from each other. 

Paternal and maternal family history also showed independent associations with AD, consistent 

with the low correlation between their genetic risk scores (correlation= 0.052). 

 

Figure 4. PRS correlation matrix for the 48 traits identified in marginal association analysis. Trait categories 

and association directions with AD are annotated. The dendrogram indicates the results of hierarchical clustering. We 

used 1000 Genomes samples with European ancestry to calculate PRS and evaluate their correlations. Label “irnt” 

means that trait values were standardized using rank-based inverse normal transformation in the GWAS analysis.  
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Influence of the APOE region on identified associations 

 

Further, we evaluated the impact of APOE on identified associations. We removed the extended

APOE region (chr19: 45,147,340–45,594,595; hg19) from summary statistics of the 48 traits

showing significant marginal associations with AD and repeated the analysis. We observed a

substantial drop in the significance level of many traits, especially family history of AD, dementia

diagnosis, and high cholesterol (Figure 5, Supplementary Figure 9, and Supplementary

Table 6). 38 out of 48 traits remained significant under stringent Bonferroni correction after

APOE removal. Interestingly, the associations between AD and almost all cognition/intelligence

traits were virtually unchanged, suggesting a limited role of APOE in these associations.  

 

Figure 5. Influence of the APOE region on trait-AD associations. The horizontal and vertical axes denote

association p-values before and after removal of the APOE region, respectively. Original p-values (i.e. the x-axis)

were truncated at 1e-20 for visualization purposes.  
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Causal inference via Mendelian randomization 

 

Next, we investigated the evidence for causality among identified associations. We performed 

Mendelian randomization (MR-IVW; Methods) in IGAP and ADGC datasets separately and 

meta-analyzed the results on the complete set of 1,738 heritable traits from the UK biobank. A 

total of 48 traits reached Bonferroni-corrected statistical significance and showed consistent 

effect directions in the discovery and replication analyses using BADGERS. In contrast, MR-

IVW only identified 9 traits with Bonferroni-corrected statistical significance. Among these 9 

traits, 7 were also identified by BADGERS (Supplementary Table 7). The signs of all significant 

causal effects identified by MR-IVW were consistent with results from BADGERS. The most 

significant effect was family history (p=1.1e-233 and 1.7e-69 for maternal and paternal history, 

respectively). Dementia diagnosis (p=9.1e-7), high cholesterol (p=4.1e-6), A levels/AS levels 

education (p=1.7e-4), and time spent watching television (p=2.4e-4) were also among the top 

significant effects. Of note, the fluid intelligence score, one of the most significant associations 

identified by BADGERS, did not reach statistical significance in MR (p=0.06), which may be 

explained by its polygenic genetic architecture. It is also worth noting that if we scan all 1,738 

traits using BADGERS and then apply MR-IVW on the 48 Bonferroni-corrected significant traits, 

23 could reach nominal significance (p<0.05) in MR, and 7 could reach significance under 

Bonferroni correction (p<0.05/48; Supplementary Table 8).  

 

We also compared BADGERS with another more recent method GSMR [9]. Due to the smaller 

sample size in the ADGC dataset, we only applied GSMR to the IGAP summary statistics. In 

total, 18 traits reached statistical significance under Bonferroni correction (Supplementary 

Table 9). However, these results showed only moderate consistency with MR-IVW and 

BADGERS. Among the 18 significant traits, only 1 trait, maternal family history of Alzheimer’s 

disease and dementia, overlapped with significant traits identified by MR-IVW. Six out of 18 

traits overlapped with significant traits identified by BADGERS. Among the 18 significant traits, 8 

are related to body fat mass and 2 are related to educational attainment. The most significant 

effect was illnesses of mother (p=2.4e-294). College or University degree (p=4.84e-6), 

education; none of the above(p=3.6e-4), A levels/AS levels education (p=3.8e-6), and time 

spent watching television (p=4.0e-3) were also among top significant effects. Notably, GSMR 

failed to identify paternal family history or high cholesterol as risk factors for Alzheimer’s disease. 

If we only consider the 48 significant traits identified by BADGERS, 11 were nominally 

significant (p<0.05). However, 23 traits did not have enough significant SNPs to perform the 
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GSMR analysis (at least 10 SNPs are required). The signs of all significant causal effects 

identified by GSMR were consistent between association effects in BADGERS.  

  

Additionally, we included GSMR analysis results after removing APOE region from the 48 

identified traits. Only maternal family history reached Bonferroni-corrected statistical significance, 

further demonstrating the lack of statistical power in MR when performing biobank-wide scans 

(Supplementary Table 10). 

 

Associations with AD subgroups, biomarkers, and pathologies 

 

To further investigate the mechanistic pathways for the identified risk factors, we applied 

BADGERS to a variety of AD subgroups, biomarkers, and neuropathologic features 

(Supplementary Table 11). Overall, 29 significant associations were identified under a false 

discovery rate (FDR) cutoff of 0.05, and these endophenotypes showed distinct association 

patterns with AD risk factors (Figure 6; Supplementary Figure 10). First, we tested the 

associations between the 48 AD-associated traits and five AD subgroups defined in the 

Executive Prominent Alzheimer’s Disease (EPAD) study, i.e. memory, language, visuospatial, 

none, and mix (Methods) [21, 22]. Maternal family history of AD and dementia was strongly and 

consistently associated with all five EPAD subgroups (Supplementary Table 12), with memory 

subgroup showing the strongest association (p=3.3e-16), which is consistent with the higher 

frequency of APOE ε4 in this subgroup [21]. Paternal family history was not strongly associated 

with any subgroups, but the effect directions were consistent. Interestingly, intelligence and 

cognition-related traits such as correct final attempt in cognitive test (p=2.7e-5) and fluid 

intelligence score (p=6.8e-5) were specifically associated with the “none” subgroup – AD 

samples without relative impairment in any of the four cognitive domains. High cholesterol and 

related traits were associated with language, memory, and mix (i.e. AD samples with relative 

impairment in two or more domains) subgroups but showed weaker associations with the 

visuospatial and none subgroups.  
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Figure 6. Associations between identified AD risk factors and various AD subgroups, CSF biomarkers, and 

neuropathologic features. Asterisks denote significant associations based on an FDR cutoff of 0.05. P-values are 

truncated at 1e-5 for visualization purposes. 

 

 

Next, we extended our analysis to three biomarkers of AD in cerebrospinal fluid (CSF): amyloid 

beta (Aβ42), tau, and phosphorylated tau (ptau181) [23]. Somewhat surprisingly, AD risk factors 

did not show strong associations with Aβ42 and tau (Supplementary Table 13). Maternal family 

history of AD and dementia was associated with ptau181 (p=4.2e-4), but associations were 

absent for Aβ42 and tau. It has been recently suggested that CSF biomarkers have a sex-

specific genetic architecture [24]. However, no association passed an FDR cutoff of 0.05 in our 

sex-stratified analyses (Supplementary Table 14). 

 

Further, we applied BADGERS to a variety of neuropathologic features of AD and related 

dementias (Methods), including neuritic plaques (NPs), neurofibrillary tangles (NFTs), cerebral 
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amyloid angiopathy (CAA), lewy body disease (LBD), hippocampal sclerosis (HS), and vascular 

brain injury (VBI) [25]. Family history of AD/dementia (p=3.8e-8, maternal; p=1.4e-5, paternal) 

and high cholesterol (p=2.1e-5) were strongly associated with NFT Braak stages 

(Supplementary Table 15). NP also showed very similar association patterns with these traits 

(p=2.7e-19, maternal family history; p=2.6e-7, paternal family history; p=0.001, high cholesterol). 

The other neuropathologic features did not show strong associations. Of note, despite not being 

statistically significant, family history of AD/dementia was negatively associated with VBI, and 

multiple intelligence traits were positively associated with LBD, showing distinct patterns with 

other pathologies (Supplementary Figure 11). We also note that various versions of the same 

pathologies all showed consistent associations in our analyses (Supplementary Figure 11). 

The complete association results for all the endophenotypes and all the traits are summarized in 

Supplementary Table 16. We further identified the influence of the APOE region in these 

results. The association results for all the endophenotypes with APOE Region being removed 

are summarized in Supplementary Table 17. 
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Associations with cognitive traits in a pre-clinical cohort 

 

Finally, we studied the associations between AD risk factors and pre-clinical cognitive 

phenotypes using 1,198 samples from the Wisconsin Registry for Alzheimer's Prevention 

(WRAP), a longitudinal study of initially dementia-free middle-aged adults [26]. Assessed 

phenotypes include mild cognitive impairment (MCI) status and three cognitive composite 

scores for executive function, delayed recall, and learning (Methods). A total of 12 significant 

associations reached an FDR cutoff of 0.05 (Supplementary Table 18). Somewhat surprisingly, 

parental history and high cholesterol, the risk factors that showed the strongest associations 

with various AD endophenotypes, were not associated with MCI or cognitive composite scores 

in WRAP. Instead, education and intelligence-related traits strongly predicted pre-clinical 

cognition (Figure 7). A-levels education and no education both showed highly significant 

associations with delayed recall (p=4.0e-5 and 7.7e-7) and learning (p=7.6e-6 and 5.0e-8). No 

education was also associated with higher risk of MCI (p=2.5e-4). Additionally, fluid intelligence 

score was positively associated with the learning composite score (p=7.5e-4), and time to 

complete round in cognition test was negatively associated with the executive function (p=1.1e-

5).  

 

Figure 7. Associations between six traits and pre-clinical cognitive phenotypes in WRAP. Error bars denote 

the standard error of effect estimates. 
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Discussion 
 

In this work, we introduced BADGERS, a new method to perform association scans at the 

biobank scale using genetic risk scores and GWAS association statistics. Through simulations, 

we demonstrated that our method provides consistent effect estimates and similar statistical 

power compared to regression analysis based on individual-level data. Additionally, we applied 

BADGERS to two large and independent GWAS datasets for late-onset AD. In our analyses, we 

used GWAS summary statistics from the UK biobank, one of the largest genetic cohort in the 

world, to generate PRS for complex traits. We estimated heritability for all available traits in the 

UK biobank and only included traits with nominally significant heritability (p<0.05) in our 

analyses. The GWAS summary statistics for Alzheimer’s disease were also obtained from the 

largest available study – International Genomics of Alzheimer’s Project (IGAP) and we further 

sought replication using a large, independent dataset from the Alzheimer’s Disease Genetics 

Consortium (ADGC). Overall, we are confident that these quality control procedures largely 

controlled the false findings in our study. Among 1,738 heritable traits in the UK biobank, we 

identified 48 traits showing statistically significant associations with AD. These traits covered a 

variety of categories, including family history, cholesterol, intelligence, education, occupation, 

and lifestyle. Although many of the identified traits are genetically correlated, multivariate 

conditional analysis confirmed multiple strong and independent associations for AD. Family 

history showing strong associations with AD is not a surprise, and many other associations are 

supported by the literature as well. The protective effect of higher educational and occupational 

attainment on the risk and onset of dementia is well studied [27, 28]. Cholesterol buildup is also 

known to associate with β-amyloid plaques in the brain and higher AD risk [29-31]. 

 

More interestingly, these identified traits had distinct association patterns with various AD 

subgroups, biomarkers, pathologies, and pre-clinical cognitive traits. Five cognitively-defined AD 

subgroups were consistently associated with maternal family history, but only the group without 

substantial relative impairment in any domain (i.e. EPAD_none) was associated with intelligence 

and education. In addition, family history and high cholesterol were strongly associated with 

classic AD neuropathologies, including NP and NFT, while intelligence and educational 

attainment predicted pre-clinical cognitive scores and MCI. These results suggest that various 

AD risk factors may affect the disease course at different time points and via distinct biological 

processes, and genetically predicted risk factors for clinical AD include at least two separate 

components. While some risk factors (e.g. high cholesterol and APOE) may directly contribute 
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to the accumulation of pathologies, other factors (e.g. intelligence and education) may buffer the 

adverse effect of brain pathology on cognition [28]. One possible scenario is that family history 

and high cholesterol are like the fundamental cause of AD while education level and intelligence 

are like the parameter of such factors. While if one didn’t have such a factor in the first stage, 

they are protected from getting AD, if someone with such factor and also has high score in 

education attainment or intelligence, they can also get rid of the possibility of getting AD. We 

also investigated the influence of APOE on the identified associations. Effects of family history 

and high cholesterol were substantially reduced after APOE removal. In contrast, associations 

with cognition and education were virtually unchanged. These results suggest that various AD 

risk factors may affect the disease course at different time points and via distinct biological 

processes. While some risk factors (e.g. high cholesterol and APOE) may directly contribute to 

the accumulation of pathologies, other factors (e.g. intelligence and education) reduce the 

adverse effect of brain pathology on cognition [28].   

 

Further, we note that the association results in BADGERS need to be interpreted with caution. 

Although PRS-based association analysis is sometimes treated as causal inference in the 

literature [32], we do not see BADGERS as a tool to identify causal factors. Key assumptions in 

causal inference are in many cases, violated when analyzing complex, highly polygenic traits, 

which may lead to complications when interpreting results. In our analysis, BADGERS showed 

superior statistical power than MR-IVW – among 1738 heritable traits, 48 reached Bonferroni 

significance in BADGERS, 9 and 18 traits reached Bonferroni significance in MR-IVW and 

GSMR, respectively. Among the 48 traits identified by BADGERS, 23 reached nominal 

statistical significance in MR-IVW and 11 were nominally significant in GSMR. BADGERS is a 

statistically powerful and computationally efficient method for identifying associations between a 

disease of interest and genetically imputed complex traits. Due to the capability of utilizing PRS 

with a large number of SNPs to impute complex traits, BADGERS has substantially improved 

statistical power compared to MR methods. And because of this, it can serve as a hypothesis-

free method to screen for candidate risk factors from biobank-scale datasets with an 

overwhelming number of traits. After a list of candidate risk factors is identified using BADGERS, 

MR methods can be applied to carefully demonstrate causality. We envision BADGERS as a 

tool to prioritize associations among a large number of candidate risk factors so that robust 

causal inference methods can be applied to carefully assess causal effects. In addition, 

BADGERS requires a reference panel to provide LD estimates as a summary statistics-based 

method. If the population in the reference panel does not match that of the GWAS, it may create 
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bias in the analysis. Our simulation results suggest that 1000 Genomes European samples is 

sufficient for our analysis when the GWAS was also conducted on European samples. Our 

implemented BADGERS software is flexible on the choice of LD reference panel. It allows users 

to change the reference dataset when they see fit.  

 

What’s more, environmental factors may play a big role in the identified associations. There is 

little doubt that environment could influence many complex traits, including the ones highlighted 

by the reviewer. However, this does not necessarily mean that these traits cannot also have a 

genetic component (or be genetically heritable). we summarized the heritability estimates for the 

48 traits identified in our BADGERS meta-analysis of two independent datasets for Alzheimer’s 

disease (Supplementary Table 19), and all of them have nominally significant heritability 

estimates (p<0.05) based on our selection criteria. Nevertheless, we do acknowledge that the 

high heritability of these traits is influenced by correlations with other traits. For example, job 

involving heavy manual or physical work is genetically correlated with educational attainment 

(Figure 3), which indicates that the association between this trait and Alzheimer’s disease may 

not be direct. Therefore, it is important to note that association results from BADGERS analysis 

need to be interpreted with caution.  

 

Limited sample size in AD endophenotypes is another limitation in our study. We have used 

data from the largest available GWAS for CSF biomarkers and neuropathologies. Still, small 

sample size made it challenging to assess the effects of traits that were weakly associated with 

AD. When an independent validation dataset is available, it would be of interest to assess the 

prediction accuracy of PRS on each trait. However, external validation datasets rarely exist in 

real applications. In that case, the users may choose to use heritability estimates to filter traits 

with a substantial genetic component. Further, in the BADGERS framework, PRS are 

independent variables in the regression analysis. If the PRS has limited predictive power, such 

noise is similar to measurement errors in standard regression analysis. This may decrease the 

statistical power in association tests but does not inflate the type-I error rate. Finally, emerging 

evidence has highlighted sex-specific genetic architecture of AD [24, 33]. In our analysis, 

maternal family history of AD showed stronger associations with various phenotypes than 

paternal family history. However, we note that this may be explained by the sample size 

difference in the UK biobank (Ncase=28,507 and 15,022 for samples with maternal and paternal 

family history, respectively). We also performed sex-stratified analyses for CSF biomarkers but 

identified limited associations, possibly due to the small sample size. Overall, sex-specific 
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effects of risk factors remain to be investigated in the future using larger datasets. In total, 

BADGERS requires the training data for genetic prediction models and the downstream disease 

GWAS to be independent but of similar genetic ancestry. Development of methods that are 

more robust to sample overlap and diverse genetic ancestry remains an open problem for future 

research. 

 

In conclusion, BADGERS is a statistically powerful method to identify associated risk factors for 

complex diseases. Large-scale biobanks continue to provide rich data on various human traits 

that may be of interest in disease research. Our method uses GWAS to bridge large biobanks 

with studies on specific diseases, lessens the limitation of insufficient disease cases in biobanks 

and lack of risk factor measurements in disease studies, and provides a statistically-justified 

approach to identifying risk factors for disease. We have demonstrated the effectiveness of 

BADGERS through extensive simulations, a two-stage BWAS for late-onset AD, and various 

follow-up analyses on identified risk factors. Our results provided new insights into the genetic 

basis of AD, and revealed distinct mechanisms for the involvement of risk factors in AD 

etiologies. The ever-growing sample size in GWAS and biobanks, in conjunction with 

increasingly accessible summary association statistics, makes BADGERS a powerful and 

valuable tool in human genetics research.  
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Methods 
 

BADGERS framework 

 

The goal of this method is to study the association between �, a measured trait in the study, and ��, a trait imputed from genetic data via a linear prediction model: �� �  �� 

Here, ����  is the genotype matrix for �  individuals in a study of trait � . ����  is the pre-

calculated weight values on SNPs in the imputation model. ! denotes the number of SNPs. We 

use �, a �  1 vector, to denote the trait values measured on the same group of individuals. We 

test the association between � and �� via a linear model � �  	 
 ��� 
 �  
where 	 is the intercept, �  is the term for random noise, and regression coefficient �  is the 

parameter of interest. The ordinary least squares (OLS) estimator for � can be denoted as 

�� �  %&"���, ��"#$���� � %&"���, ��"#$���� � 1"#$���� �� ' %&"���, ��(%&"��� , ��) 

Here, �	 is the jth column of �. Additionally, we derive the formula for the standard error of ��: 

������ � * "#$����  "#$���� � * "#$����  "#$���� 

The approximation in this formula is based on the assumption that trait � has complex etiology 

and imputed trait ��  only explains a small proportion of its phenotypic variance. When an 

accurate estimate of "#$���  is difficult to obtain, this approximation approach provides 

conservative results and controls type-I error in the analysis. 

 

In practice, individual-level genotype (i.e. �) and phenotype data (i.e. �) may not be accessible 

due to policy and privacy concerns. Therefore, it is of practical interest to perform the 

aforementioned association analysis using summary association statistics. Standard genetic 

association analysis tests the association between trait � and each SNP via the following linear 

model: � �  +	 
 �	,	 
 -	  �1 � . � !� 

The OLS estimator for ,	 and its standard error have the following forms. 
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,/	 �  %&"��	 , ��"#$��	�  

���,/	� � * "#$�-	��  "#$��	� � * "#$����  "#$��	� 

Again, the approximation is based on the empirical observation in complex trait genetics – each 

SNP explains little variability of � [34]. 

 

Next, we derive the test statistic (i.e. z-score) for �: 


 � �������� 

� * �"#$���  "#$0��1 �� ' %&"���, ��(%&"��� , ��) 

� 1
2"#$0��1 ��

3
44
5 �"#$����,/���0,/�1(�"#$����,/���0,/�1 6

77
8

 

� ���
� 

where � is a diagonal matrix with the jth diagonal element being  

�		 � *"#$��	�"#$0��1  

and 
� is the vector of SNP-level z-scores obtained from the GWAS of trait �, i.e. 


�	 � ,/	��0,/	1 

Without access of individual-level genotype data, "#$��	� and "#$0��1 need to be estimated 

using an external panel with a similar ancestry background. We use �� to denote the genotype 

matrix from an external cohort, then "#$��	� can be approximated using the sample variance of ��	. Variance of �� can be approximated as follows 

"#$0��1 � ��9:� 

where 9: is the variance-covariance matrix of all SNPs estimated using ��. However, when the 

number of SNPs is large in the imputation model for trait �, calculation of 9: is computationally 

intractable. Instead, we use an equivalent but computationally more efficient approach. We first 

impute trait � in the external panel using the same imputation model  
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�� �  ��� 

Then, "#$0��1 can be approximated by sample variance "#$0��1. 

 

Thus, we can test association between �  and ��  without having access to individual-level 

genotype and phenotype data from the GWAS. The required input variables for BADGERS 

include a linear imputation model for trait �, SNP-level summary statistics from a GWAS of trait �, and an external panel of genotype data. With these, association test can be performed. 

 

Multivariate analysis in BADGERS 

 

To adjust for potential confounding effects, it may be of interest to include multiple imputed traits 

in the same BADGERS model. We still use � to denote the measured trait of interest. The goal 

is to perform a multiple regression analysis using � imputed traits (i.e. ���, ..., ���) as predictor 

variables: � �  ����� 
 ��   
Here, we use ��� � ����, … , ����  to denote a �  �  matrix for �  imputed traits. Regression 

coefficients �� � ���, … , ����  are the parameters of interest. To simplify algebra, we also 

assume trait � and all SNPs in the genotype matrix � are centered so there is no intercept term 

in the model, but the conclusions apply to the general setting. Similar to univariate analysis, 

traits ���, … , ��� are imputed from genetic data via linear prediction models: ��� � ��� 

where ����
�  are imputation weights assigned to SNPs. The ith column of �  denotes the 

imputation model for trait ��. Then, the OLS estimator ��� and its variance-covariance matrix can 

be denoted as follows: ��� � �����������
�������� %&"����� � "#$��������������
� 
The approximation is based on the assumption that imputed traits ���, … , ��� collectively explain 

little variance in �, which is reasonable in complex trait genetics if � is not too large. We further 

denote: 

� ; �0���������1
� � < "#$����� = %&"����, ����( > (%&"���� , ���� = "#$����� ?
�

 

All elements in matrix � can be approximated using a reference panel �� [35]: 
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%&"���� , ��	� � %&"���� , ��	� 

Therefore, the z-score for ��  �1 � @ � �� is 


� � ���������� 

� �����������������"#$��� 

� 1����

���������Θ
� 

where �� is the �  1 vector with the kth element being 1 and all other elements equal to 0, Θ is a 

!  ! diagonal matrix with the ith diagonal element being �"#$����, and similar to the notation 

in univariate analysis, 
� is the vector of SNP-level z-scores from the GWAS of trait �. Given 

imputation models for � traits (i.e. ��), GWAS summary statistics for trait � (i.e. 
�), and an 

external genetic dataset to estimate �  and Θ , multivariate association analysis can be 

performed without genotype and phenotype data from the GWAS. 

 

Genetic prediction 

 

Any linear prediction model can be used in the BADGERS framework. With access to individual-

level genotype and phenotype data, the users can train their preferred statistical learning 

models, e.g. penalized regression or linear mixed model. When only GWAS summary statistics 

are available for risk factors (i.e. �), PRS can be used for imputation. We used PRS to impute 

complex traits in all analyses throughout the paper. Of note, more advanced PRS methods that 

explicitly model LD [36] and functional annotations [37] to improve prediction accuracy have 

been developed. However, additional independent datasets may be needed if there are tuning 

parameters in PRS. In general, higher imputation accuracy will improve statistical power in 

association testing [12]. The BADGERS software allows users to choose their preferred 

imputation model.  

 

Simulation settings 

 

We simulated quantitative traits using genotype data of 62,313 individuals from the GERA 

cohort (dbGap accession: phs000674). Summary association statistics were generated using 

PLINK [38]. We ran BADGERS on summary statistics based on the simulated traits and PRS of 

1,738 traits in the UK biobank. To compare BADGERS with the traditional approach that uses 
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individual-level data as input, we also directly regressed simulated traits on the PRS of UK 

biobank traits to estimate association effects.  

 

Setting 1. We simulated quantitative trait values as i.i.d. samples from normal distribution with 

mean 0 and variance 1. In this setting, simulated trait values were independent from genotype 

data.  

 

Setting 2. We simulated quantitative trait values based on an additive random effect model 

commonly used in heritability estimation [39]. We fixed heritability to be 0.1. In this setting, the 

simulated trait is associated with SNPs, but is not directly related to PRS of UK biobank traits. 

 

Setting 3. We selected 100 traits from 1,738 UK-Biobank traits to calculate PRS on GERA data. 

For each of these 100 PRS, we simulated a quantitative trait by summing up the effect of PRS, 

a polygenic genetic background, and a noise term. � � �, 
  AB 
  - 

Here, � denotes the genotype of samples; , is the effect size of each variant; B is the PRS of 

one of the selected traits; A is the effect size of PRS; and - is the error term following a standard 

normal distribution. The polygenic background and random noise (i.e. �, 
 -) were simulated 

using the same model described in setting 2. This term and the PRS were normalized 

separately. The standardized effect size (i.e. A) was set as 0.02, 0.015, 0.01, 0.008, and 0.005 

in our simulations. In this setting, simulated traits are directly associated with SNPs and PRS. 

For each value of A, statistical power was calculated as the proportion of significant results 

(p<0.05) out of 100 traits. 

 

Setting 4. We simulated 100 quantitative traits �� , … , ���� based on an additive random effect 

model commonly used with heritability fixed as 0.1. And the response traits ��, … , ����  were 

simulated by adding a noise term to �. �� � γ
�
�� 
  -� 

Where γ
�
~��0,2� , and -�~�00, G#$����1. The data set was split into two subsets, one with 

31,162 (subset 1) and another with 31,163 samples (subset 2). Marginal summary statistics 

correspond to �� ’s and ��’s were derived using subset 1 and subset 2, respectively. We applied 

LDpred to jointly estimate all SNPs’ effects using marginal summary statistics from subset 1. 
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Then, we ran BADGERS to identify associations between 100 pairs of ��  and  ��  using two 

methods to impute �� ’s (i.e. marginal PRS and LDpred). 

 

GWAS datasets 

 

Summary statistics for 4,357 UK biobank traits were generated by Dr. Benjamin Neale’s group 

and were downloaded from (http://www.nealelab.is/uk-biobank). AD summary statistics from the 

IGAP stage-I analysis were downloaded from the IGAP website (http://web.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php). ADGC phase 2 summary statistics were 

generated by first analyzing individual datasets using logistic regression adjusting for age, sex 

and the first three principal components in the program SNPTest v2 [40]. Meta-analysis of the 

individual dataset results was then performed using the inverse-variance weighted approach 

[41].  

 

GWAS summary statistics for neuropathologic features of AD and related dementias were 

obtained from the ADGC. Details on these data have been previously reported [25]. We 

analyzed a total of 13 neuropathologic features, including four NP traits, two traits for NFT Braak 

stages, three traits for LBD, CAA, HS, and two VBI traits. Among different versions of the same 

pathology, we picked one dataset for each pathologic feature to show in our primary analyses. 

Six AD subgroups were defined in the recent EPAD paper [21] on the basis of relative 

performance in memory, executive functioning, visuospatial functioning, and language at the 

time of Alzheimer’s diagnosis. Four subgroups include AD samples with an isolated substantial 

relative impairment in one of four domains; the “none” subgroup includes samples without 

substantial relative impairment; the “mix” subgroup includes samples with relative impairment in 

multiple domains. Each domain was compared with healthy controls in case-control association 

analyses. We did not include the executive functioning subgroup in our analysis due to its small 

sample size in cases. Detailed information about the design of CSF biomarker GWAS and the 

recent sex-stratified analysis has been described previously [23, 24]. Details on the association 

statistics for AD subgroups, CSF biomarkers, and neuropathological features are summarized in 

Supplementary Table 17. 

 

Analysis of GWAS summary statistics 
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We applied LD score regression implemented in the LDSC software [42] to estimate the 

heritability of each trait. Among 4,357 traits, we selected 1,738 with nominally significant 

heritability (p<0.05) to include in our analyses. We removed SNPs with association p-values 

greater than 0.01 from each of the 1,738 summary statistics files, clumped the remaining SNPs 

using a LD cutoff of 0.1 and a radius of 1 Mb in PLINK [38], and built PRS for each trait using 

the effect size estimates of remaining SNPs.  

 

Throughout the paper, we used samples of European ancestry in the 1000 Genomes Project as 

a reference panel to estimate LD [43]. In univariate analyses, we tested marginal associations 

between each PRS and AD using the IGAP stage-I dataset and replicated the findings using the 

ADGC summary statistics. Association results in two stages were combined using an inverse 

variance-weighted meta-analysis [41]. A stringent Bonferroni-corrected significance threshold 

was used to identify AD-associated risk factors. For associations between identified risk factors 

and AD endophenotypes, we used an FDR cutoff of 0.05 to claim statistical significance. We 

applied hierarchical clustering to the covariance of 48 traits we identified from marginal 

association analysis, then divided the result into 15 clusters and selected one most significant 

trait from each cluster and used them to perform multivariate conditional analysis. We analyzed 

IGAP and ADGC datasets separately, and combined the results using meta-analysis. 

 

We used MR-IVW approach [44] implemented in the Mendelian Randomization R package [45] 

to study the causal effects of 48 risk factors identified by BADGERS. For each trait, we selected 

instrumental SNP variables as the top 30 most significant SNPs after clumping all SNPs using a 

LD cutoff of 0.1.   

 

Analysis of WRAP data 

 

WRAP is a longitudinal study of initially dementia-free middle-aged adults that allows for the 

enrollment of siblings and is enriched for a parental history of AD. Details of the study design 

and methods used have been previously described [26, 46]. After quality control, a total of 1,198 

participants whose genetic ancestry was primarily of European descent were included in our 

analysis. On average, participants were 53.7 years of age (SD=6.6) at baseline and had a 

bachelor’s degree, and 69.8% (n=836) were female. Participants had two to six longitudinal 

study visits, with an average of 4.3 visits, leading to a total of 5,184 observations available for 

analyses. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2023. ; https://doi.org/10.1101/468306doi: bioRxiv preprint 

https://doi.org/10.1101/468306
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

DNA samples were genotyped using the Illumina Multi-Ethnic Genotyping Array at the 

University of Wisconsin Biotechnology Center. Thirty-six blinded duplicate samples were used 

to calculate a concordance rate of 99.99%, and discordant genotypes were set to missing. 

Imputation was performed with the Michigan Imputation Server v1.0.3 [47], using the Haplotype 

Reference Consortium (HRC) v. r1.1 2016 [48] as the reference panel and Eagle2 v2.3 [49] for 

phasing. Variants with a quality score R2<0.80, MAF<0.001, or that were out of HWE were 

excluded, leading to 10,499,994 imputed and genotyped variants for analyses. Data cleaning 

and file preparation were completed using PLINK v1.9 [50] and VCFtools v0.1.14 [51]. 

Coordinates are based on the hg19 genome build. Due to the sibling relationships present in the 

WRAP cohort, genetic ancestry was assessed and confirmed using Principal Components 

Analysis in Related Samples (PC-AiR), a method that makes robust inferences about population 

structure in the presence of relatedness [52]. 

 

Composite scores were calculated for executive function, delayed recall, and learning based on 

a previous analysis [53]. Each composite score was calculated from three neuropsychological 

tests, which were each converted to z-scores using baseline means and standard deviations. 

These z-scores were then averaged to derive executive function and delayed recall composite 

scores at each visit for each individual. Cognitive impairment status was determined based on a 

consensus review by a panel of dementia experts. Resulting cognitive statuses included 

cognitively normal, early MCI, clinical MCI, impairment that was not MCI, or dementia, as 

previously defined [54]. Participants were considered cognitively impaired if their worst 

consensus conference diagnosis was early MCI, clinical MCI, or dementia (n=387). Participants 

were considered cognitively stable if their consensus conference diagnosis was cognitively 

normal across all visits (n=803). 

 

The 48 PRSs were developed within the WRAP cohort using PLINK v1.9 [50] and tested for 

associations with the three composite scores (i.e. executive function, delayed recall, and 

learning) and cognitive impairment statuses. MCI status was tested using logistic regression 

models in R, while all other associations, which utilized multiple study visits, were tested using 

linear mixed regression models implemented in the lme4 package in R [55]. All models included 

fixed effects for age and sex, and cognitive composite scores additionally included a fixed effect 

for practice effect (using visit number). Mixed models included random intercepts for within-
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subject correlations due to repeated measures and within-family correlations due to the 

enrollment of siblings. 
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Software availability 
 

The BADGERS software is freely available at https://github.com/qlu-lab/BADGERS 
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