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Abstract 
 
Somatic mutations within non-coding regions and even exons may have unidentified regulatory 
consequences that are often overlooked in analysis workflows. Here we present RegTools 
(www.regtools.org), a computationally efficient, free, and open-source software package 
designed to integrate somatic variants from genomic data with splice junctions from bulk or 
single cell transcriptomic data to identify variants that may cause aberrant splicing. RegTools 
was applied to over 9,000 tumor samples with both tumor DNA and RNA sequence data. We 
discovered 235,778 events where a splice-associated variant significantly increased the splicing 
of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To 
characterize these somatic variants and their associated splice isoforms, we annotated them 
with the Variant Effect Predictor (VEP), SpliceAI, and Genotype-Tissue Expression (GTEx) 
junction counts and compared our results to other tools that integrate genomic and 
transcriptomic data. While many events were corroborated by the aforementioned tools, the 
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flexibility of RegTools also allowed us to identify novel splice-associated variants and previously 
unreported patterns of splicing disruption in known cancer drivers, such as TP53, CDKN2A, and 
B2M, as well as in genes not previously considered cancer-relevant.  
 
Introduction 
 
Alternative splicing of messenger RNA allows a single gene to encode multiple gene products, 
increasing a cell’s functional diversity and regulatory precision. However, splicing malfunction 
can lead to imbalances in transcriptional output or even the presence of novel oncogenic 
transcripts1. The interpretation of variants in cancer is frequently focused on direct protein-
coding alterations2. However, most somatic mutations arise in intronic and intergenic regions, 
and exonic mutations may also have unidentified regulatory consequences3,4,5,6. For example, 
mutations can affect splicing either in trans, by acting on splicing effectors, or in cis, by altering 
the splicing signals located on the affected pre-mRNA transcripts themselves7.  
 
Increasingly, we are identifying the importance of cis-acting splice-associated variants in 
disease processes, including in cancer8,9. However, our understanding of the landscape of 
these variants is currently limited, and few tools exist for their discovery. One approach for 
identifying splice-associated variants has been to predict the strength of putative splice sites in 
pre-mRNA from genomic sequences, such as the method used by SpliceAI10–13. With the advent 
of efficient and affordable RNA-sequencing (RNA-seq), we are also seeing the development of 
tools that take the complementary approach of observing products of alternative splicing directly 
in RNA sequencing data, such as SUPPA2 and SPLADDER14,15. However, most of these tools 
have focused on the role of trans-acting splice-associated variants16. Only a few tools link 
products of alternative splicing to specific genomic variants to investigate their potential cis-
acting role in splicing regulation, and these few tools have limitations that preclude them from 
broad applications. The sQTL-based approach taken by LeafCutter17 and others18,19 is designed 
for single-nucleotide polymorphisms, which occur with relatively high frequency, and is thus ill-
suited to studying somatic variants, or any case in which the frequency of a particular variant is 
very low (often unique) in a given sample population. Recent tools created for large-scale 
analysis of cancer-specific data, such as MiSplice and Veridical, ignore certain types of 
alternative splicing, are tailored to specific analysis strategies and hypotheses, or are otherwise 
inaccessible to the end-user due to practical issues such as lack of documentation, difficulty 
with installation and integration with existing pipelines, limited computational efficiency, or 
license restrictions20–22. To address these needs, we have developed RegTools, a free, open-
source (MIT license) software package that is well-documented, easy to use, and designed to 
efficiently and flexibly identify potential cis-acting splice-associated variants in tumors 
(www.regtools.org). At the highest level, RegTools contains three sub-modules: a variants 
module to annotate genomic variant calls for their potential splicing relevance, a junctions 
module to analyze aligned RNA-seq data to extract and annotate splice junctions, and a cis-
splice-effects module that associates these variants and junctions to identify potential splice-
associated variants. Each sub-module contains one or more commands, which can be used 
individually or integrated together to create customized splice-regulatory variant analysis 
pipelines. 
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To demonstrate the ability of RegTools to identify potential splice-associated variants from 
tumor data, we analyzed a combination of data available from the McDonnell Genome Institute 
(MGI) at Washington University School of Medicine and The Cancer Genome Atlas (TCGA) 
project. In total, we applied RegTools to 9,173 tumors across 35 cancer types. We compared 
RegTools with other tools that integrate genomic and transcriptomic data to identify potential 
splice-associated variants, specifically Veridical, MiSplice, and SAVNet20,21,23. Novel junctions 
identified by RegTools were compared to data from The Genotype-Tissue Expression (GTEx) 
project to assess whether these junctions are present in normal tissues24. Variants significantly 
associated with novel junctions were processed through VEP and Illumina’s SpliceAI tool to 
compare our findings against splicing consequences predicted based on variant information 
alone13,25. We identified variants in known cancer drivers, such as TP53, CDKN2A, and B2M, as 
well as in novel potential drivers, such as RNF145.  
 
Results 
 
The RegTools tool suite supports splice-associated variant discovery by the integration 
of genome and transcriptome data 
 
RegTools is a tool suite composed of three modules designed to aid users in a broad range of 
splicing-related analyses. The variants module contains the annotate command. The variants 
annotate command takes a VCF of somatic variant calls and a GTF of transcript annotations as 
input. RegTools has no particular preference for variant callers or sources of reference 
transcript annotations. Each variant is annotated by RegTools with known overlapping genes 
and transcripts and is categorized into one of several user-configurable “variant types”, based 
on position relative to the edges of known exons. The variant type annotation depends on the 
stringency for splice-association that the user sets with the “splice variant window” setting. By 
default, RegTools marks intronic variants within 2 base pairs (bp) of the exon edge as “splicing 
intronic”, exonic variants within 3 bp as “splicing exonic”, other intronic variants as “intronic”, and 
other exonic variants as “exonic”. RegTools focuses on “splicing intronic” and “splicing exonic” 
in downstream analyses. To allow for the discovery of an arbitrarily expansive set of variants, 
RegTools allows the user to customize the size of the intronic/exonic windows individually (e.g. -
i 2 -e 3 for default splice variant window, -i 50 -e 5 for intronic variants 50 bp from an exon edge 
and exonic variants 5 bp from an exon edge) or even consider all intronic/exonic variants as 
potentially splice-associated (e.g. -I or -E) (Figure 1A).  
 
The junctions module contains the extract and annotate commands. The junctions extract 
command takes a BAM/CRAM file containing aligned RNA-seq reads, infers the exon-exon 
boundaries based on the CIGAR strings26, and outputs each “junction” as a feature in BED12 
format. The junctions annotate command takes a BED file containing junctions in BED12 format 
(such as the one produced by junctions extract), a FASTA file containing the reference genome, 
and a GTF file containing reference transcriptome annotations and generates a TSV file, 
annotating each junction with: the number of acceptor sites, donor sites, and exons skipped, 
and the identities of known overlapping transcripts and genes. We also annotate the “junction 
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type”, which denotes if and how the junction is novel (i.e. not found in the reference 
transcriptome). If the donor site is known, but the acceptor site is not or vice-versa, it is marked 
as “D” or “A”, respectively. If both the donor and acceptor sites are known, but the pairing is not 
known, it is marked as “NDA”. If both the donor and acceptor sites are unknown, it is marked as 
“N”. If the junction is not novel (i.e. it appears in at least one transcript in the supplied GTF), it is 
marked as “DA” (Figure 1B).  
 
The cis-splice-effects module contains the identify and associate commands, which identify 
potential splice-associated variants from genomic and transcriptomic data. The cis-splice-effects 
identify command requires the following files as input: a VCF file containing variant calls, an 
alignment file containing aligned RNA-seq reads, a reference genome FASTA file, and a 
reference transcriptome GTF file. The identify pipeline internally relies on variants annotate, 
junctions extract, and junctions annotate to output a TSV containing junctions proximal to 
putatively splice-associated variants. The identify pipeline can be customized using the same 
parameters as in the individual commands. Briefly, cis-splice-effects identify first performs 
variants annotate to determine the splicing relevance of each variant in the input VCF. For each 
variant, a “splice junction region” is determined by finding the largest span of sequence space 
between exons that flank the variant-containing exon. From here, junctions extract identifies 
splicing junctions present in the RNA-seq alignment. Next, junctions annotate labels each 
extracted junction with information from the reference transcriptome as described above and its 
associated variants based on splice junction region overlap (Figure 1C). To enable the 
association of variants with pre-extracted junctions, cis-splice-effects associate performs the 
same pipeline as cis-splice-effects identify, but takes junctions from an existing BED12 file, such 
as one previously created by the junction extract command, instead of re-extracting from the 
alignment file. 
 
For our analysis, we annotated the pairs of variants and associated junctions identified by 
RegTools, which we refer to as “events”, with additional information such as whether this 
association was identified by a comparable tool, whether the junction was found in GTEx, and 
whether the event occurred in a cancer gene according to the Cancer Gene Census (CGC) 
(Figure 1C)24,27. Finally, for each event identified by RegTools, we created an IGV session that 
showed a BED file with the junction, a VCF file with the variant, and BAM files with DNA 
alignments for all samples that contained the variant28. These IGV sessions were used to 
manually review candidate events to assess whether the association between the variant and 
junction was biologically plausible. 
 
Overall, RegTools is designed for broad applicability and computational efficiency. By relying on 
well-established and widely adopted standards for sequence alignments (BAM/CRAM), 
annotation files (GTF), and variant calls (VCF) and by remaining agnostic to downstream 
statistical methods and comparisons, our tool can be applied to a broad set of scientific queries 
and datasets. Moreover, performance tests show that cis-splice-effects identify can process a 
typical candidate variant list of 1,500,000 variants and a corresponding RNA-seq BAM file of 
82,807,868 reads in just ~8 minutes (Supplementary Figure 1). Run time increases 
approximately linearly with increasing numbers of junctions and variants. 
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Pan-cancer analysis of 35 tumor types identifies somatic variants that alter canonical 
splicing 
 
RegTools was applied to 9,173 samples over 35 cancer types. 32 of these cohorts came from 
TCGA while the remaining 3 were obtained from other projects being conducted at MGI. Cohort 
sizes ranged from 21 to 1,022 samples. In total, 6,370,631 somatic variants (Supplementary 
Figure 2A) and 2,387,989,201 junction observations (Supplementary Figure 2B) were 
analyzed by RegTools. By comparing the number of initial variants to the number of statistically 
significant variants, we see that RegTools produces a highly prioritized list of potential splice-
associated variants (Supplementary Figure 3). Additionally, when analyzing the junctions 
within each sample, we found that known junctions present in the reference transcriptome are 
frequently seen within GTEx data while novel junctions are rarely seen within GTEx 
(Supplementary Figure 4). These represent potential tumor-specific junctions. We identified 
235,778 significant events for novel junctions that use a known donor and novel acceptor (D), 
novel donor and known acceptor (A), or novel combination of a known donor and a known 
acceptor (NDA) (Methods, Supplementary Figure 2C, Supplementary Files 1 and 2). 
Additionally, we identified 5,157 events for known (DA) junctions (Supplementary Files 3 and 
4). Thus, while splice-associated variants usually result in a novel junction occurring, they may 
also alter the relative amounts of known junctions. Generally, significant events were evenly 
distributed among the novel junction types considered (D, A, and NDA). The number of 
significant events increased as the splice variant window size increased, with both the E and I 
results being comparable in number. Notably, hepatocellular carcinoma (HCC) was the only 
cohort that had whole genome sequencing (WGS) data available and, as expected, it exhibited 
a marked increase in the number of significant events for its results within the “I” splice variant 
window. This observation highlights the low sequence coverage of intronic regions that occurs 
with whole exome sequencing (WES), which reduces the potential for the discovery of splice-
associated variants within introns. 
 
Variants were analyzed across tumor types for how often each resulted in either single or 
multiple novel junctions (Figure 2A). While variants were most commonly associated with a 
single novel junction (72.3-83.8%), they could also be associated with multiple junctions, either 
of the same type (6.6-10.9%) or of different types (9.7-16.8%) (Figure 2B). Variants that are 
associated with multiple novel junctions of different types were further investigated to identify 
how often a particular junction type occurred with another (Figure 2C). Most commonly, variants 
were associated with either novel donor or acceptor site usage (A or D) and with an exon-
skipping junction (NDA). These kinds of events were particularly common within the default 
window (2 intronic bases or 3 exonic bases from the exon edge), potentially due to variants 
within these positions having a high probability of disrupting the natural splice site, thus causing 
the splicing machinery to use a cryptic splice site nearby or skip the exon entirely. The next 
most common co-occurrence was a variant being associated with both novel donor site usage 
leading to A junctions and acceptor site usage leading to D junctions. The occurrence of a 
variant associated with the combination of a novel donor, novel acceptor, and exon-skipping 
was low, and remained low, even as the search space increased with the larger splice variant 
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windows. Overall, this analysis highlights that there is evidence that a single variant can lead to 
multiple novel junctions being expressed. Tools such as SpliceAI only allow for a single junction 
to be associated with a variant and therefore may not completely describe the splicing effects of 
the variant in question for up to ~27% of cases. 
 
Orthogonal validation of RegTools using clinical data and verified splice-associated 
variants 
 
We tested RegTools against multiple datasets to further validate this tool suite. The first dataset 
that we compared against was the 10 splice-site-creating variants that Jayasinghe et al. 
validated using mini-gene functional assays20. They selected 11 variants that their tool, 
MiSplice, originally identified from TCGA data. These mutations were then compared to wild-
type sequences using a pCAS2.1 splicing reporter mini-gene functional assay and 10 were 
validated through sequencing of alternatively spliced products. These 10 variants were run 
through RegTools using corresponding aligned transcriptomic reads for each sample. RegTools 
identified an association between all 10 variants and an aberrant splice junction 
(Supplementary File 5). 
 
The next dataset that we used to validate RegTools was MutSpliceDB29. This is a public 
database that contains manually reviewed RNA-based evidence of the effects of splice site 
variants on splicing. Currently, data is curated from TCGA and the Cancer Cell Line 
Encyclopedia30–32. When we accessed MutSpliceDB, there were 211 entries. Out of these 211 
entries, 208 were annotated by MutSpliceDB as either intron inclusion or exon skipping events. 
We used the mutations provided and the corresponding RNA alignments to process each of 
these mutations through RegTools. We detected all 211 manually reviewed splice site variants 
(Supplementary File 6).  
 
We also validated RegTools using clinical sequencing projects that allowed us to directly test 
the effects of somatic variants between multiple tumors within individuals. The first dataset 
utilized is from Schaettler and Richters et al. (2022) which investigated the impact of spatial 
heterogeneity on genomic characteristics of gliomas and brain metastases33. For this study, 
tumor tissue was surgically resected from 30 patients. Immediately following resection, each 
sample was dissociated into multiple (2-4) spatially distinct tumor regions that then underwent 
WES and RNA sequencing. We ran RegTools to identify splice-associated variants within each 
distinct tumor region. A benefit of the heterogeneity of these samples and the multisector 
approach that was used is that we were able to interrogate many examples of clonal and 
subclonal splice variants. This allowed us to validate associations within other tumor regions 
based on whether the variant was also present within those regions. Through this approach, we 
validated 134 out of 146 splice-associated variants in samples where multiple sectors shared 
the same variant and aberrant junction. Conversely, we found 142 splice-associated variants 
out of 212 in which one sector contained a variant and novel splice junction but other regions in 
which both the variant and associated junction were absent (Supplementary File 7). In other 
words, the events predicted by RegTools in the RNA data reflected the spatial heterogeneity of 
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somatic mutations observed in the DNA. This provides a form of biological validation that is 
more representative of true splicing biology than a typical mini-gene assay approach.  
 
Another dataset that we employed for a conceptually similar biological validation was treatment-
matched naive and post-treatment recurrence samples of small cell lung cancer (SCLC)34. By 
applying RegTools to these samples, we found splice-associated variants that persisted from 
the treatment-naive sample to the recurrence sample (0%-36.0%). Additionally, we identified 
samples where a splice-associated variant was lost due to treatment or arose post-treatment, 
either through the growth of a previously existing subclone or the emergence of a novel splice-
associated variant (64.0-100%) (Supplementary File 8). In this analysis, the RegTools results 
reflected the temporal heterogeneity of the tumors under treatment. 
 
We also validated RegTools using long-read sequencing data to confirm the full-length structure 
of alternatively spliced isoforms inferred from short read data. For this analysis, we used a well-
described breast cancer cell line, HCC1395. For a normal comparator, we used HCC1395’s 
matched lymphoblastoid cell line, HCC1395BL. For each of these samples, whole genome, 
exome and RNA-seq were performed. For HCC1395, Oxford Nanopore Technologies long-read 
sequencing was performed using both the Direct RNA Sequencing Kit and Direct cDNA 
Sequencing Kit. After applying RegTools to the bulk genomic and transcriptomic data and 
obtaining candidate splice-associated variants, we validated 80% of novel junctions observed 
within the short-read data and confirmed the resulting novel transcript sequences 
(Supplementary File 9). 
 
Finally, we validated RegTools on a single-cell RNA (scRNA) sequencing dataset from a study 
investigating the mechanisms of response to immune checkpoint blockade (ICB) using MCB6C, 
a transplantable organoid model of urothelial carcinoma with features of human basal-
squamous urothelial carcinoma35. This model had also been subjected to WES of DNA isolated 
from tumor cells and matched normal cells from the tail of the mouse originally used to create 
the tumor. Analysis of the tumor/normal WES DNA was performed to identify somatic variants. 
We then identified single cells from three conditions and surveyed their expressed transcripts for 
evidence of the somatic variants. Each cell was then classified as either tumor or normal, based 
on somatic variant expression, and separated into corresponding alignment files. More 
specifically, to identify a tumor cell, we used the following criteria: two or more somatic variants 
detected with >20X total coverage, >5 variant reads, and >10% variant allele fraction (VAF). To 
identify a normal cell, we used the following criteria: no variants detected and two or more of the 
variant positions with >20X total coverage. Using these criteria, we defined 5,587 tumor cells 
and 17,022 normal cells for a total of 22,609 single cells. We processed these cells through an 
updated version of RegTools modified to support single-cell data, treating each cell as an 
individual sample. This approach allowed us to greatly increase our power for determining 
tumor-associated splice-associated variants due to all mutations being tumor-specific and each 
cell representing an independent readout of the splicing machinery. We were able to identify 
over 300 splice-associated variants that had multiple cells of support, including within Trp53 and 
Bin1 (Figure 3, Supplementary Figure 5). Within Trp53, we identify an intronic variant (mm10, 
chr11:g.69589711T>G; c.1067+2 position of intron 8 of transcript NM_011640.3) that is 
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associated with the skipping of exon 8. This exon contains important domains such as binding 
domains for DNA and Axin in addition to a bipartite nuclear localization signal (UniProt: 
P02340)36,37. Similarly, we identify an intronic variant in Bin1 (mm10, chr18:g.32432427T>C, 
c.1516+2 position of intron 14 of transcript NM_001083334.1) that is associated with an 
alternate donor site being used and partial retention of intron 14. Bin1 has been shown to have 
tumor suppressor properties and shown to be dysregulated in breast cancer, neuroblastoma, 
prostate cancer, and melanoma38–42. The ability to identify such events at a single cell resolution 
may provide insights into how splice-associated variants contribute to tumorigenesis and tumor 
progression in ways that are not possible through bulk sequencing approaches. 
 
Through the application of RegTools to the aforementioned datasets, we were able to identify 
high-quality, validated splice-associated variants. Additionally, we utilized well-designed clinical 
and scRNA datasets to identify tumor-specific splice-associated mutations more stringently. 
These results demonstrate the broad utility of RegTools and its ability to identify splice-
associated somatic variants robustly. 
 
Pan-cancer analysis reveals novel splicing patterns within known cancer genes and 
potential cancer drivers 
 
While efforts have been made to associate variants with specific cancer types, there has been 
little focus on identifying cancer-specific splicing variants, even those in known cancer genes. 
TP53 is a rare example of a driver whose splice-associated variants are well-characterized in 
numerous cancer types43. To investigate the impact of variants on splicing disruption in cancer 
genes across different cancer types, we further analyzed significant events to identify genes that 
had recurrent splice-associated variants. Within each cohort, we looked for recurrent genes 
using two separate metrics: a binomial test p-value and the fraction of samples (see Methods). 
For ranking and selecting the most recurrent genes, each metric was computed by pooling 
across all cohorts. For assessing cancer-type specificity, each metric was then also computed 
using only results from a given cancer cohort. Since the mechanisms underlying the creation of 
novel junctions versus the disruption of existing splicing patterns may be different, analysis was 
performed separately for D/A/NDA junctions (Figure 4, Supplementary Files 10-13) and DA 
junctions (Supplementary Figure 6, Supplementary File 14), which allowed multiple test 
correction in accordance with the noise of the respective data. We identified 6,954 genes in 
which there was at least one variant predicted to influence the splicing of a D/A/NDA junction. 
The 99th percentile of these genes, when ranked by either metric, is significantly enriched for 
known cancer genes, as annotated by the CGC (p=1.26E-19, ranked by binomial p-values, 
p=2.97E-24, ranked by the fraction of samples; hypergeometric test). We also identified 3,643 
genes in which there was at least one variant predicted to influence the splicing of a DA (known) 
junction. The 99th percentile of these genes, when ranked by either metric, is also significantly 
enriched for known cancer genes, as annotated by the CGC (p=1.00E-04, ranked by binomial p-
values, p=3.56E-07, ranked by the fraction of samples; hypergeometric test). We also 
performed the same analyses using either the TCGA or MGI cohorts alone. The TCGA-only 
analyses gave similar results to the combined analyses, with the 99th percentile of genes found 
in the D/A/NDA and DA analyses again enriched for cancer genes (Supplementary Figures 7 
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and 8). Due to small cohort sizes, in the MGI-only analyses, we identified only 329 and 208 
genes in the D/A/NDA and DA analyses, respectively. The 99th percentile of genes was not 
significantly enriched for cancer genes in either of these analyses (Supplementary Figures 9 
and 10).  
 
When analyzing D, A, and NDA junctions, we saw an enrichment for known tumor suppressor 
genes among the most splice-disrupted genes, including several examples where splice 
disruption is a known mechanism such as TP53, PTEN, CDKN2A, and RB1. Specifically, in the 
case of TP53, we identified 428 variants that were significantly associated with at least one 
novel junction. One such example is the intronic SNV (GRCh38, chr17:g.7673609C>A) that was 
identified in an OSCC sample and was associated with exon skipping and novel acceptor site 
usage, with 23 and 41 reads of support, respectively (Supplementary Figure 11). The cancer 
types in which we find splice disruption of TP53 and other known cancer genes is in 
concordance with associations between genes and cancer types described by CGC and 
CHASMplus27,44. Our identification of known drivers, many with known susceptibilities to splicing 
dysregulation in cancer, indicates the ability of our method to identify true splicing effects that 
are likely cancer-relevant. Additional splice-associated variants were found in genes not 
currently known to be linked to cancer. Some of these genes, such as IGHG1 and IGHG2, are 
located in regions of the genome with high genetic variability in the population and are at loci 
where the reference genome may not represent structural diversity. These regions tend to result 
in false positive somatic variant calls and misalignment of short reads. These factors will 
complicate the identification of true splice regulatory variants in these regions. These regions 
also undergo V-D-J recombination in B cells, and some aligned reads could correspond to DNA 
from infiltrating immune cells. Some studies exclude immune-related regions of the genome 
entirely because of these kinds of complexities20. However, disruption of these genes may still 
be relevant to tumor biology and certainly tumor immunotherapy 45–48. 
 
Another cancer gene that had a recurrence of splice-associated variants was B2M. Specifically, 
we identified six samples with intronic variants on either side of exon 2 (Figure 5). These 
mutations were identified by VEP to be either splice acceptor or splice donor variants and were 
also identified by Veridical. SpliceAI identified one of the novel junctions for each variant but 
failed to identify additional novel junctions, as SpliceAI only identifies one novel acceptor and 
donor site per variant. Notably, 4 out of the 6 samples that these variants were found in are 
Microsatellite instability-high (MSI-H) tumors49. Mutations in B2M, particularly within colorectal 
MSI-H tumors, have been identified as a method for tumors to disable HLA class I antigen-
mediated presentation50. Furthermore, in a study of patients treated with immune checkpoint 
blockade (ICB) therapy, defects affecting B2M were observed in 29.4% of patients with 
progressing disease51. In the same study, B2M mutations were exclusively seen in pretreatment 
samples from patients who did not respond to ICB or in post-progression samples after the 
initial response to ICB51. There are several genes responsible for the processing, loading, and 
presentation of antigens that are mutated in cancers52. However, no proteins can be substituted 
for B2M in HLA class I presentation, thus making the loss of B2M a particularly robust method 
for ICB resistance53. We also observed exonic variants and variants further in intronic regions 
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that may disrupt canonical splicing of B2M. These findings raise the possibility that intronic 
variants may enable tumor immune escape by disrupting B2M splicing. 
 
We also identified recurrent splice-associated variants in genes not currently known to be 
cancer genes (according to CGC), such as RNF145. RegTools identified a recurrent single base 
pair deletion that results in the skipping of exon 8 (Supplementary Figure 12). This gene is a 
paralog of RNF139, which is mutated in several MSI-H cancer types54. This event was found in 
STAD, UCEC, COAD, and ESCA tumors, all of which are considered to be MSI-H tumors49. 
Analyzing the effect of the skipping of exon 8 on the mRNA sequence, we observed that the 
reading frame remains intact, possibly leading to a gain of function event. Additionally, the 
skipping of exon 8 leads to the removal of a transmembrane domain and a phosphorylation site, 
S352, which could be important for the regulation of this gene55. Based on these findings, 
splicing disruption of RNF145 warrants further investigation as a potential driver mechanism 
underlying MSI-H cancers. 
 
While most of our analysis focused on splice-associated variants that resulted in novel 
junctions, we also investigated variants that shifted the relative amounts of known junctions. We 
identified several variants that led to alternate donor usage in CDKN2A, a key tumor suppressor 
gene56 (Supplementary Figure 13). When these variants are present, an alternate known 
donor site is used that leads to the formation of the transcript ENST00000579122.1 instead of 
ENST00000304494.9, the transcript that encodes for p16ink4a, a known tumor suppressor. The 
transcript that results from the use of this alternative donor site is missing the last twenty-eight 
amino acids that form the C-terminal end of p16ink4a. Notably, this removes two phosphorylation 
sites within the p16 protein, S140 and S152, which could disrupt the association of p16ink4a with 
CDK457. This highlights the importance of including known transcripts in alternative splicing 
analyses, as variants may alter splice site usage in a way that results in a known, but still 
potentially oncogenic transcript product. 
 
RegTools provides usability and flexibility in integrating genomic and transcriptomic 
data to identify splice-associated variants 
 
To evaluate the performance of RegTools, we compared our results to those of SAVNet, 
MiSplice, Veridical, VEP, and SpliceAI13,20,21,23,25. These tools vary in their inputs and 
methodology for identifying splice-associated variants (Figure 6A). Like RegTools, SAVNet, 
MiSplice, and Veridical integrate genomic and transcriptomic data to identify splice-associated 
variants and have also been utilized in pan-cancer analyses that have demonstrated the utility 
of this integrative approach. However, there are practical and methodological limitations of 
these tools that impede their broad application. MiSplice and Veridical have varying levels of 
code availability or portability. MiSplice is available via GitHub as a collection of Perl scripts built 
to run via Load Sharing Facility (LSF) job scheduling. To run MiSplice without an LSF cluster, 
code changes are required. Veridical is only available via a subscription through CytoGnomix’s 
MutationForecaster. Similar to RegTools, SAVNet is available via GitHub or a Docker image. 
However, unlike Regtools, SAVNet relies on splicing junction files generated by STAR58 
whereas RegTools can use RNA-seq alignment files from HISAT259, TopHat260, or STAR, thus 
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allowing it to be easily integrated into bioinformatics workflows that use any of these popular 
aligners or to use pre-existing alignments. To demonstrate the time needed to generate the 
STAR splicing junction files in order to run SAVNet, we benchmarked RegTools and SAVNet 
using LUAD samples from TCGA (Supplementary Figure 14). On average, Regtools was 3.2x 
faster, taking into account the unalignment and realignment SAVnet required to generate the 
necessary starting files from STAR. Moreover, these tools prescribe certain analytical and 
methodological frameworks, whereas Regtools is designed to offer greater usability and 
flexibility to control how genomic and transcriptomic data is integrated. SAVNet, MiSplice, and 
Veridical employ particular statistical methods for the identification of splice-associated variants, 
whereas Regtools can be integrated at any step in the pipeline. Additionally, some of these tools 
filter out any transcripts found within the reference transcriptome, precluding the investigation of 
canonical splicing patterns as can be done by examining DA junctions with RegTools, and do 
not allow the user to set a custom window in which they wish to focus splice-associated variant 
discovery (e.g. around the splice site, all exonic variants, etc.). Furthermore, MiSplice does not 
include exon-skipping events. RegTools addresses these limitations by identifying what pieces 
of information to extract from a sample’s genome and transcriptome in a basic, easily 
configurable way that allows for generalization.  
 
The set of splice-associated variants identified using Regtools with its default splice variant 
window (-i 2 -e 3) are most similar to MiSplice and SAVNet. These three result sets contain 
fewer splice-associated variants compared to Veridical due to the more tightly constrained 
search space for variants to be associated with splicing alterations. Thus, we primarily focused 
our comparison to MiSplice and SAVNet (Figure 6B). Compared to Regtools and SAVNet, 
MiSplice finds fewer splice-associated variants, which could be due to MiSplice not examining 
exon skipping junctions, starting with only the subset of variants in the Multi-Center Mutation 
Calling in Multiple Cancers (MC3) MAF61, and limiting junctions to those within 20 bp of the 
variant. However, MiSplice also detected many splice-associated variants that were not 
detected by Regtools or SAVNet, which could be due to these tools focusing on variants only 
within a limited distance from exon edges (Figure 6A). The concordance between Regtools and 
SAVNet was relatively high, and their respective concordances with MiSplice were comparable. 
These results illustrate that distinct methodologies will lead to distinct findings, which will be 
necessary to address the manifold goals and challenges of studying cis-splicing regulation. 
Focusing on variants closer to the exon edge may lead to a higher rate of true discoveries, 
given the established mechanistic relationship between splice site disruption and alternative 
splicing. However, there are also more distal splice regulatory elements, such as splicing 
enhancers and silencers or genomic sequences that resemble splice site motifs that can have 
effects on splicing patterns. Therefore, one may wish to expand the genomic area in which to 
identify splice-associated variants. An example that illustrates the importance of this is the 
identification of several breast cancer samples that have splice-associated variants within 
GATA3 by RegTools. In our i50e5 analysis, we detected a set of highly recurrent GATA3 
mutations. Specifically, when focusing on mutations that occur within the RegTools splice 
variant window of i50e5 but outside the default window, we found 20 samples that contained the 
same 2 bp deletion (rs763236375), with 19 of these samples having alternative donor site 
usage for exon 5 of GATA3 leading to a frameshifted protein product that lacks one of two zinc 
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finger DNA binding domains. Within these samples, the novel junction becomes the dominant 
splice product compared to the canonical splice junction. Interestingly, this is a highly tumor-
specific event, with this splice-associated variant only being found within breast cancer 
(Supplementary File 11). GATA3 is a transcription factor, and its expression in breast cancer 
strongly correlates with estrogen receptor (ER) expression. This gene is mutated in 
approximately 10-15% of breast cancer cases, suggesting these are driver mutations, and 
during progression to metastatic breast cancer, GATA3 expression decreases62,63. These 
results highlight the value of a tool such as Regtools, which offers methodological flexibility to 
meet the diverse goals and challenges of studying splicing regulation. 
 
In their recent publications, SAVNet23, MiSplice20, and Veridical21,22 also analyzed data from 
TCGA, with only minor differences in the number of samples included for each study. We also 
compared the results of these studies with the results obtained by RegTools when expanding 
the set of variants to include all exonic and intronic space. In this comparison, Veridical and 
RegTools identify a large number of splice-associated variants (Figure 6C). While this approach 
is the least biased, it is undoubtedly hindered by specificity and multiple testing challenges. This 
is due not just to the larger number of candidates, but also to the biology of splicing regulation - 
the density of true cis-regulatory splicing elements is not uniform in the genome and is, for 
example, higher around exon edges64. While we do know that some splicing regulatory 
elements such as exonic splicing silencers (ESSs), exonic splicing enhancers (ESEs), intronic 
splicing silencers (ISSs), and intronic splicing enhancers (ISEs) can be quite distal65–67, running 
RegTools or any tool in a mode that is capable of detecting these certainly creates a signal to 
noise challenge and will lead to candidate event lists with a higher false positive rate. Still, the 
identification of these distal splicing regulatory sequences and variants that modify their effects 
will ultimately be required to fully uncover the underlying mechanisms of diseases, such as 
cancer. 
 
Both VEP and SpliceAI only consider information about the variant and its genomic sequence 
context and do not consider information from a sample’s transcriptome. A variant is considered 
to be splice-associated according to VEP if it occurs within 1-3 bases on the exonic side or 1-8 
bases on the intronic side of a splice site. SpliceAI does not have restrictions on where the 
variant can occur in relation to the splice site, but by default, it predicts one new donor and 
acceptor site within 50 bp of the variant, based on reference transcript sequences from 
GENCODE. VEP and SpliceAI results were obtained by running each tool on all starting 
variants for the 35 cohorts included in this study. SpliceAI and VEP called a large number of 
variants either alone or in agreement with each other that none of the tools that integrate 
transcriptomic data from samples identified (Figure 6C). This indicates the limited reliability of 
approaches that make predictions based on genomic data alone without interrogating sample 
matched transcriptomic data, particularly in a disease context featuring novel junctions. 
 
Discussion 
Splice-associated variants are often overlooked in traditional genomic analysis. Of the tools that 
exist, some only analyze genomic data, focus on junctions where either the canonical donor or 
acceptor site is affected (missing junctions that result from complete exon skipping), or consider 
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only those variants within a narrow distance from known splice sites. To address these 
limitations, we created RegTools, a software suite for the analysis of variants and junctions in a 
splicing context. By relying on well-established standards for analyzing genomic and 
transcriptomic data and allowing flexible analysis parameters, we enable users to apply 
RegTools to a wide set of scientific methodologies and datasets. RegTools can include any kind 
of junction type, including exon-exon junctions that have ends that are not known 
donor/acceptor sites according to the GTF file (N junction according to RegTools), and any 
splice variant window size. To facilitate the use, portability and integration of RegTools into 
analysis workflows, we provide documentation and example workflows via (regtools.org) and 
provide a Docker image with all necessary software installed.  
 
In order to demonstrate the utility of our tool, we applied RegTools to 9,173 tumor samples 
across 35 tumor types to profile the landscape of this category of variants. From this analysis, 
we report 133,987 variants that are associated with novel junctions that were missed by VEP or 
SpliceAI. We found splice-associated variants beyond the splice site consensus sequence, shift 
transcript usage between known transcripts, or result in novel exon-exon junctions. Specifically, 
we describe notable findings within B2M, CDKN2A, and RNF145. These results demonstrate 
the utility of RegTools in discovering putative splice-associated variants and confirm the 
importance of integrating RNA and DNA sequencing data in understanding the consequences of 
somatic mutations in cancer. To allow for validation and further investigation of these identified 
events, we make all of our annotated result files (Supplementary Files 1-4) and recurrence 
analysis files (Supplementary Files 10-14) available. 
 
For certain RegTools results, such as those from E and I splice variant windows, there are 
higher numbers of splice-associated variants identified because of the broader region of 
consideration. One must be careful in comparing these results to other tools that have a more 
focused region of consideration. The increased number of events identified by RegTools in 
these comparisons does not necessarily suggest poor sensitivity of the other tools, but rather 
reflects that RegTools is being run in a mode that casts a wider net in order to identify more 
distal splice-associated variants, such as those in distal splice regulatory elements. This 
consideration highlights and reinforces that RegTools is highly configurable, and certain 
parameters that one can modify will impact sensitivity and specificity. For users that are 
concerned with avoiding false positives and less worried about maximizing sensitivity, we 
provide guidance on best practices for use of RegTools via our documentation at regtools.org. 
This includes the type of alignments RegTools supports, how to set the region of consideration, 
which junction types to focus on (e.g., NDA, DA, etc.), how to interpret the statistics results, 
recommended count thresholds, how to annotate with supporting information from GTEX, 
SpliceAI, and VEP, and much more. Because of the versatility and modularity of RegTools, we 
believe that it can be implemented into a variety of bioinformatics workflows to aid in the 
processing of sequencing data in disease studies or to answer specific questions about splicing 
biology. 
 
Understanding the splicing landscape is crucial for unlocking potential therapeutic avenues in 
precision medicine and elucidating the basic mechanisms of splicing and cancer progression. 
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The exploration of novel tumor-specific junctions will undoubtedly lead to translational 
applications, from discovering novel tumor drivers, diagnostic and prognostic biomarkers, and 
drug targets, to identifying a previously untapped source of neoantigens for personalized 
immunotherapy. While our analysis focused on splice-associated variants in cancer, we believe 
RegTools will play an important role in answering a broad range of questions across different 
disease states and biological processes by helping users extract splicing information from 
transcriptome data and linking it to somatic or germline variant calls. The computational 
efficiency of RegTools and the increasing availability of genomic and transcriptomic datasets will 
enable the investigation of splice regulatory motifs that have proven difficult to define such as 
exonic and intronic splicing enhancers and silencers. Any group with paired DNA and RNA-seq 
data stands to benefit from the functionality of RegTools. 
 
Methods 
 
Software implementation 
 
RegTools is written in C++. CMake is used to build the executable from the source code. We 
have designed the RegTools package to be self-contained to minimize external software 
dependencies. A Unix platform with a C++ compiler and CMake is the minimum prerequisite for 
installing RegTools. Documentation for RegTools is maintained as text files within the source 
repository to minimize divergence from the code. We have implemented common file-handling 
tasks in RegTools with the help of open-source code from Samtools/HTSlib26 and BEDTools68 in 
an effort to ensure fast performance, consistent file handling, and interoperability with any 
aligner that adheres to the BAM specification. Statistical tests are conducted within RegTools 
using the RMath framework. GitHub actions and Coveralls are used to automate and monitor 
software compilation and unit tests to ensure software functionality. We utilized the Google Test 
framework to write unit tests. 
 
RegTools consists of a core set of modules for variant annotation, junction extraction, junction 
annotation, and GTF utilities. Higher-level modules such as cis-splice-effects use the lower level 
modules to perform more complex analyses. We hope that bioinformaticians familiar with C/C++ 
can re-use or adapt the RegTools code (released under the open source MIT license) to 
implement similar tasks. 
 
Benchmarking 
 
Performance metrics were calculated for all RegTools commands. Each command was run with 
default parameters on a single blade server (Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz) 
with 10 GB of RAM and 10 replicates for each data point (Supplementary Figure 1). 
Specifically for cis-splice-effects identify, we started with random selections of somatic variants, 
ranging from 10,000-1,500,000, across 8 data subsets. Using the output from cis-splice-effects 
identify, variants annotate was run on somatic variants from the 8 subsets (range: 0-17,742) 
predicted to have a splicing consequence. The function junctions extract was performed on the 
HCC1395 tumor RNA-seq data aligned with HISAT to GRCh37 and randomly downsampled at 
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intervals ranging from 10-100%. Using output from junctions extract, junctions annotate was 
performed for 7 data subsets ranging from 1,000-500,000 randomly selected junctions. 
 
Benchmark tests revealed an approximately linear performance for all functions. Variance 
between real and CPU time is highly dependent on the I/O speed of the write-disk and could 
account for artificially inflated real-time values given multiple jobs writing to the same disk 
simultaneously. The most computationally expensive function in a typical analysis workflow was 
junctions extract, which on average processed 33,091 reads/second (CPU) and took an 
average of 43.4 real vs 41.7 CPU minutes to run on a full bam file (82,807,868 reads total). The 
function junctions annotate was the next most computationally intensive function and took an 
average of 33.0 real/8.55 CPU minutes to run on 500,000 junctions, processing 975 
junctions/second (CPU). The other functions were comparatively faster with cis-splice-effects 
identify and variants annotate able to process 3,105 and 118 variants per second (CPU), 
respectively. To process a typical candidate variant list of 1,500,000 variants and a 
corresponding RNA-seq BAM file of 82,807,868 reads with cis-splice-effects identify takes ~ 
8.20 real/8.05 CPU minutes (Supplementary Figure 1). 
 
Performance metrics were also calculated for the statistics script and its associated wrapper 
script that handles dividing the variants into smaller chunks for processing to limit RAM usage. 
This command, compare_junctions, was benchmarked in January 2020 using Amazon Web 
Services (AWS) on a m5.4xlarge instance, based on the Amazon Linux 2 AMI, with 64 Gb of 
RAM, 16 vCPUs, and a mounted 1 TB SSD EBS volume with 3,000 IOPS. These data were 
generated from running compare_junctions on each of the included cohorts, with the largest 
being our BRCA cohort (1,022 samples) which processed 3.64 events per second (CPU). 
 
For the benchmarking comparison between RegTools and SAVNet, we utilized fifty LUAD 
samples from TCGA. For our comparison, we imagined a use case where an individual would 
start by downloading alignment files from the Genomic Data Commons (GDC) Data Portal. For 
RegTools CPU and real-time measurements, regtools junctions extract, regtools cis-splice-
effects associate, and compare_junctions were run for each sample. For SAVNet’s CPU and 
real-time measurements, alignment files were first unaligned using SamToFastq and then 
realigned using STAR to get each sample’s splice junction file, which is unavailable from the 
GDC Data Portal. Following these steps, SAVNet was then run and the time was added to that 
from the unalignment and realignment step. On average, it took SAVNet 3.2 times (real-time) as 
long as RegTools to run on the same samples when considering the unalignment and 
realignment required to generate the necessary starting files (Supplementary Figure 14). 
 
Using RegTools to identify cis-acting, splice-associated variants 
RegTools contains three sub-modules: “variants”, “junctions”, and “cis-splice-effects”. For 
complete instructions on usage, including a detailed workflow for how to analyze cohorts using 
RegTools, please visit regtools.org.  
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Variants annotate 
This command takes a list of variants in VCF format. The file should be gzipped and indexed 
with Tabix69. The user must also supply a GTF file that specifies the reference transcriptome 
used to annotate the variants.  
 
The INFO column of each line in the VCF is populated with comma-separated lists of the 
variant-overlapping genes, variant-overlapping transcripts, the distance between the variant and 
the associated exon edge for each transcript (i.e. each start or end of an exon whose splice 
variant window included the variant) defined as min(distance_from_start_of_exon, 
distance_from_end_of_exon), and the variant type for each transcript.  
 
Internally, this function relies on HTSlib to parse the VCF file and search for features in the GTF 
file which overlap the variant. The splice variant window size (i.e. the maximum distance from 
the edge of an exon used to consider a variant as splice-associated) can be set by the options “-
e <number of bases>” and “-i <number of bases>” for exonic and intronic variants, respectively. 
The variant type for each variant thus depends on the options used to set the splice variant 
window size. Variants captured by the window set by “-e” or “-i” are annotated as 
“splicing_exonic” and “splicing_intronic”, respectively. Alternatively, the “-E” and “-I” options can 
be used to analyze all exonic or intronic variants. These options do not change the variant type 
annotation, and variants found in these windows are labeled simply as “exonic” or “intronic”. By 
default, single exon transcripts are ignored, but they can be included with the “-S” option. By 
default, output is written to STDOUT in VCF format. To write to a file, use the option “-o 
<PATH/TO/FILE>”. 
 
Junctions extract 
This command takes an alignment file containing aligned RNA-seq reads and infers junctions 
(i.e. exon-exon boundaries) based on skipped regions in alignments as determined by the 
CIGAR string operator codes. These junctions are written to STDOUT in BED12 format. 
Alternatively, the output can be redirected to a file with the “-o <PATH/TO/FILE>”. RegTools 
ascertains strand information based on the XS tags set by the aligner, but can also determine 
the inferred strand of transcription based on the BAM flags if a stranded library strategy was 
employed. In the latter case, the strand specificity of the library can be provided using “-s 
<INT>” where 0 = unstranded, 1 = first-strand/RF, 2 = second-strand/FR. We have tested 
RegTools  with alignment files from HISAT259, TopHat260, STAR58, kallisto70, or minimap271, 
though we recommend HISAT2 or STAR for short read data and minimap2 for long read data. 
We have tested RegTools with data from the following sequencing platforms: Illumina, Oxford 
Nanopore Technologies, and 10X Genomics.  
 
Users can set thresholds for minimum anchor length and minimum/maximum intron length. The 
minimum anchor length determines how many contiguous, matched base pairs on either side of 
the junction are required to include it in the final output. The required overlap can be observed 
amongst separated reads, whose union determines the thickStart and thickEnd of the BED 
feature. By default, a junction must have 8 bp anchors on each side to be counted but this can 
be set using the option “-a <minimum anchor length>”. The intron length is simply the end 
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coordinate of the junction minus the start coordinate. By default, the junction must be between 
70 bp and 500,000 bp, but the minimum and maximum can be set using “-i <minimum intron 
length>” and “-I <maximum intron length>”, respectively.  
 
For efficiency, this tool can be used to process only alignments in a particular region as 
opposed to analyzing the entire BAM file. The option “-r <chr>:<start>-<stop>” can be used to 
set a single contiguous region of interest. Multiple jobs can be run in parallel to analyze 
separate non-contiguous regions. 
 
Junctions annotate 
This command takes a list of junctions in BED12 format as input and annotates them with 
respect to a reference transcriptome in GTF format. The observed splice-sites used are 
recorded based on a reference genome sequence in FASTA format. The output is written to 
STDOUT in TSV format, with separate columns for the number of splicing acceptors skipped, 
number of splicing donors skipped, number of exons skipped, the junction type, whether the 
donor site is known, whether the acceptor site is known, whether this junction is known, the 
overlapping transcripts, and the overlapping genes, in addition to the chromosome, start, stop, 
junction name, junction score, and strand taken from the input BED12 file. This output can be 
redirected to a file with “-o /PATH/TO/FILE”. By default, single exon transcripts are ignored in 
the GTF but can be included with the option “-S”. 
 
Cis-splice-effects identify 
This command combines the above utilities into a pipeline for identifying variants that may 
cause aberrant splicing events by altering splicing motifs in cis. As such, it relies on essentially 
the same inputs: a gzipped and Tabix-indexed VCF file containing a list of variants, an 
alignment BAM/CRAM file containing aligned RNA-seq reads, a GTF file containing the 
reference transcriptome of interest, and a FASTA file containing the reference genome 
sequence of interest.  
 
First, the list of variants is annotated. The splice variant window size is set using the options “-
e”, “-i”, “-E”, and “-I”, just as in variants annotate. The splice junction region size (i.e. the range 
around a particular variant in which an overlapping junction is associated with the variant) can 
be set using “-w <splice junction region size>”. By default, this range is not a particular number 
of bases but is calculated individually for each variant, depending on the variant type annotation. 
For “splicing_exonic”, “splicing_intronic”, and “exonic” variants, the region extends from the 3’ 
end of the exon directly upstream of the variant-associated exon to the 5’ end of the exon 
directly downstream of it. For “intronic” variants, the region is limited to the intron containing the 
variant. Single-exons can be kept with the “-S” option. The annotated list of variants in VCF 
format (analogous to the output of variants annotate) can be written to a file with “-v 
/PATH/TO/FILE”. 
 
The BAM file is then processed based on the splice junction regions to produce the list of 
junctions present within these regions. A file containing these junctions in BED12 format 
(analogous to the output of junctions extract) can be written using “-j /PATH/TO/FILE”. The 
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minimum anchor length, minimum intron length, and maximum intron length can be set using “-
a”, “-i”, and “-I” options, just as in junctions extract.  
 
The list of junctions produced by the preceding step is then annotated with the information 
presented in the junctions annotate section above. Additionally, each junction is annotated with 
a list of associated variants (i.e. variants whose splice junction regions overlapped the junction). 
The final output is written to STDOUT in TSV format (analogous to the output of junctions 
annotate) or can be redirected to a file with “-o /PATH/TO/FILE”. 
 
Cis-splice-effects associate 
This command is similar to cis-splice-effects identify, but takes the BED output of junctions 
extract in lieu of an alignment file with RNA alignments. As with cis-splice-effects identify, each 
junction is annotated with a list of associated variants (i.e. variants whose splice junction regions 
overlapped the junction). The resulting output is then the same as cis-splice-effects identify, but 
limited to the junctions provided as input.  
 
Analysis 
Dataset Description 
32 cancer cohorts were analyzed from TCGA. These cancer types are Adrenocortical 
carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Brain Lower Grade Glioma (LGG), 
Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma (COAD), 
Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM), Head and Neck squamous cell 
carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC), 
Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), Lung 
adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Lymphoid Neoplasm Diffuse 
Large B cell Lymphoma (DLBC), Mesothelioma (MESO), Ovarian serous cystadenocarcinoma 
(OV), Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), 
Prostate adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin 
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), Testicular Germ Cell 
Tumors (TGCT), Thymoma (THYM), Thyroid carcinoma (THCA), Uterine Carcinosarcoma 
(UCS), Uterine Corpus Endometrial Carcinoma (UCEC), and Uveal Melanoma (UVM). Three 
cohorts were derived from patients at Washington University in St. Louis. These cohorts are 
Hepatocellular Carcinoma (HCC), Oral Squamous Cell Carcinoma (OSCC), and Small Cell 
Lung Cancer (SCLC).  
 
Sample processing for cohorts with bulk transcriptome data 
We applied RegTools to 35 tumor cohorts. Genomic and transcriptomic data for 32 cohorts were 
obtained from The Cancer Genome Atlas (TCGA). Information regarding the alignment and 
variant calling for these samples is described by the Genomic Data Commons data 
harmonization effort72. Whole exome sequencing (WES) mutation calls for these samples from 
MuSE73, MuTect274, VarScan275, and SomaticSniper76, were left-aligned, trimmed, and 
decomposed to ensure the correct representation of the variants across the multiple callers. 
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Samples for the remaining three cohorts, HCC77, SCLC34, and OSCC78, were sequenced at 
Washington University in St. Louis. Genomic data were produced by WES for SCLC and OSCC 
and whole genome sequencing (WGS) for HCC. Normal genomic data of the same sequencing 
type and tumor RNA-seq data were also available for all subjects. Sequence data were aligned 
using the Genome Modeling System (GMS)79 using TopHat2 for RNA and BWA-MEM80 for 
DNA. HCC and SCLC were aligned to GRCh37 while OSCC was aligned to GRCh38. Somatic 
variant calls were made using Samtools v0.1.126, SomaticSniper2 v1.0.276, Strelka V0.4.6.281, 
and VarScan v2.2.675,81 through the GMS. High-quality mutations for all samples were then 
selected by requiring that a variant be called by two of the four variant callers. 
 
Additional samples from orthogonal projects at Washington University in St. Louis were used for 
the orthogonal validation analysis. Samples included in this analysis were of the following 
cancer types: SCLC, GBM, and brain metastases that resulted from lung and breast cancers. 
The SCLC samples were an extension of the previous SCLC cohort we used for the pan-cancer 
analysis, with the difference being that the additional samples being aligned to GRCh38. 
Methods for the sample processing of the GBM and brain metastases samples are described in 
the original analysis manuscript for these data33. 
 
Mice used for MCB6C experiments 
5- to 6-week-old black 6 (B6NTac) male mice were purchased from Taconic Biosciences and 
were housed in a SPF barrier facility under the guidelines of Institutional Animal Care and Use 
Committee at Washington University. All the in vivo experiments were performed one week after 
mice were delivered to the animal facility. 
 
Mouse bladder organoid culture for mouse injection  
One previously archived frozen vial of singly suspended MCB6C organoid was thawed at least 2 
weeks before mouse injection and expanded weekly in culture at least 2 times. For MCB6C 
organoid culture expansion, growth factor reduced Matrigel was thawed on ice for minimally 1 ½ 
hours. Pelleted MCB6C cells were washed and resuspended in 1 ml of Advanced 
DMEM/F12+++ medium (Advanced DMEM/F12 medium [125634028, Gibco] supplemented with 
1% penicillin/streptomycin, 1% HEPEs and Glutamax) and cell concentration was determined by 
automated cell counter. To establish organoid culture, 50 ul Matrigel tabs with 10,000 cells/tab 
were generated and plated on 6-well suspension culture plates, 6 tabs wells. Tabs were 
incubated at 37C for 15 minutes until Matrigel was hardened, returned to tissue culture 
incubator, and cultured with mouse bladder organoid medium (MBO medium - Advanced 
DMEM/F12+++ medium supplemented with EGF, A-83-01, Noggin, R-Spondin, N-Acetly-L-
cysteine and Nicotinamide). Organoids were replenished with fresh MBO medium every 3-4 
days and also one day before mouse injection. 
 
Mouse injection with MCB6C organoid cells  
A single cell suspension of MCB6C organoid was generated by TrypLE Express(12605010, 
Gibco) digestion organoid Matrigel tabs at 37C for 15 minutes. After digestion, pelleted cells 
were washed and resuspended in PBS to determine cell concentration. After cell concentration 
was adjusted to 20 million/ml in PBS, organoid cells were mixed with growth factor reduced 
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Matrigel at 1:1 ratio before injected subcutaneously into the left flank of the mouse (1 
million/100ul cells each mouse). Tumor development was monitored using digital calipers to 
assess the length, width, and depth of each tumor. For ICB, each mouse was injected 
intraperitoneally with 250 ug anti-PD1 (RMP1-14, BioXcell) and 200 ug anti-CTLA-4 (9D9, 
BioXcell) day 9 and 12 after organoid implantation. For isotype controls, each mouse was 
injected with 250 ug rat IgG2a (2A3, BioXcell) and 200 ug IgG2b (MPC-11, BioXcell). For CD4+ 
T cell depletion, each mouse was injected with 250 ug anti-CD4 (GK1.5, BioXcell) day 0 and 7 
after organoid depletion. Rat IgG2b (LTF-2, BioXcell) was used as isotype control for anti-CD4.  
 
Harvesting MCB6C tumors for single cell RNA-seq analysis  
Based on 10x Genomics Demonstrated Protocols, 14 days after organoid implantation, tumors 
were dissected from euthanized mice, cut into small pieces of ~2-4 mm3, and further processed 
into dead-cell depleted single cell suspension following manufacturer’s protocol using Tumor 
Dissociation Kit and MACS Dead Cell removal Kit (Miltenyi Biotec). Briefly, tumor tissue pieces 
were transferred to gentleMACS C tube containing enzyme mix before loading onto a 
gentleMACS Octo Dissociator with Heaters for tissue digestion at 37C for 80 minutes. After 
tissue dissociation was completed, cell suspension was transferred to a new 50 ml conical tube, 
and supernatant was removed after centrifugation. Cell pellet was resuspended in RPMI 1640 
medium, filtered through a prewetted 70 uM cell filter, strained, pelleted, and resuspended in red 
cell lysis buffer and incubated on ice for 10 minutes. After adding the wash buffer, the cell 
suspension was pelted and resuspended in the wash buffer. To remove dead cells, Dead Cell 
Removal Microbeads were added to resuspend cell pellet (100 ul beads per 10^7 cells) using a 
wide-bore pipette tip. After incubation for 15 minutes at room temperature, the cell-microbead 
mixture was applied onto a MS column. Dead cells remained in the column and the effluent 
represented to the live cell fraction. The percentage of viable cells was determined by an 
automated cell counter. Dead cell removal was repeated if the percentage of viable cells did not 
reach above 90%. Two rounds of centrifugation/resuspension were carefully performed for two 
rounds in 1xPBS/0.04% BSA using a wide-bore tip. To submit cell samples for single-cell RNA-
seq analysis, cell concentration was determined accurately by sampling cell suspension twice 
and counting each sampling twice and adjusted to 1,167 cells/ul. 
 
Single-cell RNA-seq analysis of MCB6C cells 
40 ul of each cell suspension was submitted to the Genome Technology Access 
Center/McDonnell Genome Institute (GTAC/MGI) for 10x Genomics single cell RNA-seq 
analysis using the 5’v2 library kit of TotalSeq C antibodies with BCR and TCR V(D)J 
enrichment.  FASTQs and Cell Ranger output was generated. Alignment and gene expression 
quantification done using CellRanger count (v5.0). Matrices are then imported into Seurat82 
(v4.0.1) for filtering cells, QC, clustering, etc. To filter suspected dying cells, cells were clustered 
before filtering and cells clustering based on high mitochondrial gene expression were identified. 
The cutoff of mitochondrial expression was based on the expression level that captures most of 
these cells. Doublets were filtered based on high UMI expression, with the top 0.9% of genes 
removed from each condition in each replicate. Cutoffs for filtering of cells with low feature 
detection was done by assigning cell type to each cell with CellMatch, identifying cells that did 
not have enough features for their cell type to be predicted, and identifying average feature 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2023. ; https://doi.org/10.1101/436634doi: bioRxiv preprint 

https://doi.org/10.1101/436634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

expression in these cells. Aftering filtered cells were removed, remaining cells were scaled, 
normalized, and clustered following Seurat’s vignette. 
 
Long read sequencing of HCC1395 cell line 
The HCC1395 cell line is described as being of tissue origin: mammary gland; breast/duct. The 
patient’s cancer was described as: TNM stage I, grade 3, primary ductal carcinoma. The patient 
received chemotherapy prior to isolation of the tumor83. This tumor is considered “Triple-
Negative” by classic typing: ERBB2-negative (aka HER2/neu), PR-negative, and ER-negative. 
Otherwise, it is one of those difficult to classify by expression-based molecular typing but is 
likely of the “Basal” sub-type 84. For a normal comparator, we used HCC1395’s matched 
lymphoblastoid cell line, HCC1395BL. The HCC1395BL cell line was created from a B 
lymphoblast that was transformed by the EBV virus. For each of these samples, WGS, WES, 
and bulk RNA-seq were performed. Whole-genome sequencing was performed to a target 
median coverage depth of ~30x for the normal samples and ~50x for the tumor sample. Exome 
sequencing was performed to a target median coverage depth of ~100x. RNA-seq was 
performed for both tumor and normal. Additionally, Oxford Nanopore Technologies long-read 
sequencing was performed using both the Direct RNA Sequencing Kit and Direct cDNA 
Sequencing Kit. The Direct RNA Sequencing Kit yielded 1.1 million reads with 1.07 Gb of 
passed bases and read lengths ranging from ~500 basepairs (bp) to ~8 kilobases (kb). The 
Direct cDNA Sequencing Kit was run twice. The first run used the RNA from the same mRNA 
enrichment as the RNA Direct library. This sequencing run yielded 2.48 million reads with 2.36 
Gb of passed bases and read lengths ranging from ~500 bp to ~9.6 kb. The second Direct 
cDNA Sequencing Kit was applied to a new RNA extraction, so a separate mRNA enrichment 
from the first two runs. This run yielded 6.6 million reads with 4.05 Gb passed bases and read 
lengths ranging from ~500 basepairs (bp) to ~8 kilobases (kb). These data were aligned to 
GRCh38 using recommended settings for minimap271. To confirm junctions identified by 
Illumina sequencing, junctions were extracted from ONT alignment files and combined for the 
three libraries. For each junction we were attempting to validate, we required that there be at 
least one read of support that utilized either the donor or the acceptor site of the junction of 
interest. If there was no evidence of either donor or acceptor site being used, we concluded that 
we had insufficient coverage to validate that particular junction. 
 
Candidate junction filtering 
To generate results for 4 splice variant window sizes, we ran cis-splice-effects identify with 4 
sets of splice variant window parameters. For our “i2e3” window (RegTools default), to examine 
intronic variants within 2 bases and exonic variants within 3 bases of the exon edge, we set “-i 2 
-e 3”. Similarly, for “i50e5”, to examine intronic variants within 50 bases and exonic variants 
within 5 bases of the exon edge, we set “-i 50 -e 5”. To view all exonic variants, we simply set “-
E”, without “-i” or “-e” options. To view all intronic variants, we simply set “-I”, without “-i” or “-e” 
options. TCGA samples were processed with GRCh38.d1.vd1.fa (downloaded from the GDC 
reference file page at https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-
files) as the reference fasta file and gencode.v29.annotation.gtf (downloaded via the GENCODE 
FTP) as the reference transcriptome. OSCC was processed with 
Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa and Homo_sapiens.GRCh38.79.gtf 
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(both downloaded from Ensembl). HCC and SCLC were processed with 
Homo_sapiens.GRCh37.dna_sm.primary_assembly.fa and Homo_sapiens.GRCh37.87.gtf 
(both downloaded from Ensembl). 
 
Statistical filtering of candidate events 

We refer to a statistical association between a variant and a junction as an “event”. For each 

event identified by RegTools, a normalized score (norm_score) was calculated for the junction 

of the event by dividing the number of reads supporting that junction by the sum of all reads for 

all junctions within the splice junction region for the variant of interest. This metric is 

conceptually similar to a “percent-spliced in” (PSI) index, but measures the presence of entire 

exon-exon junctions, instead of just the inclusion of individual exons. If there were multiple 

samples that contained the variant for the event, then the mean of the normalized scores for the 

samples was computed (mean_norm_score). If only one sample contained the variant, its 

mean_norm_score is equal to its norm_score. This value was then compared to the distribution 

of samples which did not contain the variant to calculate a p-value as the percentage of the 

norm_scores from these samples which are at least as high as the mean_norm_score computed 

for the variant-containing samples. We performed separate analyses for events involving known 

junctions (DA) and those involving novel junctions which used at least one known splice site 

(D/A/NDA), based on annotations in the corresponding reference GTF. For this study, we 

filtered out any junctions which did not use at least one known splice site (N) and junctions 

which did not have at least 5 reads of evidence across variant-containing samples. The 

Benjamini-Hochberg procedure was then applied to the remaining events. Following correction, 

an event was considered significant if its adjusted p-value was ≤ 0.05. 

 
Annotation with GTEx junction data and other splice prediction tools 
Events identified by RegTools as significant were annotated with information from GTEx, VEP, 
CTAT splicing, SpliceAI, MiSplice, and Veridical. GTEx junction information was obtained from 
the GTEx Portal. Specifically, the exon-exon junction read counts file from the v8 release was 
used for data aligned to GRCh38 while the same file from the v7 release was used for the data 
aligned to GRCh37. Mappings between tumor cohorts and GTEx tissues can be found in 
Supplementary File 15. We annotated all starting variants with VEP in the “per_gene” and 
“pick” modes. The “per_gene” setting outputs only the most severe consequence per gene while 
the “pick” setting picks one line or block of consequence data per variant. We considered any 
variant with at least one splice-associated annotation to be “VEP significant”. All variants were 
also processed with SpliceAI using the default options. A variant was considered to be “SpliceAI 
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significant” if it had at least one score greater than 0.2, the developers’ recommended value for 
high recall of their model. Instructions and scripts to annotate with GTEx and SpliceAI are 
available at regtools.org and in the RegTools GitHub repository. Variants identified by MiSplice20 
were obtained from the paper’s supplemental tables and were lifted over to GRCh38. Variants 
identified by SAVNet23 were obtained from the paper’s supplemental tables and were lifted over 
to GRCh38. Variants identified by Veridical21,22 were obtained via download from the link 
referenced within the manuscript and lifted over to GRCh38.  
 
Visual exploration of statistically significant candidate events 
IGV sessions were created for each event identified by RegTools that was statistically 
significant. Each IGV session file contained a bed file with the junction, a vcf file with the variant, 
and an alignment file for each sample that contained the variant. Additional information, such as 
the splice sites predicted by SpliceAI, were also added to these session files to enhance the 
exploration of these events. Events of interest were manually reviewed in IGV to assess 
whether the association between the variant and junction made sense in a biological context 
(e.g. affected a known splice site, altered a genomic sequence to look more like a canonical 
splice site, or the novel junction disrupted active or regulatory domains of the protein product). 
An extensive review of literature and visualizations of junction usage in the presence and 
absence of the variant were also used to identify novel, biologically relevant events. 
 
Identification of genes with recurrent splice-associated variants 
For each cohort, we calculated a p-value to assess whether the splicing profile from a particular 
gene was significantly more likely to be altered by somatic variants. Specifically, we performed a 
1-tailed binomial test, considering the number of samples in a cohort as the number of attempts. 
Success was defined by whether the sample had evidence of at least one splice-associated 
variant in that gene. The null probability of success, pnull was calculated as 
 

 
 
where s is the total number of base positions residing in any of the gene’s splice variant 
windows, V is the event that a somatic variant occurred at such a base position, and A is the 
event that this variant was deemed to be significantly associated with at least one junction in our 
analysis. The joint probability that both V and A occurred was estimated by dividing the total of 
events across all samples in which each junction was detected by s. The value of s was 
computed based on the exon and transcript definitions in the reference GTF used for performing 
RegTools analyses on a given cohort.  
 
We also calculated overall metrics, in order to rank genes. For each set of cohorts (e.g. TCGA-
only, MGI-only, combined), an overall p-value was computed for each gene according to the 
above formula, pooling all of the samples across the included cohorts, and the fraction of 
samples was simply calculated by dividing the number of samples in which an event occurred 
within the given gene by the total number of samples, pooled across the included cohorts. The 
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reference GTF used for analyzing the TCGA samples (i.e. gencode.v29.annotation.gtf) was 
used for all sets of cohorts. 
 
Code availability 
RegTools is open source (MIT license) and available at https://github.com/griffithlab/regtools/. 
All scripts used in the analyses presented here are also provided. For ease of use, a Docker 
container has been created with RegTools, SpliceAI, R, and Python 3 installed 
(https://hub.docker.com/r/griffithlab/regtools/). This Docker container allows a user to run the 
workflow we outline at https://regtools.readthedocs.io/en/latest/workflow/. Docker is an open-
source software platform that enables applications to be readily installed and run on any 
system. The availability of RegTools with all its dependencies as a Docker container also 
facilitates the integration of the RegTools software into workflow pipelines that support Docker 
images. 
 
Data availability 
Sequence data for each cohort analyzed in this study are available through dbGaP at the 
following accession IDs: phs000178 for TCGA cohorts, phs001106 for HCC, phs001049 for 
SCLC, phs001623 for OSCC, and phs002612.v1.p1 for GBM/Brain metastases. Statistically 
significant events for D, A, and NDA junctions across the four variant splicing windows used are 
available via Supplementary Files 1 and 2. Statistically significant events for DA junctions are 
available as Supplementary Files 3 and 4. Complete results of gene recurrence analysis are 
available as Supplementary Files 10-14. 
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Figures 

 

Figure 1: Regtools features individual modules and an integrated pipeline 
for flexible, streamlined discovery of cis-acting splice-associated variants. 
A) By default, variants annotate marks variants within 3 bp on the exonic side and 2 bp on the 
intronic side of an exon edge as potentially splice-associated. This “splice variant window” can 
be modified individually for the exonic side and intronic side using the “-e” and “-i” options, 
respectively. With cis-splice-effects identify, for each variant in the splice variant window, a 
“splice junction region” is determined by finding the largest span of sequence space between 
exons that flank the exon associated with the splicing-relevant variant. The splice junction 
region can also be set manually to contain the entire sequence space of n bases upstream and 
downstream of the variant using the “-w” option. Junctions overlapping the splice junction region 
are associated with the variant. Using the -E option considers all exonic variants as potentially 
splice-associated, but is otherwise the same. Using the -I option considers all intronic variants 
as potentially splice-associated and also limits the splice junction region to the intronic region in 
which the variant is found, excluding the flanking exons. B) Cis-splice-effects identify and the 
underlying junctions annotate command annotate junctions based on whether the donor and 
acceptor site combination is found in the reference transcriptome GTF. In this example, there 
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are two known transcripts (shown in blue) that overlap a set of junctions observed in RNAseq 
data (depicted as junction supporting reads in red). Comparing the observed junctions to the 
reference junctions in the first transcript (top panel), RegTools checks to see if the observed 
donor and acceptor splice sites are found in any of the reference exons and also counts the 
number of exons, acceptors, and donors skipped by a particular junction. Double blue arrows 
represent matches between observed and reference donor/acceptor sites, while single red 
arrows show novel splice sites. These steps are repeated for the rest of the relevant transcripts, 
keeping track of whether there are known donor/acceptor combinations. Junctions with a known 
donor but novel acceptor or vice-versa are annotated as “D” or “A”, respectively. If both sites are 
known but do not appear in combination in any transcripts, the junction is annotated as “NDA”, 
whereas if both sites are unknown, the junction is annotated as “N”. If the junction is known to 
the reference GTF, it is marked as “DA”. C) The cis-splice-effects identify command relies on 
the variants annotate, junctions extract, and junctions annotate submodules. This pipeline takes 
variant calls and RNA-seq alignments along with genome and transcriptome references and 
outputs information about events (pairs of variants and associated junctions). RegTools is 
agnostic to downstream research goals, and its output can be filtered through user-specific 
methods and thus can be applied to a broad set of scientific questions. 
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Figure 2. Splice-associated variants may result in multiple novel junctions. 
A)  A single splice-associated variant can result in a single novel junction, multiple novel 
junctions of the same junction type, or multiple novel junctions of different junction types. 
Depicted is a variant resulting in a single novel junction (orange), a variant resulting in two novel 
junctions that both use alternate donor sites (purple), and a variant resulting in multiple junctions 
of different types (green). B) Stacked bars showing how often significant splice-associated 
variants are associated with only one junction, multiple junctions of the same type, or multiple 
junctions of different types.  C) Bar chart showing how often each junction combination occurs 
when a single splice-associated variant results in multiple junctions of different types in each of 
the RegTools splice variant windows used. 
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Figure 3: Intronic SNV in Trp53 associated with exon 8 skipping. 
 
A) Schematic of a single nucleotide splice donor variant (mm10, chr11:g.69589711T>G; 
c.1067+2 position of intron 8 of transcript NM_011640.3) within intron 8 of Trp53. This variant is 
significantly associated (p < 0.001) with an exon skipping event causing the formation of an 
NDA junction. This result was found using the default splice variant window parameter (i2e3). B)
UMAP projection of single cells from MCB6C organoid derived tumors with high confidence 
tumor cells (orange) and high confidence normal cells (blue) highlighted. C) UMAP projection of 
single cells from MCB6C organoid derived tumors overlaid with Log2 expression of Trp53. D) 
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Zoomed view of cells containing the Trp53 exon skipping event. E) Violin plot comparing the 
normalized junction score of the novel exon skipping event in cells with and without the variant. 
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Figure 4. Pan-cancer analysis of cohorts from TCGA and MGI reveals genes 
recurrently disrupted by variants that are associated with non-canonical 
splicing patterns 

Results of analysis for recurrently disrupted genes in each cohort. A) Rows correspond 

to the 40 most frequently recurring genes, as ranked by binomial p-value across 

cohorts. Genes are clustered by whether they were annotated by the CGC as an 

oncogene (red), an oncogene and tumor suppressor gene (yellow), a tumor suppressor 

gene (green), or another type of cancer-relevant gene. Shading corresponds to 

−log10(p value) and columns represent cancer types. Red marks within cells indicate 

that the gene was annotated by CHASMplus as a driver within a given TCGA cohort. B) 

Rows correspond to the 40 most frequently recurring genes, as ranked by the fraction of 
samples across cohorts. Shading corresponds to the fraction of samples and columns 
represent cancer types. Blue dots within cells indicate that the gene was annotated by 
CHASMplus as a driver within a given TCGA cohort. These results were obtained using 
the default splice variant window parameter (i2e3). 
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Figure 5. Several SNVs in B2M are associated with alternate acceptor and 
alternate donor usage. 
 
A) IGV snapshot of three intronic variant positions (GRCh38 - chr15:g.44715421A>G,  
chr15:g.44715422G>T,  chr15:g.44715702G>C) found to be associated with alternate acceptor 
and donor usage that leads to the formation of novel transcript products. This result was found 
using the default splice variant window parameter (i2e3). B) Zoomed in view of the variants 
identified by RegTools that are associated with alternate acceptor and donor usage. Two of 
these variant positions flank the acceptor site and one variant flanks the donor site of the area 
that is being affected. C) Sashimi plot visualizations for samples containing the identified 
variants that show 1) alternate acceptor usage (red) or 2) alternate donor usage (orange). 
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Figure 6. Comparison of RegTools with other tools for identifying cis-acting 
splice-associated variants. 
A) Conceptual diagram of contrasting approaches employed by various tools for identifying cis-
acting splice-associated variants. For this example, the splice variant window for RegTools is its 
default splice variant window employed for our main analyses. An italicized tool name indicates 
that the tool only considers genomic data for making its calls, instead of a combination of 
genomic and transcriptomic data. B) Venn diagram comparing the splice-associated variants 
identified by RegTools, using its default splice window parameter, MiSplice, and SAVNet. C) 
UpSet plot comparing splice-associated variants identified by RegTools both the -E and -I splice 
variant window parameters to those identified by other splice variant predictors and annotators 
using their default settings. Each tool’s total number of variant predictions is shown on the left 
sidebar graph. The number of variants specific to each tool or shared between different 
combinations of tools is indicated by the bar graph along the top, with the individual or 
connected dots indicating the tools. 
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