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Abstract

Embryos from different mammalian species develop at characteristic timescales. These
timescales are recapitulated during the differentiation of pluripotent stem cells in vitro.
Specific genes and molecular pathways that modulate cell differentiation speed between
mammalian species remain to be determined. Here we use single-cell multi-omic analysis of
neural differentiation of mouse, cynomolgus and human pluripotent cells to identify
regulators for differentiation speed. We demonstrate that species-specific transcriptome
dynamics are mirrored at the chromatin level, but that the speed of neural differentiation is
insensitive to manipulations of cell growth and cycling. Exploiting the single-cell resolution of
our data, we identify glycogen storage levels regulated by UDP-glucose pyrophosphorylase
2 (UGP2) as a species-dependent trait of pluripotent cells, and show that lowered glycogen
storage in UGP2 mutant cells is associated with accelerated neural differentiation. The
control of energy storage could be a general strategy for the regulation of cell differentiation

speed.
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Introduction

Mammalian embryonic development adheres to a strict sequence of events, yet the speed of
development varies significantly among species: while it takes 13 days for human embryos
to progress from oocyte fertilization to gastrulation, it only takes six days for mice to reach
this stage’. Similarly, the timescales for organogenesis and later of neuronal differentiation,
both in the peripheral nervous system and midbrain, are considerably longer in humans
compared to mice? (Figure 1A). Identifying the genetic and physiological basis for
species-specific developmental timing has become an area of intense research in the past
years, but specific genetic or gene-regulatory differences that underlie this phenomenon still
remain to be reported.

In vivo developmental pace is mirrored by the speed of in vitro differentiation of pluripotent
stem cells (PSCs), indicating that cell differentiation speed has a cell-intrinsic genetic
basis®*®. PSCs can either be derived directly from embryos, or generated as induced
pluripotent stem cells (iPSCs) from the tissues of various mammalian species’~"'. When
cultured under appropriate conditions, these cells closely resemble the state of the
pluripotent epiblast just before the beginning of gastrulation. This primed pluripotent state
captured by human embryonic stem cells (hESCs), mouse epiblast stem cells (mEpiSCs),
and iPSCs from both human and non-human primates’®'? can serve as a useful common
starting point for comparative studies.

Previous studies using PSCs to investigate mechanisms of differentiation speed have to a
large degree focused on comparisons between human and mouse cells, and only recently
have a broader range of species been included. A key challenge in such comparative
studies is that PSCs are commonly established and differentiated in species-specific
maintenance and differentiation media. While these media formulations may maximize the
viability of cells from each species, they leave open the possibility that species-specific
differentiation speed is at least in part caused by differences in external metabolic and
signaling environments. External signaling through factors produced by the cells themselves
is an additional candidate mechanism for regulating differentiation speed in lineages that are
specified in response to constant paracrine signaling, such as the mesoderm or the cells of
the peripheral nervous system.

Irrespective of these challenges, recent studies have started to implicate diverse general
physiological cellular traits in the control of species-specific differentiation speed, such as
differential protein stability®', biochemical reaction rates®'®, and mitochondrial activity*®.
Whether the same physiological parameters regulate differentiation speed of different
lineages is however an open question. It is also not known at which level of regulation -

chromatin, gene expression or post-transcriptional and post-translational events -
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species-specific differentiation speeds emerge. Finally, the evolutionary changes in cell
physiology that underlie altered differentiation speed must have arisen from genetic changes
that determine either the activity or the expression magnitude of specific proteins in the cell.
In the context of differentiation speed, there are to date only few examples for specific
species-specific changes to protein activity.

Cell differentiation in vitro is a heterogeneous process, in which divergent cellular dynamics
lead to differences between individual cells. Recently, it has become possible to access this
cellular diversity and dynamics at several levels of regulation with single-cell multiomic
sequencing technologies'™. Multiomic sequencing simultaneously profiles gene expression
and chromatin accessibility in single cells, thereby enabling the reconstruction of
developmental lineage trajectories which can ultimately inform temporal regulatory
dependencies’’.

In this study, we established identical stem cell culture and neuroectoderm differentiation
modalities for hESCs, mEpiSCs and cynomolgus iPSC (cyiPSCs), and applied time-resolved
multiomic single-cell profiling during neural progenitor differentiation to unravel the
mechanisms underlying species-specific differentiation speed™'®. Through combined
single-cell gene expression (scRNA-seq) and chromatin accessibility analysis (scATAC-seq),
we show that developmental speed differences are governed by chromatin dynamics.
Employing metabolic interventions, we showed that differentiation dynamics of neural
progenitors can be uncoupled from anabolic processes. Finally, we developed strategies to
identify candidate regulators of differentiation speed based on our time-resolved single-cell
data. Through his approach, we identified glucose storage through UDP-glucose
pyrophosphorylase 2 (UGP2) as a mechanism for the species-specific regulation of

differentiation speed.
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Results

Single-cell multiome sequencing for comparative analysis of species-specific

differentiation speeds under harmonized culture and differentiation conditions

To investigate the speed of cell differentiation during anterior neural development (Figure
1A), we utilized epiblast-like primed-state hESCs, mEpiSCs, and cyiPSCs to perform
comparative in vitro differentiation. To standardize culture conditions for the different species
and thus eliminate external influences, the cells were gradually adapted to a unified medium
and passaged at least twice before further experiments (Figure S1A). We identified
Universal Primate Pluripotent Stem Cell Media (UPPS) reported by Stauske et al.” as the
ideal harmonized medium, confirmed by colony morphology (Figure S$1B), and by the
homogeneous expression of pluripotency markers in flow cytometry (Figure S1C) and
immunofluorescence imaging (Figure S1D).

Next, we adapted a common protocol for neural progenitor cell (NPC) differentiation through
dual SMAD inhibition (dASMADi, see Methods for details)’®. In all three species, we observed
quick downregulation of pluripotency-related markers OCT4 (also known as POU5F1) and
NANOG, and upregulation of neural markers SOX1 and PAX6, both in immunofluorescence
imaging (Figure S1E) and quantitative reverse transcription PCR (RT-gPCR) (Figure S1F).
Overall, our comprehensive examination indicated successful pluripotent stem cell
maintenance and NPC differentiation across all cell lines using standardized protocols.

To compare the differentiation speed of the three species in detail, we employed single-cell
multiome sequencing, combining gene expression and chromatin accessibility sequencing.
For each species, we conducted NPC differentiation over a ten-day time course, collecting
samples at 0 hours, 8 hours, 1 day, 2 days, 3 days, 4 days, 7 days, and 10 days, to capture
early changes in transcription and chromatin accessibility (Figure 1B). To minimize
sequencing batch effects, we combined cells from each time point of all three species for
nuclei isolation and subsequent scRNA-seq and scATAC-seq library preparation. For
demultiplexing, single-cell multiome data was aligned against each genome separately, and
each cell was assigned to the respective species (see Methods for details). UMAP plots
derived from scRNA-seq of differentiating cells accurately depicted the linear path of NPC
differentiation (Figures 1C-E). When examining the expression of marker genes, the
observed dynamics aligned with the known differentiation trajectory (Figures 1F-H). For
example, pluripotency marker OCT4 gradually decreased during NPC differentiation, while
the neural marker PAX6 exhibited a gradual increase in expression with distinct,
species-specific dynamics. The scATAC-seq data likewise provided evidence of a linear

differentiation process, illustrated by the progressive reduction of accessible chromatin at the
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OCT4 gene locus and increase of accessible chromatin at the PAX6 gene locus,

corresponding to the respective decrease and increase in gene expression (Figure 11-K).
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Figure 1: Single-cell multiome sequencing captures species-specific differences in

neural differentiation.

A. Embryonic developmental speed differences between mouse (measured in embryonic days, E),
cynomolgus, and human (measured in weeks, W).
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B. Schematic of neural progenitor differentiation of pluripotent stem cells from the three species in a
harmonized medium (N2B27 + dSMADi). Arrows indicate 8 time points chosen for single cell gene
expression and chromatin accessibility measurements within the first 10 days.

C-D. Two-dimensional UMAP embedding of mouse (C), cynomolgus (D) and human (E) RNA
expression in 24,157, 23,914 and 26,043 single cells, respectively, during NPC differentiation.

F-H. Expression of selected marker genes indicates faster transition from a stem cell state
(represented by OCT4 and SOX2 expression) to a neural progenitor state (PAX6 and SOX2
expression), in mouse (F) compared to cynomolgus (G) and human (H).

I-K. Changes in local chromatin accessibility of the stem cell marker OCT4 (left) and the neural
progenitor state marker PAX6 (right) during 10 day differentiation in mouse (I), cynomolgus (J) and

human (K) cells. Peaks of interest are indicated by arrows.

Quantification of species-specific differentiation rates from single-cell multiome data

To examine the speed of differentiation across pluripotent stem cells among the three
species, we created a unified cross-species representation by mapping cells from human
and cynomolgus onto the mouse reference embedding using Scanpy’s ingest tool?® (Figure
S2A). The combined UMAP visualization highlighted that cynomolgus cells were slightly
further in the differentiation trajectory compared to human cells at each time point, indicating
a marginally faster differentiation (Figure S2B). More specifically, cynomolgus cells sampled
at day 10 mapped to mouse cells at day 3-7 (Figure 2A). A more pronounced deviation was
seen with human cells sampled at day 10, which mapped to mouse cells from day 3 and day
4 (Figure 2B). We quantified the differentiation speed relative to mouse cells using a linear
regression model, fitted through each mapped time point for human and cynomolgus cells,
and found that that mouse cells differentiated on average 2.2 times faster than cynomolgus
cells, and 2.4 times faster than human cells (Figure 2C).

To test if similar species-specific dynamics could be observed at the chromatin level, we
applied a similar analytical approach to scATAC-seq data. Comparing the simulated gene
expression from scATAC-seq data (see Methods for details) with scRNA-seq data showed
high accordance for all three species (Figures 2D-F). Using this simulated gene expression
data, we mapped human and cynomolgus onto the mouse UMAP embedding and correlated
human and cynomolgus sampling time and mouse mapped time for scATAC-seq (Figures
S2C and S2D). Using the same linear regression model, mouse cells differentiated 1.9 times
faster than human cells and 1.7 times faster than cynomolgus cells (Figure S2E). These
results demonstrate that species-specific differences in differentiation speed are reflected at

the level of chromatin accessibility.
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Figure 2: Inter-species single-cell mapping reveals that mouse cells differentiate 2.2

times faster than cynomolgus cells and 2.4 times faster than human cells.

A-B. Heatmaps showing fractions of cynomolgus (A) and human (B) cells for each sampling time
mapping to reference time points in mouse for scRNA-seq (GEX) data. Cells in cynomolgus and
human differentiate significantly slower, e.g., most of the single cells sampled at day 10 in cynomolgus
and human (last column in both matrices) are most similar, and thus mapped to mouse cells at day 4.
C. Linear regression of mapped scRNA-seq data. Data points show the mean mapped time of human
(green circles) and cynomolgus (orange triangles) cells on the mouse reference data. Lines are linear
fits to the data for human (green, y = 0.45x, R?= 0.95) and cynomolgus (orange, y = 0.42x, R?=0.84),
indicating that mouse differentiation is 2.2 and 2.4 times faster than cynomolgus and human,
respectively. Error bars indicate standard deviation. Line of unity (gray) shown as reference.

D-F. Heatmaps show high correlations between simulated gene expression data from scATAC-seq

and gene expression determined by scRNA-seq in mouse (D), cynomolgus (E) and human (F).

Species-specific neural differentiation speeds can be uncoupled from cell growth and

the cell cycle

Pluripotent cells from fast-differentiating species have shorter cell cycles than those from
slow-differentiating species*®. To test if differences in cell cycle length and structure can
quantitatively account for the species-specific differentiation speeds, we generated

pluripotent stem cell lines expressing the PIP-FUCCI sensor?'??, Live-cell imaging of these
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reporter lines (Figures S3A and S3B) showed that the total cell cycle duration differed in the
harmonized pluripotency conditions (Figures 3A and S3C): Mouse cells exhibited the
shortest cell cycle with an average duration of 10.1 £ 0.9 hours (mean + se, N =2, n = 39
each), while the cell cycle was longest in human cells with an average of 14.8 + 0.1 hours (N
= 2, n = 40 each), which corresponds to a 1.47-fold difference between mouse and human
cells. Cynomolgus cells fell in between mouse and human cells with an average cell cycle
duration of 14.3 = 0.9 hours (N = 2, n =2 39 each), 1.42-fold the average mouse duration.
Although this variation in total cell cycle corresponds qualitatively with differences in the
timing of cell differentiation between the species, it does not quantitatively account for the >
2-fold difference in differentiation speed (Figure 2). Cells from all three species exhibited the
characteristic cell cycle structure of pluripotent cells, with a stretched S phase and a very
short G1 phase (Figure 3A). When normalized to total cell cycle length, the distribution of
the different phases was similar between cells from the three species (Figure S3D), arguing
against regulation of developmental timing through changes of cell cycle structure?*#.

To functionally test how strongly differentiation speed is coupled to cell proliferation, we
slowed down cellular growth by targeting mTOR with the ATP site inhibitor INK128 (mTORI).
Partial inhibition with 50 nM of mTORI led to a species-specific extension of cell cycle
durations: Mouse was affected least (1.23-fold extension compared to control) and human
the most (1.53-fold), with cynomolgus in between (1.46-fold) (Figure 3B). If differentiation
speed depended on growth and proliferation, the expression onset of neural markers would
be expected to take approximately 50% longer in primate cells under mTOR inhibition
compared to control cells. However, immunofluorescence of a differentiation time course did
not reveal a strong delay in PAX6 (Figure 3C) and SOX1 onset (Figure S3E) upon mTOR
inhibition in any of the species. Only OCT4 downregulation appeared to be slightly slower
under mTOR inhibition in human cells, which could be caused by reduced protein dilution as
a result of less frequent cell divisions (Figure S3F). To globally assess the differentiation
status of mTOR-inhibited cells, we performed scRNA-seq of mouse, cynomolgus and human
cells at 0 hours (pluripotent control) and days 2 and 4 of differentiation with and without
mTORi (Figures S3G-l). To minimize batch effects, we multiplexed cells within each
time-point (see Methods for details). Using Scanpy’s ingest tool?°, we integrated the data
from mTORIi-treated and control cells with the time-resolved scRNA-seq differentiation time
course to determine the reference time point to which untreated and mTOR inhibitor-treated
cells best correspond to. In mouse, mTORIi-treated cells mapped onto the same reference
time point as untreated cells, showing that mTOR inhibition did not delay neural
differentiation (Figures 3D and 3E, left). In the primate species, day 2 mTOR-inhibited cells

were slightly delayed compared to untreated cells, however, day 4 mTOR-inhibited cells
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preferentially mapped to later time points than untreated cells (Figures 3D and 3E, middle
and right). The overall tendency of both INK128-treated and untreated primate cells to map
to earlier time points of the reference dataset than expected may be explained by different
methods used to measure transcriptomes in the two experiments (see Methods for details).
Still, the finding that cells map to similar reference time-points irrespective of INK128
treatment suggested that there is no systematic differentiation delay upon mTOR inhibition.
To rule out the possibility that mTOR inhibition had more subtle effects on differentiation
timing that might be missed due to the limited resolution of the reference dataset, we
performed time-lapse imaging of a PAX6 reporter line?®>. We observed almost simultaneous
onset of PAX6 reporter expression with and without mTOR inhibition (Figures 3F and 3G). In
sum, these findings show that differentiation can be uncoupled from growth, cell proliferation
and cell cycling. Thus, species-specific neural differentiation speed must be determined by

alternative mechanisms.
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Figure 3: Changing cell cycle duration with mTOR inhibition does not affect

differentiation speed.

A. Bar graphs showing the mean duration of G1 (green), S (pink) and G2/M (gray) cell cycle phases in
mEpiSCs, cyiPSCs, and hESCs measured by time-lapse imaging of the PIP-FUCCI reporter.
Cynomolgus and human cells cycle approximately 1.42 times and 1.47 times slower than mouse cells,
respectively, but cells from all three species have a similar distribution of G1, S, and G2M phases.
Data from two independent experiments with n = 39 cells each. Error bars indicate standard error.

B. Measurements of cell cycle lengthening upon mTOR inhibition. Bar charts show mean G1 (green),
S (pink) and G2/M (gray) cell cycle phase durations in cells treated with 50 nM INK128. Comparison
with measurements in control cells (transparent, reproduced from A) reveals a 1.23-fold (mouse),
1.46-fold (cynomolgus) and 1.53-fold (human) lengthening of the cell cycle upon mTOR inhibition.
Data from two independent experiments with n = 40 cells each. Error bars indicate standard error.

C. Differentiation time course of mouse (left), cynomolgus (middle) and human cells (right) fixed after
0 hours and 1, 2, 3, and 4 days of NPC differentiation in the absence (control) or presence of mMTOR
inhibition, stained for the early neural marker PAX6 (green). mTORIi has no discernable effect on
PAX6 expression onset. Scale bars, 20 um.

D. UMAP projection of single cell transcriptomes of mTORi-treated (dark teal and brown) and control
cells (light teal and brown) onto the time course reference data set (gray). mTORi-treated and control
cells occupy similar regions in UMAP space when mapped onto the time-resolved reference data set.

E. Heatmap showing the proportion of cells within a sample assigned to a specific time point of the
reference data set.

F. Daily stills from time-lapse imaging of PAX6::H2B-GFP; H2B-Cerulean reporter cells differentiated
in absence or presence of INK128. The INK128 dose used in imaging experiments was slightly
reduced to 40 nM to improve cell viability during live cell microscopy. Constitutively expressed
H2B-Cerulean to indicate nuclei positions shown in cyan, PAX6::H2B-GFP shown in green.

G. Quantification of experiment shown in F. Data points show mean nuclear PAX6 reporter intensity
across all cells in each frame. Sudden drops in fluorescence intensities at around 48, 72, and 96 h are
caused by media changes. Data from control cells in light gray, data from mTOR-treated cells in dark

gray. Error bars indicate standard deviation.

Identification of candidate regulators of developmental speed through comparative

cross-species analyses

We next applied a three-step analysis pipeline on our time course scRNA-seq dataset to
identify biological mechanisms and specific candidate genes other than cell cycle that might
account for species-specific differentiation speeds (Figure 4A). As a first step, we curated
gene lists from GO categories such as energy metabolism, protein biosynthesis, and
epigenetic regulation and modification that had previously been implied in developmental

speed (Table S$1)*5'3-152630 Normalizing the data for each biological pathway revealed
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unique expression profiles of these broad gene groups for each species: Human cells
showed higher expression of epigenetic regulators and DNA modifiers, while cynomolgus
cells had increased expression of genes associated with glycogen metabolism and biological
oxidations. Mouse cells exhibited the highest upregulation in glucose-related metabolic
processes. The tricarboxylic acid (TCA) cycle and nicotinamide adenine dinucleotide
(NADH) metabolism displayed similar patterns across all species (Figure 4B).

In a second step, we asked which individual genes were responsible for the species-specific
prevalence of selected biological processes. To address the possibility that such a
species-specific preponderance was driven by differences in differentiation states between
cells from the three species, we took into account the expression dynamics of individual
genes across the differentiation time-course (Figure 4A, middle). We specifically focused on
the gene groups associated with the terms “glycogen biosynthesis” and “glycolysis”, because
the former showed stronger average expression in the slow primate species, whereas genes
in the latter group were on average more highly expressed in fast-differentiating mouse cells
(Figures S4A and S4B). Within each group, only a few genes showed strongly different
expression between species and time points. Two such genes of interest were Hexokinase 1
(HK1) from the group “glycolysis”, which is responsible for the phosphorylation of glucose to
glucose-6-phosphate during the initial step of glycolysis, and UDP-glucose
pyrophosphorylase 2 (UGP2) from the group “glycogen biosynthesis”, which encodes an
enzyme critical for re-routing glucose from glycolysis into glycogen storage. Both HK1 and
UGP2 exhibited high expression in primate cells at the onset of neural differentiation, while
remaining absent in mouse cells throughout the entire differentiation process (Figures 4C
and 4D).

In the third step of our analysis, we sought to leverage the heterogeneous differentiation of
cells from the same species in our time course transcriptomic data to devise an independent
test for the involvement of a candidate gene in controlling differentiation speed. We
hypothesized that if a candidate gene affected differentiation speed, we would find
differences in its expression levels when comparing slow- and fast-differentiating cells from
the same species (Figure 4A, right). To distinguish fast- and slow-differentiating single cells,
we first employed unsupervised Leiden clustering of the whole dataset for each species, to
define six specific stages of differentiation: pluripotency high, pluripotency low, intermediate,
neural low, neural high, and neuronal (Figures 4E-G). We then defined sets of marker genes
for each cluster (see Methods for details). These genes showed a similar expression
sequence across species, albeit with different dynamics (Figures S4C-E), such that mouse
cells reached the same differentiation stage faster than primate cells (Figures S4F-H).

Based on the marker gene sets, we calculated gene expression scores for each cell and
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each cluster (Figures S4I-K), and applied a stringent threshold of this score to select cells
with highly similar gene expression profiles that closely matched the characteristic profile of
the respective cluster. Finally, we compared the expression of previously identified genes of
interest in cells that reached a high marker gene score at early time points
(fast-differentiating cells) to their expression in cells that reached the same marker gene
score at later time points (slow-differentiating cells). This analysis revealed that UGP2, but
not HK1, consistently exhibited higher expression in slow-differentiating cells compared to
fast-differentiating cells (Figure 4H and 4l). This effect was observed across all species and
was particularly pronounced in cynomolgus and human cells, likely due to their overall higher
UGP2 expression levels compared to mouse cells. The higher expression of UGP2 in
slow-differentiating cells, both in intra- as well as cross-species comparisons, make it a

strong candidate for the control of cell differentiation speed.
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Figure 4: Glycogen biosynthesis related UGP2 is upregulated in slower species and in

slower cells.

A. Schematic overview of the approach used to identify candidate mechanisms and genes involved in
differentiation speed. In the first level, candidate GO terms were compared across species. At the
second level, GO terms of interest were further analyzed for individual genes that displayed distinct
dynamics between species and time points. In the third level, these selected genes were compared

between cells with fast and slow differentiation speed within each species. Here, cells were
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categorized into different clusters representing differentiation states (e.g., pluripotency high or low).
For example, a cell sampled 8 hours post-induction categorized as pluripotency low was classified as
fast-differentiating, whereas a cell sampled 1 day post-induction with the same state was labeled as
slow-differentiating.

B. Heatmap showing normalized mean expression of selected biological pathways across all three
species. Circle marks epigenetic regulation, diamond cell cycle regulation, triangle glycogen related
pathways and square metabolic pathways.

C-D. Dots plots of HK1 (C) and UGP2 (D) expression levels during NPC differentiation in mouse,
cynomolgus, and human.

E-G. Progressive differentiation states for mouse (E), cynomolgus (F), and human (G) shown on the
UMAP embeddings of single-cell gene expression data. Colors correspond to pluripotency high - blue;
pluripotency low - orange; intermediate - green; neural low - red; neural high - pink; neuronal - brown.
The neuronal cluster is only present in mouse cells (E), in line with their more extensive differentiation
trajectory.

H-l. Dot plots comparing HK1 (H) and UGP2 (I) expression levels in fast- and slow-differentiating
pluripotency-low cells across the different species. UGP2 (l) expression levels are higher both in
slowly differentiating species, as well as in slowly differentiating cells from the same species, whereas

HK1 expression shows the reverse behavior (H).

UGP2 expression regulates species-specific glycogen storage and neural

differentiation dynamics

Finally, we tested the functional roles of species-specific UGP2 expression for cellular
carbohydrate metabolism and neural differentiation. Consistent with RNA levels, similar
amounts of UGP2 protein were detected in human and cynomolgus wild-type pluripotent
stem cells, but UGP2 protein was nearly absent in mEpiSCs (Figure 5A). UGP2 protein was
also undetectable in a previously described human ESC UGP2 knockout (KO) line*' (Figure
5A). Species-specific UGP2 protein levels translated into glycogen storage levels: While
human pluripotent stem cells stored high levels of glycogen, cynomolgus and mouse cells
only contained approximately 50% and 10% of the per cell glycogen levels detected in
human cells, respectively (Figure 5B). These differences in glycogen levels are reminiscent
of the trends in differentiation speeds across the species, and establish that glycogen
storage levels as a new species-specific cellular property. Glycogen levels were strongly
decreased in UGP2 KO hESCs (Figure 5B), demonstrating that glycogen storage depends
on, and is likely regulated through UGP2 expression. We then asked if loss of UGP2 would
alter differentiation dynamics. In human UGP2 KO cells, RT-qgPCR revealed a consistent
upregulation of neural markers SOX1, PAX6, and FOXG1 compared to wild-type cells at
several stages (Figure S5A). When staining for the late-stage neural marker FOXG1 in a

differentiation time course, we found the first FOXG1-expressing cells by day 9 in UGP2 KO
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cells, but only at day 14 in the wild-type, further indicating accelerated neural differentiation
upon loss of UGP2 (Figures 5C and 5D). To assess changes in differentiation speed upon
loss of UGP2 transcriptome-wide, we performed scRNA-seq of the UGP2 KO cells in
pluripotency conditions and after 7 days of neural differentiation (Figure 5E). Mapping
mutant transcriptomes to the reference time course data revealed that human UGP2 KO
cells at 0 hours resemble 8-hour and O-hour reference cells, while day 7 UGP2 KO cells
mapped mostly to day 10 wild-type cells, indicating faster neural differentiation upon loss of
UGP2 (Figures 5F and 5G). Gene enrichment analysis for differentially regulated genes in
KO samples showed several neural-related pathways within the top 100 upregulated KEGG
pathways, such as neuroactive ligand-receptor interaction and various synaptic pathways
(Figure 5H). Interestingly, glycolysis/gluconeogenesis pathways were also represented in
the top 100 enriched pathways, suggesting autoregulation at the transcriptional level. We
also generated a UGP2 KO cyiPSC line to test if a similarly accelerated neural differentiation
could be observed in this species. UGP2 protein was undetectable in UGP2 KO cyiPSCs
(Figure S5B), and FOXG1 mRNA was more highly expressed compared to wild-type cells
from day 4 onwards (Figure S5C). In an scRNA-seq experiment however (Figure S5D),
mapping mutant transcriptomes onto the reference time-course data from Figure 1 did not
reveal major changes to differentiation speed upon loss of UGP2 in cynomolgus cells
(Figures S5E and S5F). This smaller effect of the loss of UGP2 on differentiation dynamics
in cynomolgus compared to human cells might be related to overall lower glycogen storage
levels in cynomolgus cells, and additionally be obscured by the low time resolution of the
reference dataset at the later time points. Still, these experiments consistently demonstrated
accelerated neural differentiation in human cells lacking functional UGP2, suggesting that

UGP2 activity in wild-type cells slows down the pace of neural differentiation.
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Figure 5: Loss of UGP2 accelerates human NPC differentiation.

A. UGP2 protein expression in wild-type (WT) cells from the three species, and in human UGP2 KO
cells, detected by Western blotting. Human and cynomolgus cells have similar UGP2 expression
levels, but UGP2 is absent in human UGP2 KO and mouse wild-type cells. GAPDH is used as
housekeeping control.

B. Mean glycogen content in pluripotent cells from the three species. Glycogen levels are lowest in
mouse, and 7.5 and 13.5 times higher in cynomolgus and human cells, respectively. Points indicate
data from N = 3 independent experiments, error bars indicate standard error. ns: adjusted p-value * p
< 0.05, ** p < 0.01, as determined by an unpaired Student’s t-test with Bonferroni correction.

C. NPC differentiation time course of human UGP2 wild-type and KO cells fixed and stained for the
anterior neural/forebrain differentiation marker FOXG1 (green). FOXG1 expression is detected earlier
in KO than in wild-type cells. Scale bars, 20 um.

D. Quantification of immunostaining shown in (C). Single cell FOXG1 expression levels were
measured in nuclear masks determined by segmentation in the Hoechst33258 channel via StarDist
2D using the Versatile Fluorescent Nuclei model®. For visualization, the number of cells was reduced
to a maximum of 200 cells per sample. A background value measured in a 200x200 um region of
interest of each image was subtracted and outliers defined in each image as all values outside a
range of 3 times the interquartile range below or above the first and third quartile respectively were
removed in each channel. Only cells with an area 2 10 ym? were considered.

E. UMAP representation of scRNA-seq data of human UGP2 KO cells before (0 hours) and after 7
days of NPC differentiation.

F. UMAP projection of single-cell transcriptomes of UGP2 KO cells at 0 hours (light green) and 7 days
(dark green) of differentiation onto the time-resolved reference data set (gray).

G. Heatmap showing the fraction of UGP2 KO cells at 0 hours and 7 days of NPC differentiation that
map to specific time points of the wild-type reference data set. Day 7 UGP2 KO cells mostly map to
wild-type day 10 and are hence developmentally advanced compared to the wild-type.

H. KEGG pathway enrichment using differentially expressed genes in UGP2 KO versus wild-type cells
at day 7 of NPC differentiation. Top 100 picks sorted by p-value are displayed, neural related
pathways are highlighted in yellow, glycolysis in red. Neural related pathways are upregulated in the
UGP2 KO.
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Discussion

Here we asked why differentiation speeds of pluripotent cells from different species are so
different, despite similar genetic makeup and growth in the same media. Using single-cell
multiomic data from neural differentiation in a harmonized three-species stem cell panel, we
determined precise scaling factors of differentiation speed along the neural lineage speed
between mouse, cynomolgus and human cells. We showed that differentiation speed
differences are reflected in chromatin dynamics, but can be uncoupled from cellular growth
and cell cycling. Leveraging the multi-species and single-cell nature of our data, we identified
several metabolic pathways as candidate regulators of developmental speed, and
functionally tested the glycogen-storage regulator UGP2 as the first metabolic enzyme for
the species-specific and cell-intrinsic control of differentiation speed.

The differentiation of cortical neural progenitors has been one of the first differentiation
paradigms to study the cell-intrinsic control of differentiation speed with stem cell models?.
Subsequently, the regulation of differentiation speed has been studied with protocols leading
to several other cell identities, most prominently motor neurons and presomitic mesoderm*-.
The advantage of the neural progenitor differentiation approach is that it exploits a default
cellular differentiation path in the absence of any extracellular signals, and therefore most
cleanly reports on the cell-intrinsic basis of developmental timing. Still, the 2.4-fold faster
differentiation of mouse compared to human cells measured by us closely aligns with
previously reported values of 2.5 for motor neuron differentiation® and 2.6 for segmentation
clock oscillations®. These similarities suggest that the scaling of cell-intrinsic differentiation
speeds is largely conserved across different protocols, labs and experimental paradigms.

In contrast to the strong speed differences between mouse and human cells, we found that
cynomolgus cells differentiate only marginally faster than human cells. Using segmentation
clock oscillations in vitro as a model, Lazaro et al. have recently suggested that
species-specific embryogenesis length is most predictive for cell differentiation speeds in
vitro™. Our data supports this notion: Despite an almost two-fold difference in total gestation
times, the end of embryogenesis at Carnegie stage 23 is reached after similar times in
monkeys (46 days)* and humans (58 days)*.

By measuring differentiation at different levels of regulation, we demonstrated that
species-specific chromatin dynamics are closely aligned with transcriptome changes.
Consistent with this finding, the slow maturation of human cortical neurons has been linked
to an epigenetic barrier that could be overcome by the targeted inhibition of modifiers of
chromatin accessibility*>*®. Together, these results therefore enforce the concept that, at
least in neural differentiation, epigenetics and chromatin dynamics are a key determinant of

developmental speed.
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An array of cell physiological parameters has been implicated in the control of
developmental speed, such as mitochondrial activity*'®, protein half-life® and general
biochemical reaction rates®. Our experiments with the mTOR inhibitor INK128 suggest that
previously proposed links between translation rate and differentiation speed may not apply to
neural differentiation. The significantly lengthened cell cycle upon mTOR inhibition indicates
that we have succeeded in slowing down anabolic processes, as would be expected by
targeting mTOR as a central hub of metabolism that promotes cell growth through the
upregulation of protein translation and ribosome biogenesis®. Still, we could not detect any
differences in the onset of neural marker gene expression between untreated and mTOR
inhibited cells, suggesting that the progression of the neural differentiation programme
proceeds independently of general anabolic processes and the cell cycle. Although it
remains a possibility that mTOR inhibition has pleiotropic effects on both neural
differentiation cell growth that are independent of each other and could compensate?®, our in
vitro results align with findings from an in vivo study, which likewise demonstrated that neural
progenitor differentiation progressed through successive stages irrespective of genetic
interventions to the cell cycle®. Previously reported effects of translation rate downstream of
mitochondrial activity on differentiation speed* may therefore act through specific pathways
rather than through the global reduction of anabolic rate, or only apply in specific
differentiation paradigms.

Exploiting the single-cell multi-species nature of our time course transcriptomic dataset, we
searched for candidate pathways and genes for developmental speed control. Focusing on
UGP2 as one prominent hit from this analysis, we have identified glycogen storage as a new
species-specific trait of pluripotent cells that are otherwise in comparable developmental
states. Besides generating precursors for glycogen synthesis and thereby energy storage,
UGP2 is also involved in the synthesis of extracellular matrix components such as
hyaluronan, and its product UDP-glucose is a substrate for protein glycosylation*®. Which of
the diverse functions of UGP2 underlies the accelerated neural differentiation in the UGP2
knockout cells remains at this point unclear. It is tempting to speculate that increased energy
storage in the form of glycogen is functionally related to an overall reduced metabolic activity
and subsequent slower differentiation speed in primate compared to mouse cells. Such a
relationship has been demonstrated in flatworms, where an increase in energy storage in
cells from larger organisms results in a slower metabolic rate compared to cells from smaller
organisms*'. Intriguingly, flatworm cells with a lower per-mass metabolic rate are bigger than
metabolically more active cells, just as human pluripotent cells are bigger than mouse

pluripotent cells*. It is therefore an attractive possibility that the partitioning of high-energy
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metabolites between storage and catabolism is a general strategy to tune developmental
speed in evolution.

Overall, our study adds glucose metabolism and glycogen storage to the growing list of
cell-intrinsic mechanisms that control differentiation speed. Given the diversity of
mechanisms that has been reported so far, it seems likely that each developmental lineage
may rely on a slightly different combination of mechanisms to tune its differentiation speed.
Understanding how scaling factors arise from diverse combinations of mechanisms is an

important question for future research.
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Methods

Cell lines and culture conditions

H9 human embryonic stem cells (ESC; WICELL Research Institute), 129S2C1a mouse
epiblast stem cells (EpiSC)* and 56A1 cynomolgus induced pluripotent stem cells (iPSC)*4
were plated on Matrigel (Corning) diluted 1:100 in DMEM/F12 (PAN Biotech) and gradually
adapted to UPPS™ media consisting of StemMACS iPS-Brew XF (Miltenyi Biotec)
supplemented with 1 pM IWR-1 (Sigma Aldrich) and 0.5 yM CHIR (R&D Systems) post
passaging over four days. Afterwards, culture media was exchanged daily and cells were
passaged with 0.5 mM EDTA (Promega) every two to four days as clumps. Cell identity was
verified through the alignment of scRNA-seq reads to the genomes of their respective
species. Experiments involving human stem cells were performed in accordance with
permissions obtained from the Robert-Koch-Institute (AZ: 3.04.02/0151 to MD to and AZ
3.04.02/0172 to CS). All reagents and resources are listed in Table S2.

In vitro neural progenitor cell differentiation

PSCs were singularized using Accutase (Sigma Aldrich) and counted on the Countess Il FL
Automated Cell Counter (Invitrogen). For hESCs and cyiPSCs 1.25 x 10° cells/cm? and for
mEpiSCs 6.25 x 10* cells/cm? were seeded onto Matrigel coated plates in UPPS media
supplemented with 10 yM Y-27632 (R&D Systems) and incubated overnight, resulting in
confluent cultures the following day for each species. For neural induction, media was
exchanged to NPC differentiation and maintenance media consisting of 1:1 DMEM/F12 and
Neuropan (PAN Biotech) supplemented with 0.5x N2 and B27 supplements, 1x MEM-NEAA,
1x GlutaMAX, 0.1 mM 2-Mercaptoethanol, 5 ug/mL Insulin, human recombinant (all Thermo
Fisher Scientific)) 10 yuM SB431542 and 100 nM LDN193189 (both Peprotech).
Differentiation was performed for maximal 14 days. Cells were washed with Dulbecco’s

phosphate buffered saline (DPBS; Thermo Fisher Scientific) before daily media exchange.

Quantitative reverse transcription PCR (RT-qPCR)

Cells were lysed and RNA was isolated using the RNeasy Mini Kit (Qiagen) following the
manufacturer's protocol. Subsequently, cDNA was synthesized from 500 ng RNA using the
Verso cDNA Synthesis Kit (Thermo Fisher Scientific). For RT-gPCR, SYBR Green PCR
Master Mix (Thermo Fisher Scientific), cDNA and 5 uM of each forward and reverse primer
were combined to a total reaction volume of 10 pL. RT-gPCR was performed in

384-well-plates on a QuantStudio 12K Flex gPCR machine (Thermo Fisher Scientific) in
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technical and biological triplicates. Relative normalized expressions were calculated using
the AAC;method. Primers are listed in Table S3.

Flow cytometry

First, cells were dissociated to single cells using Accutase and collected. For surface marker
staining, cells were once washed with FACS buffer (0.5% BSA and 2 mM EDTA in DPBS)
followed by centrifugation at 300 rcf for 5 minutes and removal of the supernatant. Cells
were incubated with primary antibodies for 30 minutes on ice. Then, after another
centrifugation and removal of supernatant, cells were incubated with secondary antibodies
for 30 minutes on ice, then washed and resuspended in FACS buffer. For intracellular
staining, the Inside Stain Kit (Miltenyi Biotec) was used according to the manufacturer’s
protocol. Cells were incubated with primary antibodies for 1 hour at room temperature and
with secondary antibodies for 30 min on ice. After an additional wash with Inside Perm
solution, cells were resuspended in FACS buffer for further analysis on a BD FACSAria Il
cell sorter (BD Biosciences). Flow cytometry data was analyzed using the FlowJo software.

Antibodies and dilutions are listed in Table S4.

Immunostainings

Cells were grown on chambered polymer coverslips (ibidi) and fixed for 15 min in 4%
formaldehyde (ROTI Histofix). Before antibody incubation, fixed cells were rinsed and
washed three times for 15 min in PBT-BSA (PBS with Ca?* and Mg?* containing 1% BSA and
0.1% Triton). Primary antibodies were added in PBT-BSA overnight at 4 °C and washed off
three times for 15 min. Secondary antibodies were incubated for 2 h at room temperature
and washed off three times for 15 min in PBT-BSA and twice 10 min in PBS. Imaging was
performed in mounting medium (80% glycerol, 20% H,O, 4% w/v n-propyl-gallate).

Antibodies and dilutions are listed in Table S4.

PIP-FUCCI measurements

For cell cycle characterizations, we used the PIP-FUCCI sensor by Grant et al.?' (Addgene
plasmid #118621) and amplified it with overlaps for a piggyBAC vector*® containing a CAG
promoter and a puromycin resistance cassette. The piggyBAC vector was opened via
Notl-HF and Xhol digest and the PIP-FUCCI construct cloned between the restriction sites
using NEB HiFi Assembly. Mouse and human cells were lipofected using lipofectamine2000,
and cynomolgus cells were nucleofected using the Neon transfection system with the
piggyBAC PIP-FUCCI construct and a pBASE plasmid for transposition*® and subsequently

kept under 1.5 pg/ml puromycin selection.
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PIP-FUCCI imaging was performed in chimeric cultures consisting of PIP-FUCCI sensor
cells and unlabeled, parental cells in ratios ranging from 1:10 to 1:100. This enabled us to
track cells even in dense colonies and during NPC differentiation when cells are seeded at
high densities. Cells were seeded a day prior to acquisition start as single cells in UPPS
medium supplemented with 10 yM ROCK inhibitor. Primate cells were typically seeded at
80,000 cells/cm? and mouse cells at 40,000 cells/cm?. Immediately before imaging, cells
were washed and transferred to the desired media condition, typically UPPS +/- 50 nM
INK128. Images were acquired in 10 min intervals over a course of 48 hours on an Olympus
IX81 widefield microscope with a 20X objective (NA 0.75). Cells were kept in a humidified
stage top incubator (ibidi) at 37 °C and 5% CO, during image acquisition. Tracking was
performed in Fiji (ImageJ v2.9.0) with TrackMate v7.9.2* using the “Manual Tracking” option.
Here, a circular region of interest (ROI) with a radius of 2.24 px was manually placed in the
center of a nucleus in each frame of a track. mVenus and mCherry fluorescence were
measured inside the ROI. Each track started at the first frame after cell division and ended
with the last frame before the next division, so the total cell cycle duration was calculated as
end frame — start frame. Cell cycle phase durations were calculated based on mVenus
fluorescence. The G1/S transition was defined as the frame in which mVenus signal in the
first half of the track (fluorescence intensity scaled between 1 and 2) after the first peak was
closest to its half maximum (PIP, . ma). The S/G2M transition was the frame in which
mVenus signal had an increase of > 0 and kept rising at an average of = 1.5% over the
following five frames (PIP,.) in the second half of the track (scaled between 1 and 2). Thus,

phase durations were calculated as follows:

duration = PIPhalf—max — start
duration = PIPrise - PIPhalf—max
G2M = end — PIP .
duration rise

PAX6 reporter time-lapse imaging

Human ESCs carrying a PAX6::H2B-GFP reporter® were transfected with a piggyBAC
vector containing an H2B-Cerulean-IRES-bsr construct under control of a CAG promoter to
add a nuclear label for cell tracking*’. After selection under 15 pg/ml blasticidin, polyclonal
cells were seeded onto chambered polymer slides (ibidi) at a density of 250,000 cells/cm?
and grown in UPPS + 10 uM ROCK inhibitor overnight. NPC differentiation was induced at
day 0, either without or with 40 nM INK128. After one day of NPC differentiation, image
acquisition was started on an Olympus IX81 widefield microscope with an iXon 888 EM-CCD
camera (Andor) and LED illumination (pE4000, CoolLED) on a 20X objective. All hardware

components were controlled by MicroManager 2.0, Images were taken in 30 min intervals
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for up to five days. Cells were washed daily and medium was changed. Time-lapse movies
were segmented based on the nuclear H2B-Cerulean signal using StarDist 2D and the
Versatile (fluorescent nuclei) model? and the probability threshold set to 0.7 with otherwise
default parameters. Accumulation of dead cells during differentiation and debris removal by
daily washing led to artificial shifts in reporter signal intensity. To reduce this artifact, a
Gaussian blur (radius = 50 um) of the PAX6::H2B-GFP channel in each frame was
generated and subtracted from the original image. PAX6::H2B-GFP intensity was measured
on the resulting corrected image. Nuclei with an area < 50 uym? were filtered out and the
frame average of PAX6::H2B-GFP intensity was calculated across all remaining nuclei per

condition.

CRISPR/Cas9 gene editing for the generation of cynomolgus iPSC UGP2 KO lines

CRISPR editing of cynomolgus iPSCs was carried out using a plasmid-free method,
employing TrueCut Cas9 protein and TrueGuide sgRNAs (Invitrogen). The guide RNAs,
designed to target the UGP2 gene locus in Macaca fascicularis, were generated using the
Synthego CRISPR design tool and are detailed in Table S3. To generate KO cell lines,
ribonucleoprotein (RNP) complexes were created by combining individual guide RNAs with
TrueCut Cas9 protein, followed by a 10-minute incubation at room temperature and
subsequent storage on ice for later use. Subsequently, 5 x 10° cells were suspended in 100
Ml of P3 Nucleofector™ solution (Lonza) per reaction, following the manufacturer's protocol,
and the prepared RNP complexes were added as required. The nucleofection process was
carried out using the DN100 program on the Amaxa 4-D Nucleofector (Lonza).

After transfection, the cells were seeded onto 6-well plates coated with a 1:100 Matrigel in
UPPS media supplemented with 10 yM ROCK inhibitor Y-27632 and incubated for 24 hours.
Upon reaching 80% confluency, the cells were dissociated into single cells using Accutase
as previously described. Subsequently, 10,000 single cells were plated onto 10 cm
polystyrene dishes coated with a 1:100 Matrigel in UPPS media containing 10 yM ROCK
inhibitor Y-27632 for 24 hours. The culture was maintained until visible colonies formed, and
individual colonies were selected and transferred to 12-well plates, where they were cultured

in UPPS media for further analysis and evaluation.

Genomic DNA isolation, PCR, PCR clean-up and gel electrophoresis

To confirm successful homozygous mutagenesis of the UGP2 locus, genomic DNA was
isolated from KO clones following the nucleofection of RNPs, utilizing the QlAamp DNA Mini

Kit (Qiagen) and adhering to the manufacturer's instructions.
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PCR amplification was performed using DreamTaq Green DNA Polymerase (5 U/pL, Thermo
Fisher Scientific), following the manufacturer's protocol. Subsequently, the resulting PCR
product was extracted using the QIAquick PCR purification kit (Qiagen). The PCR products
were then examined using 1% agarose (Biozym) gels in 1x TAE buffer composed of 40 mM
TRIS base, 20 mM acetic acid, and 1 mM EDTA (all Carl Roth). SYBR Safe DNA Gel Stain
(Thermo Fisher Scientific) was incorporated into the gel at a dilution of 1:10,000.
Electrophoresis was carried out at 100 V in TAE buffer. Subsequently, the DNA fragments

were visualized using the ChemiDoc MP Imaging System (BioRad).

Sanger sequencing

The PCR fragments were sent to Eurofins Scientific for Sanger Sequencing. Subsequently,
the resulting sequences were analyzed utilizing SnapGene viewer software v7.1.1 to verify

the accuracy of the intended deletions.

Western blot

To evaluate the successful generation of KO cell lines at the protein level, Western Blot
analysis was conducted. Total protein was extracted using RIPA buffer (Thermo Fisher
Scientific) supplemented with 1x protease inhibitor (Roche). The lysed cells were then
cooled on ice for 5 minutes, followed by centrifugation at 14,000 x g for 15 minutes. The
resulting supernatant was transferred to a fresh tube. To measure protein concentration,
Pierce™ BCA Protein Assay Kit was used according to the manufacturer's instructions and
36 g of total protein were used for subsequent analysis. 2x Laemmli buffer (BioRad) was
added to all samples and incubated at 95°C for 5 minutes. The prepared protein sample was
applied to a 7.5% Mini PROTEAN® TGX stain-free gel (BioRad) for electrophoresis, using
SDS running buffer containing 1x Tris/glycine (BioRad) and 3.5 mM SDS (Serva
Electrophoresis). Wet blotting onto a nitrocellulose membrane was performed for 1 hour at
100 V using blotting buffer with 1x Tris/glycine and 20% methanol (Serva Electrophoresis).

Subsequently, the membrane was blocked for 1 hour at room temperature in TBST buffer,
consisting of 20 mM TRIS base, 150 mM NaCl, 0.1% Tween-20, and 5% milk powder (all
Carl Roth). The primary antibody was diluted 1:1000 in blocking buffer, applied to the
membrane, and incubated overnight at 4°C. Antibodies used for Western blot are listed in
Table S4. After three washes with TBST buffer, the membrane was incubated with a
secondary antibody conjugated with horseradish peroxidase (Sigma Aldrich) at a 1:10,000
dilution in blocking buffer for 2 hours at room temperature. Following another three washes

of 15 minutes each in TBST buffer, the membrane was stained with Clarity Western ECL
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Substrate and visualized after a 2-minute incubation using the ChemiDoc MP Imaging
System (BioRad).

Glycogen measurements

Glycogen contents were measured using the Glycogen Assay Kit ab65620 (Abcam)
following manufacturer’s instructions. Cells were harvested, washed with PBS and
resuspended in cold H,O. For glycogen content normalization, cells were counted using a
Countess Automated Cell Counter (Invitrogen). Enzymatic inactivation was performed at
100°C for 10 min and glycogen was hydrolysed to glucose and detected using the OxiRed
probe following the manufacturer’s instructions. All samples were measured in technical
duplicates and a sample background control where glycogen is not hydrolysed to glucose
was performed. A standard curve with glycogen concentrations ranging from 0 (blank) to 0.2
Mg glycogen/well was used to calculate glycogen contents. All samples, sample background
and standard wells were measured at 535/587 nm (Ex/Em) on a Tecan Plate Reader.
Duplicate measurements were averaged and sample background readings as well as a
blank value were subtracted from sample readings. The standard readings were plotted
against the glycogen concentration/well, and a linear fit was performed to calculate glycogen
contents in each sample well. The glycogen content [ug/ul supernatant] was then normalized

to the number of cells in solution before homogenization.
Single-cell sequencing experiments and analysis

Nuclei isolation for single-cell multiome sequencing

Nuclei isolation was only performed for time course single-cell multiome sequencing
samples. At the determined time points during NPC differentiation, hESCs, mEpiSCs, and
cyiPSCs were individually dissociated to single cells using Accutase. Subsequently, 2.5 x 10°
cells per species were collected in a 2 mL DNA LoBind Tube (Eppendorf) and combined to a
single sample for further processing. Nuclei isolation was performed according to the
demonstrated protocol provided by 10x Genomics with some modifications. Briefly, cells
were centrifuged at 300 rcf for five minutes and the supernatant was removed. The cell pellet
was gently resuspended in 100 L lysis buffer (10 mM Tris-HCI pH 7.4, 10 mM NacCl, 3 mM
MgCl, (all Sigma Aldrich), 0.05% Tween-20 (Carl Roth), 0.05% NP40 (Sigma Aldrich), 0.01%
Digitonin, 1% BSA, 1 mM DTT and 1 U/uL RNase inhibitor (all Thermo Fisher Scientific)) and
incubated for three minutes on ice. After incubation, the sample was washed by the addition
of 1 mL wash buffer (10 mM Tris-HCI pH 7.4, 10 mM NaCl, 3 mM MgCl,, 0.1% Tween-20 ,
1% BSA, 1 mM DTT and 1 U/uL RNase inhibitor), followed by centrifugation at 1000 rcf for 5

minutes and removal of the supernatant. Washing was repeated two more times. After the
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last washing step, the nuclei pellet was resuspended in Diluted Nuclei buffer (1x Nuclei
Buffer (10x Genomics), 1 mM DTT and 1 U/uL RNase inhibitor). The concentration was
determined and the sample was checked for successful nuclei isolation by visual
examination under the microscope using Trypan Blue (Invitrogen). While the following library
preparation was performed on single isolated nuclei, the term ‘single-cell sequencing’ is

employed for the time course multiome data.

Library preparation and sequencing

Time course scATAC and scRNA libraries were prepared using the Chromium Next GEM
Single Cell Multiome ATAC + Gene Expression Reagent Bundle (10x Genomics) according
to the manufacturer’s protocol. Samples were collected at Oh, 8h, 1d, 2d, 3d, 4d, 7d and 10d
post neural induction and cells of all three species were combined in equal amounts prior to
the library preparation. The aimed target recovery was 10,000 single nuclei for sequencing.
Libraries were sequenced on an lllumina NovaSeq 6000.

For scRNA-seq in the mTOR inhibition experiments, the Chromium Next GEM Single Cells 3’
Reagent Kits v3.1 (Dual Index) with Feature Barcode technology for Cell Multiplexing (10x
Genomics) were used following the manufacturer’s instructions with minor modifications.
Neural differentiation was initiated as described, and 50 nM INK128 was added to half of the
cells. Cells were harvested at Oh, 2d, and 4d of NPC differentiation. Labeled samples were
pooled and loaded onto a Chromium Next GEM Chip, with target recoveries of 12,000 cells
for day 0 and 22,000 cells for days 2 and 4. Sequencing reads were obtained through
NovaSeq X Plus PE150.

For the UGP2 KO experiments, scRNA-seq was performed using the Chromium Next GEM
Single Cells 3’ Reagent Kit v3.1 (Dual Index) according to the manufacturer's instructions,
with samples collected at Oh and 7d post neural induction. Equal amounts of cynomolgus
and human cells were combined for a target recovery of 10,000 cells for subsequent library
preparation and species assignment. Libraries were sequenced on an lllumina NovaSeq
6000.

Preprocessing

For time course single-cell multiome sequencing experiments, CellRanger ARC (v2.0.0)
provided by 10x Genomics was used to demultiplex binary lllumina base call (BCL) files into
FASTQ files, align the data against the GRCh38 (human), GRCm39 (mouse), and
Macaca_fascicularis_6.0 (cynomolgus) reference, filter reads, as well as count barcodes and
scRNA and scATAC molecules to generate feature-barcode matrices. Mapping of the mTOR
inhibition experiments was performed using CellRanger 7.2.0 (10x Genomics). Gene

Expression libraries were mapped against the GRCm38 (mouse), GRCh38 (human), and
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Macaca_fascicularis_6.0 (cynomolgus) genomes. Mapping of the scRNA-seq data of the
UGP2 KO was performed using CellRanger 7.1.0 (10x Genomics) and reads were aligned
against the GRCh38 (human), and Macaca_fascicularis_6.0 (cynomolgus) genomes.

Subsequent preprocessing and analysis steps of time course and UGP2 KO scRNA-seq
data were run in Python 3 using Scanpy v.1.4.6+*° and anndata v.0.7.1+*° except stated
otherwise. Downstream analysis of the scRNA-seq data of the mTOR inhibition experiments
was performed in Seurat v5°. All subsequent preprocessing and analysis steps of
SCATAC-seq data were run in R v4.1.2+ using ArchR v1.0.2+°' except stated otherwise. All

scRNA-seq and scATAC-seq figures were plotted using matplotlib, seaborn and ggplot2.

Species assignment and quality control

To mitigate technical cross-species batch effects, we pooled an equal number of cells from
the three species for each of the samples. Consequently, we aligned resulting sequencing
data against each of the three respective reference genomes separately. For time course
single cell multiome sequencing and scRNA-seq of the UGP2 KO, we employed a two-step
approach to assign each barcode to the species of origin: initially, we prematurely assigned
cells to a species based on which reference genome yielded the highest counts per cell.
Subsequently, we used souporcell®? to identify and remove doublet cells, and cluster cells on
their genotype and their respective species of origin based on single nucleotide
polymorphisms. For each sample, we filtered barcodes to retain high quality cells based on
the total distributions of unique molecular identifier counts and genes. Barcodes with a
fraction of mitochondria-encoded genes over 30% were excluded, likely indicating dying or
stressed cells. Finally, we excluded genes detected in fewer than 20 cells from further
analyses. For time course multiome data, UMI counts of each cell were normalized using the
SCRAN algorithm as implemented in the R-based package®***. Briefly, size factors that
correlate with the amount of counts of captured cells were estimated and used for
normalization before log-transforming the data. For UGP2 KO data, Scanpy's function
sc.pp.normalize_total was used to normalize the data. For scRNA-seq data of mTOR
inhibition experiments, only cells with a minimum feature count of > 3000 and a maximum
mitochondrial gene percentage of < 15% were considered.

For the time course scATAC-seq data, barcodes from the respective species were assigned
using the labeled cell barcodes from the scRNA-seq analysis. Peaks were called using
Macs2>°. Next, we inspected the resulting peak and tile matrices based on the number of
fragments generated from Tn5 enzyme transposition events, transcription start site (TSS)
enrichment score and nucleosome signal per cell to obtain high quality cells. We excluded
cells with <1,000 captured fragments or TSS enrichment scores <1 from further analysis.

Additionally, we excluded peaks located on non-standard chromosomes or chromosome
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scaffolds, as well as peaks within genomic blacklist regions as defined by the ENCODE

consortium®® from further analysis.

Feature selection and low dimensional embedding

We identified the top 4,000 variable genes based on normalized dispersion®” as adopted in
Scanpy (pp.highly_variable_genes). Briefly, genes were ordered along their mean
expression before selecting the genes with the highest variance-to-mean ratio. We then
performed principal-component analysis dimension reduction by computing 15 principal
components on highly variable genes using Scanpy’s pp.pca. Next, a neighborhood graph
was computed on the first 50 principal components using Scanpy’s pp.neighbors with 15
neighbors. To identify genes involved in the linear NPC differentiation process, we used
Waddington Optimal Transport (WOT)® to identify potential driver genes correlating with fate
probabilities towards the terminal macrostate as implemented in cellrank®. WOT, primarily
used to infer developmental trajectories by minimizing transportation costs between cell
states for timelapsed scRNA-seq data, was employed here to identify genes that follow the
linear trajectory towards endpoint cells at the final time point. For two-dimensional
visualization, we embedded the neighborhood graph via uniform manifold approximation and
projection (UMAP)® on these lineage driver genes identified from WOT with an effective
minimum distance between embedded points of 0.5.

For the scATAC-seq data, we performed layered dimensionality reduction using latent
semantic indexing (LSI), consisting of normalization via term frequency-inverse document
frequency (TF-IDF) and dimension reduction via singular value decomposition (SVD). Finally,
we calculated a UMAP embedding based on the LSI reduced dimensions with 30 neighbors
and an effective minimum distance between embedded points of 0.5. To obtain reliable cell

annotations, we transferred labels from scRNA-seq barcodes to scATAC-seq barcodes.

Simulated gene expression

To facilitate the visualization and interpretation of scATAC-seq data, we leveraged chromatin
accessibility patterns to estimate gene expression profiles for cell state-specific marker
genes. We calculated gene scores estimating the level of gene expression based on the
local accessibility of the gene region, including the promoter and gene body, across all cells
in the data, adjusting for gene distances and large differences in gene size using the
GeneScoreMatrix in ArchR®'. To further enhance the visualization, we used MAGIC®' to

denoise gene activity scores.
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Ingest mapping

To investigate the overall speed of differentiation between species and the effect of mTOR
inhibition and loss of UGP2 in pluripotent stem cells across the three species, we used
Scanpy’s ingest function (sc.tl.ingest). For species comparison of time course gene
expression data from scRNA-seq and gene expression prediction data from scATAC-seq, we
mapped cells from human, mouse and macaca into one common embedding. Integration of
embeddings and annotations of macaca and human cells via a k-NN classifier was done,
with mouse cells serving as the reference since they exhibited the fastest differentiation
speed and therefore covered the most stages during the differentiation process. To
investigate the effect of mMTOR inhibition and loss of UGP2 we used the respective species'
time course data as the reference for mapping. For the mTOR inhibition data, the proportion
of cells assigned to a specific time point of the reference data was quantified using a

custom-made pheatmap-based function*’.

Linear regression time mapping

To explore the correlation between the mapped time derived from ingest mapping for scRNA
and scATAC-seq and the corresponding sampling time points across the human and
cynomolgus datasets, linear regression analysis was employed using the scikit-learn tool
v1.5.0%. Mean values obtained over the mapped time were calculated for each dataset to
enable a comparative examination. The regression models were constrained to pass through
the origin. The fit for each model was evaluated using the R-squared statistic. Relative
differentiation speeds were determined by calculating the slopes of the linear fits relative to

mouse.

Differential gene expression and enrichment analysis

For differential gene expression analysis, Scanpy’s sc.tl.rank_genes_groups was applied to
compare gene expression levels between previously defined clusters using the Wilcoxon
method, aiming to identify genes that are significantly upregulated or downregulated in one
cluster compared to others. After identifying differentially expressed genes (DEGs),
enrichment analysis was conducted. Lists of DEGs were analyzed using Gene Ontology
(GO) or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, indicating potential

biological processes or pathways that are active in one cell population over another.

Clustering and identification of fast- and slow-differentiating cells within each species

The Leiden algorithm was utilized for unsupervised clustering for all species. Subsequently,
the tl.rank_genes_groups method was applied within Leiden clusters, employing the

Wilcoxon test to identify DEGs. The resulting DEG lists were exported for each species and
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further refined by retaining only those genes that were common across all three species and
displayed a p-value < 0.01 and a log-fold change > 2. To check for correct assignment, the
clusters were divided into smaller subclusters and each subcluster was reevaluated and
checked for correct assignment. Again, the tl.rank_genes_groups method was applied to
determine DEGs between refined clusters and only genes common to all three species and
displaying a p-value < 0.01 and a log-fold change > 2 were retained. These genes were
used as marker genes for the clusters pluripotency high - pluripotency low - intermediate -
neural low - neural high and neuronal within the dataset of each species. Using the
sc.tl.score_genes function of Scanpy, we calculated gene scores for each cell and each
marker gene set defining the respective cluster. Further subdivision was carried out, and
smaller subclusters were analyzed for overlap with the marker genes. For the identification
of fast- and slow-differentiating cells, we determined the mean gene score for each cluster
and used this value to set a threshold to select single cells that most confidently reflected the
respective gene expression profiles. These subgroups of cells were further subdivided
according to the time point at which they reached their specific differentiation state. For a
single differentiation state, we focused on the two time points that contained most of the cells
in that differentiation state, and defined the cells found at the earlier of the two time points as

fast-, and the cells found at the later time-point as slow-differentiating.
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Figure S1: Primed epiblast-like pluripotent stem cells of three mammalian species

cultured and differentiated under identical conditions.

A. Schematic illustrating the stepwise adaptation process to harmonized UPPS medium from the
original culture conditions of mEpiSC (top), cyiPSC (middle) and hESC (bottom).

B. Brightfield images of mouse (left), cynomolgus (middle) and human (right) pluripotent stem cells
cultured in harmonized conditions using Matrigel and UPPS. Cells from all three species display
regular colony morphology typical for pluripotent cells. Scale bars, 500 ym.

C. Flow cytometric analysis for pluripotency marker expression in mEpiSCs (top), cyiPSCs (middle)
and hESCs (bottom) cultured in harmonized conditions using Matrigel and UPPS. Left panels show
distribution of SOX2 (purple) and SSEA1/TRA 1-60 (green) expressions, right panels show NANOG
(orange) and OCT4 (blue) expressions. Gray distributions represent unstained control samples.

D. Immunofluorescence staining of pluripotency markers NANOG (green) and SOX2 (magenta) in
mEpiSCs (top), cyiPSCs (middle) and hESCs (bottom) cultured in harmonized conditions using
Matrigel and UPPS. Scale bars, 25 ym.

E. Immunofluorescence staining of the pluripotency marker OCT4 (yellow) and the neural markers
PAX6 (green) and SOX1 (magenta) in mEpiSCs (left), cyiPSCs (middle) and hESCs (right) before and
after 6 days of NPC differentiation. Scale bars, 20 ym.

F. RT-gPCR analysis of relative expression level of the pluripotency markers OCT4 and NANOG, and
neural markers SOX1 and PAX6 in mEpiSCs (top), cyiPSCs (middle) and hESCs (bottom) after 10
days of NPC differentiation (dark bars). Expression levels were normalized for each gene to its
expression in pluripotency conditions (light bars) using the 2*-ddCt method. Error bars indicate
standard deviation (N = 3). Significance was was determined using the Student’s t-test: * p < 0.05, **
p <0.01, ** p <0.001, **** p <0.0001.
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Figure S2: Inter-species single-cell mapping reveals that mouse cells differentiate

fastest, followed by cynomolgus and human on RNA and chromatin level.

A. Schematic illustrating approach to map single-cell transcriptomes from human and cynomolgus
cells along the differentiation time-course onto the mouse reference embedding.

B. Common embedding of human (green) and cynomolgus cells (yellow) in the mouse reference
UMAP map (gray). Neither human nor cynomolgus cells reached the most differentiated states seen
in the mouse, but the most advanced cynomolgus cells were slightly further along in the differentiation
trajectory compared to human cells, indicating a marginally faster differentiation pace in cynomolgus
compared to human.

C-D. Heatmaps using simulated gene expression from scATAC-seq in cynomolgus and human cells
compared to simulated gene expression from scATAC-seq in mouse cells. Tile colors indicate
fractions of cynomolgus (C) and human (D) cells for each sampling time mapping to reference time
points in mouse.

E. Linear regression of cross-species mapping using simulated gene expression determined from
scATAC-seq. Data points show the mean mapped time of human (green circles) and cynomolgus
(orange triangles) cells on the mouse reference data. Lines are linear fits to the data for human
(green, y = 0.53x, R? = 0.89) and cynomolgus (orange, y = 0.59x, R? = 0.95), and indicate 1.7 and
1.9-fold faster differentiation in mouse compared to cynomolgus and human, respectively, when

determined using chromatin dynamics.
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Figure S3: Cell cycle durations are species-specific but growth and cell cycle

manipulation via mTOR inhibition does not delay early neural differentiation.

A. Stills from movies of mEpiSCs (top), cyiPSCs (middle) and hESCs (bottom) expressing the
PIP-FUCCI sensor. Expression of Cdt;,-NLS-HA-mVenus (PIP) in green, expression of
mCherry-Gem;,_44, (Gem) in magenta. Scale bars, 10 um.

B. Fluorescence profiles derived from cells shown in A. Dashed lines indicate transitions between the
cell cycle phases G1, S and G2M (See methods for criteria to determine cell cycle phase transitions).
C. Distributions of cell cycle durations in mEpiSCs (left), cyiPSCs (middle) and hESCs (right). Data
from two independent experiments indicated by different shapes. Light symbols show data from
individual cells, dark circles and triangles show mean of each replicate, black squares indicate
average of replicates, bars indicate standard error. Cell cycle durations are broadly distributed within
each species, but average cell cycle durations are species-specific.

D. Cell cycle phase durations normalized to total cell cycle length. Cells from all species show a
similar cell cycle structure characteristic for pluripotent cells with a short G1-phase (green) and
dominant S- and G2/M-phases (magenta and gray).

E-F. Same differentiation time course as in Figure 3C showing mouse (left), cynomolgus (middle) and
human cells (right) fixed after 0, 1, 2, 3, and 4 of NPC differentiation in the absence (control) or
presence of mTOR inhibition, but stained for the neural marker SOX1 (magenta, E), and the
pluripotency marker OCT4 (yellow, F). mTORI has no discernable effect on SOX1 expression onset,
but leads to a slightly longer maintenance of OCT4 expression in human cells, possibly due to
reduced cell proliferation and protein dilution. Scale bars, 20 ym.

G-l. UMAP representation of scRNA-seq data from mEpiSCs (G), cyiPSCs (H) and hESCs ()
differentiated for 2 (green) or 4 days (orange) in the presence (dark symbols) or absence (control,
light symbols) of the mTOR-inhibitor INK128. Transcriptomes of undifferentiated cells are shown in
gray. mTOR-inhibited and control cells are overlaid in mouse but map away from each other in the
primate species, consistent with stronger effects of the inhibitor in the primate compared to mouse

cells.
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Figure S4: Identification of candidate genes for differentiation speed through

comparison of fast- and slow-differentiating cells within and across species.

A-B. Heatmap showing the mean normalized expression of individual genes associated with glycogen
biosynthesis (A) and glycolysis (B) across the differentiation time-course in human (left), cynomolgus
(middle), and mouse cells (right). Red box highlights UGP2 (A) and HK1 (B) expression which differ
most strongly between human, cynomolgus, and mouse.

C-E. Expression of selected marker genes used to annotate cells as pluripotency high, pluripotency
low, intermediate, neural low, neural high and neuronal during NPC differentiation of mouse (C),
cynomolgus (D) and human (E) cells. Marker genes are expressed in the same relative sequence
across species, but at later absolute times in the slower differentiating primates.

F-H. Heatmap showing the fraction of cells with specific state annotations coming from different
sampling time-points during NPC differentiation for mouse (F), cynomolgus (G) and human (H). The
same differentiation states are reached at progressively later time-points in cynomolgus and human
cells compared to the mouse.

I-K. Expression scores of gene groups defining the differentiation states pluripotency high,
pluripotency low, intermediate, neural low, neural high and neuronal (from left to right) shown on the
UMAP embeddings from Figure 1. See Methods for choice of gene groups and calculation of

expression scores.
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Figure S5: Impact of UGP2 knockout on neural differentiation in hESCs and cyiPSCs.

A.-B. RT-gPCR expression analysis of the pluripotency marker OCT4, the early neural markers SOX1
and PAX6, and later-stage neural marker FOXG1 after 0, 4, 6, 8 and 10 days of NPC differentiation in
wild-type (light) and UGP2 KO (dark) hESCs. Relative expression was calculated using the 2*-ddCt
method and normalized using the Oh sample as reference. Data from N = 3 independent experiments,
error bars represent standard deviation. Significance was determined using the Student’s t-test: * p <
0.05, ** p < 0.01, ** p < 0.001. Neural markers are consistently more highly expressed in UGP2
knockout compared to the wild-type cells.

B. Western blot analysis of UGP2 protein in cynomolgus wild-type iPSCs (WT, reproduced from
Figure 5C) and UGP2 knockout (KO) cells. UGP2 protein is absent in the cynomolgus iPSCs KO line.
GAPDH is used as housekeeping control.

C. RT-gPCR expression analysis as in (A) but comparing OCT4, SOX1 and FOXG1 in cynomolgus
wild-type and UGP2 KO iPSCs until day 8 of differentiation. The later-stage marker FOXG1 is more
highly expressed in KO compared to wild-type cells.

D. UMAP representation of scRNA-seq data of cynomolgus UGP2 KO cells before (0h) and after 7
days of NPC differentiation.

E. UMAP projection of single-cell transcriptomes of UGP2 KO cells at 0 hours (light orange) and 7
days (dark orange) of differentiation onto the time-resolved reference data set (gray).

F. Heatmap showing the fraction of cynomolgus UGP2 KO cells at 0 hours and 7 days of NPC
differentiation that map to specific time points of the cynomolgus wild-type reference data set.

G. KEGG pathway enrichment using differentially expressed genes in cynomolgus UGP2 KO versus
wild-type cells at day 7 of NPC differentiation. Top 100 picks sorted by p-value are displayed, neural
related pathways are highlighted in yellow. In contrast to the situation in human cells, neural related

pathways are not enriched in cynomolgus KO cells.
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