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Abstract

Embryos from different mammalian species develop at characteristic timescales. These

timescales are recapitulated during the differentiation of pluripotent stem cells in vitro.

Specific genes and molecular pathways that modulate cell differentiation speed between

mammalian species remain to be determined. Here we use single-cell multi-omic analysis of

neural differentiation of mouse, cynomolgus and human pluripotent cells to identify

regulators for differentiation speed. We demonstrate that species-specific transcriptome

dynamics are mirrored at the chromatin level, but that the speed of neural differentiation is

insensitive to manipulations of cell growth and cycling. Exploiting the single-cell resolution of

our data, we identify glycogen storage levels regulated by UDP-glucose pyrophosphorylase

2 (UGP2) as a species-dependent trait of pluripotent cells, and show that lowered glycogen

storage in UGP2 mutant cells is associated with accelerated neural differentiation. The

control of energy storage could be a general strategy for the regulation of cell differentiation

speed.
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Introduction

Mammalian embryonic development adheres to a strict sequence of events, yet the speed of

development varies significantly among species: while it takes 13 days for human embryos

to progress from oocyte fertilization to gastrulation, it only takes six days for mice to reach

this stage1. Similarly, the timescales for organogenesis and later of neuronal differentiation,

both in the peripheral nervous system and midbrain, are considerably longer in humans

compared to mice2 (Figure 1A). Identifying the genetic and physiological basis for

species-specific developmental timing has become an area of intense research in the past

years, but specific genetic or gene-regulatory differences that underlie this phenomenon still

remain to be reported.

In vivo developmental pace is mirrored by the speed of in vitro differentiation of pluripotent

stem cells (PSCs), indicating that cell differentiation speed has a cell-intrinsic genetic

basis3–6. PSCs can either be derived directly from embryos, or generated as induced

pluripotent stem cells (iPSCs) from the tissues of various mammalian species7–11. When

cultured under appropriate conditions, these cells closely resemble the state of the

pluripotent epiblast just before the beginning of gastrulation. This primed pluripotent state

captured by human embryonic stem cells (hESCs), mouse epiblast stem cells (mEpiSCs),

and iPSCs from both human and non-human primates7,8,12 can serve as a useful common

starting point for comparative studies.

Previous studies using PSCs to investigate mechanisms of differentiation speed have to a

large degree focused on comparisons between human and mouse cells, and only recently

have a broader range of species been included13. A key challenge in such comparative

studies is that PSCs are commonly established and differentiated in species-specific

maintenance and differentiation media. While these media formulations may maximize the

viability of cells from each species, they leave open the possibility that species-specific

differentiation speed is at least in part caused by differences in external metabolic and

signaling environments. External signaling through factors produced by the cells themselves

is an additional candidate mechanism for regulating differentiation speed in lineages that are

specified in response to constant paracrine signaling, such as the mesoderm or the cells of

the peripheral nervous system.

Irrespective of these challenges, recent studies have started to implicate diverse general

physiological cellular traits in the control of species-specific differentiation speed, such as

differential protein stability6,14, biochemical reaction rates5,13, and mitochondrial activity4,15.

Whether the same physiological parameters regulate differentiation speed of different

lineages is however an open question. It is also not known at which level of regulation -

chromatin, gene expression or post-transcriptional and post-translational events -
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species-specific differentiation speeds emerge. Finally, the evolutionary changes in cell

physiology that underlie altered differentiation speed must have arisen from genetic changes

that determine either the activity or the expression magnitude of specific proteins in the cell.

In the context of differentiation speed, there are to date only few examples for specific

species-specific changes to protein activity.

Cell differentiation in vitro is a heterogeneous process, in which divergent cellular dynamics

lead to differences between individual cells. Recently, it has become possible to access this

cellular diversity and dynamics at several levels of regulation with single-cell multiomic

sequencing technologies16. Multiomic sequencing simultaneously profiles gene expression

and chromatin accessibility in single cells, thereby enabling the reconstruction of

developmental lineage trajectories which can ultimately inform temporal regulatory

dependencies17.

In this study, we established identical stem cell culture and neuroectoderm differentiation

modalities for hESCs, mEpiSCs and cynomolgus iPSC (cyiPSCs), and applied time-resolved

multiomic single-cell profiling during neural progenitor differentiation to unravel the

mechanisms underlying species-specific differentiation speed18,19. Through combined

single-cell gene expression (scRNA-seq) and chromatin accessibility analysis (scATAC-seq),

we show that developmental speed differences are governed by chromatin dynamics.

Employing metabolic interventions, we showed that differentiation dynamics of neural

progenitors can be uncoupled from anabolic processes. Finally, we developed strategies to

identify candidate regulators of differentiation speed based on our time-resolved single-cell

data. Through his approach, we identified glucose storage through UDP-glucose

pyrophosphorylase 2 (UGP2) as a mechanism for the species-specific regulation of

differentiation speed.

4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.03.610938doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.03.610938
http://creativecommons.org/licenses/by/4.0/


Results

Single-cell multiome sequencing for comparative analysis of species-specific

differentiation speeds under harmonized culture and differentiation conditions

To investigate the speed of cell differentiation during anterior neural development (Figure
1A), we utilized epiblast-like primed-state hESCs, mEpiSCs, and cyiPSCs to perform

comparative in vitro differentiation. To standardize culture conditions for the different species

and thus eliminate external influences, the cells were gradually adapted to a unified medium

and passaged at least twice before further experiments (Figure S1A). We identified

Universal Primate Pluripotent Stem Cell Media (UPPS) reported by Stauske et al.19 as the

ideal harmonized medium, confirmed by colony morphology (Figure S1B), and by the

homogeneous expression of pluripotency markers in flow cytometry (Figure S1C) and

immunofluorescence imaging (Figure S1D).

Next, we adapted a common protocol for neural progenitor cell (NPC) differentiation through

dual SMAD inhibition (dSMADi, see Methods for details)18. In all three species, we observed

quick downregulation of pluripotency-related markers OCT4 (also known as POU5F1) and

NANOG, and upregulation of neural markers SOX1 and PAX6, both in immunofluorescence

imaging (Figure S1E) and quantitative reverse transcription PCR (RT-qPCR) (Figure S1F).

Overall, our comprehensive examination indicated successful pluripotent stem cell

maintenance and NPC differentiation across all cell lines using standardized protocols.

To compare the differentiation speed of the three species in detail, we employed single-cell

multiome sequencing, combining gene expression and chromatin accessibility sequencing.

For each species, we conducted NPC differentiation over a ten-day time course, collecting

samples at 0 hours, 8 hours, 1 day, 2 days, 3 days, 4 days, 7 days, and 10 days, to capture

early changes in transcription and chromatin accessibility (Figure 1B). To minimize

sequencing batch effects, we combined cells from each time point of all three species for

nuclei isolation and subsequent scRNA-seq and scATAC-seq library preparation. For

demultiplexing, single-cell multiome data was aligned against each genome separately, and

each cell was assigned to the respective species (see Methods for details). UMAP plots

derived from scRNA-seq of differentiating cells accurately depicted the linear path of NPC

differentiation (Figures 1C-E). When examining the expression of marker genes, the

observed dynamics aligned with the known differentiation trajectory (Figures 1F-H). For

example, pluripotency marker OCT4 gradually decreased during NPC differentiation, while

the neural marker PAX6 exhibited a gradual increase in expression with distinct,

species-specific dynamics. The scATAC-seq data likewise provided evidence of a linear

differentiation process, illustrated by the progressive reduction of accessible chromatin at the
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OCT4 gene locus and increase of accessible chromatin at the PAX6 gene locus,

corresponding to the respective decrease and increase in gene expression (Figure 1I-K).
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Figure 1: Single-cell multiome sequencing captures species-specific differences in
neural differentiation.

A. Embryonic developmental speed differences between mouse (measured in embryonic days, E),

cynomolgus, and human (measured in weeks, W).
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B. Schematic of neural progenitor differentiation of pluripotent stem cells from the three species in a

harmonized medium (N2B27 + dSMADi). Arrows indicate 8 time points chosen for single cell gene

expression and chromatin accessibility measurements within the first 10 days.

C-D. Two-dimensional UMAP embedding of mouse (C), cynomolgus (D) and human (E) RNA

expression in 24,157, 23,914 and 26,043 single cells, respectively, during NPC differentiation.

F-H. Expression of selected marker genes indicates faster transition from a stem cell state

(represented by OCT4 and SOX2 expression) to a neural progenitor state (PAX6 and SOX2

expression), in mouse (F) compared to cynomolgus (G) and human (H).

I-K. Changes in local chromatin accessibility of the stem cell marker OCT4 (left) and the neural

progenitor state marker PAX6 (right) during 10 day differentiation in mouse (I), cynomolgus (J) and

human (K) cells. Peaks of interest are indicated by arrows.

Quantification of species-specific differentiation rates from single-cell multiome data

To examine the speed of differentiation across pluripotent stem cells among the three

species, we created a unified cross-species representation by mapping cells from human

and cynomolgus onto the mouse reference embedding using Scanpy’s ingest tool20 (Figure
S2A). The combined UMAP visualization highlighted that cynomolgus cells were slightly

further in the differentiation trajectory compared to human cells at each time point, indicating

a marginally faster differentiation (Figure S2B). More specifically, cynomolgus cells sampled

at day 10 mapped to mouse cells at day 3-7 (Figure 2A). A more pronounced deviation was

seen with human cells sampled at day 10, which mapped to mouse cells from day 3 and day

4 (Figure 2B). We quantified the differentiation speed relative to mouse cells using a linear

regression model, fitted through each mapped time point for human and cynomolgus cells,

and found that that mouse cells differentiated on average 2.2 times faster than cynomolgus

cells, and 2.4 times faster than human cells (Figure 2C).

To test if similar species-specific dynamics could be observed at the chromatin level, we

applied a similar analytical approach to scATAC-seq data. Comparing the simulated gene

expression from scATAC-seq data (see Methods for details) with scRNA-seq data showed

high accordance for all three species (Figures 2D-F). Using this simulated gene expression

data, we mapped human and cynomolgus onto the mouse UMAP embedding and correlated

human and cynomolgus sampling time and mouse mapped time for scATAC-seq (Figures
S2C and S2D). Using the same linear regression model, mouse cells differentiated 1.9 times

faster than human cells and 1.7 times faster than cynomolgus cells (Figure S2E). These

results demonstrate that species-specific differences in differentiation speed are reflected at

the level of chromatin accessibility.
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Figure 2: Inter-species single-cell mapping reveals that mouse cells differentiate 2.2

times faster than cynomolgus cells and 2.4 times faster than human cells.

A-B. Heatmaps showing fractions of cynomolgus (A) and human (B) cells for each sampling time

mapping to reference time points in mouse for scRNA-seq (GEX) data. Cells in cynomolgus and

human differentiate significantly slower, e.g., most of the single cells sampled at day 10 in cynomolgus

and human (last column in both matrices) are most similar, and thus mapped to mouse cells at day 4.

C. Linear regression of mapped scRNA-seq data. Data points show the mean mapped time of human

(green circles) and cynomolgus (orange triangles) cells on the mouse reference data. Lines are linear

fits to the data for human (green, y = 0.45x, R2 = 0.95) and cynomolgus (orange, y = 0.42x, R2 = 0.84),

indicating that mouse differentiation is 2.2 and 2.4 times faster than cynomolgus and human,

respectively. Error bars indicate standard deviation. Line of unity (gray) shown as reference.

D-F. Heatmaps show high correlations between simulated gene expression data from scATAC-seq

and gene expression determined by scRNA-seq in mouse (D), cynomolgus (E) and human (F).

Species-specific neural differentiation speeds can be uncoupled from cell growth and

the cell cycle

Pluripotent cells from fast-differentiating species have shorter cell cycles than those from

slow-differentiating species4,6. To test if differences in cell cycle length and structure can

quantitatively account for the species-specific differentiation speeds, we generated

pluripotent stem cell lines expressing the PIP-FUCCI sensor21,22. Live-cell imaging of these
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reporter lines (Figures S3A and S3B) showed that the total cell cycle duration differed in the

harmonized pluripotency conditions (Figures 3A and S3C): Mouse cells exhibited the

shortest cell cycle with an average duration of 10.1 ± 0.9 hours (mean ± se, N = 2, n ≥ 39

each), while the cell cycle was longest in human cells with an average of 14.8 ± 0.1 hours (N

= 2, n ≥ 40 each), which corresponds to a 1.47-fold difference between mouse and human

cells. Cynomolgus cells fell in between mouse and human cells with an average cell cycle

duration of 14.3 ± 0.9 hours (N = 2, n ≥ 39 each), 1.42-fold the average mouse duration.

Although this variation in total cell cycle corresponds qualitatively with differences in the

timing of cell differentiation between the species, it does not quantitatively account for the >

2-fold difference in differentiation speed (Figure 2). Cells from all three species exhibited the

characteristic cell cycle structure of pluripotent cells, with a stretched S phase and a very

short G1 phase (Figure 3A). When normalized to total cell cycle length, the distribution of

the different phases was similar between cells from the three species (Figure S3D), arguing

against regulation of developmental timing through changes of cell cycle structure23,24.

To functionally test how strongly differentiation speed is coupled to cell proliferation, we

slowed down cellular growth by targeting mTOR with the ATP site inhibitor INK128 (mTORi).

Partial inhibition with 50 nM of mTORi led to a species-specific extension of cell cycle

durations: Mouse was affected least (1.23-fold extension compared to control) and human

the most (1.53-fold), with cynomolgus in between (1.46-fold) (Figure 3B). If differentiation

speed depended on growth and proliferation, the expression onset of neural markers would

be expected to take approximately 50% longer in primate cells under mTOR inhibition

compared to control cells. However, immunofluorescence of a differentiation time course did

not reveal a strong delay in PAX6 (Figure 3C) and SOX1 onset (Figure S3E) upon mTOR

inhibition in any of the species. Only OCT4 downregulation appeared to be slightly slower

under mTOR inhibition in human cells, which could be caused by reduced protein dilution as

a result of less frequent cell divisions (Figure S3F). To globally assess the differentiation

status of mTOR-inhibited cells, we performed scRNA-seq of mouse, cynomolgus and human

cells at 0 hours (pluripotent control) and days 2 and 4 of differentiation with and without

mTORi (Figures S3G-I). To minimize batch effects, we multiplexed cells within each

time-point (see Methods for details). Using Scanpy’s ingest tool20, we integrated the data

from mTORi-treated and control cells with the time-resolved scRNA-seq differentiation time

course to determine the reference time point to which untreated and mTOR inhibitor-treated

cells best correspond to. In mouse, mTORi-treated cells mapped onto the same reference

time point as untreated cells, showing that mTOR inhibition did not delay neural

differentiation (Figures 3D and 3E, left). In the primate species, day 2 mTOR-inhibited cells

were slightly delayed compared to untreated cells, however, day 4 mTOR-inhibited cells
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preferentially mapped to later time points than untreated cells (Figures 3D and 3E, middle

and right). The overall tendency of both INK128-treated and untreated primate cells to map

to earlier time points of the reference dataset than expected may be explained by different

methods used to measure transcriptomes in the two experiments (see Methods for details).

Still, the finding that cells map to similar reference time-points irrespective of INK128

treatment suggested that there is no systematic differentiation delay upon mTOR inhibition.

To rule out the possibility that mTOR inhibition had more subtle effects on differentiation

timing that might be missed due to the limited resolution of the reference dataset, we

performed time-lapse imaging of a PAX6 reporter line25. We observed almost simultaneous

onset of PAX6 reporter expression with and without mTOR inhibition (Figures 3F and 3G). In

sum, these findings show that differentiation can be uncoupled from growth, cell proliferation

and cell cycling. Thus, species-specific neural differentiation speed must be determined by

alternative mechanisms.
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Figure 3: Changing cell cycle duration with mTOR inhibition does not affect

differentiation speed.

A. Bar graphs showing the mean duration of G1 (green), S (pink) and G2/M (gray) cell cycle phases in

mEpiSCs, cyiPSCs, and hESCs measured by time-lapse imaging of the PIP-FUCCI reporter.

Cynomolgus and human cells cycle approximately 1.42 times and 1.47 times slower than mouse cells,

respectively, but cells from all three species have a similar distribution of G1, S, and G2M phases.

Data from two independent experiments with n ≥ 39 cells each. Error bars indicate standard error.

B. Measurements of cell cycle lengthening upon mTOR inhibition. Bar charts show mean G1 (green),

S (pink) and G2/M (gray) cell cycle phase durations in cells treated with 50 nM INK128. Comparison

with measurements in control cells (transparent, reproduced from A) reveals a 1.23-fold (mouse),

1.46-fold (cynomolgus) and 1.53-fold (human) lengthening of the cell cycle upon mTOR inhibition.

Data from two independent experiments with n ≥ 40 cells each. Error bars indicate standard error.

C. Differentiation time course of mouse (left), cynomolgus (middle) and human cells (right) fixed after

0 hours and 1, 2, 3, and 4 days of NPC differentiation in the absence (control) or presence of mTOR

inhibition, stained for the early neural marker PAX6 (green). mTORi has no discernable effect on

PAX6 expression onset. Scale bars, 20 µm.

D. UMAP projection of single cell transcriptomes of mTORi-treated (dark teal and brown) and control

cells (light teal and brown) onto the time course reference data set (gray). mTORi-treated and control

cells occupy similar regions in UMAP space when mapped onto the time-resolved reference data set.

E. Heatmap showing the proportion of cells within a sample assigned to a specific time point of the

reference data set.

F. Daily stills from time-lapse imaging of PAX6::H2B-GFP; H2B-Cerulean reporter cells differentiated

in absence or presence of INK128. The INK128 dose used in imaging experiments was slightly

reduced to 40 nM to improve cell viability during live cell microscopy. Constitutively expressed

H2B-Cerulean to indicate nuclei positions shown in cyan, PAX6::H2B-GFP shown in green.

G. Quantification of experiment shown in F. Data points show mean nuclear PAX6 reporter intensity

across all cells in each frame. Sudden drops in fluorescence intensities at around 48, 72, and 96 h are

caused by media changes. Data from control cells in light gray, data from mTOR-treated cells in dark

gray. Error bars indicate standard deviation.

Identification of candidate regulators of developmental speed through comparative

cross-species analyses

We next applied a three-step analysis pipeline on our time course scRNA-seq dataset to

identify biological mechanisms and specific candidate genes other than cell cycle that might

account for species-specific differentiation speeds (Figure 4A). As a first step, we curated

gene lists from GO categories such as energy metabolism, protein biosynthesis, and

epigenetic regulation and modification that had previously been implied in developmental

speed (Table S1)4,5,13–15,26–30. Normalizing the data for each biological pathway revealed
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unique expression profiles of these broad gene groups for each species: Human cells

showed higher expression of epigenetic regulators and DNA modifiers, while cynomolgus

cells had increased expression of genes associated with glycogen metabolism and biological

oxidations. Mouse cells exhibited the highest upregulation in glucose-related metabolic

processes. The tricarboxylic acid (TCA) cycle and nicotinamide adenine dinucleotide

(NADH) metabolism displayed similar patterns across all species (Figure 4B).

In a second step, we asked which individual genes were responsible for the species-specific

prevalence of selected biological processes. To address the possibility that such a

species-specific preponderance was driven by differences in differentiation states between

cells from the three species, we took into account the expression dynamics of individual

genes across the differentiation time-course (Figure 4A, middle). We specifically focused on

the gene groups associated with the terms “glycogen biosynthesis” and “glycolysis”, because

the former showed stronger average expression in the slow primate species, whereas genes

in the latter group were on average more highly expressed in fast-differentiating mouse cells

(Figures S4A and S4B). Within each group, only a few genes showed strongly different

expression between species and time points. Two such genes of interest were Hexokinase 1

(HK1) from the group “glycolysis”, which is responsible for the phosphorylation of glucose to

glucose-6-phosphate during the initial step of glycolysis, and UDP-glucose

pyrophosphorylase 2 (UGP2) from the group “glycogen biosynthesis”, which encodes an

enzyme critical for re-routing glucose from glycolysis into glycogen storage. Both HK1 and

UGP2 exhibited high expression in primate cells at the onset of neural differentiation, while

remaining absent in mouse cells throughout the entire differentiation process (Figures 4C
and 4D).

In the third step of our analysis, we sought to leverage the heterogeneous differentiation of

cells from the same species in our time course transcriptomic data to devise an independent

test for the involvement of a candidate gene in controlling differentiation speed. We

hypothesized that if a candidate gene affected differentiation speed, we would find

differences in its expression levels when comparing slow- and fast-differentiating cells from

the same species (Figure 4A, right). To distinguish fast- and slow-differentiating single cells,

we first employed unsupervised Leiden clustering of the whole dataset for each species, to

define six specific stages of differentiation: pluripotency high, pluripotency low, intermediate,

neural low, neural high, and neuronal (Figures 4E-G). We then defined sets of marker genes

for each cluster (see Methods for details). These genes showed a similar expression

sequence across species, albeit with different dynamics (Figures S4C-E), such that mouse

cells reached the same differentiation stage faster than primate cells (Figures S4F-H).

Based on the marker gene sets, we calculated gene expression scores for each cell and
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each cluster (Figures S4I-K), and applied a stringent threshold of this score to select cells

with highly similar gene expression profiles that closely matched the characteristic profile of

the respective cluster. Finally, we compared the expression of previously identified genes of

interest in cells that reached a high marker gene score at early time points

(fast-differentiating cells) to their expression in cells that reached the same marker gene

score at later time points (slow-differentiating cells). This analysis revealed that UGP2, but

not HK1, consistently exhibited higher expression in slow-differentiating cells compared to

fast-differentiating cells (Figure 4H and 4I). This effect was observed across all species and

was particularly pronounced in cynomolgus and human cells, likely due to their overall higher

UGP2 expression levels compared to mouse cells. The higher expression of UGP2 in

slow-differentiating cells, both in intra- as well as cross-species comparisons, make it a

strong candidate for the control of cell differentiation speed.
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Figure 4: Glycogen biosynthesis related UGP2 is upregulated in slower species and in

slower cells.

A. Schematic overview of the approach used to identify candidate mechanisms and genes involved in

differentiation speed. In the first level, candidate GO terms were compared across species. At the

second level, GO terms of interest were further analyzed for individual genes that displayed distinct

dynamics between species and time points. In the third level, these selected genes were compared

between cells with fast and slow differentiation speed within each species. Here, cells were
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categorized into different clusters representing differentiation states (e.g., pluripotency high or low).

For example, a cell sampled 8 hours post-induction categorized as pluripotency low was classified as

fast-differentiating, whereas a cell sampled 1 day post-induction with the same state was labeled as

slow-differentiating.

B. Heatmap showing normalized mean expression of selected biological pathways across all three

species. Circle marks epigenetic regulation, diamond cell cycle regulation, triangle glycogen related

pathways and square metabolic pathways.

C-D. Dots plots of HK1 (C) and UGP2 (D) expression levels during NPC differentiation in mouse,

cynomolgus, and human.

E-G. Progressive differentiation states for mouse (E), cynomolgus (F), and human (G) shown on the

UMAP embeddings of single-cell gene expression data. Colors correspond to pluripotency high - blue;

pluripotency low - orange; intermediate - green; neural low - red; neural high - pink; neuronal - brown.

The neuronal cluster is only present in mouse cells (E), in line with their more extensive differentiation

trajectory.

H-I. Dot plots comparing HK1 (H) and UGP2 (I) expression levels in fast- and slow-differentiating

pluripotency-low cells across the different species. UGP2 (I) expression levels are higher both in

slowly differentiating species, as well as in slowly differentiating cells from the same species, whereas

HK1 expression shows the reverse behavior (H).

UGP2 expression regulates species-specific glycogen storage and neural

differentiation dynamics

Finally, we tested the functional roles of species-specific UGP2 expression for cellular

carbohydrate metabolism and neural differentiation. Consistent with RNA levels, similar

amounts of UGP2 protein were detected in human and cynomolgus wild-type pluripotent

stem cells, but UGP2 protein was nearly absent in mEpiSCs (Figure 5A). UGP2 protein was

also undetectable in a previously described human ESC UGP2 knockout (KO) line31 (Figure
5A). Species-specific UGP2 protein levels translated into glycogen storage levels: While

human pluripotent stem cells stored high levels of glycogen, cynomolgus and mouse cells

only contained approximately 50% and 10% of the per cell glycogen levels detected in

human cells, respectively (Figure 5B). These differences in glycogen levels are reminiscent

of the trends in differentiation speeds across the species, and establish that glycogen

storage levels as a new species-specific cellular property. Glycogen levels were strongly

decreased in UGP2 KO hESCs (Figure 5B), demonstrating that glycogen storage depends

on, and is likely regulated through UGP2 expression. We then asked if loss of UGP2 would

alter differentiation dynamics. In human UGP2 KO cells, RT-qPCR revealed a consistent

upregulation of neural markers SOX1, PAX6, and FOXG1 compared to wild-type cells at

several stages (Figure S5A). When staining for the late-stage neural marker FOXG1 in a

differentiation time course, we found the first FOXG1-expressing cells by day 9 in UGP2 KO
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cells, but only at day 14 in the wild-type, further indicating accelerated neural differentiation

upon loss of UGP2 (Figures 5C and 5D). To assess changes in differentiation speed upon

loss of UGP2 transcriptome-wide, we performed scRNA-seq of the UGP2 KO cells in

pluripotency conditions and after 7 days of neural differentiation (Figure 5E). Mapping

mutant transcriptomes to the reference time course data revealed that human UGP2 KO

cells at 0 hours resemble 8-hour and 0-hour reference cells, while day 7 UGP2 KO cells

mapped mostly to day 10 wild-type cells, indicating faster neural differentiation upon loss of

UGP2 (Figures 5F and 5G). Gene enrichment analysis for differentially regulated genes in

KO samples showed several neural-related pathways within the top 100 upregulated KEGG

pathways, such as neuroactive ligand-receptor interaction and various synaptic pathways

(Figure 5H). Interestingly, glycolysis/gluconeogenesis pathways were also represented in

the top 100 enriched pathways, suggesting autoregulation at the transcriptional level. We

also generated a UGP2 KO cyiPSC line to test if a similarly accelerated neural differentiation

could be observed in this species. UGP2 protein was undetectable in UGP2 KO cyiPSCs

(Figure S5B), and FOXG1 mRNA was more highly expressed compared to wild-type cells

from day 4 onwards (Figure S5C). In an scRNA-seq experiment however (Figure S5D),

mapping mutant transcriptomes onto the reference time-course data from Figure 1 did not

reveal major changes to differentiation speed upon loss of UGP2 in cynomolgus cells

(Figures S5E and S5F). This smaller effect of the loss of UGP2 on differentiation dynamics

in cynomolgus compared to human cells might be related to overall lower glycogen storage

levels in cynomolgus cells, and additionally be obscured by the low time resolution of the

reference dataset at the later time points. Still, these experiments consistently demonstrated

accelerated neural differentiation in human cells lacking functional UGP2, suggesting that

UGP2 activity in wild-type cells slows down the pace of neural differentiation.
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Figure 5: Loss of UGP2 accelerates human NPC differentiation.

A. UGP2 protein expression in wild-type (WT) cells from the three species, and in human UGP2 KO

cells, detected by Western blotting. Human and cynomolgus cells have similar UGP2 expression

levels, but UGP2 is absent in human UGP2 KO and mouse wild-type cells. GAPDH is used as

housekeeping control.

B. Mean glycogen content in pluripotent cells from the three species. Glycogen levels are lowest in

mouse, and 7.5 and 13.5 times higher in cynomolgus and human cells, respectively. Points indicate

data from N = 3 independent experiments, error bars indicate standard error. ns: adjusted p-value * p

< 0.05, ** p < 0.01, as determined by an unpaired Student’s t-test with Bonferroni correction.

C. NPC differentiation time course of human UGP2 wild-type and KO cells fixed and stained for the

anterior neural/forebrain differentiation marker FOXG1 (green). FOXG1 expression is detected earlier

in KO than in wild-type cells. Scale bars, 20 µm.

D. Quantification of immunostaining shown in (C). Single cell FOXG1 expression levels were

measured in nuclear masks determined by segmentation in the Hoechst33258 channel via StarDist

2D using the Versatile Fluorescent Nuclei model32. For visualization, the number of cells was reduced

to a maximum of 200 cells per sample. A background value measured in a 200x200 μm region of

interest of each image was subtracted and outliers defined in each image as all values outside a

range of 3 times the interquartile range below or above the first and third quartile respectively were

removed in each channel. Only cells with an area ≥ 10 μm2 were considered.

E. UMAP representation of scRNA-seq data of human UGP2 KO cells before (0 hours) and after 7

days of NPC differentiation.

F. UMAP projection of single-cell transcriptomes of UGP2 KO cells at 0 hours (light green) and 7 days

(dark green) of differentiation onto the time-resolved reference data set (gray).

G. Heatmap showing the fraction of UGP2 KO cells at 0 hours and 7 days of NPC differentiation that

map to specific time points of the wild-type reference data set. Day 7 UGP2 KO cells mostly map to

wild-type day 10 and are hence developmentally advanced compared to the wild-type.

H. KEGG pathway enrichment using differentially expressed genes in UGP2 KO versus wild-type cells

at day 7 of NPC differentiation. Top 100 picks sorted by p-value are displayed, neural related

pathways are highlighted in yellow, glycolysis in red. Neural related pathways are upregulated in the

UGP2 KO.
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Discussion

Here we asked why differentiation speeds of pluripotent cells from different species are so
different, despite similar genetic makeup and growth in the same media. Using single-cell
multiomic data from neural differentiation in a harmonized three-species stem cell panel, we
determined precise scaling factors of differentiation speed along the neural lineage speed
between mouse, cynomolgus and human cells. We showed that differentiation speed
differences are reflected in chromatin dynamics, but can be uncoupled from cellular growth
and cell cycling. Leveraging the multi-species and single-cell nature of our data, we identified
several metabolic pathways as candidate regulators of developmental speed, and
functionally tested the glycogen-storage regulator UGP2 as the first metabolic enzyme for
the species-specific and cell-intrinsic control of differentiation speed.

The differentiation of cortical neural progenitors has been one of the first differentiation
paradigms to study the cell-intrinsic control of differentiation speed with stem cell models3.
Subsequently, the regulation of differentiation speed has been studied with protocols leading
to several other cell identities, most prominently motor neurons and presomitic mesoderm4–6.
The advantage of the neural progenitor differentiation approach is that it exploits a default
cellular differentiation path in the absence of any extracellular signals, and therefore most
cleanly reports on the cell-intrinsic basis of developmental timing. Still, the 2.4-fold faster
differentiation of mouse compared to human cells measured by us closely aligns with
previously reported values of 2.5 for motor neuron differentiation6 and 2.6 for segmentation
clock oscillations5. These similarities suggest that the scaling of cell-intrinsic differentiation
speeds is largely conserved across different protocols, labs and experimental paradigms.

In contrast to the strong speed differences between mouse and human cells, we found that

cynomolgus cells differentiate only marginally faster than human cells. Using segmentation

clock oscillations in vitro as a model, Lázaro et al. have recently suggested that

species-specific embryogenesis length is most predictive for cell differentiation speeds in

vitro13. Our data supports this notion: Despite an almost two-fold difference in total gestation

times, the end of embryogenesis at Carnegie stage 23 is reached after similar times in

monkeys (46 days)33 and humans (58 days)34.

By measuring differentiation at different levels of regulation, we demonstrated that

species-specific chromatin dynamics are closely aligned with transcriptome changes.

Consistent with this finding, the slow maturation of human cortical neurons has been linked

to an epigenetic barrier that could be overcome by the targeted inhibition of modifiers of

chromatin accessibility35,36. Together, these results therefore enforce the concept that, at

least in neural differentiation, epigenetics and chromatin dynamics are a key determinant of

developmental speed.
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An array of cell physiological parameters has been implicated in the control of

developmental speed, such as mitochondrial activity4,15, protein half-life6 and general

biochemical reaction rates5. Our experiments with the mTOR inhibitor INK128 suggest that

previously proposed links between translation rate and differentiation speed may not apply to

neural differentiation. The significantly lengthened cell cycle upon mTOR inhibition indicates

that we have succeeded in slowing down anabolic processes, as would be expected by

targeting mTOR as a central hub of metabolism that promotes cell growth through the

upregulation of protein translation and ribosome biogenesis37. Still, we could not detect any

differences in the onset of neural marker gene expression between untreated and mTOR

inhibited cells, suggesting that the progression of the neural differentiation programme

proceeds independently of general anabolic processes and the cell cycle. Although it

remains a possibility that mTOR inhibition has pleiotropic effects on both neural

differentiation cell growth that are independent of each other and could compensate38, our in

vitro results align with findings from an in vivo study, which likewise demonstrated that neural

progenitor differentiation progressed through successive stages irrespective of genetic

interventions to the cell cycle39. Previously reported effects of translation rate downstream of

mitochondrial activity on differentiation speed4 may therefore act through specific pathways

rather than through the global reduction of anabolic rate, or only apply in specific

differentiation paradigms.

Exploiting the single-cell multi-species nature of our time course transcriptomic dataset, we

searched for candidate pathways and genes for developmental speed control. Focusing on

UGP2 as one prominent hit from this analysis, we have identified glycogen storage as a new

species-specific trait of pluripotent cells that are otherwise in comparable developmental

states. Besides generating precursors for glycogen synthesis and thereby energy storage,

UGP2 is also involved in the synthesis of extracellular matrix components such as

hyaluronan, and its product UDP-glucose is a substrate for protein glycosylation40. Which of

the diverse functions of UGP2 underlies the accelerated neural differentiation in the UGP2

knockout cells remains at this point unclear. It is tempting to speculate that increased energy

storage in the form of glycogen is functionally related to an overall reduced metabolic activity

and subsequent slower differentiation speed in primate compared to mouse cells. Such a

relationship has been demonstrated in flatworms, where an increase in energy storage in

cells from larger organisms results in a slower metabolic rate compared to cells from smaller

organisms41. Intriguingly, flatworm cells with a lower per-mass metabolic rate are bigger than

metabolically more active cells, just as human pluripotent cells are bigger than mouse

pluripotent cells4. It is therefore an attractive possibility that the partitioning of high-energy
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metabolites between storage and catabolism is a general strategy to tune developmental

speed in evolution.

Overall, our study adds glucose metabolism and glycogen storage to the growing list of

cell-intrinsic mechanisms that control differentiation speed. Given the diversity of

mechanisms that has been reported so far, it seems likely that each developmental lineage

may rely on a slightly different combination of mechanisms to tune its differentiation speed.

Understanding how scaling factors arise from diverse combinations of mechanisms is an

important question for future research.
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Methods

Cell lines and culture conditions

H9 human embryonic stem cells (ESC; WiCELL Research Institute), 129S2C1a mouse

epiblast stem cells (EpiSC)42 and 56A1 cynomolgus induced pluripotent stem cells (iPSC)43,44

were plated on Matrigel (Corning) diluted 1:100 in DMEM/F12 (PAN Biotech) and gradually

adapted to UPPS19 media consisting of StemMACS iPS-Brew XF (Miltenyi Biotec)

supplemented with 1 µM IWR-1 (Sigma Aldrich) and 0.5 µM CHIR (R&D Systems) post

passaging over four days. Afterwards, culture media was exchanged daily and cells were

passaged with 0.5 mM EDTA (Promega) every two to four days as clumps. Cell identity was

verified through the alignment of scRNA-seq reads to the genomes of their respective

species. Experiments involving human stem cells were performed in accordance with

permissions obtained from the Robert-Koch-Institute (AZ: 3.04.02/0151 to MD to and AZ

3.04.02/0172 to CS). All reagents and resources are listed in Table S2.

In vitro neural progenitor cell differentiation

PSCs were singularized using Accutase (Sigma Aldrich) and counted on the Countess II FL

Automated Cell Counter (Invitrogen). For hESCs and cyiPSCs 1.25 x 105 cells/cm2 and for

mEpiSCs 6.25 x 104 cells/cm2 were seeded onto Matrigel coated plates in UPPS media

supplemented with 10 µM Y-27632 (R&D Systems) and incubated overnight, resulting in

confluent cultures the following day for each species. For neural induction, media was

exchanged to NPC differentiation and maintenance media consisting of 1:1 DMEM/F12 and

Neuropan (PAN Biotech) supplemented with 0.5x N2 and B27 supplements, 1x MEM-NEAA,

1x GlutaMAX, 0.1 mM 2-Mercaptoethanol, 5 µg/mL Insulin, human recombinant (all Thermo

Fisher Scientific), 10 µM SB431542 and 100 nM LDN193189 (both Peprotech).

Differentiation was performed for maximal 14 days. Cells were washed with Dulbecco’s

phosphate buffered saline (DPBS; Thermo Fisher Scientific) before daily media exchange.

Quantitative reverse transcription PCR (RT-qPCR)

Cells were lysed and RNA was isolated using the RNeasy Mini Kit (Qiagen) following the

manufacturer's protocol. Subsequently, cDNA was synthesized from 500 ng RNA using the

Verso cDNA Synthesis Kit (Thermo Fisher Scientific). For RT-qPCR, SYBR Green PCR

Master Mix (Thermo Fisher Scientific), cDNA and 5 µM of each forward and reverse primer

were combined to a total reaction volume of 10 µL. RT-qPCR was performed in

384-well-plates on a QuantStudio 12K Flex qPCR machine (Thermo Fisher Scientific) in
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technical and biological triplicates. Relative normalized expressions were calculated using

the ∆∆CT method. Primers are listed in Table S3.

Flow cytometry

First, cells were dissociated to single cells using Accutase and collected. For surface marker

staining, cells were once washed with FACS buffer (0.5% BSA and 2 mM EDTA in DPBS)

followed by centrifugation at 300 rcf for 5 minutes and removal of the supernatant. Cells

were incubated with primary antibodies for 30 minutes on ice. Then, after another

centrifugation and removal of supernatant, cells were incubated with secondary antibodies

for 30 minutes on ice, then washed and resuspended in FACS buffer. For intracellular

staining, the Inside Stain Kit (Miltenyi Biotec) was used according to the manufacturer’s

protocol. Cells were incubated with primary antibodies for 1 hour at room temperature and

with secondary antibodies for 30 min on ice. After an additional wash with Inside Perm

solution, cells were resuspended in FACS buffer for further analysis on a BD FACSAria III

cell sorter (BD Biosciences). Flow cytometry data was analyzed using the FlowJo software.

Antibodies and dilutions are listed in Table S4.

Immunostainings

Cells were grown on chambered polymer coverslips (ibidi) and fixed for 15 min in 4%

formaldehyde (ROTI Histofix). Before antibody incubation, fixed cells were rinsed and

washed three times for 15 min in PBT-BSA (PBS with Ca2+ and Mg2+ containing 1% BSA and

0.1% Triton). Primary antibodies were added in PBT-BSA overnight at 4 °C and washed off

three times for 15 min. Secondary antibodies were incubated for 2 h at room temperature

and washed off three times for 15 min in PBT-BSA and twice 10 min in PBS. Imaging was

performed in mounting medium (80% glycerol, 20% H2O, 4% w/v n-propyl-gallate).

Antibodies and dilutions are listed in Table S4.

PIP-FUCCI measurements

For cell cycle characterizations, we used the PIP-FUCCI sensor by Grant et al.21 (Addgene

plasmid #118621) and amplified it with overlaps for a piggyBAC vector45 containing a CAG

promoter and a puromycin resistance cassette. The piggyBAC vector was opened via

NotI-HF and XhoI digest and the PIP-FUCCI construct cloned between the restriction sites

using NEB HiFi Assembly. Mouse and human cells were lipofected using lipofectamine2000,

and cynomolgus cells were nucleofected using the Neon transfection system with the

piggyBAC PIP-FUCCI construct and a pBASE plasmid for transposition45 and subsequently

kept under 1.5 µg/ml puromycin selection.
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PIP-FUCCI imaging was performed in chimeric cultures consisting of PIP-FUCCI sensor

cells and unlabeled, parental cells in ratios ranging from 1:10 to 1:100. This enabled us to

track cells even in dense colonies and during NPC differentiation when cells are seeded at

high densities. Cells were seeded a day prior to acquisition start as single cells in UPPS

medium supplemented with 10 µM ROCK inhibitor. Primate cells were typically seeded at

80,000 cells/cm2 and mouse cells at 40,000 cells/cm2. Immediately before imaging, cells

were washed and transferred to the desired media condition, typically UPPS +/- 50 nM

INK128. Images were acquired in 10 min intervals over a course of 48 hours on an Olympus

IX81 widefield microscope with a 20X objective (NA 0.75). Cells were kept in a humidified

stage top incubator (ibidi) at 37 °C and 5% CO2 during image acquisition. Tracking was

performed in Fiji (ImageJ v2.9.0) with TrackMate v7.9.246 using the “Manual Tracking” option.

Here, a circular region of interest (ROI) with a radius of 2.24 px was manually placed in the

center of a nucleus in each frame of a track. mVenus and mCherry fluorescence were

measured inside the ROI. Each track started at the first frame after cell division and ended

with the last frame before the next division, so the total cell cycle duration was calculated as

end frame – start frame. Cell cycle phase durations were calculated based on mVenus

fluorescence. The G1/S transition was defined as the frame in which mVenus signal in the

first half of the track (fluorescence intensity scaled between 1 and 2) after the first peak was

closest to its half maximum (PIPhalf-max). The S/G2M transition was the frame in which

mVenus signal had an increase of > 0 and kept rising at an average of ≥ 1.5% over the

following five frames (PIPrise) in the second half of the track (scaled between 1 and 2). Thus,

phase durations were calculated as follows:

𝐺1
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 =  𝑃𝐼𝑃
ℎ𝑎𝑙𝑓−𝑚𝑎𝑥

−  𝑠𝑡𝑎𝑟𝑡

𝑆
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 =  𝑃𝐼𝑃
𝑟𝑖𝑠𝑒

− 𝑃𝐼𝑃
ℎ𝑎𝑙𝑓−𝑚𝑎𝑥

 

𝐺2𝑀
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 =  𝑒𝑛𝑑 − 𝑃𝐼𝑃
𝑟𝑖𝑠𝑒

 

PAX6 reporter time-lapse imaging

Human ESCs carrying a PAX6::H2B-GFP reporter25 were transfected with a piggyBAC

vector containing an H2B-Cerulean-IRES-bsr construct under control of a CAG promoter to

add a nuclear label for cell tracking47. After selection under 15 µg/ml blasticidin, polyclonal

cells were seeded onto chambered polymer slides (ibidi) at a density of 250,000 cells/cm2

and grown in UPPS + 10 µM ROCK inhibitor overnight. NPC differentiation was induced at

day 0, either without or with 40 nM INK128. After one day of NPC differentiation, image

acquisition was started on an Olympus IX81 widefield microscope with an iXon 888 EM-CCD

camera (Andor) and LED illumination (pE4000, CoolLED) on a 20X objective. All hardware

components were controlled by MicroManager 2.048. Images were taken in 30 min intervals

26

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.03.610938doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.03.610938
http://creativecommons.org/licenses/by/4.0/


for up to five days. Cells were washed daily and medium was changed. Time-lapse movies

were segmented based on the nuclear H2B-Cerulean signal using StarDist 2D and the

Versatile (fluorescent nuclei) model32 and the probability threshold set to 0.7 with otherwise

default parameters. Accumulation of dead cells during differentiation and debris removal by

daily washing led to artificial shifts in reporter signal intensity. To reduce this artifact, a

Gaussian blur (radius = 50 µm) of the PAX6::H2B-GFP channel in each frame was

generated and subtracted from the original image. PAX6::H2B-GFP intensity was measured

on the resulting corrected image. Nuclei with an area ≤ 50 μm2 were filtered out and the

frame average of PAX6::H2B-GFP intensity was calculated across all remaining nuclei per

condition.

CRISPR/Cas9 gene editing for the generation of cynomolgus iPSC UGP2 KO lines

CRISPR editing of cynomolgus iPSCs was carried out using a plasmid-free method,

employing TrueCut Cas9 protein and TrueGuide sgRNAs (Invitrogen). The guide RNAs,

designed to target the UGP2 gene locus in Macaca fascicularis, were generated using the

Synthego CRISPR design tool and are detailed in Table S3. To generate KO cell lines,

ribonucleoprotein (RNP) complexes were created by combining individual guide RNAs with

TrueCut Cas9 protein, followed by a 10-minute incubation at room temperature and

subsequent storage on ice for later use. Subsequently, 5 x 105 cells were suspended in 100

µl of P3 Nucleofector™ solution (Lonza) per reaction, following the manufacturer's protocol,

and the prepared RNP complexes were added as required. The nucleofection process was

carried out using the DN100 program on the Amaxa 4-D Nucleofector (Lonza).

After transfection, the cells were seeded onto 6-well plates coated with a 1:100 Matrigel in

UPPS media supplemented with 10 µM ROCK inhibitor Y-27632 and incubated for 24 hours.

Upon reaching 80% confluency, the cells were dissociated into single cells using Accutase

as previously described. Subsequently, 10,000 single cells were plated onto 10 cm

polystyrene dishes coated with a 1:100 Matrigel in UPPS media containing 10 µM ROCK

inhibitor Y-27632 for 24 hours. The culture was maintained until visible colonies formed, and

individual colonies were selected and transferred to 12-well plates, where they were cultured

in UPPS media for further analysis and evaluation.

Genomic DNA isolation, PCR, PCR clean-up and gel electrophoresis

To confirm successful homozygous mutagenesis of the UGP2 locus, genomic DNA was

isolated from KO clones following the nucleofection of RNPs, utilizing the QIAamp DNA Mini

Kit (Qiagen) and adhering to the manufacturer's instructions.
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PCR amplification was performed using DreamTaq Green DNA Polymerase (5 U/μL, Thermo

Fisher Scientific), following the manufacturer's protocol. Subsequently, the resulting PCR

product was extracted using the QIAquick PCR purification kit (Qiagen). The PCR products

were then examined using 1% agarose (Biozym) gels in 1x TAE buffer composed of 40 mM

TRIS base, 20 mM acetic acid, and 1 mM EDTA (all Carl Roth). SYBR Safe DNA Gel Stain

(Thermo Fisher Scientific) was incorporated into the gel at a dilution of 1:10,000.

Electrophoresis was carried out at 100 V in TAE buffer. Subsequently, the DNA fragments

were visualized using the ChemiDoc MP Imaging System (BioRad).

Sanger sequencing

The PCR fragments were sent to Eurofins Scientific for Sanger Sequencing. Subsequently,

the resulting sequences were analyzed utilizing SnapGene viewer software v7.1.1 to verify

the accuracy of the intended deletions.

Western blot

To evaluate the successful generation of KO cell lines at the protein level, Western Blot

analysis was conducted. Total protein was extracted using RIPA buffer (Thermo Fisher

Scientific) supplemented with 1x protease inhibitor (Roche). The lysed cells were then

cooled on ice for 5 minutes, followed by centrifugation at 14,000 x g for 15 minutes. The

resulting supernatant was transferred to a fresh tube. To measure protein concentration,

Pierce™ BCA Protein Assay Kit was used according to the manufacturer's instructions and

36 µg of total protein were used for subsequent analysis. 2x Laemmli buffer (BioRad) was

added to all samples and incubated at 95°C for 5 minutes. The prepared protein sample was

applied to a 7.5% Mini PROTEAN® TGX stain-free gel (BioRad) for electrophoresis, using

SDS running buffer containing 1x Tris/glycine (BioRad) and 3.5 mM SDS (Serva

Electrophoresis). Wet blotting onto a nitrocellulose membrane was performed for 1 hour at

100 V using blotting buffer with 1x Tris/glycine and 20% methanol (Serva Electrophoresis).

Subsequently, the membrane was blocked for 1 hour at room temperature in TBST buffer,

consisting of 20 mM TRIS base, 150 mM NaCl, 0.1% Tween-20, and 5% milk powder (all

Carl Roth). The primary antibody was diluted 1:1000 in blocking buffer, applied to the

membrane, and incubated overnight at 4°C. Antibodies used for Western blot are listed in

Table S4. After three washes with TBST buffer, the membrane was incubated with a

secondary antibody conjugated with horseradish peroxidase (Sigma Aldrich) at a 1:10,000

dilution in blocking buffer for 2 hours at room temperature. Following another three washes

of 15 minutes each in TBST buffer, the membrane was stained with Clarity Western ECL
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Substrate and visualized after a 2-minute incubation using the ChemiDoc MP Imaging

System (BioRad).

Glycogen measurements

Glycogen contents were measured using the Glycogen Assay Kit ab65620 (Abcam)

following manufacturer’s instructions. Cells were harvested, washed with PBS and

resuspended in cold H2O. For glycogen content normalization, cells were counted using a

Countess Automated Cell Counter (Invitrogen). Enzymatic inactivation was performed at

100ºC for 10 min and glycogen was hydrolysed to glucose and detected using the OxiRed

probe following the manufacturer’s instructions. All samples were measured in technical

duplicates and a sample background control where glycogen is not hydrolysed to glucose

was performed. A standard curve with glycogen concentrations ranging from 0 (blank) to 0.2

µg glycogen/well was used to calculate glycogen contents. All samples, sample background

and standard wells were measured at 535/587 nm (Ex/Em) on a Tecan Plate Reader.

Duplicate measurements were averaged and sample background readings as well as a

blank value were subtracted from sample readings. The standard readings were plotted

against the glycogen concentration/well, and a linear fit was performed to calculate glycogen

contents in each sample well. The glycogen content [µg/µl supernatant] was then normalized

to the number of cells in solution before homogenization.

Single-cell sequencing experiments and analysis

Nuclei isolation for single-cell multiome sequencing

Nuclei isolation was only performed for time course single-cell multiome sequencing

samples. At the determined time points during NPC differentiation, hESCs, mEpiSCs, and

cyiPSCs were individually dissociated to single cells using Accutase. Subsequently, 2.5 x 105

cells per species were collected in a 2 mL DNA LoBind Tube (Eppendorf) and combined to a

single sample for further processing. Nuclei isolation was performed according to the

demonstrated protocol provided by 10x Genomics with some modifications. Briefly, cells

were centrifuged at 300 rcf for five minutes and the supernatant was removed. The cell pellet

was gently resuspended in 100 µL lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM

MgCl2 (all Sigma Aldrich), 0.05% Tween-20 (Carl Roth), 0.05% NP40 (Sigma Aldrich), 0.01%

Digitonin, 1% BSA, 1 mM DTT and 1 U/µL RNase inhibitor (all Thermo Fisher Scientific)) and

incubated for three minutes on ice. After incubation, the sample was washed by the addition

of 1 mL wash buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20 ,

1% BSA, 1 mM DTT and 1 U/µL RNase inhibitor), followed by centrifugation at 1000 rcf for 5

minutes and removal of the supernatant. Washing was repeated two more times. After the
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last washing step, the nuclei pellet was resuspended in Diluted Nuclei buffer (1x Nuclei

Buffer (10x Genomics), 1 mM DTT and 1 U/µL RNase inhibitor). The concentration was

determined and the sample was checked for successful nuclei isolation by visual

examination under the microscope using Trypan Blue (Invitrogen). While the following library

preparation was performed on single isolated nuclei, the term ‘single-cell sequencing’ is

employed for the time course multiome data.

Library preparation and sequencing

Time course scATAC and scRNA libraries were prepared using the Chromium Next GEM

Single Cell Multiome ATAC + Gene Expression Reagent Bundle (10x Genomics) according

to the manufacturer’s protocol. Samples were collected at 0h, 8h, 1d, 2d, 3d, 4d, 7d and 10d

post neural induction and cells of all three species were combined in equal amounts prior to

the library preparation. The aimed target recovery was 10,000 single nuclei for sequencing.

Libraries were sequenced on an Illumina NovaSeq 6000.

For scRNA-seq in the mTOR inhibition experiments, the Chromium Next GEM Single Cells 3’

Reagent Kits v3.1 (Dual Index) with Feature Barcode technology for Cell Multiplexing (10x

Genomics) were used following the manufacturer’s instructions with minor modifications.

Neural differentiation was initiated as described, and 50 nM INK128 was added to half of the

cells. Cells were harvested at 0h, 2d, and 4d of NPC differentiation. Labeled samples were

pooled and loaded onto a Chromium Next GEM Chip, with target recoveries of 12,000 cells

for day 0 and 22,000 cells for days 2 and 4. Sequencing reads were obtained through

NovaSeq X Plus PE150.

For the UGP2 KO experiments, scRNA-seq was performed using the Chromium Next GEM

Single Cells 3’ Reagent Kit v3.1 (Dual Index) according to the manufacturer's instructions,

with samples collected at 0h and 7d post neural induction. Equal amounts of cynomolgus

and human cells were combined for a target recovery of 10,000 cells for subsequent library

preparation and species assignment. Libraries were sequenced on an Illumina NovaSeq

6000.

Preprocessing

For time course single-cell multiome sequencing experiments, CellRanger ARC (v2.0.0)

provided by 10x Genomics was used to demultiplex binary Illumina base call (BCL) files into

FASTQ files, align the data against the GRCh38 (human), GRCm39 (mouse), and

Macaca_fascicularis_6.0 (cynomolgus) reference, filter reads, as well as count barcodes and

scRNA and scATAC molecules to generate feature-barcode matrices. Mapping of the mTOR

inhibition experiments was performed using CellRanger 7.2.0 (10x Genomics). Gene

Expression libraries were mapped against the GRCm38 (mouse), GRCh38 (human), and
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Macaca_fascicularis_6.0 (cynomolgus) genomes. Mapping of the scRNA-seq data of the

UGP2 KO was performed using CellRanger 7.1.0 (10x Genomics) and reads were aligned

against the GRCh38 (human), and Macaca_fascicularis_6.0 (cynomolgus) genomes.

Subsequent preprocessing and analysis steps of time course and UGP2 KO scRNA-seq

data were run in Python 3 using Scanpy v.1.4.6+20 and anndata v.0.7.1+49 except stated

otherwise. Downstream analysis of the scRNA-seq data of the mTOR inhibition experiments

was performed in Seurat v550. All subsequent preprocessing and analysis steps of

scATAC-seq data were run in R v4.1.2+ using ArchR v1.0.2+51 except stated otherwise. All

scRNA-seq and scATAC-seq figures were plotted using matplotlib, seaborn and ggplot2.

Species assignment and quality control

To mitigate technical cross-species batch effects, we pooled an equal number of cells from

the three species for each of the samples. Consequently, we aligned resulting sequencing

data against each of the three respective reference genomes separately. For time course

single cell multiome sequencing and scRNA-seq of the UGP2 KO, we employed a two-step

approach to assign each barcode to the species of origin: initially, we prematurely assigned

cells to a species based on which reference genome yielded the highest counts per cell.

Subsequently, we used souporcell52 to identify and remove doublet cells, and cluster cells on

their genotype and their respective species of origin based on single nucleotide

polymorphisms. For each sample, we filtered barcodes to retain high quality cells based on

the total distributions of unique molecular identifier counts and genes. Barcodes with a

fraction of mitochondria-encoded genes over 30% were excluded, likely indicating dying or

stressed cells. Finally, we excluded genes detected in fewer than 20 cells from further

analyses. For time course multiome data, UMI counts of each cell were normalized using the

SCRAN algorithm as implemented in the R-based package53,54. Briefly, size factors that

correlate with the amount of counts of captured cells were estimated and used for

normalization before log-transforming the data. For UGP2 KO data, Scanpy's function

sc.pp.normalize_total was used to normalize the data. For scRNA-seq data of mTOR

inhibition experiments, only cells with a minimum feature count of > 3000 and a maximum

mitochondrial gene percentage of < 15% were considered.

For the time course scATAC-seq data, barcodes from the respective species were assigned

using the labeled cell barcodes from the scRNA-seq analysis. Peaks were called using

Macs255. Next, we inspected the resulting peak and tile matrices based on the number of

fragments generated from Tn5 enzyme transposition events, transcription start site (TSS)

enrichment score and nucleosome signal per cell to obtain high quality cells. We excluded

cells with <1,000 captured fragments or TSS enrichment scores <1 from further analysis.

Additionally, we excluded peaks located on non-standard chromosomes or chromosome
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scaffolds, as well as peaks within genomic blacklist regions as defined by the ENCODE

consortium56 from further analysis.

Feature selection and low dimensional embedding

We identified the top 4,000 variable genes based on normalized dispersion57 as adopted in

Scanpy (pp.highly_variable_genes). Briefly, genes were ordered along their mean

expression before selecting the genes with the highest variance-to-mean ratio. We then

performed principal-component analysis dimension reduction by computing 15 principal

components on highly variable genes using Scanpy’s pp.pca. Next, a neighborhood graph

was computed on the first 50 principal components using Scanpy’s pp.neighbors with 15

neighbors. To identify genes involved in the linear NPC differentiation process, we used

Waddington Optimal Transport (WOT)58 to identify potential driver genes correlating with fate

probabilities towards the terminal macrostate as implemented in cellrank59. WOT, primarily

used to infer developmental trajectories by minimizing transportation costs between cell

states for timelapsed scRNA-seq data, was employed here to identify genes that follow the

linear trajectory towards endpoint cells at the final time point. For two-dimensional

visualization, we embedded the neighborhood graph via uniform manifold approximation and

projection (UMAP)60 on these lineage driver genes identified from WOT with an effective

minimum distance between embedded points of 0.5.

For the scATAC-seq data, we performed layered dimensionality reduction using latent

semantic indexing (LSI), consisting of normalization via term frequency-inverse document

frequency (TF-IDF) and dimension reduction via singular value decomposition (SVD). Finally,

we calculated a UMAP embedding based on the LSI reduced dimensions with 30 neighbors

and an effective minimum distance between embedded points of 0.5. To obtain reliable cell

annotations, we transferred labels from scRNA-seq barcodes to scATAC-seq barcodes.

Simulated gene expression

To facilitate the visualization and interpretation of scATAC-seq data, we leveraged chromatin

accessibility patterns to estimate gene expression profiles for cell state-specific marker

genes. We calculated gene scores estimating the level of gene expression based on the

local accessibility of the gene region, including the promoter and gene body, across all cells

in the data, adjusting for gene distances and large differences in gene size using the

GeneScoreMatrix in ArchR51. To further enhance the visualization, we used MAGIC61 to

denoise gene activity scores.
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Ingest mapping

To investigate the overall speed of differentiation between species and the effect of mTOR

inhibition and loss of UGP2 in pluripotent stem cells across the three species, we used

Scanpy’s ingest function (sc.tl.ingest). For species comparison of time course gene

expression data from scRNA-seq and gene expression prediction data from scATAC-seq, we

mapped cells from human, mouse and macaca into one common embedding. Integration of

embeddings and annotations of macaca and human cells via a k-NN classifier was done,

with mouse cells serving as the reference since they exhibited the fastest differentiation

speed and therefore covered the most stages during the differentiation process. To

investigate the effect of mTOR inhibition and loss of UGP2 we used the respective species'

time course data as the reference for mapping. For the mTOR inhibition data, the proportion

of cells assigned to a specific time point of the reference data was quantified using a

custom-made pheatmap-based function47.

Linear regression time mapping

To explore the correlation between the mapped time derived from ingest mapping for scRNA

and scATAC-seq and the corresponding sampling time points across the human and

cynomolgus datasets, linear regression analysis was employed using the scikit-learn tool

v1.5.062. Mean values obtained over the mapped time were calculated for each dataset to

enable a comparative examination. The regression models were constrained to pass through

the origin. The fit for each model was evaluated using the R-squared statistic. Relative

differentiation speeds were determined by calculating the slopes of the linear fits relative to

mouse.

Differential gene expression and enrichment analysis

For differential gene expression analysis, Scanpy’s sc.tl.rank_genes_groups was applied to

compare gene expression levels between previously defined clusters using the Wilcoxon

method, aiming to identify genes that are significantly upregulated or downregulated in one

cluster compared to others. After identifying differentially expressed genes (DEGs),

enrichment analysis was conducted. Lists of DEGs were analyzed using Gene Ontology

(GO) or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, indicating potential

biological processes or pathways that are active in one cell population over another.

Clustering and identification of fast- and slow-differentiating cells within each species

The Leiden algorithm was utilized for unsupervised clustering for all species. Subsequently,

the tl.rank_genes_groups method was applied within Leiden clusters, employing the

Wilcoxon test to identify DEGs. The resulting DEG lists were exported for each species and
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further refined by retaining only those genes that were common across all three species and

displayed a p-value < 0.01 and a log-fold change > 2. To check for correct assignment, the

clusters were divided into smaller subclusters and each subcluster was reevaluated and

checked for correct assignment. Again, the tl.rank_genes_groups method was applied to

determine DEGs between refined clusters and only genes common to all three species and

displaying a p-value < 0.01 and a log-fold change > 2 were retained. These genes were

used as marker genes for the clusters pluripotency high - pluripotency low - intermediate -

neural low - neural high and neuronal within the dataset of each species. Using the

sc.tl.score_genes function of Scanpy, we calculated gene scores for each cell and each

marker gene set defining the respective cluster. Further subdivision was carried out, and

smaller subclusters were analyzed for overlap with the marker genes. For the identification

of fast- and slow-differentiating cells, we determined the mean gene score for each cluster

and used this value to set a threshold to select single cells that most confidently reflected the

respective gene expression profiles. These subgroups of cells were further subdivided

according to the time point at which they reached their specific differentiation state. For a

single differentiation state, we focused on the two time points that contained most of the cells

in that differentiation state, and defined the cells found at the earlier of the two time points as

fast-, and the cells found at the later time-point as slow-differentiating.
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Figure S1: Primed epiblast-like pluripotent stem cells of three mammalian species
cultured and differentiated under identical conditions.

A. Schematic illustrating the stepwise adaptation process to harmonized UPPS medium from the

original culture conditions of mEpiSC (top), cyiPSC (middle) and hESC (bottom).

B. Brightfield images of mouse (left), cynomolgus (middle) and human (right) pluripotent stem cells

cultured in harmonized conditions using Matrigel and UPPS. Cells from all three species display

regular colony morphology typical for pluripotent cells. Scale bars, 500 µm.

C. Flow cytometric analysis for pluripotency marker expression in mEpiSCs (top), cyiPSCs (middle)

and hESCs (bottom) cultured in harmonized conditions using Matrigel and UPPS. Left panels show

distribution of SOX2 (purple) and SSEA1/TRA 1-60 (green) expressions, right panels show NANOG

(orange) and OCT4 (blue) expressions. Gray distributions represent unstained control samples.

D. Immunofluorescence staining of pluripotency markers NANOG (green) and SOX2 (magenta) in

mEpiSCs (top), cyiPSCs (middle) and hESCs (bottom) cultured in harmonized conditions using

Matrigel and UPPS. Scale bars, 25 µm.

E. Immunofluorescence staining of the pluripotency marker OCT4 (yellow) and the neural markers

PAX6 (green) and SOX1 (magenta) in mEpiSCs (left), cyiPSCs (middle) and hESCs (right) before and

after 6 days of NPC differentiation. Scale bars, 20 µm.

F. RT-qPCR analysis of relative expression level of the pluripotency markers OCT4 and NANOG, and

neural markers SOX1 and PAX6 in mEpiSCs (top), cyiPSCs (middle) and hESCs (bottom) after 10

days of NPC differentiation (dark bars). Expression levels were normalized for each gene to its

expression in pluripotency conditions (light bars) using the 2^-ddCt method. Error bars indicate

standard deviation (N = 3). Significance was was determined using the Student’s t-test: * p < 0.05, **

p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure S2: Inter-species single-cell mapping reveals that mouse cells differentiate
fastest, followed by cynomolgus and human on RNA and chromatin level.

A. Schematic illustrating approach to map single-cell transcriptomes from human and cynomolgus

cells along the differentiation time-course onto the mouse reference embedding.

B. Common embedding of human (green) and cynomolgus cells (yellow) in the mouse reference

UMAP map (gray). Neither human nor cynomolgus cells reached the most differentiated states seen

in the mouse, but the most advanced cynomolgus cells were slightly further along in the differentiation

trajectory compared to human cells, indicating a marginally faster differentiation pace in cynomolgus

compared to human.

C-D. Heatmaps using simulated gene expression from scATAC-seq in cynomolgus and human cells

compared to simulated gene expression from scATAC-seq in mouse cells. Tile colors indicate

fractions of cynomolgus (C) and human (D) cells for each sampling time mapping to reference time

points in mouse.

E. Linear regression of cross-species mapping using simulated gene expression determined from

scATAC-seq. Data points show the mean mapped time of human (green circles) and cynomolgus

(orange triangles) cells on the mouse reference data. Lines are linear fits to the data for human

(green, y = 0.53x, R2 = 0.89) and cynomolgus (orange, y = 0.59x, R2 = 0.95), and indicate 1.7 and

1.9-fold faster differentiation in mouse compared to cynomolgus and human, respectively, when

determined using chromatin dynamics.
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Figure S3: Cell cycle durations are species-specific but growth and cell cycle
manipulation via mTOR inhibition does not delay early neural differentiation.

A. Stills from movies of mEpiSCs (top), cyiPSCs (middle) and hESCs (bottom) expressing the

PIP-FUCCI sensor. Expression of Cdt1-17-NLS-HA-mVenus (PIP) in green, expression of

mCherry-Gem1-110 (Gem) in magenta. Scale bars, 10 µm.

B. Fluorescence profiles derived from cells shown in A. Dashed lines indicate transitions between the

cell cycle phases G1, S and G2M (See methods for criteria to determine cell cycle phase transitions).

C. Distributions of cell cycle durations in mEpiSCs (left), cyiPSCs (middle) and hESCs (right). Data

from two independent experiments indicated by different shapes. Light symbols show data from

individual cells, dark circles and triangles show mean of each replicate, black squares indicate

average of replicates, bars indicate standard error. Cell cycle durations are broadly distributed within

each species, but average cell cycle durations are species-specific.

D. Cell cycle phase durations normalized to total cell cycle length. Cells from all species show a

similar cell cycle structure characteristic for pluripotent cells with a short G1-phase (green) and

dominant S- and G2/M-phases (magenta and gray).

E-F. Same differentiation time course as in Figure 3C showing mouse (left), cynomolgus (middle) and

human cells (right) fixed after 0, 1, 2, 3, and 4 of NPC differentiation in the absence (control) or

presence of mTOR inhibition, but stained for the neural marker SOX1 (magenta, E), and the

pluripotency marker OCT4 (yellow, F). mTORi has no discernable effect on SOX1 expression onset,

but leads to a slightly longer maintenance of OCT4 expression in human cells, possibly due to

reduced cell proliferation and protein dilution. Scale bars, 20 µm.

G-I. UMAP representation of scRNA-seq data from mEpiSCs (G), cyiPSCs (H) and hESCs (I)

differentiated for 2 (green) or 4 days (orange) in the presence (dark symbols) or absence (control,

light symbols) of the mTOR-inhibitor INK128. Transcriptomes of undifferentiated cells are shown in

gray. mTOR-inhibited and control cells are overlaid in mouse but map away from each other in the

primate species, consistent with stronger effects of the inhibitor in the primate compared to mouse

cells.
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Figure S4: Identification of candidate genes for differentiation speed through
comparison of fast- and slow-differentiating cells within and across species.

A-B. Heatmap showing the mean normalized expression of individual genes associated with glycogen

biosynthesis (A) and glycolysis (B) across the differentiation time-course in human (left), cynomolgus

(middle), and mouse cells (right). Red box highlights UGP2 (A) and HK1 (B) expression which differ

most strongly between human, cynomolgus, and mouse.

C-E. Expression of selected marker genes used to annotate cells as pluripotency high, pluripotency

low, intermediate, neural low, neural high and neuronal during NPC differentiation of mouse (C),

cynomolgus (D) and human (E) cells. Marker genes are expressed in the same relative sequence

across species, but at later absolute times in the slower differentiating primates.

F-H. Heatmap showing the fraction of cells with specific state annotations coming from different

sampling time-points during NPC differentiation for mouse (F), cynomolgus (G) and human (H). The

same differentiation states are reached at progressively later time-points in cynomolgus and human

cells compared to the mouse.

I-K. Expression scores of gene groups defining the differentiation states pluripotency high,

pluripotency low, intermediate, neural low, neural high and neuronal (from left to right) shown on the

UMAP embeddings from Figure 1. See Methods for choice of gene groups and calculation of

expression scores.
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Figure S5: Impact of UGP2 knockout on neural differentiation in hESCs and cyiPSCs.

A.-B. RT-qPCR expression analysis of the pluripotency marker OCT4, the early neural markers SOX1

and PAX6, and later-stage neural marker FOXG1 after 0, 4, 6, 8 and 10 days of NPC differentiation in

wild-type (light) and UGP2 KO (dark) hESCs. Relative expression was calculated using the 2^-ddCt

method and normalized using the 0h sample as reference. Data from N = 3 independent experiments,

error bars represent standard deviation. Significance was determined using the Student’s t-test: * p <

0.05, ** p < 0.01, *** p < 0.001. Neural markers are consistently more highly expressed in UGP2

knockout compared to the wild-type cells.

B. Western blot analysis of UGP2 protein in cynomolgus wild-type iPSCs (WT, reproduced from

Figure 5C) and UGP2 knockout (KO) cells. UGP2 protein is absent in the cynomolgus iPSCs KO line.

GAPDH is used as housekeeping control.

C. RT-qPCR expression analysis as in (A) but comparing OCT4, SOX1 and FOXG1 in cynomolgus

wild-type and UGP2 KO iPSCs until day 8 of differentiation. The later-stage marker FOXG1 is more

highly expressed in KO compared to wild-type cells.

D. UMAP representation of scRNA-seq data of cynomolgus UGP2 KO cells before (0h) and after 7

days of NPC differentiation.

E. UMAP projection of single-cell transcriptomes of UGP2 KO cells at 0 hours (light orange) and 7

days (dark orange) of differentiation onto the time-resolved reference data set (gray).

F. Heatmap showing the fraction of cynomolgus UGP2 KO cells at 0 hours and 7 days of NPC

differentiation that map to specific time points of the cynomolgus wild-type reference data set.

G. KEGG pathway enrichment using differentially expressed genes in cynomolgus UGP2 KO versus

wild-type cells at day 7 of NPC differentiation. Top 100 picks sorted by p-value are displayed, neural

related pathways are highlighted in yellow. In contrast to the situation in human cells, neural related

pathways are not enriched in cynomolgus KO cells.
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