

Aedes albopictus is not an arbovirus aficionado – Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates

Hélène Cecilia^{1*}, Benjamin M. Althouse^{1,2}, Sasha R. Azar^{3,4}, Brett A. Moehn¹, Ruimei Yun³, Shannan L. Rossi^{3,5,6,7}, Nikos Vasilakis^{3,5,6}, Kathryn A. Hanley^{1*}

March 11, 2024

¹ Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA

² Information School, University of Washington, Seattle, WA, 98105

³ Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA

⁴ Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA

⁵ Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA

⁶ Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA

⁷ Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA

* Corresponding authors : helene.cecilia3@gmail.com ; khanley@nmsu.edu

1

Abstract

2 The contact structure between vertebrate hosts and arthropod vectors plays a key role in the
3 spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus
4 infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the
5 replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests,
6 sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the
7 paleotropics (cynomolgus macaques, *Macaca fascicularis*) and one from the neotropics (squirrel monkeys,
8 *Saimiri boliviensis*) to test the effect of both vector and host infection with each virus on
9 completion of blood feeding (engorgement) of the mosquito *Aedes albopictus*. Although mosquitoes
10 were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%.
11 While neither vector nor host infection systematically affected engorgement, NHP species and body
12 temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites
13 on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration
14 inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites.
15 This study highlights the importance of incorporating individual-level heterogeneity of vector biting
16 in arbovirus transmission models.

17 Introduction

18 Transmission dynamics of vector-borne pathogens are shaped by the contact structure between their
19 arthropod vectors and their vertebrate hosts, which in turn depends upon vector attraction to individual
20 hosts [1]. The most important vector-borne pathogens in the context of global human health are
21 those transmitted by mosquitoes, such as *Plasmodium* spp., dengue (DENV) and Zika (ZIKV) virus
22 [2]. Mosquitoes initially detect hosts at a distance through sensory cues such as carbon dioxide (CO₂)
23 [3–5]. Once stimulated by CO₂, mosquitoes will target visual cues and odor plumes to find hosts [6, 7].
24 Ultimately, mosquitoes will make feeding decisions based on more proximal host cues, such as body heat,
25 humidity, and skin odor, which is a product of volatile chemicals released by the skin microbiome [4, 6, 8].

26

27 An effect of infection of host or vector on the feeding behavior of mosquitoes would have significant
28 ramifications for patterns of pathogen transmission. To date, most studies testing the impact of infection
29 on mosquito feeding have used *Plasmodium* spp., the parasite that causes malaria [9]. As reviewed by
30 Sanford and Shutler [10] and Busula *et al.* [11], most studies found that host infection with *Plasmodium*
31 enhanced their attractiveness to mosquitoes. Switching perspective to the vector, laboratory studies have
32 shown that *Plasmodium* infection changes mosquito feeding behavior, but such changes depend on the
33 developmental stage of the parasite and *Plasmodium* species tested, among other factors [10, 12]. For
34 both the host and the vector, it remains unclear whether or how these laboratory findings translate to
35 the field, and whether these observations reveal active manipulation by *Plasmodium* to enhance parasite
36 fitness or simply a non-adaptive by-product of infection [10–12].

37

38 In contrast to the rich body of work on *Plasmodium* spp., relatively few studies have investigated the
39 effect of infection with arthropod-borne viruses (arboviruses) on mosquito feeding behavior. A review by
40 Cozzarolo *et al.* [13] showed mixed evidence for an impact of host infection on mosquito feeding. On one
41 hand, several species of *Culex* mosquitoes did not differ in their attraction to house sparrows infected
42 with either St. Louis encephalitis virus or Western equine encephalitis virus relative to uninfected house
43 sparrows, and *Aedes taeniorhynchus* were not more attracted to sheep infected with Rift Valley fever
44 virus (RVFV) than uninfected sheep. On the other hand, *Culex annulirostris* were more attracted to
45 chickens infected with Sindbis virus than uninfected chickens, and *Culex pipiens* were more attracted to
46 sheep infected with RVFV. Recently, Zhang *et al.* [14] reported that mice and humans infected with
47 DENV-2 or ZIKV produced host cues that were more attractive for *Aedes aegypti* and *Ae. albopictus*,
48 the major vectors of both viruses, than their uninfected counterparts.

49

50 Similar to studies of host infection, current evidence is inconclusive as to whether arbovirus infection
51 of mosquitoes impacts their feeding behavior, as reviewed by Maire *et al.* [15]. Several studies have
52 investigated the impact of DENV infection of *Ae. aegypti* on their tendency to feed on mice [16–20], or

53 guinea pigs [21]. DENV-infected mosquitoes probed for longer periods of time than control mosquitoes
54 in some studies [16, 20] but not others [17, 21], showed a longer total feeding time (time to probe and
55 engorge) in some studies [16, 18] but not others [21], and were less likely to take a blood meal in some
56 studies [19] but not others [20]. To our knowledge, only one study [20] has tested the impact of DENV
57 infection on probing efficiency; it showed DENV-infected *Ae. aegypti* probed more often than uninfected
58 mosquitoes to achieve blood satiety. Studies on ZIKV so far only focused on the impact it might have
59 on *Ae. aegypti* host-seeking behavior, precisely its flight activity [15].

60

61 A major limitation to most of the existing DENV and ZIKV studies is their reliance on rodents, which
62 are not natural hosts for either virus. DENV and ZIKV originated in sylvatic cycles in zoonotic reservoir
63 hosts, including non-human primates (NHPs) [22, 23] and arboreal *Aedes* mosquitoes in Asia and Africa,
64 respectively [22, 24]. Both spilled over into humans and established human-endemic cycles transmitted
65 by *Ae. aegypti* and *Ae. albopictus* [25]. *Ae. albopictus* may also be involved in spillover and spillback of
66 both viruses [26–28].

67

68 Here, we leveraged a study of sylvatic DENV-2 and ZIKV replication dynamics in both paleotropical
69 (cynomolgus macaques, *Macaca fascicularis*) and neotropical (squirrel monkeys, *Saimiri boliviensis*) NHP
70 hosts to test the effect of both host and vector infection with each virus on vector feeding. Cynomolgus
71 macaques are known to become naturally infected with both viruses [23, 29], whereas neither virus has yet
72 been detected in squirrel monkeys. In this study, batches of *Ae. albopictus* were infected via intrathoracic
73 inoculation, grouped into cartons, placed upon the ear of uninfected NHPs and given the opportunity to
74 feed. Then, batches of uninfected *Ae. albopictus* were placed upon the ear of infected monkeys at regular
75 intervals and allowed to feed. In the control arm of the experiment, uninfected *Ae. albopictus* were fed
76 upon each species of monkey and, subsequently, uninfected mosquitoes were fed on control monkeys at
77 the same intervals as for infected monkeys. In every case, engorged and unengorged mosquitoes were
78 counted from every carton, enabling us to test the impact of infection on engorgement. We tested the
79 effect of mosquito infection status (infected or control) when feeding on naïve hosts, as well as the effect
80 of NHP infection status on naïve mosquitoes. We found that arbovirus infection of vectors and hosts does
81 not systematically impact mosquito engorgement, but when it does, it tends to decrease *Ae. albopictus*
82 tendency to engorge. Of the other biological and experimental variables that we analyzed, only NHP
83 species and body temperature at the time of feeding influenced *Ae. albopictus* tendency to engorge. We
84 also identified cytokines, including epidermal growth factor (EGF) and macrophage migration inhibitory
85 factor (MIF), that were dynamically affected by the repeated exposure to uninfected mosquito bites.

86 Material and Methods

87 Overview

88 The experiments that generated the data analyzed here have been described in detail in Hanley *et al.*
89 2023 [30]. Briefly, fifteen (9 females, 7 males) Mauritius origin cynomolgus macaques (*Macaca fascicu-*
90 *laris*), between 2.2 and 4.0 years of age and weighing between 2.7 and 5.2 kilograms (kg) at the time of
91 the study, were purchased from Worldwide Primates, Inc (Miami, FL, USA). Twenty-four (12 females,
92 12 males) squirrel monkeys (*Saimiri boliviensis boliviensis*) between 4 and 14 years of age and weighing
93 between 0.62 kg and 0.89 kg at the time of the study, were purchased from the MD Anderson Center
94 (Bastrop, TX, USA). All NHPs were anesthetized with ketamine before every procedure. The experi-
95 ments conducted here were approved via UTMB Institutional Animal Care and Use Committee (IACUC)
96 protocol 1912100. Figure 1 provides an overview of the experimental design.

97

98 Adult *Aedes albopictus* mosquitoes were maintained at 28°C while the temperature of the rearing room
99 (from larval development to adult emergence) varied between 26 and 28°C. Temperature for NHP mainte-
100 nance was 26-28°C for squirrel monkeys and 24-26°C for cynomolgus macaques. All raw data on mosquito
101 engorgement on NHPs are provided in Table S.1.

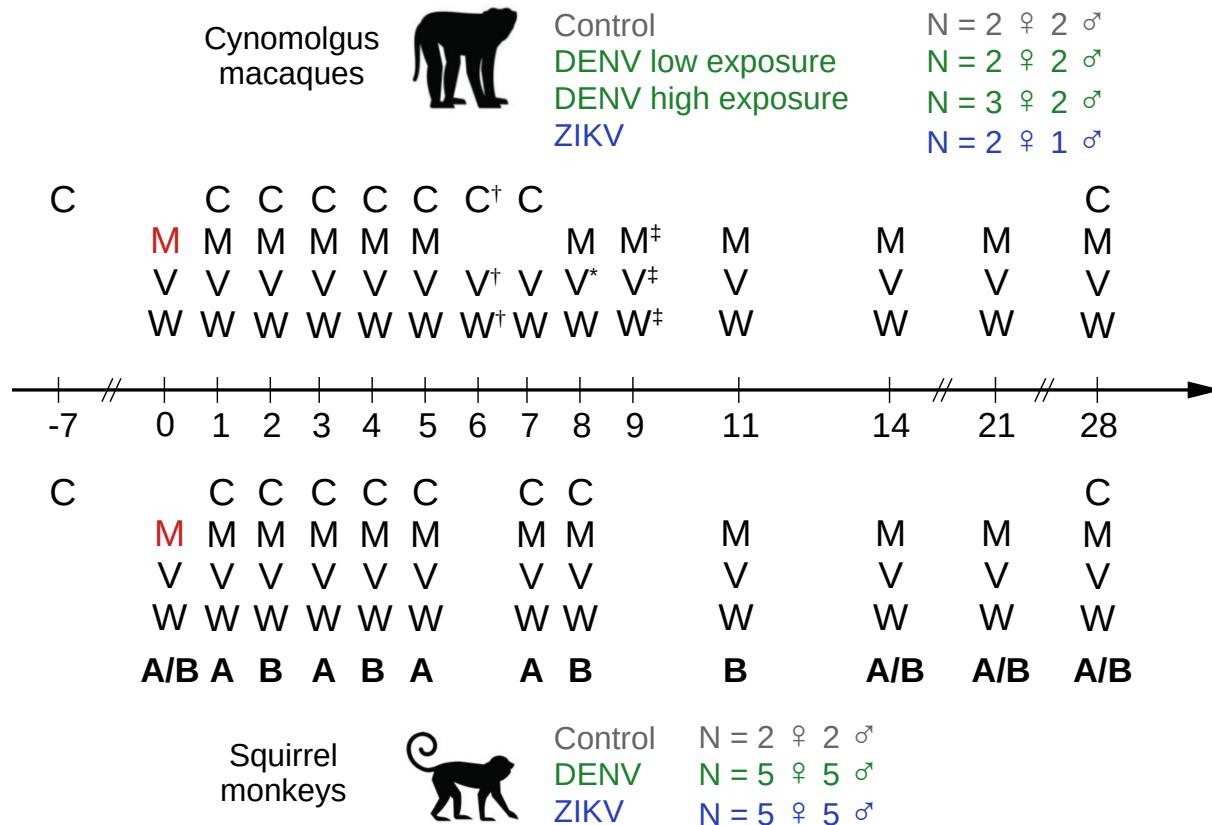


Figure 1: Overview of experimental infections of cynomolgus macaques and squirrel monkeys with sylvatic dengue or Zika virus and subsequent sampling. C : serum sampled for cytokine quantification ; M : mosquito feeding (red denotes intrathoracically inoculated mosquitoes used for exposure) ; V : serum sampled for viremia quantification ; W : weight. A and B indicate cohorts, in the case of squirrel monkeys. The monkey images are licensed from Shutterstock.

[†]: only measured in control and DENV-2 infected cynomolgus macaques.

* : for DENV-2 infected cynomolgus macaques, viremia was deduced from transmission to mosquitoes on day 8 and/or viremia on previous and subsequent sampling (see main text).

[†] : only measured for ZIKV infected cynomolgus macaques.

102 Feeding of infected *versus* uninfected mosquitoes : Experiment Day 0

103 For macaques, on day 0 of the experiment, screen-top, cardboard cartons (diameter 8 cm, height 8.5
104 cm) containing either 1 (low dose) or 10 (high dose) *Ae. albopictus* (Galveston 2018, F12) that had
105 been intrathoracically inoculated with a sylvatic Malaysian strain of DENV-2 (P8-1407) ten days prior,
106 15 *Ae. albopictus* intrathoracically inoculated with sylvatic African strain of ZIKV (DakAr 41525) ten
107 days prior, or cartons of 10 uninfected control mosquitoes that had not been intrathoracically inoculated
108 were placed upon the ear of a NHP for an average of 7.5 ± 0.62 minutes (mean \pm 1 SE, range = 4
109 to 10 minutes). For squirrel monkeys, cartons containing either 15 *Ae. albopictus* (Galveston 2018,
110 F14) intrathoracically inoculated with a sylvatic Asian strain of DENV-2 (P8-1407) ten days prior, 15
111 *Ae. albopictus* intrathoracically inoculated with a sylvatic African strain of ZIKV (DakAr 41525) ten
112 days prior, or 15 uninfected control mosquitoes that had not been intrathoracically inoculated, were
113 placed upon the ear of a NHP for an average of 6.5 ± 0.29 minutes (mean \pm 1 SE, range = 4 to 9
114 minutes). Additionally, to test whether non-viremic transmission might occur by co-feeding, uninfected

115 mosquitoes (n=15) were allowed to feed on squirrel monkeys immediately after they had been fed upon by
116 infected mosquitoes, on the ear not used for the original feeding. These are hereafter termed “co-feeding
117 mosquitoes”. Co-feeding mosquitoes were held upon the ear for an average of 4.9 ± 0.22 minutes (mean \pm
118 1 SE, range = 3 to 6 minutes). Cartons were then returned to an arthropod containment insectary space
119 (ACL2), mosquitoes were cold anesthetized, and visibly engorged mosquitoes were separated, counted,
120 and returned to an incubator, while unengorged mosquitoes were counted and discarded. For the purposes
121 of this study, only visibly engorged mosquitoes are considered to have fed. For analyses, the engorgement
122 rate was defined as the ratio of the number of engorged mosquitoes over the total number of mosquitoes
123 in the carton.

124 Statistical analysis of the impact of mosquito infection on engorgement

125 We tested whether the infection status of mosquitoes affected their engorgement rate on day 0 of the
126 experiments. As none of the co-feeding mosquitoes became infected (Table S.2), we aggregated the co-
127 feeding and control mosquitoes. We excluded mosquitoes belonging to the low dose group (1 mosquito per
128 NHP) feeding on cynomolgus macaques, as they all fed. We also tested differences in engorgement between
129 host species for a given mosquito status (control, DENV-2 or ZIKV infected). Model selection focused
130 on choosing between binomial and betabinomial error distributions (both with a logit link function), the
131 latter accounting for dispersion anomalies, as well as between a generalized linear model (fixed effects only)
132 and a generalized mixed effect model, incorporating monkey ID as a random effect (intercept). Duration
133 of mosquito exposure was used as an offset, *i.e* a scaling factor fixed at 1 reflecting that the tendency
134 to engorge is influenced by the duration of exposure. The models were fitted using maximum likelihood
135 and the selection was done through inspection of models’ residuals, likelihood ratio tests, and corrected
136 Akaike Information Criterion (AICc) comparison. We confirmed that significant results remained as such
137 after using the Benjamini-Hochberg correction for *P* values, with a false discovery rate (false positives
138 / (false positives + true positives)) of 5% [31], but we report the initial *P* values in the results section.
139 When showing predicted probabilities of engorgement from the model, we assume a common duration of
140 6 minutes, corresponding to the median of all durations.

141 Feeding of uninfected mosquitoes on infected *versus* uninfected hosts: Experi- 142 ment Days 1-28

143 For both host species, blood was drawn at designated intervals from day 1 to 28 after the initial ex-
144 posure to mosquitoes to quantify infectious viremia via serial dilution and immunostaining (see [30] for
145 details) and cytokine concentrations (Figure 1). Clarified serum from each animal was subjected to the
146 Cytokine 29-Plex Monkey Panel (ThermoFisher Scientific, Waltham, MA, USA), measuring TGF- β , G-
147 CSF, RANTES, Eotaxin, MIP-1 α , GM-CSF, MIP-1 β , MCP-1, HGF, VEGF, IFN- γ , MDC, I-TAC, MIF,
148 TNF- α , IP-10, MIG, and interleukins (IL) 1 β , 1RA, 2, 4, 6, 8, 10, 12, 15, 17. Each sample was run in

149 duplicate according to manufacturer instructions and average values were ascertained via the standard
150 curve generated for each cytokine per run. Baseline concentrations were measured on day -7. Neutraliz-
151 ing antibody titers were measured as 80% plaque reduction neutralization titers (PRNT80) pre-infection
152 and 28 days post-infection, and weight was measured each time a NHP was handled. Due to their small
153 size, squirrel monkeys were assigned to one of two cohorts, sampled on different days (Figure 1). All
154 NHPs were surgically implanted with DST micro-T temperature loggers (Star-Oddi, Gardabær, Iceland)
155 set to record temperature every 15 minutes. Host body temperature at the time of mosquito feeding was
156 linearly interpolated using available temperature records.

157

158 For both species, five- to seven-day-old, uninfected *Ae. albopictus* that had been starved of sucrose for
159 24 hours were allowed to feed on NHP ears (in general n=10 mosquitoes for cynomolgus macaques, n=15
160 for squirrel monkeys, see Table S.1 for exceptions) on the days designated in Figure 1, and the time of
161 day and duration of exposure were monitored. In two cases, the end time of exposure was not recorded,
162 and instead we used the time the NHP was returned to its cage, which is a slight overestimation. We
163 alternated ears each feeding.

164

165 Transmission to mosquitoes was assessed through the presence of virus in either mosquitoes' bodies or
166 legs or both ([30], Text S.1). This information was sometimes used to correct our measure of infectious
167 viremia (Text S.1).

168

169 Squirrel monkeys were euthanized at the termination of this experiment but cynomolgus macaques were
170 not. On day 28 of the experiment, squirrel monkeys were being prepared for euthanasia, which necessi-
171 tated some changes in the way they were handled, and induced important differences with cynomolgus
172 macaques with regards to time of day and duration of mosquito exposure, which could bias our analyses
173 (Text S.1). We therefore excluded data on day 28 of the experiment, for both species (from n = 331 to n
174 = 293). In this final dataset, mosquito exposure events happened between 8:37 AM and 2:32 PM. Lights
175 were on from 7AM to 7PM to minimize the impact of diel fluctuations on host body temperature. For
176 analyses, the engorgement rate was again defined as the ratio of the number of engorged mosquitoes over
177 the total number of mosquitoes in the carton.

178 **Statistical analysis of the impact of host infection and biology, as well as time
179 of day, on mosquito engorgement**

180 We tested whether the infection status of NHPs affected uninfected mosquitoes' engorgement rates.
181 We started with a simple model comparing the experimental groups (combination of NHP species and
182 infection status, and virus species) to see what could be concluded in the absence of other information.
183 Then, to account for heterogeneity within these groups, we built a complete model, accounting for virus

184 species, time of day, host sex, species, body temperature at the time of feeding, weight, and viremia.
185 All quantitative variables were scaled except viremia. Duration of mosquito exposure was used as an
186 offset in both the simple and complete models. The model selection procedure was similar to the one
187 described earlier, except that generalized mixed effect models also included days post infection as random
188 intercepts. Preliminary tests resulted in the inclusion of an interaction term between host species and
189 weight, as well as between host species and host body temperature (Text S.1, Figure S.1). When showing
190 predicted probabilities of engorgement from the model, we assume a common duration of 6 minutes,
191 corresponding to the median of all durations.

192 **Comparison with inter-individual variation in approach rate of free-living**
193 ***Aedes albopictus***

194 In order to compare the inter-individual heterogeneity in our experimental dataset to heterogeneity in
195 the approach rate of free-living mosquitoes, we took advantage of an experiment designed to test the
196 impact of levels of urbanization on the approach of *Aedes* spp. mosquitoes to humans [32]. In this
197 experiment, human approach rate was measured by handheld net collections of mosquitoes that would
198 approach within an arm's length to the collector. Collectors were wearing mosquito repellent to prevent
199 bites.

200

201 To compare experimental and field data, we used the coefficient of variation (standard deviation/mean),
202 which is unitless. We computed it on engorgement rates normalized by duration of exposure, per NHP,
203 for our dataset, and on number of approached females *Ae. albopictus*, per collector (the duration of
204 collection being constant), in what we defined as optimal conditions (Text S.2), for approach data.

205 **Effect of repeated exposure to uninfected mosquitoes on cytokine response**

206 Lastly, we took advantage of the experimental design of Hanley *et al.* [30] to determine whether the
207 immune response of NHPs was notably affected by the exposure to uninfected mosquitoes. To do so, we
208 assessed the effect of repeated exposure to uninfected mosquitoes on control NHP cytokine concentration
209 ($N = 4$ control cynomolgus macaques and 4 control squirrel monkeys). We used \log_{10} cytokine concen-
210 tration as the response variable, and variables measuring mosquito exposure as fixed effects (Table S.3).
211 For simplicity, here we use the term bite to refer to the number of engorged mosquitoes at the end of
212 the exposure period, although we did not observe the number of biting events *per se*. We considered the
213 effects of biting in the short term (the number of bites received the day prior for cynomolgus macaques,
214 and 2 days prior for squirrel monkeys, due to alternating days of exposure) and the long term (the cumu-
215 lative number of bites received in the last seven days for both species). The model selection procedure is
216 detailed in Text S.3.

217 Results

218 Before diving into analyses, we wish to highlight that although mosquitoes were starved from sucrose
219 and blood meal and given no choice of hosts, the engorgement rates ranged from 0% to 100%, including
220 on viremic NHPs (Figure S.2A).

221 Impact of mosquito infection status on engorgement rates

222 In general, mosquito infection status had no significant effect on engorgement rate (Figure 2, Table S.4),
223 save that DENV-2 infected *Ae. albopictus* were less likely to engorge than control *Ae. albopictus* when
224 feeding on squirrel monkeys (odds ratio OR = 0.31 [0.13 ; 0.71], p = 2.0e-4). We also detected an interac-
225 tion between host species and mosquito infection status on feeding behavior, in that we found significantly
226 higher engorgement of DENV-2 infected mosquitoes on cynomolgus macaques than on squirrel monkeys
227 (OR = 6.46 [1.65 ; 25.3], p = 3.2e-4) but no difference between host species for ZIKV infected or control
228 mosquitoes (Table S.4). The selected model was a logistic regression model with a betabinomial error
229 distribution, without random effects (Tables S.5, S.6).

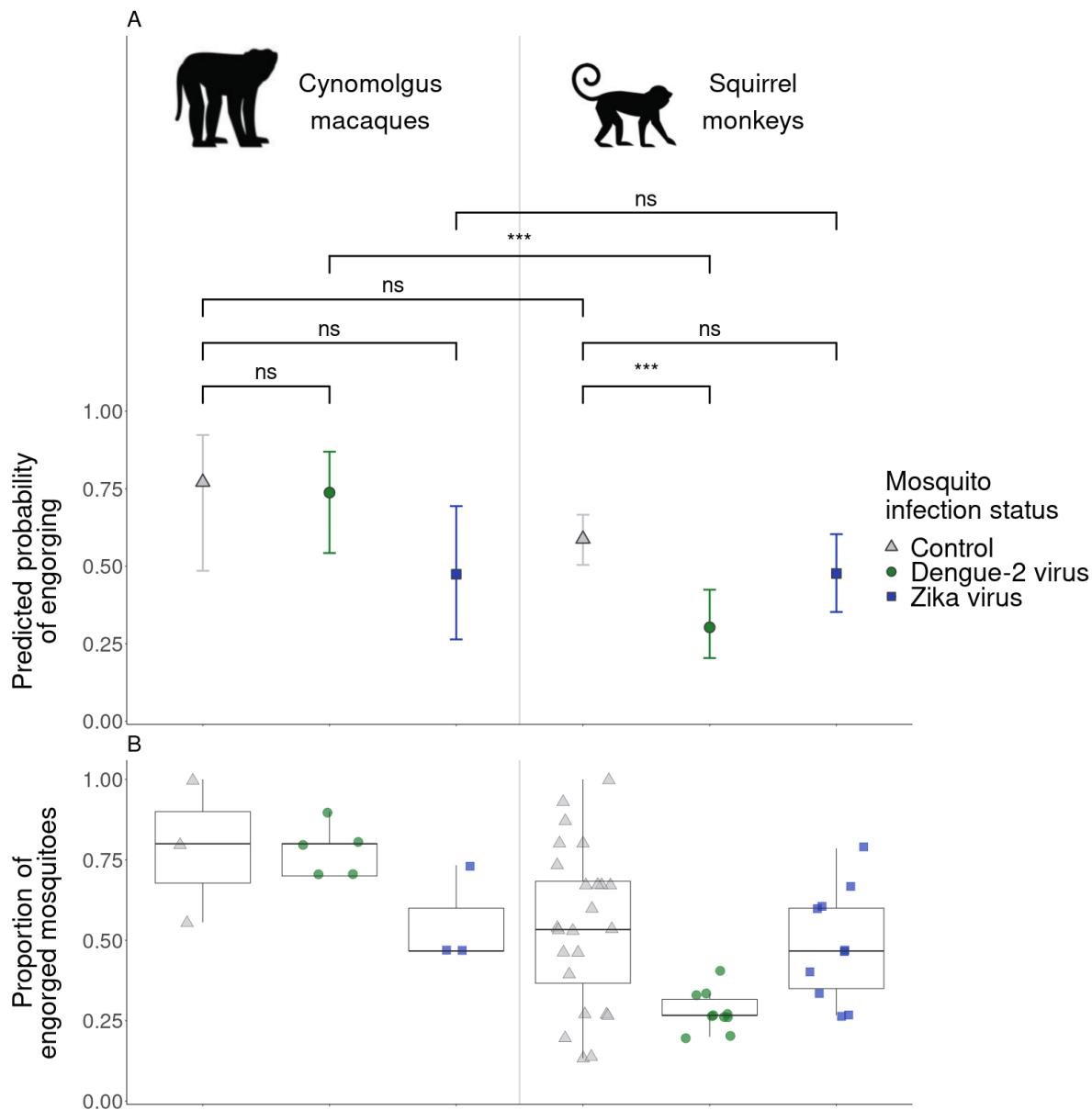


Figure 2: Engorgement rates of *Aedes albopictus* on day 0 of the experiments, depending on the mosquito infection status and NHP species. **A** – Probabilities of feeding predicted by the model per group, assuming a duration of mosquito exposure of 6 minutes (median of all exposures), with results of statistical comparisons indicated above brackets, with ns : $p > 0.05$, *** : $0.0001 < p < 0.001$.

B – Raw data (one point = one NHP, one day) colored by NHP infection status (grey triangle : control, green circle : DENV-2 infected, blue square : ZIKV infected), with one boxplot per group. Duration of mosquito exposure varies but is not shown here. Data from day 28 excluded (see Methods). The monkey images are licensed from Shutterstock.

230 Impact of host infection status and host species on engorgement rate

231 In a simple model, NHP infection status had generally no significant effect on engorgement rate (Figure
 232 3A,B, Table S.7), save that *Ae. albopictus* were less likely to engorge on ZIKV infected cynomolgus
 233 macaques than on control cynomolgus macaques (OR = 0.44 [0.23 ; 0.85], $p = 7.8e-4$). When restricting
 234 the dataset to the range of days where viremia was detected for each virus (days 1-14 for DENV-2, 1-8
 235 for ZIKV), the results remained qualitatively unchanged (Figure 3C). The selected simple model used a
 236 betabinomial error distribution without random effects (Tables S.8, S.9).

237

238 Furthermore, we found significantly higher *Ae. albopictus* engorgement rates on cynomolgus macaques
 239 than squirrel monkeys when considering control NHPs (OR = 2.10 [1.05 ; 4.22], p=0.0043) or DENV-2
 240 infected NHPs (OR = 2.78 [1.74 ; 4.45], p = 5.8e-9), but not ZIKV infected NHPs (p = 0.61).

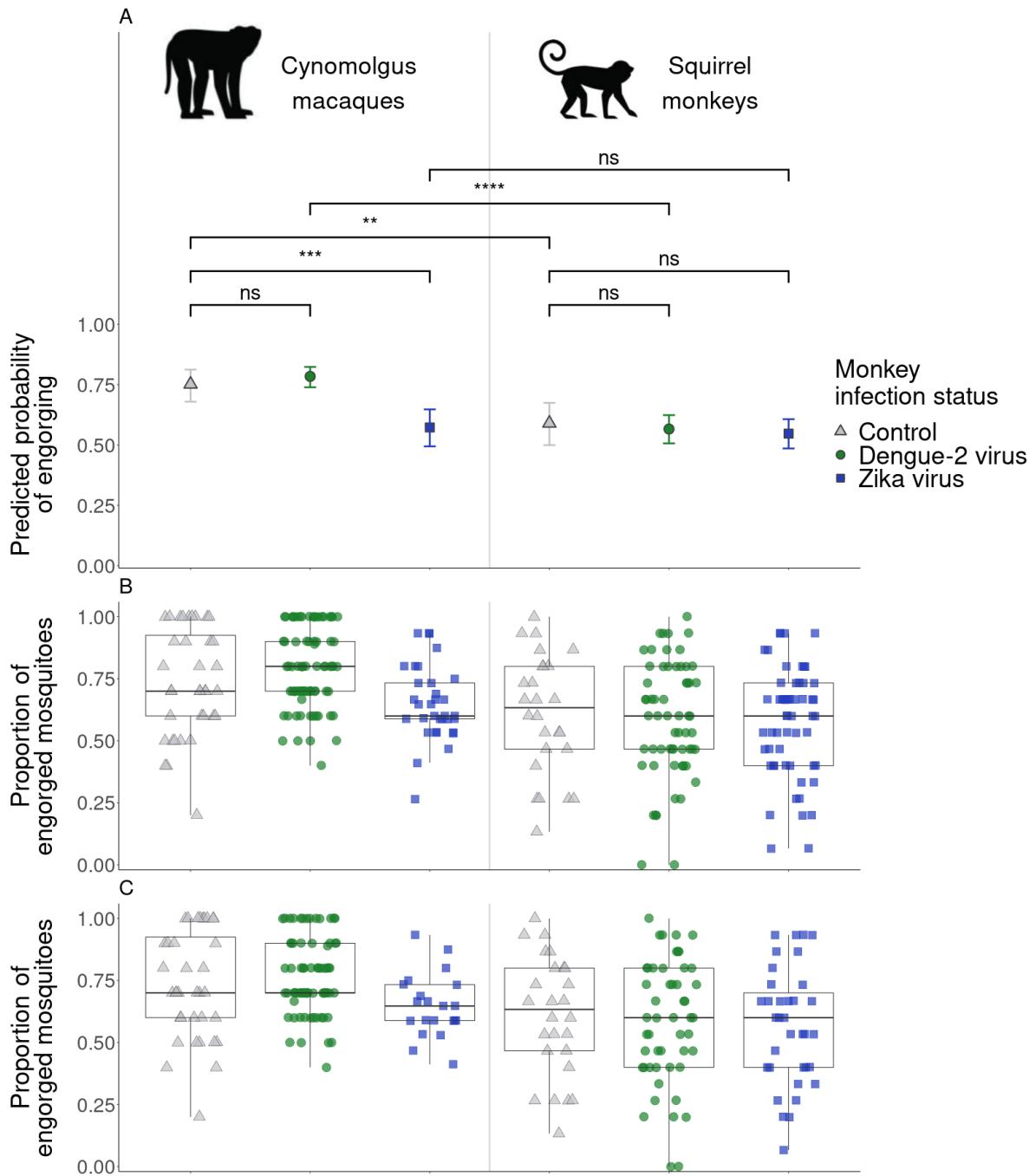


Figure 3: Engorgement rates of uninfected *Aedes albopictus* depending on NHP infection status and species. **A** – Probabilities of feeding predicted by the simple model per group, assuming a duration of mosquito exposure of 6 minutes (median of all exposures), with results of statistical comparisons indicated above brackets, with ns : p > 0.05, ** : 0.001 < p < 0.01, *** : 0.0001 < p < 0.001, **** : p < 0.0001. **B** – Raw data (one point = one NHP, one day) colored by NHP infection status (grey triangle : control, green circle : DENV-2 infected, blue square : ZIKV infected), with one boxplot per group. Duration of mosquito exposure varies but is not shown here. Data from day 28 excluded (see Methods). **C** - Raw data, same as B except that for infected groups, we restrict the data to the range of days where viremia was detected for each virus (days 1-14 for DENV-2, 1-8 for ZIKV). The monkey images are licensed from Shutterstock.

241 **Impact of host infection and biology as well as time of day on engorgement**
242 **rate**

243 The complete model tested the effect of host species, sex, weight, body temperature at the time of
244 feeding, virus and viremia, as well as time of day, on engorgement rates. Two-way interactions between
245 host species and weight, and host species and body temperature, were included. The model highlighted a
246 significant, positive effect of host body temperature on *Ae. albopictus* engorgement on squirrel monkeys (p
247 = 0.019), but not on cynomolgus macaques (p = 0.90). The relationship between host body temperature
248 and engorgement rates is showed in Figure 4. No other variables had a significant effect (Table S.10). The
249 selected complete model used a betabinomial error distribution and included random effects for monkey
250 ID and day (Tables S.11, S.12).

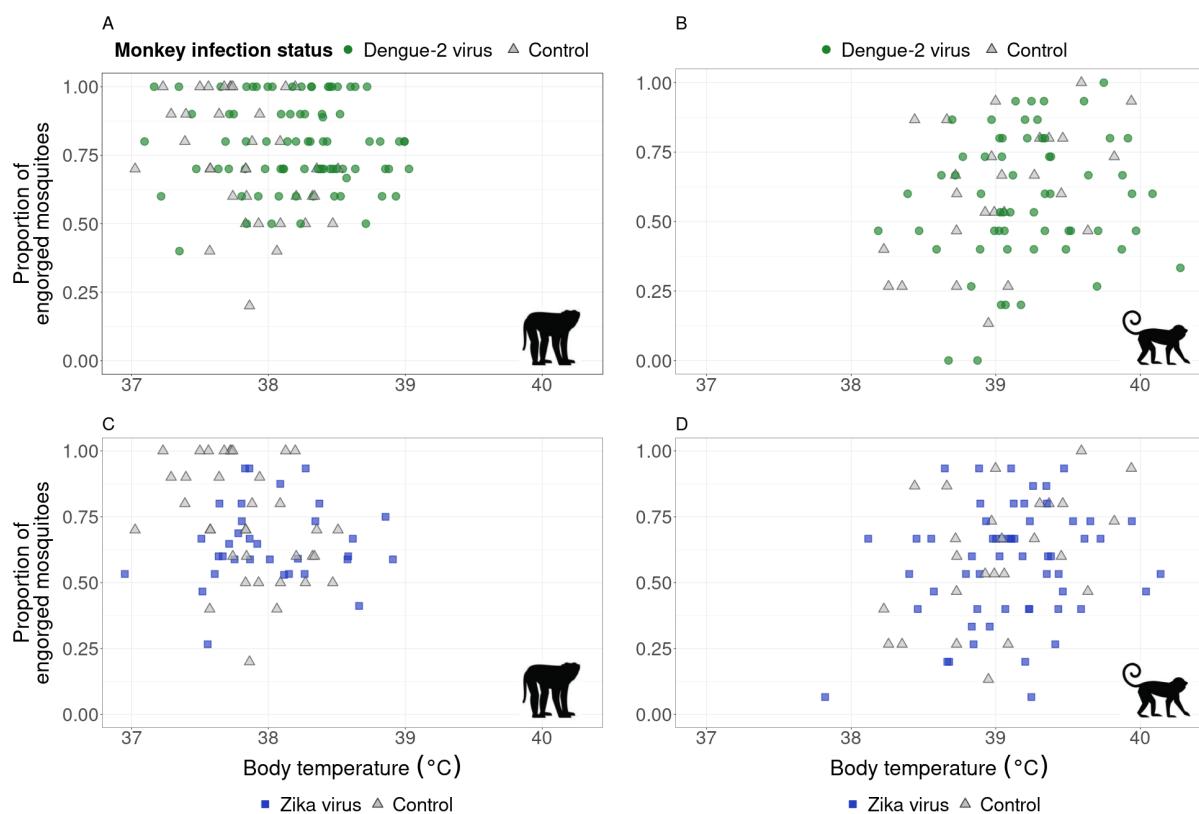


Figure 4: Relationship between host body temperature and *Aedes albopictus* engorgement rates, in cynomolgus macaques (left column) and squirrel monkeys (right column). Raw data (one point = one NHP, one day) colored by NHP infection status (grey triangle : control, green circle : DENV-2 infected, blue square : ZIKV infected). Note that the same set of control animals are shown for same species experiments (bottom and right panels of a given column). The duration of mosquito exposure varies but is not shown here. Data from day 28 excluded (see Methods). The monkey images are licensed from Shutterstock.

251 **Degree of inter-individual variation in mosquito engorgement rates among**
252 **hosts in this study compared to approach rates in free-living *Aedes albopictus***

253 In our experiments, engorgement rates varied substantially within and between NHPs (Figure 5). The
254 coefficient of variation per NHP ranged from 0.22 to 0.88, with a mean of 0.45. In the study measuring

255 the approach of free-living mosquitoes to humans [32], the number of approaching female *Ae. albopictus*
 256 ranged from 0 to 6 (Figure S.2B) and the coefficient of variation ranged from 0 to 2, with a mean of 1.43.

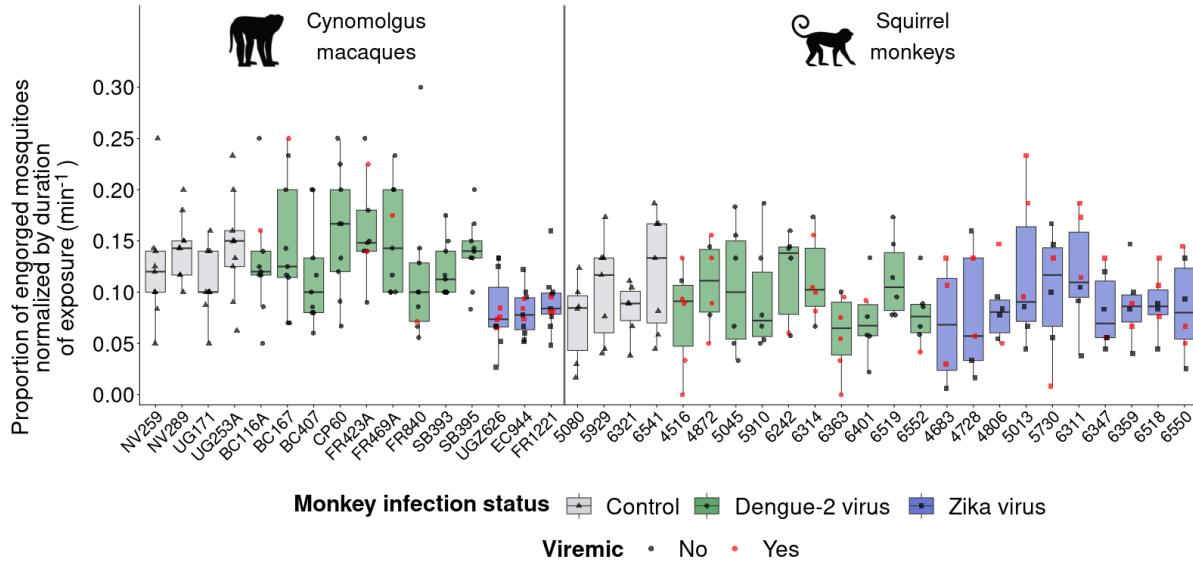


Figure 5: Engorgement rates of *Aedes albopictus* on individual NHPs, normalized by duration of exposure, depending on monkey infection status and species. One boxplot per NHP, colored by NHP infection status (grey : control, green : DENV-2 infected, blue : ZIKV infected), with raw data (triangle : control, circle : DENV-2 infected, square : ZIKV infected). Red points indicate feedings on animals that were detectably viremic, or that resulted in transmission to mosquitoes. Data from day 28 excluded (see Methods). The monkey images are licensed from Shutterstock.

257 **Repeated exposures to bites of uninfected mosquitoes shaped EGF and MIF
 258 concentrations in cynomolgus macaques**

259 We considered the effects of mosquito bites on cytokine concentrations in control NHPs, both in the
 260 short term (the number of bites received the day prior for cynomolgus macaques, and 2 days prior for
 261 squirrel monkeys, due to alternating days of exposure) and the long term (the cumulative number of bites
 262 received in the last seven days for both species). We included all cytokine measures from day -7 to day
 263 28, and varied the short-term and long-term exposure variables accordingly, accounting for days with no
 264 mosquito bites.

265

266 In control cynomolgus macaques, daily epidermal growth factor (EGF) and macrophage migration in-
 267 hibitory factor (MIF) concentrations were significantly associated with short-term and long-term exposure
 268 to uninfected mosquito bites. For EGF, the concentrations increased by 0.02 [0.01 ; 0.03] \log_{10} pg/pl per
 269 additional bite the day prior ($p = 2.15e-4$, Figure 6A, Text S.3, Table S.13). For MIF, the relationship
 270 with short-term exposure was non-linearly positive, with a saturation after about 6 bites the day prior
 271 ($p = 0.005$, Figure 6B, Text S.3, Table S.13). Both cytokines decreased linearly with long-term bite
 272 exposure (-0.006 [-0.008 ; -0.004] \log_{10} pg/pl per additional bite in the last seven days for EGF, $p = 8e-6$,
 273 -0.010 [-0.014 ; -0.005] for MIF, $p = 2.3e-4$, Figure 6C,D, Text S.3, Table S.13). Daily tumor growth
 274 factor β (TGF- β) and monocyte chemoattractant protein-1 (MCP-1, also called CCL2) concentrations

275 were also significantly, negatively associated with long-term bite exposure (Text S.3, Figure S.3, Table
276 S.13). All measures were above the limit of detection for these cytokines.

277

278 In cynomolgus macaques, interleukins 1 β , 4, 5, 10, 17, and VEGF could not be tested because all mea-
279 sures were below the limit of detection. All other tested cytokines showed no significant association with
280 bite exposure.

281

282 In squirrel monkeys, we could only test I-TAC, MIF, MIP-1 β and RANTES, as all other cytokines had
283 too many observations below the limit of detection. These 4 cytokines showed no significant association
284 with bite exposure.

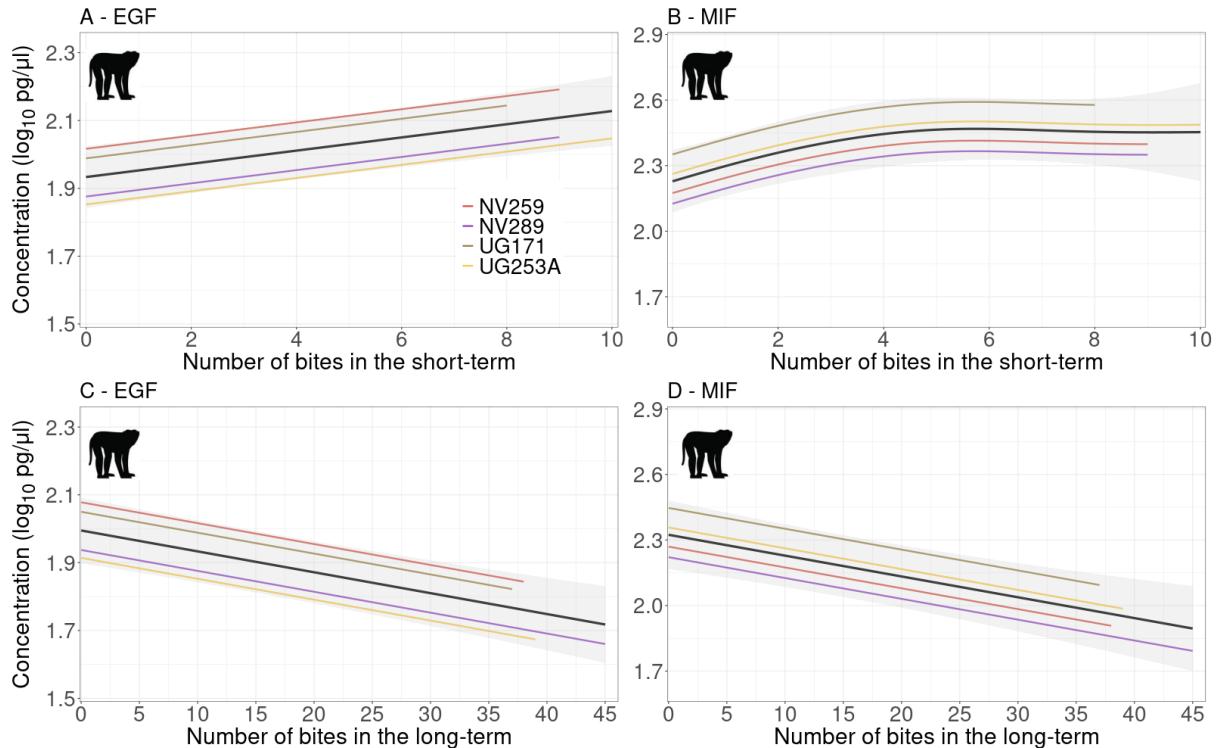


Figure 6: In control cynomolgus macaques, concentrations of cytokines EGF (A,C) and MIF (B,D) are significantly associated with the number of uninfected mosquitoes which engorged the day before (A,B) and in the last 7 days (C,D). Results from generalized additive mixed effect models, estimating an intercept per NHP. Thick black lines and shading show the population trends with uncertainty. Colored lines are individual fits. Fits for a given exposure variable (short-term or long-term) are computed with the other variable fixed (0 for short-term, 10 for long-term), which is why datapoints are not plotted (short-term and long-term variables varied concomitantly in the experiments). Note that y-axis scales differ between cytokines (A,C vs. B,D), and that x-axis scales differ between exposure variables (A,B vs. C,D). The monkey images are licensed from Shutterstock.

285 Discussion

286 Identifying the factors that shape host choice by arbovirus vectors is critical for advancing model-based
287 predictions of arbovirus spillover, spillback, and among-host transmission. Here, we studied the en-
288 gorgement rates of *Ae. albopictus*, a likely bridge vector between sylvatic and urban cycles of arbovirus
289 transmission, on two non-human primate species, investigating the effect of both vector and host infection
290 with sylvatic strains of DENV-2 or ZIKV.

291

292 We did not find any systematic effect of vector infection with DENV-2 or ZIKV on the feeding behavior
293 of *Ae. albopictus*, save for a tendency of DENV-2 infected *Ae. albopictus* to engorge at lower frequency
294 on squirrel monkeys than control *Ae. albopictus*. Wei Xiang *et al.* [20] showed that DENV-2 infected
295 *Ae. aegypti* were more attracted to uninfected mice than control mosquitoes, but were less successful
296 when probing, necessitating more probes to feed to repletion. In combination, these two effects resulted
297 in similar blood-feeding rates between infected and control mosquitoes, over an observation period of 30
298 minutes. Because mosquitoes in our experiments were only given a limited time to engorge (due to the
299 need to minimize time under anaesthesia for the NHPs), impaired probing could lead to lower rates of
300 engorgement, even if infected mosquitoes were more attracted to hosts. We note that we were not able to
301 observe probing in our experiments. Additionally, in the Wei Xiang *et al.* study, mosquitoes were infected
302 by feeding on a bloodmeal containing virus, recapitulating all steps of mosquito infection, whereas in our
303 study, mosquitoes were infected by intrathoracic inoculation, a procedure that bypasses the mosquito
304 midgut. Furthermore, in our experiments, control mosquitoes were not subjected to intrathoracic in-
305 jection, which could have confounded effects of infection on feeding. However, intrathoracic inoculation
306 was conducted 10 days prior to feeding on NHPs, giving mosquitoes substantial time to recover from the
307 procedure.

308

309 We also did not find any universal effect of host infection with sylvatic DENV-2 or ZIKV on *Ae. al-*
310 *bopictus* engorgement rates, with the exception that mosquitoes engorged significantly less frequently on
311 ZIKV infected macaques than control macaques. These results contrast with those of a recent study by
312 Zhang *et al.* [14]. In their study, Zhang *et al.* first used a dual-choice olfactometer assay to establish that
313 *Ae. aegypti* and *Ae. albopictus* were more attracted to host cues produced by DENV-2 or ZIKV infected
314 mice or humans relative to controls, but mosquitoes were not allowed to feed. These results cannot be
315 compared to ours because of differences in protocol. However in another experiment, *Ae. aegypti* were
316 allowed to directly access mice, and this experiment also found increased attraction to infected hosts.
317 Differences in the findings of Zhang *et al.* and the current study may reflect differences in the vector
318 species used (*Ae. aegypti* in [14], *Ae. albopictus* in the present study), the host species used (immunode-
319 ficient mice in [14], natural NHP hosts in the present study), the ecotype of virus used (human-endemic
320 in [14], sylvatic in the present study), or host infection route (needle delivery in [14], mosquito bite in the

321 present study). Cozzarolo *et al.* [13] suggested that the ideal method for interrogating mosquito feeding
322 preferences would be dual-choice experiments where vectors are allowed to bite, and hosts allowed to
323 defend themselves, but this is not possible when protocols require animals to be anesthetized, as was the
324 case here and in Zhang *et al.*. Nevertheless, in our experiments NHPs did not display any signs or behav-
325 ior associated with illness [30], which could have driven a possible preference towards infected animals.
326 Moreover, Buchta *et al.* [33] showed that anaesthesia, by dropping core body temperature, could impact
327 mosquito feeding, in experiments performed on guinea pigs with *Anopheles stephensi* and *Phlebotomus*
328 *papatasi*. They recommended the use of a warming device to maintain normothermic body temperature
329 of the host when conducting feeding experiments with mosquitoes. In our case, core body temperature
330 was maintained in squirrel monkeys by placing them on a preheated warming blanket. This was not
331 done for cynomolgus macaques, but mosquito exposure occurred shortly after the anaesthesia so that
332 their temperature had not yet dropped significantly. Importantly, the anesthesia procedure for control
333 and infected monkeys was identical, so while anesthesia could have affected overall feeding rate it could
334 not have biased comparisons. It will be important to disentangle the possible long-range and short-range
335 effects of host infection status on mosquito attraction and actual bites, possibly with a similar framework
336 to Wei Xiang *et al.* [20], to see how these effects impact the overall contact rate and opportunities for
337 virus transmission.

338

339 A recurrent effect on mosquito engorgement in our study was host species, with a preference towards
340 cynomolgus macaques, which was evident in control NHPs and DENV-2 infected NHPs but not in
341 ZIKV infected NHPs. In day 0 mosquitoes, this species difference was only seen from DENV-2 infected
342 mosquitoes, but this could be due to smaller sample sizes. In natural settings, *Ae. albopictus* is known
343 to feed on a wide range of hosts [34], and preferences can be driven by visual cues such as body size [35].
344 However, in our set-up mosquitoes could not detect hosts from a distance, and weight (a proxy of body
345 size) did not explain observed engorgement rates according to our model. To interpret differences in at-
346 tractiveness between NHP species, other host-level factors such as host odor [8, 9], which is in part shaped
347 by skin microbiome [36], should be investigated. Whether host or vector infection can counter-balance a
348 possible trophic preference of *Ae. albopictus* towards certain NHP species needs to be investigated further.

349

350 After accounting for other possible drivers of engorgement, the only variable that stood out was host
351 body temperature, with a positive effect in squirrel monkeys only. Studies usually focus on mosquitoes'
352 ability to detect warm-blooded hosts from a background temperature [37, 38], rather than the effect of
353 host body temperature itself. Cynomolgus macaques' body temperature was on average 1.2°C lower than
354 squirrel monkeys' at the time of mosquito feeding, but cynomolgus macaques were housed in rooms on
355 average 2°C lower than squirrel monkeys. Higher body temperature has been suggested as a possible
356 explanation of why pregnant women were more attractive to malaria vectors than non-pregnant women
357 [39], with an average difference of temperature between their abdomens of 0.7°C. In the present study,

358 squirrel monkeys' body temperature ranged from 37.82°C to 40.28°C at the time of mosquito feeding,
359 and the associated predicted probabilities of engorging ranged from 0.48 to 0.76. A positive effect of
360 body heat on mosquito engorgement might be linked to an increased release of volatile compounds [39].
361 However, in our case, we emphasize that the effect of host body temperature was weakly supported.
362 Rather, our study depicts mosquito engorgement as a highly variable, multi-factorial phenomenon [40],
363 even in controlled conditions.

364

365 In a context of disease transmission, focusing on a single event per mosquito batch, namely the pro-
366 portion of engorged mosquitoes, as we did, following a relatively long exposure to a host, might not be
367 sufficient. This outcome has the advantage of being easy to measure but does not represent the feeding
368 behavior in its entirety. Other metrics such as the time to first bite, time between bites, duration of
369 probing and feeding, have been showed to play a role in pathogen transmission rate [15, 20, 41]. Several
370 mathematical models have sought to finely represent the biting behavior of mosquitoes and its influence
371 on transmission dynamics [41–44]. Nonetheless, in epidemiological models of vector-borne diseases trans-
372 mission dynamics, the biting rate is most often represented as a constant, neither influenced by abiotic
373 (e.g temperature) nor by biotic (e.g host species, infection status, or allometry, [45, 46]) factors. Another
374 common modelling hypothesis is to assume that a unique blood meal takes place per gonotrophic cycle,
375 whereas imbibing multiple blood meals is a common behaviour in multiple species, including *Ae. aegypti*
376 [47, 48]. This has important implications, as recent studies have showed that successive feeding episodes
377 could enhance viral dissemination within mosquitoes [49–51]. Vector preference strategies, particularly in
378 multi-host systems, can have important epidemiological consequences, which can be studied conceptually
379 through mathematical models [52, 53]. More studies are needed, both in controlled experimental settings
380 and in the field, to understand the underlying factors that influence mosquito biting habits.

381

382 The variability of *Ae. albopictus* engorgement per NHP and between NHPs was striking in our experi-
383 ments, and the sometimes-low engorgement rates observed were surprising to us as mosquitoes had no
384 other choice of host. This variability was less extreme compared to the variability among collectors when
385 recording approach from free-living *Ae. albopictus* in the field. Still, both controlled and field experiments
386 point towards the importance of incorporating individual-level heterogeneity of biting in models at the
387 population scale, even in the absence of mechanistic drivers for now.

388

389 When they bite, mosquitoes deliver salivary gland proteins, a complex cocktail that can impact host
390 immunity [54] and, when a virus is also delivered, its viral dynamics [55–57]. While the impact of
391 mosquito saliva on host susceptibility to arboviruses and subsequent arbovirus dynamics has been well
392 studied [58], particularly in mice, the cytokine response of NHPs to the bite of uninfected mosquitoes has
393 received relatively little attention. We took advantage of data collected in the current study to begin to
394 close this knowledge gap. In control cynomolgus macaques, among 29 cytokines analyzed, we identified

395 short-term positive associations between uninfected mosquito bites and EGF and MIF concentrations,
396 as well as long-term negative associations with EGF, MIF, TGF- β , and MCP-1 concentrations, while
397 the remaining 25 cytokines assayed showed no significant responses to repeated mosquito bites. This is
398 consistent with recruitment of leukocytes to the bite site (EGF, MCP-1) to resolve inflammation (MIF,
399 TGF- β), which slows down over time as bites keep happening, but the response is already in place. In
400 their study on humanized mice bitten by uninfected mosquitoes, Vogt *et al.* [54] noticed a decrease in
401 MCP-1 concentrations 6 hours post-bite and an increase 7 days post-bite. They observed no change
402 in EGF 24 hours post-bite, and did not measure MIF and TGF- β . Here, we focused on the cytokine
403 response in the absence of pathogen transmission, but in studies of infected animals, IL-4 and IL-10 are
404 often cited as being upregulated in response to arbovirus infection through mosquito bites [55–57, 59].
405 In our study, control NHPs of both species produced concentrations of these two cytokines below the
406 limit of detection over the whole duration of the experiment, suggesting that this upregulation does not
407 happen in the absence of arbovirus transmission. Although cynomolgus macaques were housed indoors
408 for several months before the start of the study, they initially came from Mauritius and therefore likely
409 had previous exposure to *Ae. albopictus*. Future experiments could pursue skin biopsies to investigate
410 the immediate mobilization of these cytokines following a mosquito bite [60].

Data and code accessibility

All analyses were performed in R. Data, scripts, and outputs are available at

https://github.com/helenececilia/albopictus_engorgement_DENV_ZIKV_monkeys.

Acknowledgements

This research was funded by grant 1R01AI145918-02 (to KAH, NV, BMA) and in part by the Centers for Research in Emerging Infectious Diseases “The Coordinating Research on Emerging Arboviral Threats Encompassing the Neotropics (CREATE-NEO)” grant U01AI151807 from the U.S. National Institutes of Health (to N.V. and K.A.H). Squirrel monkeys acquired from the UT MD Anderson Cancer Center, Michael E. Keeling Center for Comparative Medicine and Research were supported by NIH grant 5P40OD010938-36 prior to sale to UTMB. Fellowship 709139 from CONACYT (Consejo Nacional de Ciencia y Tecnología, Government of Mexico) was used to produce data on mosquito approach in the field in Manaus, Brazil.

Author contributions

Conceptualization: H.C, B.M.A, N.V, K.H.A. **Methodology:** H.C, B.M.A, K.H.A. **Investigation:** S.R.A, B.M, R.Y, K.H.A, N.V., S.L.R. **Visualization:** H.C. **Formal analysis:** H.C. **Software:** H.C.

Funding acquisition: N.V., K.H.A. **Project administration:** N.V., K.H.A., S.L.R **Supervision:** B.M.A., K.H.A. **Writing original draft:** H.C., B.M.A., K.H.A. **Writing review and editing:** H.C., B.M.A., S.R.A., B.M., R.Y., S.L.R., N.V., K.H.A. All authors contributed to the article and approved the submitted version.

References

1. Thongsripong, P., Hyman, J. M., Kapan, D. D. & Bennett, S. N. Human–Mosquito Contact: A Missing Link in Our Understanding of Mosquito-Borne Disease Transmission Dynamics. *Annals of the Entomological Society of America* **114**, 397–414 (2021).
2. World Health Organization (WHO). *A global brief on vector-borne diseases* 2014.
3. Lorenz, L. M. *et al.* Taxis assays measure directional movement of mosquitoes to olfactory cues. *Parasites Vectors* **6**, 131 (2013).
4. Liu, M. Z. & Vosshall, L. B. General Visual and Contingent Thermal Cues Interact to Elicit Attraction in Female *Aedes aegypti* Mosquitoes. *Current Biology* (2019).
5. Sorrells, T. R., Pandey, A., Rosas-Villegas, A. & Vosshall, L. B. A persistent behavioral state enables sustained predation of humans by mosquitoes. *eLife* **11**, e76663 (2022).
6. Cardé, R. T. Multi-Cue Integration: How Female Mosquitoes Locate a Human Host. *Current Biology* **25**, R793–R795 (2015).
7. Vinauger, C. *et al.* Visual-Olfactory Integration in the Human Disease Vector Mosquito *Aedes aegypti*. *Current Biology* **29**, 2509–2516.e5 (2019).
8. Tchouassi, D. P., Jacob, J. W., Ogola, E. O., Sang, R. & Torto, B. *Aedes* vector–host olfactory interactions in sylvatic and domestic dengue transmission environments. *Proc. R. Soc. B* **286**, 20192136 (2019).
9. Martinez, J., Showering, A., Oke, C., Jones, R. T. & Logan, J. G. Differential attraction in mosquito–human interactions and implications for disease control. *Phil. Trans. R. Soc. B* **376**, 20190811 (2021).
10. Sanford, T. & Shutler, D. Manipulation by Plasmodium Parasites of Anopheles Mosquito Behavior and Human Odors. *Acta Parasit.* **67**, 1463–1470 (2022).
11. Busula, A. O., Verhulst, N. O., Bousema, T., Takken, W. & De Boer, J. G. Mechanisms of Plasmodium-Enhanced Attraction of Mosquito Vectors. *Trends in Parasitology* **33**, 961–973 (2017).
12. Stanczyk, N. M., Mescher, M. C. & De Moraes, C. M. Effects of malaria infection on mosquito olfaction and behavior: extrapolating data to the field. *Current Opinion in Insect Science* **20**, 7–12 (2017).
13. Cozzarolo, C.-S., Glaizot, O., Christe, P. & Pigeault, R. Enhanced Attraction of Arthropod Vectors to Infected Vertebrates: A Review of Empirical Evidence. *Front. Ecol. Evol.* **8**, 568140 (2020).

14. Zhang, H. *et al.* A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. *Cell* **185**, 2510–2522.e16 (2022).
15. Maire, T., Lambrechts, L. & Hol, F. J. Arbovirus impact on mosquito behavior: the jury is still out. *Trends in Parasitology*, In Press (2024).
16. Platt, K. B. *et al.* Impact of dengue virus infection on feeding behavior of *Aedes Aegypti*. *The American Journal of Tropical Medicine and Hygiene* **57**, 119–125 (1997).
17. Sim, S., Ramirez, J. L. & Dimopoulos, G. Dengue Virus Infection of the *Aedes aegypti* Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. *PLoS Pathog* **8**, e1002631 (2012).
18. Sylvestre, G., Gandini, M. & Maciel-de-Freitas, R. Age-Dependent Effects of Oral Infection with Dengue Virus on *Aedes aegypti* (Diptera: Culicidae) Feeding Behavior, Survival, Oviposition Success and Fecundity. *PLoS ONE* **8**, e59933 (2013).
19. Maciel-de-Freitas, R., Sylvestre, G., Gandini, M. & Koella, J. C. The Influence of Dengue Virus Serotype-2 Infection on *Aedes aegypti* (Diptera: Culicidae) Motivation and Avidity to Blood Feed. *PLoS ONE* **8**, e65252 (2013).
20. Wei Xiang, B. W. *et al.* Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2117589119 (2022).
21. Putnam, J. L. & Scott, T. W. Blood-Feeding Behavior of Dengue-2 Virus-Infected *Aedes Aegypti*. *The American Journal of Tropical Medicine and Hygiene* **52**, 225–227 (1995).
22. Vasilakis, N., Cardosa, J., Hanley, K. A., Holmes, E. C. & Weaver, S. C. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. *Nat Rev Microbiol* **9**, 532–541 (2011).
23. Valentine, M. J., Murdock, C. C. & Kelly, P. J. Sylvatic cycles of arboviruses in non-human primates. *Parasites Vectors* **12**, 463 (2019).
24. Vasilakis, N. & Weaver, S. C. Flavivirus transmission focusing on Zika. *Current Opinion in Virology* **22**, 30–35 (2017).
25. Mayer, S. V., Tesh, R. B. & Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. *Acta Tropica* **166**, 155–163 (2017).
26. Hanley, K. A. *et al.* Fever versus fever: The role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. *Infection, Genetics and Evolution* **19**, 292–311 (2013).
27. Gubler, D. J., Vasilakis, N. & Musso, D. History and Emergence of Zika Virus. *The Journal of Infectious Diseases* **216**, S860–S867 (2017).

28. Pereira-dos-Santos, T., Roiz, D., Lourenço-de-Oliveira, R. & Paupy, C. A Systematic Review: Is *Aedes albopictus* an Efficient Bridge Vector for Zoonotic Arboviruses? *Pathogens* **9**, 266 (2020).
29. Chua, C. L. *et al.* Little Evidence of Zika Virus Infection in Wild Long-Tailed Macaques, Peninsular Malaysia. *Emerg. Infect. Dis.* **25**, 374–376 (2019).
30. Hanley, K. A. *et al.* *Immunologically mediated trade-offs shaping transmission of sylvatic dengue and Zika viruses in native and novel non-human primate hosts* bioRxiv 10.1101/2023.06.30.547187, accepted in *Nature Communications*. 2023.
31. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B (Methodological)* **57**, 289–300 (1995).
32. Hernandez Acosta, E. *Some like it hot : How urban microclimate across a tropical city impacts the capacity of Aedes mosquitoes to transmit flaviviruses* PhD thesis (New Mexico State University, 2023).
33. Buchta, J. N. *et al.* Blood-Feeding Behaviors of *Anopheles stephensi* but not *Phlebotomus papatasi* are Influenced by Actively Warming Guinea Pigs (*Cavia porcellus*) Under General Anesthesia ¹. *Journal of the American Mosquito Control Association* **31**, 149–154 (2015).
34. Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. *Aedes albopictus*, an arbovirus vector: From the darkness to the light. *Microbes and Infection* **11**, 1177–1185 (2009).
35. Carnaghi, M. *et al.* Visual and thermal stimuli modulate mosquito-host contact with implications for improving malaria vector control tools. *iScience* **27**, 108578 (2024).
36. Council, S. E. *et al.* Diversity and evolution of the primate skin microbiome. *Proc. R. Soc. B.* **283**, 20152586 (2016).
37. McMeniman, C. J., Corfas, R. A., Matthews, B. J., Ritchie, S. A. & Vosshall, L. B. Multimodal Integration of Carbon Dioxide and Other Sensory Cues Drives Mosquito Attraction to Humans. *Cell* **156**, 1060–1071 (2014).
38. Greppi, C. *et al.* Mosquito heat seeking is driven by an ancestral cooling receptor. *Science* **367**, 681–684 (2020).
39. Lindsay, S. *et al.* Effect of pregnancy on exposure to malaria mosquitoes. *The Lancet* **355**, 1972 (2000).
40. Ellwanger, J. H., Cardoso, J. D. C. & Chies, J. A. B. Variability in human attractiveness to mosquitoes. *Current Research in Parasitology & Vector-Borne Diseases* **1**, 100058 (2021).
41. Christofferson, R. C. *et al.* How do i bite thee? let me count the ways: Exploring the implications of individual biting habits of *Aedes aegypti* for dengue transmission. *PLoS Negl Trop Dis* **16**, e0010818 (2022).

42. Rock, K., Wood, D. & Keeling, M. Age- and bite-structured models for vector-borne diseases. *Epidemics* **12**, 20–29 (2015).
43. Wu, S. L. *et al.* Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. *PLoS Comput Biol* **16**, e1007446 (2020).
44. Mayton, E. H., Tramonte, A. R., Wearing, H. J. & Christofferson, R. C. Age-structured vectorial capacity reveals timing, not magnitude of within-mosquito dynamics is critical for arbovirus fitness assessment. *Parasites Vectors* **13**, 310 (2020).
45. Cecilia, H. *et al.* Mechanistic models of Rift Valley fever virus transmission: A systematic review. *PLoS Negl Trop Dis* **16**, e0010339 (2022).
46. Althouse, B. M. *et al.* Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal. *Nat Commun* **9**, 1046 (2018).
47. Scott, T. W. & Takken, W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. *Trends in Parasitology* **28**, 114–121 (2012).
48. Zahid, M. H. *et al.* The biting rate of *Aedes aegypti* and its variability: A systematic review (1970–2022). *PLoS Negl Trop Dis* **17**, e0010831 (2023).
49. Armstrong, P. M. *et al.* Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential. *Nat Microbiol* **5**, 239–247 (2020).
50. Brackney, D. E., LaReau, J. C. & Smith, R. C. Frequency matters: How successive feeding episodes by blood-feeding insect vectors influences disease transmission. *PLoS Pathog* **17**, e1009590 (2021).
51. Johnson, R. M., Cozens, D. W., Ferdous, Z., Armstrong, P. M. & Brackney, D. E. Increased blood meal size and feeding frequency compromise *Aedes aegypti* midgut integrity and enhance dengue virus dissemination. *PLoS Negl Trop Dis* **17**, e0011703 (2023).
52. Roche, B. & Guégan, J.-F. Ecosystem dynamics, biological diversity and emerging infectious diseases. *Comptes Rendus Biologies* **334**, 385–392 (2011).
53. Gandon, S. Evolution and Manipulation of Vector Host Choice. *The American Naturalist* **192**, 23–34 (2018).
54. Vogt, M. B. *et al.* Mosquito saliva alone has profound effects on the human immune system. *PLoS Negl Trop Dis* **12**, e0006439 (2018).
55. Schneider, B. S. & Higgs, S. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. *Transactions of the Royal Society of Tropical Medicine and Hygiene* **102**, 400–408 (2008).
56. McCracken, M. K. *et al.* Route of inoculation and mosquito vector exposure modulate dengue virus replication kinetics and immune responses in rhesus macaques. *PLoS Negl Trop Dis* **14**, e0008191 (2020).

57. Visser, I., Koenraadt, C. J., Koopmans, M. P. & Rockx, B. The significance of mosquito saliva in arbovirus transmission and pathogenesis in the vertebrate host. *One Health*, 100506 (2023).
58. Guerrero, D., Cantaert, T. & Missé, D. Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses. *Front. Cell. Infect. Microbiol.* **10**, 407 (2020).
59. Manning, J. E., Morens, D. M., Kamhawi, S., Valenzuela, J. G. & Memoli, M. Mosquito Saliva: The Hope for a Universal Arbovirus Vaccine? *The Journal of Infectious Diseases* **218**, 7–15 (2018).
60. Guerrero, D. *et al.* Evaluation of cutaneous immune response in a controlled human in vivo model of mosquito bites. *Nat Commun* **13**, 7036 (2022).