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Abstract

Protein structure prediction, a fundamental challenge
in computational biology, aims to predict a protein’s
3D structure from its amino acid sequence. This
structure is pivotal for elucidating protein functions,
interactions, and driving innovations in drug discov-
ery and enzyme engineering. AlphaFold2, a powerful
deep learning model, has revolutionized this field by
leveraging phylogenetic information from multiple se-
quence alignments (MSAs) to achieve remarkable ac-
curacy in protein structure prediction. However, a
key question remains: how well does AlphaFold2 un-
derstand protein structures? This study investigates
AlphaFold2’s capabilities when relying primarily on
high-quality template structures, without the addi-
tional information provided by MSAs. By designing
experiments that probe local and global structural
understanding, we aimed to dissect its dependence
on specific features and its ability to handle miss-
ing information. Our findings revealed AlphaFold2’s
reliance on sterically valid C-β atoms for correctly
interpreting structural templates. Additionally, we
observed its remarkable ability to recover 3D struc-
tures from certain perturbations and the negligible
impact of the previous structure in recycling. Col-
lectively, these results support the hypothesis that
AlphaFold2 has learned an accurate local biophysical
energy function. However, this function seems most

effective for local interactions. Our work significantly
advances understanding of how deep learning models
predict protein structures and provides valuable guid-
ance for researchers aiming to overcome limitations in
these models. protein folding, alphafold, side-chain,
interpretability

1 Introduction

Proteins serve as nano-machines within cells, orches-
trating a plethora of vital functions essential for
life. Their remarkable versatility arises from their
unique three-dimensional (3D) structures, dictated
by the specific sequence of amino acids they are built
from. This fundamental principle, known as Anfin-
sen’s dogma [3], underpins modern biology and fuels
research in areas like drug discovery and enzyme en-
gineering. However, progress in elucidating protein
structures has been hindered by the labor-intensive
nature of in vitro experiments required for atomic
structure determination, resulting in only approxi-
mately 200,000 structures being resolved to date [7].

To surmount this bottleneck, researchers have in-
creasingly turned to computational methodologies to
unravel the intricacies of protein folding. Established
in 1994, the Critical Assessment of Techniques for
Protein Structure Prediction (CASP)[9] has played
a crucial role in tracking advancements in this field.
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Recent years have been particularly transformative,
fueled by two key factors: the exponential growth of
sequential and structural protein data [8, 7] and the
emergence of powerful machine learning methodolo-
gies, particularly deep learning, capable of harnessing
this data more effectively. Notably, AlphaFold2 [14],
a deep neural network unveiled in 2020, has revolu-
tionized the field. This innovative model has achieved
remarkable accuracy in predicting protein structures,
marking a significant leap forward in our understand-
ing of protein structure and function.
The AlphaFold2 pipeline follows a two-step process

for predicting protein structures. First, it searches
various protein sequence databases [24, 7, 8, 32, 23]
using dedicated tools [31, 11, 17] to find similar se-
quences to the target protein across. This informa-
tion gets compiled into a multiple sequence alignment
(MSA), capturing the evolutionary relationships be-
tween the proteins. Simultaneously, AlphaFold2
identifies suitable 3D structures (templates) from
closely related proteins to serve as initial structural
models. These two sources of information, MSA and
templates, are initially processed separately within
the AlphaFold2 model. However, their representa-
tions are continuously refined through an iterative
exchange of information, allowing the model to learn
from both sources simultaneously. Finally, the re-
fined representations of the MSA and templates are
combined in the structure module of AlphaFold2 to
generate the final protein structure and assign a confi-
dence score (pLDDT) for each individual amino acid.
The MSA has been observed to play a more signifi-

cant role in predicting protein structure quality com-
pared to templates. Notably, several pipelines lever-
aging AlphaFold2 [10, 35], and three out of the five
default models of AlphaFold2, ignore the information
from templates altogether. Intriguingly, contrary to
previous pipelines, AF2Rank [27] showed that simply
providing AlphaFold2 with a protein structure, with-
out any sequence information, can be used to evaluate
its plausibility and discriminate between real struc-
tures and decoys. The authors hypothesized that the
structure module within AlphaFold2 has learned a
robust biophysical energy function, and the MSA in-
put might primarily serve to guide the model towards
the correct energy minimum.

To further evaluate this hypothesis, we con-
ducted an extensive investigation into the influence
of the template input and structure recycling on Al-
phaFold2’s predictive accuracy. Through a compre-
hensive series of ablation studies, we assessed the
model’s capability to reconstruct protein structures
solely based on structure input, without relying on
deep MSAs. Specifically, we examined AlphaFold2’s
performance in side-chain packing and its resilience in
recovering from artificially perturbed proteins. Our
experimental code is openly accessible on GitHub1

and we have contributed new methods to the Open-
Fold [2] project2.

Our findings offer valuable insights for both Al-
phaFold2 users and developers who integrate the tool
into their workflows. By enhancing the understand-
ing of the model’s limitations and providing guidance
on result interpretation, our work aims to empower
users to critically assess results and leverage comple-
mentary tools when necessary. Additionally, it en-
courages exploration of existing tools or the develop-
ment of innovative solutions to address these limita-
tions, ultimately contributing to more accurate and
reliable protein structure predictions.

2 Materials and methods

2.1 Datasets

The data used for the experiments was sourced from
CASP13 [15] and CASP14 [16]. CASP13 was in-
cluded in the analysis to evaluate potential bias and
overfitting, given that AlphaFold2 was trained on
proteins within the CASP13 dataset. Consequently,
we anticipate observing higher scores compared to
CASP14, which serves as a more realistic benchmark
for assessing the model’s performance on unseen tar-
gets. This distinction is crucial for accurately gaug-
ing the model’s generalizability and effectiveness in
predicting structures of novel protein sequences.

1https://github.com/ibmm-unibe-ch/template-analysis
2https://github.com/aqlaboratory/openfold/pull/408
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2.2 AlphaFold2

We primarily employed the LocalColabFold3 [21] im-
plementation of AlphaFold2 in our experiments, as
it offers a user-friendly command-line interface and
faster inference enabled by the MMseqs webserver
[22]. Given that AlphaFold2 largely ignores template
information when provided with a deep MSA, a mini-
mal MSA comprising only the query sequence (single
sequence) was supplied to the model, unless other-
wise specified. Furthermore, we developed OF2Rank,
a protocol within the OpenFold [2] framework similar
to AF2Rank that was previously used to assess the
quality of protein structures [27]. This method in-
volves replacing all original amino acid information in
the template with glycine residues extended with a C-
β atom. The sequence information is provided either
as an all-gap multiple sequence alignment (Gaps) or
as a single sequence MSA (Single). Due to technical
constraints, OF2Rank was provided with the original
amino acid sequence as an input sequence instead of
gaps.
One key idea of AlphaFold2 is the recycling mech-

anism. This process iteratively refines protein struc-
ture predictions by feeding back the MSA embed-
ding, pair embedding, and the structure prediction
(prev x ) of the previous iteration into the model. To
evaluate the impact of a pre-existing template on
predictions to this recycling, we modified OpenFold.
This modification allows us to introduce a custom
template structure as the ”previous prediction” dur-
ing the very first iteration of the recycling process
(denoted as ”-1”).

2.3 Side-chain packing

To assess AlphaFold2’s ability to reconstruct side-
chains accurately, we designed four test cases using
CASP13 and CASP14 data. In each case, all side-
chain atoms were removed from the target proteins.
In addition, to providing just the backbone as a tem-
plate, we also positioned the C-β atom in three dif-
ferent ways:
i. Non-informative C-β: Placed next to the ori-

gin for a baseline comparison , ii. Heuristic C-β:

3https://github.com/YoshitakaMo/localcolabfold

Predicted using a rule-based approach based on the
backbone atoms [27], iii. Template C-β: Maintained
the original C-β position from the template

We extended our assessment to explore Al-
phaFold2’s ability to refine side-chain predictions us-
ing three external side-chain packing strategies: the
lowest energy conformation provided by the widely
used CHARMM 36 force field (C36 ), FASPR [12], a
structure-based side-chain packing method and At-
tnPacker, a neural network-based side-chain packing
method [19].

The modified templates and single sequences were
then inputted into LocalColabFold without relax-
ation and without recycling, ensuring that the back-
bone remained more similar to the input template.
Only the predictions from the first two AlphaFold2
models were considered, as they are the ones where
template input is utilized.

2.4 Structural perturbation

Three distinct techniques were employed to gener-
ate controlled perturbations to the template struc-
tures (Figure 1). The refinement of perturbed struc-
tures was conducted using LocalColabFold with ei-
ther a single sequence or MSA. In addition, we tested
the newly implemented protocol within OpenFold to
evaluate a more sequence-agnostic refinement.

2.4.1 Gaussian noise

The simplest perturbation method involved adding
Gaussian noise to the template coordinates. We in-
dependently sampled values from a standard normal
distribution (mean = 0Å) for each atomic coordinate
dimension. A predefined standard deviation of 1Å
determined the magnitude of the introduced noise.
These sampled values were then added to the original
coordinates, introducing controlled deviations from
the initial structure.

2.4.2 Principal component analysis

Principal Component Analysis (PCA) [6] was em-
ployed to transform and project the protein into an
orthogonal reference frame that explains the most
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Figure 1: Illustration of structural perturbations. Ground truth protein structure (T1026, PDB id: 6s44)
is shown in yellow, 10 partial RFdiffusion steps in blue, Gaussian noise in pink and 2D projection in green.
All structures were rendered using ChimeraX [20].
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variance. Separate PCAs were computed for each
protein in the CASP13 and CASP14 datasets. Sub-
sequently, each structure was projected onto the sub-
space defined by the first principal component (1 PC )
or the first two principal components (2 PC ). This
effectively captured the major structural variations
within each protein structure.

2.4.3 RFdiffusion

RFdiffusion [36] leverages diffusion techniques [30] to
generate new proteins from noise. Instead of execut-
ing the complete diffusion process, which generates
entirely new backbones conformations, we ran RFd-
iffusion for a limited number of partial steps (1, 5
and 10 steps) [33]. This strategy produced backbones
that remained closer to the starting structure, with
the degree of variability increasing with the num-
ber of steps. Subsequently, side-chains were recon-
structed using FASPR or AttnPacker.

2.5 Evaluation metrics

To assess the accuracy of the predicted protein struc-
tures, we employed a variety of metrics. These met-
rics can be broadly categorized into three classes
based on the level of detail they capture.
The first class of accuracy metrics focuses solely on

the α-carbon atom from the backbone. This includes
the Template Modeling (TM)-score [37, 5], which
quantifies the structural similarity between predicted
and reference structures, and the α-RMSD [5], mea-
suring the difference between the C-α positions of the
predicted and reference structures after optimal su-
perposition using the Kabsch algorithm.
The next class of accuracy metrics encompasses

RMSD and the Local Distance Difference Test
(lDDT) [18, 5], which evaluates all atom pairs (back-
bone and side-chain) within a predefined radius ex-
cluding those belonging to the same residue. In ad-
dition, AlphaFold2 predicts a score called pLDDT,
which estimates the lDDT value of its generated
structures and helps guide the selection of the best
model among multiple predictions. Individual per-
residue lDDT scores can be combined to generate a
single, global lDDT score. To accommodate poten-

tially invalid protein structures with steric clashes,
stereochemical checks were disabled during lDDT cal-
culations.

The last class of metrics evaluates the accuracy
of side-chain packing with the Mean Absolute Error
(MAE) for the first four dihedral angles of the side-
chains [19].

Pdb-tools [26], the MAXIT suite, ProDy [4], Scikit-
learn [25] were used for implementing the experi-
ments and analyzing the results.

3 Results

To assess AlphaFold2’s [14] understanding of pro-
tein structure, we designed two complementary tasks.
The first task assessed AlphaFold2’s local under-
standing by testing its ability to rebuild and pack
side-chains onto a provided backbone template. This
evaluated AlphaFold2’s ability to handle individual
amino acid interactions within the protein structure.
The second task investigated the global understand-
ing by evaluating AlphaFold2’s effectiveness in re-
covering the correct protein structure from a per-
turbed template. Previous studies have indicated
that AlphaFold2 largely disregards template input
when provided with a deep multiple sequence align-
ment (MSA) [1]. Therefore, to isolate its capability
in utilizing structural information, we primarily em-
ployed a single sequence along with the template as
input for AlphaFold2 in most experiments. To as-
sess potential overfitting concerns, we compared re-
sults on proteins from CASP13 (part of AlphaFold2’s
training data) to those from CASP14 (unseen data).
Since we did not observe any major differences be-
tween these two datasets, we will focus on presenting
the results from CASP14 in this section, but report
data of both datasets in supplementary information
Section A and supplementary information Section C
for side-chain packing and structural refinement re-
spectively.

3.1 Side-chain packing

Side-chain packing is a critical process in protein
structure prediction, involving the prediction of the
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Figure 2: Average lDDT scores for side-chain pack-
ing task. Violin plots show the distribution of average
lDDT scores for various AlphaFold2 template config-
urations. MSA: full MSA, but no template, Tem-
plate: full template, Backbone: the protein backbone
Heuristic C-β: template with heuristically placed
C-β, Template with C-β: backbone and C-β from
the ground truth, AttnPacker and AttnPacker (AF):
ground truth backbone with side-chains placed by At-
tnPacker before and after AF refinement

three-dimensional positions of amino acid side-chains
relative to the protein backbone. This task is essen-
tial for accurate modeling of protein structures and
for understanding their biological functions.

Our initial evaluation focused on AlphaFold2’s
ability to pack side-chains using only the backbone
atoms and different approaches for the placement of
C-β atoms: all close to the origin (Non-informative
C-β), using a heuristic (Heuristic C-β), or preserv-
ing the correct position from the template (Template
C-β). When the template lacked C-β information (ei-
ther missing or Non-informative C-β), the predicted
structures suffered significant accuracy loss. The av-
erage TM-score dropped to approximately 0.41 ±
0.20 and 0.32 ± 0.20, respectively, indicating a fail-
ure to preserve the 3D structure. Providing more
informative C-β positions, either through heuristics
or the template, significantly improved the results.
The average TM-score remained very high (nearly
0.97 ± 0.03) when using the heuristic C-β placement,
indicating minimal alterations of the backbone struc-
ture from the template. It’s worth noting that this
score is higher than the average TM-score achieved
by AlphaFold2 predictions using a full MSA without
a template (approximately 0.8 ± 0.18).

These high TM-scores suggest that side-chain
packing metrics can be reliably analyzed, since the
overall protein fold is mostly maintained. The heuris-
tic C-β placement achieved a promising average
lDDT score of 0.89 ± 0.05, exceeding the baseline
method (standard pipeline with full MSA) which had
an average lDDT of 0.74 ± 0.15. Next, we assessed
AlphaFold2’s potential to enhance the predictions
of three different methods for side-chain placement:
predefined conformations from the CHARMM36
force field, FASPR [12], and AttnPacker [19]. We
employed the AutoPSF plug-in from VMD [13] to as-
sign a single, predefined side-chain structure to each
residue based on the CHARMM36 force field (C36 ).
While fast and simple, it neglects the local environ-
ment, leading to clashes and sub-optimal packing.
FASPR [12] utilizes a tree search algorithm to iden-
tify energetically favorable placements for predefined
rotamers [28]. This approach offers better balance
between speed and accuracy by using a predefined li-
brary of conformations but allowing for optimization
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based on energy minimization. Finally, AttnPacker
is a deep learning-based method that directly pre-
dicts side-chain coordinates without relying on pre-
defined rotamers. This approach offers greater flexi-
bility in side-chain placement compared to rotamer-
based methods.

Refining the repacked protein structures through
AlphaFold2 resulted in a slight decrease in the av-
erage TM-score to 0.98 ± 0.03, indicating again
minimal backbone alteration. Interestingly, refining
the packing with AlphaFold2 significantly boosted
the average lDDT scores when the initial pack-
ing was poor (e.g., predefined rotamers from the
CHARMM36 force field). However, for methods
like FASPR and AttnPacker, which already produced
good initial packing, the lDDT scores remained sim-
ilar or even decreased slightly after AlphaFold2 re-
finement (Figure 2).

Analyzing the mean RMSD revealed similar ef-
fects of AlphaFold2 refinement on different packing
methods. Notably, competitive side-chain packing
methods like FASPR and AttnPacker see a marginal
change in performance after post-processing with Al-
phaFold2. Conversely, when using only the default
low energy conformation from the CHARMM36 force
field, which initially performs poorly (RMSD: 1.77 Å
± 0.15), exhibited a significant improvement in side-
chain placement (RMSD: 0.88 Å ± 0.25) after Al-
phaFold2 refinement. When provided with only the
heuristic C-β, AlphaFold2 is able to predict the side-
chain position with a similar precision as FASPR,
RMSD 0.91 Å ± 0.25 and 0.89 Å ± 0.27 respectively.
While providing the correct C-β information leads to
a marginal improvement (RMSD: 0.86 Å ± 0.27) over
the heuristic approach.

Furthermore, we noticed a slight decrease in con-
fidence and precision as residues become more ex-
posed at the protein surface (Section B in the sup-
plementary information). This decrease is consistent
across all template-informed protocols, but is notably
steeper for the standard AlphaFold2 protocol relying
solely on MSAs.

Figure 3: Violin plot of selected perturbation strate-
gies. (AF) is used to identify the post-processing
by AlphaFold2, MSA uses the vanilla AlphaFold2
pipeline with a full MSA and no pipelines, while
Single uses only the single sequence, Gaussian adds
Gaussian noise to the coordinates, 1 PC reduces pro-
teins to the first principal component, 2 PC reduces
targets to the first two principal components

Figure 4: Change in TM-score after AlphaFold2 re-
finement of RFdiffusion-perturbed templates. Each
point represents a single target from the CASP14
dataset. The TM-score of the RFdiffusion-perturbed
structure before refinement is displayed on the x-axis,
with separate plots for 1 and 10 partial steps on the
left and right, respectively. The y-axis shows the
TM-score after refinement using AlphaFold2. The
side-chains were packed using FASPR.
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3.2 Structural refinement

Next, we assessed AlphaFold2’s ability to refine per-
turbed templates. Three perturbation protocols were
implemented and tested: introducing random Gaus-
sian noise to atom coordinates (Gaussian), projecting
the entire structure onto a 1D or 2D space defined
by principal components (1 PC and 2 PC respec-
tively), and partially denoising the structure using
RFdiffusion (RFDiff ). The full table with scores can
be found in supplementary information Section C.

Despite struggling to fully recover the original
structure for several perturbations, AlphaFold2 gen-
erated sterically valid structures in most cases. This
is evident in the necessity to disable stereochemi-
cal checks from OpenStructure [5] when calculating
lDDT for templates perturbed with the Gaussian
noise and projected in to the PCA eigenspace. These
checks ensure proper atomic interactions, and the ini-
tial violation by a majority of residues suggests sig-
nificant structural distortion. However, the fact that
these checks would not be needed for post-processed
structures implies that AlphaFold2, while not achiev-
ing complete fold recovery, produces structures with
proper atomic interactions.

AlphaFold2 demonstrated good recovery capabil-
ities for templates perturbed with Gaussian noise
(Figure 3). The average TM-score increased from
0.90 ± 0.05 to 0.92 ± 0.06, and the lDDT score im-
proved from 0.66 ± 0.00 to 0.82 ± 0.07. Notably, Al-
phaFold2 excelled at recovering structures projected
onto the two-dimensional PCA space. Here, refine-
ment significantly boosted accuracy, with the aver-
age TM-score rising from a low 0.49 ± 0.08 to 0.86 ±
0.15 and the mean lDDT increasing from 0.53 ± 0.09
to 0.79 ± 0.12. While refinement also improved re-
sults for one-dimensional projections, the final refined
scores (average TM-score: 0.44 ± 0.21 and mean
lDDT: 0.39 ± 0.20) remained relatively low.

For the RFdiffusion based perturbation, we ob-
served a gradual decrease in both TM-score and
lDDT, as the number of partial diffusion steps in-
creased. The average TM-score dropped from 0.97 ±
0.01 with one diffusion step to 0.87 ± 0.05 with 10
steps (Figure 4), while the average lDDT fell from
0.80 ± 0.02 to 0.67 ± 0.04. These scores suggest

that despite the perturbation, the protein remained
within the same general fold. This implies that the
starting point for refinement by AlphaFold2 was still
favorable for recovery of the correct structure, rather
than collapsing into an alternative fold. Interest-
ingly, while the average TM-score remained relatively
unchanged after AlphaFold2 refinement for all diffu-
sion steps, the average lDDT score consistently im-
proved by around 0.04. This finding suggests that in
this configuration, AlphaFold2 primarily refines local
structures, with minimal adjustments to the protein
backbone, as reflected by the stable TM-scores.

Previous research has shown that AlphaFold2 can
estimate template quality more precisely by replac-
ing all residues in the template with glycine extended
with a C-β atom, and providing the sequence with
all gaps and an empty multiple sequence alignment
(AF2Rank) [27]. We implemented a similar method
within OpenFold, which we term OF2Rank. Inter-
estingly, while OF2Rank achieved lower performance
compared to AlphaFold when recovering structures
from templates perturbed with Gaussian noise or pro-
jected into 1D/2D PCA space, it showed compara-
ble effectiveness for RFdiffusion-perturbed templates.
Furthermore, the advantages of OF2Rank became
more pronounced with increasing numbers of RFdif-
fusion steps. At 10 partial diffusion steps, OF2Rank
increased the average lDDT reached by 0.03. Intrigu-
ingly, using an all-gap MSA yielded slightly better
predictions compared to the single sequence MSA,
mirroring observations from AF2Rank [27]. The av-
erage difference between the all-gap and single se-
quence pipelines for both average TM-score and av-
erage lDDT was approximately 0.03 each. However,
overall, AlphaFold pipeline generally outperformed
OF2Rank for the refinement of perturbed templates.

Replacing the template input with prev x had min-
imal impact on the predictions, with the TM-Score
increasing from 0.38 to 0.43 (Appendix D). Further
tests with full MSAs and disabled prev x showed no
significant difference (TM-Score of 0.84 ± 0.15 for
both with and without prev x in CASP14).
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4 Discussion

This study investigated capabilities and limitations
of AlphaFold2’s ability to understand protein struc-
tures. We designed a series of experiments to inves-
tigate how AlphaFold2 handles both local features,
like side-chain packing, and global features, like per-
turbations to the backbone.
Our findings suggest that C-β atoms are crucial for

AlphaFold2 to recognize a template as a valid pro-
tein structure. When C-βs are present, AlphaFold2
prioritizes side-chain packing and only marginally al-
ters the backbone if the phylogenic signal is weak.
This could be leveraged as pre-processing pipeline
that refines incomplete experimental structures by
standardizing atom numbering and modeling miss-
ing residues. Interestingly, a simple heuristic for C-β
placement achieves performance comparable to pro-
viding the original position of the C-β. However,
providing more side-chain information of seemingly
lower quality, like the predefined conformations from
the CHARMM36 force field, did not significantly im-
prove the side-chain packing performance. Further-
more, pre-packing the template with dedicated side-
chain packing algorithms like FASPR and AttnPacker
only marginally impacted the final packing perfor-
mance by AlphaFold2. This would further suggest
that AlphaFold2’s understanding of the protein struc-
ture relies more on the presence of stereochemically
valid C-β atoms than the detailed packing of the en-
tire side-chain.
We also observed that AlphaFold2’s side-chain

packing performance remained nearly consistent re-
gardless of residue burial depth, while the perfor-
mance dropped significantly for surface residues when
AlphaFold2 relied solely on the MSA. This finding
underlines the importance of high-quality templates,
especially when dealing with shallow MSAs.
Perturbing the input template with various meth-

ods revealed insightful details regarding AlphaFold2’s
capabilities in recovering three-dimensional protein
structures. AlphaFold2 efficiently recovered struc-
tures perturbed with Gaussian noise, which primarily
involves local adjustments to bond lengths and an-
gles within residues. This ease of recovery hints at
AlphaFold2 potentially having learnt a biophysical

energy model for proper steric interactions, similar
to classical optimization methods that utilize molec-
ular force fields. Even more striking is AlphaFold2’s
ability to recover details of a three-dimensional pro-
tein structure from 2D-like templates. This suggests
that AlphaFold2 can effectively navigate the transi-
tion from a limited structural representation to a full
3D structure. Research on OpenFold, a reimplemen-
tation of AlphaFold2, showed that it first predicts a
2D representation during early stages of training be-
fore transitioning to 3D [2]. This finding raises the
intriguing possibility that AlphaFold2 has preserved
a similar internal representation of a protein struc-
ture.

A significant difference in relative performance was
observed between AF and the OF2Rank method
when refining templates perturbed with Gaussian
noise or projected into 1D/2D PCA space, compared
to those perturbed with RFdiffusion. The key dis-
tinction lies in the nature of the perturbations. RFd-
iffusion typically introduces realistic modifications
that maintain valid protein structures, whereas other
methods often generate structures with steric clashes
and other imperfections.

The markedly lower performance of OF2Rank on
these unrealistic protein structures highlights a po-
tential strength of the underlying approach. By
struggling with these templates, OF2Rank might be
more adept at identifying unreliable starting points.
This aligns with the notion that AlphaFold2 was
trained on the assumption of structurally sound tem-
plates. When presented with corrupted starting
structures and lacking a reliable MSA for guidance,
AlphaFold2’s performance will decline as it grapples
with reconciling the conflicting information.

Our observations of minimal impact from struc-
ture recycling in AlphaFold2 align with the decision
by AlphaFold3’s authors to remove this mechanism
entirely [?].

Prior research on AlphaFold2 using MSA-free pro-
tocols suggests the structure module might have
learned a valid biophysical energy function, indepen-
dent of MSAs [27]. AlphaFold2 would then act as an
unrolled optimizer and make iterative adjustments
guided by the learned potential to find a low-energy
state, corresponding to a refined protein structure.
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Our results support this hypothesis, but suggest lim-
itations. This optimization likely operates within a
restricted neighborhood that requires both the back-
bone and stereochemically valid C−β atoms. Addi-
tionally, the function appears most effective for local
molecular interactions, as evidenced by its successful
handling of side-chain packing and Gaussian noise
perturbations.
Our work provides valuable guidance for users to

critically evaluate AlphaFold2’s predictions and iden-
tify scenarios where complementary tools might be
necessary. These insights pave the way for further
exploration of existing methods or the development
of novel strategies to overcome AlphaFold2’s limita-
tions, ultimately leading to more robust and reliable
protein structure prediction.
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Bates, Augustin Ž́ıdek, Anna Potapenko, et al.
Highly accurate protein structure prediction
with alphafold. Nature, 596(7873):583–589,
2021.

[15] Andriy Kryshtafovych, Torsten Schwede, Maya
Topf, Krzysztof Fidelis, and John Moult. Crit-
ical assessment of methods of protein struc-
ture prediction (casp)—round xiii. Pro-
teins: Structure, Function, and Bioinformatics,
87(12):1011–1020, 2019.

[16] Andriy Kryshtafovych, Torsten Schwede, Maya
Topf, Krzysztof Fidelis, and John Moult. Crit-
ical assessment of methods of protein struc-
ture prediction (casp)—round xiv. Pro-
teins: Structure, Function, and Bioinformatics,
89(12):1607–1617, 2021.

[17] Timo Lassmann. Kalign 3: multiple sequence
alignment of large datasets, 2020.

[18] Valerio Mariani, Marco Biasini, Alessandro Bar-
bato, and Torsten Schwede. lddt: a local
superposition-free score for comparing protein
structures and models using distance difference
tests. Bioinformatics, 29(21):2722–2728, 2013.

[19] Matthew McPartlon and Jinbo Xu. An end-
to-end deep learning method for protein side-
chain packing and inverse folding. Proceed-
ings of the National Academy of Sciences,
120(23):e2216438120, 2023.

[20] Elaine C Meng, Thomas D Goddard, Eric F Pet-
tersen, Greg S Couch, Zach J Pearson, John H
Morris, and Thomas E Ferrin. Ucsf chimerax:
Tools for structure building and analysis. Pro-
tein Science, 32(11):e4792, 2023.

[21] Milot Mirdita, Konstantin Schütze, Yoshitaka
Moriwaki, Lim Heo, Sergey Ovchinnikov, and
Martin Steinegger. Colabfold: making pro-
tein folding accessible to all. Nature methods,
19(6):679–682, 2022.

[22] Milot Mirdita, Martin Steinegger, F Breitwieser,
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Figure A1: Histogram of rASA bins on the CASP13
dataset.

A Side-chain packing table

Table A1 shows the results of the different side-chain
packing experiments. The scores are computed for
each target independently, then average and standard
deviation are determined over the target scores. The
major results are discussed in Section 3.1 of the main
text.

B Side-chain packing perfor-
mance correlation with other
evaluation measures

To further analyze the results of the side-chain
packing experiment, a comparison with confidence
(pLDDT) and their relative accessible surface area
(rASA)[29, 34] is performed. The residues are binned
into 11 bins depending on the rASA rounded to the
first decimal in the ground truth target. There-
fore, the histogram for CASP13, depicted in Figure
A1, and CASP14, shown in Figure A2, is the same
for each side-chain packing method with the same
dataset. A plot comparing rASA with pLDDT and
lDDT on the CASP13 dataset can be seen in Figure
A3 and a similar plot for CASP14 can be found in

Figure A2: Histogram of rASA bins on the CASP14
dataset.

Figure A4.
As expected, the pLDDT and lDDT drops with

increasing rASA on average. This drop is only mi-
nor until the bins at around a rASA of 0.9, where the
drop becomes steeper. Comparing the different pack-
ers, the majority of them stay pretty well together;
their scores are ordered the same as in the results
in Section 3.1. The lDDT and pLDDT have very
similar curves, which indicates that pLDDT is also
a good lDDT estimator in these circumstances. The
exact Pearson correlation coefficients are reported in
Table A2 between lDDT, pLDDT and rASA on the
CASP13 and the CASP14 dataset for multiple side-
chain placement protocols.

The first outlier to the majority is AttnPacker,
which generally has a lower confidence, but a higher
lDDT. The reason for the lower score in the pLDDT
figure is due that AttnPacker reports its own confi-
dence, which is not the same as the confidence from
AlphaFold2. The higher lDDT score then can be ex-
plained by a superior packing performance and that
the backbone, which influences this metric, did not
get modified.

The other outlier is vanilla AlphaFold2 using the
full multiple sequence alignment (MSA). This setup
performs worse than the backbone informed methods,
but the pLDDT and lDDT still have a good correla-

A1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.03.14.585076doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.585076
http://creativecommons.org/licenses/by/4.0/


Figure A3: Relationship between rASA and pLDDT and lDDT for the CASP13 dataset. The line indicates
the average score and the shadow area shows the 95% confidence interval. Side-chain packing using: ground
truth backbone and side-chains placed with AttnPacker (AttnPacker), CHARMM 36 force field (C36 ) or
FASPR (FASPR), ground truth backbone and the C-β placed with a heuristic (Heuristic), AlphaFold2 with
a full MSA and no template (MSA), full ground truth template (Template (AF)), backbone and C-β from
ground truth template (Template Beta). The (AF) suffix indicates AlphaFold2 post-processing after side-
chain packing.
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Figure A4: Relationship between rASA and pLDDT and lDDT for the CASP14 dataset.The line indicates
the average score and the shadow area shows the 95% confidence interval. Side-chain packing using: ground
truth backbone and side-chains placed with AttnPacker (AttnPacker), CHARMM 36 force field (C36 ) or
FASPR (FASPR), ground truth backbone and the C-β placed with a heuristic (Heuristic), AlphaFold2 with
a full MSA and no template (MSA), full ground truth template (Template (AF)), backbone and C-β from
ground truth template (Template Beta). The (AF) suffix indicates AlphaFold2 post-processing after side-
chain packing.
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Table A1: Side-chain packing results

Method Dataset TM-score ↑ lDDT ↑ RMSD (Å) ↓ MAE 1 (rad) ↓ MAE 2 (rad) ↓ MAE 3 (rad) ↓ MAE 4 (rad) ↓
MSA CASP13 0.833±0.195 0.812±0.113 0.797±0.224 0.516±0.187 0.499±0.130 0.817±0.162 0.947±0.233

CASP14 0.793±0.178 0.743±0.146 0.973±0.254 0.632±0.191 0.573±0.149 0.882±0.158 0.877±0.229
Template CASP13 0.985±0.032 0.945±0.038 0.498±0.200 0.273±0.149 0.315±0.128 0.586±0.180 0.795±0.229

CASP14 0.982±0.031 0.926±0.045 0.616±0.235 0.350±0.185 0.381±0.162 0.649±0.181 0.756±0.235
Backbone CASP13 0.412±0.204 0.393±0.166 1.107±0.170 0.739±0.139 0.629±0.105 0.910±0.143 0.957±0.212

CASP14 0.409±0.200 0.392±0.178 1.183±0.198 0.784±0.143 0.653±0.107 0.932±0.152 0.875±0.234
Non-informative C-β CASP13 0.323±0.200 0.304±0.174 1.164±0.167 0.785±0.141 0.653±0.102 0.916±0.165 0.953±0.221

CASP14 0.318±0.210 0.311±0.189 1.238±0.184 0.828±0.137 0.673±0.098 0.950±0.163 0.876±0.238
Heuristic C-β CASP13 0.970±0.093 0.895±0.070 0.785±0.209 0.489±0.173 0.500±0.123 0.819±0.158 0.939±0.230

CASP14 0.979±0.033 0.883±0.045 0.910±0.247 0.572±0.190 0.557±0.156 0.870±0.170 0.869±0.232
Template C-β CASP13 0.974±0.062 0.905±0.040 0.735±0.218 0.460±0.176 0.464±0.129 0.794±0.169 0.935±0.221

CASP14 0.971±0.038 0.883±0.052 0.860±0.265 0.544±0.196 0.516±0.164 0.842±0.165 0.854±0.241
C36 CASP13 1.000±0.000 0.782±0.017 1.731±0.149 1.339±0.086 0.732±0.100 0.997±0.187 0.951±0.213

CASP14 1.000±0.000 0.565±0.076 1.769±0.154 1.315±0.096 0.743±0.121 0.990±0.168 0.869±0.240
C36 (AF) CASP13 0.962±0.111 0.890±0.099 0.778±0.215 0.485±0.177 0.475±0.127 0.817±0.191 0.948±0.222

CASP14 0.978±0.036 0.873±0.057 0.883±0.251 0.551±0.190 0.527±0.153 0.849±0.158 0.860±0.242
FASPR CASP13 1.000±0.000 0.926±0.027 0.756±0.228 0.451±0.167 0.488±0.140 0.863±0.180 1.017±0.279

CASP14 1.000±0.000 0.911±0.030 0.896±0.265 0.548±0.197 0.554±0.168 0.860±0.156 0.963±0.246
FASPR (AF) CASP13 0.975±0.088 0.918±0.069 0.697±0.234 0.420±0.177 0.451±0.140 0.802±0.194 0.931±0.238

CASP14 0.983±0.030 0.905±0.043 0.834±0.274 0.511±0.206 0.514±0.176 0.820±0.152 0.888±0.237
AttnPacker CASP13 1.000±0.000 0.953±0.025 0.531±0.201 0.301±0.149 0.393±0.126 0.775±0.188 0.951±0.225

CASP14 1.000±0.000 0.937±0.026 0.687±0.220 0.414±0.176 0.480±0.151 0.832±0.159 0.891±0.229
AttnPacker (AF) CASP13 0.986±0.031 0.933±0.038 0.614±0.220 0.355±0.175 0.405±0.131 0.733±0.184 0.918±0.226

CASP14 0.983±0.030 0.910±0.045 0.772±0.263 0.461±0.203 0.484±0.163 0.790±0.164 0.862±0.235

Results of the side-chain packing experiment. Averages with standard deviation are shown for CASP13
and CASP14 separately. TM-score is used to score the backbone, while lDDT and RMSD score backbone
and side-chains simultaneously and the mean absolute errors of dihedral side-chain angles in Radians,
starting from the first angle to the fourth give exclusive side-chain results. AlphaFold2 refinement with: a
full MSA and no template (MSA), full ground truth template (Template), just the backbone (Backbone),
ground truth backbone and C-β placed next to the origin Non-informative C-β, ground truth backbone
and the C-β placed with a heuristic (Heuristic C-β) and backbone and C-β from ground truth template
(Template C-β), or ground truth backbone and side-chains placed with CHARMM 36 force field (C36 ),
FASPR (FASPR) or AttnPacker (AttnPacker). The (AF) suffix indicates AlphaFold post-processing
after side-chain packing.

tion.

C Refinement tables

The major results of the refinement task are discussed
in Section 3.2 in the main text. Table A3 shows re-
sults for Gaussian noise and principal component re-
duction, while Table A4 displays the results of RFd-
iffusion. The scores are computed for each target
independently, then average and standard deviation
are determined over the target scores.

D Prev x experiments

Since prev x requires complete structures, all PDB
entries with missing residues were excluded from the
analysis presented in Table A5. This filtering resulted
in a dataset of 60 structures for CASP13 and 48 struc-
tures for CASP14. For comparability, the scores for
the other experiments were recomputed for this sub-
set.

These experiments were conducted using a custom
build of OpenFold. This version utilizes pre-trained
weights and offers the ability to disable the prev x
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Table A2: Pearson correlations of lDDT, pLDDT and rASA

Method Dataset lDDT×rASA pLDDT×rASA lDDT×pLDDT

MSA CASP13 -0.276 -0.313 0.786
CASP14 -0.256 -0.301 0.784

Template CASP13 -0.247 -0.310 0.697
CASP14 -0.257 -0.300 0.686

Heuristic C-β CASP13 -0.198 -0.211 0.779
CASP14 -0.230 -0.230 0.728

Template C-β CASP13 -0.302 -0.318 0.656
CASP14 -0.300 -0.303 0.649

C36 (AF) CASP13 -0.182 -0.179 0.681
CASP14 -0.204 -0.203 0.633

FASPR (AF) CASP13 -0.209 -0.199 0.811
CASP14 -0.242 -0.225 0.758

AttnPacker CASP13 -0.265 -0.155 0.341
CASP14 -0.291 -0.154 0.388

AttnPacker (AF) CASP13 -0.285 -0.311 0.644
CASP14 -0.298 -0.301 0.637

Pearson correlations between lDDT, pLDDT and rASA for CASP13 and CASP14. AlphaFold2 refinement
with: a full MSA and no template (MSA), full ground truth template (Template), ground truth backbone
and the C-β placed with a heuristic (Heuristic C-β), backbone and C-β from ground truth template
(Template C-β) or ground truth backbone and side-chains placed with CHARMM 36 force field (C36
(AF)), FASPR or (FASPR (AF)). Additionally, AttnPacker was evaluated before (AttnPacker) and after
(AttnPacker (AF)) AlphaFold refinement.

output or provide a structure for the recycling input
during the first pass. Additionally, it uses default em-
beddings for the MSA and pairwise representations.
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Table A3: Refinement results on Gaussian noise and
principal components perturbation

Method Dataset TM-score ↑ lDDT ↑ α-RMSD (Å) ↓
MSA CASP13 0.858±0.162 0.833±0.095 4.627±5.258

CASP14 0.840±0.147 0.791±0.116 4.841±5.207
Single CASP13 0.370±0.144 0.335±0.127 20.434±11.086

CASP14 0.366±0.168 0.336±0.152 19.620±9.652
Gaussian CASP13 0.900±0.053 0.659±0.003 1.710±0.055

CASP14 0.896±0.052 0.659±0.004 1.712±0.058
Gaussian (AF) CASP13 0.935±0.075 0.839±0.054 2.235±4.849

CASP14 0.922±0.062 0.817±0.070 1.994±1.454
Gaussian (OF2Rank Single) CASP13 0.682±0.233 0.611±0.185 10.457±11.728

CASP14 0.686±0.207 0.594±0.179 9.344±8.205
Gaussian (OF2Rank Empty) CASP13 0.708±0.234 0.627±0.194 10.159±12.098

CASP14 0.717±0.214 0.621±0.186 8.879±9.597
1 PC CASP13 0.215±0.036 0.238±0.035 14.756±8.037

CASP14 0.228±0.053 0.245±0.036 13.787±5.669
1 PC (AF) CASP13 0.458±0.202 0.392±0.184 18.466±13.492

CASP14 0.443±0.213 0.394±0.204 18.000±12.469
1 PC (OF2Rank Single) CASP13 0.402±0.150 0.358±0.134 19.131±10.953

CASP14 0.412±0.170 0.368±0.163 18.504±10.069
1 PC (OF2Rank Empty) CASP13 0.402±0.160 0.352±0.141 19.566±11.392

CASP14 0.398±0.172 0.357±0.156 18.756±10.241
2 PC CASP13 0.464±0.077 0.535±0.084 9.884±6.939

CASP14 0.487±0.075 0.534±0.090 8.786±3.749
2 PC (AF) CASP13 0.838±0.212 0.792±0.166 5.715±11.525

CASP14 0.862±0.149 0.793±0.124 3.779±5.227
2 PC (OF2Rank Single) CASP13 0.596±0.227 0.531±0.183 13.423±12.195

CASP14 0.575±0.201 0.499±0.179 11.568±7.817
2 PC (OF2Rank Empty) CASP13 0.626±0.235 0.558±0.190 12.417±12.380

CASP14 0.618±0.211 0.536±0.185 10.445±7.978

Results for the perturbation experiment with
Gaussian noise and principal components pertur-
bation. Averages with standard deviation are
shown for CASP13 and CASP14 separately. TM-
score and C-α RMSD in Å are used to score
the backbone, while lDDT scores backbone and
side-chains simultaneously. AlphaFold2 run with:
a full MSA and no template (MSA), single se-
quence and no template (Single). The (AF) suf-
fix is used to indicate AlphaFold post-processing.
(OF2Rank Single) and (OF2Rank Empty) note
the use of the AF2Rank inspired pipeline with
a single sequence or an all gap MSA respectively.
Gaussian perturbes the template with Gaussian
noise, 1 PC reduces the template to the first prin-
cipal component, 2 PC reduces the template to
the first two principal components.

Table A4: Refinement results on RFdiffusion pertur-
bation

Method Dataset TM-score ↑ lDDT ↑ α-RMSD (Å) ↓
MSA CASP13 0.858±0.162 0.833±0.095 4.627±5.258

CASP14 0.840±0.147 0.791±0.116 4.841±5.207
Single CASP13 0.370±0.144 0.335±0.127 20.434±11.086

CASP14 0.366±0.168 0.336±0.152 19.620±9.652
1 RFDiff (FASPR) CASP13 0.970±0.037 0.810±0.028 0.955±0.804

CASP14 0.974±0.013 0.804±0.026 0.851±0.268
1 RFDiff (FASPR AF) CASP13 0.959±0.074 0.844±0.085 1.418±2.510

CASP14 0.968±0.027 0.842±0.043 1.007±0.575
1 RFDiff (AP) CASP13 0.970±0.037 0.836±0.028 0.955±0.804

CASP14 0.974±0.013 0.827±0.028 0.851±0.268
1 RFDiff (AP AF) CASP13 0.961±0.072 0.855±0.087 1.414±2.548

CASP14 0.967±0.028 0.853±0.044 1.026±0.543
1 RFDiff (OF2Rank Single) CASP13 0.845±0.162 0.773±0.089 5.754±10.510

CASP14 0.853±0.107 0.754±0.087 4.066±4.322
1 RFDiff (OF2Rank Empty) CASP13 0.883±0.128 0.809±0.063 4.668±9.710

CASP14 0.881±0.095 0.785±0.084 3.213±3.579
5 RFDiff (FASPR) CASP13 0.918±0.063 0.725±0.037 1.826±1.684

CASP14 0.927±0.032 0.723±0.035 1.524±0.452
5 RFDiff (FASPR AF) CASP13 0.919±0.089 0.768±0.083 2.561±5.798

CASP14 0.933±0.036 0.772±0.049 1.536±0.682
5 RFDiff (AP) CASP13 0.918±0.063 0.745±0.036 1.826±1.684

CASP14 0.927±0.032 0.742±0.037 1.524±0.452
5 RFDiff (AP AF) CASP13 0.922±0.085 0.781±0.084 2.059±2.511

CASP14 0.935±0.036 0.785±0.048 1.529±0.665
5 RFDiff (OF2Rank Single) CASP13 0.832±0.164 0.749±0.095 6.035±10.648

CASP14 0.842±0.102 0.743±0.082 4.080±4.178
5 RFDiff (OF2Rank Empty) CASP13 0.873±0.125 0.788±0.066 5.211±11.156

CASP14 0.868±0.091 0.767±0.078 3.192±2.870
10 RFDiff (FASPR) CASP13 0.867±0.072 0.669±0.047 2.501±1.683

CASP14 0.873±0.052 0.670±0.046 2.191±0.554
10 RFDiff (FASPR AF) CASP13 0.874±0.092 0.709±0.088 2.806±2.978

CASP14 0.884±0.053 0.715±0.059 2.166±0.689
10 RFDiff (AP) CASP13 0.867±0.072 0.685±0.048 2.501±1.683

CASP14 0.873±0.052 0.684±0.048 2.191±0.554
10 RFDiff (AP AF) CASP13 0.879±0.092 0.721±0.089 2.667±2.473

CASP14 0.889±0.050 0.728±0.059 2.109±0.658
10 RFDiff (OF2Rank Single) CASP13 0.818±0.158 0.733±0.094 6.250±11.003

CASP14 0.817±0.109 0.712±0.095 4.801±4.616
10 RFDiff (OF2Rank Empty) CASP13 0.854±0.128 0.764±0.077 5.421±10.890

CASP14 0.844±0.099 0.742±0.089 3.597±2.951

Results for the perturbation experiment with par-
tial RFdiffusion. Averages with standard devi-
ation are shown for CASP13 and CASP14 sep-
arately. TM-score and RMSD of the C-α in
Å are used to score the backbone, while lDDT
scores backbone and side-chains simultaneously.
AlphaFold2 baselines ran with: a full MSA and
no template MSA, or single sequence and no tem-
plate Single. The (AF) suffix is used to in-
dicate AlphaFold2 post-processing. (OF2Rank
Single) and (OF2Rank Empty) note the use of
the AF2Rank inspired pipeline with a single se-
quence or an all gap MSA respectively. N RFDiff
perturbs the template by doing N partial diffu-
sion steps. To pack side-chains to the diffused
backbone, either FASPR (FASPR) or AttnPacker
(AP) were used.
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Table A5: Refinement results with prev x modifica-
tions

Method Dataset TM-score ↑ lDDT ↑ α-RMSD (Å) ↓
MSA CASP13 0.848±0.172 0.835±0.105 4.729±5.573

CASP14 0.843±0.149 0.797±0.116 4.859±5.627
Single CASP13 0.379±0.153 0.347±0.137 20.169±12.025

CASP14 0.386±0.183 0.356±0.167 18.898±10.186
OF prev x CASP13 0.428±0.164 0.379±0.145 18.949±12.108

CASP14 0.430±0.197 0.385±0.187 16.953±9.927
OF no prev x CASP13 0.853±0.180 0.832±0.113 4.914±6.223

CASP14 0.848±0.146 0.794±0.116 4.732±5.885

Results for the prev X experiments. Averages
with standard deviation are shown for CASP13
and CASP14 separately. TM-score and RMSD of
the C-α in Å are used to score the backbone, while
lDDT scores backbone and side-chains simulta-
neously. AlphaFold2 baselines ran with: a full
MSA and no template MSA, or single sequence
and no template Single. OF prev x indicates the
results of an modified OpenFold version, where
the ground truth template has been given as in-
put for recycle 0 and the single sequence. An
OpenFold version, where the prev x input is com-
pletely disabled and the standard amount of three
iterations is run on a full MSA is shown in OF no
prev x.
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