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Abstract

Species distribution models (SDMs) are powerful tools for assessing suitable habitat across large
areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species’ realized
distributions is often limited, since data biases or missing information on dispersal barriers or
biotic interactions hinder them from accurately delineating species’ range limits. One way to
overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-
scale information on the extent of species’ ranges that is complementary to information offered
by SDMs. Here, we propose a new approach for integrating expert range maps in SDMs based on
an ensemble method called stacked generalization. Specifically, our approach relies on training a
meta-learner regression model using predictions from one or more SDM algorithms alongside the
distance of training points to expert-defined ranges as predictor variables. We demonstrate our
approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the
Eastern Mediterranean, Western Asia, and Central Asia. Our approach offers a flexible method to
integrate expert range maps with any combination of SDM modeling algorithms, thus facilitating
the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for
uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is
often lacking. Our approach holds considerable promise for better understanding species
distributions, and thus for biogeographical research and conservation planning. In addition, our
work highlights the overlooked potential of stacked generalization as an ensemble method in

species distribution modeling.
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1 Introduction

While global biodiversity is declining rapidly (Pimm et al. 2014), our knowledge about species’
distributions often remains limited (Diniz-Filho, De Marco Jr, and Hawkins 2010). This lack of
detailed information for many regions and taxa, referred to as the Wallacean shortfall (Hortal et
al. 2015), translates not only into knowledge gaps in biogeography and ecology, but also into real
barriers for conservation planning to ensure that limited conservation funding is spent most
effectively (Hochkirch et al. 2021). Species distribution models (SDMs) have become a central
tool for addressing the Wallacean shortfall, allowing to characterize species’ niches by combining
occurrence records with environmental predictors for predicting species’ distributions (Elith and
Leathwick 2009; Guisan and Thuiller 2005). Yet, although SDMs can accurately assess the
environmental suitability of habitats (i.e., map potential distributions), they typically lack
information on other factors limiting species’ ranges, such as barriers to dispersal or biotic
interactions (i.e., competitive exclusion). This, in turn, means that the usefulness of SDMs for
mapping realized distributions of species can be limited, as their inability to identify range limits
often results in an overprediction of species’ ranges, particularly when distributions are modelled
across large geographic extents (Calabrese et al. 2014; Merow, Wilson, and Jetz 2017; Soberon
2007). While methods for capturing dispersal and biotic interactions within SDMs have been
proposed (Ovaskainen et al. 2016; Zurell 2017), their applicability is often limited due to a lack
of adequate datasets or missing knowledge about underlying ecological processes.

A widely-applicable solution to improve SDMs’ capability for assessing realized
distributions lies in their combination with external information on species’ range limits
(Domisch, Wilson, and Jetz 2016; Fletcher Jr. et al. 2019; Merow et al. 2017). Most commonly,
range information is available in the form of expert-based range maps, which offer estimates of

species’ range extents derived from occurrence information as well as expert knowledge about
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84  geographical, biotic, or environmental range limits. The most important database of range maps
85  (particularly for terrestrial animals) is offered by the International Union for the Conservation of
86  Nature (IUCN), which provides expert-defined ranges for more than 150,000 species (IUCN
87  2022). Although widely available, expert range maps are frequently criticized for being coarse in
88  resolution (meaning that species will often be absent from many areas within the expert-defined
89  range), incomplete in terms of species coverage or outdated (Higino et al. 2023; Ramesh et al.
90  2017). Despite these shortcomings, expert range maps often provide the best-available (or only)
91 information on range limits for many species. More importantly, they provide information that is
92 highly complementary to data generated by SDMs (Merow et al. 2017). While range maps
93  characterize a species’ extent of occurrence (i.e., its range limits), SDMs offer fine-scale
94  representations of suitable habitats, making approaches combining both datasets promising for
95  improving distribution assessments (Domisch et al. 2016; Ellis-Soto et al. 2021; Merow et al.
96  2017).
97 Several approaches have sought to combine these relative strengths of expert range maps
98 and SDMs, such as using range maps directly as predictors in SDMs (Domisch et al. 2016) or
99  adding spatial offset terms to models that are fit via point process models or related approaches
100 (e.g., Maxent; Merow et al., 2017). The latter approach is particularly promising as it allows to
101  account for uncertainty in expert range maps by incorporating user-defined decay curves that
102 reflect a priori expectations about the accuracy of expert range boundaries. Applying this
103 approach, however, can be challenging for two reasons. First, defining spatial offsets and decay
104  curves can be difficult if prior information on the accuracy of range maps is missing, potentially
105 leading to bias introduced by decisions on the strength and decay of the offset term. Second,
106  while the use of algorithm ensembles has become a key approach in species distribution

107  modeling (Araujo et al. 2019; Aratijo and New 2007), several widely-used and well-performing


https://doi.org/10.1101/2024.03.12.584552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.584552; this version posted March 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

108  machine learning algorithms (e.g., random forests or support vector machines) do not feature

109  offset terms.

110 Here, we suggest stacked generalization (Wolpert 1992) as an alternative approach for
111  integrating external range information enabling flexible combinations of multiple SDM

112 algorithms. Designed as an ensemble method for combining multiple modeling algorithms,

113 stacked generalization uses the predictions of models built at one level as the input for a meta-
114  learner built at a second level (Naimi and Balzer 2018). Although being widely applied in

115  machine learning (Sesmero, Ledezma, and Sanchis 2015), and despite the general proliferation of
116  algorithm ensembles in SDM studies (Buisson et al. 2010; Hao et al. 2019), stacked

117  generalizations have rarely been used with SDMs (but see Bonannella et al., 2022; El Alaoui &
118  Idri, 2023). Here, we demonstrate the use of stacked generalization as an approach for integrating
119  expert range information with one or more SDM algorithms. Using available occurrence datasets
120  for characterizing expert map accuracy, our approach offers an alternative, data-driven method to
121  integrate expert range maps in SDMs while accounting for their uncertainty.

122 In the following, we first introduce our approach and highlight issues important to

123 consider in its application. Then, we assess our approach by applying it to a presence-only

124 occurrence dataset for 49 bat species collected across a large geographic extent covering four

125  biodiversity hotspots in the Eastern Mediterranean, Western and Central Asia. Specifically, we
126  compare the predictive performance as well as resulting distribution maps of (1) single-algorithm
127  SDMs, (2) ensembles of SDM algorithms built with stacked generalization, and (3) stacked

128  generalizations including expert range maps.
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129 2. Stacked generalization for integrating expert range information in SDMs

130  Stacked generalization is an ensemble method for combining multiple models, often built with
131  different algorithms, using their individual predictions as training data in a meta-learner (Naimi
132 and Balzer 2018; Wolpert 1992). Here, we apply this approach to integrate one or more SDM
133 algorithms with expert range maps. By using the expert map as an additional model containing
134 complementary information to SDMs (i.e., coarse-scale estimate of range limits), our approach is
135  taking advantage of stacked generalizations working best if heterogeneous input models are

136  combined (Sesmero et al. 2015).

137 Multiple potential approaches exist to combine SDMs with expert range maps via stacked
138  generalization. One approach is creating a predictor variable for the meta-learner by assigning a
139  fixed value ratio to training points lying inside vs. outside the expert-defined ranges, thereby

140  allowing to control how much weight is given to the expert map (Merow et al. 2017). However,
141  this approach assumes that the probability of occurrence is the same at any distance outside the
142 expert range, although a continuously decreasing probability with increasing distance from the
143 expert range should be expected (Merow et al. 2017). Therefore, we instead use the spatial

144  distance of the training points to the expert range boundaries as a predictor in the meta-learner
145  (Figure 1). This predictor, hereafter referred to as distance term, describes the (relative)

146  probability of observing the modeled species within a given distance of the expert-defined range,
147  thereby characterizing the uncertainty of the expert map. This approach is conceptually similar to
148  including spatial offsets with decay curves in point process models (Merow et al. 2017), and

149  results in predicted habitat suitability values smoothly decreasing outside the expert range.

150  However, in contrast to user-defined offsets, the distance term of the meta-learner is derived from
151  the occurrence records used to train SDMs. While using the same datasets for fitting SDMs and

152  assessing the uncertainty of the expert range maps might introduce bias if the collection of
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153  occurrence records is influenced by knowledge about expert ranges (Merow et al. 2017), such a
154  data-driven approach will be particularly useful when accurate and representatively sampled

155  occurrence records are available or if prior knowledge about the accuracy of expert range maps is
156  lacking.

157 While the approach by Merow et al. (2017) allows to control the shape of the decay curve
158 by choosing several curve parameters, in stacked generalizations, the analyst can influence the
159  shape of the fitted distance term through the choice of the meta-learner algorithm or the

160  functional form of the distance term. As a baseline approach we here use logistic regression as a
161  meta-learner, which is widely used in stacked generalizations and results in distance terms

162  following a logistic function similar to the smooth decay curves proposed by Merow et al.

163  (2017). Conceptually, adding the distance term to a logistic regression meta-learner can be seen
164  as adding a constant ‘offset’ to all areas inside the expert-defined range (i.e., areas with distance
165 =0). This offset is described by the intercept of the logistic regression and expresses the

166  (relative) probability of observing the species inside the expert range given suitability predictions
167  of 0 from all SDM algorithms. Predictions by the meta-learner will decrease with increasing

168  distance from the expert range according to the distance term (Figure 1).
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Figure 1: Schematic overview of stacked generalization for combining SDM algorithms with
expert range maps. Predictions of multiple SDM algorithms are used together with the distance
of occurrence data to the expert range as predictor variables in a logistic regression meta-
learner, which then is used to predict the species’ distribution. Maps show examples for one bat
species in our dataset (Nyctalus noctula). Map panel for expert range shows IUCN range in grey
with presence records colored according to their distance to the IUCN range. Shown maps are in

Albers equal area projection.

By relating individual species’ occurrences to expert ranges, our approach accommodates

species-to-species variability in the uncertainty of expert ranges. However, due to a lack of
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180  presence records or highly accurate expert range maps, in some cases only few or no presence

181  records might lie outside expert ranges, which will cause (quasi-)complete separation in the meta-
182  learner. We propose two potential solutions to this issue. First, if species-specific distance terms
183  should be used, bias-reduced logistic regression can be applied for fitting meta-learners (Firth

184  1993). This commonly recommended strategy for dealing with (quasi-)complete separation in

185  logistic regressions ensures finite parameter estimates and results in responses (i.e., distance

186  terms in our case) that are less steep compared to standard maximum likelihood estimation

187  (Heinze and Schemper 2002). Second, when occurrence data from multiple related taxa are

188  available, species-specific distance terms of meta-learners might be replaced with ‘target-group’
189  distance terms, which can be calculated by fitting a meta-learner based on training points from
190  multiple or all available species. In this case, the distance term characterizes the uncertainty

191  (probability of occurrences lying outside expert ranges) across all included taxa and does not vary
192 between species, similar to applying the same decay curve across species when integrating range

193 maps as spatial offsets in point process models (Merow et al. 2017).

194 3. Method application

195 3.1 Study area and bat occurrence data

196  Our study area covers 6.5 million km? and intersects four global biodiversity hotspots (following
197  Myers et al., 2000): The eastern part of the Mediterranean hotspot, the Caucasus hotspot, the

198  Irano-Anatolian hotspot, as well as partially covering the Mountains of Centrals Asia hotspot. To
199  delineate our study area, we fully included all countries in which the sampling of our bat

200  occurrence records was primarily conducted (Afghanistan, Albania, Armenia, Azerbaijan,

201  Bulgaria, Georgia, Greece, Iran, Israel, Montenegro, Syria, Turkey). The borders of our study

202  area were defined based on ecoregion boundaries (Olson et al. 2001). Our study area represents

10
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203  the contact zone between the Western and Eastern Palearctic species pools, where information on

204  the distribution of bats remains limited.

205
H N 1000 km
20°E 40°E 60°E
Biodiversity hotspots
|:| Caucasus |:| Irano-Anatolian
206 |:| Mediterranean Basin |:| Mountains of Central Asia

207  Figure 2: Extent of the study area, shown as black polygon and intersecting global biodiversity
208  hotspots shown as colored polygons. Map is in Albers equal area projection.

209

210  We collected and harmonized bat occurrence datasets from various sources, including national
211  databases, field records, and literature data (see Appendix S1 for an overview of all data sources).
212 Intotal, we gathered 37,714 occurrence records from 61 taxa. To ensure the quality of records
213 used for model training, we removed all instances in which a species-level identification was

214 impossible or problematic (e.g., uncertain identification within complexes of morphologically

215  highly similar species). In addition, we removed records collected before 1970 to avoid a

11
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216  temporal mismatch between occurrence records and predictor variables (Milanesi, Della Rocca,
217  and Robinson 2020).

218 Where appropriate, we reclassified records to account for recent genetic analyses that

219  have led to a subdivision of species complexes into multiple cryptic species. This reclassification
220  was done based on available information on the distribution of cryptic species (see Appendix S2
221  for details on taxonomic revisions within species complexes as well as an overview of species).
222 To remove spatial duplicates and reduce sampling bias, we thinned occurrence records (Boria et
223 al. 2014). As thinning records may reduce model performance for rare species (Steen et al. 2021),
224 we classified species according to the percentile values of sample prevalence (i.e., number of

225  raster cells with presence records) into three classes (low, intermediate, and high prevalence). We
226  then thinned records with minimum distances of 1km, Skm, and 10km for species with low,

227  intermediate, and high prevalence, respectively.

228 As expert information on species range limits, we compiled [UCN range maps for all

229  species. This led to four species being excluded from modelling since no range map was

230  available. Finally, we selected species with a minimum of 30 remaining records to ensure robust
231 training data sets for building SDMs, resulting in 9,650 presence records from 49 species.

232 3.2 Species distribution modeling

233  We used presence-background SDMs (Elith and Leathwick 2009) to characterize the distributions
234 of bats in our study area. For modeling, we compiled a set of 40 candidate predictor variables,
235  indicating four key dimensions of habitat suitability for bats: climate, land cover and vegetation
236  productivity, topography and geology, and human pressure and modification (Table 1). While
237  target resolution of our SDMs was 1km?, we derived all predictor variables at three spatial scales

238  (1km?, 5km? and 10km?), resulting in 120 candidate variables. Including coarser scales derived

12
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through moving window averaging allows better characterizing habitat conditions at the scale of
bat home ranges (e.g., available forest cover within the surrounding area of a bat roost).
Table 1: Overview of environmental predictor variables used in species distribution models.
Category Predictor Available time steps Data source
Climate 19 bioclimatic variables 1981-2010 (average) CHELSA climate data
(Karger et al. 2017)
Land cover and  Six land-cover proportions 1992-2020 (annual) ESA CCI land cover
vegetation (agriculture, forest, shrubs,
productivity herbaceous vegetation, bare
and sparse vegetation,
water)
Nine Landsat-based 1990, 1995, 2000, Landsat satellite imagery
spectral-temporal metrics 2005, 2010, 2015 (Oeser et al. 2020)

(cumulative, minimum and
seasonality metrics for
Tasseled Cap greenness,
brightness, and wetness

indices)
Topography and Terrain ruggedness index - (Amatulli et al. 2018)
geology Presence of karstifiable - World Karst Aquifer Map
rocks (Chen et al. 2017)
Human pressure  Human modification index 1990, 2000, 2010, (Theobald et al. 2020)
and 2015, 2017
modification
Accessibility (travel time to 2015 (Weiss et al. 2018)
cities)
Nighttime-lights 1992-2018 (Zhao et al. 2022)
Forest landscape integrity 2019 (Grantham et al. 2020)
index

We sampled background points using a target group bias grid, created from kernel density
estimation based on all presence records in our dataset. Using the density of bat occurrence
records as sampling weights for background points allows characterizing sampling effort and

helps to mitigate the influence of sampling bias in presence-background SDMs (Barber et al.

13
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247  2022; Inman et al. 2021; Syfert, Smith, and Coomes 2013). For each species, we sampled

248  background points equal to ten times the number of available presence records.

249 We used three SDM algorithms: Maxent (R-package dismo; Hijmans et al., 2020),

250  random forests (R-package randomForest; Cutler & Wiener, 2022), and boosted generalized

251  additive models (GAMs, R-package mboost; Hothorn et al., 2022). Following recommendations
252 by Valavi et al. (2021), we used down-sampled random forests, in which subsamples of the

253  background points are used within each individual tree in order to correct for class imbalances. In
254  afirst modeling step, we performed variable selection by fitting univariate models (with default
255  parameters) for all 120 candidate variables and evaluating their predictive performance using the
256  area under the receiver operating characteristic curve (AUC) and Pearson correlation between the
257  predicted and observed presence (COR) in a five-fold cross validation (Valavi, Guillera-Arroita,
258  etal. 2021). For selecting the best-performing model, we combined AUC and COR into a single
259  performance score by rescaling their values across all tested models to a 0-1 scale and calculating
260  the mean of rescaled AUC and COR values. Based on this combined performance score, for each
261  species, we selected the set of variables offering the best predictive performance while having
262  correlation coefficients [r[<0.7 (Dormann et al. 2013). Using the selected variables in a second
263  five-fold cross validation, we tuned algorithm parameters for all species (selecting regularization
264  multipliers for Maxent, m¢ry and maxnodes parameters in random forest, and the number of

265  boosting iterations in boosted GAMSs; see Appendix S4 for details).

266 3.3 Stacked generalizations

267  We implemented stacked generalizations in two ways. First, we created pure algorithm

268  ensembles (hereafter SDM ensembles) solely relying on the predictions of the three SDM

269  algorithms as predictors in the meta-learner. Second, we created expert-informed ensembles

14


https://doi.org/10.1101/2024.03.12.584552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.584552; this version posted March 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

270  additionally including information from IUCN range maps. Additionally, we compared two

271  approaches for adding distance terms to the meta-learner. First, we used species-specific distance
272 terms, using the distance of species-level training points to the species’ IUCN range as a

273  predictor in the meta-learner. Second, we calculated a target-group distance term, which we

274  derived by fitting a logistic regression to the distances of all bat occurrence records in our dataset
275  (i.e., all 49 species). To deal with (quasi-)complete separation in species-specific distance terms,
276  we used bias-reduced logistic regression implemented in the R-package brglm2 (Kosmidis et al.
277  2023) for fitting meta-learners.

278 A critical consideration when using stacked generalizations is the risk of overfitting the
279  meta-learner. A widely adopted strategy for this purpose, referred to as Super Learner (van der
280  Laan, Polley, and Hubbard 2007; Naimi and Balzer 2018), uses out-of-sample predictions (i.e.,
281  from cross validation) for training the meta-learner. To assess the effect of overfitting on stacked
282  generalizations, we compared meta-learners trained on out-of-sample vs. in-sample predictions
283  (i.e., with and without the Super Learner strategy).

284 We compared the predictive performance of all three tested modeling approaches using
285  five-fold cross validation: (1) single-algorithm SDMs (i.e., Maxent, random forest, and boosted
286  GAMs), (2) SDM ensembles, (3) expert-informed ensembles. To create distribution maps for all
287  species, we predicted all models for the most recent time step (target year for prediction: 2020).
288  To compare mapped distribution patterns between SDM ensembles and expert-informed

289  ensembles, we calculated two metrics: First, species-wise niche breadth using Levins’ B2 metric,
290  describing the uniformity of predicted suitability in geographic space (Warren et al. 2021), and
291  second range overlaps calculated using Schoener’s D metric, describing the similarity of

292 predicted suitability between species pairs (Warren, Glor, and Turelli 2008). We hypothesized

293  that expert-informed ensembles should result in overall lower niche breadths and lower range
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294  overlaps, since integrating information on species’ range limits should correct for the
295  overprediction of species ranges by SDMs due to missing information on the effect of dispersal

296  limitations and biotic interactions (Merow et al. 2017).

297 4 Results

298  The accuracy of [IUCN range maps varied considerably across bat species. On average, 73% of
299  presence records fell inside expert-defined ranges (inter-quartile range: 22%), with records lying
300 atan average distance of 50 km of expert-defined range boundaries (inter-quartile range: 30 km).
301  These differences in the accuracy of expert range maps translated into considerable variation in
302  species-specific distance terms and thus clear differences in how predicted suitability values

303  declined outside expert ranges when using expert-informed ensembles. In the case of accurate
304  expert ranges, suitability sharply declined outside expert ranges, leading to the exclusion of (often
305 large) areas identified as environmentally suitable by SDMs but lying outside species’ ranges
306  (e.g., Myotis myotis in Figure 3). Conversely, when occurrence records indicated that expert

307  range maps were inaccurate, SDMs clearly dominated the predictions of expert-informed

308 ensembles, allowing to identify areas outside [UCN ranges as likely occupied by species (e.g.,
309  Taphozous nudiventris in Figure 3). When using target-group instead of species-specific distance

310  terms, suitability values declined at similar rates outside expert ranges across species (Appendix

311 S4).
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Myotis myotis Taphozous nudiventris
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313 Figure 3: Comparison of distribution maps (A+B) and decline in predicted occurrence

314  probabilities outside expert ranges (C+D) for two example species with high (Myotis myotis) and
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315 low expert map accuracy (Taphozous nudiventris). Distribution maps based on IUCN ranges
316  (including available presence records), SDM ensembles, and expert-informed ensembles are
317  shown. Expert-informed ensembles correspond to models built with species-specific distance
318  terms. Plots of decline in predicted occurrence probabilities outside expert ranges (C+D) are
319  based on loess smooth to the data. Maps are in Albers equal area projection.

320

321  Considering predictive performance, stacked generalization ensembles outperformed single-
322 algorithm SDMs. However, training on out-of-sample predictions was necessary to achieve
323 optimal predictive performance (i.e., using Super Learner approach; Figure 4). Specifically,
324  expert-informed ensembles built with species-specific distance terms achieved the highest
325  predictive performance according to both AUC and COR values, followed by SDM ensembles
326  and expert-informed ensembles with target-group distance terms (Figure 4; since COR values

327  showed no qualitative difference to AUC, we only show AUC values here).
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330  Figure 4: Predictive performance of modeling approaches for 49 bat species in Eastern

331  Mediterranean, Western Asia and Central Asia according to AUC values.

332

333 Performance improvements of expert-informed ensembles compared to SDM ensembles

334  generally diminished with the average distance of presence records to expert ranges (i.e.,

335 increasing performance gains with higher expert map accuracy; Figure 5A). Performance
336  improvements tended also to be higher for species with fewer available occurrence records as
337  well as for species with smaller range extents (Figure SB+C), but these relationships were
338  considerably weaker than for expert map accuracy.

339
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341  Figure 5: Improvement in predictive performance of expert-informed ensembles compared to
342  SDM ensembles in relationship to expert map accuracy (mean distance of presence records to
343 expert range, including points inside the range with distance = (). Data for expert-informed
344  ensembles with species-specific distance terms are shown, with linear trend plotted on top.

345
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346  Considering mapped distribution patterns, expert-informed ensembles resulted in lower niche
347  breadths (i.e., less uniform distribution of predicted suitability in geographic space) for 83% of
348  species compared to SDM ensembles. On average, species-wise niche breadths obtained from
349  expert-informed ensembles were 21% lower compared to niche breadths derived from SDM

350  ensembles (Figure 6A). Range overlaps between species pairs (i.e., similarity of predicted

351  suitability) derived from expert-informed ensembles were lower than overlaps predicted by SDM
352  ensembles in 90% of the cases. On average, overlaps were 30% lower in expert-informed

353  ensembles compared to those obtained from SDM ensembles(Figure 6B).
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356  Figure 6: Distribution of (A) niche breadths and (B) range overlaps of bat species according to
357  SDM ensembles vs. expert-informed ensembles.

358

359 5. Discussion
360  Addressing the Wallacean shortfall is critical to biogeographical research and conservation

361 planning, yet accurately mapping species’ realized distributions through species distribution
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362  modeling presents a significant challenge. Here, we developed a new approach for integrating
363  expert information on range limits in species distribution models by making use of stacked

364  generalization, an ensemble method widely applied in machine learning but still underexplored in
365  the context of SDMs. Testing our approach with a dataset covering 49 bat species demonstrated
366 its flexibility and promise for improving species distribution mapping, allowing to combine the
367  key strength of SDMs (characterizing environmentally suitable habitats) with that of expert range
368  maps (characterizing range limits) without requiring prior knowledge about expert range maps or
369  having to rely on specific modeling algorithms. In a broader context, we add to the growing

370  toolbox of integrated SDM approaches, providing an important step towards more accurate

371  assessments of species’ distributions.

372 The application of our approach showed that it effectively enables the exclusion of areas
373  lying outside species’ realized range limits, while preserving fine-scale predictions of habitat

374  suitability, which offer a key strength of SDM approaches (Mainali et al. 2020). At the same

375  time, when enough presence records are recorded outside expert-defined ranges, expert range
376  maps exert minimal influence on mapped distributions, demonstrating the flexibility of our

377  approach towards varying levels of expert map accuracy. We did not have an independent

378  validation dataset on species’ absence available, precluding us from performing a more detailed
379  assessment of how our approach affects the accuracy of mapped distributions. Yet, we found

380 improved predictive performance of expert-informed ensembles compared to pure SDM

381  ensembles within our presence-background dataset, with performance improvements depending
382  on the accuracy of expert range maps.

383 Our approach offers an alternative to applying user-defined spatial offsets in point-process
384  models as proposed by Merow et al. (2017). Choosing between stacked generalization and spatial

385  offsets as ways to integrate expert range maps boils down to selecting different styles of
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386  modeling approaches: relying either on prior knowledge when using spatial offsets or on

387  available occurrence datasets when using stacked generalizations for characterizing expert map
388  accuracy. The appropriateness of using stacked generalizations thus hinges on whether available
389  occurrence records can accurately capture expert map accuracy. As highlighted by Merow et al.
390  (2017), using occurrence records for characterizing expert map accuracy requires that their

391  collection is independent of expert range maps (i.e., expert range maps not affecting sampling
392  intensity or species identification), otherwise they will give a biased view on expert map

393  accuracy. However, in many cases occurrence records provide a more comprehensive and up-to-
394  date picture of species distributions compared to expert range maps. Moreover, occurrence

395  records will often be the best available (or only) type of data allowing to evaluate expert range
396  maps, as other a priori information on their accuracy is difficult to obtain. Our application of
397  stacked generalizations for 49 bat species highlighted the advantage of allowing for species-to-
398  species variation in the uncertainty of expert-defined ranges, with models achieving the highest
399  predictive performance when using species-specific distance terms. Thus, given that expert map
400 accuracies are expected to vary strongly across species, stacked generalization provides a simple
401  yet effective data-driven approach without the need for manually adjusting prior expectations
402  when assessing many species at once. If occurrence datasets for individual species are deemed
403  too incomplete or biased for characterizing expert map accuracy, target-group distance can be
404  used. Both these options are conceptually very similar to manually defining spatial offsets in
405  point process models based on available evidence on expert map accuracies (Merow et al. 2017),
406  yet eliminate the need for subjective decisions potentially biasing results. In sum, our approach
407  provides an easily and widely applicable data-driven alternative for integrating expert range

408  information in SDMs, proving particularly useful when accurate and comprehensive occurrence

409  datasets are available.
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410 An additional key advantage of our approach lies in its flexibility to combine expert range
411  maps with any combination of modeling algorithms, thereby facilitating the use of algorithm
412  ensembles. In contrast to the use of spatial offsets in point process models, stacked

413  generalizations can be easily combined with machine learning algorithms that do not include
414  offset terms. This enables the use of algorithms such as random forest, often found among the
415  best-performing in comparisons of SDM algorithms (Valavi, Guillera-Arroita, et al. 2021), also
416  featuring the highest discriminative accuracy (i.e., AUC values) in our dataset. With SDM

417  ensembles performing better than any individual modeling algorithm in our dataset, our results
418  also point towards the potential of stacked generalizations as a method for combining modeling
419  algorithms more generally. In line with findings on the importance of avoiding overfitting in
420  stacked generalizations (van der Laan et al. 2007; Naimi and Balzer 2018), we only achieved
421  improved performance when using out-of-sample predictions for training the meta-learner

422 (“Super Learner” approach). It has been shown that in large samples, the Super Learner approach
423  performs at least as well as the best-performing individual algorithm (van der Laan and Dudoit
424 2003; van der Laan et al. 2007). Yet, despite its potential, stacked generalization has remained
425  neglected in the context of species distribution modeling (El Alaoui and Idri 2023), with studies
426  typically relying on unweighted or weighted model averaging for combining algorithms and
427  stacked generalization not being considered in systematic assessments of SDM ensemble

428  methods (Hao et al. 2020). We therefore recommend stacked generalization as a versatile

429  approach for combining SDM algorithms, which should be included in future comparisons of
430  SDM ensemble methods.

431 In most cases, the integration of expert range maps resulted in considerably less uniform
432 occurrence predictions and decreased range overlap between species, likely reflecting more

433  realistic predictions of bat distributions in our study area. Both SDMs and expert range maps tend
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434  to overpredict occurrence of species since they are missing information on factors limiting

435  species’ ranges (dispersal and competition in the case of SDMs, habitat suitability in the case of
436  expert ranges). Integrating both data sources can therefore improve estimates of individual

437  species’ distributions as well as species richness (Ellis-Soto et al. 2021). Additionally, by

438  disentangling environmental constraints from other limiting factors, the combination of SDMs
439  and expert ranges can help to better understand the influence of non-environmental factors

440  affecting range limits (i.e., biotic interactions and dispersal). For example, contrasting potential
441  range overlaps derived from SDMs with realized range overlaps derived from expert-informed
442  models can provide a window into the potential role of interspecific competition in shaping

443  species’ ranges (Novella-Fernandez et al. 2021). In sum, our approach has broad applicability in
444  ecological research and conservation planning, for example for updating species’ conservation
445  status, assessing conservation priorities through more accurate species richness mapping, and by
446  providing new ecological insights into factors determining species’ range limits.

447 Our approach adds to the growing toolbox of integrated species distribution modeling
448  approaches by providing a flexible and easily applicable approach for integrating SDMs with
449  readily available information on species’ range limits. As SDMs have become one of the most
450  widely used tools in ecological and biogeographical research, an increasing recognition of their
451  shortcomings has developed (A. Lee-Yaw et al. 2022; Franklin 2010). Recently, integrated

452  modeling approaches have been proposed that try to enhance SDMs by combining them with
453  additional sources of information (Fletcher Jr. et al. 2019; Miller et al. 2019). Integrated SDM
454  approaches already offer key innovations for improving the mapping of species’ realized

455  distributions (Jung 2023; Miller et al. 2019). The broader adoption of these methods, combined
456  with a rapid growth in the availability of biodiversity data will be critical for filling knowledge

457  gaps about the distribution of species and overcome the Wallacean shortfall.
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