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Abstract 39 

Species distribution models (SDMs) are powerful tools for assessing suitable habitat across large 40 

areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species’ realized 41 

distributions is often limited, since data biases or missing information on dispersal barriers or 42 

biotic interactions hinder them from accurately delineating species’ range limits. One way to 43 

overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-44 

scale information on the extent of species’ ranges that is complementary to information offered 45 

by SDMs. Here, we propose a new approach for integrating expert range maps in SDMs based on 46 

an ensemble method called stacked generalization. Specifically, our approach relies on training a 47 

meta-learner regression model using predictions from one or more SDM algorithms alongside the 48 

distance of training points to expert-defined ranges as predictor variables. We demonstrate our 49 

approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the 50 

Eastern Mediterranean, Western Asia, and Central Asia. Our approach offers a flexible method to 51 

integrate expert range maps with any combination of SDM modeling algorithms, thus facilitating 52 

the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for 53 

uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is 54 

often lacking. Our approach holds considerable promise for better understanding species 55 

distributions, and thus for biogeographical research and conservation planning. In addition, our 56 

work highlights the overlooked potential of stacked generalization as an ensemble method in 57 

species distribution modeling. 58 

  59 
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1 Introduction 60 

While global biodiversity is declining rapidly (Pimm et al. 2014), our knowledge about species’ 61 

distributions often remains limited (Diniz-Filho, De Marco Jr, and Hawkins 2010). This lack of 62 

detailed information for many regions and taxa, referred to as the Wallacean shortfall (Hortal et 63 

al. 2015), translates not only into knowledge gaps in biogeography and ecology, but also into real 64 

barriers for conservation planning to ensure that limited conservation funding is spent most 65 

effectively (Hochkirch et al. 2021). Species distribution models (SDMs) have become a central 66 

tool for addressing the Wallacean shortfall, allowing to characterize species’ niches by combining 67 

occurrence records with environmental predictors for predicting species’ distributions (Elith and 68 

Leathwick 2009; Guisan and Thuiller 2005). Yet, although SDMs can accurately assess the 69 

environmental suitability of habitats (i.e., map potential distributions), they typically lack 70 

information on other factors limiting species’ ranges, such as barriers to dispersal or biotic 71 

interactions (i.e., competitive exclusion). This, in turn, means that the usefulness of SDMs for 72 

mapping realized distributions of species can be limited, as their inability to identify range limits 73 

often results in an overprediction of species’ ranges, particularly when distributions are modelled 74 

across large geographic extents (Calabrese et al. 2014; Merow, Wilson, and Jetz 2017; Soberón 75 

2007). While methods for capturing dispersal and biotic interactions within SDMs have been 76 

proposed (Ovaskainen et al. 2016; Zurell 2017), their applicability is often limited due to a lack 77 

of adequate datasets or missing knowledge about underlying ecological processes. 78 

A widely-applicable solution to improve SDMs’ capability for assessing realized 79 

distributions lies in their combination with external information on species’ range limits 80 

(Domisch, Wilson, and Jetz 2016; Fletcher Jr. et al. 2019; Merow et al. 2017). Most commonly, 81 

range information is available in the form of expert-based range maps, which offer estimates of 82 

species’ range extents derived from occurrence information as well as expert knowledge about 83 
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geographical, biotic, or environmental range limits. The most important database of range maps 84 

(particularly for terrestrial animals) is offered by the International Union for the Conservation of 85 

Nature (IUCN), which provides expert-defined ranges for more than 150,000 species (IUCN 86 

2022). Although widely available, expert range maps are frequently criticized for being coarse in 87 

resolution (meaning that species will often be absent from many areas within the expert-defined 88 

range), incomplete in terms of species coverage or outdated (Higino et al. 2023; Ramesh et al. 89 

2017). Despite these shortcomings, expert range maps often provide the best-available (or only) 90 

information on range limits for many species. More importantly, they provide information that is 91 

highly complementary to data generated by SDMs (Merow et al. 2017). While range maps 92 

characterize a species’ extent of occurrence (i.e., its range limits), SDMs offer fine-scale 93 

representations of suitable habitats, making approaches combining both datasets promising for 94 

improving distribution assessments (Domisch et al. 2016; Ellis-Soto et al. 2021; Merow et al. 95 

2017). 96 

Several approaches have sought to combine these relative strengths of expert range maps 97 

and SDMs, such as using range maps directly as predictors in SDMs (Domisch et al. 2016) or 98 

adding spatial offset terms to models that are fit via point process models or related approaches 99 

(e.g., Maxent; Merow et al., 2017). The latter approach is particularly promising as it allows to 100 

account for uncertainty in expert range maps by incorporating user-defined decay curves that 101 

reflect a priori expectations about the accuracy of expert range boundaries. Applying this 102 

approach, however, can be challenging for two reasons. First, defining spatial offsets and decay 103 

curves can be difficult if prior information on the accuracy of range maps is missing, potentially 104 

leading to bias introduced by decisions on the strength and decay of the offset term. Second, 105 

while the use of algorithm ensembles has become a key approach in species distribution 106 

modeling (Araújo et al. 2019; Araújo and New 2007), several widely-used and well-performing 107 
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machine learning algorithms (e.g., random forests or support vector machines) do not feature 108 

offset terms. 109 

Here, we suggest stacked generalization (Wolpert 1992) as an alternative approach for 110 

integrating external range information enabling flexible combinations of multiple SDM 111 

algorithms. Designed as an ensemble method for combining multiple modeling algorithms, 112 

stacked generalization uses the predictions of models built at one level as the input for a meta-113 

learner built at a second level (Naimi and Balzer 2018). Although being widely applied in 114 

machine learning (Sesmero, Ledezma, and Sanchis 2015), and despite the general proliferation of 115 

algorithm ensembles in SDM studies (Buisson et al. 2010; Hao et al. 2019), stacked 116 

generalizations have rarely been used with SDMs (but see Bonannella et al., 2022; El Alaoui & 117 

Idri, 2023). Here, we demonstrate the use of stacked generalization as an approach for integrating 118 

expert range information with one or more SDM algorithms. Using available occurrence datasets 119 

for characterizing expert map accuracy, our approach offers an alternative, data-driven method to 120 

integrate expert range maps in SDMs while accounting for their uncertainty. 121 

In the following, we first introduce our approach and highlight issues important to 122 

consider in its application. Then, we assess our approach by applying it to a presence-only 123 

occurrence dataset for 49 bat species collected across a large geographic extent covering four 124 

biodiversity hotspots in the Eastern Mediterranean, Western and Central Asia. Specifically, we 125 

compare the predictive performance as well as resulting distribution maps of (1) single-algorithm 126 

SDMs, (2) ensembles of SDM algorithms built with stacked generalization, and (3) stacked 127 

generalizations including expert range maps. 128 
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2. Stacked generalization for integrating expert range information in SDMs 129 

Stacked generalization is an ensemble method for combining multiple models, often built with 130 

different algorithms, using their individual predictions as training data in a meta-learner (Naimi 131 

and Balzer 2018; Wolpert 1992). Here, we apply this approach to integrate one or more SDM 132 

algorithms with expert range maps. By using the expert map as an additional model containing 133 

complementary information to SDMs (i.e., coarse-scale estimate of range limits), our approach is 134 

taking advantage of stacked generalizations working best if heterogeneous input models are 135 

combined (Sesmero et al. 2015). 136 

Multiple potential approaches exist to combine SDMs with expert range maps via stacked 137 

generalization. One approach is creating a predictor variable for the meta-learner by assigning a 138 

fixed value ratio to training points lying inside vs. outside the expert-defined ranges, thereby 139 

allowing to control how much weight is given to the expert map (Merow et al. 2017). However, 140 

this approach assumes that the probability of occurrence is the same at any distance outside the 141 

expert range, although a continuously decreasing probability with increasing distance from the 142 

expert range should be expected (Merow et al. 2017). Therefore, we instead use the spatial 143 

distance of the training points to the expert range boundaries as a predictor in the meta-learner 144 

(Figure 1). This predictor, hereafter referred to as distance term, describes the (relative) 145 

probability of observing the modeled species within a given distance of the expert-defined range, 146 

thereby characterizing the uncertainty of the expert map. This approach is conceptually similar to 147 

including spatial offsets with decay curves in point process models (Merow et al. 2017), and 148 

results in predicted habitat suitability values smoothly decreasing outside the expert range. 149 

However, in contrast to user-defined offsets, the distance term of the meta-learner is derived from 150 

the occurrence records used to train SDMs. While using the same datasets for fitting SDMs and 151 

assessing the uncertainty of the expert range maps might introduce bias if the collection of 152 
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occurrence records is influenced by knowledge about expert ranges (Merow et al. 2017), such a 153 

data-driven approach will be particularly useful when accurate and representatively sampled 154 

occurrence records are available or if prior knowledge about the accuracy of expert range maps is 155 

lacking. 156 

While the approach by Merow et al. (2017) allows to control the shape of the decay curve 157 

by choosing several curve parameters, in stacked generalizations, the analyst can influence the 158 

shape of the fitted distance term through the choice of the meta-learner algorithm or the 159 

functional form of the distance term. As a baseline approach we here use logistic regression as a 160 

meta-learner, which is widely used in stacked generalizations and results in distance terms 161 

following a logistic function similar to the smooth decay curves proposed by Merow et al. 162 

(2017). Conceptually, adding the distance term to a logistic regression meta-learner can be seen 163 

as adding a constant ‘offset’ to all areas inside the expert-defined range (i.e., areas with distance 164 

= 0). This offset is described by the intercept of the logistic regression and expresses the 165 

(relative) probability of observing the species inside the expert range given suitability predictions 166 

of 0 from all SDM algorithms. Predictions by the meta-learner will decrease with increasing 167 

distance from the expert range according to the distance term (Figure 1). 168 
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 169 

Figure 1: Schematic overview of stacked generalization for combining SDM algorithms with 170 

expert range maps. Predictions of multiple SDM algorithms are used together with the distance 171 

of occurrence data to the expert range as predictor variables in a logistic regression meta-172 

learner, which then is used to predict the species’ distribution. Maps show examples for one bat 173 

species in our dataset (Nyctalus noctula). Map panel for expert range shows IUCN range in grey 174 

with presence records colored according to their distance to the IUCN range. Shown maps are in 175 

Albers equal area projection. 176 

 177 

By relating individual species’ occurrences to expert ranges, our approach accommodates 178 

species-to-species variability in the uncertainty of expert ranges. However, due to a lack of 179 
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presence records or highly accurate expert range maps, in some cases only few or no presence 180 

records might lie outside expert ranges, which will cause (quasi-)complete separation in the meta-181 

learner. We propose two potential solutions to this issue. First, if species-specific distance terms 182 

should be used, bias-reduced logistic regression can be applied for fitting meta-learners (Firth 183 

1993). This commonly recommended strategy for dealing with (quasi-)complete separation in 184 

logistic regressions ensures finite parameter estimates and results in responses (i.e., distance 185 

terms in our case) that are less steep compared to standard maximum likelihood estimation 186 

(Heinze and Schemper 2002). Second, when occurrence data from multiple related taxa are 187 

available, species-specific distance terms of meta-learners might be replaced with ‘target-group’ 188 

distance terms, which can be calculated by fitting a meta-learner based on training points from 189 

multiple or all available species. In this case, the distance term characterizes the uncertainty 190 

(probability of occurrences lying outside expert ranges) across all included taxa and does not vary 191 

between species, similar to applying the same decay curve across species when integrating range 192 

maps as spatial offsets in point process models (Merow et al. 2017). 193 

3. Method application 194 

3.1 Study area and bat occurrence data 195 

Our study area covers 6.5 million km² and intersects four global biodiversity hotspots (following 196 

Myers et al., 2000): The eastern part of the Mediterranean hotspot, the Caucasus hotspot, the 197 

Irano-Anatolian hotspot, as well as partially covering the Mountains of Centrals Asia hotspot. To 198 

delineate our study area, we fully included all countries in which the sampling of our bat 199 

occurrence records was primarily conducted (Afghanistan, Albania, Armenia, Azerbaijan, 200 

Bulgaria, Georgia, Greece, Iran, Israel, Montenegro, Syria, Turkey). The borders of our study 201 

area were defined based on ecoregion boundaries (Olson et al. 2001). Our study area represents 202 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.12.584552doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584552
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

the contact zone between the Western and Eastern Palearctic species pools, where information on 203 

the distribution of bats remains limited. 204 

 205 

 206 

Figure 2: Extent of the study area, shown as black polygon and intersecting global biodiversity 207 

hotspots shown as colored polygons. Map is in Albers equal area projection. 208 

 209 

We collected and harmonized bat occurrence datasets from various sources, including national 210 

databases, field records, and literature data (see Appendix S1 for an overview of all data sources). 211 

In total, we gathered 37,714 occurrence records from 61 taxa. To ensure the quality of records 212 

used for model training, we removed all instances in which a species-level identification was 213 

impossible or problematic (e.g., uncertain identification within complexes of morphologically 214 

highly similar species). In addition, we removed records collected before 1970 to avoid a 215 
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temporal mismatch between occurrence records and predictor variables (Milanesi, Della Rocca, 216 

and Robinson 2020). 217 

Where appropriate, we reclassified records to account for recent genetic analyses that 218 

have led to a subdivision of species complexes into multiple cryptic species. This reclassification 219 

was done based on available information on the distribution of cryptic species (see Appendix S2 220 

for details on taxonomic revisions within species complexes as well as an overview of species). 221 

To remove spatial duplicates and reduce sampling bias, we thinned occurrence records (Boria et 222 

al. 2014). As thinning records may reduce model performance for rare species (Steen et al. 2021), 223 

we classified species according to the percentile values of sample prevalence (i.e., number of 224 

raster cells with presence records) into three classes (low, intermediate, and high prevalence). We 225 

then thinned records with minimum distances of 1km, 5km, and 10km for species with low, 226 

intermediate, and high prevalence, respectively. 227 

As expert information on species range limits, we compiled IUCN range maps for all 228 

species. This led to four species being excluded from modelling since no range map was 229 

available. Finally, we selected species with a minimum of 30 remaining records to ensure robust 230 

training data sets for building SDMs, resulting in 9,650 presence records from 49 species. 231 

3.2 Species distribution modeling 232 

We used presence-background SDMs (Elith and Leathwick 2009) to characterize the distributions 233 

of bats in our study area. For modeling, we compiled a set of 40 candidate predictor variables, 234 

indicating four key dimensions of habitat suitability for bats: climate, land cover and vegetation 235 

productivity, topography and geology, and human pressure and modification (Table 1). While 236 

target resolution of our SDMs was 1km², we derived all predictor variables at three spatial scales 237 

(1km², 5km² and 10km²), resulting in 120 candidate variables. Including coarser scales derived 238 
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through moving window averaging allows better characterizing habitat conditions at the scale of 239 

bat home ranges (e.g., available forest cover within the surrounding area of a bat roost). 240 

Table 1: Overview of environmental predictor variables used in species distribution models. 241 

Category Predictor Available time steps Data source 
Climate 19 bioclimatic variables 1981-2010 (average) CHELSA climate data 

(Karger et al. 2017) 

Land cover and 
vegetation 
productivity 

Six land-cover proportions 
(agriculture, forest, shrubs, 
herbaceous vegetation, bare 
and sparse vegetation, 
water) 

1992-2020 (annual) ESA CCI land cover 

 Nine Landsat-based 
spectral-temporal metrics 
(cumulative, minimum and 
seasonality metrics for 
Tasseled Cap greenness, 
brightness, and wetness 
indices) 

1990, 1995, 2000, 
2005, 2010, 2015 

Landsat satellite imagery 
(Oeser et al. 2020) 

Topography and  

geology 

Terrain ruggedness index - (Amatulli et al. 2018) 

Presence of karstifiable 
rocks 

- World Karst Aquifer Map 
(Chen et al. 2017) 

Human pressure 
and 
modification 

Human modification index 1990, 2000, 2010, 
2015, 2017 

(Theobald et al. 2020) 

 

 Accessibility (travel time to 
cities) 

2015 (Weiss et al. 2018) 

 Nighttime-lights 1992-2018 (Zhao et al. 2022) 

 Forest landscape integrity 
index 

2019 (Grantham et al. 2020) 

 242 

We sampled background points using a target group bias grid, created from kernel density 243 

estimation based on all presence records in our dataset. Using the density of bat occurrence 244 

records as sampling weights for background points allows characterizing sampling effort and 245 

helps to mitigate the influence of sampling bias in presence-background SDMs (Barber et al. 246 
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2022; Inman et al. 2021; Syfert, Smith, and Coomes 2013). For each species, we sampled 247 

background points equal to ten times the number of available presence records. 248 

We used three SDM algorithms: Maxent (R-package dismo; Hijmans et al., 2020), 249 

random forests (R-package randomForest; Cutler & Wiener, 2022), and boosted generalized 250 

additive models (GAMs, R-package mboost; Hothorn et al., 2022). Following recommendations 251 

by Valavi et al. (2021), we used down-sampled random forests, in which subsamples of the 252 

background points are used within each individual tree in order to correct for class imbalances. In 253 

a first modeling step, we performed variable selection by fitting univariate models (with default 254 

parameters) for all 120 candidate variables and evaluating their predictive performance using the 255 

area under the receiver operating characteristic curve (AUC) and Pearson correlation between the 256 

predicted and observed presence (COR) in a five-fold cross validation (Valavi, Guillera-Arroita, 257 

et al. 2021). For selecting the best-performing model, we combined AUC and COR into a single 258 

performance score by rescaling their values across all tested models to a 0-1 scale and calculating 259 

the mean of rescaled AUC and COR values. Based on this combined performance score, for each 260 

species, we selected the set of variables offering the best predictive performance while having 261 

correlation coefficients |r|<0.7 (Dormann et al. 2013). Using the selected variables in a second 262 

five-fold cross validation, we tuned algorithm parameters for all species (selecting regularization 263 

multipliers for Maxent, mtry and maxnodes parameters in random forest, and the number of 264 

boosting iterations in boosted GAMs; see Appendix S4 for details). 265 

3.3 Stacked generalizations 266 

We implemented stacked generalizations in two ways. First, we created pure algorithm 267 

ensembles (hereafter SDM ensembles) solely relying on the predictions of the three SDM 268 

algorithms as predictors in the meta-learner. Second, we created expert-informed ensembles 269 
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additionally including information from IUCN range maps. Additionally, we compared two 270 

approaches for adding distance terms to the meta-learner. First, we used species-specific distance 271 

terms, using the distance of species-level training points to the species’ IUCN range as a 272 

predictor in the meta-learner. Second, we calculated a target-group distance term, which we 273 

derived by fitting a logistic regression to the distances of all bat occurrence records in our dataset 274 

(i.e., all 49 species). To deal with (quasi-)complete separation in species-specific distance terms, 275 

we used bias-reduced logistic regression implemented in the R-package brglm2 (Kosmidis et al. 276 

2023) for fitting meta-learners. 277 

A critical consideration when using stacked generalizations is the risk of overfitting the 278 

meta-learner. A widely adopted strategy for this purpose, referred to as Super Learner (van der 279 

Laan, Polley, and Hubbard 2007; Naimi and Balzer 2018), uses out-of-sample predictions (i.e., 280 

from cross validation) for training the meta-learner. To assess the effect of overfitting on stacked 281 

generalizations, we compared meta-learners trained on out-of-sample vs. in-sample predictions 282 

(i.e., with and without the Super Learner strategy). 283 

We compared the predictive performance of all three tested modeling approaches using 284 

five-fold cross validation: (1) single-algorithm SDMs (i.e., Maxent, random forest, and boosted 285 

GAMs), (2) SDM ensembles, (3) expert-informed ensembles. To create distribution maps for all 286 

species, we predicted all models for the most recent time step (target year for prediction: 2020). 287 

To compare mapped distribution patterns between SDM ensembles and expert-informed 288 

ensembles, we calculated two metrics: First, species-wise niche breadth using Levins’ B2 metric, 289 

describing the uniformity of predicted suitability in geographic space (Warren et al. 2021), and 290 

second range overlaps calculated using Schoener’s D metric, describing the similarity of 291 

predicted suitability between species pairs (Warren, Glor, and Turelli 2008). We hypothesized 292 

that expert-informed ensembles should result in overall lower niche breadths and lower range 293 
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overlaps, since integrating information on species’ range limits should correct for the 294 

overprediction of species ranges by SDMs due to missing information on the effect of dispersal 295 

limitations and biotic interactions (Merow et al. 2017). 296 

4 Results 297 

The accuracy of IUCN range maps varied considerably across bat species. On average, 73% of 298 

presence records fell inside expert-defined ranges (inter-quartile range: 22%), with records lying 299 

at an average distance of 50 km of expert-defined range boundaries (inter-quartile range: 30 km). 300 

These differences in the accuracy of expert range maps translated into considerable variation in 301 

species-specific distance terms and thus clear differences in how predicted suitability values 302 

declined outside expert ranges when using expert-informed ensembles. In the case of accurate 303 

expert ranges, suitability sharply declined outside expert ranges, leading to the exclusion of (often 304 

large) areas identified as environmentally suitable by SDMs but lying outside species’ ranges 305 

(e.g., Myotis myotis in Figure 3). Conversely, when occurrence records indicated that expert 306 

range maps were inaccurate, SDMs clearly dominated the predictions of expert-informed 307 

ensembles, allowing to identify areas outside IUCN ranges as likely occupied by species (e.g., 308 

Taphozous nudiventris in Figure 3). When using target-group instead of species-specific distance 309 

terms, suitability values declined at similar rates outside expert ranges across species (Appendix 310 

S4). 311 
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 312 

Figure 3: Comparison of distribution maps (A+B) and decline in predicted occurrence 313 

probabilities outside expert ranges (C+D) for two example species with high (Myotis myotis) and 314 
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low expert map accuracy (Taphozous nudiventris). Distribution maps based on IUCN ranges 315 

(including available presence records), SDM ensembles, and expert-informed ensembles are 316 

shown. Expert-informed ensembles correspond to models built with species-specific distance 317 

terms. Plots of decline in predicted occurrence probabilities outside expert ranges (C+D) are 318 

based on loess smooth to the data. Maps are in Albers equal area projection. 319 

 320 

Considering predictive performance, stacked generalization ensembles outperformed single-321 

algorithm SDMs. However, training on out-of-sample predictions was necessary to achieve 322 

optimal predictive performance (i.e., using Super Learner approach; Figure 4). Specifically, 323 

expert-informed ensembles built with species-specific distance terms achieved the highest 324 

predictive performance according to both AUC and COR values, followed by SDM ensembles 325 

and expert-informed ensembles with target-group distance terms (Figure 4; since COR values 326 

showed no qualitative difference to AUC, we only show AUC values here). 327 

 328 

 329 
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Figure 4: Predictive performance of modeling approaches for 49 bat species in Eastern 330 

Mediterranean, Western Asia and Central Asia according to AUC values. 331 

 332 

Performance improvements of expert-informed ensembles compared to SDM ensembles 333 

generally diminished with the average distance of presence records to expert ranges (i.e., 334 

increasing performance gains with higher expert map accuracy; Figure 5A). Performance 335 

improvements tended also to be higher for species with fewer available occurrence records as 336 

well as for species with smaller range extents (Figure 5B+C), but these relationships were 337 

considerably weaker than for expert map accuracy. 338 

 339 

 340 

Figure 5: Improvement in predictive performance of expert-informed ensembles compared to 341 

SDM ensembles in relationship to expert map accuracy (mean distance of presence records to 342 

expert range, including points inside the range with distance = 0). Data for expert-informed 343 

ensembles with species-specific distance terms are shown, with linear trend plotted on top. 344 

 345 
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Considering mapped distribution patterns, expert-informed ensembles resulted in lower niche 346 

breadths (i.e., less uniform distribution of predicted suitability in geographic space) for 83% of 347 

species compared to SDM ensembles. On average, species-wise niche breadths obtained from 348 

expert-informed ensembles were 21% lower compared to niche breadths derived from SDM 349 

ensembles (Figure 6A). Range overlaps between species pairs (i.e., similarity of predicted 350 

suitability) derived from expert-informed ensembles were lower than overlaps predicted by SDM 351 

ensembles in 90% of the cases. On average, overlaps were 30% lower in expert-informed 352 

ensembles compared to those obtained from SDM ensembles(Figure 6B). 353 

 354 

 355 

Figure 6: Distribution of (A) niche breadths and (B) range overlaps of bat species according to 356 

SDM ensembles vs. expert-informed ensembles. 357 

 358 

5. Discussion 359 

Addressing the Wallacean shortfall is critical to biogeographical research and conservation 360 

planning, yet accurately mapping species’ realized distributions through species distribution 361 
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modeling presents a significant challenge. Here, we developed a new approach for integrating 362 

expert information on range limits in species distribution models by making use of stacked 363 

generalization, an ensemble method widely applied in machine learning but still underexplored in 364 

the context of SDMs. Testing our approach with a dataset covering 49 bat species demonstrated 365 

its flexibility and promise for improving species distribution mapping, allowing to combine the 366 

key strength of SDMs (characterizing environmentally suitable habitats) with that of expert range 367 

maps (characterizing range limits) without requiring prior knowledge about expert range maps or 368 

having to rely on specific modeling algorithms. In a broader context, we add to the growing 369 

toolbox of integrated SDM approaches, providing an important step towards more accurate 370 

assessments of species’ distributions. 371 

The application of our approach showed that it effectively enables the exclusion of areas 372 

lying outside species’ realized range limits, while preserving fine-scale predictions of habitat 373 

suitability, which offer a key strength of SDM approaches (Mainali et al. 2020). At the same 374 

time, when enough presence records are recorded outside expert-defined ranges, expert range 375 

maps exert minimal influence on mapped distributions, demonstrating the flexibility of our 376 

approach towards varying levels of expert map accuracy. We did not have an independent 377 

validation dataset on species’ absence available, precluding us from performing a more detailed 378 

assessment of how our approach affects the accuracy of mapped distributions. Yet, we found 379 

improved predictive performance of expert-informed ensembles compared to pure SDM 380 

ensembles within our presence-background dataset, with performance improvements depending 381 

on the accuracy of expert range maps. 382 

Our approach offers an alternative to applying user-defined spatial offsets in point-process 383 

models as proposed by Merow et al. (2017). Choosing between stacked generalization and spatial 384 

offsets as ways to integrate expert range maps boils down to selecting different styles of 385 
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modeling approaches: relying either on prior knowledge when using spatial offsets or on 386 

available occurrence datasets when using stacked generalizations for characterizing expert map 387 

accuracy. The appropriateness of using stacked generalizations thus hinges on whether available 388 

occurrence records can accurately capture expert map accuracy. As highlighted by Merow et al. 389 

(2017), using occurrence records for characterizing expert map accuracy requires that their 390 

collection is independent of expert range maps (i.e., expert range maps not affecting sampling 391 

intensity or species identification), otherwise they will give a biased view on expert map 392 

accuracy. However, in many cases occurrence records provide a more comprehensive and up-to-393 

date picture of species distributions compared to expert range maps. Moreover, occurrence 394 

records will often be the best available (or only) type of data allowing to evaluate expert range 395 

maps, as other a priori information on their accuracy is difficult to obtain. Our application of 396 

stacked generalizations for 49 bat species highlighted the advantage of allowing for species-to-397 

species variation in the uncertainty of expert-defined ranges, with models achieving the highest 398 

predictive performance when using species-specific distance terms. Thus, given that expert map 399 

accuracies are expected to vary strongly across species, stacked generalization provides a simple 400 

yet effective data-driven approach without the need for manually adjusting prior expectations 401 

when assessing many species at once. If occurrence datasets for individual species are deemed 402 

too incomplete or biased for characterizing expert map accuracy, target-group distance can be 403 

used. Both these options are conceptually very similar to manually defining spatial offsets in 404 

point process models based on available evidence on expert map accuracies (Merow et al. 2017), 405 

yet eliminate the need for subjective decisions potentially biasing results. In sum, our approach 406 

provides an easily and widely applicable data-driven alternative for integrating expert range 407 

information in SDMs, proving particularly useful when accurate and comprehensive occurrence 408 

datasets are available. 409 
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An additional key advantage of our approach lies in its flexibility to combine expert range 410 

maps with any combination of modeling algorithms, thereby facilitating the use of algorithm 411 

ensembles. In contrast to the use of spatial offsets in point process models, stacked 412 

generalizations can be easily combined with machine learning algorithms that do not include 413 

offset terms. This enables the use of algorithms such as random forest, often found among the 414 

best-performing in comparisons of SDM algorithms (Valavi, Guillera-Arroita, et al. 2021), also 415 

featuring the highest discriminative accuracy (i.e., AUC values) in our dataset. With SDM 416 

ensembles performing better than any individual modeling algorithm in our dataset, our results 417 

also point towards the potential of stacked generalizations as a method for combining modeling 418 

algorithms more generally. In line with findings on the importance of avoiding overfitting in 419 

stacked generalizations (van der Laan et al. 2007; Naimi and Balzer 2018), we only achieved 420 

improved performance when using out-of-sample predictions for training the meta-learner 421 

(“Super Learner” approach). It has been shown that in large samples, the Super Learner approach 422 

performs at least as well as the best-performing individual algorithm (van der Laan and Dudoit 423 

2003; van der Laan et al. 2007). Yet, despite its potential, stacked generalization has remained 424 

neglected in the context of species distribution modeling (El Alaoui and Idri 2023), with studies 425 

typically relying on unweighted or weighted model averaging for combining algorithms and 426 

stacked generalization not being considered in systematic assessments of SDM ensemble 427 

methods (Hao et al. 2020). We therefore recommend stacked generalization as a versatile 428 

approach for combining SDM algorithms, which should be included in future comparisons of 429 

SDM ensemble methods. 430 

In most cases, the integration of expert range maps resulted in considerably less uniform 431 

occurrence predictions and decreased range overlap between species, likely reflecting more 432 

realistic predictions of bat distributions in our study area. Both SDMs and expert range maps tend 433 
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to overpredict occurrence of species since they are missing information on factors limiting 434 

species’ ranges (dispersal and competition in the case of SDMs, habitat suitability in the case of 435 

expert ranges). Integrating both data sources can therefore improve estimates of individual 436 

species’ distributions as well as species richness (Ellis-Soto et al. 2021). Additionally, by 437 

disentangling environmental constraints from other limiting factors, the combination of SDMs 438 

and expert ranges can help to better understand the influence of non-environmental factors 439 

affecting range limits (i.e., biotic interactions and dispersal). For example, contrasting potential 440 

range overlaps derived from SDMs with realized range overlaps derived from expert-informed 441 

models can provide a window into the potential role of interspecific competition in shaping 442 

species’ ranges (Novella-Fernandez et al. 2021). In sum, our approach has broad applicability in 443 

ecological research and conservation planning, for example for updating species’ conservation 444 

status, assessing conservation priorities through more accurate species richness mapping, and by 445 

providing new ecological insights into factors determining species’ range limits. 446 

Our approach adds to the growing toolbox of integrated species distribution modeling 447 

approaches by providing a flexible and easily applicable approach for integrating SDMs with 448 

readily available information on species’ range limits. As SDMs have become one of the most 449 

widely used tools in ecological and biogeographical research, an increasing recognition of their 450 

shortcomings has developed (A. Lee-Yaw et al. 2022; Franklin 2010). Recently, integrated 451 

modeling approaches have been proposed that try to enhance SDMs by combining them with 452 

additional sources of information (Fletcher Jr. et al. 2019; Miller et al. 2019). Integrated SDM 453 

approaches already offer key innovations for improving the mapping of species’ realized 454 

distributions (Jung 2023; Miller et al. 2019). The broader adoption of these methods, combined 455 

with a rapid growth in the availability of biodiversity data will be critical for filling knowledge 456 

gaps about the distribution of species and overcome the Wallacean shortfall.  457 
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