

1 **Title:** The best of two worlds: using stacked generalization for integrating expert range maps in
2 species distribution models

3
4 **Authors:** Julian Oeser¹, Damaris Zurell², Frieder Mayer³, Emrah Çoraman^{3,4}, Nia Toshkova⁵,
5 Stanimira Deleva⁵, Ioseb Natradze⁶, Petr Benda^{7,8}, Astghik Ghazaryan⁹, Sercan Irmak^{4,10}, Nijat
6 Alisafa Hasanov¹¹, Gulnar Gahraman Guliyeva¹¹, Mariya Gritsina¹², and Tobias Kuemmerle^{1,13}

7
8 **Affiliations:**

9 ¹ Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
10 Germany

11 ² Ecology and Macroecology, Inst. for Biochemistry and Biology, University of Potsdam, 14469
12 Potsdam, Germany

13 ³ Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin
14 10115, Germany

15 ⁴ Eurasia Institute of Earth Sciences, Department of Ecology and Evolution, Istanbul Technical
16 University, Maslak, Istanbul 34469, Türkiye

17 ⁵ National Museum of Natural History, Bulgarian Academy of Sciences, Sofia 1000, Bulgaria

18 ⁶ Institute of Zoology of Ilia State University, Tbilisi 0162, Georgia

19 ⁷ Department of Zoology, Natural History Museum Prague, 115 79 Praha 1, Czech Republic

20 ⁸ Department of Zoology, Faculty of Science, Charles University in Prague, 128 44 Praha 2,
21 Czech Republic

22 ⁹ Department of Zoology, Yerevan State University, Yerevan 0025, Armenia

23 ¹⁰ Science and Technology Research and Application Center, Balikesir University 10145,
24 Balikesir, Türkiye

25 ¹¹ Institute of Zoology, Ministry of Science and Education, 1004 Baku, Azerbaijan

26 ¹² Institute of Zoology, Academy of Science of Uzbekistan, 100053 Tashkent, Uzbekistan

27 ¹³ Integrative Research Institute on Transformation in Human Environment Systems, Humboldt-

28 Universität zu Berlin, Berlin, Germany

29

30 **Acknowledgements:**

31 We gratefully acknowledge Alexander Buknikashvili, Christian Dietz, Amit Dolev, Heliana

32 Dundarova, Eran Levin, and Panagiotis Georgiakakis for providing bat occurrence data. Giorgi

33 Sheklashvili, Andrei Kandaurov, Irina Rakhmatulina, Kursantbek Altybaev, Pirimkul

34 Mamatkalykov, Abdurashit Nizamievf, Alexey Dudashvili Svetlana V. Baskakova, Georgiy V.

35 Shakula, Kudaibergen Amirekul, Artemis Kafkaletou Diez, Ioanna Salvarina, and Eleni

36 Papadatou helped with the collection of bat occurrence data. In addition, we are thankful to

37 Christian Dietz for help with the taxonomic classification of bat occurrence records.

38

39 **Abstract**

40 Species distribution models (SDMs) are powerful tools for assessing suitable habitat across large
41 areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realized
42 distributions is often limited, since data biases or missing information on dispersal barriers or
43 biotic interactions hinder them from accurately delineating species' range limits. One way to
44 overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-
45 scale information on the extent of species' ranges that is complementary to information offered
46 by SDMs. Here, we propose a new approach for integrating expert range maps in SDMs based on
47 an ensemble method called stacked generalization. Specifically, our approach relies on training a
48 meta-learner regression model using predictions from one or more SDM algorithms alongside the
49 distance of training points to expert-defined ranges as predictor variables. We demonstrate our
50 approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the
51 Eastern Mediterranean, Western Asia, and Central Asia. Our approach offers a flexible method to
52 integrate expert range maps with any combination of SDM modeling algorithms, thus facilitating
53 the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for
54 uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is
55 often lacking. Our approach holds considerable promise for better understanding species
56 distributions, and thus for biogeographical research and conservation planning. In addition, our
57 work highlights the overlooked potential of stacked generalization as an ensemble method in
58 species distribution modeling.

59

60 **1 Introduction**

61 While global biodiversity is declining rapidly (Pimm et al. 2014), our knowledge about species'
62 distributions often remains limited (Diniz-Filho, De Marco Jr, and Hawkins 2010). This lack of
63 detailed information for many regions and taxa, referred to as the Wallacean shortfall (Hortal et
64 al. 2015), translates not only into knowledge gaps in biogeography and ecology, but also into real
65 barriers for conservation planning to ensure that limited conservation funding is spent most
66 effectively (Hochkirch et al. 2021). Species distribution models (SDMs) have become a central
67 tool for addressing the Wallacean shortfall, allowing to characterize species' niches by combining
68 occurrence records with environmental predictors for predicting species' distributions (Elith and
69 Leathwick 2009; Guisan and Thuiller 2005). Yet, although SDMs can accurately assess the
70 environmental suitability of habitats (i.e., map *potential distributions*), they typically lack
71 information on other factors limiting species' ranges, such as barriers to dispersal or biotic
72 interactions (i.e., competitive exclusion). This, in turn, means that the usefulness of SDMs for
73 mapping *realized distributions* of species can be limited, as their inability to identify range limits
74 often results in an overprediction of species' ranges, particularly when distributions are modelled
75 across large geographic extents (Calabrese et al. 2014; Merow, Wilson, and Jetz 2017; Soberón
76 2007). While methods for capturing dispersal and biotic interactions within SDMs have been
77 proposed (Ovaskainen et al. 2016; Zurell 2017), their applicability is often limited due to a lack
78 of adequate datasets or missing knowledge about underlying ecological processes.

79 A widely-applicable solution to improve SDMs' capability for assessing realized
80 distributions lies in their combination with external information on species' range limits
81 (Domisch, Wilson, and Jetz 2016; Fletcher Jr. et al. 2019; Merow et al. 2017). Most commonly,
82 range information is available in the form of expert-based range maps, which offer estimates of
83 species' range extents derived from occurrence information as well as expert knowledge about

84 geographical, biotic, or environmental range limits. The most important database of range maps
85 (particularly for terrestrial animals) is offered by the International Union for the Conservation of
86 Nature (IUCN), which provides expert-defined ranges for more than 150,000 species (IUCN
87 2022). Although widely available, expert range maps are frequently criticized for being coarse in
88 resolution (meaning that species will often be absent from many areas within the expert-defined
89 range), incomplete in terms of species coverage or outdated (Higino et al. 2023; Ramesh et al.
90 2017). Despite these shortcomings, expert range maps often provide the best-available (or only)
91 information on range limits for many species. More importantly, they provide information that is
92 highly complementary to data generated by SDMs (Merow et al. 2017). While range maps
93 characterize a species' extent of occurrence (i.e., its range limits), SDMs offer fine-scale
94 representations of suitable habitats, making approaches combining both datasets promising for
95 improving distribution assessments (Domisch et al. 2016; Ellis-Soto et al. 2021; Merow et al.
96 2017).

97 Several approaches have sought to combine these relative strengths of expert range maps
98 and SDMs, such as using range maps directly as predictors in SDMs (Domisch et al. 2016) or
99 adding spatial offset terms to models that are fit via point process models or related approaches
100 (e.g., Maxent; Merow et al., 2017). The latter approach is particularly promising as it allows to
101 account for uncertainty in expert range maps by incorporating user-defined decay curves that
102 reflect *a priori* expectations about the accuracy of expert range boundaries. Applying this
103 approach, however, can be challenging for two reasons. First, defining spatial offsets and decay
104 curves can be difficult if prior information on the accuracy of range maps is missing, potentially
105 leading to bias introduced by decisions on the strength and decay of the offset term. Second,
106 while the use of algorithm ensembles has become a key approach in species distribution
107 modeling (Araújo et al. 2019; Araújo and New 2007), several widely-used and well-performing

108 machine learning algorithms (e.g., random forests or support vector machines) do not feature
109 offset terms.

110 Here, we suggest stacked generalization (Wolpert 1992) as an alternative approach for
111 integrating external range information enabling flexible combinations of multiple SDM
112 algorithms. Designed as an ensemble method for combining multiple modeling algorithms,
113 stacked generalization uses the predictions of models built at one level as the input for a meta-
114 learner built at a second level (Naimi and Balzer 2018). Although being widely applied in
115 machine learning (Sesmero, Ledezma, and Sanchis 2015), and despite the general proliferation of
116 algorithm ensembles in SDM studies (Buisson et al. 2010; Hao et al. 2019), stacked
117 generalizations have rarely been used with SDMs (but see Bonannella et al., 2022; El Alaoui &
118 Idri, 2023). Here, we demonstrate the use of stacked generalization as an approach for integrating
119 expert range information with one or more SDM algorithms. Using available occurrence datasets
120 for characterizing expert map accuracy, our approach offers an alternative, data-driven method to
121 integrate expert range maps in SDMs while accounting for their uncertainty.

122 In the following, we first introduce our approach and highlight issues important to
123 consider in its application. Then, we assess our approach by applying it to a presence-only
124 occurrence dataset for 49 bat species collected across a large geographic extent covering four
125 biodiversity hotspots in the Eastern Mediterranean, Western and Central Asia. Specifically, we
126 compare the predictive performance as well as resulting distribution maps of (1) single-algorithm
127 SDMs, (2) ensembles of SDM algorithms built with stacked generalization, and (3) stacked
128 generalizations including expert range maps.

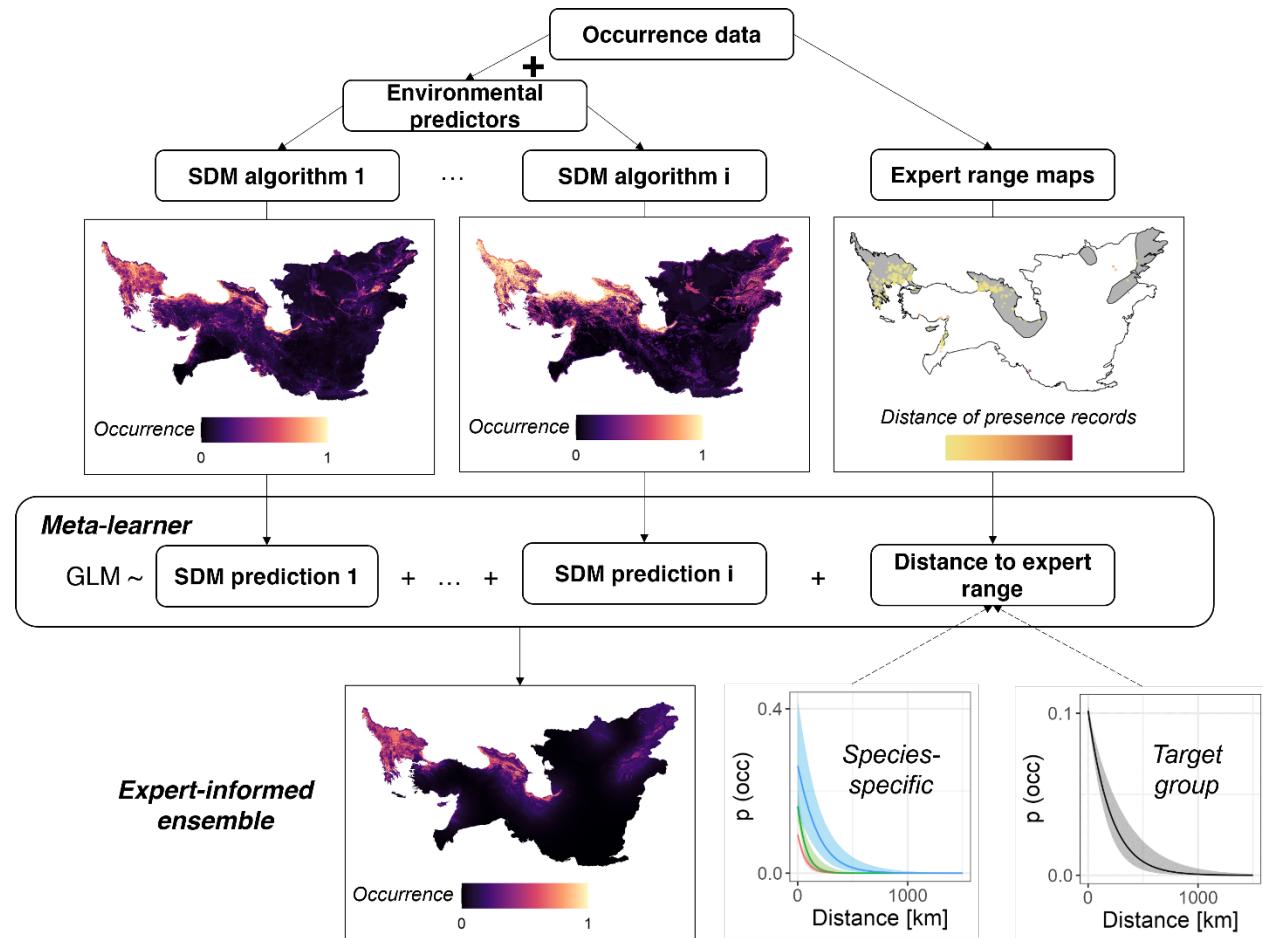
129 **2. Stacked generalization for integrating expert range information in SDMs**

130 Stacked generalization is an ensemble method for combining multiple models, often built with
131 different algorithms, using their individual predictions as training data in a meta-learner (Naimi
132 and Balzer 2018; Wolpert 1992). Here, we apply this approach to integrate one or more SDM
133 algorithms with expert range maps. By using the expert map as an additional model containing
134 complementary information to SDMs (i.e., coarse-scale estimate of range limits), our approach is
135 taking advantage of stacked generalizations working best if heterogeneous input models are
136 combined (Sesmoro et al. 2015).

137 Multiple potential approaches exist to combine SDMs with expert range maps via stacked
138 generalization. One approach is creating a predictor variable for the meta-learner by assigning a
139 fixed value ratio to training points lying inside vs. outside the expert-defined ranges, thereby
140 allowing to control how much weight is given to the expert map (Merow et al. 2017). However,
141 this approach assumes that the probability of occurrence is the same at any distance outside the
142 expert range, although a continuously decreasing probability with increasing distance from the
143 expert range should be expected (Merow et al. 2017). Therefore, we instead use the spatial
144 distance of the training points to the expert range boundaries as a predictor in the meta-learner
145 (Figure 1). This predictor, hereafter referred to as *distance term*, describes the (relative)
146 probability of observing the modeled species within a given distance of the expert-defined range,
147 thereby characterizing the uncertainty of the expert map. This approach is conceptually similar to
148 including spatial offsets with decay curves in point process models (Merow et al. 2017), and
149 results in predicted habitat suitability values smoothly decreasing outside the expert range.
150 However, in contrast to user-defined offsets, the distance term of the meta-learner is derived from
151 the occurrence records used to train SDMs. While using the same datasets for fitting SDMs and
152 assessing the uncertainty of the expert range maps might introduce bias if the collection of

153 occurrence records is influenced by knowledge about expert ranges (Merow et al. 2017), such a
154 data-driven approach will be particularly useful when accurate and representatively sampled
155 occurrence records are available or if prior knowledge about the accuracy of expert range maps is
156 lacking.

157 While the approach by Merow et al. (2017) allows to control the shape of the decay curve
158 by choosing several curve parameters, in stacked generalizations, the analyst can influence the
159 shape of the fitted distance term through the choice of the meta-learner algorithm or the
160 functional form of the distance term. As a baseline approach we here use logistic regression as a
161 meta-learner, which is widely used in stacked generalizations and results in distance terms
162 following a logistic function similar to the smooth decay curves proposed by Merow et al.
163 (2017). Conceptually, adding the distance term to a logistic regression meta-learner can be seen
164 as adding a constant ‘offset’ to all areas inside the expert-defined range (i.e., areas with distance
165 = 0). This offset is described by the intercept of the logistic regression and expresses the
166 (relative) probability of observing the species inside the expert range given suitability predictions
167 of 0 from all SDM algorithms. Predictions by the meta-learner will decrease with increasing
168 distance from the expert range according to the distance term (Figure 1).



169

170 **Figure 1:** Schematic overview of stacked generalization for combining SDM algorithms with
171 expert range maps. Predictions of multiple SDM algorithms are used together with the distance
172 of occurrence data to the expert range as predictor variables in a logistic regression meta-
173 learner, which then is used to predict the species' distribution. Maps show examples for one bat
174 species in our dataset (*Nyctalus noctula*). Map panel for expert range shows IUCN range in grey
175 with presence records colored according to their distance to the IUCN range. Shown maps are in
176 Albers equal area projection.

177

178 By relating individual species' occurrences to expert ranges, our approach accommodates
179 species-to-species variability in the uncertainty of expert ranges. However, due to a lack of

180 presence records or highly accurate expert range maps, in some cases only few or no presence
181 records might lie outside expert ranges, which will cause (quasi-)complete separation in the meta-
182 learner. We propose two potential solutions to this issue. First, if species-specific distance terms
183 should be used, bias-reduced logistic regression can be applied for fitting meta-learners (Firth
184 1993). This commonly recommended strategy for dealing with (quasi-)complete separation in
185 logistic regressions ensures finite parameter estimates and results in responses (i.e., distance
186 terms in our case) that are less steep compared to standard maximum likelihood estimation
187 (Heinze and Schemper 2002). Second, when occurrence data from multiple related taxa are
188 available, species-specific distance terms of meta-learners might be replaced with ‘target-group’
189 distance terms, which can be calculated by fitting a meta-learner based on training points from
190 multiple or all available species. In this case, the distance term characterizes the uncertainty
191 (probability of occurrences lying outside expert ranges) across all included taxa and does not vary
192 between species, similar to applying the same decay curve across species when integrating range
193 maps as spatial offsets in point process models (Merow et al. 2017).

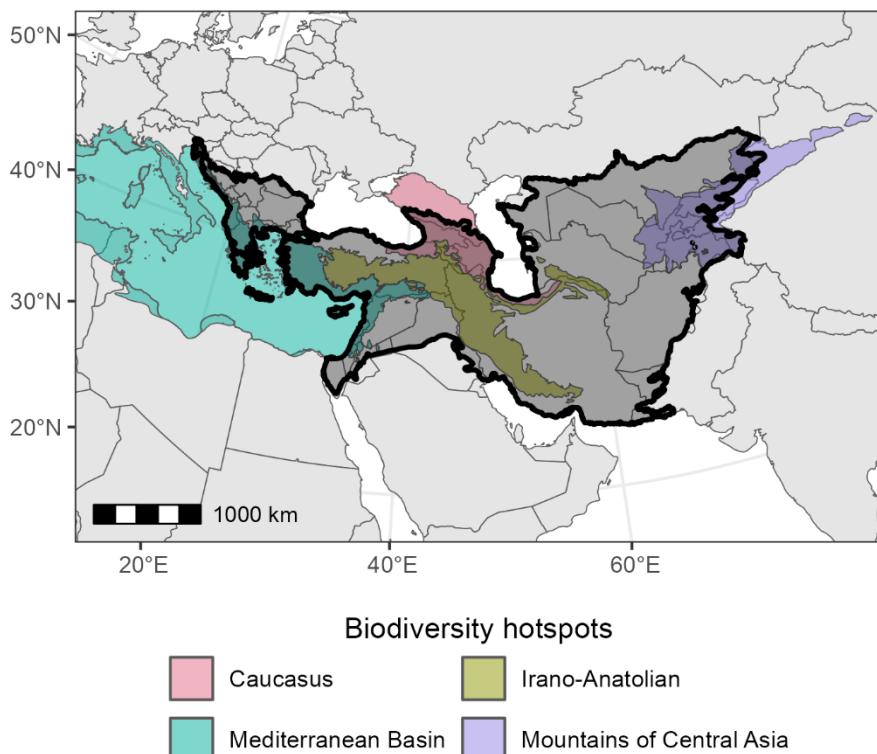
194 **3. Method application**

195 ***3.1 Study area and bat occurrence data***

196 Our study area covers 6.5 million km² and intersects four global biodiversity hotspots (following
197 Myers et al., 2000): The eastern part of the Mediterranean hotspot, the Caucasus hotspot, the
198 Irano-Anatolian hotspot, as well as partially covering the Mountains of Central Asia hotspot. To
199 delineate our study area, we fully included all countries in which the sampling of our bat
200 occurrence records was primarily conducted (Afghanistan, Albania, Armenia, Azerbaijan,
201 Bulgaria, Georgia, Greece, Iran, Israel, Montenegro, Syria, Turkey). The borders of our study
202 area were defined based on ecoregion boundaries (Olson et al. 2001). Our study area represents

203 the contact zone between the Western and Eastern Palearctic species pools, where information on
204 the distribution of bats remains limited.

205



206

207 **Figure 2:** Extent of the study area, shown as black polygon and intersecting global biodiversity
208 hotspots shown as colored polygons. Map is in Albers equal area projection.

209

210 We collected and harmonized bat occurrence datasets from various sources, including national
211 databases, field records, and literature data (see Appendix S1 for an overview of all data sources).
212 In total, we gathered 37,714 occurrence records from 61 taxa. To ensure the quality of records
213 used for model training, we removed all instances in which a species-level identification was
214 impossible or problematic (e.g., uncertain identification within complexes of morphologically
215 highly similar species). In addition, we removed records collected before 1970 to avoid a

216 temporal mismatch between occurrence records and predictor variables (Milanesi, Della Rocca,
217 and Robinson 2020).

218 Where appropriate, we reclassified records to account for recent genetic analyses that
219 have led to a subdivision of species complexes into multiple cryptic species. This reclassification
220 was done based on available information on the distribution of cryptic species (see Appendix S2
221 for details on taxonomic revisions within species complexes as well as an overview of species).
222 To remove spatial duplicates and reduce sampling bias, we thinned occurrence records (Boria et
223 al. 2014). As thinning records may reduce model performance for rare species (Steen et al. 2021),
224 we classified species according to the percentile values of sample prevalence (i.e., number of
225 raster cells with presence records) into three classes (low, intermediate, and high prevalence). We
226 then thinned records with minimum distances of 1km, 5km, and 10km for species with low,
227 intermediate, and high prevalence, respectively.

228 As expert information on species range limits, we compiled IUCN range maps for all
229 species. This led to four species being excluded from modelling since no range map was
230 available. Finally, we selected species with a minimum of 30 remaining records to ensure robust
231 training data sets for building SDMs, resulting in 9,650 presence records from 49 species.

232 ***3.2 Species distribution modeling***

233 We used presence-background SDMs (Elith and Leathwick 2009) to characterize the distributions
234 of bats in our study area. For modeling, we compiled a set of 40 candidate predictor variables,
235 indicating four key dimensions of habitat suitability for bats: climate, land cover and vegetation
236 productivity, topography and geology, and human pressure and modification (Table 1). While
237 target resolution of our SDMs was 1km², we derived all predictor variables at three spatial scales
238 (1km², 5km² and 10km²), resulting in 120 candidate variables. Including coarser scales derived

239 through moving window averaging allows better characterizing habitat conditions at the scale of
240 bat home ranges (e.g., available forest cover within the surrounding area of a bat roost).

241 **Table 1:** Overview of environmental predictor variables used in species distribution models.

Category	Predictor	Available time steps	Data source
Climate	19 bioclimatic variables	1981-2010 (average)	CHELSA climate data (Karger et al. 2017)
Land cover and vegetation productivity	Six land-cover proportions (agriculture, forest, shrubs, herbaceous vegetation, bare and sparse vegetation, water)	1992-2020 (annual)	ESA CCI land cover
	Nine Landsat-based spectral-temporal metrics (cumulative, minimum and seasonality metrics for Tasseled Cap greenness, brightness, and wetness indices)	1990, 1995, 2000, 2005, 2010, 2015	Landsat satellite imagery (Oeser et al. 2020)
Topography and geology	Terrain ruggedness index	-	(Amatulli et al. 2018)
	Presence of karstifiable rocks	-	World Karst Aquifer Map (Chen et al. 2017)
Human pressure and modification	Human modification index	1990, 2000, 2010, 2015, 2017	(Theobald et al. 2020)
	Accessibility (travel time to cities)	2015	(Weiss et al. 2018)
	Nighttime-lights	1992-2018	(Zhao et al. 2022)
	Forest landscape integrity index	2019	(Grantham et al. 2020)

242
243 We sampled background points using a target group bias grid, created from kernel density
244 estimation based on all presence records in our dataset. Using the density of bat occurrence
245 records as sampling weights for background points allows characterizing sampling effort and
246 helps to mitigate the influence of sampling bias in presence-background SDMs (Barber et al.

247 2022; Inman et al. 2021; Syfert, Smith, and Coomes 2013). For each species, we sampled
248 background points equal to ten times the number of available presence records.

249 We used three SDM algorithms: Maxent (R-package *dismo*; Hijmans et al., 2020),
250 random forests (R-package *randomForest*; Cutler & Wiener, 2022), and boosted generalized
251 additive models (GAMs, R-package *mboost*; Hothorn et al., 2022). Following recommendations
252 by Valavi et al. (2021), we used down-sampled random forests, in which subsamples of the
253 background points are used within each individual tree in order to correct for class imbalances. In
254 a first modeling step, we performed variable selection by fitting univariate models (with default
255 parameters) for all 120 candidate variables and evaluating their predictive performance using the
256 area under the receiver operating characteristic curve (AUC) and Pearson correlation between the
257 predicted and observed presence (COR) in a five-fold cross validation (Valavi, Guillera-Arroita,
258 et al. 2021). For selecting the best-performing model, we combined AUC and COR into a single
259 performance score by rescaling their values across all tested models to a 0-1 scale and calculating
260 the mean of rescaled AUC and COR values. Based on this combined performance score, for each
261 species, we selected the set of variables offering the best predictive performance while having
262 correlation coefficients $|r| < 0.7$ (Dormann et al. 2013). Using the selected variables in a second
263 five-fold cross validation, we tuned algorithm parameters for all species (selecting regularization
264 multipliers for Maxent, *mtry* and *maxnodes* parameters in random forest, and the number of
265 boosting iterations in boosted GAMs; see Appendix S4 for details).

266 **3.3 Stacked generalizations**

267 We implemented stacked generalizations in two ways. First, we created pure algorithm
268 ensembles (hereafter *SDM ensembles*) solely relying on the predictions of the three SDM
269 algorithms as predictors in the meta-learner. Second, we created *expert-informed ensembles*

270 additionally including information from IUCN range maps. Additionally, we compared two
271 approaches for adding distance terms to the meta-learner. First, we used species-specific distance
272 terms, using the distance of species-level training points to the species' IUCN range as a
273 predictor in the meta-learner. Second, we calculated a target-group distance term, which we
274 derived by fitting a logistic regression to the distances of all bat occurrence records in our dataset
275 (i.e., all 49 species). To deal with (quasi-)complete separation in species-specific distance terms,
276 we used bias-reduced logistic regression implemented in the R-package *brglm2* (Kosmidis et al.
277 2023) for fitting meta-learners.

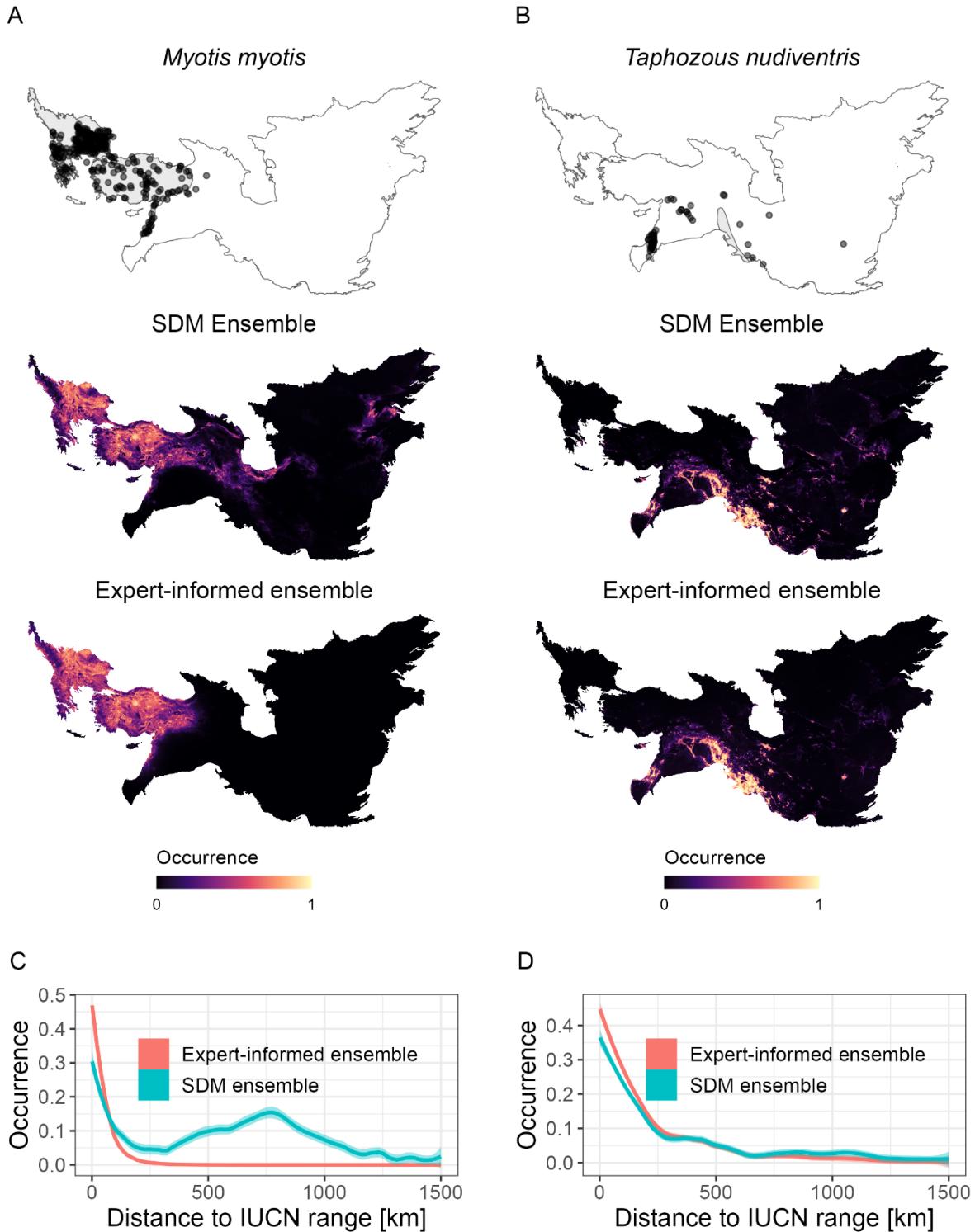
278 A critical consideration when using stacked generalizations is the risk of overfitting the
279 meta-learner. A widely adopted strategy for this purpose, referred to as *Super Learner* (van der
280 Laan, Polley, and Hubbard 2007; Naimi and Balzer 2018), uses out-of-sample predictions (i.e.,
281 from cross validation) for training the meta-learner. To assess the effect of overfitting on stacked
282 generalizations, we compared meta-learners trained on out-of-sample vs. in-sample predictions
283 (i.e., with and without the *Super Learner* strategy).

284 We compared the predictive performance of all three tested modeling approaches using
285 five-fold cross validation: (1) single-algorithm SDMs (i.e., Maxent, random forest, and boosted
286 GAMs), (2) SDM ensembles, (3) expert-informed ensembles. To create distribution maps for all
287 species, we predicted all models for the most recent time step (target year for prediction: 2020).
288 To compare mapped distribution patterns between SDM ensembles and expert-informed
289 ensembles, we calculated two metrics: First, species-wise niche breadth using Levins' B2 metric,
290 describing the uniformity of predicted suitability in geographic space (Warren et al. 2021), and
291 second range overlaps calculated using Schoener's D metric, describing the similarity of
292 predicted suitability between species pairs (Warren, Glor, and Turelli 2008). We hypothesized
293 that expert-informed ensembles should result in overall lower niche breadths and lower range

294 overlaps, since integrating information on species' range limits should correct for the
295 overprediction of species ranges by SDMs due to missing information on the effect of dispersal
296 limitations and biotic interactions (Merow et al. 2017).

297 **4 Results**

298 The accuracy of IUCN range maps varied considerably across bat species. On average, 73% of
299 presence records fell inside expert-defined ranges (inter-quartile range: 22%), with records lying
300 at an average distance of 50 km of expert-defined range boundaries (inter-quartile range: 30 km).
301 These differences in the accuracy of expert range maps translated into considerable variation in
302 species-specific distance terms and thus clear differences in how predicted suitability values
303 declined outside expert ranges when using expert-informed ensembles. In the case of accurate
304 expert ranges, suitability sharply declined outside expert ranges, leading to the exclusion of (often
305 large) areas identified as environmentally suitable by SDMs but lying outside species' ranges
306 (e.g., *Myotis myotis* in Figure 3). Conversely, when occurrence records indicated that expert
307 range maps were inaccurate, SDMs clearly dominated the predictions of expert-informed
308 ensembles, allowing to identify areas outside IUCN ranges as likely occupied by species (e.g.,
309 *Taphozous nudiventris* in Figure 3). When using target-group instead of species-specific distance
310 terms, suitability values declined at similar rates outside expert ranges across species (Appendix
311 S4).



312

313 **Figure 3: Comparison of distribution maps (A+B) and decline in predicted occurrence**

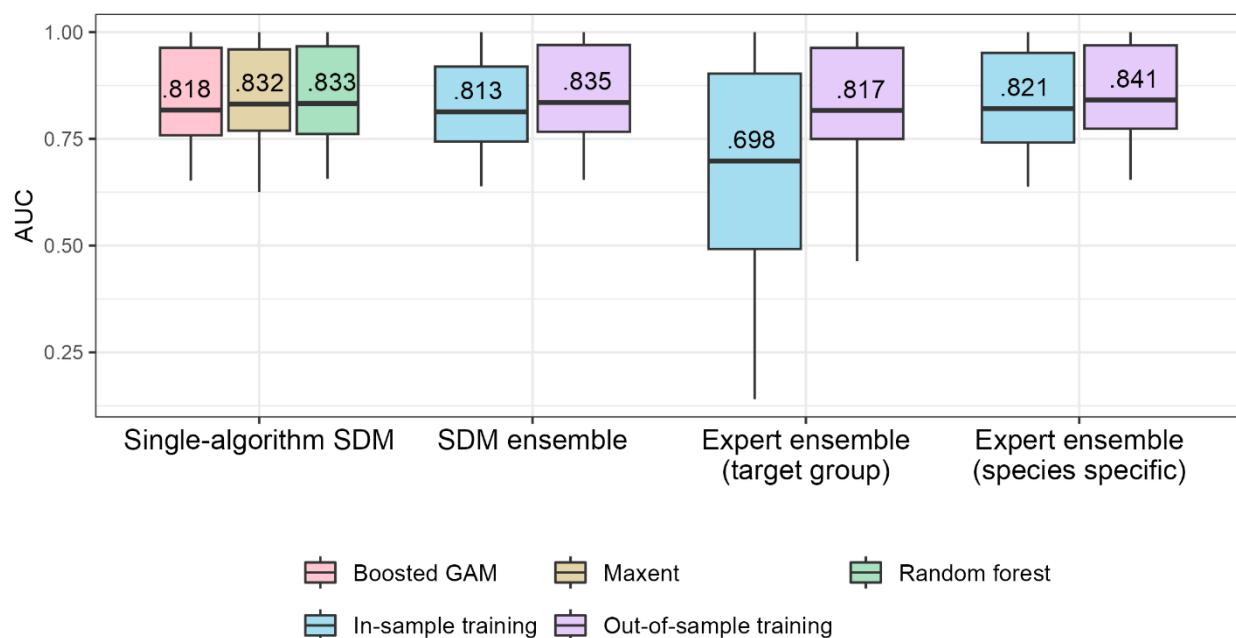
314 *probabilities outside expert ranges (C+D) for two example species with high (Myotis myotis) and*

315 *low expert map accuracy (*Taphozous nudiventris*). Distribution maps based on IUCN ranges*
316 *(including available presence records), SDM ensembles, and expert-informed ensembles are*
317 *shown. Expert-informed ensembles correspond to models built with species-specific distance*
318 *terms. Plots of decline in predicted occurrence probabilities outside expert ranges (C+D) are*
319 *based on loess smooth to the data. Maps are in Albers equal area projection.*

320

321 Considering predictive performance, stacked generalization ensembles outperformed single-
322 algorithm SDMs. However, training on out-of-sample predictions was necessary to achieve
323 optimal predictive performance (i.e., using *Super Learner* approach; Figure 4). Specifically,
324 expert-informed ensembles built with species-specific distance terms achieved the highest
325 predictive performance according to both AUC and COR values, followed by SDM ensembles
326 and expert-informed ensembles with target-group distance terms (Figure 4; since COR values
327 showed no qualitative difference to AUC, we only show AUC values here).

328



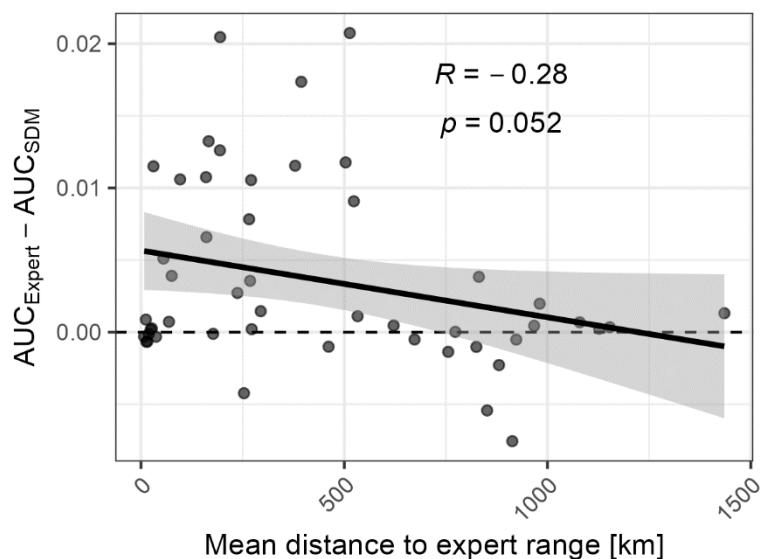
329

330 **Figure 4:** Predictive performance of modeling approaches for 49 bat species in Eastern
331 Mediterranean, Western Asia and Central Asia according to AUC values.

332

333 Performance improvements of expert-informed ensembles compared to SDM ensembles
334 generally diminished with the average distance of presence records to expert ranges (i.e.,
335 increasing performance gains with higher expert map accuracy; Figure 5A). Performance
336 improvements tended also to be higher for species with fewer available occurrence records as
337 well as for species with smaller range extents (Figure 5B+C), but these relationships were
338 considerably weaker than for expert map accuracy.

339



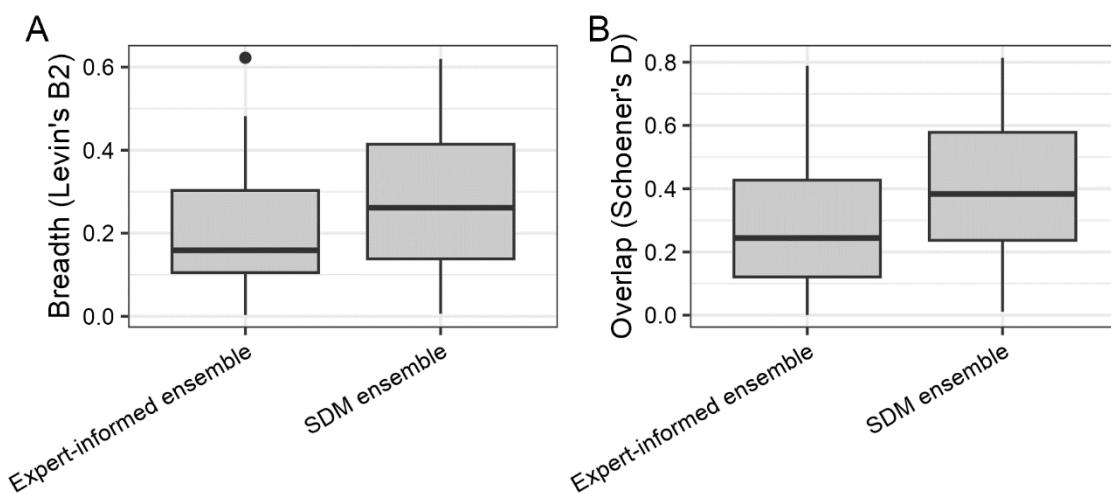
340

341 **Figure 5:** Improvement in predictive performance of expert-informed ensembles compared to
342 SDM ensembles in relationship to expert map accuracy (mean distance of presence records to
343 expert range, including points inside the range with distance = 0). Data for expert-informed
344 ensembles with species-specific distance terms are shown, with linear trend plotted on top.

345

346 Considering mapped distribution patterns, expert-informed ensembles resulted in lower niche
347 breadths (i.e., less uniform distribution of predicted suitability in geographic space) for 83% of
348 species compared to SDM ensembles. On average, species-wise niche breadths obtained from
349 expert-informed ensembles were 21% lower compared to niche breadths derived from SDM
350 ensembles (Figure 6A). Range overlaps between species pairs (i.e., similarity of predicted
351 suitability) derived from expert-informed ensembles were lower than overlaps predicted by SDM
352 ensembles in 90% of the cases. On average, overlaps were 30% lower in expert-informed
353 ensembles compared to those obtained from SDM ensembles (Figure 6B).

354



355
356 **Figure 6: Distribution of (A) niche breadths and (B) range overlaps of bat species according to**
357 **SDM ensembles vs. expert-informed ensembles.**

358

359 **5. Discussion**

360 Addressing the Wallacean shortfall is critical to biogeographical research and conservation
361 planning, yet accurately mapping species' realized distributions through species distribution

362 modeling presents a significant challenge. Here, we developed a new approach for integrating
363 expert information on range limits in species distribution models by making use of stacked
364 generalization, an ensemble method widely applied in machine learning but still underexplored in
365 the context of SDMs. Testing our approach with a dataset covering 49 bat species demonstrated
366 its flexibility and promise for improving species distribution mapping, allowing to combine the
367 key strength of SDMs (characterizing environmentally suitable habitats) with that of expert range
368 maps (characterizing range limits) without requiring prior knowledge about expert range maps or
369 having to rely on specific modeling algorithms. In a broader context, we add to the growing
370 toolbox of integrated SDM approaches, providing an important step towards more accurate
371 assessments of species' distributions.

372 The application of our approach showed that it effectively enables the exclusion of areas
373 lying outside species' realized range limits, while preserving fine-scale predictions of habitat
374 suitability, which offer a key strength of SDM approaches (Mainali et al. 2020). At the same
375 time, when enough presence records are recorded outside expert-defined ranges, expert range
376 maps exert minimal influence on mapped distributions, demonstrating the flexibility of our
377 approach towards varying levels of expert map accuracy. We did not have an independent
378 validation dataset on species' absence available, precluding us from performing a more detailed
379 assessment of how our approach affects the accuracy of mapped distributions. Yet, we found
380 improved predictive performance of expert-informed ensembles compared to pure SDM
381 ensembles within our presence-background dataset, with performance improvements depending
382 on the accuracy of expert range maps.

383 Our approach offers an alternative to applying user-defined spatial offsets in point-process
384 models as proposed by Merow et al. (2017). Choosing between stacked generalization and spatial
385 offsets as ways to integrate expert range maps boils down to selecting different styles of

386 modeling approaches: relying either on prior knowledge when using spatial offsets or on
387 available occurrence datasets when using stacked generalizations for characterizing expert map
388 accuracy. The appropriateness of using stacked generalizations thus hinges on whether available
389 occurrence records can accurately capture expert map accuracy. As highlighted by Merow et al.
390 (2017), using occurrence records for characterizing expert map accuracy requires that their
391 collection is independent of expert range maps (i.e., expert range maps not affecting sampling
392 intensity or species identification), otherwise they will give a biased view on expert map
393 accuracy. However, in many cases occurrence records provide a more comprehensive and up-to-
394 date picture of species distributions compared to expert range maps. Moreover, occurrence
395 records will often be the best available (or only) type of data allowing to evaluate expert range
396 maps, as other *a priori* information on their accuracy is difficult to obtain. Our application of
397 stacked generalizations for 49 bat species highlighted the advantage of allowing for species-to-
398 species variation in the uncertainty of expert-defined ranges, with models achieving the highest
399 predictive performance when using species-specific distance terms. Thus, given that expert map
400 accuracies are expected to vary strongly across species, stacked generalization provides a simple
401 yet effective data-driven approach without the need for manually adjusting prior expectations
402 when assessing many species at once. If occurrence datasets for individual species are deemed
403 too incomplete or biased for characterizing expert map accuracy, target-group distance can be
404 used. Both these options are conceptually very similar to manually defining spatial offsets in
405 point process models based on available evidence on expert map accuracies (Merow et al. 2017),
406 yet eliminate the need for subjective decisions potentially biasing results. In sum, our approach
407 provides an easily and widely applicable data-driven alternative for integrating expert range
408 information in SDMs, proving particularly useful when accurate and comprehensive occurrence
409 datasets are available.

410 An additional key advantage of our approach lies in its flexibility to combine expert range
411 maps with any combination of modeling algorithms, thereby facilitating the use of algorithm
412 ensembles. In contrast to the use of spatial offsets in point process models, stacked
413 generalizations can be easily combined with machine learning algorithms that do not include
414 offset terms. This enables the use of algorithms such as random forest, often found among the
415 best-performing in comparisons of SDM algorithms (Valavi, Guillera-Arroita, et al. 2021), also
416 featuring the highest discriminative accuracy (i.e., AUC values) in our dataset. With SDM
417 ensembles performing better than any individual modeling algorithm in our dataset, our results
418 also point towards the potential of stacked generalizations as a method for combining modeling
419 algorithms more generally. In line with findings on the importance of avoiding overfitting in
420 stacked generalizations (van der Laan et al. 2007; Naimi and Balzer 2018), we only achieved
421 improved performance when using out-of-sample predictions for training the meta-learner
422 (“Super Learner” approach). It has been shown that in large samples, the Super Learner approach
423 performs at least as well as the best-performing individual algorithm (van der Laan and Dudoit
424 2003; van der Laan et al. 2007). Yet, despite its potential, stacked generalization has remained
425 neglected in the context of species distribution modeling (El Alaoui and Idri 2023), with studies
426 typically relying on unweighted or weighted model averaging for combining algorithms and
427 stacked generalization not being considered in systematic assessments of SDM ensemble
428 methods (Hao et al. 2020). We therefore recommend stacked generalization as a versatile
429 approach for combining SDM algorithms, which should be included in future comparisons of
430 SDM ensemble methods.

431 In most cases, the integration of expert range maps resulted in considerably less uniform
432 occurrence predictions and decreased range overlap between species, likely reflecting more
433 realistic predictions of bat distributions in our study area. Both SDMs and expert range maps tend

434 to overpredict occurrence of species since they are missing information on factors limiting
435 species' ranges (dispersal and competition in the case of SDMs, habitat suitability in the case of
436 expert ranges). Integrating both data sources can therefore improve estimates of individual
437 species' distributions as well as species richness (Ellis-Soto et al. 2021). Additionally, by
438 disentangling environmental constraints from other limiting factors, the combination of SDMs
439 and expert ranges can help to better understand the influence of non-environmental factors
440 affecting range limits (i.e., biotic interactions and dispersal). For example, contrasting potential
441 range overlaps derived from SDMs with realized range overlaps derived from expert-informed
442 models can provide a window into the potential role of interspecific competition in shaping
443 species' ranges (Novella-Fernandez et al. 2021). In sum, our approach has broad applicability in
444 ecological research and conservation planning, for example for updating species' conservation
445 status, assessing conservation priorities through more accurate species richness mapping, and by
446 providing new ecological insights into factors determining species' range limits.

447 Our approach adds to the growing toolbox of integrated species distribution modeling
448 approaches by providing a flexible and easily applicable approach for integrating SDMs with
449 readily available information on species' range limits. As SDMs have become one of the most
450 widely used tools in ecological and biogeographical research, an increasing recognition of their
451 shortcomings has developed (A. Lee-Yaw et al. 2022; Franklin 2010). Recently, integrated
452 modeling approaches have been proposed that try to enhance SDMs by combining them with
453 additional sources of information (Fletcher Jr. et al. 2019; Miller et al. 2019). Integrated SDM
454 approaches already offer key innovations for improving the mapping of species' realized
455 distributions (Jung 2023; Miller et al. 2019). The broader adoption of these methods, combined
456 with a rapid growth in the availability of biodiversity data will be critical for filling knowledge
457 gaps about the distribution of species and overcome the Wallacean shortfall.

458 **References**

459 A. Lee-Yaw, Julie, Jenny L. McCune, Samuel Pironon, and Seema N. Sheth. 2022. “Species
460 Distribution Models Rarely Predict the Biology of Real Populations.” *Ecography*
461 2022(6):e05877. doi: 10.1111/ecog.05877.

462 Amatulli, Giuseppe, Sami Domisch, Mao-Ning Tuanmu, Benoit Parmentier, Ajay Ranipeta,
463 Jeremy Malczyk, and Walter Jetz. 2018. “A Suite of Global, Cross-Scale Topographic
464 Variables for Environmental and Biodiversity Modeling.” *Scientific Data* 5(1):180040.
465 doi: 10.1038/sdata.2018.40.

466 Araújo, Miguel B., Robert P. Anderson, A. Márcia Barbosa, Colin M. Beale, Carsten F.
467 Dormann, Regan Early, Raquel A. Garcia, Antoine Guisan, Luigi Maiorano, Babak
468 Naimi, Robert B. O’Hara, Niklaus E. Zimmermann, and Carsten Rahbek. 2019.
469 “Standards for Distribution Models in Biodiversity Assessments.” *Science Advances*
470 5(1):eaat4858. doi: 10.1126/sciadv.aat4858.

471 Araújo, Miguel B., and Mark New. 2007. “Ensemble Forecasting of Species Distributions.”
472 *Trends in Ecology & Evolution* 22(1):42–47. doi: 10.1016/j.tree.2006.09.010.

473 Barber, Robert A., Stuart G. Ball, Roger K. A. Morris, and Francis Gilbert. 2022. “Target-Group
474 Backgrounds Prove Effective at Correcting Sampling Bias in Maxent Models.” *Diversity
475 and Distributions* 28(1):128–41. doi: 10.1111/ddi.13442.

476 Bonannella, Carmelo, Tomislav Hengl, Johannes Heisig, Leandro Parente, Marvin N. Wright,
477 Martin Herold, and Sytze de Bruin. 2022. “Forest Tree Species Distribution for Europe
478 2000–2020: Mapping Potential and Realized Distributions Using Spatiotemporal Machine
479 Learning.” *PeerJ* 10:e13728. doi: 10.7717/peerj.13728.

480 Boria, Robert A., Link E. Olson, Steven M. Goodman, and Robert P. Anderson. 2014. “Spatial
481 Filtering to Reduce Sampling Bias Can Improve the Performance of Ecological Niche
482 Models.” *Ecological Modelling* 275:73–77. doi: 10.1016/j.ecolmodel.2013.12.012.

483 Buisson, Laëtitia, Wilfried Thuiller, Nicolas Casajus, Sovan Lek, and Gaël Grenouillet. 2010.
484 “Uncertainty in Ensemble Forecasting of Species Distribution.” *Global Change Biology*
485 16(4):1145–57. doi: 10.1111/j.1365-2486.2009.02000.x.

486 Calabrese, Justin M., Grégoire Certain, Casper Kraan, and Carsten F. Dormann. 2014. “Stacking
487 Species Distribution Models and Adjusting Bias by Linking Them to Macroecological
488 Models.” *Global Ecology and Biogeography* 23(1):99–112. doi: 10.1111/geb.12102.

489 Chen, Zhao, Augusto S. Auler, Michel Bakalowicz, David Drew, Franziska Griger, Jens
490 Hartmann, Guanghui Jiang, Nils Moosdorf, Andrea Richts, Zoran Stevanovic, George
491 Veni, and Nico Goldscheider. 2017. “The World Karst Aquifer Mapping Project:
492 Concept, Mapping Procedure and Map of Europe.” *Hydrogeology Journal* 25(3):771–85.
493 doi: 10.1007/s10040-016-1519-3.

494 Cutler, Fortran original by Leo Breiman and Adele, and R. port by Andy Liaw and Matthew
495 Wiener. 2022. *randomForest: Breiman and Cutler's Random Forests for Classification*
496 and *Regression* [computer program]. Version 4.7-1.1. <https://cran.r-project.org/web/packages/randomForest/index.html>.

498 Diniz-Filho, Jose Alexandre Felizola, Paulo De Marco Jr, and Bradford A. Hawkins. 2010.
499 “Defying the Curse of Ignorance: Perspectives in Insect Macroecology and Conservation
500 Biogeography.” *Insect Conservation and Diversity* 3(3):172–79. doi: 10.1111/j.1752-
501 4598.2010.00091.x.

502 Domisch, Sami, Adam M. Wilson, and Walter Jetz. 2016. “Model-Based Integration of Observed
503 and Expert-Based Information for Assessing the Geographic and Environmental
504 Distribution of Freshwater Species.” *Ecography* 39(11):1078–88. doi:
505 10.1111/ecog.01925.

506 Dormann, Carsten F., Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carré,
507 Jaime R. García Marquéz, Bernd Gruber, Bruno Lafourcade, Pedro J. Leitão, Tamara
508 Münkemüller, Colin McClean, Patrick E. Osborne, Björn Reineking, Boris Schröder,
509 Andrew K. Skidmore, Damaris Zurell, and Sven Lautenbach. 2013. “Collinearity: A
510 Review of Methods to Deal with It and a Simulation Study Evaluating Their
511 Performance.” *Ecography* 36(1):27–46. doi: 10.1111/j.1600-0587.2012.07348.x.

512 El Alaoui, Omar, and Ali Idri. 2023. “Predicting the Potential Distribution of Wheatear Birds
513 Using Stacked Generalization-Based Ensembles.” *Ecological Informatics* 75:102084. doi:
514 10.1016/j.ecoinf.2023.102084.

515 Elith, Jane, and John R. Leathwick. 2009. “Species Distribution Models: Ecological Explanation
516 and Prediction Across Space and Time.” *Annual Review of Ecology, Evolution, and*
517 *Systematics* 40(1):677–97. doi: 10.1146/annurev.ecolsys.110308.120159.

518 Ellis-Soto, Diego, Cory Merow, Giuseppe Amatulli, Juan L. Parra, and Walter Jetz. 2021.
519 “Continental-Scale 1 Km Hummingbird Diversity Derived from Fusing Point Records
520 with Lateral and Elevational Expert Information.” *Ecography* 44(4):640–52. doi:
521 10.1111/ecog.05119.

522 Firth, David. 1993. “Bias Reduction of Maximum Likelihood Estimates.” *Biometrika* 80(1):27–
523 38. doi: 10.2307/2336755.

524 Fletcher Jr., Robert J., Trevor J. Hefley, Ellen P. Robertson, Benjamin Zuckerberg, Robert A.
525 McCleery, and Robert M. Dorazio. 2019. “A Practical Guide for Combining Data to
526 Model Species Distributions.” *Ecology* 100(6):e02710. doi: 10.1002/ecy.2710.

527 Franklin, Janet. 2010. “Moving beyond Static Species Distribution Models in Support of
528 Conservation Biogeography.” *Diversity and Distributions* 16(3):321–30. doi:
529 10.1111/j.1472-4642.2010.00641.x.

530 Grantham, H. S., A. Duncan, T. D. Evans, K. R. Jones, H. L. Beyer, R. Schuster, J. Walston, J. C.
531 Ray, J. G. Robinson, M. Callow, T. Clements, H. M. Costa, A. DeGemmis, P. R. Elsen, J.

532 Ervin, P. Franco, E. Goldman, S. Goetz, A. Hansen, E. Hofsvang, P. Jantz, S. Jupiter, A.
533 Kang, P. Langhammer, W. F. Laurance, S. Lieberman, M. Linkie, Y. Malhi, S. Maxwell,
534 M. Mendez, R. Mittermeier, N. J. Murray, H. Possingham, J. Radachowsky, S. Saatchi, C.
535 Samper, J. Silverman, A. Shapiro, B. Strassburg, T. Stevens, E. Stokes, R. Taylor, T.
536 Tear, R. Tizard, O. Venter, P. Visconti, S. Wang, and J. E. M. Watson. 2020.
537 “Anthropogenic Modification of Forests Means Only 40% of Remaining Forests Have
538 High Ecosystem Integrity.” *Nature Communications* 11(1):5978. doi: 10.1038/s41467-
539 020-19493-3.

540 Guisan, Antoine, and Wilfried Thuiller. 2005. “Predicting Species Distribution: Offering More
541 than Simple Habitat Models.” *Ecology Letters* 8(9):993–1009. doi: 10.1111/j.1461-
542 0248.2005.00792.x.

543 Hao, Tianxiao, Jane Elith, Gurutzeta Guillera-Arroita, and José J. Lahoz-Monfort. 2019. “A
544 Review of Evidence about Use and Performance of Species Distribution Modelling
545 Ensembles like BIOMOD.” *Diversity and Distributions* 25(5):839–52. doi:
546 10.1111/ddi.12892.

547 Hao, Tianxiao, Jane Elith, José J. Lahoz-Monfort, and Gurutzeta Guillera-Arroita. 2020. “Testing
548 Whether Ensemble Modelling Is Advantageous for Maximising Predictive Performance
549 of Species Distribution Models.” *Ecography* 43(4):549–58. doi:
550 <https://doi.org/10.1111/ecog.04890>.

551 Heinze, Georg, and Michael Schemper. 2002. “A Solution to the Problem of Separation in
552 Logistic Regression.” *Statistics in Medicine* 21(16):2409–19. doi: 10.1002/sim.1047.

553 Higino, Gracielle T., Francis Banville, Gabriel Dansereau, Norma Rocio Forero Muñoz, Fredric
554 Windsor, and Timothée Poisot. 2023. “Mismatch between IUCN Range Maps and
555 Species Interactions Data Illustrated Using the Serengeti Food Web.” *PeerJ* 11:e14620.
556 doi: 10.7717/peerj.14620.

557 Hijmans, Robert J., Steven Phillips, and John Leathwick and Jane Elith. 2020. *dismo: Species*
558 *Distribution Modeling. R package*. [computer program]. Version 1.3-3. <https://CRAN.R-project.org/package=dismo>.

560 Hochkirch, Axel, Michael J. Samways, Justin Gerlach, Monika Böhm, Paul Williams, Pedro
561 Cardoso, Neil Cumberlidge, P. J. Stephenson, Mary B. Seddon, Viola Clausnitzer, Paulo
562 A. V. Borges, Gregory M. Mueller, Paul Pearce-Kelly, Domitilla C. Raimondo, Anja
563 Danielczak, and Klaas-Douwe B. Dijkstra. 2021. “A Strategy for the next Decade to
564 Address Data Deficiency in Neglected Biodiversity.” *Conservation Biology* 35(2):502–9.
565 doi: 10.1111/cobi.13589.

566 Hortal, Joaquín, Francesco de Bello, José Alexandre F. Diniz-Filho, Thomas M. Lewinsohn,
567 Jorge M. Lobo, and Richard J. Ladle. 2015. “Seven Shortfalls That Beset Large-Scale
568 Knowledge of Biodiversity.” *Annual Review of Ecology, Evolution, and Systematics*
569 46(1):523–49. doi: 10.1146/annurev-ecolsys-112414-054400.

570 Hothorn, Torsten, Peter Buehlmann, Thomas Kneib, Matthias Schmid, Benjamin Hofner, Fabian
571 Otto-Sobotka, Fabian Scheipl, and Andreas Mayr. 2022. *mboost: Model-Based Boosting*
572 [computer program]. Version 2.9-7. <https://cran.r-project.org/web/packages/mboost/index.html>.

574 Inman, Richard, Janet Franklin, Todd Esque, and Kenneth Nussear. 2021. “Comparing Sample
575 Bias Correction Methods for Species Distribution Modeling Using Virtual Species.”
576 *Ecosphere* 12(3):e03422. doi: 10.1002/ecs2.3422.

577 IUCN. 2022. “The IUCN Red List of Threatened Species.” *IUCN Red List of Threatened Species*.
578 Retrieved May 2, 2023 (<https://www.iucnredlist.org/en>).

579 Jung, Martin. 2023. “An Integrated Species Distribution Modelling Framework for
580 Heterogeneous Biodiversity Data.” *Ecological Informatics* 102127. doi:
581 10.1016/j.ecoinf.2023.102127.

582 Karger, Dirk Nikolaus, Olaf Conrad, Jürgen Böhner, Tobias Kawohl, Holger Kreft, Rodrigo
583 Wilber Soria-Auza, Niklaus E. Zimmermann, H. Peter Linder, and Michael Kessler. 2017.
584 “Climatologies at High Resolution for the Earth’s Land Surface Areas.” *Scientific Data*
585 4(1):170122. doi: 10.1038/sdata.2017.122.

586 Kosmidis, Ioannis, Euloge Clovis Kenne Pagui, Kjell Konis, and Nicola Sartori. 2023. *brglm2:*
587 *Bias Reduction in Generalized Linear Models* [computer program]. Version 0.9.
588 <https://cran.r-project.org/web/packages/brglm2/index.html>.

589 van der Laan, Mark, and Sandrine Dudoit. 2003. “Unified Cross-Validation Methodology For
590 Selection Among Estimators and a General Cross-Validated Adaptive Epsilon-Net
591 Estimator: Finite Sample Oracle Inequalities and Examples.” *U.C. Berkeley Division of*
592 *Biostatistics Working Paper Series*.

593 van der Laan, Mark, Eric C. Polley, and Alan E. Hubbard. 2007. “Super Learner.” *Statistical*
594 *Applications in Genetics and Molecular Biology* 6(1). doi: 10.2202/1544-6115.1309.

595 Mainali, Kumar, Trevor Hefley, Leslie Ries, and William F. Fagan. 2020. “Matching Expert
596 Range Maps with Species Distribution Model Predictions.” *Conservation Biology*
597 34(5):1292–1304. doi: 10.1111/cobi.13492.

598 Merow, Cory, Adam M. Wilson, and Walter Jetz. 2017. “Integrating Occurrence Data and Expert
599 Maps for Improved Species Range Predictions.” *Global Ecology and Biogeography*
600 26(2):243–58. doi: 10.1111/geb.12539.

601 Milanesi, Pietro, Francesca Della Rocca, and Robert A. Robinson. 2020. “Integrating Dynamic
602 Environmental Predictors and Species Occurrences: Toward True Dynamic Species
603 Distribution Models.” *Ecology and Evolution* 10(2):1087–92. doi: 10.1002/ece3.5938.

604 Miller, David A. W., Krishna Pacifici, Jamie S. Sanderlin, and Brian J. Reich. 2019. “The Recent
605 Past and Promising Future for Data Integration Methods to Estimate Species’

606 Distributions." *Methods in Ecology and Evolution* 10(1):22–37. doi: 10.1111/2041-
607 210X.13110.

608 Myers, Norman, Russell A. Mittermeier, Cristina G. Mittermeier, Gustavo A. B. da Fonseca, and
609 Jennifer Kent. 2000. "Biodiversity Hotspots for Conservation Priorities." *Nature*
610 403(6772):853–58. doi: 10.1038/35002501.

611 Naimi, Ashley I., and Laura B. Balzer. 2018. "Stacked Generalization: An Introduction to Super
612 Learning." *European Journal of Epidemiology* 33(5):459–64. doi: 10.1007/s10654-018-
613 0390-z.

614 Novella-Fernandez, Roberto, Javier Juste, Carlos Ibáñez, Hugo Rebelo, Danilo Russo, Antton
615 Alberdi, Andreas Kiefer, Laura Graham, Hynek Paul, Charles Patrick Doncaster, and Orly
616 Razgour. 2021. "Broad-Scale Patterns of Geographic Avoidance between Species Emerge
617 in the Absence of Fine-Scale Mechanisms of Coexistence." *Diversity and Distributions*
618 27(9):1606–18. doi: 10.1111/ddi.13375.

619 Oeser, Julian, Marco Heurich, Cornelius Senf, Dirk Pflugmacher, Elisa Belotti, and Tobias
620 Kuemmerle. 2020. "Habitat Metrics Based on Multi-Temporal Landsat Imagery for
621 Mapping Large Mammal Habitat." *Remote Sensing in Ecology and Conservation*
622 6(1):52–69. doi: 10.1002/rse2.122.

623 Olson, David M., Eric Dinerstein, Eric D. Wikramanayake, Neil D. Burgess, George V. N.
624 Powell, Emma C. Underwood, Jennifer A. D'amico, Illanga Itoua, Holly E. Strand, John
625 C. Morrison, Colby J. Loucks, Thomas F. Allnutt, Taylor H. Ricketts, Yumiko Kura, John
626 F. Lamoreux, Wesley W. Wettengel, Prashant Hedao, and Kenneth R. Kassem. 2001.
627 "Terrestrial Ecoregions of the World: A New Map of Life on Earth: A New Global Map
628 of Terrestrial Ecoregions Provides an Innovative Tool for Conserving Biodiversity."
629 *BioScience* 51(11):933–38. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.

630 Ovaskainen, Otso, David B. Roy, Richard Fox, and Barbara J. Anderson. 2016. "Uncovering
631 Hidden Spatial Structure in Species Communities with Spatially Explicit Joint Species
632 Distribution Models." *Methods in Ecology and Evolution* 7(4):428–36. doi:
633 10.1111/2041-210X.12502.

634 Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. N. Joppa, P. H. Raven, C.
635 M. Roberts, and J. O. Sexton. 2014. "The Biodiversity of Species and Their Rates of
636 Extinction, Distribution, and Protection." *Science* 344(6187):1246752. doi:
637 10.1126/science.1246752.

638 Ramesh, Vijay, Trisha Gopalakrishna, Sahas Barve, and Don J. Melnick. 2017. "IUCN Greatly
639 Underestimates Threat Levels of Endemic Birds in the Western Ghats." *Biological
640 Conservation* 210:205–21. doi: 10.1016/j.biocon.2017.03.019.

641 Sesmero, M. Paz, Agapito I. Ledezma, and Araceli Sanchis. 2015. "Generating Ensembles of
642 Heterogeneous Classifiers Using Stacked Generalization." *WIREs Data Mining and
643 Knowledge Discovery* 5(1):21–34. doi: 10.1002/widm.1143.

644 Soberón, Jorge. 2007. "Grinnellian and Eltonian Niches and Geographic Distributions of
645 Species." *Ecology Letters* 10(12):1115–23. doi: 10.1111/j.1461-0248.2007.01107.x.

646 Steen, Valerie A., Morgan W. Tingley, Peter W. C. Paton, and Chris S. Elphick. 2021. "Spatial
647 Thinning and Class Balancing: Key Choices Lead to Variation in the Performance of
648 Species Distribution Models with Citizen Science Data." *Methods in Ecology and
649 Evolution* 12(2):216–26. doi: 10.1111/2041-210X.13525.

650 Syfert, Mindy M., Matthew J. Smith, and David A. Coomes. 2013. "The Effects of Sampling
651 Bias and Model Complexity on the Predictive Performance of MaxEnt Species
652 Distribution Models." *PLOS ONE* 8(2):e55158. doi: 10.1371/journal.pone.0055158.

653 Theobald, David M., Christina Kennedy, Bin Chen, James Oakleaf, Sharon Baruch-Mordo, and
654 Joe Kiesecker. 2020. "Earth Transformed: Detailed Mapping of Global Human
655 Modification from 1990 to 2017." *Earth System Science Data* 12(3):1953–72. doi:
656 10.5194/essd-12-1953-2020.

657 Valavi, Roozbeh, Jane Elith, José J. Lahoz-Monfort, and Gurutzeta Guillera-Arroita. 2021.
658 "Modelling Species Presence-Only Data with Random Forests." *Ecography* 44(12):1731–
659 42. doi: 10.1111/ecog.05615.

660 Valavi, Roozbeh, Gurutzeta Guillera-Arroita, José J. Lahoz-Monfort, and Jane Elith. 2021.
661 "Predictive Performance of Presence-Only Species Distribution Models: A Benchmark
662 Study with Reproducible Code." *Ecological Monographs* n/a(n/a):e01486. doi:
663 10.1002/ecm.1486.

664 Warren, Dan L., Richard E. Glor, and Michael Turelli. 2008. "Environmental Niche Equivalency
665 Versus Conservatism: Quantitative Approaches to Niche Evolution." *Evolution*
666 62(11):2868–83. doi: 10.1111/j.1558-5646.2008.00482.x.

667 Warren, Dan L., Nicholas J. Matzke, Marcel Cardillo, John B. Baumgartner, Linda J. Beaumont,
668 Michael Turelli, Richard E. Glor, Nicholas A. Huron, Marianna Simões, Teresa L.
669 Iglesias, Julien C. Piquet, and Russell Dinnage. 2021. "ENMTools 1.0: An R Package for
670 Comparative Ecological Biogeography." *Ecography* 44(4):504–11. doi:
671 10.1111/ecog.05485.

672 Weiss, D. J., A. Nelson, H. S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E.
673 Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T. C. D. Lucas, R.
674 E. Howes, L. S. Tusting, S. Y. Kang, E. Cameron, D. Bisanzio, K. E. Battle, S. Bhatt, and
675 P. W. Gething. 2018. "A Global Map of Travel Time to Cities to Assess Inequalities in
676 Accessibility in 2015." *Nature* 553(7688):333–36. doi: 10.1038/nature25181.

677 Wolpert, David H. 1992. "Stacked Generalization." *Neural Networks* 5(2):241–59. doi:
678 10.1016/S0893-6080(05)80023-1.

679 Zhao, Chenchen, Xin Cao, Xuehong Chen, and Xihong Cui. 2022. "A Consistent and Corrected
680 Nighttime Light Dataset (CCNL 1992–2013) from DMSP-OLS Data." *Scientific Data*
681 9(1):424. doi: 10.1038/s41597-022-01540-x.

682 Zurell, Damaris. 2017. "Integrating Demography, Dispersal and Interspecific Interactions into
683 Bird Distribution Models." *Journal of Avian Biology* 48(12):1505–16. doi:
684 10.1111/jav.01225.

685