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Abstract. High-throughput multi-omics technologies offer a lens through which the concurrent
states of biological systems can be viewed. However, the integration and interpretation of
high-dimensional, sparse, and noisy multi-omics datasets is challenging, often requiring
leveraging algorithms for dimensionality reduction. Here we introduce Deep Archetypal Analysis
for the Representation of Integrated Omics (DAARIO), a framework that combines archetypal
analysis with deep learning. Using the concept of archetypes – extreme data points that define
the geometry of the latent space – our model preserves the complexity of biological interactions
while retaining an interpretable latent space, a crucial feature to decipher the underlying biology.
We show on real and simulated multi-omics data how DAARIO outperforms other
state-of-the-art methods in identifying parsimonious, interpretable, and biologically relevant
patterns.

Main text

Biological dynamics involve complex interactions among several actors and across different
spatiotemporal scales1. Fundamental processes in cellular biology such as differentiation,
development, and carcinogenesis are inherently multi-modal, acting on different cellular
components and orchestrated by intricated regulatory networks of proteins, transcription
factors, and signaling molecules2. Any attempt to look at them from just one side is doomed to
miss crucial insights in their complex interplay. High-throughput multi-omics technologies that
can measure many concurrent cellular states at once hold the promise to help us gain a
comprehensive picture of these phenomena3. However, integrating and extracting patterns from
these types of high-dimensional, noisy, and sparse data is a major statistical and algorithmic
challenge 4.
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One of the key steps in integrating multiple data sources is dimensionality reduction, with
algorithms specifically developed to integrate biological data5. For instance, probabilistic
multi-omics factor analysis (MOFA) has been successfully applied to find relevant patterns from
multiple omics data sources (e.g., gene expression, protein abundances)6–8. However, MOFA and
other factor analysis methods posit that the observed data can be linearly reconstructed from
the latent factors and their corresponding loadings. Linear models simplify the mathematical
treatment and their latent factors are interpretable in relation to the measured data; for instance,
a factor with high loadings from genes involved in a specific metabolic pathway might be
interpreted as representing that pathway. However, linear models miss complex non-linear
interactions typical of real biological systems, such as the non-proportional relationship
between gene expression and metabolite concentrations9, threshold-dependent effects of
epigenetic modifications on gene activity10, cooperative transcription factor binding11, and
general environmental factors12.

In computational biology, a popular non-linear dimensionality reduction framework is the
Variational Autoencoder (VAE) architecture13,14, which can model arbitrarily complex non-linear
interactions between the input variables via an encoding/ decoding mapping parametrized by a
deep neural network. The latent space provided by VAEs is more powerful and expressive than
linear ones, yet it is no longer easy to interpret, making these models practically behave like
"black-box" compression machines15. This is a limitation for biological applications where we
want to understand the system before designing interventions that can steer its dynamics. In
biology, we need generative models with an interpretable latent space that can be used to
sample specific system perturbations.

DAARIO
Archetypal Analysis (AA)16 is a matrix factorization algorithm designed to decompose the input
data as a convex (i.e., linear) combination of extreme data points called archetypes. Contrasted
with other methods, AA forces strong constraints on the geometry of the latent space and
recovers a set of bases that are expressed only in terms of the relative distances from the
archetypes. AA is a promising alternative for dimensionality reduction because, by construction,
its coordinate system is trivially interpretable in the very same domain of the data. The linear
latent space of AA can be turned into a non-linear manifold by combining AAs with deep neural
networks for archetypal decomposition17; in this way, it is possible to retain the interpretability of
the latent space while enjoying the power of a non-linear dimensionality reduction. Building on
this idea we develop Deep Archetypal Analysis for the Representation of Integrated Omics
(DAARIO1), an open-source Python framework for the integration of multi-omics data with deep
AA. DAARIO supports different input types and neural network architectures, adapting
seamlessly to the high complexity of modern biological data, which ranges from counts in
sequencing assays to binary values in CpG methylation assays. In principle, the model could be
extended to combine data from non-omics sources (text and images) when combined with

1 DAARIO is available in an open source package hosted at https://github.com/sottorivalab/daario.
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embeddings from other deep-learning models. DAARIO is implemented on a PyTorch18 backend
that leverages GPU acceleration, scaling to thousands of cells (e.g. 100000 cells in ~5 minutes
for 500 epochs, Supplementary Figure 1).

Results on simulated data
Using synthetic data (Methods) we tested if DAARIO could characterize two relevant biological
processes: cellular differentiation (Figure 1 B-C) and evolutionary dynamics on a fitness
landscape (Figure 1 E-F). In both cases, we generated synthetic data from 1000 cells (20
datasets, 3 noise levels) with matched ATAC/RNA sequencing (chromatin accessibility and gene
expression measurements) and compared DAARIO to a pipeline where we first performed
dimensionality reduction with both linear and non-linear models, followed by canonical AA. In
the differentiation test, DAARIO largely outperformed competing methods, on average reducing
the RNA and ATACT reconstruction error by 15% and 55%. In the evolutionary test, DAARIO
decreased the reconstructor error for the latent space by 13% (average), across all noise levels
(Figure 1 D-H). Notably, In the latter test, a clear performance difference was observed between
linear and non-linear statistical models (Figure 1 H), with DAARIO being the top performer on
average. Interestingly, in the oversimplified case of a linear generative latent space
(Supplementary Figure 2), while linear models achieved the lowest reconstruction error, DAARIO
was the best non-linear model, suggesting its geometrical constraints regularise the model.

Results on real data

A key problem that involves complex multimodal interactions is the differentiation of
hematopoietic stem cells (HSC) into mature blood cells, known as hematopoiesis. We used
DAARIO to provide biologically interpretable insights from single-cell multi-omics data (whole
genome CpG methylation status and transcriptional activity) of CD34+ positive cells, a type of
hematopoietic progenitor cell19.

First, we calculated the level of commitment for specific lineages in each cell by computing a
score for the gene signature presented in19. In particular, in this dataset we have a group of
Hematopoietic Stem and Progenitor Cells (HSPC) differentiating first into Immature Myeloid
Progenitors (IMP) and then into Erythroid Progenitors (EP) and Neutrophil Progenitors (NP).

DAARIO did find 4 optimal archetypes from 512 cells (Supplementary Figure 3 and Figure 2 A-B),
and its latent space did recapitulate lineage commitment in this dataset. In particular, the
archetype weights were found to be strongly associated with all the terminal states in the gene
signature (Supplementary Figure 4), suggesting that the latent space geometry matches the one
of the differentiation landscape. Notably, MOFA and VAE embeddings failed to extract the
patterns of EP and NP cells, with the most relevant MOFA factors driven by highly variable
samples. Overall, none of the competing methods managed to fully recapitulate the
differentiation features of these cells (Supplementary Figure 5-6).
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We asked whether our latent space reproduced known differentiation lineages for these cells.
To answer this, we compared our archetypes (recapitulated by cells with weight >80%) to a
k-means clustering in MOFA and VAE latent spaces. Our archetypes identified clear progenitor
cells, whereas the standard achieved the worst separation (DAARIO silhouette score increase by
~90%) (Figure 2 C and Supplementary 7). Interestingly, this analysis highlighted that Immature
Myeloid Progenitors (IMP) were not represented by a single DAARIO archetype, but rather by a
combination of them. This is consistent with IMP cells being in a transition state from
Hematopoietic Stem and Progenitor Cells (HSPC) to Erythroid Progenitors (EP) and Neutrophil
Progenitors (NP).

Finally, we tested whether archetypes could be used in an unsupervised way for the discovery of
biological programs. To investigate this, we ran a gene set enrichment analysis on the
expression reconstructed for each archetype, using as input gene sets the 4 cellular programs
of hematopoietic progenitors. We find one archetype enriched for genes characteristic of EP,
and one positively enriched for NP genes while negatively enriched for HSPC genes (Figure 2
D-E), consistent with our previous clustering analysis. This suggests that DAARIO’s archetypes
can be easily associated with well-defined biological characteristics, and that can be used for
downstream analysis as representative of real data measurements.

To further confirm DAARIO's flexibility and potential to adapt to different input data types we
analyzed a different cohort of CD34+ cells, this time generated with 10x GEX + ATAC libraries 20.
DAARIO found an optimal number of 5 archetypes. (Figure 2 F-G). Taking advantage of the ATAC
measurement, we first ran chromVar 21 to calculate transcription factor (TF) motif deviations in
the dataset. We then correlated the inferred values for some key TFs of hematopoietic
development with the archetype weights, observing a significant positive correlation trend
(Figure 2 H). This shows again how DAARIO’s latent space recapitulates the known biological
processes in the data.

Simulating realistic synthetic multi-omics datasets

DAARIO, thanks to its generative architecture, makes it also possible to simulate multi-omics
data from the latent space in a biologically informed way. The user is free to sample from the
latent simplex by weighing the importance of the different archetypes. From these samples, the
decoder will then generate verisimilar observable data (Figure 2 I). To show this, we sampled a
synthetic dataset consisting mainly of archetypes 3 and 5, associated respectively with HSC and
dendritic cell (DC) progenitors. dataset shows exactly the expected HSC to DC transition, as
evidenced by the MPO and MEIS1 markers. Notably, this effect is observed both at the gene
expression level and as chromatin accessibility in the promoter, proving how DAARIO can
produce realistic synthetic data that is consistent across modalities.
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Conclusions

Collectively, these findings demonstrate that DAARIO generates interpretable, biologically
coherent, and expressive embeddings for multi-omics data. Moreover, thanks to its generative
architecture DAARIO can also be used to simulate new synthetic data.

DAARIO architecture is naturally modular and easily generalizable and in the future, we envision
a broad applicability of this methodology also to other types of relevant multi-modal data, such
as images as well as protein and DNA sequence embeddings.
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Figure 1. Performance of DAARIO on a multiomics benchmark dataset. A. Schematic
representation of the model. We allow an arbitrary number of modalities in input, the model then
encodes each modality using a private encoder. The last layer of these modality-specific
encoders is concatenated and given as input to a shared encoder that learns the latent space
and the simplex structure. The decoding part is exactly the reverse with the addition of an
optional decoding branch for regression/prediction tasks. B-C. We simulate a branching
differentiation process. We model the differentiation starting from a stem center population
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with pseudotime 0 differentiating towards 3 different states. Our goal here is to understand if
the terminal (i.e. low and high pseudotime) state of differentiation is recapitulated correctly by
the archetypes D. We measured the Mean Squared Error (MSE) between the aggregated
expression (top panel) or peak counts (bottom panel) of cells at terminal states (bottom 15%
and top 75% percentile of pseudotime) and the reconstructed archetypes E-F. For the second
test, we sample from a simplex structure in a non-linear latent space, the non-linearity is
parametrized by a neural network. G. Here we measure how well the tools reconstruct the
original latent space. As error measures, we computed the MSE of the true and inferred
archetype weights (top) and the Adjusted Rand Index (ARI) for the true and inferred highest
archetype assignments. In all the plots "diff.cif.fraction" controls the fraction of divergence
among archetypes or populations in the development trajectory, a lower number implicates a
higher noise.
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Figure 2. MultimodalDeep Archetypal Analysis reconstructs an efficient and biologically
meaningful latent space. A. Archetype distribution plotted over the RNA UMAP B. A 2d
projection of the simplex latent space. C. Heatmap of normalized [0-1] cell progenitor scores for
cells with archetype probability >=80% and K-means clustering in VAE and MOFA space. D-E.
GSEA enrichment analysis for archetypes 1 and 3 using the cell progenitor gene sets from 19.
F-G. UMAP and 2d simplex projection of the dataset in 20. H. Correlation of transcription factor
motif deviation and archetype weights. GATA 1 is an erythropoietic commitment marker and
TCF3 is enriched in dendritic progenitors I. The generative nature of the model makes it easy to
produce synthetic datasets from the latent space. First of all the user can sample from a
Dirichlet distribution specifying the concentration parameter and from that the decoder
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generates realistic multi-modal data. J-K. Concordance of gene expression and promoter
accessibility in a synthetic dataset consisting mainly of the erythropoietic and stem archetypes.

Methods

The Matrix Factorization Problem

Omics data is commonly represented in the form of high dimensional, sometimes sparse,
numerical matrices. In this context, dimensionality reduction becomes not only essential to
make subsequent analysis feasible from a computational point of view, but also to filter out
technical noise and minor sources of variability. Indeed, the most common analysis pipeline for
scRNA-seq and ATAC-seq data involves first a dimensionality reduction step using PCA or LSI
and then graph modularity clustering to extract relevant groups in the dataset.

The general definition of the problem is quite simple, given an input matrix where
represents the number of the samples and the number of features, we wish to

find a two matrix decomposition of . In other words, after fixing an , our
decomposition writes as:

Where is an matrix and is an matrix. This formulation describes an
extremely broad family of methods, the specific constraints and properties we force on the two
matrices and as well as the metrics we want to optimize for the reconstruction.

In case we have multiple input modalities, if we index them by we can naturally
reframe the problem as:

In this case we allow the number of features to differ by modality so that we have and
specific for each modality with dimension and where is the number of
features for modality .

Archetypal Analysis

Archetypal Analysis (AA), is a dimensionality reduction method that solves the matrix
factorization problem by enclosing the data into a convex polytope. The vertices of this polytope
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which spans the convex hull of the polytope are called archetypes and are generally interpreted
as extreme or ideal samples in the dataset.

More formally, let us fix the number of vertices (or equivalently archetypes) to .
We then introduce the matrices and with sizes respectively of
and . Moreover we constraint these matrices to be row stochastic, namely:

Finally, our AA decomposition reads, by assuming again multiple input modalities:

Note that if we set , and we recover the original matrix
factorization problem.

The original algorithm to solve this was introduced by 16 and was formulated as an alternating
least square problem on the two matrices and . Faster approaches have been developed
such as the Principal Convex Hull method 22 and the Frank-Wolfe method 23 which are
conceptually based on gradient descent. Nevertheless, also those former optimized methods
while faster, still scale proportionally to the full input size, becoming slow for big matrices.
Archetypal analysis has been successfully used in modeling single-modality data in biology23–25,
our goal here is to extend it to multimodal data and provide a unified framework in the context
of deep latent variable models. All of this is conveniently packed in a user-friendly Python
package that easily adapts to the plethora of omics data currently available.

Deep Multiomics Archetypal Analysis

We started from the Deep Learning extension of the Archetypal Analysis proposed in 17 to build
our DAARIO model. Our main goal is to perform amortized inference over the two matrices
and in some latent space . Ideally, we want to have a reduced latent representation of the
input in some non-linear shared space and then learn the convex polytope there. Indeed, our
method performs joint inference over the polytope and the latent space. To reduce the degrees
of freedom and avoid optimizing both over the number of archetypes and the
dimensionality of the hidden space, we fix the polytope shape to be a simplex and set the
number of dimensions of the hidden space as the number of archetypes - 1, as in ref (cite deep
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AA). We will use an encoder-decoder to encode our latent space and project back the AA
results.
Formally, let us define the number of latent dimensions as and the latent space
representation as with dimensions , then we can define the simplex reconstruction in
latent space as:

Differently from 17 we do not fix to be the standard simplex but we explicitly learn and
compute both and in one passage.
We do this both to simplify the model as we have less parameters to tweak and because our
latent space formulation achieves better average scores on our synthetic tests (Supplementary

Figure 9). In our model, we constrain to be in instead of the standard isotrophic
gaussian used in VAEs 26. This choice will be made clearer in the section regarding inference.

We employ an encoder-decoder inference strategy, so the 3 matrices are the output of a

function parametrized by a neural network, the same for the decoder. To make this paragraph
more readable we keep a single function for the encoder but it is worth noticing that the first
encoding part is modality specific (i.e. an independent function and network ), and then the
output of each single modality encoder is concatenated and given in input to a shared one, as
illustrated in Figure 1A.
To compute the loss we project back the simplex reconstruction in the original space using the
decoder. We have one principal part of the loss which is the usual input reconstruction; in
addition, we allow the network to classify side data , that we index with . This is useful
when we want our archetypes also to reflect some external variables that we might not want to
include in the encoding phase.
In particular, given a likelihood distribution with its parameter set, the total likelihood reads as:

Where we define and . Here and are the decoding
network for the side and input data. Again for simplicity, we omit that there is a shared part and
a modality-specific part and refer to Figure 1A. As different modalities can have different
numbers of features we allow the user to specify constants and to normalize the

likelihood, by default, they are set to respectively and give the same importance to each
modality (where and are the number of features for each input and side modality).
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Model Inference and formulation

We define the learning objective in a way akin to that of a standard VAE26 but with some major
differences regarding the form of the distribution involved in the latent space. The loss function
however that we optimize is the same and it is the evidence lower bound (ELBO) that we
maximize throughout training using stochastic gradient descent with the Adam optimizer:

Our variational distributions is defined over the matrices , and and we assume a

mean-field factorization as . To keep the notation consistent for
and here we multiply over respectively the rows, the columns (i.e. we assume

independence among archetypes, latent dimensions, and samples).

The choice of the variational distributions comes naturally from the constraint of AA:

Here with we index the output dimensions of the encoder. Priors have the same functional
forms as the variational posteriors and have equal unitary concentration for the Dirichlet while
the Uniform has range [-1,1]. Regarding the distribution of we departed from the standard
isotropic Gaussian as a prior as it tends to concentrate probability density on the shell of a
hypersphere (in high dimension) or push towards the center (in lower dimensions) and as such
makes the space particularly bad suited for learning a simplex representation of the data27.

Regarding the likelihood distributions we allow flexibility and currently support the following
distributions as valid likelihoods: Beta, Poisson, Gaussian, Gamma, Negative Binomial, and
Categorical.
The integration of new likelihood is easy given the modularity of the model and we plan on
increasing the distribution support following requests from the community. In all cases,

parameters are amortized by the network for input reconstruction and the for side data.
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Benchmark on simulated data

We used the scMultisim tool28 to generate synthetic single-cell multi-omics data, which uses
real-data inferred gene regulation networks to sample both trajectory-like and clustered gene
expression and chromatin accessibility data.

As a comparison we choose a set of popular methods in multi-omics data integration, spanning
a wide range of different statistical techniques: JIVE29 based on PCA, intNMF30 based on NMF,
MOFA7 based on Factor Analysis, and a vanilla VAE26. In the latent space produced by each of
these methods, we then ran linear archetypal analysis as implemented in the R package 31.

We analyzed two main case studies: one in which the latent space is a simplex and one in which
it is instead a differentiation trajectory. In the first case, we generated a cohort in which the
mapping function from the space of observables to the latent space is linear and another one in
which it is non-linear.

For each of these cases, we simulated 20 datasets of 1000 cells.
We also repeated the experiments for three values of the parameter diff.cif.fraction in the
sim_true_counts function, namely [0.6,0.75,0.9] to simulate different amounts of noise (lower
values correspond to higher noise).

To generate the datasets in the latent simplex case, we first sampled three clusters and took
their centroids as archetypes. The single cells were then simulated by sampling a matrix of
archetype weights from a Dirichlet distribution and multiplying it with the observation
centroid for each modality . In the non-linear case, we first learn a latent space with a
variational autoencoder , compute the centroids in this latent space, and then feed to the
decoder (note that this time centroid are modality agnostic). We tested how well the methods
reconstructed the archetype distribution . If we call the inferred the score we computed is:

We also computed the Adjusted Rand Index (ARI) between the inferred and true highest

archetype defined as .

For the trajectory cohorts, we were interested in comparing the archetypes to the terminal points
of the trajectory. In this case, we define the terminal points as those having the lowest and
highest pseudotime values. We computed a set of trajectory endpoints by aggregating the
expression of the bottom 15% percentile and the top 75% percentile of pseudotime for each
terminal branch. We did the same to get and aggregate the 75% percentile of cells with the
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highest weight for each archetype to . We matched each archetype index to the
differentiation branch with the lowest Euclidean distance and then computed:

Where is the number of features. We computed this score for both the RNA and the ATAC
reconstruction.

Real Data analysis: G&T

For the methylation and expression CD34+ dataset, we first filtered the CpG data by keeping only
those with sites with less than 65% missing cells. We then filled the NA with 0 (unmethylated
CpG). For the RNA we used as input the batch-correction latent representation of Scanorama 32

already computed by the authors in the original work. We then run our model with a Gaussian
likelihood for the RNA and a Bernoulli likelihood for the methylation. We set a batch size of 300,
a learning rate of 0.0001 with an exponential decaying schedule with a rate of 0.1, and run the
inference for 1000 epochs using the Adam33 optimizer. We run the model for a number of
archetypes ranging from 2 to 12 and choose the best value of 4 based on plateaus in the ELBO
plot (Supplementary Figure 3).
Scores for the different progenitor cells were computed using the function score_genes of
Scanpy34 from the gene sets in 19.
To compare the representation power of the different methods we set the number of latent
dimensions in both the VAE and MOFA to 4 and correlate the gene scores to the latent
coordinates. For the K-mean clustering we again chose 4 as the number of clusters, but this
time we learned a MOFA model with 30 factors to simulate a more realistic scenario. GSEA35

was computed for archetypes 1 and 3 on the cell progenitor gene sets using the Python
packages36.

Real Data analysis:10x Multiome

The input matrices for RNA and ATAC where generated by taking the highly variable genes and
10000 peaks and then log transform and scale them after a library size normalization using
Scanpy and SnapATAC37. We then run the model with a Gaussian likelihood for 3000 steps,
exponential decay of 0.1. The best number of archetypes 6 was selected by again running the
model in a range of [2,...,12] and looking at the negative ELBO decrease.
We confirmed the relation between archetype weights and cell fate commitment by first running
chromVAR21 to obtain transcription factor deviation scores and then correlating marker TFs with
archetype weights. We used the model learned from this dataset to generate some synthetic
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data. We sampled archetype weights for each cell from a Dirichlet with concentrations
[1e-16,1e-16, 2,1, 2] that were then fed to the decoder.

Data Availability

All the data used in this paper is publically available the CD34+ methylation and RNA datasets
are stored on GEO and has accession number GSE158057 while the CD34+ 10x multiome can
be downloaded from the Human Cell Atlas portal
(https://explore.data.humancellatlas.org/projects/091cf39b-01bc-42e5-9437-f419a66c8a45)

Code Availability

Our DAARIO tool is available as a Python package on PyPI, the source code is hosted on GitHub
(https://github.com/sottorivalab/daario). Scripts to reproduce the analysis are hosted at
(https://github.com/sottorivalab/daario_reproducibility)
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