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Abstract

Objective. Phase-amplitude coupling (PAC), the coupling of the amplitude of a
faster brain rhythm to the phase of a slower brain rhythm, plays a significant role in
brain activity and has been implicated in various neurological disorders. For exam-
ple, in Parkinson’s disease, PAC between the beta (13–30 Hz) and gamma (50–200
Hz) rhythms in the motor cortex is exaggerated, while in Alzheimer’s disease, PAC
between the theta (4-8 Hz) and gamma rhythms is diminished. Modulating PAC
(i.e. reducing or enhancing PAC) using brain stimulation could therefore open new
therapeutic avenues. However, while it has been previously reported that phase-
locked stimulation can increase PAC, it is unclear what the optimal stimulation
strategy to modulate PAC might be. Here, we provide a theoretical framework
to narrow down the experimental optimisation of stimulation aimed at modulating
PAC, which would otherwise rely on trial and error. Approach. We make analytical
predictions using a Stuart-Landau model, and confirm these predictions in a more
realistic model of coupled neural populations. Main results. Our framework spec-
ifies the critical Fourier coefficients of the stimulation waveform which should be
tuned to optimally modulate PAC. Depending on the characteristics of the ampli-
tude response curve of the fast population, these components may include the slow
frequency, the fast frequency, combinations of these, as well as their harmonics. We
also show that the optimal balance of energy between these Fourier components
depends on the relative strength of the endogenous slow and fast rhythms, and
that the alignment of fast components with the fast rhythm should change through-
out the slow cycle. Furthermore, we identify the conditions requiring to phase-lock
stimulation to the fast and/or slow rhythms. Significance. Together, our theoretical
framework lays the foundation for guiding the development of innovative and more
effective brain stimulation aimed at modulating PAC for therapeutic benefit.
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1 Introduction
Phase-amplitude coupling (PAC), a type of cross-frequency coupling where the amplitude
of faster brain oscillations is coupled to the phase of slower brain oscillations, is widespread
across species and brain regions. Most notably, PAC was shown to be implicated in
memory and learning, in particular through coupling of the amplitude of the gamma
rhythm (50–200 Hz) to the phase of the theta rhythm (4-8 Hz) in the hippocampus [1, 2,
3, 4, 5, 6]. Beyond memory processes, PAC is for example modulated during movement
and speech [7], visual attention [8], auditory processing [9], complex cognitive function
[10], as well as during development [11].

PAC was also found to be abnormal in various neurological disorders – see [12] for
a review. In Parkinson’s disease (PD), coupling between the beta phase (13–30 Hz)
and gamma amplitude in the motor cortex is exaggerated compared to patients with
dystonia and patients with epilepsy, both at rest and during movement [13]. Elevated
PAC was reported in patients with PD off dopaminergic medication compared to patients
on medication, as well as compared to humans without a movement disorder [14]. This
increased PAC is reduced by deep brain stimulation (DBS) [15]. Similarly, alpha (8-12 Hz)
gamma PAC is exaggerated in the sensorimotor cortex of patients with essential tremor
[16]. As expected from its involvement in memory, theta-gamma PAC is impacted in
Alzheimer’s disease (AD). Lower theta-gamma PAC than controls was found in AD rodent
models [17, 18], with alterations appearing before significant accumulation of amyloid-
beta in some animals [19]. In humans, theta-gamma PAC was lower in patients with
mild cognitive impairment compared to healthy age-matched participants, lower still in
patients with AD [20], and correlated with cognitive and memory performance [21, 20].
PAC was also reported to be elevated during epileptic seizures [22]. Furthermore, PAC
was suggested as a biomarker for brain-computer interface-mediated motor recovery in
chronic stroke [23], and for rehabilitation of speech discrimination in cochlear implant
users [24].

Given changes in PAC from healthy levels in neurological disorders, in some cases
correlated with symptoms or recovery, restoring healthy PAC levels is a promising tar-
get for neuromodulation therapies. However, how to stimulate to enhance or decrease
PAC levels has received very little attention to date. A notable exception is the work
by Salimpour and colleagues, which showed that phase-locking motor cortical electrical
stimulation to the peak of the beta rhythm increased beta-gamma PAC in humans com-
pared to baseline, and compared to stimulation phase-locked to the trough of the beta
rhythm [25]. Similarly, phase-locking hippocampal transcranial ultrasound stimulation to
the peak of the theta rhythm increased theta-gamma PAC in rats [26]. Nevertheless, it
is unclear what the optimal stimulation strategy to enhance or decrease PAC might be.
Here, we develop a theoretical framework to address this question using the analytically
tractable Stuart-Landau (SL) model as well as a more biologically realistic neural mass
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model, the Wilson-Cowan (WC) model. While we focus on PAC-enhancing stimulation
(which could be of interest for example in patients with AD), the same framework can
be applied to stimulation aimed at reducing PAC. Our framework is directly applicable
to neuromodulation modalities where the Fourier coefficients of the stimulation waveform
can be tuned, such as transcranial alternating current stimulation (tACS). For modalities
that can only generate square pulses (e.g. DBS), the optimal waveforms predicted from
the theoretical framework can be approximated by pulsatile waveforms.

2 Results
We develop a theory of optimal PAC-enhancing stimulation using the SL model, which
offers the possibility of analytical insights. In particular, we build on two key mechanisms
contributing to increasing PAC, namely stimulation at the slow frequency, and stimula-
tion with a modulated component at the fast frequency. We show that whether these
mechanisms can be leveraged depends on characteristics of the fast population’s response
to stimulation. We proceed to verify elements of the theory in a neural mass model,
the WC model. We finish by considering practical questions, in particular the balance
of the Fourier coefficients of the stimulation waveform as a function of the strength of
the endogenous slow and fast rhythms, the necessity (or lack thereof) of phase-locking
stimulation to the fast and/or slow rhythm, and how to approximate the optimal wave-
forms with pulsatile waveforms. Flowcharts that could guide experimentalists in designing
optimal-PAC modulating stimulation are presented in figure 10.

2.1 Developing optimal PAC-enhancing stimulation in the Stuart-
Landau model

The SL model is arguably the simplest phase-amplitude model used in neuroscience
[27, 28, 29, 30], and is therefore ideally suited to obtain analytical insights on PAC-
enhancing stimulation. The model represents the canonical form of a Hopf bifurcation,
and can therefore operate in the fixed-point or limit-cycle regime. We are considering a
SL population operating at the fast frequency of interest with order parameter zf = ρfeiθf

(oscillation amplitude ρf and oscillation phase θf ) evolving according to

żf =
(
δ + iωf − |zf |2

)
zf ,

where ωf = 2πff is the angular frequency of the fast population, and δ a bifurcation
parameter. When δ > 0, the fast population is in the limit-cycle regime and generates
intrinsic oscillations of amplitude converging to

√
δ. When δ ≤ 0, the fast population is

in a quiescent state (fixed-point regime).
We assume that neither stimulation nor the fast rhythm significantly affects the slow

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2024. ; https://doi.org/10.1101/2024.02.12.579897doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.12.579897
http://creativecommons.org/licenses/by/4.0/


rhythm contributing to PAC, and we model the slow rhythm as an input to the fast
population. In the case of hippocampal theta-gamma PAC, the slow input can represent
the theta input from pacemaker neurons in the medial septum for example, believed to
be the main contributor to hippocampal theta [31, 32, 33]. We present the limitations of
this approach in the Discussion. We further assume that the slow input of strength ks

and angular frequency ωs = 2πfs is coupled to the fast population through its mean-field
(see figure 1), thereby affecting the amplitude (but not the phase) of the fast oscillations.
As shown by Quin and colleagues, such a slow input can generate PAC [27] in the SL
model. Indeed, since

żf =
(
δ + iωf − |zf |2

)
zf + zfks cos ωst

can be re-written as

żf =
(
δ + ks cos ωst + iωf − |zf |2

)
zf ,

the parameter controlling the amplitude of the fast oscillations becomes δPAC = δ +
ks cos ωst. This means that the amplitude of the fast oscillations is controlled by the
phase of the slow input.

Figure 1: Sketch of the Stuart-Landau model with stimulation. Intrinsic PAC is
generated by a slow input (shown in dark blue) interacting with a fast Stuart-Landau population
(represented in green). An example of the output of the fast population (real part of the fast-
population order parameter) displaying PAC in the absence of stimulation in shown in the left
panel. The stimulation u(t) (in black) acts on the fast population via a stimulation coupling
function f(zf ), where zf is the order parameter of the fast population with oscillation amplitude
ρf and oscillation phase θf .

In the next sections, we will optimise the stimulation waveform to maximally increase
PAC for a given stimulation energy budget. We will consider a stimulation input u(t)
provided to the fast SL population receiving a slow input. The stimulation is provided to
the population through the stimulation coupling function f (its connection with experi-
mental measures is detailed below). The evolution of the order parameter of the fast SL
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population is given by

żf =
(
δ + ks cos ωst + iωf − |zf |2

)
zf + f(zf )u(t). (1)

In what follows, we expand u(t) as a truncated Fourier Series

u(t) =
Nu∑

n=−Nu
n̸=0

uneniωst =
Nu∑
n=1

[an cos(nωst) + bn sin(nωst)] , (2)

with complex coefficients un, or equivalently real coefficients an and bn, and with trun-
cation order Nu. To enforce charge balance of the stimulus (a requirement for brain
stimulation to avoid tissue damage), the zeroth-order coefficient is zero.

We will show in the next sections that the way stimulation is coupled to the fast
population, and in particular the amplitude response curve (ARC) of the fast population,
determines which Fourier coefficients contribute to modulating PAC. The stimulation
coupling function is directly related to the ARC and the phase response curve (PRC) of
the fast population. Here, the ARC describes the instantaneous change in amplitude of
the collective activity of a neural population (e.g. measured in the local field potential
[34, 35]) due to stimulation. The ARC is a function of the state of the neural population,
e.g. the phase and/or amplitude of the collective oscillation when stimulation is received.
Similarly, we take the PRC to refer to the instantaneous change in phase of the collective
oscillation due to stimulation, as a function of the state of the neural population. Note
that in some studies, the PRC refers instead to the response of individual neurons (e.g.
[36, 37, 38]). This is in contrast with this study, where we consider changes on the
population level. Given these definitions, we have ARC(z)u(t) = ρ̇stim and PRC(z)u(t) =
θ̇stim, where ρ̇stim and θ̇stim are the instantaneous changes in amplitude and phase of the
neural population due to stimulation, respectively, and z is the order parameter of the
SL model. Using the product rule on the definition of the order parameter, we have
ż = ρ̇eiθ + iθ̇ρeiθ. Without loss of generality, the instantaneous change in z due to
stimulation at time t can therefore be written as żstim =

[
ARC(z)eiθ + iPRC(z)z

]
u(t).

Since żstim = f(zf )u(t), we can identify the stimulation coupling function as

f(zf ) = ARC(zf )eiθf + iPRC(zf )zf . (3)

We will show that systems with different ARCs require different stimulation waveforms
to optimally modulate PAC. Examples of ARCs with their corresponding optimal PAC-
enhancing waveforms are given for the SL model in figure 2, and later for the WC model
in figure 9.

Before dealing with arbitrary stimulation coupling functions (i.e. arbitrary ARCs
and PRCs), we consider two foundational cases to uncover the two mechanisms of action
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contributing to PAC enhancement in the general case. We will show below that in the first
foundational case where the amplitude response of the fast population does not depend on
its phase, the optimal stimulation is at the frequency of the slow rhythm (figure 2A). In
the second foundational case where the amplitude response of the fast population depends
on its phase but has zero mean, the optimal stimulation is at the fast frequency, with fast
frequency components modulated by the slow frequency (figure 2B). The general case
combines both strategies (figure 2C). In each case, we derive theoretical results and test
them using numerical optimisation.

Figure 2: PAC-enhancing mechanisms in the Stuart-Landau model depend on the amplitude re-
sponse of the fast population. Panel A corresponds to foundational case one, where the amplitude response of
the fast population does not depend on its phase (A1, shown for ρf = 3). Sinusoidal stimulation (A3) therefore
enhances the amplitude of the fast population (A2) when the stimulation waveform is positive (green highlights),
and suppresses the amplitude of the fast population when it is negative (red highlights). Panel B corresponds
to foundational case two, where the amplitude response of the fast population depends on its phase but has zero
mean (B1). Where the fast-oscillation amplitude (B2) should be increased, the optimal stimulation waveform (B3,
taken from figure 4C) has fast-frequency components aligned with the peak of the fast rhythm (green dashes).
Conversely, where the fast-oscillation amplitude should be decreased, the optimal stimulation waveform has fast-
frequency components anti-phase-aligned with the peak of the fast rhythm. Panel C corresponds to a general case
where the amplitude response of the fast population does depend on its phase and has a non-zero mean (high-
lighted in light green in C1). The optimal stimulation waveform (taken from figure 5C) combines mechanisms of
PAC-enhancement from panels A and B, as shown in panels C2-C5. The dark red line in C3 represents a moving
average of the stimulation waveform (sliding window corresponding approximately to two fast-population cycles.)
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2.1.1 Foundational case one: stimulation is coupled through the mean-field

In this first foundational case where stimulation is coupled to the fast population through
its mean field, i.e. f(zf ) = zf , the optimal PAC-enhancing waveform can be approximated
analytically. Using equation (3), we note that this type of stimulation coupling through
the mean-field of the fast population is equivalent to ARC = ρf and PRC = 0. The ARC
is therefore positive, with no dependence on the fast population phase. We have

żf =
(
δ + ks cos ωst + u(t) + iωf − |zf |2

)
zf , (4)

and the parameter controlling the amplitude of the fast oscillations is therefore given by
δPAC = δ + ks cos ωst + u(t).

Approximate analytical solution To analytically quantify PAC in the system de-
scribed by equation (4), we modify a PAC measure called the mean vector length (MVL)
[39, 40]. The MVL is recommended for high signal-to-noise ratio [40], which is the case
in this modelling approach. We define our modified MVL measure as

Γ = 1
Ts

∣∣∣∣∣
∫ Ts

0
ρf (t)2eiωstdt

∣∣∣∣∣ , (5)

where Ts = 2π/ωs is the period of the slow rhythm, ρf is the amplitude of the fast
oscillations, and ωst is the phase of the slow input. Our PAC measure Γ is the direct
translation of the MVL (as defined in [40]) to continuous time over one period, with the
exception that the amplitude of the fast oscillations is replaced by ρf (t)2 (i.e. power)
for analytical convenience (as will become apparent below). As in the original definition,
when the amplitude of the fast oscillation is high for a consistent range of phases of the
slow oscillation, the magnitude of the resulting vector will be large and PAC will be
detected. Assuming the square of the envelope of the fast oscillations can be expressed
as a Fourier series, our PAC measure Γ can also be interpreted as the modulus of the
complex Fourier coefficient of ρ2

f at the slow frequency. The modified PAC measure Γ
therefore captures the strength of the modulation of ρf at the slow frequency ωs.

Assuming relaxation to the limit cycle arising from equation (4) is fast enough, we
have ρf (t) ≈

√
δPAC(t) for δPAC(t) > 0, which allows us to compute Γ (this assumption

can be relaxed using a semi-analytical approach described in Supplementary Material
section A). We therefore have

Γ = 2π

ωs

∣∣∣∣∣
∫ 2π

ωs

0

[
δ + ks cos ωst +

Nu∑
n=1

{an cos(nωst) + bn sin(nωst)}
]

eiωstdt

∣∣∣∣∣ .

The only non-zero terms correspond to products of sines or cosines at the same frequency,
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which yields
Γ = 1

2
[
(a1 + ks)2 + b2

1

] 1
2 . (6)

Remarkably, the PAC measure Γ only depends on the first harmonic of the stimulation.
For a given stimulation energy Ξ, we can find the values of a1 and b1 that maximise Γ
using the method of Lagrange multipliers. The energy constraint is a2

1 + b2
1 = 2Ξ, and the

corresponding Lagrangian function reads

L(a1, b1, λ) = 1
2

[
(a1 + ks)2 + b2

1

] 1
2 + λ

(
a2

1 + b2
1 − 2Ξ

)
.

Setting its derivatives with respect to a1, b1, and λ to 0 leads to a1 =
√

2Ξ and b1 = 0,
i.e.

u(t) =
√

2Ξ cos(ωst). (7)

The optimal stimulation strategy therefore consists in providing sinusoidal stimulation at
the slow frequency, with its peak aligned to the peak of the slow rhythm. This optimal
waveform makes intuitive sense since the ARC of the fast population is positive and
does not depend on the phase of the fast population. Sinusoidal stimulation therefore
enhances the amplitude of the fast population when the stimulation waveform is positive,
and suppresses the amplitude of the fast population when the stimulation waveform is
negative as illustrated in figure 2A.

Verification using numerical optimisation We verify using numerical optimisation
that the waveform given by equation (7) closely approximates the optimal PAC-enhancing
waveform. To this end, we optimise the Fourier coefficients of u(t) up to Nu = 5 to
maximise the MVL (obtained as equation (12), see section 4.1 in the Appendix) while
constraining the energy of u(t) to Ξ. Methodological details of the optimisation process
can be found in section 4.2.

The best-ranked stimulation waveform obtained from numerical optimisation is a close
approximation of the sinusoidal waveform given by equation (7), as shown in figure 3
(see panel I, and compare panels D and H). These results are consistent across the top-
50 optimisations (figure 3E). Note that similar results are obtained when maximising
the MVL (figure 3) or a discrete approximation of Γ, i.e. measures based on ρf or ρ2

f ,
respectively. We also perturb each Fourier coefficient in turn by adding the perturbation√

Ξ/10, where Ξ is the waveform energy before perturbation. This analysis confirms the
dominant impact of the first Fourier component of the stimulation waveform on PAC.
This is true both when perturbing PAC-enhancing waveforms (figure 3J) and random
waveforms (figure 3K). Methodological details for this analysis can be found in section 4.3.
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Figure 3: Comparison between optimal PAC-enhancing waveforms predicted by theory and by nu-
merical optimisation – foundational case one (mean-field coupled stimulation) in the Stuart-Landau
model. The model output in the absence of stimulation is shown in panel A. The model output when receiving
optimal PAC-enhancing stimulation is shown in panels B (stimulation waveform predicted by theory) and F (stimu-
lation waveform obtained though numerical optimisation). The corresponding optimal PAC-enhancing stimulation
waveforms are shown in panels C and G, respectively, and are overlaid for comparison in panel I. Their Fourier
coefficients are shown in panels D and H, respectively. Panel E represents the energy of PAC-enhancing waveforms
obtained from numerical optimisation for all Fourier coefficient orders (vertical axis), when averaging the x-best
optimisation results (x being the horizontal axis value). The absolute change in MVL when increasing the energy
of a given stimulation Fourier coefficient is provided in panels J (when starting from PAC-enhancing waveforms
obtained from the numerical optimisation process), and K (when starting from random waveforms). Error bars (too
small to see here) represent the standard error of the mean. The Fourier coefficients predicted to be key contributors
to PAC levels by theory are highlighted by red rectangles in panels H, J, and K. MVL for the stimulation waveform
predicted by theory is 0.335, MVL for the stimulation waveform obtained though numerical optimisation is 0.337,
MVL in the absence of stimulation is 0.079 (∆ff = 10 Hz). In all cases, waveform energy is fixed at Ξ = 50. The
parameters of the SL model used are δ = 15, ks = 3, ff = 40 Hz, and fs = 6 Hz.
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2.1.2 Foundational case two: stimulation acts through a direct coupling

We next consider a second foundational case where stimulation acts through f(zf ) = 1,
which we call “direct” coupling. With the activity of the fast population modelled as ℜ(zf )
(where ℜ(.) denotes the real part), this case represents stimulation directly increasing the
firing rate of the fast population. Using equation 3, f(zf ) = 1 corresponds to ARC =
cos θf and PRC = − sin θf/ρf (for ρf > 0). From equation (1) with direct coupling, the
time evolutions of ρf and θf are given by

ρ̇f = −ρ3
f + [δ + ks cos(ωst)] ρf + cos(θf )u(t), (8)

θ̇f = ωf − sin(θf )
ρf

u(t),

for ρf > 0.

Theoretical predictions While an analytical solution is out of reach, we can determine
which Fourier coefficients of the stimulation waveform should be considered to enhance
PAC. To study the effect of stimulation on ρf , we approximate θf by

θf ≈ ωf t + φu ≈ rωst + φu, (9)

where r is the closest integer to ωf/ωs, and φu is a constant phase (the subscript u denotes
a potential dependence on the stimulation waveform). This approximation is justified if
the stimulation amplitude is small (in which case deviations of θ̇f from ωf would be
small), and ωf ≫ ωs, which is often the case in the brain (e.g theta-gamma coupling).
The approximation θf ≈ rωst + φu is also justified for larger stimulation amplitudes
leading to r : 1 entrainment. We therefore have approximately

ρ̇f = −ρ3
f + [δ + ks cos(ωst)] ρf + cos(rωst + φu)u(t). (10)

Although an exact solution has recently been found for this type of differential equa-
tions (Abel’s equation of the first kind) [41], it cannot be expressed directly as a function
of the Fourier coefficients of the stimulation. Instead, we can gain insight by noting that
in the steady-state, solutions with PAC will be periodic with period 2π/ωs, and thus can
be approximated as truncated Fourier series. Since most of the PAC strength is cap-
tured by the first harmonic of ρf , we only consider its zeroth and first order components
parametrised by ρ0, ρ1, and θ1 such that ρf (t) = ρ0 + 2ρ1 cos (ωst + θ1). We show in
section 4.4 in the Appendix that equation (10) translates to three equations in ρ0, ρ1, and
θ1 (equations (15)-(17)).

While these equations cannot be solved easily, they demonstrate that the zeroth and
first harmonic of ρ (which will determine PAC strength) only depend on the Fourier
coefficients of the stimulation of order r, r − 1, r + 1 (recall that r is the closest integer
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to ωf/ωs). Since the base frequency of u(t) is ωs, these Fourier coefficients correspond to
frequencies ff , and ff ±fs. The small number of Fourier coefficients involved significantly
simplifies the task of finding an optimal stimulation to increase PAC, and also highlights
that how stimulation couples to the neural circuit of interest has a large influence on
the optimal stimulation. The optimal stimulation here is very different from the mean-
coupling case where stimulation at ωs is optimal, i.e. only u1 is non-zero. Note the theory
predicts that no Fourier coefficient other than the coefficients of order r, r −1, r +1 plays
a key role in enhancing PAC, but the coefficients of order r, r − 1, r + 1 need not all have
a significant impact on PAC.

Verification using numerical optimisation We verify using numerical optimisation
that the key stimulation waveform Fourier coefficients to optimally enhance PAC (for
direct coupling) are limited to (possibly a subset of) coefficients of order r, r − 1, and
r + 1 as predicted by theory. To this end, we optimise either the Fourier coefficients
of u(t) predicted by theory, or all Fourier coefficients up to Nu = 10. In both cases,
the objective is to maximise the MVL (obtained as equation (12), see section 4.1 in the
Appendix) while constraining the energy of u(t) to Ξ. As before, methodological details
of the optimisation process can be found in section 4.2.

The results of numerical optimisation support theoretical predictions. The best-ranked
stimulation waveforms obtained from both numerical optimisations show close similarities
(figure 4J), and the resulting PAC levels are similar (with a slight advantage when opti-
mising Fourier coefficients predicted by theory). Additionally, the best-ranked waveform
obtained when optimising all coefficients concentrates its energy in the Fourier coefficients
predicted by theory (highlighted by a red rectangle in figure 4H). This is consistent across
the top-50 local optimisations (figure 4I). Moreover, perturbing individual Fourier coef-
ficients in turn confirms the dominant impact of the stimulation waveform Fourier com-
ponents of order r, r − 1, and r + 1. This is true both when perturbing PAC-enhancing
waveforms (figure 4K) and random waveforms (figure 4L). As before, the perturbation
size is

√
Ξ/10 and methodological details for this analysis can be found in section 4.3.

These numerical results were obtained for ωf/ωs = 7, and we also verify that our theoret-
ical predictions hold true for non-integer values of ωf/ωs (see figure S.2 in Supplementary
Material).

This second foundational example illustrates a key mechanism of action of PAC-
enhancing stimulation when the amplitude response of the fast population depends on
its phase and has zero mean. In this case, modulating the amplitude of the fast popu-
lation necessarily requires fast-frequency oscillations in the stimulation waveform. The
optimal waveform obtained from numerical optimisation in figure 2B demonstrate that,
if the ARC is maximum and positive at θf = 0, the fast-frequency oscillations in the
stimulation waveform should phase-align with the oscillations of the fast population in
the part of the slow-frequency cycle where the fast-oscillation amplitude should be in-
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creased (see green dashed lines in figure 2B). Conversely, if the ARC is minimum and
negative at θf = π for example, the fast-frequency oscillations in the stimulation wave-
form should anti-phase-align with the oscillations of the fast population in the part of
the slow-frequency cycle where the fast-oscillation amplitude should be decreased (see
red-dashed lines in figure 2B). While the theoretical analysis presented above does not
describe how the fast-frequency oscillations in the optimal waveform should be arranged,
the definition of the ARC requires the phase alignment between the stimulation’s fast
components and the oscillations of the fast population to change throughout the slow
cycle. Indeed, if this weren’t the case, the effect of stimulation on the amplitude of the
fast population would be the same throughout the slow cycle as the peaks of stimulation
at the fast frequency would consistently occur around the same phase of the fast pop-
ulation’s oscillation. As detailed above, the optimal waveform obtained from numerical
optimisation confirms that the ARC of the fast population dictates how phase alignment
between the stimulation’s fast components and the fast rhythm should change throughout
the slow cycle to optimally enhance PAC. Specifically, stimulation energy should be con-
centrated close to the phase corresponding to maximum amplification in the ARC where
the fast population’s oscillations should be strengthened, and close to phase correspond-
ing to maximum suppression in the ARC where the fast population’s oscillations should
be weakened.

2.1.3 Stimulation acts through a general coupling

In this section, we consider that stimulation acts through a general coupling. In general,
the ARC of the fast population will combine features of the foundational cases investigated
in the previous sections, i.e. non-zero mean and phase dependence. We assume f(zf ) =
ARC(θf , ρf )eiθf + iPRC(θf , ρf )zf where ARC(θf , ρf ) is a separable function of θf and ρf .
This is for instance the case for the mean-field of a population of neurons represented by
phase oscillators [42]. Since the ARC of the fast population is also a periodic function of
θf , it can be approximated as ARC(θf , ρf ) ≈ g(ρf ) ∑Na

n=−Na
αneniθf .
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Figure 4: Comparison between best PAC-enhancing waveforms predicted by theory and by numerical
optimisation – foundational case two (direct stimulation coupling) in the Stuart-Landau model. The
model output in the absence of stimulation is shown in panel A. The model output when receiving PAC-enhancing
stimulation is shown in panels B (best stimulation waveform obtained when optimising only Fourier coefficients
predicted by theory) and F (best stimulation waveform obtained when optimising all Fourier coefficients). The
corresponding best PAC-enhancing stimulation waveforms are shown in panels C and G, respectively, and are
overlaid for comparison in panel J (aligned to maximise their cross-correlation). Their Fourier coefficients are shown
in panels D and H, respectively. The energy of PAC-enhancing waveforms obtained from numerical optimisation for
all Fourier coefficient orders (vertical axis) when averaging the x-best optimisation results (x being the horizontal
axis value) is represented in panels E (only Fourier coefficients predicted by theory were optimised) and I (all Fourier
coefficients were optimised). The absolute change in MVL when increasing the energy of a given stimulation Fourier
coefficient is provided in panels K (when starting from PAC-enhancing waveforms obtained from the numerical
optimisation process with all coefficients optimised), and L (when starting from random waveforms). Error bars
represent the standard error of the mean. The Fourier coefficients predicted to be (potential) key contributors to
PAC levels by theory are highlighted by red rectangles in panels H, I, K, and L. MVL for the stimulation waveform
with only coefficients predicted by theory optimised is 0.563, MVL for the stimulation waveform with all coefficients
optimised is 0.533, MVL in the absence of stimulation is 0.082 (∆ff = 20 Hz). In all cases, waveform energy is
fixed at Ξ = 5000. The parameters of the SL model used are δ = 15, ks = 3, ff = 42 Hz, and fs = 6 Hz (r = 7).
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Theoretical predictions As before, we aim to determine which Fourier coefficients of
the stimulation waveform should be considered to enhance PAC. We show in section 4.5
in the Appendix that the zeroth and first order components of ρf (parametrised by ρ0,
ρ1, and θ1 as previously) must satisfy equations (21)-(23), where g(ρf ) was approximated
by a truncated Fourier series g(ρf ) = ∑Nγ

n=−Nγ
dn (ρ0, ρ1, θ1) eniωst with truncation order

Nγ (note that each dn depends on the Fourier coefficients of ρf ).
While these equations cannot be solved analytically, they demonstrate that if the ARC

of the fast population has Na Fourier coefficients, the zeroth and first harmonic of ρf (and
therefore PAC strength) only depend on (possibly a subset of) the Fourier coefficients of
the stimulation of order

1, 2, ..., Nγ + 1
r − Nγ − 1, ..., r + Nγ + 1
2r − Nγ − 1, ..., 2r + Nγ + 1
...

Nar − Nγ − 1, ..., Nar + Nγ + 1.

To summarize, a kth harmonic in the ARC of the fast population leads to coefficients
of frequency kff and kff ± fs in the optimal stimulation waveform for k > 0, while a
non-zero mean in the ARC results in the addition of the slow frequency fs. Significant
dependence of the ARC on ρf requires additional neighbouring frequencies in steps of
fs until ±(Nγ + 1)fs from kff , and until (Nγ + 1)fs from fs. In particular, if the ARC
of the fast population has a dominant first harmonic and does not depend strongly on
ρf , it will be sufficient to optimise the Fourier coefficients of the stimulation waveform
corresponding to fs, ff , and ff ± fs to determine the optimal stimulation strategy. This
corresponds to the combination of the two foundational cases presented earlier.

Verification using numerical optimisation To verify these predictions using numer-
ical optimisation, we consider response curves of the fast population with a non-zero mean
and two harmonics given by

PRC(θf , ρf ) = g(ρf ) [0.2 − sin(θf ) + 0.7 cos(2θf )] ,

ARC(θf , ρf ) = g(ρf ) [0.4 + cos(θf ) − 0.5 sin(2θf )] ,

for g(ρf ) = 1 and g(ρf ) = 1/(ρf + 0.01). Thus, we verify in the former case that the key
stimulation waveform Fourier coefficients contributing to enhancing PAC are limited to
(possibly a subset of) coefficients of order 1, r, r −1, r +1, as well as 2r −1, 2r, and 2r +1
as predicted (second harmonic in ARC). In the latter case, the set of predicted potential
dependences expand to also include coefficients of order 2, r − 2, r + 2 as well as 2r − 2,
and 2r + 2 (we take Nγ = 1 since g(ρf ) is well described off-stimulation by one harmonic
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as shown in figure S.3A in Supplementary Material). As before, we optimise either the
Fourier coefficients of u(t) predicted by theory, or all Fourier coefficients up to Nu = 20
to maximise the MVL while constraining the energy of u(t) to Ξ (see sections 4.1 and 4.2
for methodological details).

In both cases, the results of numerical optimisation support theoretical predictions (see
figure 5 for g(ρf ) = 1 and figure S.4 for g(ρf ) = 1/(ρf +0.01) in Supplementary Material).
The best-ranked stimulation waveforms obtained from optimising coefficients predicted by
theory and all coefficients show similarities (compare panels C and G), and the resulting
PAC levels are similar (in both cases with a slight advantage when optimising Fourier
coefficients predicted by theory). Additionally, the best-rank waveforms obtained when
optimising all coefficients concentrate their energy in a subset of the Fourier coefficients
predicted by theory (highlighted by red rectangles in panels H in both figures). In both
cases, this is consistent across the top-50 local optimisations (panels I in both figures),
and confirmed by perturbation analysis (perturbation of PAC-enhancing waveforms in
panels K and of random waveforms in panels L, see section 4.3 for methodological details,
perturbation of size

√
Ξ/10 as before). Comparing figure 5H and figure S.4H, significant

energy is introduced in Fourier coefficients of order 2 and 2r −1 when the ARC of the fast
population depends on ρf as opposed to when it doesn’t. However the Fourier components
with the largest impact on PAC are the same in both cases (see panels K and L). In
figure S.4H, the energy of b3 is not negligible, indicating that g(ρf ) = 1/(ρf +0.01) is best
described by two harmonics when stimulation is on (see figure S.3B2 in Supplementary
Material).

The optimal waveforms obtained from numerical optimisation in figure 5C and fig-
ure S.4C combine the two PAC-enhancing mechanisms presented in the two foundational
cases (see figure 2A-B). Because the mean amplitude response of the fast population across
phases is non-zero (figure 2C1), the optimal stimulation waveform has a slow-frequency
component that directly participates in expanding and shrinking the fast-frequency os-
cillations to produce PAC (figure 2C2-3 and figure S.5C-D in Supplementary Material).
Moreover, because the amplitude response of the fast population strongly depends on
its phase (figure 2C1), modulating the amplitude of the fast population requires fast-
frequency components in the stimulation waveform whose alignment with the fast rhythm
is modulated throughout the slow cycle (figure 2C4-5 and figure S.5E-F in Supplementary
Material).

Using the SL model, we have identified how characteristics of the fast population’s
response to stimulation dictate which frequencies should be included in the optimal stim-
ulation waveform, and how to align potential fast stimulation components throughout
the slow cycle according to the fast population’s ARC. We next investigate whether these
predictions carry over to a neural mass model generating PAC.
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Figure 5: Comparison between best PAC-enhancing waveforms predicted by theory and by numerical
optimisation – example for the general stimulation coupling case (no ρf dependence) in the Stuart-
Landau model. The model output in the absence of stimulation is shown in panel A. The model output when receiving
PAC-enhancing stimulation is shown in panels B (best stimulation waveform obtained when optimising only Fourier
coefficients predicted by theory) and F (best stimulation waveform obtained when optimising all Fourier coefficients).
The corresponding best PAC-enhancing stimulation waveforms are shown in panels C and G, respectively, and are
overlaid for comparison in panel J (aligned to maximise their cross-correlation). Their Fourier coefficients (absolute
values) are shown in panels D and H, respectively. The energy of PAC-enhancing waveforms obtained from numerical
optimisation for all Fourier coefficient orders (vertical axis) when averaging the x-best optimisation results (x being
the horizontal axis value) is represented in panels E (only Fourier coefficients predicted by theory were optimised)
and I (all Fourier coefficients were optimised). The absolute change in MVL when increasing the energy of a given
stimulation Fourier coefficient is provided in panels K (when starting from PAC-enhancing waveforms obtained from the
numerical optimisation process with all coefficients optimised), and L (when starting from random waveforms). Error
bars represent the standard error of the mean. The Fourier coefficients predicted to be (potential) key contributors to
PAC levels by theory are highlighted by red rectangles in panels H, I, K, and L. MVL for the stimulation waveform
with only coefficients predicted by theory optimised is 0.679, MVL for the stimulation waveform with all coefficients
optimised is 0.643, MVL in the absence of stimulation is 0.082 (∆ff = 20 Hz). In all cases, waveform energy is fixed at
Ξ = 5000. The parameters of the Stuart-Landau model used are δ = 15, ks = 3, ff = 42 Hz, and fs = 6 Hz (r = 7).
Stimulation is acting through PRC(θ) = 0.2 − sin(θ) + 0.7 cos(2θ) and ARC(θ) = 0.4 + cos(θ) − 0.5 sin(2θ).
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2.2 Testing optimal PAC-enhancing stimulation in the Wilson-
Cowan model

To test predictions obtained with the SL model, we use a more realistic neural mass model
representing interacting neural populations, the Wilson-Cowan model [43]. This model
was proposed as a canonical circuit to generate theta-gamma PAC in the presence of a
theta input [44]. The biologically-inspired WC model describes the interactions of an
excitatory (E) and an inhibitory (I) populations (see figure 6). The model is presented in
details in section 4.6 in the Appendix.

Figure 6: Sketch of the Wilson-Cowan model with stimulation. Intrinsic PAC can
be generated by a slow oscillatory input ηE provided to the excitatory population (denoted
E and shown in green). The inhibitory population (denoted I and shown in red) receives a
constant input ηI . The excitatory and inhibitory populations are reciprocally coupled, and the
excitatory population has a self-excitatory connection. The stimulation u(t) (in black) acts on
the excitatory population.

We test our predictions using two dynamically distinct cases. The first is a theta-
dominant example with some theta-gamma PAC in the absence of stimulation (figure 7A)
based on the parameters used in [44] (values given in table 1 in the Appendix). This case
is inspired by situations where gamma is locked to the peak of theta (e.g. in the human
hippocampus during memory encoding [6]), and increasing PAC could be beneficial (e.g
in AD). In this case, the WC is in a fixed-point regime when the slow input is low, and
crosses the Hopf bifurcation to the limit-cycle regime (gamma oscillations) when the slow
input increases (see [44] for more details). We call this example the “strong theta case”.
Our second case corresponds to a hypothetical scenario where PAC has almost completely
disappeared due to pathology and should be restored externally by stimulating the fast
rhythm. This second example displays pure gamma oscillations (limit-cycle regime) with
no slow input and no PAC in the absence of stimulation (see figure 8A, parameters in
table 1 in the Appendix). We call this example the “pure gamma case”. To investigate
whether predictions from the theory developed using the SL model in section 2.1 carry
over to the WC model, we optimise Fourier coefficients of u(t) up to Nu = 20 under energy
constraint for both the strong theta case and the pure gamma case. Methodological details
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of the optimisation process can be found in section 4.2, and methodological details of the
perturbation analysis can be found in section 4.3 (perturbation size is as before).

To test the predictions of our framework, we also compute the ARC in both cases
(methodological details can be found in section 4.7 in the Appendix). In general, the ARC
may depend on the full state of the system (we investigated the case of the dependence
on ρf in the SL model in section 2.1.3), so for the two-dimensional WC model the ARC
may also depend on the amplitude of the oscillations in addition to their phase. Here,
we compute the ARC along representative trajectories selected to reflect the dynamical
regimes where significant levels of stimulation are provided. For the strong theta case, this
corresponds to the high amplitude regime highlighted in gray in figure 9A4. Stimulation
is very low during the adjacent low amplitude regime so the ARC there is not relevant (in
this case it is approximately a scaled version of the ARC in the high amplitude regime).
For the pure gamma case, we compute the ARC for the two distinct dynamical regimes
where significant levels of stimulation are provided: a high amplitude regime (left gray
rectangle in figure 9B3), and a lower amplitude, higher frequency regime (right rectangle
in figure 9B3). The details of the trajectories used to compute the ARC are shown in
figure S.6 in supplementary material.

In the strong theta case, when optimising all Fourier coefficients of the stimulation
waveform, energy is concentrated in coefficients of order 1, r − 1, and r (see figure 7H-I,
r = 6 based on off-stimulation frequencies). Perturbation analysis highlights the role of
coefficients of order r − 2 to r + 2 when starting from optimised waveforms, and of order
r−1 to r+1 when starting from random waveforms. When only optimising coefficients of
order 1, 2, and r − 2 to r + 2, we find significant energy only in coefficients of order 1 and
r − 2 to r (figure 7D-E), and a slightly more favorable MVL value than when optimising
all coefficients (see figure caption). In light of the ARC of the stimulated WC population,
these results are consistent with the predictions obtained previously. In particular, the
ARC has a non-zero mean (light green line in figure 9A1), which gives leverage to the
Fourier coefficients of the stimulation waveform at the slow frequency, i.e. of order 1
(figure 9A2-3). Furthermore, the phase-dependence of the ARC is described by a strong
first harmonic (with some dependence on ρf ), hence the key role played by coefficients
belonging to orders r − 2 to r + 2 (no strong involvement of coefficients at the second
harmonic). Both mechanisms of actions of optimal PAC-enhancing waveforms identified
in the SL model are therefore preserved in this example (figure 9A2-A5).

In the pure gamma case, the involvement of stimulation waveform Fourier coefficients
around the second harmonic of the fast frequency is much more pronounced, and the slow
frequency is absent. When optimising all coefficients, energy is concentrated in coefficients
of order r − 2 to r, and 2r to 2r + 3 (see figure 8H-I, r = 6 based on off-stimulation
frequencies). Perturbation analysis underlines the impact of coefficients of order r − 1 to
r + 1 (figure 8K-L). When only optimising coefficients of order 1, 2, r − 2 to r + 2, and
2r−2 to 2r+2, we find significant energy only in coefficients of order r−2 to r, and 2r−2
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to 2r + 1 (figure 8D-E), and a slightly less favorable MVL value than when optimising
all coefficients (see figure caption). Given the ARC of the stimulated WC population,
these findings align with prior predictions. Since the ARC mean is close to zero (light
green lines in figures 9B1-B2), optimal stimulation waveforms have no significant energy
at the slow frequency. Moreover, the ARC shows a strong first harmonic when ρf is
high (figure 9B1). When ρf is low, the frequency of the fast oscillations doubles (faster
frequency associated with the unstable fixed point enclosed by the limit cycle), which
corresponds to a dominant second harmonic in the ARC (figure 9B2). According to the
previously developed theory and given the dependence on ρf , this corresponds to the
potential involvement of stimulation coefficients of order r − 2 to r + 2, and 2r − 2 to
2r + 2, which is verified here. An exception to this is the 2r + 3 term seen in figure 8I,
which may be due to the speed-up of fast oscillations at low ρf (r = 5 on stimulation),
or to the fact that the dependence on ρf cannot be described sufficiently well by a single
harmonic.
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Figure 7: Comparison between best PAC-enhancing waveforms predicted by theory and by numerical
optimisation – strong theta case in the Wilson-Cowan model. The model output in the absence of
stimulation is shown in panel A. The model output when receiving PAC-enhancing stimulation is shown in panels
B (best stimulation waveform obtained when optimising only Fourier coefficients predicted by theory) and F (best
stimulation waveform obtained when optimising all Fourier coefficients). The corresponding best PAC-enhancing
stimulation waveforms are shown in panels C and G, respectively, and are overlaid for comparison in panel J (aligned
to maximise their cross-correlation). Their Fourier coefficients are shown in panels D and H, respectively. The
energy of PAC-enhancing waveforms obtained from numerical optimisation for all Fourier coefficient orders (vertical
axis) when averaging the x-best optimisation results (x being the horizontal axis value) is represented in panels
E (only Fourier coefficients predicted by theory were optimised) and I (all Fourier coefficients were optimised).
The absolute change in MVL when increasing the energy of a given stimulation Fourier coefficient is provided in
panels K (when starting from PAC-enhancing waveforms obtained from the numerical optimisation process with all
coefficients optimised), and L (when starting from random waveforms). Error bars represent the standard error of
the mean. MVL for the stimulation waveform with only coefficients predicted by theory optimised is 0.102, MVL
for the stimulation waveform with all coefficients optimised is 0.101, MVL in the absence of stimulation is 0.0045
(∆ff = 20 Hz). In all cases, waveform energy is fixed at Ξ = 1. The parameters of the Wilson-Cowan model used
are taken given in Table 1 (strong theta row), and r = 6 (off-stimulation).
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Figure 8: Comparison between best PAC-enhancing waveforms predicted by theory and by numerical
optimisation – pure gamma case in the Wilson-Cowan model. The model output in the absence of
stimulation is shown in panel A. The model output when receiving PAC-enhancing stimulation is shown in panels
B (best stimulation waveform obtained when optimising only Fourier coefficients predicted by theory) and F (best
stimulation waveform obtained when optimising all Fourier coefficients). The corresponding best PAC-enhancing
stimulation waveforms are shown in panels C and G, respectively, and are overlaid for comparison in panel J (aligned
to maximise their cross-correlation). Their Fourier coefficients are shown in panels D and H, respectively. The
energy of PAC-enhancing waveforms obtained from numerical optimisation for all Fourier coefficient orders (vertical
axis) when averaging the x-best optimisation results (x being the horizontal axis value) is represented in panels
E (only Fourier coefficients predicted by theory were optimised) and I (all Fourier coefficients were optimised).
The absolute change in MVL when increasing the energy of a given stimulation Fourier coefficient is provided in
panels K (when starting from PAC-enhancing waveforms obtained from the numerical optimisation process with
all coefficients optimised), and L (when starting from random waveforms). Error bars represent the standard error
of the mean. MVL for the stimulation waveform with only coefficients predicted by theory optimised is 0.069,
MVL for the stimulation waveform with all coefficients optimised is 0.070, MVL in the absence of stimulation is
1.3 × 10−5 (∆ff = 20 Hz). In all cases, waveform energy is fixed at Ξ = 1. The parameters of the Wilson-Cowan
model used are taken given in Table 1 (pure gamma), and r = 6 (off-stimulation).
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Figure 9: PAC-enhancing mechanisms in the Wilson-Cowan model. A corresponds to the strong theta
case, and B to the pure gamma case. The ARCs shown were calculated in the regimes highlighted in grey. In A,
the amplitude response of the excitatory population depends on its phase and has a non-zero mean (highlighted in
light green in A1). The optimal stimulation waveform (taken from figure 7C) combines the mechanisms of PAC-
enhancement corresponding to the foundational cases one and two in the SL model (slow-frequency stimulation
in A2-3, and fast-frequency stimulation in A4-5). The dark red line in A3 represents a moving average of the
optimal stimulation waveform (sliding window corresponding approximately to two fast-population cycles). In B,
the amplitude response of the excitatory population has a mean close to zero (light green line in B1-2), but a
strong phase dependence. Thus, only the mechanism corresponding to foundational case two in the SL model is
at play here (fast-frequency stimulation in B3-4). The ARC strongly depends on the amplitude of the excitatory
population, and the presence of a strong second harmonic in B2 leads to a strong component around twice the fast
frequency in the stimulation waveform.
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2.3 Practical considerations

We begin by summarising in a flowchart (figure 10A) the insights from the previous
sections with a view to help experimentalists design PAC-enhancing stimulation. As a
reminder, we are assuming that stimulation solely affects the fast population, and our
predictions are based on the ARC of the fast population (representing the change in the
amplitude of the fast population as a function of the phase of stimulation), which can
be measured experimentally [45, 35]. If the amplitude response to stimulation of the fast
rhythm does not depend on its phase, optimal stimulation is at the slow frequency fs.
If the amplitude response does depend on the phase of the fast rhythm and its mean
is negligible, then the optimal stimulation is a combination of the fast frequency ff ,
as well as ff ± fs (and corresponding harmonics if there are strong harmonics in the
ARC of the fast population). Otherwise, the optimal stimulation is a combination of
these two strategies. Neighbouring frequency components may be added if the result is
not satisfactory, potentially indicating a dependence of the amplitude response on the
amplitude of the fast population. We also note that the same framework applies if one
aims to reduce rather than enhance PAC. The resulting optimal stimulation waveforms
will however be different (for example, the waveform will be anti-phase in the case of slow-
frequency stimulation). We next examine the trade-offs between Fourier coefficients of
optimal PAC-enhancing stimulation waveforms, investigate whether phase-locking to the
slow and/or fast rhythms is necessary, and how to approximate optimal PAC-enhancing
stimulation waveforms using pulses.

2.3.1 Trade-offs between Fourier coefficients of the stimulation waveform

The theory developed in section 2.1 identifies which Fourier coefficients should be consid-
ered to build an optimal PAC-modulating stimulation waveform, but does not prescribe
how much energy should be assigned to these coefficients (except in the simplest case
of stimulation being coupled through the mean-field of the fast population, where only
one Fourier component is involved). From the mechanism illustrated in figure 2B, the
waveform can be manually designed such that where the amplitude of the fast oscillation
should be increased, the phase alignment between the fast component in the stimulation
waveform and the fast rhythm correspond to the maximum amplification in the ARC.
Conversely, where the amplitude of the fast oscillation should be decreased, the phase
alignment between the fast component in the stimulation waveform and the fast rhythm
should correspond to the maximum suppression in the ARC. Here, we investigate numeri-
cally whether other principles can be found to guide the design of optimal PAC-modulating
stimulation waveforms.

In particular, we aim to contrast optimal PAC-enhancing stimulation for different
levels of endogenous fast oscillations and slow input. To this end, we consider the SL
model (equations (1) and (3)), with stimulation coupled to the fast population through
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Figure 10: Simplified flowcharts to guide the design of optimal PAC-enhancing stimulation. We are
assuming that stimulation acts solely on the fast population. The flowchart in panel A presents which Fourier
coefficients of the stimulation waveform to optimise. Neighbouring frequency components may be added if the
result is not satisfactory, potentially indicating a dependence of the amplitude response on the amplitude of the
fast population. The flowchart in panel B assumes that stimulation does not significantly entrain the slow rhythm
and presents a guide to decide whether phase-locking the stimulation to the fast and/or slow rhythms is necessary.

ARC(θf ) = 0.5 + cos(θf ) and PRC(θf ) = sin(θf ) for simplicity. As previously outlined,
the level of endogenous fast oscillations is controlled in this model by δ, and the level of
slow oscillations is controlled by ks.

To efficiently optimise the stimulation waveform across combinations of δ and ks, we
simplify the optimisation problem as follows. We parametrise the stimulation waveform
Fourier series as

u(t) =
Nu∑
n=1

An cos(nωst − Φn), (11)

where the amplitudes An are positive, and the phases Φn are in [0, 2π). In the SL model
considered, only Fourier coefficients of order 1, r − 1, r, and r + 1 significantly impact
PAC levels (see section 2.1.3 with Nα = 1 and g(ρf ) = 1). We therefore perform a
parameter sweep for combinations of A1, Ar−1, and Ar (Ar+1 is obtained by matching the
target stimulation energy, i.e. Ar+1 =

√
2Ξ − A2

1 − A2
r−1 − A2

r). For each combination
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of amplitudes, we only need to optimise the phases Φ1, Φr−1, Φr, and Φr+1. These
are simpler optimisations than the method described in section 4.2 because there is no
non-linear constraint to enforce by the optimiser, and there are only four parameters to
optimise. Because of the coarse-graining of amplitudes, this approach is less precise than
the full optimisations performed previously, but is more efficient which allows us to explore
changes in optimal stimulation waveform as a function of the strength of endogenous fast
and slow oscillations in the model. We use 10 equally spaced amplitude values for each of
A1, Ar−1, and Ar (i.e. 1000 amplitude combinations), and perform five local optimisations
per combination. Other methodological details are unchanged and per section 4.2 in the
Appendix.

Changes in the balance between Fourier amplitudes as a function of the strength of
endogenous fast and slow oscillations in the model (figure 11A-C) are relatively minor but
can be explained intuitively. As endogenous fast oscillations become stronger (increase
in δ), the Fourier amplitudes corresponding to the fast frequency (Ar) and the slow fre-
quency (A1) decrease in favor of the Fourier amplitudes corresponding to the modulation
of the fast frequency at the slow frequency (Ar−1 and Ar+1). There is relatively less en-
dogenous modulation, so an increase in the modulation of the fast frequency is necessary
to bring down the trough of ρf as per the mechanism described in foundational case two
(section 2.1.2 and figure 2B). Conversely, provided that endogenous fast oscillations are
relatively weak (low δ), as endogenous slow oscillations become stronger (increase in ks),
the Fourier amplitudes corresponding to the modulation of the fast frequency at the slow
frequency (Ar−1 and Ar+1) decrease in favor of the Fourier amplitude corresponding to
the fast frequency (Ar). Because endogenous modulation relative to fast-frequency ac-
tivity is already high, less modulation is needed from stimulation and boosting the fast
frequency is advantageous. We choose the model parameters studied in figure 11A-C to
cover a broad range of relative strength of fast to slow oscillations (model output in the
absence of stimulation across parameters shown in figure S.7 in the Supplementary Mate-
rial). The optimal PAC-enhancing waveforms resulting from the optimisations, as well as
the on-stimulation model outputs are shown in figure S.8 and S.9 in the Supplementary
Material, respectively. While small changes in the balance of Fourier amplitudes cannot
be detected due to coarse-graining, examination of the cost (here −MVL) across Fourier
amplitudes (figure 11D) supports the convergence to a single local minimum (for a given
set of model parameters). Furthermore, the shift of the entire area of low cost in the
space of Fourier amplitudes confirms the trends described above. Figure 11D is given for
Ar−1 = 55.56, but similar results are obtained across all Ar−1 considered in the sweep.

2.3.2 Is phase-locking to the slow rhythm necessary?

In the theory and examples presented in this work, stimulation is provided with a period
corresponding to the slow-oscillation frequency. Thus, stimulation is phase aligned to the
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Figure 11: Balance between optimal Fourier amplitudes and cost landscape as a function of the
strength of endogenous fast and slow oscillations in the Stuart-Landau model. The strength of en-
dogenous slow oscillations is controlled by model parameter ks (blue arrows), and the strength of endogenous fast
oscillations by model parameter δ (green arrows). The balance between Fourier amplitudes of PAC-enhancing opti-
mal stimulation waveforms as a function of the strength of endogenous fast and slow oscillations is shown in panels
A-C. Panel A corresponds to the slow-frequency Fourier amplitude (A1), panel B to the fast-frequency Fourier
amplitude (Ar), and panel C to the modulation of the fast frequency at the slow frequency (Ar−1 + Ar+1). Panel
D shows in color the best objective function values (costs) resulting from optimising Fourier phases to enhance
PAC for Ar−1 = 55.56, as a function of A1 and Ar, and as a function of the strength of endogenous fast and slow
oscillations (specific values indicated on the blue and and green axes). For a given combination of ks and δ, the
minimum cost for the Ar−1 slice shown is highlight by a red circle. In all panels, the total stimulation waveform
energy is kept at Ξ = 5000, and the frequency of endogenous oscillations is ff = 42 Hz, and fs = 6 Hz. Stimulation
is coupled to the fast population through ARC(θf ) = 0.5 + cos(θf ) and PRC(θf ) = sin(θf ).

slow rhythm at steady-state, and the specifics of the phase alignment are dictated by the
Fourier component make-up of the stimulation waveform. With practical applications in
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mind, we investigate in this section whether phase-locking to the slow-rhythm is necessary
to modulate PAC.

To this end, we simulate the SL model with stimulation coupled to the fast popula-
tion through its mean-field (equation (4), see section 2.1.1). We already know from the
analytical analysis in section 2.1.1 that the optimal stimulation is a sinusoid with its peak
aligned to the peak of the slow rhythm. However it is unclear how essential this opti-
mal phase alignment is. To answer this question, we provide the optimal PAC-enhancing
stimulation at various phases of the slow rhythm and measure resulting PAC levels. We
also perform the same analysis in the SL model with stimulation directly coupled to the
fast population (as in section 2.1.2), thereby investigating the two foundational cases
presented in this work.

The importance of phase alignment between stimulation and the slow rhythm depends
on PAC levels in the absence of stimulation in both cases. When off-stimulation PAC levels
are low (figure 12A3 and B3), a significant PAC-enhancing effect can still be achieved
without phase alignment (figure 12A1 and B1). However, when off-stimulation PAC
levels are higher (figure 12A4 and B4), providing stimulation close to the optimal phase
is critical to enhance PAC (figure 12A2 and B2). For example, providing stimulation
half a period too late/early leads to a significant decrease in PAC. We note that the
fast-frequency oscillations can be entrained by stimulation in the direct coupling case,
but not in the mean-field coupling case (because the PRC is zero). Regardless of the
stimulation coupling function, our simulations assume that stimulation does not affect
the slow rhythm, and therefore cannot entrain it. Generally, enhancing the existing
phase-amplitude relationship between two rhythms requires phase locking, but may be
more physiological. This is the case in figure 12A2 and B2 where overriding the existing
phase-amplitude relationship would require too much energy, and enhancing the existing
phase-amplitude relationship is the only viable strategy. Conversely, a phase-amplitude
relationship different from the existing phase-amplitude relationship between the fast and
slow rhythms is enforced by stimulation for a stimulation phase of e.g. π in figure 12A2
and B2.

2.3.3 Is phase-locking to the fast rhythm necessary?

In situations where stimulation acts through the mechanism described in foundational
case two (see figure 2B), the differential alignment (as prescribed by the ARC) of the
stimulation fast frequency components with the fast rhythm at the peak and trough
of the slow rhythm is critical. In the ideal case where ff is constant and an integer
multiple of fs, this alignment is enforced as a consequences of phase-aligning stimulation
with the slow rhythm. However, we show that in the more realistic scenario where ff

is not an integer multiple of fs or significantly varies over time, adapting stimulation to
the frequency fluctuations of the fast rhythm will give better results. To this end, we
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Figure 12: The importance of phase alignment between stimulation and the slow rhythm depends
on off-stimulation PAC levels. PAC-enhancing stimulation waveforms are provided at different phases of the
slow rhythm. Panels A1-4 correspond to the SL model with stimulation coupled to the fast population through its
mean-field and the stimulation waveform given in figure 3C, while panels B1-4 correspond to the SL model with
direct stimulation coupling and the stimulation waveform given in figure 4C. Panels A1, A2 and B1, B2 show the
MVL as a function of stimulation phase of the slow rhythm in blue (a stimulation phase of zero corresponds to
the peaks of the stimulation waveform and the slow rhythm being aligned), and the off-stimulation MVL level in
red. Panels A3, A4 and B3, B4 represent the corresponding off-stimulation model output (real part of the order
parameter). In A1-4, ff = 40Hz, fs = 6Hz, and δ = 5000. Panels A1, A3 correspond to ks = 500, and Ξ = 1 × 107.
Panels A2, A4 correspond to ks = 2000, and Ξ = 5 × 105. In B1-4, ff = 42Hz, fs = 6Hz, δ = 15, and Ξ = 5000.
Panels B1, B3 correspond to ks = 3, and panels B2, B4 to ks = 10. Note that the stimulation waveform provided
in B is optimal for B1 but not for B2.

simulate the SL model as in the previous section (stimulation coupling corresponding to
foundational case two) for different values of fs, as well as with ff varying according to a
Wiener process.

If the stimulation waveform (optimised for ff = 42Hz) does not change, the maximum
achievable PAC modulation decreases as ff is varied from 42Hz (figure 13). The optimal
phase alignment between the stimulation waveform and the slow rhythm also changes
(figure 13A1 and B1) Similarly, we show that when ff varies according to a Wiener
process, increasing the level of noise drastically reduces the ability of open-loop stimulation
to modulate PAC (figure S.10 in Supplementary Material). Together, these results suggest
that if the stimulation waveform contains fast frequency components, it is advisable to
lock these with the fast rhythm (in the manner prescribed by the ARC of the fast rhythm).
We summarise the conclusions of this subsection and the previous one in the flowchart
presented in figure 10B.
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Figure 13: Effect of changes in the fast rhythm frequency on PAC modulation. The PAC-enhancing
stimulation waveform optimised for fs = 6Hz and ff = 42Hz was provided at different phases of the slow rhythm,
and for different values of the fast rhythm frequency. Panels A1 and B1 show the MVL as a function of ff , and of
the stimulation phase of the slow rhythm (a stimulation phase of zero corresponds to the peaks of the stimulation
waveform and the slow rhythm being aligned). No color is shown when the MVL is below the off-stimulation
value. The optimal stimulation phase relative to the slow rhythm depends on ff , and the maximum achievable
MVL decreases away from ff = 42 (in the absence of adjustment of the stimulation to the fast rhythm). This
is confirmed in panels A2 and B2, where the maximum achievable MVL for a given value of ff is shown on the
vertical axis (off-stimulation MVL level in red). In all panels, simulations are performed using an SL model with
direct stimulation coupling and the stimulation waveform given in figure 4C. Parameters used are fs = 6Hz, δ = 15,
and Ξ = 5000. Panels A1-2 correspond to ks = 3, and panels B1-2 to ks = 10.

2.4 Pulsatile waveforms

Optimal waveforms parametrised by Fourier coefficients may be applicable to stimulation
modalities such as tACS, but are not directly applicable to stimulation modalities that
can only generate square pulses (e.g. DBS). However, these smooth optimal waveforms
can be approximated using pulsatile waveforms. We suggest different ways of doing so,
and compare the resulting pulsatile waveforms to the corresponding optimal smooth wave-
forms in terms of their effects on PAC in the SL and WC models presented before. We
approximate smooth waveforms using regularly spaced square pulses, with a certain pulse
frequency and pulse duration. The amplitude (intensity) of each pulse is simply given
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by the amplitude of the smooth waveform at the center of the pulse (as shown for e.g.
figure 14E1), with a scaling factor determined to either match the energy of the smooth
waveform (i.e.

∫
u(t)2dt), or its cumulative absolute intensity (i.e.

∫
|u(t)|dt). Model sim-

ulation with pulsatile waveforms required to use Euler’s method, as a variable step solver
(used in the rest of this work) would lead to pulse durations varying with the integration
step.

For the SL models investigated in foundational cases one (section 2.1.1) and two (sec-
tion 2.1.2), relatively low pulse frequencies (135Hz for 0.5ms pulse duration) are sufficient
for the corresponding pulsatile waveform to increase PAC as much as the smooth opti-
mal waveform when matching cumulative absolute intensity (figure 14A). When matching
waveform energy, pulse frequency has to be markedly increased to notably affect PAC (fig-
ure 14B); alternatively, pulse duration can be lengthened while maintaining a low pulse
frequency (figure 14B-C). For the SL models investigated in the general stimulation cou-
pling case (section 2.1.3), higher pulse frequencies are generally required to match the
effects on PAC of the smooth optimal waveforms (around 360Hz for 0.5ms pulse duration,
see figure S.11 in supplementary material). This is also the case with the WC models in-
vestigated in section 2.2, see figure S.12 in supplementary material. However, increasing
pulse duration can considerably lower the pulse frequency required (figure 15B-C). More-
over, irregular pulse spacing chosen such that pulses are centered on the local peaks of
the smooth waveform (as shown in figure 15D1 and G1) can further reduce the (average)
pulse frequency required to 75Hz (10ms pulse) for the strong theta case, and to 197Hz
(3ms pulse) for the pure gamma case (figure 15A).
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Figure 14: Optimal smooth waveforms can be approximated with pulses – foundational cases one and
two in the SL model. MVL is shown as a function of pulse frequency, for a pulse duration of 0.5ms (A), and as a
function of pulse duration, for a pulse frequency of 130Hz (B) and 390Hz (C). In these panels, foundational case one
(mean-field coupled stimulation, parameters corresponding to figure 3B-D) is shown in dark green, and foundational
case two (direct stimulation coupling, parameters corresponding to figure 4B-D) is shown in light green. Solid lines
correspond to pulsatile waveforms obtained by matching the cumulative absolute intensity of the optimal smooth
waveforms, while dashed lines correspond to pulsatile waveforms obtained by matching the energy of the optimal
smooth waveforms. Dotted lines (behind the solid lines where they are not visible) correspond to the smooth
optimal waveforms. Panels D-I show the smooth optimal waveform in red and the pulsatile approximation in black
denoted by up(t) (top), as well as the resulting activity of the fast population (bottom). Pulse frequencies/durations
are as follow: 135Hz/0.5ms in D and G, 130Hz/4.8ms in E and H, 390Hz/2.0ms in F and I.
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Figure 15: Optimal smooth waveforms can be approximated with pulses – WC model. MVL is shown
as a function of pulse duration for pulses centered on the local peaks of the smooth waveform (A), as well as for
a frequency of 130Hz (B) and 390Hz (C). In these panels, the strong theta case (parameters corresponding to
figure 7B-D) is shown in light green, and the pure gamma case (parameters corresponding to figure 8B-D) is shown
in dark green. Solid lines correspond to pulsatile waveforms obtained by matching the cumulative absolute intensity
of the optimal smooth waveforms, while dashed lines correspond to pulsatile waveforms obtained by matching the
energy of the optimal smooth waveforms. Dotted lines correspond to the smooth optimal waveforms. Panels D-I
show the smooth optimal waveform in red and the pulsatile approximation in black (top), as well as the resulting
activity of the fast population (bottom). Pulse frequencies/durations are as follow: 75.4Hz(average)/5.9ms in D,
130Hz/5.8ms in E and I, 390Hz/2.0ms in F, 197Hz(average)/3.0ms in G, and 130Hz/2.9ms in H.
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3 Discussion
In this work, we developed a framework to guide the development of optimal PAC-
enhancing stimulation. Our framework is for stimulation acting on the neural population
generating the fast rhythm, and assumes that neither stimulation nor the fast rhythm
significantly affect the slow rhythm (assumed to be generated by another neural popu-
lation). Using a SL model, we showed that the ARC of the fast population determines
which Fourier coefficients should be included and optimised in the stimulation waveform.

Specifically, if the amplitude response to stimulation of the fast rhythm does not de-
pend on its phase, optimal stimulation is at the slow frequency fs (figure 2A). If the
amplitude response of the fast rhythm does depend on its phase and its mean is neg-
ligible, then the optimal stimulation is a combination of the fast frequency ff , as well
as ff ± fs (and corresponding harmonics if there are strong harmonics in the amplitude
response curve of the fast population), see figure 2B. Otherwise, the optimal stimulation
is a combination of these two strategies (figure 2C). Neighbouring frequency components
may be added if the result is not satisfactory, potentially indicating a dependence of the
amplitude response on the amplitude of the fast population.

Additionally, the predictions obtained with the SL model appeared to carry over in
several dynamical regimes of a more realistic neural mass model representing interacting
neural populations, the WC model (figure 9). Moreover, we showed in the SL model
that changes in the balance between Fourier amplitudes as a function of the strength of
endogenous fast and slow oscillations are relatively minor but can be explained intuitively
(figure 11). We also established that when stimulation includes fast frequency component,
it is likely that locking these with the fast population (as specified by the ARC) will be
necessary. When stimulation does not include fast components, the importance of phase
alignment between stimulation and the slow rhythm depends on PAC levels in the absence
of stimulation, and on whether overriding the existing phase-amplitude relationship is
acceptable (figure 12). Finally, for neuromodulation modalities that can only generate
square waves, the optimal waveforms predicted by our framework can be approximated
by pulsatile waveforms.

Modelling PAC generation Models with various levels of biophysical details have
been used to investigate PAC. For example, detailed single and multi-compartment models
can generate PAC (see [46] for a review), and the emergence of PAC was investigated in
a simulated hippocampal CA1 microcircuit with morphologically detailed neurons [47].
Neural mass models with various types of coupling can also produce PAC, from simple
E-I loops [44] to realistic circuits comprising four cortical layers and dozens of populations
[48]. The canonical types of population interactions leading to PAC have been reviewed
in [49] (our models correspond to unidirectional coupling from a slow population to a fast
population), and the bifurcation types responsible for PAC in these models are studied in
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[50]. Importantly, the effects of brain stimulation on PAC were only explored in a couple
of modelling studies to date, namely in a neuronal network consisting of one thousand cells
simulated in NEURON [51], and recently in a model connecting a biophysically-detailed
representation of the hippocampus with Kuramoto oscillators portraying input from the
medial septum [52].

We chose the SL model for its ability to represent a neural oscillator with a phase and
an amplitude variable going through a Hopf bifurcation, and for its analytical tractability
which allowed us to gain insights into optimal PAC-enhancing stimulation. We chose the
WC model to test the predictions obtained with the SL model since the WC model has
been proposed as a canonical E-I circuit to generate PAC [44] and has been commonly
used to study neural oscillations and optimise therapeutic brain stimulation [53, 54, 44, 55,
56, 57, 58, 59, 60]. Crucially, the WC model is a relatively inexpensive to simulate neural
mass model (as opposed to models requiring to simulate individual neurons), which makes
numerical optimisation of the stimulation waveform possible. Additionally, in both our
SL and WC models, the fast rhythm can be periodically inhibited by the slow rhythm as
in detailed neurons models reviewed in [46], but the fast population can also be quiescent
(δ ≤ 0 in the SL model and trough of the strong theta regime in the WC model). In that
case, fast oscillations are only brought about by the rising slow input causing the model to
traverse a Hopf bifurcation [44, 27] (see the WC model strong theta case in section 2.2).

Comparing predictions with experimental data Results of recent experimental
studies are in line with some of the predictions made in this work. In particular, bursts
of stimulation phased-locked to the peak of the slow rhythm were found to increase PAC
compared to baseline and to stimulation provided at the trough of the slow rhythm [25, 26].
These could correspond to purely excitatory pulses acting through the mechanism pre-
sented in section 2.1.1 (see figure 2A), or to pulses with excitatory and inhibitory compo-
nents acting through the mechanism presented in section 2.1.2 (see figure 2B) where
phase-alignment with the peak of the fast oscillations happens through entrainment.
Other studies reported improvements in memory performance [61], motor skill acqui-
sition [62], and cognitive task performance [63] after open-loop transcranial alternative
current stimulation with bursts of gamma stimulation superimposed to the peak of a theta
stimulation waveform. No improvement was reported in [61, 62] when gamma bursts are
superimposed to the trough of the theta stimulation waveform. Although PAC was not
measured during stimulation, these behavioural improvements are likely mediated by an
increase in PAC. The effective stimulation waveform in these studies correspond to the
combination of mechanisms one and two, and is similar to the optimal waveform in the
WC model strong theta case (see figure 9A). Since stimulation was open-loop, entrain-
ment of both the slow and fast rhythms may have played a role. Furthermore, the additive
effect of both mechanisms (i.e slow and fast components of the stimulation waveform) on
memory performance was confirmed in [61], as well as the frequency specificity of the fast

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2024. ; https://doi.org/10.1101/2024.02.12.579897doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.12.579897
http://creativecommons.org/licenses/by/4.0/


component of the stimulation waveform.
Nevertheless, more experimental work is required to validate our framework, in par-

ticular with regards to the relationship between the characteristics of the ARC of the fast
population and the optimal PAC-enhancing waveform. The ARC of the fast population of
interest could be measured experimentally using phase-locked stimulation as in previous
studies [45, 35]. Recent advances in continuous real-time phase estimation with zero filter
delay [64] (also see link to code in [35]) make phase-locking to fast oscillations feasible
(robust phase-locking was achieved at 40 Hz in [35]). Another method was recently shown
to reliably estimate in real-time the phase of oscillations up to 250 Hz in synthetic data
[65]. These advances will also be key to phase-locking stimulation to the fast rhythm
according to the mechanism described in figure 2B.

Limitations In this work, the slow rhythm involved in PAC was considered to be gen-
erated by an external neural population (for example by the medial septum in the case
of hippocampal theta-gamma PAC). It was assumed that neither the fast population nor
stimulation significantly influence the slow rhythm. This is justified if stimulation is lo-
cal to the fast population, and the influence of the fast population on the slow rhythm
averages out on the slow timescale [27] or the projections from the fast population to the
slow population are weak. However, if stimulation significantly affects the slow rhythm,
the impact on PAC can be substantial as shown recently [52]. Including in our framework
the potential effects of stimulation on the slow rhythm will be a focus for future work.
Additionally, how our framework may generalise to more detailed models of neural pop-
ulations has not been studied beyond the WC. Since the SL model used to develop the
framework is the normal form of a Hopf bifurcation, we can speculate that our predictions
may hold in more detailed models (e.g. including detailed representations of individual
neurons) that operate in the vicinity of a Hopf bifurcation.

Further limitations of this study include the absence of noise and the absence of synap-
tic plasticity in our models, as well as technical assumptions in derivations (the ARC is
assumed to be a separable function of phase and amplitude, and we assumed small stim-
ulation and ωf ≫ ωs or entrainment). We also used of a non-normalised MVL measure,
although this is offset by the fact that stimulation waveform energy is constrained in
numerical optimisations. Numerical optimisations were limited by available supercom-
puting resources, and the optimal balance of stimulation waveform Fourier coefficients
across model parameters could not be investigated with a finer Fourier amplitude grid
in the SL model, or at all in the WC model. Lastly, our framework assumes a smooth
stimulation waveform (as in tACS). While we propose different ways of approximating
the smooth optimal waveforms with pulsatile waveforms for neuromodulation devices that
can only generate pulses (section 2.4), the pulse frequencies and durations required may
not be achievable by some of these devices.
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Conclusion We have presented a framework to design optimal PAC-enhancing (or PAC-
decreasing) stimulation based on the amplitude response of the fast population, assuming
that stimulation acts solely on the neural population generating the fast rhythm. We
hope that this framework can help guide the development of innovative therapeutic brain
stimulation aiming of restoring healthy levels of PAC, for example in patients with AD,
where theta-gamma PAC is abnormally low and correlates with cognitive symptoms.

4 Appendix
In this section, we provide methodological details pertaining to PAC measurement,

numerical optimisation of the stimulation waveform to enhance PAC, the perturbation
analysis of stimulation Fourier coefficients, the WC model, and the estimation of ARCs in
the WC model. We also present derivation details for the analytical approaches pursued
in the SL model with direct stimulation coupling and general stimulation coupling.

4.1 Measuring PAC levels in simulations

In our simulations, the MVL is obtained in discrete time as

MVL = 1
Nt

∣∣∣∣∣∣
Nt∑

j=1
ρf (tj)eiωstj

∣∣∣∣∣∣ , (12)

where Nt is the number of sampling points in the time period considered. The amplitude
ρf is the Hilbert amplitude of the filtered model output (model output taken as ℜ(zf )
for SL [42], and as E for WC). A third-order butterworth filter with zero-phase filtering
is used to avoid phase distortions, and the Hilbert amplitude is given by the modulus of
the analytic signal constructed with the Hilbert transform. It was also found empirically
that stimulation waveform optimisations become unstable for narrow filter half-widths
such as ∆ff = 5 Hz. We therefore use filter half-widths of 10 or 20 Hz (see corresponding
figure captions for specific values). Note that the phase of the slow signal is given in
equation (12) by ωsti since in the examples considered, the slow signal is always cos(ωsti),
or a scaled and shifted version of it.

4.2 Numerical optimisation of stimulation waveform

To test our theory in the SL and WC models, we numerically optimise the Fourier coeffi-
cients of the stimulation waveform to maximise PAC. Each optimisation on a given variant
of the SL or WC model consists of many local optimisations starting from different initial
values of the stimulation Fourier coefficients. These are drawn from a uniform distribution
on a logarithmic scale between 10−3 and 1, and then rescaled so that the energy of each
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initial waveform is the target stimulation energy Ξ. Local optimisations are performed in
Matlab using the non-linear optimiser fmincon based on the interior-point algorithm [66],
under the constraint that the energy of the waveform (given by ∑Nu

j [a2
j + b2

j ]/2) is kept
within a small tolerance (ϵ = 0.1) of the target waveform energy Ξ. The target energy
is chosen for each model variant so that the optimal stimulation has a significant effect
on PAC (see corresponding figure captions for the specific target values). Hard bounds
between ±

√
2Ξ are also enforced during optimisation. For optimisation speed and accu-

racy, the models are simulated using Matlab’s solver ode113 (variable-step, variable-order
Adams-Bashforth-Moulton solver of orders 1 to 13). At each optimisation step, models
are simulated for 30s for variants of the SL model, and 20s for variants of the WC model
(reduced duration to improve optimisation speed). The transient is discarded by removing
the first third of the simulation output.

The objective function to minimise during optimisation is

cost = −MVL + 1
µ

(
2Nopt

u

) √
2Ξ

∥x∥1, (13)

where the first term ensures that the level of PAC is maximised (MVL obtained as
described in section 4.1), and the second term is a regularisation term. The Fourier
coefficients being optimised are denoted x =

[
a1, ..., aNopt

u
, b1, ...bNopt

u

]
, and the norm

∥x∥1 = ∑
i |xi| denotes the 1-norm. The regularisation term is scaled using the abso-

lute energy bound for Fourier coefficients during the optimisation (
√

2Ξ), the number of
Fourier coefficients being optimised (2Nopt

u ), and a regularisation parameter µ. Regular-
isation was only used to guide the more challenging optimisations — we used µ = 1 for
the variant of the SL model with dependence on ρ, µ = 15 for the WC models, and a very
large number otherwise (no regularisation).

The number of local optimisations was increased when optimising all Fourier coeffi-
cients compared to when optimising only the Fourier coefficients predicted by theory. At
least 3000 local optimisations were performed in the latter case, while at least 11000 local
optimisations were performed in the former case. This was to mitigate the increase in
the number of optimised parameters (within the limits of supercomputing resources avail-
able). In both cases, the best-ranked parameters coming out of the local optimisations
were put through one other round of local optimisation (except for the SL models with
mean-field and direct stimulation coupling, which were easier to optimise).

4.3 Perturbation analysis

As an additional investigation into which Fourier coefficients of the stimulation waveform
are key to enhancing PAC, we perturb individual Fourier coefficients and assess changes in
MVL. For each of the model variants considered, we perturb the npert-best PAC-enhancing
waveforms (obtained from numerically optimising all the Fourier coefficients), as well as
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npert random waveforms. Random waveforms are generated by drawing Fourier coefficients
from a uniform distribution and re-scaling the coefficients such that the waveform energy
is Ξ. We take npert = 100 for SL models, and npert = 200 for WC models (more variability
in the latter case). We perturb each Fourier coefficient in turn by adding the perturbation√

Ξ/10, where Ξ is the waveform energy before perturbation. We measure the absolute
change in PAC as |MVL − MVL0|, where MVL is the PAC level with the perturbation,
and MVL0 the PAC level in the absence of perturbation. For each of the model variants
considered, the absolute change in PAC is averaged separately across the npert-best PAC-
enhancing waveforms and the npert random waveforms.

We also follow the approach above to show that φu does not introduce significant
dependences on other Fourier coefficients than those predicted by theory in the SL model.
The only difference is that we fit a straight line to the time evolution of θf (first third
of the data discarded to remove transient), and measure φu as its intercept. For each
perturbation, we measure the absolute change in φu as |φu − φu0|, where φu0 is the phase
shift in the absence of perturbation. We average absolute differences as in the MVL case
above.

4.4 Derivation details for foundational case two

In this section, we derive a relationship between stimulation waveform Fourier coefficients
and the amplitude of the fast population in the case of direct coupling in the SL model
(foundational case two). This will allow us to gain insight into which Fourier coefficients
can have a significant impact on PAC. Using the approximation for θf mentioned in
section 2.1.2 in the Results, the time evolution of ρf is given by equation (10). In the
steady-state, solutions with PAC will be periodic with period 2π/ωs. Such solutions can
therefore be approximated as Fourier series ρf = ∑Nρ

n=−Nρ
cneniωst truncated at order Nρ.

We also have ρ3
f = ∑3Nρ

n=−3Nρ
Πneniωst, where the Fourier coefficients Πn can be obtained

as functions of the coefficients of ρ. Equation (10) becomes

Nρ∑
n=−Nρ

niωscneniωst = −
3Nρ∑

n=−3Nρ

Πneniωst +
Nρ∑

n=−Nρ

δcneniωst +
Nρ∑

n=−Nρ

ks

2 cne(n+1)iωst+

Nρ∑
n=−Nρ

ks

2 cne(n−1)iωst +
Nu∑

n=−Nu
n̸=0

un

2 e(n+r)iωsteiφu +
Nu∑

n=−Nu
n̸=0

un

2 e(n−r)iωste−iφu .

By manipulating indices and identifying terms corresponding to eniωst, we obtain

0 = (δ − niωs)cn + ks

2 cn−1 + ks

2 cn+1 − Πn + 1
2(un−re

iφu + un+re
−iφu), (14)

with u0 = 0, un = 0 for |n| > Nu, cn = 0 for |n| > Nρ, and Πn = 0 for |n| > 3Nρ.
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Most of the PAC strength is captured by the first harmonic of ρ, we therefore consider
equation (14) for c0 = ρ0, c1 = ρ1e

iθ1 (c−1 = c̄1), and cn = 0 for |n| > 1. Since
Π0 = 6c0c1c−1 + c3

0, and Π1 = 3c1c
2
0 + 3c−1c

2
1, we get

n = 0 : 0 = δc0 + ks

2 c−1 + ks

2 c1 − 6c0c1c−1 − c3
0 + 1

2(u−re
iφu + ure

−iφu),

n = 1 : 0 = (δ − iωs)c1 + ks

2 c0 − 3c1c
2
0 − 3c−1c

2
1 + 1

2(u1−re
iφu + u1+re

−iφu).

These two equations translate to three equations in ρ0, ρ1, and θ1 given by

0 = δρ0 + ks

2 ρ1 cos θ1 − 6ρ0ρ
2
1 − ρ3

0 + ℜ(ure
−iφu), (15)

0 = δρ1 cos θ1 + ωsρ1 sin θ1 + ks

2 ρ0 − 3ρ1ρ
2
0 cos θ1 − 3ρ3

1 cos θ1 + 1
2ℜ(ūr−1e

iφu + u1+re
−iφu),

(16)

0 = δρ1 sin θ1 − ωsρ1 cos θ1 − 3ρ1ρ
2
0 sin θ1 − 3ρ3

1 sin θ1 + 1
2ℑ(ūr−1e

iφu + u1+re
−iφu). (17)

We demonstrate numerically through a perturbation approach that the phase shift φu

(which also depends on the stimulation waveform) does not introduce dependences on ad-
ditional Fourier coefficients than those explicitly present in these equations (see figure S.1A
in Supplementary Material and methodological details in section 4.3, perturbation of size√

Ξ/10). We present the insights obtained from these equations and test predictions
arising from them in section 2.1.2 in the Results.

4.5 Derivation details for general stimulation coupling in the SL
model

We generalise the derivation presented in the previous section to a general stimulation
coupling, where the amplitude response curve of the fast population is a separable function
of θf and ρf (see section 2.1.3 in the Results), with a view to gain insight into which
Fourier coefficients can have a significant impact on PAC. From equation (1) with general
coupling, the time evolutions of ρf and θf are given by

ρ̇f = −ρ3
f + [δ + ks cos(ωst)] ρf + g(ρf )

Na∑
n=−Na

αneniθf u(t), (18)

θ̇f = ωf + PRC(θf , ρf )u(t).

As previously, equation (18) can be approximated by

ρ̇f = −ρ3
f + [δ + ks cos(ωst)] ρf + g(ρf )

Na∑
n=−Na

αneni(rωst+φu)u(t). (19)
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Since ρf is periodic, g(ρf ) can be approximated by a truncated Fourier series g(ρf ) =∑Nγ

n=−Nγ
dneniωst. Note that each dn depends on the Fourier coefficients of ρf . Using the

Fourier expansions of the various terms as before, equation (19) becomes

Nρ∑
n=−Nρ

niωscneniωst = −
3Nρ∑

n=−3Nρ

Πneniωst +
Nρ∑

n=−Nρ

δcneniωst +
Nρ∑

n=−Nρ

ks

2 cne(n+1)iωst+

Nρ∑
n=−Nρ

ks

2 cne(n−1)iωst +
Na∑

k=−Na

Nγ∑
m=−Nγ

Nu∑
l=−Nu
l ̸=0

dmαkule
(kr+l+m)iωstekiφu .

Using n = kr + l + m, we have

Na∑
k=−Na

Nγ∑
m=−Nγ

Nu∑
l=−Nu
l ̸=0

dmαkule
(kr+l+m)iωst =

Na∑
k=−Na

Nγ∑
m=−Nγ

kr+Nu∑
n=kr−Nu

n̸=kr+m

dmαkun−kr−meniωst.

By manipulating indices and identifying terms corresponding to eniωst, we obtain

0 = (δ − niωs)cn + ks

2 cn−1 + ks

2 cn+1 − Πn +
Na∑

k=−Na

Nγ∑
m=−Nγ

dmαkun−kr−mekiφu , (20)

with u0 = 0, un = 0 for |n| > Nu, cn = 0 for |n| > Nρ, Πn = 0 for |n| > 3Nρ, an = 0 for
|n| > Na, and dn = 0 for |n| > Nγ.

As before, most of the PAC strength is captured by the first harmonic of ρ with
coefficients c0 = ρ0, c1 = ρ1e

iθ1 (c−1 = c̄1). Neglecting the higher order harmonics of ρ,
the coefficients dm will only depend on c0 and c1. We have

n = 0 : 0 = δc0 + ks

2 c−1 + ks

2 c1 − 6c0c1c−1 − c3
0 +

Na∑
k=−Na

Nγ∑
m=−Nγ

dm (c0, c1) αku−kr−mekiφu ,

n = 1 : 0 = (δ − iωs)c1 + ks

2 c0 − 3c1c
2
0 − 3c−1c

2
1 +

Na∑
k=−Na

Nγ∑
m=−Nγ

dm (c0, c1) αku1−kr−mekiφu .
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These two equations translate to three equations in ρ0, ρ1, and θ1 given by

0 =δρ0 + ks

2 ρ1 cos θ1 − 6ρ0ρ
2
1 − ρ3

0 + 2ℜ
(
d̄1(ρ0, ρ1, θ1)α0u1

)
(21)

+ 2
Na∑

k=−Na

Nγ∑
m=−Nγ

ℜ
(
dm (ρ0, ρ1, θ1) ᾱkukr−me−kiφu

)
+ 2

Nγ∑
m=1

ℜ
(
d̄m (ρ0, ρ1, θ1) α0um

)
,

0 =δρ1 cos θ1 + ωsρ1 sin θ1 + ks

2 ρ0 − 3ρ1ρ
2
0 cos θ1 − 3ρ3

1 cos θ1 (22)

+
Na∑

k=−Na

Nγ∑
m=−Nγ

ℜ
(
dm (ρ0, ρ1, θ1) αkūkr+m−1e

kiφu

)
,

0 =δρ1 sin θ1 − ωsρ1 cos θ1 − 3ρ1ρ
2
0 sin θ1 − 3ρ3

1 sin θ1 (23)

+
Na∑

k=−Na

Nγ∑
m=−Nγ

ℑ
(
dm (ρ0, ρ1, θ1) αkūkr+m−1e

kiφu

)
.

As before, we demonstrate numerically through a perturbation approach detailed in sec-
tion 4.3 that the phase shift φu (which also depends on the stimulation waveform) does
not introduce dependences on additional Fourier coefficients than those explicitly present
in these equations (see figure S.1C for g(ρf ) = 1, and figure S.1D for g(ρf ) = 1/ρf in
Supplementary Material). We present the insights obtained from these equations and test
predictions arising from them for two examples of g(ρf ) in section 2.1.3 in the Results.

4.6 Wilson-Cowan model

To test whether the predictions obtained from the SL model may apply in a more biolog-
ically realistic context, we make use of a neural mass model, the Wilson-Cowan model.
The WC model depicts the interactions of a population of excitatory neurons, whose ac-
tivity is denoted by E, and a population of inhibitory neurons, whose activity is denoted
by I (see figure 6). Two heuristically derived mean-field equations [43] describe the time
evolution of the populations’ activities asτĖ = −E + f(ηE + wEEE − wIEI + u(t))

τ İ = −I + f(ηI + wEIE),
(24)

with wP R the weight of the projection from population “P” to population “R”, ηP the
external input to population “P”, u(t) the external stimulation, and τ a time constant
(assumed to be the same for both populations). As in [44], the function f is the sigmoid
function

f(x) = 1
1 + e−β(x−1) ,
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parametrised by a steepness parameter β. To get PAC in the absence of stimulation, we
follow [44] and provide the slow input

ηE = c1 cos(ωst) + c2

to the excitatory population (c1 is set to zero in the pure gamma case). We consider two
examples with model parameters leading to dynamically distinct behaviours (strong theta
case and pure gamma case, see section 2.2). The parameters used in the simulations are
reported in Table 1.

model wEE wIE wEI τ β c1 c2 ωs ηI

strong theta case 2.4 2 2 0.0032 4 0.05 0.385 2π × 8 0
pure gamma case 4.2676 9.2272 1.1640 0.0054 4.1819 0 2.4646 NA 0.3242

Table 1: Parameters of the Wilson-Cowan model used in simulations. The strong
theta case correspond to figure 7, and the pure gamma case to figure 8. Parameters of the
strong theta case are taken from [44].

4.7 Obtaining amplitude-response curves in the Wilson-Cowan
model

Assessing whether predictions made with the SL model may hold for the WC model
requires the ARC of the WC model in the examples considered. Thus, we approximate
the ARC of the excitatory population (the population receiving stimulation) in the strong
theta and pure gamma case as follows. Our approach is inspired by [67], and does not
rely on the more complicated definitions of the amplitude response involving isostables
[68, 69, 70, 71, 59]. The intuition behind our approach is as follows. The instantaneous
change in the system’s state due to stimulation will in general change both the phase and
the amplitude of the system. In the two-dimensional (E, I) phase space, the instantaneous
change in phase due to a small stimulation at a given point on a trajectory can be obtained
from the component of the shift due to stimulation that is tangent to the trajectory at
the stimulation point. Conversely, the instantaneous change in amplitude is given by
the component of the shift due to stimulation that is normal to the trajectory at the
stimulation point. To obtain the ARC for a periodic trajectory of interest, we therefore
need to compute the normal component of the change in state due stimulation at a number
of points along the trajectory. These points are chosen such that they span the full range
of phases on the periodic trajectory and capture the phase dependence of the ARC with
sufficient detail (for the amplitude of the periodic orbit considered).

Along the periodic trajectories of interest, we therefore calculate at regular time in-
tervals the instantaneous change in the activity of the E population due to stimulation
∆Eu. As per equation (24), during a time step ∆t, the instantaneous change in E due to
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both stimulation and the dynamics of the system is given

∆Eu+dyn (E, I) = ∆t

τ
[−E + f(ηE + wEEE − wIEI + u(t))] ,

while the instantaneous change in E due to the dynamics only is given

∆Edyn (E, I) = ∆t

τ
[−E + f(ηE + wEEE − wIEI)] .

Thus, we obtain the instantaneous change in the activity of the E population due to
stimulation as

∆Eu (E, I) =∆Eu+dyn − ∆Edyn,

∆Eu (E, I) =∆t

τ
[f(ηE + wEEE − wIEI + u) − f(ηE + wEEE − wIEI)] ,

where we choose u = 0.3 in our numerical estimations of the ARC. Since stimulation is
only provided to the excitatory population (see equation (24)), the instantaneous change
in the activity of the I population due to stimulation is ∆Iu = 0. At each point considered
along the trajectory, we also get the tangent vector to the trajectory as a numerical ap-
proximation of

[
Ė
İ

]
) using central differences. We then obtain n as the counter-clockwise

unit normal vector to the tangent vector. Finally, we approximate the ARC as the pro-
jection of ∆Eu onto the normal vector at each point considered along the trajectory of
interest,

ARC = −

∆Eu

∆Iu

 · n,

where the negative sign gives a positive value for an increase in amplitude. Each point
along the trajectory where the change in amplitude was computed is assigned a phase given
by θf = ωf t, which allows us to re-parametrise the ARC as a function of phase. This
ARC approximation process is illustrated in figure S.6 in the Supplementary Material.
In the strong theta case, the trajectory considered is the on-stimulation gamma cycle
(see figure S.6A). In the pure gamma case, the significant changes in dynamics for low
and high amplitudes require to consider both the low-amplitude trajectory on stimulation
(figure S.6B1), and the high-amplitude periodic trajectory (similar on- and off-stimulation,
taken off-stimulation in figure S.6B2).
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