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SUMMARY

Progressive multiple sclerosis (PMS) is characterized by a primary smouldering pathological
disease process associated with a superimposed inflammatory activity. Cellular and molecular
processes sustaining the pathobiology of PMS remain to be identified.

We previously discovered senescence signatures in neural stem/progenitor cells (NSCs)
from people with PMS. Applying direct reprogramming to generate directly induced NSCs
(INSCs) from somatic fibroblasts, we retain epigenetic information and observe
hypomethylation of genes associated with lipid metabolic processes and IFN signalling only
in PMS lines. Single-cell/nucleus transcriptomic and epigenetic profiling reveal an
inflammatory, senescent-like, IFN-responsive radial glia (RG)-like cell subcluster mainly in
PMS INSCs that is driven by IFN-associated transcription factors. Lastly, we identify a
population of senescent, IFN-responsive, disease-associated RG-like cells (DARGS) in the
PMS brain that share pseudotime trajectories with iINSCs in vitro.

We describe the existence of a non-neurogenic, dysfunctional DARG population that has the

potential to fuel smouldering inflammation in PMS.

KEY WORDS

Neural stem/progenitor cells, radial glia, single cell/nuclei multiomics, direct reprogramming,
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INTRODUCTION

Multiple sclerosis (MS) is a complex neuroinflammatory and neurodegenerative disease
characterized by inflammation and demyelination in the central nervous system (CNS). It is
believed to be caused by an interplay of genetic predisposition and environmental risk factors,
such as exposure to viruses.! The early phase of the disease, known as relapsing remitting
MS (RRMS), pathologically manifests as acute demyelinating lesions with some endogenous
repair. There are disease-modifying therapies (DMTs) available that target peripheral immune
cells to reduce the risk of developing new lesions and clinical relapses. Over time, however,
most people with RRMS transition into a progressive (PMS) stage of the disease that is
characterized by the steady accumulation of neurological disability in the absence of
endogenous repair that leads to neurodegeneration. Despite most available DMTs being
effective in people with RRMS they are much less effective in people with PMS. This has made

the progressive stage of the disease an unmet clinical need.’

Pathological, neuroimaging, and clinical data suggest that progressive MS is driven by a
primary smouldering process associated with inflammation. Several mechanisms have been
proposed to drive smouldering MS, including innate immune activation, demyelination and

energy deficits, adaptive immunity, and, recently, age-related mechanisms.??

Age is one of the most significant risk factors in the development of PMS, which is similar
to other neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease.**
Longitudinal assessment of brain aging using imaging technologies showed that people with
MS demonstrate increased ‘brain age’ compared to healthy controls that was defined by
increased atrophy and decreased grey matter volumes.®’ Pathological hallmarks of cellular
aging, such as senescence and senescence-associated changes, have been identified in
people with PMS. These include decreased telomere length in peripheral leukocytes,®°

11-13

increased DNA and mitochondrial damage in neurons in situ, increased epigenetic age in

glial cells," senescence-associated secretory phenotype (SASP) in microglia and

astrocytes,'>1®

and p16/CDKN2A expression in glia and neural stem/progenitor cells
(NSCs)."®" The increasing body of evidence suggesting an association of PMS with cellular
senescence requires further study to understand how the accumulation of senescent glial cells

contributes to disease pathogenesis.

The genetic components underlying MS risk and severity are incredibly complex. Genome
wide association studies (GWAS) largely implicated cells of the peripheral immune system in
the development of disease. However, mapping of MS susceptibility genes onto brain tissue
has revealed enrichment of MS-susceptibility genes in glial cells of the CNS, including

astrocytes, oligodendrocytes, and microglia. Moreover, prediction of MS severity from genetic
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102 loci involved in the CNS were found to be associated with mitochondrial function, cellular

103 senescence, and synaptic plasticity.'®

104 Recent work with induced pluripotent stem cells (iPSCs), which retain the genetic
105 information from the starting cell and is maintained in the resulting cell type of interest, has
106  allowed for modelling of complex human brain disorders in vitro. Although iPSCs offer a
107  powerful platform for modelling of human diseases, epigenetic modifications, especially those
108  associated with aging, are lost in the reprogramming process due to the use of the Yamanaka
109 factors.'®?' Epigenetic changes, which can be reflected by environmental risk factors such as
110  smoking and exposure to viruses, are likely contribute to MS susceptibility and progression. A
111  few studies have identified aberrant DNA methylation patterns in both CNS tissue and
112 peripheral blood and leukocytes in people with MS. Many of these patterns are associated
113 with functional pathways related to immune response, neuronal survival®?, and
114  demyelination.”® Recent work has found that iPSC-NSCs from patients with PMS display
115  markers of senescence and prevent oligodendrocyte progenitor cell differentiation via the
116  SASP.":2* Furthermore, iPSC-astrocytes from MS patients also display senescence-related
117 gene expression, dysfunctional metabolism, and increased immune and inflammatory

25,26

118 genes.

119 Stem cell exhaustion is a known hallmark of biological aging that is typically associated
120  with reduced tissue repair. Adult brain stem cells/NSCs, also known as radial glia-like cells
121  (RG), are astroglial-like cells that classically reside in the mammalian subventricular zone and
122 dentate gyrus of the hippocampus and can give rise to mature neurons, astrocytes, and
123 oligodendrocytes.?” Furthermore, noncanonical niches for RG have also been reported,
124 including the neocortex of primates,?® the cerebellum of rabbits,?® the amygdala of mice,* and
125  the striatum of humans.®*' Studies in animals have shown that with progressing age and
126  neurodegenerative disease the capabilities of RGs, such as differentiation into neurons and
127  repair capabilities.*>** Many studies have attempted to address the existence, persistence,
128  and role of NSC/RGs in the human brain following early post-natal life. Immunostaining of
129  post-mortem human brains® identified NSCs in the lining of the walls of the lateral ventricle,
130  the dentate gyrus, and the olfactory epithelium.**3” However, their capacity for neurogenesis
131 and differentiation, as well as their presence outside of the main CNS germinal stem cell
132 niches is much debated.*®% More recently, phenomena such as inflammation and injury
133 support both de-maturation of neurons*® and de-differentiation of astrocytes*' into NSC/RG-
134 like cell states. NSCs expressing glial markers and displaying features of senescence have
135  also been identified near lesioned areas in post-mortem MS brain tissue.'”*>*® Their role and

136  putative function in brain physiology and disease is not currently understood.
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137 Disease modelling with stem cell technologies holds the promise for understanding cellular
138  dynamics that were previously unreachable in brain cells in vivo. We employed the use of
139  direct reprogramming technology, which better retains epigenetic memory of the donor cells
140  ,* to better investigate the origin of the senescent phenotype in NSCs within the context of
141  PMS."24% We directly converted skin-derived fibroblasts from healthy human controls and
142 people with PMS into stably expandable induced NSCs (iNSC). This was done by exposing
143 fibroblasts to a transient (24-hour long) exposure to the Yamanaka factors*® in the presence
144  of NSC differentiation factors to generate a heterogenous population of stem and progenitor
145  cells.

146 By subjecting both the parental fibroblasts and INSCs to whole genome bisulfite
147  sequencing (WGBS), we identified hypomethylated genes encoding proteins that function in
148  pathways similar to those associated with inflammatory and interferon (IFN) signalling in PMS
149  cells, suggesting a predisposition to inflammation. Furthermore, direct reprogramming to
150 iNSCs maintained epigenetic information from the donor cells. Through both bulk and single-
151  cell/ nucleus transcriptomics analyses, we found increased activation of pathways pertaining
152  to cellular senescence, inflammation, and IFN signalling in a subset of PMS iNSCs. Combined
153  single-nuclei ATACseq supported changes in chromatin accessibility and was linked to
154  consistent pathways. Within the heterogenous iNSCs, we identified a focused inflammatory
155 and senescent-like cluster and elevated expression of related upstream transcription factor
156 IRF1 in PMS iNSCs. We integrated published post-mortem single-cell/nuclei transcriptomics
157 data sets and confirmed the presence of non-neurogenic, disease-associated RG-like cells
158  (DARGS) in the PMS brain, primarily in chronic active, slowly expanding lesions, exhibiting

159  senescence and IFN-responsive characteristics.

160 Our work confirms that direct reprogramming technology is a powerful tool to model
161  disease-in-a-dish to study neurodegenerative disorders. In doing so, it led us to identify the
162  existence of a long-neglected, non-neurogenic DARG cell cluster especially in chronic brain

163  MS lesions that has the potential to fuel continuous smouldering inflammation in PMS.

164
165
166

167 RESULTS

168 Bulk (multi-modal) sequencing reveals upregulation of senescence and

169 inflammatory pathways in PMS iNSCs

170  To model disease and age associated NSC features, we directly reprogrammed skin-derived
171  fibroblasts from control healthy subjects (Ctrl) and people with PMS (PMS) into stably
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172  expandable iINSCs (Table S1).** We confirmed the expression of established and accepted
173 NSC markers, including the mRNAs, using RT-PCR, and proteins, using
174  immunocytochemistry, that encode Nestin (NES), SOX2, ETNPPL, and PAX®6, as well as the
175  clearance of Sendai virus markers.*® PCA summary of transcriptomic signatures across
176  samples (Fig. 1A) revealed robust signal across replicates and a clear separation between
177  the Ctrl and PMS samples. Additional checks comprised incremental Jaccard similarity index
178  (Fig. S1A),*" and assessment and removal of technical noise using noisyR (Fig. S1B),*
179  followed by normalization of expression levels.*” The differential expression analyses (with
180  convergent results on the DESeq2*® and edgeR® pipelines) led to 1,021 upregulated and 844
181  downregulated genes (FDR < 0.05, |log2(FC)|> 0.5) that included transcripts related to
182  senescence, such as CDKN1A, IRF7, and ISG15 (Fig. 1B). Gene set enrichment analysis
183  (GSEA®"), using genes expressed above noise level as background, identified several
184  pathways enriched in the PMS iNSCs, including mRNAs encoded by gene sets that drive
185 response to stress (TNC, STAT6), immune system processes (THBS1, SPP1), positive
186  regulation of lipid metabolic process (APOE, SREBF1), regulation of cellular senescence
187  (CDKN1A, IGF1R), interferon (IFN)-y signalling (ICAM1, HLA-DPB1), and transcription factors
188  associated with IFN signalling (/IRF-4, IRF-1, NF-kB) (Fig. 1C, Table S2). Instead, mRNAs
189  encoded by gene sets associated with cell cycle (NASP, DPF1) and telomere organization
190  (USP7, XRN1) were al depleted in PMS iNSCs (Fig. 1D). This is concordant with previous

191  work identifying cellular senescence in the NSCs of individuals with PMS.""2*

192 Next, we investigated the dynamics of gene regulatory networks (GRNs), inferred on
193  differentially expressed genes, associated with enriched terms (inflammation, regulation of
194  cellular senescence, and interferon signalling). We observed a clear hub centred on the
195  senescence gene CDKN1A, which then strongly interacted with CDKN1C, CDKN2A, STAT1,
196 and /IRF1in PMS iNSCs only (Fig. 1E). Previous studies have demonstrated that senescence
197  induction via p21 (CDKN1A) and p16"™“? (CDKN2A) expression activates IFN response.*
198  Density plots of covariation of inflammatory and senescent transcripts (selected based on GO
199  annotations) showed greater difference in weights (i.e. interaction strength/ co-variation in
200  expression) between Ctrl and PMS samples (with stronger covariation in the PMS samples),
201  compared with non-differentially expressed genes (Fig. S1C). These results support the
202  predicted interactions between senescence and inflammation pathways.>® This GRN analysis
203  also supports the hypothesis of an induction of a senescence program only in PMS iNSCs

204  that then promotes IFN and inflammatory signalling activities.

205 Because the sequencing data showed upregulation of genes associated with cellular
206  senescence, we independently validated these findings using Western blot and senescence-

207  associated B-galactosidase (SA-B-gal) staining. We found upregulation of markers of cellular
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208 senescence p16"“? and GDF15 (Fig. 1F)*® and increased expression of SA-B-gal using
209 SPIiDER-B-gal dye in all PMS lines (Fig. 1G).>* Cellular senescence is primarily associated
210  with a halt in cell cycle, which was supported by a depletion of cell-cycle pathways in the
211  mRNAseq (Fig. 1D). We then assessed the cycling stage of iINSCs using flow cytometry.
212 Despite iINSCs being analysed under proliferative conditions in chemically-defined media, we
213 still identified a significantly higher proportion of PMS iNSCs in the G1 phase of the cell cycle
214  (vs Ctrl), which is typical of quiescent or senescent cells (Fig. 1H).>° Lastly, quantitative
215  (gq)PCR-based analysis of relative telomere length revealed that PMS iNSCs have significantly
216  decreased telomere lengths (vs Ctrl) (Fig. 11).

217 Therefore, PMS iNSCs phenotypically display intrinsic features of senescence, which are
218 also reflected at the transcriptomic level via upregulation of pathways associated with

219  inflammation and IFN signalling.

220
221  PMS fibroblasts and iNSCs maintain pathological epigenetic hallmarks

222 We further investigated the potential origin of the senescent and inflammatory signatures and
223 phenotypes seen in PMS iNSCs. We postulated that the direct conversion from fibroblasts into
224 iINSCs would maintain or even facilitate the emergence of new epigenetic landscapes that

225  further promote the senescence phenotype.

226 To this aim, we assessed the methylation status, genome-wide, using whole genome
227  bisulfite sequencing (WGBS) on the parental fibroblasts and matched iINSC lines. PCA
228  revealed a tight reproducibility of replicates and a clear separation between fibroblasts and
229 INSCs as well as between Ctrl and PMS samples (Fig. 2A).

230 We identified 28 million CpG sites per sample and consistently observed increased
231  hypermethylation in INSCs (vs fibroblasts) (Fig. S1D-E). To provide insight to the extent the
232 direct reprogramming reset the aging-related epigenome, we assessed the Cortex Age DNA
233 methylation (DNAm) aging clock using methylation data from the human cortex.*® The cortex
234 clock predicted an age similar to the chronological age of the donor cells used to generate the
235 iINSCs, suggesting minimal epigenetic resetting occurred during the direct reprogramming
236  (Fig. 2B). We also matched this modality against the Horvath and Zhang DNAm clocks, which
237  further confirmed the maintenance of epigenetic age after direct reprogramming for most cell
238 lines (Fig. S1F).>"® Thus, our own direct reprogramming technology to generate iNSCs from

239  skin-derived fibroblasts maintains epigenetic information from the donor cells.

240 We next investigated methylation commonalities and specific differences between Ctrl and
241  PMS samples in both fibroblasts and iINSCs. We assessed the distribution of differentially

242 methylated regions (DMRs) across genic and intergenic annotations, including a class linking
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243  the DMR to the transcription start sites (TSS) and the resulting distribution was quasi uniform
244  (Fig. S1G-H). The differentially methylated cytosines (DMCs) and DMRs indicated an
245  increased hypomethylation in both PMS fibroblasts and iNSCs (vs Ctrl; Fig. 2C, Fig. S1l). To
246  further explore how these differences in methylation profiles account for transcriptional and
247  phenotypic changes, we investigated genes with hypomethylated DMRs located in proximity
248  of the TSSs. We identified 4,743 genes hypomethylated only in PMS fibroblasts, 3,133 genes
249  hypomethylated only in PMS iNSCs, with 2,344 hypomethylated genes shared between PMS
250  fibroblasts and iINSCs (Fig. 2D).

251 We performed GSEA on the specific hypomethylated genes of the PMS fibroblasts, and
252  found pathways associated with T cell activation, IL-12 production, and JAK-STAT signalling
253  (Fig. 2E, Table S3). This was further supported enriched motifs associated with transcription
254  factors in the PMS fibroblasts. These include SREBP1, known to regulate T cell growth and
255  survival, as well as DDIT3, which is closely connected to JAK-STAT signalling (Fig. $1J).5%%°
256  Gene pathways specific to hypomethylation PMS iNSCs included cytokine production, TNF
257  superfamily cytokine production, and regulation of I-kB kinase/NF-kB signalling (Fig. 2F).
258  Additional analyses of enriched motifs identified STAT5 and IRF6, encoding proteins known

)’61,62 and

259  to beinvolved in cytokine production, immune response, and senescence (Fig. $S1J
260  ARID5A, which encodes a protein involved in the immune response by stabilizing /L-6 mRNA

261  (Fig. 2F, Fig. S$1J).®®

262 To determine which pathways were epigenetically modulated between the PMS fibroblasts
263  and iNSCs, we performed GSEA on genes commonly hypomethylated in both cell types. The
264  results revealed genes encoding proteins with functions in pathways associated with lipid
265  metabolism, inflammation, and IFN production (Fig. 2G). In a separate study, we performed
266  metabolomics and lipidomics on the same Ctrl and PMS cell lines, which led to the
267 identification of increased cholesterol synthesis in PMS iINSCs and a new role for this pathway
268 in establishing and sustaining their pathological and neurotoxic phenotype.*® In addition, using
269  published GWAS studies, genes associated with MS progression and pathology were
270 identified such as leukocyte activation and differentiation, STAT signalling, and IFN
271  production.®*®® Another example is IRF5, known to have associated gene variants in MS,®’
272 which we found hypomethylated at the promoter-TSS region, in both PMS fibroblasts and
273  INSCs (Fig. 2H).

274 We also analysed hypermethylated genes, with DMRs located in the promoter regions and
275  in proximity of the TSS. We found 2,946 genes specifically hypermethylated in PMS fibroblasts
276  (vs Cirl), 858 specifically hypermethylated in PMS iNSCs (vs Ctrl), and 291 shared
277  hypermethylated genes (PMS fibroblasts vs Ctr iINSCs) (Fig. S1K). Analysis of the unique

278  differentially hypermethylated genes revealed differences in pathways associated with RNA
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279  metabolic processes and cell cycle in fibroblasts and pathways associated with transcription
280  and neuronal differentiation in INSCs (Fig. S1L-M). The hypermethylation pattern of genes
281  thatis shared between PMS fibroblasts and iNSCs included DNA-templated transcription and

282  telomerase holoenzyme complex assembly (Fig. STN).

283 To further investigate the epigenetic regulatory modules defined from the WGBS dataset,
284  we used de novo and directed HOMER analysis is to assay for enrichment of shared binding
285 motifs between the PMS fibroblasts and iINSCs. This analysis identified NF-kB, a major
286  transcription factor that regulates genes responsible for both the innate and adaptive immune
287  response and is associated with senescence (Fig. 2I).°°%%% These results were corroborated
288 by the GSEA of the mRNAseq data, where an enrichment in genes associated with NF-kB
289  was also observed in the PMS iNSCs (Fig. 1C).

290 Our data suggest that PMS pathology is strongly linked to alterations of the epigenome,
291  which we identified first in patient fibroblasts and confirmed in INSCs. Many of these epigenetic
292  differences are features of senescence and involve genes that regulate inflammatory,
293  metabolic/lipid, and IFN pathways. Furthermore, when PMS fibroblasts are directly
294  reprogrammed into iINSCs they also adopt an epigenetic landscape that is permissive for
295 increased expression of proteins associated with secretion of inflammatory cytokines,
296  specifically IL-6 and TNF-a..

297
298 iINSCs share an RG-like signature that is identified in transcriptomic signatures from

299  post-mortem human datasets

300 Next, we explored the heterogeneity of INSCs and the respective subpopulations driving the

301 phenotypes observed in mRNAseq and WGBSseq sequencing.
302 We first performed single cell (sc) and single-nucleus (sn) RNAseq coupled with ATAC

303  sequencing on the Ctrl and PMS iNSCs to determine if there was a subpopulation of cells that
304 were driving the phenotypes observed in the mRNAseq and WGBSseq (Fig. S2A). To
305 minimize technical discrepancies between the two approaches, data-driven, specific filters
306  were applied, on the proportions of reads incident to mitochondrial (MT) DNA and ribosomal
307  proteins (RP). We retained cells with 15-40% RP ratios for the scRNAseq samples and 2-25%
308 RP ratios for the snRNAseq data samples; across the dataset, a 20% MT ratio filter was
309 applied (Fig. S2B-C). Additional filters rely on number of UMIs > 8,000, number of genes per
310 cell > 1,000, logio (genes per UMI) > 0.75. A total of 26,138 cells, across all samples, passed
311 all filtering criteria, with median UMI counts per cell of 22,296. The average number of cells
312  per sample was 3,267, ranging from 1,277 to 5,545; the average number of genes per cell
313  was 5,725, ranging from 4,357 to 6,731 (Fig. S2D-E).
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314 Using these filtering criteria for RNA analysis, we identified a total of 8 clusters (Fig. 3A).
315  We applied the ClustAssess’® framework to determine the optimal parameters in a data-driven
316 way using the Element Centric Similarity (ECS)"" as assessment criteria for the crisp
317  partitioning of cells. The type of features (highly variable or most abundant) and number of
318 features retaining signal (i.e. not biased by noise or shallow sequencing) were first determined
319 on 20 iterations of ECS and summarized as element centric consistency (ECC). Next the
320  number of neighbours for the community detection approach and the clustering method was
321 also determined on high ECC distribution. The stable configurations linked number of clusters,
322  number of the most frequent partition, and the resolution parameter (Fig. S2F-G). The
323  distribution of ECC across the UMAP indicated a high stability for the selected number of
324  clusters (Fig. 3B). We observed a quasi-uniform distribution of cells across all samples and
325  conditions for all clusters (Fig. S2H).

326 An indirect assignment of cluster identity was based on co-localisation of expression of
327  standard genes for radial glia (RG), astroglial progenitors, and neuronal progenitors (gene lists
328 in Table S4). We found that a majority of the INSC clusters were defined by an RG-gene or
329  astroglial progenitor gene signature, including the expression of SOX2, NES, PAX6, PTPRZ1,
330 HES1, and CKB mRNAs (Figs. 3C-D). The majority of clusters (0-3, 5-7) had a radial glia
331 and/or astroglial progenitor gene signature, encompassing 20-80% of cells within each
332 individual cluster, defined expression thresholds (Fig. S21-J). We also found a small proportion
333  of neural progenitor cells primarily represented by cluster 4 (Fig. 3E, Fig. S2K). Genes
334  associated with cell differentiation, including oligodendrocyte progenitor cells (PDGRA),
335 oligodendrocytes (OLIG1, OLIG2, MBP), astrocytes (AQP4, ALDH1L1), and mature neurons
336  (CALB, CCK) were lowly expressed across the samples and clusters (Fig. S2L, gene list in
337  Table S4).”%"° This initial voting-scheme analysis suggests that proliferating iNSCs — similarly
338 to hiPSC-NSCs’™® — are a heterogenous population of cells displaying a transcriptional
339  signature reminiscent of RG-like, astroglial progenitor cells, and a small subpopulation of

340  neural progenitor cells, with little to no detection of terminally differentiated cells.

341 We next assessed the proportion of cells belonging to either Ctrl or PMS iNSCs within the
342  individual clusters. Strikingly, we found mostly equal representation amongst all clusters but
343 cluster 5, which was significantly enriched with PMS iNSCs (Fig. 3F). Towards further
344  understanding the biological role of the individual clusters we performed GSEA. Core clusters
345 0,1, and 3 were enriched for terms linked to CNS development, gliogenesis, and proliferation,
346  while depleted of terms associated with cellular differentiation and pluripotency (Fig. 3G, Table
347  85). Cluster 4 was enriched in pathways related to neuronal and cortical development, with a
348  coordinated depletion in the mitotic cell cycle genes (Fig. 3H). The remaining clusters were

349  associated with mitochondrial organization and oxidative phosphorylation (cluster 2), glial cell
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350 differentiation (cluster 6), and ion transport (cluster 7) (Fig. S3A-C). Cluster 5, showing a
351  striking 6-fold higher frequency in PMS iNSCs (85.6% PMS vs 14.4% Citrl) (Fig. 3F), was
352  characterized by genes enriched for cytokine production, immune processes, and IFN

353  signalling, and genes depleted for proliferation and regeneration (Fig. 3I).

354 To evaluate the contribution of cell cycle genes to the transcriptomics signature of clusters,
355 we identified the cell cycle stage using a priori defined gene sets. We note a strong
356 representation of cells expressing G1-phase specific genes in cluster 4, a depletion of cells
357  expressing G1-phase specific genes in clusters 1, 2, 3, and a depletion of cells expressing S-
358 phase specific genes in cluster 5, which further supports the GSEA analysis per cluster (Fig.
359 S3D).

360 To investigate the relevance of the in vitro INSC model to human disease, we aligned our
361 in vitro results with two independent, publicly available ex vivo human snRNAseq datasets
362  from post mortem MS cases and controls.'®’” Using a panel of canonical RG genes that were
363  also used to characterize the INSCs (Table $4), we identified disease associated RG-like cells
364  within the annotated astrocyte clusters in both datasets (ranging between 6.5 — 7.8% of total
365  astrocyte cluster, Fig. 3J-K). When compared to the non-RG-like cells within the astrocyte
366 cluster, RG-like cells exhibited a significantly higher proportion and expression of RG genes
367 ETNPPL, PTPRZ1, SOX2, PAX6, and PCNA encoding a cell cycle marker (Fig. S3E-F). RG-
368 like cells expressed astroglial genes (Fig. 3C-D) and very little microglia-specific or
369 oligodendrocyte progenitor cell-specific genes (Fig. S3E-F), further supporting their identity.
370  To determine whether these newly identified RG-like cells hold neurogenic potential, we
371 assessed related genes, including SOX71, DCX, and TUBB3 and found little expression in
372  both RG-like and non-RG-like cells within the astrocyte cluster in both datasets (Fig. S3G). A
373 large proportion of the RG-like cells expressed genes specific of G2M or S phases, which
374 indicated their ability to progress through the cell cycle (Fig. S3H). Lastly, we assessed the
375  proportion of RG-like cells across the different MS lesion types. Out of all the RG-like cells in
376 both datasets, we identified that 50% were in chronic active lesions, whereas the smallest

377  proportion of cells were found in control tissue (Fig. 3L-M).

378 Therefore, we identify a small proportion of non-neurogenic RG-like cells in the healthy
379  adult human brain, which significantly increase in frequency in chronic active lesions in the
380 PMS brain.

381

382 Patient iINSCs harbour a senescent, IFN-responsive RG-like cell cluster reminiscent of
383 Disease Associated RG the PMS brain

384  As cluster 5 was predominant in PMS iNSCs (vs Ctrl), we sought to further the disease-

385  associated transcriptomic signature of this cluster. Transcriptionally across all samples, cluster
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386 5 showed a significant enrichment of genes associated with cellular senescence, IFN o/
387 signalling, and RIG-I signalling, along with a depletion of genes associated with cell
388 proliferation, DNA-templated transcription, and NOTCH1 signalling (Fig. 4A). Cluster 5 also
389  had the highest expression of genes associated with IFN-a and -y response and the SenMayo
390 gene set” (vs core clusters 0-3) (Fig. 4B). We performed a differential expression analysis
391 followed by GSEA of cluster 5 only specific markers and identified a strong enrichment for IFN
392  and cytokine signalling pathways and SASP that was associated with high expression of IFIT1,
393  ISG15, and NLRP2 in PMS iNSCs (vs Ctrl) (Fig. 4C). We confirmed the high expression of
394  IFN-response genes (IFIT1, IFIT2) was linked to the hypomethylated promoter regions
395  associated with IFN signalling seen in both PMS fibroblasts and iNSCs, identified in WGBS
396 analysis (Fig. 2H).

397 We next wanted to assess the expression of SenMayo and IFN o/ signalling gene sets in
398  RG-like cells from the two human ex vivo snRNAseq datasets'®"”
399 (Fig. 4D-E). A proportion (16-28%) of total RG-like cells — which we termed Disease

400 Associated RG (DARGSs) — in chronic lesions showed non-zero expression of the SenMayo

of post-mortem MS brains

401  gene set, whereas <5% of RG-like cells with the same features were identified in control
402  tissues (Fig. 4F-G, Fig. S4A-B). We also identified an enrichment in IFN-associated mRNAs
403  in DARG:s located in chronic active lesions (Fig. 4H-l, Fig. S4C-D).

404 We assessed whether the senescence and IFN-associated expression signatures are
405 unique to DARGs by applying the same expression thresholds to the non-RG-like cells and
406  analysing the datasets. Within chronic active lesions we identified a ~2.3-fold increase in the
407  proportion of senescent DARGs (vs senescent non-RG-like cells) in both datasets'®’” (Fig.
408 S4A-B). We then compared all lesion areas and identified a ~2-fold increase in the fraction of
409 senescent DARGs in the edge of chronic active lesions, when compared to lesion core,
410  chronic inactive lesion edge, periplaque white matter, and control white matter'®’” (Fig. S4A-
411 B). DARGsS in Absinta et al.'® showed high expression of IFN-associated genes (vs non-RG-
412  like cells) in chronic active lesions (Fig. S4C), while displaying the same trend in chronic

413 inactive lesions in Schirmer et al.”” (Fig. S4D).

414 These findings provide further support to the existence of non-neurogenic DARGs in the
415 PMS brain, particularly in chronic active lesions, with an inflammatory and senescent
416  transcription signature. Notably, the direct reprogramming of patient somatic cells into stably
417 expandable iINSCs allows for the recapitulation of distinctive disease-associated cellular

418  phenotypes and gene signatures found in the post-mortem MS brain.

419
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420 Disease associated senescent RG-like cells spread dysfunctional features towards

421 other clusters

422  We then performed pseudotime analysis to better understand the developmental trajectories
423  of the RG-like cell cluster of PMS iINSCs with senescent and inflammatory signatures (Fig. 5).
424  We removed the neural progenitor-associated cells (cluster 4) which allowed our analysis to
425  focus on the establishment of inflammatory cluster 5. The initialization of the pseudotime
426  focused on cluster 5, defined as the endpoint. The predicted trajectory started with core
427  clusters 0, 1, and 3, progressed to cluster 2 and ended in cluster 5 (Fig. 5A). A community-
428  based clustering was applied on the gene expression levels, with the stability assessed using
429  ClustAssess.’”® Several gene modules i.e. clusters of genes with similar expression profiles
430  across the pseudotime were predicted (Fig. S4E). We focused on three gene modules with
431  distinct expression patterns. The expression profile of the first module (module 10) focused
432  on the core clusters 0, 1, and 3. A gene enrichment analysis identified significantly elevated
433  expression of genes associated with cell cycle terms, as well as TFs known to maintain
434  NSC/RG identity such as SP2 (Fig. 5B, Table S6).”° Module 3, which consisted of mostly cells
435  assigned to cluster 2, showed enrichment in terms associated with mitochondria and antigen
436  processing and presentation, including NSC/RG-associated TFs E2F1 and PAX6 (Fig. 5C).
437  These results support the GSEA enrichment on cluster 2 characterized by mitochondrial and
438  metabolic gene pathways (Fig. S3B). Module 7 mostly overlapped with cells in cluster 5 and
439  exhibited enrichment in IFN and cytokine signalling pathways, as well as TFs associated with
440  IFN signalling (IRF3, STAT2) (Fig. 5D). This suggests that the progression towards cluster 5
441  may originate in INSCs with a cluster 2-like gene signature and display pathways associated
442  with mitochondria and cellular metabolism. Therefore, an altered metabolic signature in PMS
443  iNSCs, which we have recently described,*® may promote the resurgence of the newly

444  identified IFN responsive RG-like cell cluster 5.

445 Using the modules derived from the in vitro dataset, we next identified cells with similar
446  transcriptomic signatures in the ex vivo post-mortem datasets.'®’” Focusing on the
447  recalculated ex vivo UMAPs and underlining the RG-like cells (Fig. 3J-K), we inferred
448  pseudotime trajectories on both datasets using the core of the RG-like cells (clusters 0, 1, 3)
449  as an initialization point. (Fig. 5E-F). Next, we matched the gene modules determined in the
450  invitro and ex vivo datasets, respectively. Using the gene lists from the individual modules we
451  cross-referenced the gene modules from the in vitro perspective (Fig. 5B-D, Table S6) and
452  from the ex vivo perspective (Fig. S4F-G). For the Absinta et al. dataset we found coordinated
453  gene expression within modules 5 and 7 that matched our in vitro curated modules and module
454 7 matched the inflammatory, senescent cluster 5 (Fig. 5E, G) and was associated with DARGs

455  inthe chronic active lesion (Fig. 5G). In the Schirmer et al. dataset we found coordinated gene
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456  expression within modules 4 and 7 (Fig. 5F, H). Genes that strongly contributed to module 7

457  were associated with chronic inactive lesions (Fig. 5H).

458 This analysis highlights the identification of a new cluster of senescent-like, inflammatory

459  non-neurogenic DARGs stemming from astrocyte-like cells in the post-mortem MS brain.

460 As senescence is associated with and perpetuated by secreted proteins, we next
461 investigated ligand-receptor interactions between cluster 5 (as source of ligands) and other
462  clusters (as source of receptors) in INSCs using NicheNet®°. With this modelling, Ctrl iNSCs,
463  were enriched for ligand-receptor interactions regulating cell maintenance and differentiation
464  (i.e., Notch signalling) (Fig. 51).8" However in PMS iNSC, modelling predicted strong
465 interactions between TRAF2 in cluster 5 with TNFRSF1B in clusters 0, 1, and 3, which
466  anticipates induction of NFKkB activation®* and NSC activation,®® along with a depletion in Wnt
467  signalling via LRP6 (Fig. 5J-K).

468 Next, we performed a cluster-by-cluster GSEA analysis and found that clusters 0, 1, and 3
469 in PMS iNSCS were enriched for senescence pathways, particularly those associated with
470 DNA damage and corresponding depleted for proliferation-related terms (Fig. 5L, Table S7).
471  We also detected significant interactions between COL2A17 from cluster 5 and integrin-based
472  receptors in cluster 2 (ITGBS8, ITGAV, GP6), coupled with a depletion in NOTCH1 signalling
473  (Fig. 5J-K). Enrichment analysis of genes in cluster 2 of PMS iNSCs further indicated
474  enrichment in senescence, IFN signalling, and ECM and corresponding depletion in
475  differentiation and DNA transcription that is known to be regulated by NOTCH signalling (Fig.
476  5L). Analysis of clusters 4, 6, and 7 consistently identified enrichment of inflammatory-
477  associated terms (i.e., neurodegeneration, oxidative stress-induced senescence, and
478  signalling by lls) and a depletion in terms associated with NSC maintenance (i.e., Wnt
479  signalling and cell cycle) (Fig. S4H). The enrichment in inflammatory terms in PMS iNSCs
480  were linked to increased inflammatory interactions, stemming from cluster 5, between CCR3-
481  CCL5 and between A2M-MMP2 (Fig. 5J).

482 To further test the hypothesis that the ligand-receptor interactions predicted above are
483  relevant, we ran a cytokine array on the conditioned media (CM) from the bulk iNSC lines.
484  Quantification of the cytokine array confirmed an increased secretion of cytokines associated
485  with the SASP® and inflammation (IL-6, IGFBP-3, and TNFa) in PMS iNSCs (vs Ctrl) (Fig.
486  5M).

487 We then quantified the expression levels of the genes coding for the upregulated SASP
488  (Fig. 5M) using our mRNAseq data (Fig. 1A-E). Both TIMP2 and IGFBPZ2, along with the
489  known SASP gene GDF15, were upregulated both at gene and protein levels (Fig. 1F and

490  Fig. 5M-N). Next, we re-analysed the single-cell data for the genes and proteins associated
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491  with the secreted factors identified in the mRNAseq and cytokine array, respectively, and
492  confirmed the elevated expression in cluster 5 of TNF, FN1, and ISG15 (Fig. 50).

493 Overall, our findings suggest that the developmental trajectories of RG-like cells in cluster
494 5 arise from cluster 2. Additionally, PMS iINSCs secrete inflammatory factors as part of their

495  SASP, and that this may induce a dysfunctional, senescent phenotype in cells in other clusters.

496
497  Integrative multi-omics reveals regulons defining inflammatory RG-like cell in
498 PMS INSCs

499  To further investigate the epigenetic mechanisms that may contribute to the transcriptomic
500  signature of the PMS iNSC cluster 5, we integrated the RNAseq data with single-nuclei
501  chromatin accessibility data (snATACseq) using both matched and un-matched samples. For
502  a high proportion of cells, the matched RNA and ATAC quantification was distributed
503  proportionally across clusters (Fig. S5A). Next, we selected data-driven parameters and
504  stable configuration (high ECC scores) on the ATAC modality using 30 iterations (Fig S5B-D)
505  of ClustAssess. We identified 8 stable clusters on the ATACseq dataset.

506 We then projected the RNA clusters onto the ATAC UMAP, and the ATAC clusters onto the
507 RNAUMARP, respectively to evaluate the concordance of the two modalities (Fig. 6A-B). Next,
508  we quantified the equivalence between the RNA and ATAC clusters by summarizing matching
509 cell types/states, which allowed highlighting the agreement between RNA cluster 5 and ATAC
510  cluster 8, well separated in the non-linear space from the other cells (Fig. 6C). Then, we
511  confirmed that the inflammatory ATAC cluster 8 was primarily composed of PMS iNSCs (Fig.
512 S5E).

513 We also examined differentially accessible regions (DARs) specific to inflammatory ATAC
514  cluster 8, by selecting the corresponding peaks and enriched motifs on downstream genes,
515  associated with TFs. Our analysis identified that DARs that gained accessibility were
516  associated with immune processes, IFN signalling, and cytokine production (IRF3, STAT2),
517 and DARs that lost accessibility were associated with genes pertaining to neuron and
518  astrocyte differentiation and neural crest cell fate specification (SOX4, SOX8) (Fig. S5F, Table
519  88).

520 We next assessed the overlapping motifs significantly enriched for epigenetic changes in
521  both PMS fibroblasts and iNSCs from the WGBS and from the predicted signature genes of
522 RNA cluster 5, and identified common TFs including p53, E2A, and SMAD?2 (Fig. S5G). As
523  p53 and E2A are implicated in promoting immune function, involved in senescence, and in

85,86

524  mediating IFN responses, our findings suggest that the chromatin accessibility for RNA

525  cluster 5 closely predicts its RNA expression signature. Biologically, these cells are strongly

15


https://doi.org/10.1101/2024.02.09.579648
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.09.579648; this version posted February 12, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Park, Nicaise, Tsitsipatis et al.

526  IFN-responsive and display RG-like signatures. Our identification of common motifs
527  maintained from the fibroblasts during reprogramming to iNSCs in PMS cell types further
528  confirms the involvement of epigenetic regulation in perpetuating the senescent and IFN-
529  response in the INSCs.

530 Since IFN signalling was found to be strongly involved in RNA cluster 5, we next
531 investigated the chromatin accessibility at the promotor regions. We identified increased
532  accessibility of IFIT1 in ATAC cluster 8, corresponding to increased expression in RNA cluster
533 5 (Fig. S5H). We next investigated genes that are known targets of the regulator of IFIT1,
534  IRF1, which we identified to be enriched in the bulk mMRNAseq of PMS iNSCs (Fig. 1C). IRF1
535 is a key transcription factor implicated in facilitating TNF-a-induced senescence and is known
536 to be anti-proliferative and pro-inflammatory.®” Within the IRF1 targets, notably IFIT3, IFIT5,
537 and OAS2, known as IFN-response genes, we found clear associations between RNA
538  expression (RNA cluster 5) and chromatin accessibility near TSS (+/- 3 kb) as well as in
539  potential regulatory regions (+/- 50 kb from TSS) in ATAC cluster 8 (Fig. 6E). These data
540  support the hypothesis that cells in RNA cluster 5 have permissive chromatin that underlies

541  persistent activation of IFN-responses via IRF1.

542 The pseudotime analysis predicts RNA cluster 2 was most closely related, and strongly
543  interacting with RNA cluster 5 based on ligand-receptor inference, so we next examined if a
544  similar gene expression and chromatin accessibility signature could be identified in both

545 clusters.

546 Some overlapping genes were found in cluster 2 with similar changes in nearby chromatin
547  accessibility and included inflammatory genes HAX71 and SERPINH1 (Fig. 6E). Grouped
548  clusters 0, 1, 3 exhibited little expression of /RF1 target genes. GSEA on shared ATAC
549  signatures, both for gain and loss of accessibility suggested that common gain of accessible
550  regions were associated with stress response and blood brain barrier (BBB) maintenance,
551  whereas loss of accessible sites correlates with notch and BMP signalling, and senescence
552  pertaining to cell proliferation (Fig. S5I-J). This downregulation in notch and BMP signalling in
553  cluster 2, based on interactions with cluster 5, was also predicted from the ligand-receptor
554  interaction analysis (Fig. 5K). Importantly, not all changes in chromatin accessibility correlate
555  directly to variation in mRNA (Fig. S5J).

556 To further understand patterns based on chromatin accessibility and RNA expression, we
557  subdivided gene sets based on RNA upregulation in RNA clusters 0, 1, 3, and depletion in
558 RNAclusters 2 and 5, and found enrichment for terms pertaining to Wnt signalling and NSC
559  maintenance (Fig. 6F). We also found increased accessibility near the TSS of the RNA cluster
560  5upregulated genes, again suggesting aberrant permissive chromatin in these cells promoting

561 increased expression. When assessing coordinated upregulation of gene expression in RNA
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562 clusters 2 and 5, we found enrichment in terms associated with mitochondrial transmembrane
563  transport, protein import, and telomerase RNA localization (Fig. 6F). These results support a
564 close interaction between RNA clusters 2 and 5, with cluster 5 being specifically IFN-

565  responsive.

566 Lastly, we inferred single-cell regulatory networks using SCENIC®. We observed that RNA
567  cluster 5 was defined by two major regulons, /IRF1 and FOXP2, that was associated with
568 genes regulating TNF and IFN signalling, as well as the p16-cyclin complex related to
569 senescence (Fig. 6F, Table S9). PAX6 was also identified as a major regulon across all
570 clusters of the INSCs and was defined by genes associated with nervous system
571  development, supporting their RG-like state. Overall, RNA cluster 5, primarily represented in
572  PMS iNSCs, is consistently defined by gene regulatory patterns that are associated with an

573  IFN-responsive and senescence state.

574 In summary, our work demonstrates that direct reprogramming technology maintains
575  hallmarks of PMS in cells due to maintenance of epigenetic memory. We reveal that patient
576  fibroblasts have hypomethylation at genes associated with lipid metabolic processes and IFN

577  signalling, which then became further accentuated upon direct induction into iINSCs.

578 Within the heterogeneous PMS iNSCs, we identify a novel disease associated cluster of
579  IFN-responsive, inflammatory RG-like cells that display senescent features and are regulated
580 by IRF1, which may spread dysfunctional features towards other clusters through their

581 secreted factors.

582 Integration with publicly available datasets further identifies and highlights a long-neglected
583  non-neurogenic DARG population, which is found significantly increased in chronic active

584 lesions areas and display IFN and senescence gene expression.

585
586
587

s DISCUSSION

589 PMS is a complex neuroinflammatory and neurodegenerative disease that results from the
590 interaction between environmental factors and genetic predisposition. The majority of genetic
591 risk factors that have been identified in the development and progression of MS are associated
592 with the peripheral immune system, mapping mainly to T cells, however recent work has also
593  uncovered variants in genes expressed by glial cells.?¥*° MS severity has also been linked to
594  variants involved in mitochondrial function, synaptic plasticity, and cellular senescence in
595  genes expressed in the CNS."® To further understand how intrinsic glial cell dysfunction in

596  PMS contributes to disease pathology we generated directly reprogrammed iNSCs.
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597 Characterization of directly reprogrammed iNSCs showed PMS donor-derived cells
598  reproduced reported phenotypes of increased expression of inflammatory signalling and
599  senescence associated genes compared to Ctrl cells."”” Further, patient iNSCs maintained
600 shorter telomere lengths compared to controls, indicating this type of reprogramming better
601  maintains features of the donor cells that may be critical in driving the PMS phenotypes. We
602 then established that INSCs also maintained epigenetic signatures, as determined by DNA
603  methylation age, after reprogramming from fibroblasts, indicating that this method of cellular
604 reprogramming may conserve epigenetic information important for disease phenotypes.
605  Globally, cell lines derived from people with PMS were found to have lower levels of DNA
606  methylation, with enrichment of hypomethylation at promoter regions of targets for
607 inflammatory transcription factors, such as STAT6 and NFkB. Interestingly, global
608 hypomethylation has been identified to occur with aging in various organs in both mice and

609  humans, which is believed to contribute to genome instability .°’

610 Concordantly, hypomethylated regions in the PMS fibroblasts and iNSCs were enriched for
611 pathways involved in immune response, suggesting global aberrant epigenetic regulation in
612 individuals with the disease. Previous work has characterized global methylation signatures
613 in the whole blood of people with MS and identified that half of the differentially methylated
614  positions mapped to genes enriched in CNS cells and pathways.? This work identified
615 neurodegenerative-related pathways as epigenetically dysregulated in severe MS cases,
616  which correlated with acceleration of methylation age.®? Intriguingly, we also characterize a
617 loss of methylation in genes that regulate lipid metabolism, implicated in lonescu, Nicaise et
618 al.*® Given these pathways appear to be highly relevant to PMS phenotypes, we believe
619 human INSC methodologies provides an excellent, and biologically valuable, platform for

620  studying mechanisms driving disease.

621 Combined single-cell and single-nucleus RNA data analysis allowed us to better
622  characterize heterogenous iINSCs. Here we identified cells with both neural and RG
623  phenotypes, and importantly were able to find cells with matching transcriptional profiles from
624  datasets generated from post-mortem MS brains. We found that most of the cell clusters were
625 identified by radial glial genes (SOX2, PAX6), with one cluster which we identified with a neural
626  progenitor signature (DCX, ASCL17). Within these clusters, we define a novel subset of cells
627  thatis predominantly composed of cells derived from PMS donor fibroblasts. This unique RNA
628  cluster 5 displays an inflammatory phenotype expressing many features of senescence and

629 interferon signalling and response.

630 The mechanisms underlying senescence and IFN signalling are intertwined. IFN response
631  can be triggered by a myriad of stimuli, including extra and intracellular double-stranded (ds)

632 RNA and DNA from cell stress and apoptosis, cytosolic DNA, viruses, and microbes, which in
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633  turn activates a pro-inflammatory response.?® Over the course of aging, IFN pathways have
634  been found to become aberrantly activated, which leads to global inflammation (inflammaging)
635 and senescence.” The presence of an IFN signature in brain cells is increasingly being
636  associated with aging and neurodegenerative diseases in rodent models and humans.?*
637  Type | IFN signatures are found upregulated in the aged brain, especially the choroid plexus,
638 andin neurodegenerative diseases, where it may lead to recruitment and activation of immune
639 cells and eventual neurodegeneration. Interestingly, in our model system, we identify
640  hypomethylation of genes associated with IFN signalling in PMS fibroblasts, indicating a
641  potential predisposition for developing an IFN response in people with PMS. Once fibroblasts
642  are reprogrammed to iNSCs, they take on an even more pronounced IFN phenotype

643  associated with senescence gene expression.

644 From the single-cell data, we establish not only the heterogeneity of INSCs derived from
645  both Ctrl and PMS donors, but also define a novel subset of disease associated RG-like cells
646  that could be the ‘drivers’ of the inflammatory signature seen in the analysis of bulk PMS
647 INSCs. In fact, through ligand/receptor predicted interactions, the secretory factors from this
648 —PMS mostly — IFN-responsive and senescent-like RNA cluster 5, could induce inflammatory-
649  associated signatures (i.e., neurodegeneration, oxidative stress induced senescence, and
650  signalling by IIs) and inhibit NSC maintenance (i.e., Wnt signalling, and cell cycle) in the other
651 INSC clusters, thus suggesting that RNA cluster 5 can further affect surrounding cells via
652  amplification of such inflammation. Independent work from our group, further supports a key
653  role for disease associated paracrine factors in conditioned INSC media to induce neurite

654  retraction and neuronal apoptosis.“®

655 While the mechanisms of this RG-intrinsic intrinsic dysfunctional phenotype in PMS are still
656  unknown, however, we do find epigenetic signatures starting even with the donor fibroblasts.
657 Recently, neurodegenerative diseases have been found to be highly associated with viral
658  exposure,® and in the case of MS the Epstein Barr virus (EBV) increases risk of disease.'®
659  Viral exposure combined with chronic inflammation in PMS may induce global epigenetic
660 changes, affecting cells such as fibroblasts, found to be stressed in people with MS.'"
661  Furthermore, the activation of human endogenous retroviruses (HERVs) in unique cell
662  populations are also associated with chronic inflammatory neurodegenerative diseases'%? and
663  braininjuries.'® HERVSs can be activated via inflammatory stimuli and induce an IFN response,

664 similar to that of a viral infection.

665 Epigenetically, we identify sites with gains of accessibility are associated with IFN-response
666  and signaling as well as cytokine production in RNA cluster 5 (corresponding to ATAC cluster
667  8) composed mainly of PMS derived cells. The epigenetic remodelling in this cluster was also

668  associated with increased accessibility at binding sites of the p53 motif, known to be activated
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669 in response to cellular stress and DNA damage and promotes sustained IFN signaling and

670  response.®

671 Using publicly available datasets from MS post-mortem brains, we assessed the
672  expression of RG genes and identified non-neurogenic RG-like cells within well-known
673  astrocyte clusters. Recent work has demonstrated that astrocytes exhibit plasticity in injury
674  situations.*’ Human pathologies which involved lesions and blood-brain barrier rupture were
675 associated with a de-differentiation of astrocytes to replicating NSC/RG-like cells.*'
676  Furthermore, this has been previously validated in rodent models where epithelial injury allows
677  for neural precursors to dedifferentiate into multipotent NSCs in the olfactory epithelium.'®
678 Based on these studies, astrocytes in PMS may be undergoing (i) a de-differentiation (or de-
679  maturation) process, where they begin to express cell cycle and early RG-like cell markers
680  due to exposure of chronic inflammation, and a (ii) resurgence as non-neurogenic RG-like

681 cells at the level of disease-associated, ectopic, non-canonical niches.

682 Integration of our in vitro INSC data with publicly available datasets in fact identifies and
683  highlights a long-neglected, non-neurogenic disease-associated RG-like cell population, being
684  found significantly increased in chronic active lesions areas and displaying IFN and

685  senescence gene expression, which we term DARGs.

686 Interestingly, we identify twice as many DARGs in chronic active PMS lesions, which are
687  slowly expanding in nature, feature smouldering inflammatory demyelination at the edge,
688  remyelination failure, and axonal degeneration,' and are associated with a more aggressive
689  disease'®. Further characterization of the phenotype of this novel DARG population showed
690 increased expression of the SenMayo and IFN-associated genes compared to the astrocyte

691 cluster.

692 Overall, our work shows there are epigenetic alterations in somatic fibroblasts isolated from
693  people with PMS, and many of these epigenetic modifications remain following direct
694  reprogramming into iINSCs. These epigenetic alterations are associated with de-repression
695  (hypomethylation and increased chromatin accessibility) of IFN signalling and response as
696  well as inflammation. We further uncover a novel subset of PMS iNSCs with high levels of

697 inflammatory signalling, which we propose drives much of the bulk phenotype.

698 Lastly, we uncover a long-neglected DARG population in the PMS brain, which has similar
699  transcriptomic profiles as the in vitro PMS iNSCs, including expression of senescence and
700  IFN transcripts.

701 Our research lays the groundwork for further investigating ‘disease-pacemaker’ non-

702 neurogenic RG-like cells in potentially driving neuroinflammation in neurodegenerative
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703  disease. Future work is needed to identify the origin and driver of epigenetic dysfunction

704 arising in the cells of people with PMS.

705
706
707

708 LIMITATIONS OF STUDY

709  While we generated cell lines from individuals with PMS, the variations in genetic
710  backgrounds, sex, and age among these lines pose a potential limitation. Despite our thorough
711  analysis of both patient and control cell lines, we acknowledge the necessity for additional
712 validation of our findings in situ. Additionally, the inclusion of induced pluripotent stem cells
713  (iPSCs) from the same donors would have enhanced the data quality, allowing for a more
714 robust interrogation of the observed cellular phenomena. Single-cell spatial assays could offer
715 a more comprehensive understanding of our results, particularly in capturing differences

716  related to disease-relevant microenvironments and surrounding cells (neighbours).

717
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Figure 1. Bulk mMRNAseq reveals increased inflammatory signalling and senescence
markers in PMS iNSCs.

A) PCA summarizing the co-variation of expression levels in the mRNA sequencing. C and P

0 8 ——
Ctrl PMS Ctrl PMS Ctl PMS

are independent cell lines (Table S1).

(B) Volcano plot illustrating differentially expressed genes, vs log> abundance in PMS iNSCs
compared to Ctrl iINSCs. Log»(FC) vs adjusted p-values (with Benjamini Hochberg multiple
testing correction) are reported.

(C-D) Pathway enrichment analysis on GO and REAC terms and enriched transcription factors
(TF) based on TransfFac annotation, from mRNA sequencing.

(E) Gene regulatory networks, inferred on manually curated, differentially expressed genes
contrasting of Ctrl vs PMS iNSCs networks, derived from the mRNA sequencing.

(F) Representative western blots and quantification for p16"™42 GDF15, and B-actin.

(G) Quantification of relative fluorescence intensity (RFI) of senescence-associated [3-
galactosidase expression using SPiDER-f3-gal. Data represented as a fold change over Cirl
iNSCs.

(H) Flow cytometry-based quantification of INSC cell cycle states. Data plotted as cells in
percent of cell cycle state.

(I Quantification of changes in PMS relative telomere length (RTL) over Ctrl iINSCs.
Experiments in F-l were done on n= 3 Ctrl and n= 4 PMS iNSC lines each performed in n= 3
replicates. Data in F-l are mean values + SEM. *p < 0.05, **p< 0.01, ***p< 0.001, un-paired t-

test, with unequal variances.
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Figure 2. Whole genome bisulfite sequencing (WGBS) uncovers inflammatory
pathways found commonly hypomethylated in PMS fibroblasts and iNSCs.

(A) PCA summarizing methylation quantified in the WGBS data for fibroblasts and iNSC
samples (Table S1).

(B) Cortex age DNA methylation aging clock inference. Dashed line indicates chronological
age at which FBs samples were sampled.

(C) Frequency of differentially methylated cytosines (DMC), plotted as Ctrl vs. PMS.

(D) UpSet plot of hypomethylated genes within the promoter-transcription start site (TSS)
region.

(E-F) Heatmap and enrichment analysis of hypomethylated genes.

(G) Enrichment analysis of commonly hypomethylated genes in PMS (vs Ctrl) fibroblasts (light
green) and iINSCs (light blue).

(H) Example of methylation difference for IRF5 (genome browser tracks), as in G.

(I) Proportional sequence logos on HOMER motifs resulting from an enrichment analysis from
E.
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802  Figure 3. iINSCs display a RG-like transcriptomic signature that can be identified in the
803  adult human brain using single nuclei sequencing.

804  (A) UMAP of Ctrl and PMS iNSC single-cell, -nucleus RNAseq samples, post quality checking
805  and filtering; a stable partitioning of cells is also highlighted.

806  (B) Element centric consistency, derived on 30 iterations, calculated per cell, and visualized
807  on the RNA UMAP.

808  (C-E) Voting scheme of genes associated with a RG-like signature (C), astroglial progenitor
809  signature (D), and neural progenitor signature (E) as in A.

810  (F) Cluster distribution in human iNSCs on the RNA UMAP. The histogram summarizes cell
811  proportions per cluster. **p < 1e-106 (X? test).

812 (G-l) Enrichment analysis of enriched and depleted terms in clusters 0, 1, 3 (G); cluster 4 (H);
813  cluster 5 (I) vs all other clusters; recalculated RNA UMAPs illustrating the distribution Ctrl vs
814  PMS cells.

815  (J-K) Recalculated UMAPs of RG-like cells in two ex vivo MS datasets, Absinta et al., 2021
816  (J) and Schirmer et al., 2019 (K). OPCs, oligodendrocyte progenitor cells.

817  (L-M) Voting scheme UMAPs and histograms summarizing the frequency of RG-like cells (and
818 non-RG-like cells per area of interest as in J-K. WM, white matter.

819
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821  Figure 4. A specific PMS iNSC cluster displays senescence and IFN-signalling which is
822  also identified in DARGs of the PMS brain.

823  (A) Heatmap of RNA cluster 5 signature markers and summary of associated enrichment
824  terms. Voting scheme UMAP of genes associated with IFN- a/p signalling and NOTCH1
825  signalling.

826  (B) Enrichment plots of the SenMayo gene set, and the IFN-a, and IFN- y response in cluster
827 5.

828  (C) Heatmap of standardized expression of highly expressed vs depleted transcripts, specific
829  toonly PMS cells vs Ctrl cells in RNA cluster 5 and selected enriched pathways significant for
830 the selected genes.

831  (D-E) Recalculated UMAP on the filtered cells identified as DARGs in Figure 3L-M. Stacked
832  Histograms summarizing the frequency of cells per lesion area.

833  (F-) UMAPs and histograms of DARG frequency that express genes in the SenMayo gene
834  setand IFN- o/ signalling gene set respectively from Absinta et al., 2021 and Schirmer et al.,
835 2019 data.

836
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838  Figure 5. PMS iNSCs secrete a pro-inflammatory SASP that induces upregulation of
839 genes associated with inflammation and senescence.

840  (A) Pseudotime trajectory inferred and displayed on the in vitro dataset UMAP. Cluster 5 was
841  used as initialization point (endpoint).

842  (B-D) UMAP of the distribution of intensity of genes clustered in modules 10 (B), 3 (C), and 7
843 (D), determined based on the pseudotime ordering. GSEA summary and TFs corresponding
844  to gene modules 10 (B), 3 (C), and 7 (D).

845  (E-F) UMAP of pseudotime trajectory inferred from the Absinta et al., 2021 (E) and Schirmer
846 et al., 2021 (F) datasets, respectively. The heatmaps summarize the scaled proportions of
847  common genes matching between iNSC in vitro modules 10, 3, and 7 with ex vivo modules.
848  (G-H) Modules selected from the ex vivo datasets as in E-F recapitulating the manually
849  curated modules (B-D) identified on the in vitro pseudotime trajectory. The heatmaps
850 summarize the scaled averaged expression of the in vitro gene modules, projected on the ex
851  vivo datasets.

852  (I-K) Circos plots of the intercellular ligand-receptor interactions predicted using NicheNet. (1)
853  Yellow directed edges indicate interactions, (J) red edges summarize enriched ligand/receptor
854  interactions i.e. upregulated target genes, (K) blue edges summarize depleted ligand/receptor
855 interactions i.e. downregulated target genes, between cluster 5 and complement clusters in
856  Ctrl and PMS iNSCs.
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857 (L) Enrichment summary on enriched and depleted genes in clusters 0,1,3 and cluster 2 (Ctrl
858  vs PMS).

859 (M) Heatmap of cytokine array performed on CM. Colour intensities are proportional with
860 standardized normalized intensities. Proteins investigated also in the mRNAseq (N) are
861  highlighted in red.

862  (N) Heatmap of standardized normalized expression levels of genes coding for secreted
863  proteins as in M. Genes investigated also in the single cell data (O) are highlighted in red.
864  (O) Expression gradient UMAPs of the selected secreted proteins as genes (N).

865
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867  Figure 6. Multi-omics RNA/ATAC integration with further epigenetic characterization of
868  cluster 5 cells.

869  (A) ATAC UMAP of the overlaid localization of RNAseq clusters.

870  (B) RNA UMAP of the overlaid localization of snATACseq clusters.

871  (C) Heatmap of the percentage of matched assignations of cells across the snRNAseq and
872  snATACseq clusters. The analysis was performed solely on matched cells i.e. cells with both
873  RNA and ATAC expression.

874 (D) Enriched motifs of signature and differentially accessible genes identified on the RNA
875  cluster 5, and ATAC cluster 8.

876  (E) Heatmap of accessibility (ATAC) and expression (RNA) of /IRF1 targets, i.e. TSS, RNA,
877 and distal portions of marker genes identified as differentially expressed between grouped
878 RNA clusters 0, 1, 3 vs cluster 2, and cluster 5, respectively.

879  (F)Heatmap of marker genes, between clusters 0, 1, 3 vs 2 and 5. The summary of enrichment
880  analysis applied on the selected genes.

881  (G) SCENIC GRN inference summary and selection of IRF1 specific regulons, corroborated
882  with enrichment analysis of regulons (IRF1, FOXP2, PAX6). The GRN inference was
883  performed on the scRNAseq dataset.
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ss4 METHODS

885 Data and code availability

886  All codes used in the study are available on github: https://github.com/Core-
887  Bioinformatics/DARG PMS
888 e Any additional information required to reanalyse the data reported in this paper is available

889  from the lead contacts upon request.

890 e All data generated for this study, in raw and processed format, are publicly available on
891  the Gene Expression Omnibus (GEQO), under accessions GSE243319, GSE251839,

892  GSE251831, GSE251838, and GSE251830. Further data mining of processed data may be
893  performed on bulkAnalyseR for bulk sequencing datasets and ClustAssess and Shiny Cell
894  apps (https://bioinf.stemcells.cam.ac.uk/shiny/pluchino/DARG _PMS/bulkanalyser/,

895  https://genomicspark.shinyapps.io/shinyApp/) for single-cell/ nuclei datasets. UCSC genome
896  browser sessions for these datasets comprise: https://genome-

897  euro.ucsc.edu/s/CSCI/DARG_PMS and http://tinyurl.com/2ygsa6or.

898

899

900 EXPERIMENTAL MODEL AND SUBJECT DETAILS

901 Patient cells

902  The cohort consists of 5 PMS and 3 healthy controls between 25 and 63 years of age. The
903  cohort includes representation from both genders, distributed across PMS and control groups
904 (Table S1). PMS fibroblasts were provided by the New York Stem Cell Foundation (NYSCF)
905  Research Institute through their Repository (http://www.nyscf.org/repository)'”’. Patients were
906 recruited at the Tisch Multiple Sclerosis Research Center of New York, upon informed consent
907 and institutional review board approval (BRANY). PMS donors underwent clinical assessment
908  when recruited for the study. Control fibroblasts C1 and C2 (Table S1) were generated from
909 adult dermal fibroblasts after obtaining consent and ethical clearance by the ethics committee
910  of the University of Wirzburg, Germany.

911

912  Generation and culturing of induced neural stem cells

913  iNSC lines were generated and quality controlled as described in lonescu, Nicaise et al.*® and
914  Meyer et al.*®* INSCs were maintained in neural induction media (NIM) consisting of
915 DMEM/F12 and Neurobasal (1:1) (ThermoFisher), supplemented with N2 supplement (1x)
916 (ThermoFisher), 1% glutamax (ThermoFisher), B27 supplement (1x) (ThermoFisher),
917 CHIR99021 (3 pM) (Cell Guidance Systems), SB-431542 (2 uM) (Cayman Chemical), and
918  hLIF (10 ng/ml) (PeproTech) until 70% confluent, then lifted using accutase, spun at 300 x g

919 for 3 mins, and plated onto growth factor reduced (GFR) matrigel matrix coated plates
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920  (Corning) (1:20 in DMEM/F12) with Y-27632 (10 uM) (Miltenyi Biotec) between 1:3-1:5 in NIM
921 media. Media was changed every second day as needed. Experiments were performed on
922  cells from passages 20-35.

923

924  Fibroblast maintenance

925  Fibroblasts were maintained in growth medium (DMEM Glutamax | [Thermo Fisher])
926  supplemented with 10% fetal bovine serum, 1% non-essential amino acids and 1 mM sodium
927  pyruvate (ThermoFisher) at 37°C with 5% CO. and fed every 3-4 days. After reaching 90%
928  confluency the fibroblasts were detached with trypsin-EDTA 0.05% for 5 min followed by
929  neutralization in DMEM and spun down at 300xg for 5 min. They were split 1:4 into growth
930 media onto tissue-culture treated plasticware.

931

932

933 METHOD DETAILS

934 mRNA sequencing, analysis, and inference of Gene Regulatory Networks (GRNs)

935 INSC lines, between passages 15-30, were plated at 500,000 cells per well in GFR-coated 6-
936  well plates. After 24 hours, the media was refreshed with new NIM. Cells were harvested in
937  RLT lysis buffer 72 hours after plating then frozen at -80°C until extraction. RNA extraction
938  was performed according to standard steps described for the RNeasy kit, followed by DNase
939 treatment (Qiagen). RNA was quantified using the NanoDrop 2000c instrument. lllumina
940  Sequencing libraries were prepared using the TruSeq low sample protocol from 1 ug of total
941  RNA (lllumina, San Diego, CA, USA). The resulting libraries were sequenced in paired-end
942  mode, on 150 nts reads on an lllumina NovaSeq 6000 instrument.

943  The quality checking of the samples was assessed using fastQC v0.12.11, applied on raw
944  files; the outputs were summarised using multiQC 1.14."% |nitial sequencing depths ranged
945  from 30M to 44M reads; subsampling without replacement, done using seqtk 1.3-r106 '°, was
946  performed to 34M reads, to avoid inconsistencies caused by uneven sequencing depths."°
947  All samples were aligned to the GRCh38.p13 genome using STAR 2.7.10a (paired-end
948  mode)."" Expression quantification was performed using featureCounts v.1.6.3."2 The
949  distribution of signal across transcripts was assessed on the UCSC genome browser. The
950 tracks (bigwig format) were built from the bam files using samtools 1.17." Next, noisyR 1.0.0*
951 was used to estimate and remove noise from the count matrix; the raw expression levels were
952  normalised using quantile normalisation.'* Differentially expressed genes (DEGs) were
953  identified using edgeR* and DESeq2*’; due to the noise correction the DEG calling

954  converged; p-values were adjusted using Benjamini-Hochberg multiple testing correction.
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955  bulkAnalyseR 1.1.0*" was used to build a shareable interface for the analysis and visualisation
956  of data.

957  The Gene Regulatory Networks (GRNs) were predicted, and their dynamics assessed, on the
958  bulk RNAseq data using a bulkAnalyseR ShinyApp.*” Additional analyses were performed
959  using GENIE3™® and visNetwork'® to visualise subgraphs according to selected pathways
960 and a maximum of 30 edges. To assess the global trend in co-variation of expression, for
961 genes annotated to the selected pathways, density plots were created, per pathway, on the
962  weights of the edges in the larger GRNs (corresponding values in the global adjacency matrix).
963

964 Immunoblotting

965  INSCs were homogenized in 10X RIPA buffer (Abcam) supplemented with 100X protease and
966  phosphatase inhibitors (ThermoFisher). Protein concentration was assessed using a BCA
967 assay (ThermoFisher). Equal protein amounts (25 ug) were resolved by SDS-PAGE on Bolt™
968  Bis-Tris Plus pre-cast 4-12% gradient gels (Invitrogen) and transferred to 0.45 mM
969  polyvinylidene fluoride (PVDF) membranes (Thermo Scientific). Membranes were blocked
970 with TBS blocking buffer (LI-COR Biosciences) and immunoblotted with the indicated
971  antibodies: mouse anti-p16™“2@ (Invitrogen) at 1:500, rabbit anti-GDF15 (Proteintech) at
972  1:1000, and mouse anti-b-actin (Sigma) at 1:5000 in TBS blocking buffer (LI-COR
973  Biosciences) with 0.1% Tween, followed by fluorescent secondary antibodies IRDye 680RD
974  Goat anti-Rabbit or IRDye 800CW Goat anti-Mouse (LI-COR Biosciences) at 1:10,000 in TBS
975  blocking buffer (LI-COR Biosciences) with 0.1% Tween and 0.01% SDS. The immunoblots
976  were visualized with the ChemiDoc MP Imaging system (Bio-Rad). Densitometric analysis was
977  conducted with Fiji by Imaged. Protein targets were normalized to 3-actin.

978

979  SPIiDER-gal

980 Cells were plated on black-walled, clear bottom 96-well plates (ThermoFisher, 165305) at
981 15,000 cells/well and maintained in culture for 5 days. Expression of senescence associated
982  B-galactosidase was measured by a SPIDER- -gal-based cellular senescence plate assay kit
983  (Dojindo) according to manufacturer’s instructions. Briefly, cells were washed with PBS,
984  stained with 1 pyg/mL Hoechst (Sigma-Aldrich) as a measure of cell number, washed again,
985  before the fluorescence intensity was measured at 358nmEx/461nmEm. Cells were then lysed
986  with the provided buffer and the SPIDER-B-gal stain was added and incubated at 37°C
987  overnight. Fluorescence intensity was measured at 520ex/565em. The SPiDER-B-gal
988 fluorescence intensity of each well was corrected for the autofluorescence of empty wells and

989 normalized to the Hoechst fluorescence intensity of the respective well to normalize for cell
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990 number. The resulting average SPiDER-B-gal/Hoechst fluorescence intensity of each cell line
991  was normalized to that of healthy control cell lines.
992
993  Cell Cycle Analysis
994  iINSCs were plated at a density of 80,000 cells/cm? on GFR-coated plates. After 3 days cells
995  were lifted using accutase and then pelleted at 500 x g for 5 minutes. The cells were fixed in
996  70% ethanol for 30 minutes on ice then pelleted at 850 x g for 5 minutes. The cell pellet was
997  resuspended in RNase (100 ug/mL) for 15 minutes and incubated at room temperature.
998  Propidium iodide (1 ug/mL) was added to each sample and cells were analysed on a BD
999  LSRFortessa with the flow rate on slow. 20,000 events were collected for each sample. The

1000  data was analysed using FlowJo 10.9 software using the Dean-Jett-Fox approach.

1001

1002  Telomere length analysis

1003  Relative telomere length was assessed using the Joglekar et al. protocol using quantitative

117

1004  PCR (qPCR) and comparison to that of a single copy gene."" iINSCs were plated at a density
1005  of 80,000 cells/cm? on GFR-coated plates. After 3 days cells were lifted using accutase and
1006  then pelleted at 500 x g for 5 minutes. DNA was isolated according to the DNeasy Blood &
1007  Tissue Kit (Qiagen) and quantified using the Nanodrop 2000c instrument. For initial
1008  optimization of the gPCR reaction, the DNA was diluted to three different concentrations (100
1009  ng/uL, 25 ng/uL, 6.25 ng/uL), and it was determined that 100 ng/uL had the best efficiency for
1010  both the human B-globulin and telomere primers. Two PCR reactions were separately
1011  conducted, for human B-globulin the mastermix was made using 5 pL Fast SYBR Green
1012  (ThermoFisher), 1 yL of hbg1 primer (3 uM), 1 uL of hbg2 primer (7 uM), and 2 uL of nuclease-
1013  free water. The reaction was cycled at 58°C annealing temperature along with a melt curve
1014  analysis using a QuantStudio 7 Flex (ThermoFisher). For the telomere primers, the mastermix
1015  was made using 5 yL Fast SYBR Green (ThermoFisher), 1 uL of telomere A primer (1 uM), 1
1016 L of telomere B primer (3 uM), and 2 pL of nuclease-free water. The reaction was cycled at
1017  56°C annealing temperature along with a melt curve analysis using a QuantStudio 7 Flex
1018  (ThermoFisher). Each sample was run in duplicate. Average telomere length was calculated
1019  as the AACT = (PMS average hbg Ct — PMS average telomere Ct) — (Control hbg Ct — control
1020  average telomere Ct).

1021

1022  Whole genome bisulfite sequencing (WGBS)

1023  Genomic DNA was extracted from 100,000 fibroblasts and iINSCs using the DNeasy Blood
1024  and Tissue Kit (Qiagen). The quantity of DNA was measured using the Quant-iT PicoGreen
1025  method and victor X2 fluorometry (ThermoFisher), and the integrity of the DNA was evaluated
1026  with Agilent genomic DNA screen tape. 500 ng of genomic DNA was used for sequencing. The
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1027  sample quality control criteria for the WGBS library were set to having a DNA integrity number
1028  (DIN) score of 7.0 and above. The extracted DNA was fragmented to an average insertion
1029  size of 550 base-pairs and the fragments were attached to end-repaired adapters. Genomic
1030  DNA was bisulfite converted using the EZ DNA methylation Gold kit (Zymo, Catalog #D5005)
1031  following the manufacturer’s instructions. We next applied the xGen Methyl-Seq Lib Prep kit
1032  (Integrated DNA technologies, Catalog #10009824) to the prepare the genomic DNA library.
1033 Library quality control was performed using qPCR (LightCycler 480) and TapeStation 4200
1034  (D1000 screen tape).

1035  The dataset comprises 8 samples (4 fibroblast lines and 4 INSC lines), with sequencing depths
1036  varying from 213M to 408M, and an average of 315M reads per sample. Reads with adapter

1037  contamination were trimmed using Trim Galore (0.4.3)"®

with options: --paired —q 25. Trimmed
1038  reads were aligned to the H sapiens reference genome (version hg38), using HISAT2"?
1039  (version built in the current stable version of Bismark 0.23.1'%). A bisulfite-converted index
1040  (GAand CT conversion) was generated with default parameters. We identified 28M CpG sites
1041  per sample, with sequencing coverage varying from 24x to 39x, (an average of 30x coverage
1042 per sample). The bismark_methylation_extractor tool was used to summarize the methylation
1043  levels at CpG sites. After assessing the bias at 5’end regions using M-bias results, the first
1044  2nts were excluded, as follows: bismark_methylation_extractor -p —ignore 2 —ignore_r2 —
1045  comprehensive —no overlap —bedGraph —counts —buffer_size 16G ($Aligned read bam file).
1046

1047 Identification of differentially methylated sites and regions

1048  MethylKit'*' was used for DMC and DMR quantifications, and fibroblast vs iNSC comparisons.
1049 A minimum threshold minimum of 10nts coverage for downstream DNA methylation analysis
1050  was set. The aligned reads were split into 100nt tiles (DMRs) using metilene.'?? Differential
1051  methylation was calculated, applying a McCullagh and Nelder'? correction for overdispersion,
1052  as well as the sliding linear model (SLIM) proposed in methylKit to correct for multiple testing.
1053  Tiles with a g-value < 0.05 and over 20% methylation difference were called differentially
1054  methylated. Motif enrichment analysis was performed using Homer (findMotifsGenome.pl).
1055  Annotations relevant for the hg38 v6.4 of the H sapiens reference genome (genes, exons,
1056 introns, UTRs, and other annotations) were extracted using Homer annotation tools.
1057  AnnotatePeaks.pl DMR hg38'** was used to evaluate the distribution of methylation across
1058  the genome. Next, a comparative analysis of the DMRs/DMCs across tissue types, contrasting
1059  the control and PMS samples was performed. In addition to the number of methylated tiles
1060  per annotation category was calculated, as well as their distance to the closest Transcription
1061  Start Site (TSS). To calculate the epigenetic age, we applied the Shireby-Cortex,*® Hovarth,*
1062  and Zhang,*® ageing clocks frameworks. For the Hovarth and Zhang estimations Clockbase

1063 platform' was used, relying on matched lllumina methyl array IDs. The DNA methylation
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1064  levels (0-100%) per CpG probe, and the sample metadata were submitted to Clockbase, and
1065  the predicted clock age was downloaded as CSV format. For the Shireby-Cortex®® aging
1066  estimate, we downloaded the DNA methylation probes, and coefficient values and relied on
1067  matched lllumina methyl array IDs. We used total 347 DNA methylation CpG probes to predict
1068  epigenetic aging (> 20nts coverage).

1069

1070  Nuclei isolation, library preparation, and RNA sequencing

1071  For the single-nucleus single-omics, (ATAC) and multiomics experiments, respectively, 2 x10°
1072  cells were harvested; nuclei were isolated following the manufacturer's instructions with minor
1073  modifications. Briefly, cells were lysed in 100 pL of freshly prepared lysis buffer (1 mM Tris-
1074 HCI [pH 7.4], 1 mM NaCl, 300 uM MgClz, 0.01% Tween-20, 0.01% IGEPAL CA-630, 0.001%
1075  Digitonin, 0.1% BSA, 100 uM DTT, and 100 mU/puL RNase inhibitor) for 1 minute on ice,
1076  washed twice in 500 yL of wash buffer (1 mM Tris-HCI [pH 7.4], 1 mM NacCl, 300 yM MgCl,,
1077  0.01% Tween-20, 0.1% BSA, 100 uM DTT, and 100 mU/uL RNase inhibitor), and the number
1078  of nuclei was assessed using the Countess Il FL Automated Cell Counter (ThermoFisher).
1079  Thereafter, approximately 16,000 nuclei were incubated with the transposase enzyme, loaded
1080  into Chromium Next GEM Chip H Single Cell Kit (10x Genomics). snATAC libraries were
1081  generated using Chromium Single Cell ATAC Reagent Kits User Guide v1.1 (10x Genomics)
1082  according to manufacturer’s instructions; for the multi-omics samples, nuclei were loaded into
1083  Chromium Next GEM Chip J Single Cell Kit (10x Genomics); libraries were prepared using
1084  Chromium Next GEM Single Cell Multiome ATAC + Gene Expression Reagent Kits (10x
1085  Genomics) according to manufacturer’s instructions. The quality of the libraries was checked
1086  on the Agilent Bioanalyzer with High Sensitivity DNA kit (Agilent); per sample libraries were
1087  sequenced on lllumina Novaseq 6000 with target sequencing depths of 25,000 - 70,000 reads

1088  per nucleus.

1089  For single-cell (sc)RNAseq, cells were counted using a hemocytometer, 10,000 cells were
1090  loaded into Chromium Next GEM Chip G Single Cell Kit (10x Genomics), and scRNA libraries
1091  were generated with Chromium Single Cell 3' Reagent Kits v3.1 (10x Genomics) according to
1092  manufacturer’s instructions. The quality of the libraries was checked on the 4200 Agilent
1093  Tapestation with High Sensitivity DNA kit (Agilent); per sample libraries were sequenced on
1094  lllumina Novaseq 6000 with target sequencing depths of 30,000 - 65,000 reads per cell.

1095

1096  Single-cell transcriptomics/ epigenetics data pre-processing

1097  Standard CellRanger pipeline (6.1.2) and CellRanger ARC (2.0.0) were applied for aligning
1098  reads to the aforementioned version of the H sapiens genome and for quantifying gene/ peak

1099  expression. For the RNA component, intron-matching reads contributed to the gene
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1100  expression levels. The processed gene expression matrix was imported in Seurat.’®
1101  Additional filtering was performed on the distributions summarizing the number of counts,
1102  features, and percentages of reads incident to mitochondrial and ribosomal genes, across
1103 cells, per sample (accepted cells satisfied the criteria: number of UMIs > 8,000, number of
1104  genes per cell > 1,000, log1o (genes per UMI) > 0.75). We observed different ranges for MT
1105  and RP proportions for the scRNAseq and snRNAseq samples, respectively (we retained cells
1106  with 15-40% RP [scRNAseq] and 2-25% RP [snRNAseq]). Post-filtering, on all retained cells,
1107  the MT and RP entries were excluded from the expression matrix, pre-normalization. The
1108  normalization of expression levels was based on log. normalization (scale.factor = 10000).
1109  The cell cycle assignation was performed in Seurat using the ‘CellCycleScoring’ function and
1110  a priori defined gene set.

1111

1112 Clustering

1113 Next, we applied the ClustAssess framework to determine optimal, data-driven parameters,
1114  starting with the number and type features according the stability of resulting partitions.”® We
1115 used Element-centric similarity,”® summarized on 30 iterations into Element centric
1116  consistency (ECC),”" to objectively assess stability.'*® Highly variable features (N=1,000
1117  determined using the vst) approach, yielded optimal outputs. A 20-shared nearest neighbour
1118  (SNN) graph was constructed on the HGV PCA."?® To address batch effect across sc and sn
1119  quantifications, we applied Harmony."®" Clustering was performed using Louvain approach

1120  (resolution=0.2), implemented within Seurat'®

v4.0.5. 8 clusters produced a stable partition
1121  on scRNAseq and snRNAseq components. We excluded the smallest cluster (133 driven by
1122  a specific sample (i.e. C1-specific cluster). A X? test was used to assess the significance of
1123 proportions of cells for PMS vs control samples. Marker genes (on cluster vs complement and
1124  pairwise differential expression) were identified using the ‘findMarker' function. The top 5 most
1125  positively differentially expressed genes were visualized in a heatmap.

1126  Enrichment analyses were performed using gprofiler'?® on markers called on a Wilcox test
1127  with a |logz2(FC)| threshold of 0.25, an adjusted p-value (Benjamini Hochberg multiple testing
1128  correction) less than 0.05 and a minimum percentage of cells expressing the gene of 0.1, in
1129  either subset. The background set for the enrichment analysis comprised all genes expressed
1130  in at least 10 cells.

1131

1132  Voting Schemes

1133 A variable voting-scheme was used to identify cell subsets requiring a minimum number of
1134  expressed genes corroborated with a minimum average expression level. The voting scheme
1135  for radial glial gene signature includes cells expressing 6 out of 9 manually curated genes

1136  (Table S4) with a normalized expression threshold of 1; glial progenitor cells express 7 out of
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1137 10 genes (Table S4) with an expression threshold of 0.5; neural progenitor cells express 5 out
1138  of 7 genes (Table S4) with an expression threshold of 0.5. The voting scheme for IFNa/
1139  signalling is based on cells expressing 3 out of 6 genes (Table S4) with an expression
1140  threshold of 0.5; NOTCH1 signalling comprises cells expressing 13 out of 16 genes (Table
1141  S4) with no abundance threshold (l.e. presence/ absence).

1142

1143  Re-analysis of Absinta et al. and Schirmer et al. Data ex vivo datasets

1144  Raw fastQ files from the studies by Schirmer et al. (2019)"” and Absinta et al. (2021)'® were
1145  downloaded from ENA using fasterg-dump. The quality checking and mapping leading to the
1146 filtered feature-barcode matrices were performed as described above. For the Schirmer et al.
1147  (2019) dataset, cells with less than 4,000 features/genes were retained; an upper bound of
1148 15,000 was employed for the maximum number of UMIs per cell; 5% is maximum proportion
1149  of fragments incident to mitochondrial DNA; 10% is the maximum proportion of reads incident
1150  to nuclear ribosomal genes. For Absinta et al. (2021), cells with the number of features
1151  between 200 and 5000 were kept for subsequent steps of the analysis; an upper threshold of
1152 20,000 UMI counts was used, and the maximum mt% was set to 5%. Both datasets were
1153  normalized using SCTransform;'?° the Absinta et al. (2021) dataset was batch corrected using
1154  Harmony'¥ on the patient variable, with 8 = 2. To detect stable partitions, on each separate
1155 dataset, ClustAssess’® was used with 20-50 iterations, assessing resolution parameters
1156  between 0.1 and 1.5 (0.1 increment steps). For the Schirmer et al. (2019) dataset, the top
1157 4500 highly variable features yielded the most stable partitions; for the Absinta et al. (2021)
1158  dataset the top 3,500 highly variable features were selected. For both, the optimal resolution
1159  value was 0.6.

1160

1161 Pseudotime Analysis

1162  Monocle3™® was used to infer trajectories for the in vitro data, as well as for the single-cell
1163  data from the Schirmer et al. and Absinta et al. studies. To identify the start and the endpoint,
1164  a selection of genes was used in a voting approach. The manually curated set of genes, used
1165  for determining the starting region in the in vitro data, comprises TOP2A, CENPF, UBE2C,
1166  ASPM, APOLD1 with an expression threshold of 2 and a tolerance of 1 gene, i.e. any one
1167  gene from the set maybe not expressed; for the ending region, genes IFIT2 and CDKN2A
1168  were used, with an expression threshold of 1.5 and a tolerance of 0.

1169  For the Absinta et al. and Schirmer et al., larger subsets of genes were used; for the former,
1170  the following genes were used for the starting region: LY6E, PPAN, FASN, CLU, SORD,
1171 TRAP1, TUBB2A, AP1S2, YBX3, with an expression threshold of 0.5 and a tolerance of 4
1172  genes; for the ending region, the following genes were used ISG15, B4GALT5, IFITM3,
1173  SAR1A, KIAA1217, TRPC4, FGF4, B2M, ZC3HAV1, WARS, FN1, IFIT1, with an expression
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1174  threshold of 0.5 and a tolerance of 4 genes missing. For the Schirmer et al dataset, the ending
1175  region was defined by genes ISG15, B4GALTS, IFITM3, SAR1A, KIAA1217, TRPC4, FGF4,
1176  B2M, ZC3HAV1, WARS, DDX58, with an expression threshold of 0.5 and a tolerance of 6
1177  genes.

1178  Using the ordering of cells based on their transcriptomic signatures, the ClustAssess stability
1179  framework was applied on gene expression levels. This yielded a stable number of gene-
1180 clusters, named gene modules, representing a precursor of GRN inference; the genes per
128)

1181  module were further characterized from a pathway perspective (using gprofiler
1182  terms, KEGG and REAC terms, and functional elements (TFs and miRNAs). Next, we chose

, against GO

1183  three gene modules that characterized sections of interest on the trajectory-based UMAPs of
1184 the in vitro dataset. The genes within each module were used to create a proxy (a
1185  transcriptomic pattern) subsequently employed to identify homologue gene modules
1186  computed based on the ex vivo datasets, Schirmer et al. and Absinta et al., respectively.
1187  Briefly, we considered the percentage of genes present in the ex vivo gene modules using the
1188 three in vitro gene modules; to account for the variable number of genes for both in vitro and
1189  ex vivo modules the outputs are scaled by the size of the gene set, i.e. larger gene sets are
1190  penalized more than smaller gene sets. The pairwise comparison of gene modules (Fig. S4A-
1191 D) relies on Fisher's exact tests, using the in vitro data as baseline comparator. Benjamini-
1192 Hochber (FDR) correction was applied to account for the multiple testing pyscenic'' was used
1193  to infer regulatory interactions, aligned with the metadata available for the Homo sapiens
1194  (hg38) reference genome. A docker container was used to generate a loom object from the
1195  existing Seurat object. Loompy was used' to create a SCope object, explored using the
1196  SCope web application; figure 6G illustrates specific regulons.

1197

1198  Cell-cell regulatory interactions and effects

1199  NicheNet® (v 2.0.4) was used to predict intercellular regulatory interactions, based on ligand-
1200  receptor databases (weighted networks nsga2r final.rds). The correlative analysis,
1201  summarized as interaction scores, was applied on cluster-specific marker genes (differentially
1202  expressed genes). Further analyses were focused on cluster 5 (“inflammatory cluster”)
1203  assigned as sender cells vs receiver cells, as the remaining clusters, respectively. The
1204  analysis was performed separately on control and PMS iNSCs, respectively. The summary of
1205  interactions was visualized using circos plot (circlize library v.0.4.15).

1206

1207  Cytokine Array

1208 iINSCs were plated at a density of 100,000 cells/cm? on GFR-coated plates. Media was
1209  collected on day 5 from each line. The Human Cytokine Antibody Array C5 (RayBiotech) was

1210  used for semi quantitative detection of 80 proteins according to manufacturer’s instructions.
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1211  Overnight incubation was performed for steps when the option was given. Membranes were
1212  exposed using a Gel Doc XR imager (BioRad). Blots were analyzed using the Protein Array
1213 Analyzer macro for Imaged (written by Gilles Carpentier, 2008). The relative quantity of each
1214  protein was normalized to the positive and negative controls included on the array. The array
1215  was performed once for each iINSC line. Control lines were averaged together to generate a
1216  fold change comparison over PMS iNSC lines. To visualize the results, we calculate the Z-
1217  score per cytokine using the heatmap function in an R environment.

1218

1219 snATACseq analysis

1220  CellRanger ARC2.0.0 (multi-omics) and CellRanger ATAC2.0.0 (snATAC only) were used to
1221  map reads and quantify expression for the single nuclei ATAC-seq datasets. The peak calling
1222 was performed on pseudobulked input, comprising cells with at least 100 reads sequencing
1223 depth. Union peaks (peaks present in at least one sample) were reported. We excluded peaks
1224  overlapping the ENCODE-defined blacklist regions (hg38). To address the variation in
1225  sequencing depths, across samples, we normalized expression levels using random
1226  subsampling without replacement.”® The set of fragments (with lengths varying from 200 to
1227 400 nts) vs the union-peaks were used to generate the ATAC expression matrix. For
1228  downstream analysis we relied onSeurat'?®, Signac'? and ArchR™* packages. Additional
1229  quality controls include assessment of nucleosome signatures and TSS enrichment analysis.
1230  we filtered the fragments with nucleosome signals < 4 and TSS enrichment levels > 2. Peak
1231  intensities were normalized using the term frequency inverse document frequency (TF-IDF)
1232 normalization (scale factor = 10,000). The dimensionality reduction was performed using latent
1233 semantic indexing (LSI). Additionally, we performed Harmony integration across batches,
1234 which was used as input for the final clustering (resolution=0.2, SLM method'?°). Differentially
1235  expressed peaks were identified using the 'findMarker' function (Seurat package). We
1236  performed de novo motif analysis using Homer (findMotifsGenome.pl) and GO term
1237 enrichment analysis using GREAT with the background of the whole genome.'®

1238

1239  Integrative analysis of multimaps profiles

1240  The integration of snRNAseq and snATACseq signals was performed on 5,242 cells with
1241  matched barcodes. The crosstalk between modalities was assessed using the partitioning
1242 information obtained on single modalities. The co-variation in expressed was summarized in
1243 joint ATAC/RNA heatmaps, with Z scores, calculated per modality, on pseudobulked
1244  expression per gene being presented for the gene itself (RNA modality), TSS proximal peaks
1245  (<3kb) and TSS distal peaks (greater than 3kb and less than 50kb). Both ATAC and RNA
1246 modalities were used to infer regulons using SCENIC+."%*
1247

40


https://doi.org/10.1101/2024.02.09.579648
http://creativecommons.org/licenses/by-nc/4.0/

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.09.579648; this version posted February 12, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Park, Nicaise, Tsitsipatis et al.

Statistical analysis

For all phenotypic analyses, a p-value < 0.05 was considered significant (*). We performed
statistical tests described in individual figure legends using Prism software version 10
(GraphPad Software, San Diego CA). A Benjamini-Hochberg, False discovery rate (FDR)
multiple testing correction was applied to account for Type | errors. For low throughput
differential expression analysis on genes, we used a negative binomial test with the FDR cutoff
value set to <0.05.

All analyses were performed on R 4.2.3, on high memory computer (MacPro M1 Max, 64GB

memory) and servers (Intel E7-8860v4, 3TB memory).
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