

1

2 Integrative single-cell analysis of neural stem/progenitor

3 cells reveals epigenetically dysregulated interferon

4 response in progressive multiple sclerosis

5

6 Bongsoo Park^{1*}, Alexandra M. Nicaise^{2*}, Dimitrios Tsitsipatis^{3*}, Liviu Pirvan⁴, Pranathi
7 Prasad², Miguel Larraz Lopez De Novales⁴, Julia Whitten¹, Luka Culig¹, Joseph Llewellyn¹,
8 Rosana-Bristena Ionescu², Cory M. Willis², Grzegorz Krzak², Jinshui Fan³, Supriyo De³,
9 Marta Suarez Cubero⁵, Angeliki Spathopoulou⁵, Luca Peruzzotti-Jametti^{2,6}, Tommaso
10 Leonardi⁷, Frank Edenhofer⁵, Myriam Gorospe³,
11 Irina Mohorianu^{4°}, Stefano Pluchino^{2°}, and Isabel Beerman^{1°}

12

13

14 ¹Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore,
15 MD, 21224 USA

16 ²Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge,
17 Cambridge CB2 0AH, UK

18 ³RNA Regulation Section, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD,
19 21224 USA

20 ⁴Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge,
21 Cambridge CB2 0AW, UK

22 ⁵Department of Genomics, Stem Cell Biology and Regenerative Medicine & CMBI, Leopold-Franzens-University
23 Innsbruck, Innsbruck, Austria

24 ⁶Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK

25 ⁷Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy

26

27

28

29

30

31 *These authors contributed equally to this work.

32

33 **Lead contact:** Prof. Stefano Pluchino (SP), Email: spp24@cam.ac.uk

34

35

36

37

38

39

40 **Corresponding author(s):** Dr Irina Mohorianu, email: iim22@cam.ac.uk; Prof. Stefano
41 Pluchino (SP), Email: spp24@cam.ac.uk; Dr Isabel Beerman, email:
42 isabel.beerman@nih.gov.

44 **SUMMARY**

45 Progressive multiple sclerosis (PMS) is characterized by a primary smouldering pathological
46 disease process associated with a superimposed inflammatory activity. Cellular and molecular
47 processes sustaining the pathobiology of PMS remain to be identified.

48 We previously discovered senescence signatures in neural stem/progenitor cells (NSCs)
49 from people with PMS. Applying direct reprogramming to generate directly induced NSCs
50 (iNSCs) from somatic fibroblasts, we retain epigenetic information and observe
51 hypomethylation of genes associated with lipid metabolic processes and IFN signalling only
52 in PMS lines. Single-cell/nucleus transcriptomic and epigenetic profiling reveal an
53 inflammatory, senescent-like, IFN-responsive radial glia (RG)-like cell subcluster mainly in
54 PMS iNSCs that is driven by IFN-associated transcription factors. Lastly, we identify a
55 population of senescent, IFN-responsive, disease-associated RG-like cells (DARGs) in the
56 PMS brain that share pseudotime trajectories with iNSCs *in vitro*.

57 We describe the existence of a non-neurogenic, dysfunctional DARG population that has the
58 potential to fuel smouldering inflammation in PMS.

59

60

61

62 **KEY WORDS**

63 Neural stem/progenitor cells, radial glia, single cell/nuclei multiomics, direct reprogramming,
64 RNA sequencing, DNA methylation, senescence, interferon, epigenetics, progressive multiple
65 sclerosis.

66

67 INTRODUCTION

68 Multiple sclerosis (MS) is a complex neuroinflammatory and neurodegenerative disease
69 characterized by inflammation and demyelination in the central nervous system (CNS). It is
70 believed to be caused by an interplay of genetic predisposition and environmental risk factors,
71 such as exposure to viruses.¹ The early phase of the disease, known as relapsing remitting
72 MS (RRMS), pathologically manifests as acute demyelinating lesions with some endogenous
73 repair. There are disease-modifying therapies (DMTs) available that target peripheral immune
74 cells to reduce the risk of developing new lesions and clinical relapses. Over time, however,
75 most people with RRMS transition into a progressive (PMS) stage of the disease that is
76 characterized by the steady accumulation of neurological disability in the absence of
77 endogenous repair that leads to neurodegeneration. Despite most available DMTs being
78 effective in people with RRMS they are much less effective in people with PMS. This has made
79 the progressive stage of the disease an unmet clinical need.¹

80 Pathological, neuroimaging, and clinical data suggest that progressive MS is driven by a
81 primary smouldering process associated with inflammation. Several mechanisms have been
82 proposed to drive smouldering MS, including innate immune activation, demyelination and
83 energy deficits, adaptive immunity, and, recently, age-related mechanisms.^{2,3}

84 Age is one of the most significant risk factors in the development of PMS, which is similar
85 to other neurodegenerative diseases such as Alzheimer's and Parkinson's disease.^{4,5}
86 Longitudinal assessment of brain aging using imaging technologies showed that people with
87 MS demonstrate increased '*brain age*' compared to healthy controls that was defined by
88 increased atrophy and decreased grey matter volumes.^{6,7} Pathological hallmarks of cellular
89 aging, such as senescence and senescence-associated changes, have been identified in
90 people with PMS. These include decreased telomere length in peripheral leukocytes,⁸⁻¹⁰
91 increased DNA and mitochondrial damage in neurons *in situ*,¹¹⁻¹³ increased epigenetic age in
92 glial cells,¹⁴ senescence-associated secretory phenotype (SASP) in microglia and
93 astrocytes,^{15,16} and p16/CDKN2A expression in glia and neural stem/progenitor cells
94 (NSCs).^{16,17} The increasing body of evidence suggesting an association of PMS with cellular
95 senescence requires further study to understand how the accumulation of senescent glial cells
96 contributes to disease pathogenesis.

97 The genetic components underlying MS risk and severity are incredibly complex. Genome
98 wide association studies (GWAS) largely implicated cells of the peripheral immune system in
99 the development of disease. However, mapping of MS susceptibility genes onto brain tissue
100 has revealed enrichment of MS-susceptibility genes in glial cells of the CNS, including
101 astrocytes, oligodendrocytes, and microglia. Moreover, prediction of MS severity from genetic

102 loci involved in the CNS were found to be associated with mitochondrial function, cellular
103 senescence, and synaptic plasticity.¹⁸

104 Recent work with induced pluripotent stem cells (iPSCs), which retain the genetic
105 information from the starting cell and is maintained in the resulting cell type of interest, has
106 allowed for modelling of complex human brain disorders *in vitro*. Although iPSCs offer a
107 powerful platform for modelling of human diseases, epigenetic modifications, especially those
108 associated with aging, are lost in the reprogramming process due to the use of the Yamanaka
109 factors.¹⁹⁻²¹ Epigenetic changes, which can be reflected by environmental risk factors such as
110 smoking and exposure to viruses, are likely contribute to MS susceptibility and progression. A
111 few studies have identified aberrant DNA methylation patterns in both CNS tissue and
112 peripheral blood and leukocytes in people with MS. Many of these patterns are associated
113 with functional pathways related to immune response, neuronal survival²², and
114 demyelination.²³ Recent work has found that iPSC-NSCs from patients with PMS display
115 markers of senescence and prevent oligodendrocyte progenitor cell differentiation via the
116 SASP.^{17,24} Furthermore, iPSC-astrocytes from MS patients also display senescence-related
117 gene expression, dysfunctional metabolism, and increased immune and inflammatory
118 genes.^{25,26}

119 Stem cell exhaustion is a known hallmark of biological aging that is typically associated
120 with reduced tissue repair. Adult brain stem cells/NSCs, also known as radial glia-like cells
121 (RG), are astroglial-like cells that classically reside in the mammalian subventricular zone and
122 dentate gyrus of the hippocampus and can give rise to mature neurons, astrocytes, and
123 oligodendrocytes.²⁷ Furthermore, noncanonical niches for RG have also been reported,
124 including the neocortex of primates,²⁸ the cerebellum of rabbits,²⁹ the amygdala of mice,³⁰ and
125 the striatum of humans.³¹ Studies in animals have shown that with progressing age and
126 neurodegenerative disease the capabilities of RGs, such as differentiation into neurons and
127 repair capabilities.³²⁻³⁴ Many studies have attempted to address the existence, persistence,
128 and role of NSC/RGs in the human brain following early post-natal life. Immunostaining of
129 post-mortem human brains³⁵ identified NSCs in the lining of the walls of the lateral ventricle,
130 the dentate gyrus, and the olfactory epithelium.^{36,37} However, their capacity for neurogenesis
131 and differentiation, as well as their presence outside of the main CNS germinal stem cell
132 niches is much debated.^{38,39} More recently, phenomena such as inflammation and injury
133 support both de-maturation of neurons⁴⁰ and de-differentiation of astrocytes⁴¹ into NSC/RG-
134 like cell states. NSCs expressing glial markers and displaying features of senescence have
135 also been identified near lesioned areas in post-mortem MS brain tissue.^{17,42,43} Their role and
136 putative function in brain physiology and disease is not currently understood.

137 Disease modelling with stem cell technologies holds the promise for understanding cellular
138 dynamics that were previously unreachable in brain cells *in vivo*. We employed the use of
139 direct reprogramming technology, which better retains epigenetic memory of the donor cells
140 ,⁴⁴ to better investigate the origin of the senescent phenotype in NSCs within the context of
141 PMS.^{17,24,25} We directly converted skin-derived fibroblasts from healthy human controls and
142 people with PMS into stably expandable induced NSCs (iNSC). This was done by exposing
143 fibroblasts to a transient (24-hour long) exposure to the Yamanaka factors⁴⁵ in the presence
144 of NSC differentiation factors to generate a heterogenous population of stem and progenitor
145 cells.

146 By subjecting both the parental fibroblasts and iNSCs to whole genome bisulfite
147 sequencing (WGBS), we identified hypomethylated genes encoding proteins that function in
148 pathways similar to those associated with inflammatory and interferon (IFN) signalling in PMS
149 cells, suggesting a predisposition to inflammation. Furthermore, direct reprogramming to
150 iNSCs maintained epigenetic information from the donor cells. Through both bulk and single-
151 cell/ nucleus transcriptomics analyses, we found increased activation of pathways pertaining
152 to cellular senescence, inflammation, and IFN signalling in a subset of PMS iNSCs. Combined
153 single-nuclei ATACseq supported changes in chromatin accessibility and was linked to
154 consistent pathways. Within the heterogenous iNSCs, we identified a focused inflammatory
155 and senescent-like cluster and elevated expression of related upstream transcription factor
156 IRF1 in PMS iNSCs. We integrated published post-mortem single-cell/nuclei transcriptomics
157 data sets and confirmed the presence of non-neurogenic, disease-associated RG-like cells
158 (DARGs) in the PMS brain, primarily in chronic active, slowly expanding lesions, exhibiting
159 senescence and IFN-responsive characteristics.

160 Our work confirms that direct reprogramming technology is a powerful tool to model
161 disease-in-a-dish to study neurodegenerative disorders. In doing so, it led us to identify the
162 existence of a long-neglected, non-neurogenic DARG cell cluster especially in chronic brain
163 MS lesions that has the potential to fuel continuous smouldering inflammation in PMS.

164

165

166

167 **RESULTS**

168 **Bulk (multi-modal) sequencing reveals upregulation of senescence and
169 inflammatory pathways in PMS iNSCs**

170 To model disease and age associated NSC features, we directly reprogrammed skin-derived
171 fibroblasts from control healthy subjects (Ctrl) and people with PMS (PMS) into stably

172 expandable iNSCs (**Table S1**).⁴⁵ We confirmed the expression of established and accepted
173 NSC markers, including the mRNAs, using RT-PCR, and proteins, using
174 immunocytochemistry, that encode Nestin (NES), SOX2, ETNPPL, and PAX6, as well as the
175 clearance of Sendai virus markers.⁴⁶ PCA summary of transcriptomic signatures across
176 samples (**Fig. 1A**) revealed robust signal across replicates and a clear separation between
177 the Ctrl and PMS samples. Additional checks comprised incremental Jaccard similarity index
178 (**Fig. S1A**),⁴⁷ and assessment and removal of technical noise using noisyR (**Fig. S1B**),⁴⁸
179 followed by normalization of expression levels.⁴⁷ The differential expression analyses (with
180 convergent results on the DESeq2⁴⁹ and edgeR⁵⁰ pipelines) led to 1,021 upregulated and 844
181 downregulated genes ($FDR < 0.05$, $|\log_2(FC)| \geq 0.5$) that included transcripts related to
182 senescence, such as *CDKN1A*, *IRF7*, and *ISG15* (**Fig. 1B**). Gene set enrichment analysis
183 (GSEA⁵¹), using genes expressed above noise level as background, identified several
184 pathways enriched in the PMS iNSCs, including mRNAs encoded by gene sets that drive
185 response to stress (*TNC*, *STAT6*), immune system processes (*THBS1*, *SPP1*), positive
186 regulation of lipid metabolic process (*APOE*, *SREBF1*), regulation of cellular senescence
187 (*CDKN1A*, *IGF1R*), interferon (IFN)- γ signalling (*ICAM1*, *HLA-DPB1*), and transcription factors
188 associated with IFN signalling (*IRF-4*, *IRF-1*, *NF- κ B*) (**Fig. 1C, Table S2**). Instead, mRNAs
189 encoded by gene sets associated with cell cycle (*NASP*, *DPF1*) and telomere organization
190 (*USP7*, *XRN1*) were al depleted in PMS iNSCs (**Fig. 1D**). This is concordant with previous
191 work identifying cellular senescence in the NSCs of individuals with PMS.^{17,24}

192 Next, we investigated the dynamics of gene regulatory networks (GRNs), inferred on
193 differentially expressed genes, associated with enriched terms (inflammation, regulation of
194 cellular senescence, and interferon signalling). We observed a clear hub centred on the
195 senescence gene *CDKN1A*, which then strongly interacted with *CDKN1C*, *CDKN2A*, *STAT1*,
196 and *IRF1* in PMS iNSCs only (**Fig. 1E**). Previous studies have demonstrated that senescence
197 induction via p21 (*CDKN1A*) and p16^{Ink4a} (*CDKN2A*) expression activates IFN response.⁵²
198 Density plots of covariation of inflammatory and senescent transcripts (selected based on GO
199 annotations) showed greater difference in weights (i.e. interaction strength/ co-variation in
200 expression) between Ctrl and PMS samples (with stronger covariation in the PMS samples),
201 compared with non-differentially expressed genes (**Fig. S1C**). These results support the
202 predicted interactions between senescence and inflammation pathways.⁵² This GRN analysis
203 also supports the hypothesis of an induction of a senescence program only in PMS iNSCs
204 that then promotes IFN and inflammatory signalling activities.

205 Because the sequencing data showed upregulation of genes associated with cellular
206 senescence, we independently validated these findings using Western blot and senescence-
207 associated β -galactosidase (SA- β -gal) staining. We found upregulation of markers of cellular

208 senescence p16^{Ink4a} and GDF15 (**Fig. 1F**)⁵³ and increased expression of SA- β -gal using
209 SPiDER- β -gal dye in all PMS lines (**Fig. 1G**).⁵⁴ Cellular senescence is primarily associated
210 with a halt in cell cycle, which was supported by a depletion of cell-cycle pathways in the
211 mRNASeq (**Fig. 1D**). We then assessed the cycling stage of iNSCs using flow cytometry.
212 Despite iNSCs being analysed under proliferative conditions in chemically-defined media, we
213 still identified a significantly higher proportion of PMS iNSCs in the G1 phase of the cell cycle
214 (vs Ctrl), which is typical of quiescent or senescent cells (**Fig. 1H**).⁵⁵ Lastly, quantitative
215 (q)PCR-based analysis of relative telomere length revealed that PMS iNSCs have significantly
216 decreased telomere lengths (vs Ctrl) (**Fig. 1I**).

217 Therefore, PMS iNSCs phenotypically display intrinsic features of senescence, which are
218 also reflected at the transcriptomic level via upregulation of pathways associated with
219 inflammation and IFN signalling.

220

221 **PMS fibroblasts and iNSCs maintain pathological epigenetic hallmarks**

222 We further investigated the potential origin of the senescent and inflammatory signatures and
223 phenotypes seen in PMS iNSCs. We postulated that the direct conversion from fibroblasts into
224 iNSCs would maintain or even facilitate the emergence of new epigenetic landscapes that
225 further promote the senescence phenotype.

226 To this aim, we assessed the methylation status, genome-wide, using whole genome
227 bisulfite sequencing (WGBS) on the parental fibroblasts and matched iNSC lines. PCA
228 revealed a tight reproducibility of replicates and a clear separation between fibroblasts and
229 iNSCs as well as between Ctrl and PMS samples (**Fig. 2A**).

230 We identified 28 million CpG sites per sample and consistently observed increased
231 hypermethylation in iNSCs (vs fibroblasts) (**Fig. S1D-E**). To provide insight to the extent the
232 direct reprogramming reset the aging-related epigenome, we assessed the Cortex Age DNA
233 methylation (DNAm) aging clock using methylation data from the human cortex.⁵⁶ The cortex
234 clock predicted an age similar to the chronological age of the donor cells used to generate the
235 iNSCs, suggesting minimal epigenetic resetting occurred during the direct reprogramming
236 (**Fig. 2B**). We also matched this modality against the Horvath and Zhang DNAm clocks, which
237 further confirmed the maintenance of epigenetic age after direct reprogramming for most cell
238 lines (**Fig. S1F**).^{57,58} Thus, our own direct reprogramming technology to generate iNSCs from
239 skin-derived fibroblasts maintains epigenetic information from the donor cells.

240 We next investigated methylation commonalities and specific differences between Ctrl and
241 PMS samples in both fibroblasts and iNSCs. We assessed the distribution of differentially
242 methylated regions (DMRs) across genic and intergenic annotations, including a class linking

243 the DMR to the transcription start sites (TSS) and the resulting distribution was quasi uniform
244 (**Fig. S1G-H**). The differentially methylated cytosines (DMCs) and DMRs indicated an
245 increased hypomethylation in both PMS fibroblasts and iNSCs (vs Ctrl; **Fig. 2C, Fig. S1I**). To
246 further explore how these differences in methylation profiles account for transcriptional and
247 phenotypic changes, we investigated genes with hypomethylated DMRs located in proximity
248 of the TSSs. We identified 4,743 genes hypomethylated only in PMS fibroblasts, 3,133 genes
249 hypomethylated only in PMS iNSCs, with 2,344 hypomethylated genes shared between PMS
250 fibroblasts and iNSCs (**Fig. 2D**).

251 We performed GSEA on the specific hypomethylated genes of the PMS fibroblasts, and
252 found pathways associated with T cell activation, IL-12 production, and JAK-STAT signalling
253 (**Fig. 2E, Table S3**). This was further supported enriched motifs associated with transcription
254 factors in the PMS fibroblasts. These include *SREBP1*, known to regulate T cell growth and
255 survival, as well as *DDIT3*, which is closely connected to JAK-STAT signalling (**Fig. S1J**).^{59,60}
256 Gene pathways specific to hypomethylation PMS iNSCs included cytokine production, TNF
257 superfamily cytokine production, and regulation of I- κ B kinase/NF- κ B signalling (**Fig. 2F**).
258 Additional analyses of enriched motifs identified *STAT5* and *IRF6*, encoding proteins known
259 to be involved in cytokine production, immune response, and senescence (**Fig. S1J**),^{61,62} and
260 *ARID5A*, which encodes a protein involved in the immune response by stabilizing *IL-6* mRNA
261 (**Fig. 2F, Fig. S1J**).⁶³

262 To determine which pathways were epigenetically modulated between the PMS fibroblasts
263 and iNSCs, we performed GSEA on genes commonly hypomethylated in both cell types. The
264 results revealed genes encoding proteins with functions in pathways associated with lipid
265 metabolism, inflammation, and IFN production (**Fig. 2G**). In a separate study, we performed
266 metabolomics and lipidomics on the same Ctrl and PMS cell lines, which led to the
267 identification of increased cholesterol synthesis in PMS iNSCs and a new role for this pathway
268 in establishing and sustaining their pathological and neurotoxic phenotype.⁴⁶ In addition, using
269 published GWAS studies, genes associated with MS progression and pathology were
270 identified such as leukocyte activation and differentiation, STAT signalling, and IFN
271 production.⁶⁴⁻⁶⁶ Another example is *IRF5*, known to have associated gene variants in MS,⁶⁷
272 which we found hypomethylated at the promoter-TSS region, in both PMS fibroblasts and
273 iNSCs (**Fig. 2H**).

274 We also analysed hypermethylated genes, with DMRs located in the promoter regions and
275 in proximity of the TSS. We found 2,946 genes specifically hypermethylated in PMS fibroblasts
276 (vs Ctrl), 858 specifically hypermethylated in PMS iNSCs (vs Ctrl), and 291 shared
277 hypermethylated genes (PMS fibroblasts vs Ctr iNSCs) (**Fig. S1K**). Analysis of the unique
278 differentially hypermethylated genes revealed differences in pathways associated with RNA

279 metabolic processes and cell cycle in fibroblasts and pathways associated with transcription
280 and neuronal differentiation in iNSCs (**Fig. S1L-M**). The hypermethylation pattern of genes
281 that is shared between PMS fibroblasts and iNSCs included DNA-templated transcription and
282 telomerase holoenzyme complex assembly (**Fig. S1N**).

283 To further investigate the epigenetic regulatory modules defined from the WGBS dataset,
284 we used de novo and directed HOMER analysis to assay for enrichment of shared binding
285 motifs between the PMS fibroblasts and iNSCs. This analysis identified NF- κ B, a major
286 transcription factor that regulates genes responsible for both the innate and adaptive immune
287 response and is associated with senescence (**Fig. 2I**).^{66,68,69} These results were corroborated
288 by the GSEA of the mRNASeq data, where an enrichment in genes associated with NF- κ B
289 was also observed in the PMS iNSCs (**Fig. 1C**).

290 Our data suggest that PMS pathology is strongly linked to alterations of the epigenome,
291 which we identified first in patient fibroblasts and confirmed in iNSCs. Many of these epigenetic
292 differences are features of senescence and involve genes that regulate inflammatory,
293 metabolic/lipid, and IFN pathways. Furthermore, when PMS fibroblasts are directly
294 reprogrammed into iNSCs they also adopt an epigenetic landscape that is permissive for
295 increased expression of proteins associated with secretion of inflammatory cytokines,
296 specifically IL-6 and TNF- α .

297

298 **iNSCs share an RG-like signature that is identified in transcriptomic signatures from 299 post-mortem human datasets**

300 Next, we explored the heterogeneity of iNSCs and the respective subpopulations driving the
301 phenotypes observed in mRNASeq and WGBSseq sequencing.

302 We first performed single cell (sc) and single-nucleus (sn) RNASeq coupled with ATAC
303 sequencing on the Ctrl and PMS iNSCs to determine if there was a subpopulation of cells that
304 were driving the phenotypes observed in the mRNASeq and WGBSseq (**Fig. S2A**). To
305 minimize technical discrepancies between the two approaches, data-driven, specific filters
306 were applied, on the proportions of reads incident to mitochondrial (MT) DNA and ribosomal
307 proteins (RP). We retained cells with 15-40% RP ratios for the scRNASeq samples and 2-25%
308 RP ratios for the snRNASeq data samples; across the dataset, a 20% MT ratio filter was
309 applied (**Fig. S2B-C**). Additional filters rely on number of UMIs > 8,000, number of genes per
310 cell > 1,000, \log_{10} (genes per UMI) > 0.75. A total of 26,138 cells, across all samples, passed
311 all filtering criteria, with median UMI counts per cell of 22,296. The average number of cells
312 per sample was 3,267, ranging from 1,277 to 5,545; the average number of genes per cell
313 was 5,725, ranging from 4,357 to 6,731 (**Fig. S2D-E**).

314 Using these filtering criteria for RNA analysis, we identified a total of 8 clusters (**Fig. 3A**).
315 We applied the ClustAssess⁷⁰ framework to determine the optimal parameters in a data-driven
316 way using the Element Centric Similarity (ECS)⁷¹ as assessment criteria for the crisp
317 partitioning of cells. The type of features (highly variable or most abundant) and number of
318 features retaining signal (i.e. not biased by noise or shallow sequencing) were first determined
319 on 20 iterations of ECS and summarized as element centric consistency (ECC). Next the
320 number of neighbours for the community detection approach and the clustering method was
321 also determined on high ECC distribution. The stable configurations linked number of clusters,
322 number of the most frequent partition, and the resolution parameter (**Fig. S2F-G**). The
323 distribution of ECC across the UMAP indicated a high stability for the selected number of
324 clusters (**Fig. 3B**). We observed a quasi-uniform distribution of cells across all samples and
325 conditions for all clusters (**Fig. S2H**).

326 An indirect assignment of cluster identity was based on co-localisation of expression of
327 standard genes for radial glia (RG), astroglial progenitors, and neuronal progenitors (gene lists
328 in **Table S4**). We found that a majority of the iNSC clusters were defined by an RG-gene or
329 astroglial progenitor gene signature, including the expression of SOX2, NES, PAX6, PTPRZ1,
330 HES1, and CKB mRNAs (**Figs. 3C-D**). The majority of clusters (0-3, 5-7) had a radial glia
331 and/or astroglial progenitor gene signature, encompassing 20-80% of cells within each
332 individual cluster, defined expression thresholds (**Fig. S2I-J**). We also found a small proportion
333 of neural progenitor cells primarily represented by cluster 4 (**Fig. 3E**, **Fig. S2K**). Genes
334 associated with cell differentiation, including oligodendrocyte progenitor cells (*PDGRA*),
335 oligodendrocytes (*OLIG1*, *OLIG2*, *MBP*), astrocytes (*AQP4*, *ALDH1L1*), and mature neurons
336 (*CALB*, *CCK*) were lowly expressed across the samples and clusters (**Fig. S2L**, gene list in
337 **Table S4**).⁷²⁻⁷⁵ This initial voting-scheme analysis suggests that proliferating iNSCs – similarly
338 to hiPSC-NSCs⁷⁶ – are a heterogenous population of cells displaying a transcriptional
339 signature reminiscent of RG-like, astroglial progenitor cells, and a small subpopulation of
340 neural progenitor cells, with little to no detection of terminally differentiated cells.

341 We next assessed the proportion of cells belonging to either Ctrl or PMS iNSCs within the
342 individual clusters. Strikingly, we found mostly equal representation amongst all clusters but
343 cluster 5, which was significantly enriched with PMS iNSCs (**Fig. 3F**). Towards further
344 understanding the biological role of the individual clusters we performed GSEA. Core clusters
345 0, 1, and 3 were enriched for terms linked to CNS development, gliogenesis, and proliferation,
346 while depleted of terms associated with cellular differentiation and pluripotency (**Fig. 3G, Table**
347 **S5**). Cluster 4 was enriched in pathways related to neuronal and cortical development, with a
348 coordinated depletion in the mitotic cell cycle genes (**Fig. 3H**). The remaining clusters were
349 associated with mitochondrial organization and oxidative phosphorylation (cluster 2), glial cell

350 differentiation (cluster 6), and ion transport (cluster 7) (**Fig. S3A-C**). Cluster 5, showing a
351 striking 6-fold higher frequency in PMS iNSCs (85.6% PMS vs 14.4% Ctrl) (**Fig. 3F**), was
352 characterized by genes enriched for cytokine production, immune processes, and IFN
353 signalling, and genes depleted for proliferation and regeneration (**Fig. 3I**).

354 To evaluate the contribution of cell cycle genes to the transcriptomics signature of clusters,
355 we identified the cell cycle stage using *a priori* defined gene sets. We note a strong
356 representation of cells expressing G1-phase specific genes in cluster 4, a depletion of cells
357 expressing G1-phase specific genes in clusters 1, 2, 3, and a depletion of cells expressing S-
358 phase specific genes in cluster 5, which further supports the GSEA analysis per cluster (**Fig.**
359 **S3D**).

360 To investigate the relevance of the *in vitro* iNSC model to human disease, we aligned our
361 *in vitro* results with two independent, publicly available *ex vivo* human snRNAseq datasets
362 from post mortem MS cases and controls.^{16,77} Using a panel of canonical RG genes that were
363 also used to characterize the iNSCs (**Table S4**), we identified disease associated RG-like cells
364 within the annotated astrocyte clusters in both datasets (ranging between 6.5 – 7.8% of total
365 astrocyte cluster, **Fig. 3J-K**). When compared to the non-RG-like cells within the astrocyte
366 cluster, RG-like cells exhibited a significantly higher proportion and expression of RG genes
367 *ETNPPL*, *PTPRZ1*, *SOX2*, *PAX6*, and *PCNA* encoding a cell cycle marker (**Fig. S3E-F**). RG-
368 like cells expressed astroglial genes (**Fig. 3C-D**) and very little microglia-specific or
369 oligodendrocyte progenitor cell-specific genes (**Fig. S3E-F**), further supporting their identity.
370 To determine whether these newly identified RG-like cells hold neurogenic potential, we
371 assessed related genes, including *SOX11*, *DCX*, and *TUBB3* and found little expression in
372 both RG-like and non-RG-like cells within the astrocyte cluster in both datasets (**Fig. S3G**). A
373 large proportion of the RG-like cells expressed genes specific of G2M or S phases, which
374 indicated their ability to progress through the cell cycle (**Fig. S3H**). Lastly, we assessed the
375 proportion of RG-like cells across the different MS lesion types. Out of all the RG-like cells in
376 both datasets, we identified that 50% were in chronic active lesions, whereas the smallest
377 proportion of cells were found in control tissue (**Fig. 3L-M**).

378 Therefore, we identify a small proportion of non-neurogenic RG-like cells in the healthy
379 adult human brain, which significantly increase in frequency in chronic active lesions in the
380 PMS brain.

381

382 **Patient iNSCs harbour a senescent, IFN-responsive RG-like cell cluster reminiscent of**
383 **Disease Associated RG the PMS brain**

384 As cluster 5 was predominant in PMS iNSCs (vs Ctrl), we sought to further the disease-
385 associated transcriptomic signature of this cluster. Transcriptionally across all samples, cluster

386 5 showed a significant enrichment of genes associated with cellular senescence, IFN α/β
387 signalling, and RIG-I signalling, along with a depletion of genes associated with cell
388 proliferation, DNA-templated transcription, and NOTCH1 signalling (**Fig. 4A**). Cluster 5 also
389 had the highest expression of genes associated with IFN- α and - γ response and the SenMayo
390 gene set⁷⁸ (vs core clusters 0-3) (**Fig. 4B**). We performed a differential expression analysis
391 followed by GSEA of cluster 5 only specific markers and identified a strong enrichment for IFN
392 and cytokine signalling pathways and SASP that was associated with high expression of *IFIT1*,
393 *ISG15*, and *NLRP2* in PMS iNSCs (vs Ctrl) (**Fig. 4C**). We confirmed the high expression of
394 IFN-response genes (*IFIT1*, *IFIT2*) was linked to the hypomethylated promoter regions
395 associated with IFN signalling seen in both PMS fibroblasts and iNSCs, identified in WGBS
396 analysis (**Fig. 2H**).

397 We next wanted to assess the expression of SenMayo and IFN α/β signalling gene sets in
398 RG-like cells from the two human *ex vivo* snRNAseq datasets^{16,77} of post-mortem MS brains
399 (**Fig. 4D-E**). A proportion (16-28%) of total RG-like cells – which we termed Disease
400 Associated RG (DARGs) – in chronic lesions showed non-zero expression of the SenMayo
401 gene set, whereas <5% of RG-like cells with the same features were identified in control
402 tissues (**Fig. 4F-G**, **Fig. S4A-B**). We also identified an enrichment in IFN-associated mRNAs
403 in DARGs located in chronic active lesions (**Fig. 4H-I**, **Fig. S4C-D**).

404 We assessed whether the senescence and IFN-associated expression signatures are
405 unique to DARGs by applying the same expression thresholds to the non-RG-like cells and
406 analysing the datasets. Within chronic active lesions we identified a ~2.3-fold increase in the
407 proportion of senescent DARGs (vs senescent non-RG-like cells) in both datasets^{16,77} (**Fig.**
408 **S4A-B**). We then compared all lesion areas and identified a ~2-fold increase in the fraction of
409 senescent DARGs in the edge of chronic active lesions, when compared to lesion core,
410 chronic inactive lesion edge, periplaque white matter, and control white matter^{16,77} (**Fig. S4A-**
411 **B**). DARGs in *Absinta et al.*¹⁶ showed high expression of IFN-associated genes (vs non-RG-
412 like cells) in chronic active lesions (**Fig. S4C**), while displaying the same trend in chronic
413 inactive lesions in *Schirmer et al.*⁷⁷ (**Fig. S4D**).

414 These findings provide further support to the existence of non-neurogenic DARGs in the
415 PMS brain, particularly in chronic active lesions, with an inflammatory and senescent
416 transcription signature. Notably, the direct reprogramming of patient somatic cells into stably
417 expandable iNSCs allows for the recapitulation of distinctive disease-associated cellular
418 phenotypes and gene signatures found in the post-mortem MS brain.

419

420 **Disease associated senescent RG-like cells spread dysfunctional features towards**
421 **other clusters**

422 We then performed pseudotime analysis to better understand the developmental trajectories
423 of the RG-like cell cluster of PMS iNSCs with senescent and inflammatory signatures (**Fig. 5**).
424 We removed the neural progenitor-associated cells (cluster 4) which allowed our analysis to
425 focus on the establishment of inflammatory cluster 5. The initialization of the pseudotime
426 focused on cluster 5, defined as the endpoint. The predicted trajectory started with core
427 clusters 0, 1, and 3, progressed to cluster 2 and ended in cluster 5 (**Fig. 5A**). A community-
428 based clustering was applied on the gene expression levels, with the stability assessed using
429 ClustAssess.⁷⁰ Several gene modules i.e. clusters of genes with similar expression profiles
430 across the pseudotime were predicted (**Fig. S4E**). We focused on three gene modules with
431 distinct expression patterns. The expression profile of the first module (module 10) focused
432 on the core clusters 0, 1, and 3. A gene enrichment analysis identified significantly elevated
433 expression of genes associated with cell cycle terms, as well as TFs known to maintain
434 NSC/RG identity such as *SP2* (**Fig. 5B, Table S6**).⁷⁹ Module 3, which consisted of mostly cells
435 assigned to cluster 2, showed enrichment in terms associated with mitochondria and antigen
436 processing and presentation, including NSC/RG-associated TFs *E2F1* and *PAX6* (**Fig. 5C**).
437 These results support the GSEA enrichment on cluster 2 characterized by mitochondrial and
438 metabolic gene pathways (**Fig. S3B**). Module 7 mostly overlapped with cells in cluster 5 and
439 exhibited enrichment in IFN and cytokine signalling pathways, as well as TFs associated with
440 IFN signalling (*IRF3*, *STAT2*) (**Fig. 5D**). This suggests that the progression towards cluster 5
441 may originate in iNSCs with a cluster 2-like gene signature and display pathways associated
442 with mitochondria and cellular metabolism. Therefore, an altered metabolic signature in PMS
443 iNSCs, which we have recently described,⁴⁶ may promote the resurgence of the newly
444 identified IFN responsive RG-like cell cluster 5.

445 Using the modules derived from the *in vitro* dataset, we next identified cells with similar
446 transcriptomic signatures in the *ex vivo* post-mortem datasets.^{16,77} Focusing on the
447 recalculated *ex vivo* UMAPs and underlining the RG-like cells (**Fig. 3J-K**), we inferred
448 pseudotime trajectories on both datasets using the core of the RG-like cells (clusters 0, 1, 3)
449 as an initialization point. (**Fig. 5E-F**). Next, we matched the gene modules determined in the
450 *in vitro* and *ex vivo* datasets, respectively. Using the gene lists from the individual modules we
451 cross-referenced the gene modules from the *in vitro* perspective (**Fig. 5B-D, Table S6**) and
452 from the *ex vivo* perspective (**Fig. S4F-G**). For the *Absinta et al.* dataset we found coordinated
453 gene expression within modules 5 and 7 that matched our *in vitro* curated modules and module
454 7 matched the inflammatory, senescent cluster 5 (**Fig. 5E, G**) and was associated with DARGs
455 in the chronic active lesion (**Fig. 5G**). In the *Schirmer et al.* dataset we found coordinated gene

456 expression within modules 4 and 7 (**Fig. 5F, H**). Genes that strongly contributed to module 7
457 were associated with chronic inactive lesions (**Fig. 5H**).

458 This analysis highlights the identification of a new cluster of senescent-like, inflammatory
459 non-neurogenic DARGs stemming from astrocyte-like cells in the post-mortem MS brain.

460 As senescence is associated with and perpetuated by secreted proteins, we next
461 investigated ligand-receptor interactions between cluster 5 (as source of ligands) and other
462 clusters (as source of receptors) in iNSCs using NicheNet⁸⁰. With this modelling, Ctrl iNSCs,
463 were enriched for ligand-receptor interactions regulating cell maintenance and differentiation
464 (i.e., Notch signalling) (**Fig. 5I**).⁸¹ However in PMS iNSC, modelling predicted strong
465 interactions between TRAF2 in cluster 5 with TNFRSF1B in clusters 0, 1, and 3, which
466 anticipates induction of NF κ B activation⁸² and NSC activation,⁸³ along with a depletion in Wnt
467 signalling via LRP6 (**Fig. 5J-K**).

468 Next, we performed a cluster-by-cluster GSEA analysis and found that clusters 0, 1, and 3
469 in PMS iNSCS were enriched for senescence pathways, particularly those associated with
470 DNA damage and corresponding depleted for proliferation-related terms (**Fig. 5L, Table S7**).
471 We also detected significant interactions between COL2A1 from cluster 5 and integrin-based
472 receptors in cluster 2 (*ITGB8*, *ITGAV*, *GP6*), coupled with a depletion in NOTCH1 signalling
473 (**Fig. 5J-K**). Enrichment analysis of genes in cluster 2 of PMS iNSCs further indicated
474 enrichment in senescence, IFN signalling, and ECM and corresponding depletion in
475 differentiation and DNA transcription that is known to be regulated by NOTCH signalling (**Fig.**
476 **5L**). Analysis of clusters 4, 6, and 7 consistently identified enrichment of inflammatory-
477 associated terms (i.e., neurodegeneration, oxidative stress-induced senescence, and
478 signalling by ILs) and a depletion in terms associated with NSC maintenance (i.e., Wnt
479 signalling and cell cycle) (**Fig. S4H**). The enrichment in inflammatory terms in PMS iNSCs
480 were linked to increased inflammatory interactions, stemming from cluster 5, between CCR3-
481 CCL5 and between A2M-MMP2 (**Fig. 5J**).

482 To further test the hypothesis that the ligand-receptor interactions predicted above are
483 relevant, we ran a cytokine array on the conditioned media (CM) from the bulk iNSC lines.
484 Quantification of the cytokine array confirmed an increased secretion of cytokines associated
485 with the SASP⁸⁴ and inflammation (IL-6, IGFBP-3, and TNF α) in PMS iNSCs (vs Ctrl) (**Fig.**
486 **5M**).

487 We then quantified the expression levels of the genes coding for the upregulated SASP
488 (**Fig. 5M**) using our mRNASeq data (**Fig. 1A-E**). Both *TIMP2* and *IGFBP2*, along with the
489 known SASP gene *GDF15*, were upregulated both at gene and protein levels (**Fig. 1F** and
490 **Fig. 5M-N**). Next, we re-analysed the single-cell data for the genes and proteins associated

491 with the secreted factors identified in the mRNASeq and cytokine array, respectively, and
492 confirmed the elevated expression in cluster 5 of *TNF*, *FN1*, and *ISG15* (**Fig. 5O**).

493 Overall, our findings suggest that the developmental trajectories of RG-like cells in cluster
494 5 arise from cluster 2. Additionally, PMS iNSCs secrete inflammatory factors as part of their
495 SASP, and that this may induce a dysfunctional, senescent phenotype in cells in other clusters.

496

497 **Integrative multi-omics reveals regulons defining inflammatory RG-like cell in 498 PMS iNSCs**

499 To further investigate the epigenetic mechanisms that may contribute to the transcriptomic
500 signature of the PMS iNSC cluster 5, we integrated the RNASeq data with single-nuclei
501 chromatin accessibility data (snATACseq) using both matched and un-matched samples. For
502 a high proportion of cells, the matched RNA and ATAC quantification was distributed
503 proportionally across clusters (**Fig. S5A**). Next, we selected data-driven parameters and
504 stable configuration (high ECC scores) on the ATAC modality using 30 iterations (**Fig S5B-D**)
505 of ClustAssess. We identified 8 stable clusters on the ATACseq dataset.

506 We then projected the RNA clusters onto the ATAC UMAP, and the ATAC clusters onto the
507 RNA UMAP, respectively to evaluate the concordance of the two modalities (**Fig. 6A-B**). Next,
508 we quantified the equivalence between the RNA and ATAC clusters by summarizing matching
509 cell types/states, which allowed highlighting the agreement between RNA cluster 5 and ATAC
510 cluster 8, well separated in the non-linear space from the other cells (**Fig. 6C**). Then, we
511 confirmed that the inflammatory ATAC cluster 8 was primarily composed of PMS iNSCs (**Fig.**
512 **S5E**).

513 We also examined differentially accessible regions (DARs) specific to inflammatory ATAC
514 cluster 8, by selecting the corresponding peaks and enriched motifs on downstream genes,
515 associated with TFs. Our analysis identified that DARs that gained accessibility were
516 associated with immune processes, IFN signalling, and cytokine production (*IRF3*, *STAT2*),
517 and DARs that lost accessibility were associated with genes pertaining to neuron and
518 astrocyte differentiation and neural crest cell fate specification (*SOX4*, *SOX8*) (**Fig. S5F, Table**
519 **S8**).

520 We next assessed the overlapping motifs significantly enriched for epigenetic changes in
521 both PMS fibroblasts and iNSCs from the WGBS and from the predicted signature genes of
522 RNA cluster 5, and identified common TFs including *p53*, *E2A*, and *SMAD2* (**Fig. S5G**). As
523 *p53* and *E2A* are implicated in promoting immune function, involved in senescence, and in
524 mediating IFN responses,^{85,86} our findings suggest that the chromatin accessibility for RNA
525 cluster 5 closely predicts its RNA expression signature. Biologically, these cells are strongly

526 IFN-responsive and display RG-like signatures. Our identification of common motifs
527 maintained from the fibroblasts during reprogramming to iNSCs in PMS cell types further
528 confirms the involvement of epigenetic regulation in perpetuating the senescent and IFN-
529 response in the iNSCs.

530 Since IFN signalling was found to be strongly involved in RNA cluster 5, we next
531 investigated the chromatin accessibility at the promotor regions. We identified increased
532 accessibility of *IFIT1* in ATAC cluster 8, corresponding to increased expression in RNA cluster
533 5 (**Fig. S5H**). We next investigated genes that are known targets of the regulator of *IFIT1*,
534 *IRF1*, which we identified to be enriched in the bulk mRNASeq of PMS iNSCs (**Fig. 1C**). *IRF1*
535 is a key transcription factor implicated in facilitating TNF- α -induced senescence and is known
536 to be anti-proliferative and pro-inflammatory.⁸⁷ Within the *IRF1* targets, notably *IFIT3*, *IFIT5*,
537 and *OAS2*, known as IFN-response genes, we found clear associations between RNA
538 expression (RNA cluster 5) and chromatin accessibility near TSS (+/- 3 kb) as well as in
539 potential regulatory regions (+/- 50 kb from TSS) in ATAC cluster 8 (**Fig. 6E**). These data
540 support the hypothesis that cells in RNA cluster 5 have permissive chromatin that underlies
541 persistent activation of IFN-responses via *IRF1*.

542 The pseudotime analysis predicts RNA cluster 2 was most closely related, and strongly
543 interacting with RNA cluster 5 based on ligand-receptor inference, so we next examined if a
544 similar gene expression and chromatin accessibility signature could be identified in both
545 clusters.

546 Some overlapping genes were found in cluster 2 with similar changes in nearby chromatin
547 accessibility and included inflammatory genes *HAX1* and *SERPINH1* (**Fig. 6E**). Grouped
548 clusters 0, 1, 3 exhibited little expression of *IRF1* target genes. GSEA on shared ATAC
549 signatures, both for gain and loss of accessibility suggested that common gain of accessible
550 regions were associated with stress response and blood brain barrier (BBB) maintenance,
551 whereas loss of accessible sites correlates with notch and BMP signalling, and senescence
552 pertaining to cell proliferation (**Fig. S5I-J**). This downregulation in notch and BMP signalling in
553 cluster 2, based on interactions with cluster 5, was also predicted from the ligand-receptor
554 interaction analysis (**Fig. 5K**). Importantly, not all changes in chromatin accessibility correlate
555 directly to variation in mRNA (**Fig. S5J**).

556 To further understand patterns based on chromatin accessibility and RNA expression, we
557 subdivided gene sets based on RNA upregulation in RNA clusters 0, 1, 3, and depletion in
558 RNA clusters 2 and 5, and found enrichment for terms pertaining to Wnt signalling and NSC
559 maintenance (**Fig. 6F**). We also found increased accessibility near the TSS of the RNA cluster
560 5 upregulated genes, again suggesting aberrant permissive chromatin in these cells promoting
561 increased expression. When assessing coordinated upregulation of gene expression in RNA

562 clusters 2 and 5, we found enrichment in terms associated with mitochondrial transmembrane
563 transport, protein import, and telomerase RNA localization (**Fig. 6F**). These results support a
564 close interaction between RNA clusters 2 and 5, with cluster 5 being specifically IFN-
565 responsive.

566 Lastly, we inferred single-cell regulatory networks using SCENIC⁸⁸. We observed that RNA
567 cluster 5 was defined by two major regulons, *IRF1* and *FOXP2*, that was associated with
568 genes regulating TNF and IFN signalling, as well as the p16-cyclin complex related to
569 senescence (**Fig. 6F, Table S9**). *PAX6* was also identified as a major regulon across all
570 clusters of the iNSCs and was defined by genes associated with nervous system
571 development, supporting their RG-like state. Overall, RNA cluster 5, primarily represented in
572 PMS iNSCs, is consistently defined by gene regulatory patterns that are associated with an
573 IFN-responsive and senescence state.

574 In summary, our work demonstrates that direct reprogramming technology maintains
575 hallmarks of PMS in cells due to maintenance of epigenetic memory. We reveal that patient
576 fibroblasts have hypomethylation at genes associated with lipid metabolic processes and IFN
577 signalling, which then became further accentuated upon direct induction into iNSCs.

578 Within the heterogeneous PMS iNSCs, we identify a novel disease associated cluster of
579 IFN-responsive, inflammatory RG-like cells that display senescent features and are regulated
580 by *IRF1*, which may spread dysfunctional features towards other clusters through their
581 secreted factors.

582 Integration with publicly available datasets further identifies and highlights a long-neglected
583 non-neurogenic DARG population, which is found significantly increased in chronic active
584 lesions areas and display IFN and senescence gene expression.

585

586

587

588 **DISCUSSION**

589 PMS is a complex neuroinflammatory and neurodegenerative disease that results from the
590 interaction between environmental factors and genetic predisposition. The majority of genetic
591 risk factors that have been identified in the development and progression of MS are associated
592 with the peripheral immune system, mapping mainly to T cells, however recent work has also
593 uncovered variants in genes expressed by glial cells.^{89,90} MS severity has also been linked to
594 variants involved in mitochondrial function, synaptic plasticity, and cellular senescence in
595 genes expressed in the CNS.¹⁸ To further understand how intrinsic glial cell dysfunction in
596 PMS contributes to disease pathology we generated directly reprogrammed iNSCs.

597 Characterization of directly reprogrammed iNSCs showed PMS donor-derived cells
598 reproduced reported phenotypes of increased expression of inflammatory signalling and
599 senescence associated genes compared to Ctrl cells.¹⁷ Further, patient iNSCs maintained
600 shorter telomere lengths compared to controls, indicating this type of reprogramming better
601 maintains features of the donor cells that may be critical in driving the PMS phenotypes. We
602 then established that iNSCs also maintained epigenetic signatures, as determined by DNA
603 methylation age, after reprogramming from fibroblasts, indicating that this method of cellular
604 reprogramming may conserve epigenetic information important for disease phenotypes.
605 Globally, cell lines derived from people with PMS were found to have lower levels of DNA
606 methylation, with enrichment of hypomethylation at promoter regions of targets for
607 inflammatory transcription factors, such as STAT6 and NF κ B. Interestingly, global
608 hypomethylation has been identified to occur with aging in various organs in both mice and
609 humans, which is believed to contribute to genome instability.⁹¹

610 Concordantly, hypomethylated regions in the PMS fibroblasts and iNSCs were enriched for
611 pathways involved in immune response, suggesting global aberrant epigenetic regulation in
612 individuals with the disease. Previous work has characterized global methylation signatures
613 in the whole blood of people with MS and identified that half of the differentially methylated
614 positions mapped to genes enriched in CNS cells and pathways.⁹² This work identified
615 neurodegenerative-related pathways as epigenetically dysregulated in severe MS cases,
616 which correlated with acceleration of methylation age.⁹² Intriguingly, we also characterize a
617 loss of methylation in genes that regulate lipid metabolism, implicated in Ionescu, Nicaise et
618 al.⁴⁶ Given these pathways appear to be highly relevant to PMS phenotypes, we believe
619 human iNSC methodologies provides an excellent, and biologically valuable, platform for
620 studying mechanisms driving disease.

621 Combined single-cell and single-nucleus RNA data analysis allowed us to better
622 characterize heterogenous iNSCs. Here we identified cells with both neural and RG
623 phenotypes, and importantly were able to find cells with matching transcriptional profiles from
624 datasets generated from post-mortem MS brains. We found that most of the cell clusters were
625 identified by radial glial genes (*SOX2*, *PAX6*), with one cluster which we identified with a neural
626 progenitor signature (*DCX*, *ASCL1*). Within these clusters, we define a novel subset of cells
627 that is predominantly composed of cells derived from PMS donor fibroblasts. This unique RNA
628 cluster 5 displays an inflammatory phenotype expressing many features of senescence and
629 interferon signalling and response.

630 The mechanisms underlying senescence and IFN signalling are intertwined. IFN response
631 can be triggered by a myriad of stimuli, including extra and intracellular double-stranded (ds)
632 RNA and DNA from cell stress and apoptosis, cytosolic DNA, viruses, and microbes, which in

633 turn activates a pro-inflammatory response.⁹³ Over the course of aging, IFN pathways have
634 been found to become aberrantly activated, which leads to global inflammation (*inflammaging*)
635 and senescence.⁹⁴ The presence of an IFN signature in brain cells is increasingly being
636 associated with aging and neurodegenerative diseases in rodent models and humans.⁹⁵⁻⁹⁸
637 Type I IFN signatures are found upregulated in the aged brain, especially the choroid plexus,
638 and in neurodegenerative diseases, where it may lead to recruitment and activation of immune
639 cells and eventual neurodegeneration. Interestingly, in our model system, we identify
640 hypomethylation of genes associated with IFN signalling in PMS fibroblasts, indicating a
641 potential predisposition for developing an IFN response in people with PMS. Once fibroblasts
642 are reprogrammed to iNSCs, they take on an even more pronounced IFN phenotype
643 associated with senescence gene expression.

644 From the single-cell data, we establish not only the heterogeneity of iNSCs derived from
645 both Ctrl and PMS donors, but also define a novel subset of disease associated RG-like cells
646 that could be the 'drivers' of the inflammatory signature seen in the analysis of bulk PMS
647 iNSCs. In fact, through ligand/receptor predicted interactions, the secretory factors from this
648 – PMS mostly – IFN-responsive and senescent-like RNA cluster 5, could induce inflammatory-
649 associated signatures (*i.e.*, *neurodegeneration, oxidative stress induced senescence, and*
650 *signalling by ILs*) and inhibit NSC maintenance (*i.e.*, *Wnt signalling, and cell cycle*) in the other
651 iNSC clusters, thus suggesting that RNA cluster 5 can further affect surrounding cells via
652 amplification of such inflammation. Independent work from our group, further supports a key
653 role for disease associated paracrine factors in conditioned iNSC media to induce neurite
654 retraction and neuronal apoptosis.⁴⁶

655 While the mechanisms of this RG-intrinsic intrinsic dysfunctional phenotype in PMS are still
656 unknown, however, we do find epigenetic signatures starting even with the donor fibroblasts.
657 Recently, neurodegenerative diseases have been found to be highly associated with viral
658 exposure,⁹⁹ and in the case of MS the Epstein Barr virus (EBV) increases risk of disease.¹⁰⁰
659 Viral exposure combined with chronic inflammation in PMS may induce global epigenetic
660 changes, affecting cells such as fibroblasts, found to be stressed in people with MS.¹⁰¹
661 Furthermore, the activation of human endogenous retroviruses (HERVs) in unique cell
662 populations are also associated with chronic inflammatory neurodegenerative diseases¹⁰² and
663 brain injuries.¹⁰³ HERVs can be activated via inflammatory stimuli and induce an IFN response,
664 similar to that of a viral infection.

665 Epigenetically, we identify sites with gains of accessibility are associated with IFN-response
666 and signaling as well as cytokine production in RNA cluster 5 (corresponding to ATAC cluster
667 8) composed mainly of PMS derived cells. The epigenetic remodelling in this cluster was also
668 associated with increased accessibility at binding sites of the p53 motif, known to be activated

669 in response to cellular stress and DNA damage and promotes sustained IFN signaling and
670 response.⁸⁵

671 Using publicly available datasets from MS post-mortem brains, we assessed the
672 expression of RG genes and identified non-neurogenic RG-like cells within well-known
673 astrocyte clusters. Recent work has demonstrated that astrocytes exhibit plasticity in injury
674 situations.⁴¹ Human pathologies which involved lesions and blood-brain barrier rupture were
675 associated with a de-differentiation of astrocytes to replicating NSC/RG-like cells.⁴¹
676 Furthermore, this has been previously validated in rodent models where epithelial injury allows
677 for neural precursors to dedifferentiate into multipotent NSCs in the olfactory epithelium.¹⁰⁴
678 Based on these studies, astrocytes in PMS may be undergoing (i) a de-differentiation (or de-
679 maturation) process, where they begin to express cell cycle and early RG-like cell markers
680 due to exposure of chronic inflammation, and a (ii) resurgence as non-neurogenic RG-like
681 cells at the level of disease-associated, ectopic, non-canonical niches.

682 Integration of our *in vitro* iNSC data with publicly available datasets in fact identifies and
683 highlights a long-neglected, non-neurogenic disease-associated RG-like cell population, being
684 found significantly increased in chronic active lesions areas and displaying IFN and
685 senescence gene expression, which we term DARGs.

686 Interestingly, we identify twice as many DARGs in chronic active PMS lesions, which are
687 slowly expanding in nature, feature smouldering inflammatory demyelination at the edge,
688 remyelination failure, and axonal degeneration,¹⁰⁵ and are associated with a more aggressive
689 disease¹⁰⁶. Further characterization of the phenotype of this novel DARG population showed
690 increased expression of the SenMayo and IFN-associated genes compared to the astrocyte
691 cluster.

692 Overall, our work shows there are epigenetic alterations in somatic fibroblasts isolated from
693 people with PMS, and many of these epigenetic modifications remain following direct
694 reprogramming into iNSCs. These epigenetic alterations are associated with de-repression
695 (hypomethylation and increased chromatin accessibility) of IFN signalling and response as
696 well as inflammation. We further uncover a novel subset of PMS iNSCs with high levels of
697 inflammatory signalling, which we propose drives much of the bulk phenotype.

698 Lastly, we uncover a long-neglected DARG population in the PMS brain, which has similar
699 transcriptomic profiles as the *in vitro* PMS iNSCs, including expression of senescence and
700 IFN transcripts.

701 Our research lays the groundwork for further investigating 'disease-pacemaker' non-
702 neurogenic RG-like cells in potentially driving neuroinflammation in neurodegenerative

703 disease. Future work is needed to identify the origin and driver of epigenetic dysfunction
704 arising in the cells of people with PMS.

705
706
707

708 **LIMITATIONS OF STUDY**

709 While we generated cell lines from individuals with PMS, the variations in genetic
710 backgrounds, sex, and age among these lines pose a potential limitation. Despite our thorough
711 analysis of both patient and control cell lines, we acknowledge the necessity for additional
712 validation of our findings *in situ*. Additionally, the inclusion of induced pluripotent stem cells
713 (iPSCs) from the same donors would have enhanced the data quality, allowing for a more
714 robust interrogation of the observed cellular phenomena. Single-cell spatial assays could offer
715 a more comprehensive understanding of our results, particularly in capturing differences
716 related to disease-relevant microenvironments and surrounding cells (neighbours).

717
718
719

720 **ACKNOWLEDGMENTS**

721 The authors wish to acknowledge L. Bonfanti, A. D'Alessandro, V. Fossati, D. Franciotta, C.
722 Frezza, O. Hruba, G. Pluchino, A. Quaegebeur, S. Rizzi, L. Roth and A. Speed for technical
723 and intellectual inputs throughout this study.

724 This research was supported by the Ferblanc Foundation G112716 (SP and AMN); Catalyst
725 Award from the UK MS Society H160 (SP and CMW); National MS Society Research Grant
726 RG 1802-30200 (SP and LPJ); Bascule Charitable Trust RG98181 (SP); Wings for Life RG
727 82921 (SP and LPJ), and the Fondazione Italiana Sclerosi Multipla FIMS 2018/R/14 (SP and
728 LPJ) and 2022/R-Single/011 (SP).

729 BP, DT, JW, LC, JL, JF, SD, MG, and IB are supported by the Intramural Research Program
730 of the National Institute on Aging. AMN is the recipient of a European Committee for Treatment
731 and Research in Multiple Sclerosis (ECTRIMS) Postdoctoral Research Fellowship Exchange
732 Program fellowship (G104956) and is supported through a UK MS Society Centre Excellence
733 grant (G118541). PP is supported through an MRC-DTP and Cambridge Trust PhD
734 studentship and consumable award (RG86932) and Queen's College Tutorial Award. RBI is
735 supported through an MRC-DTP and Cambridge Trust studentship and consumable award
736 (RG86932) and St. Edmund's College Tutorial Award. CW is supported through a National MS
737 Society Post-doctoral fellowship (FG-2008-36954). LPJ was supported by a Fondazione

738 Italiana Sclerosi Multipla FIMS and Italian Multiple Sclerosis Association AISM Senior
739 research fellowship financed or co financed with the '5 per mille' public funding cod. 2017/B/5
740 (LPJ), a Wellcome Trust Clinical Research Career Development Fellowship (G105713), and
741 a National MS Society Research Grant RFA-2203-39318. FE was supported by the Austrian
742 Science Fund FWF (FWF-INTER – INTER/FWF/19/14117540/Pdage and the SFB F78 "Neuro
743 Stem Modulation", SFB F7810-B). LP and IM are supported by Wellcome Trust
744 (203151/Z/16/Z) and the UKRI Medical Research Council (MC_PC_17230).

745

746

747

748 **AUTHOR CONTRIBUTIONS**

749 Conceptualization, BP, AMN, DT, IM, SP, IB; Methodology, BP, AMN, DT, JW, LC, JL, RBI, JF,
750 SD, MSC, AS, TL; Investigation, BP, AMN, DT, LP, PP, MLDN, LC, JL, RBI, CMW, GK, TL,
751 MG, IM, SP, IB; Writing – Original Draft, BP, AMN, DT, LP, IM; Writing – Review & Editing,
752 AMN, DT, IM, SP, IB; Funding Acquisition, AMN, CMW, LPJ, IM, SP, IB; Resources, JF, SD,
753 MSC, AS, TL, FE; Supervision, MG, IM, SP, IB.

754

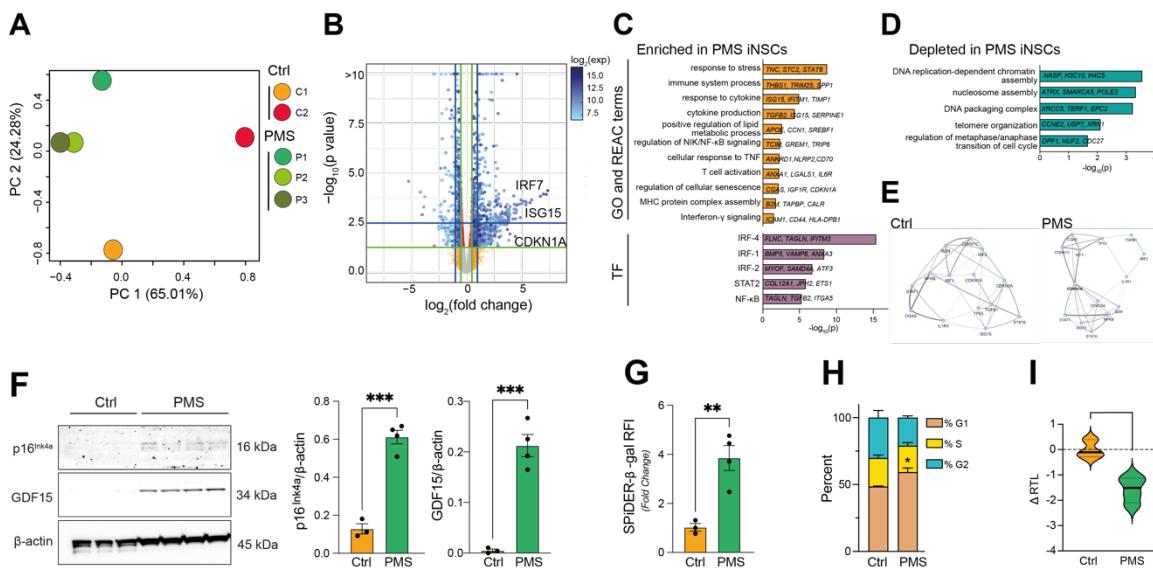
755

756 **DECLARATION OF INTERESTS**

757 SP is founder, CSO and shareholder (>5%) of CITC Ltd and Chair of the Scientific Advisory
758 Board at ReNeuron plc. The other authors declare that they have no competing interests.

759

760 **FIGURE LEGENDS**



761
762 **Figure 1. Bulk mRNASeq reveals increased inflammatory signalling and senescence**
763 **markers in PMS iNSCs.**

764 **(A)** PCA summarizing the co-variation of expression levels in the mRNA sequencing. C and P
765 are independent cell lines (**Table S1**).

766 **(B)** Volcano plot illustrating differentially expressed genes, vs \log_2 abundance in PMS iNSCs
767 compared to Ctrl iNSCs. $\log_2(\text{FC})$ vs adjusted p-values (with Benjamini Hochberg multiple
768 testing correction) are reported.

769 **(C-D)** Pathway enrichment analysis on GO and REAC terms and enriched transcription factors
770 (TF) based on TransfFac annotation, from mRNA sequencing.

771 **(E)** Gene regulatory networks, inferred on manually curated, differentially expressed genes
772 contrasting of Ctrl vs PMS iNSCs networks, derived from the mRNA sequencing.

773 **(F)** Representative western blots and quantification for p16^{INK4a}, GDF15, and β-actin.

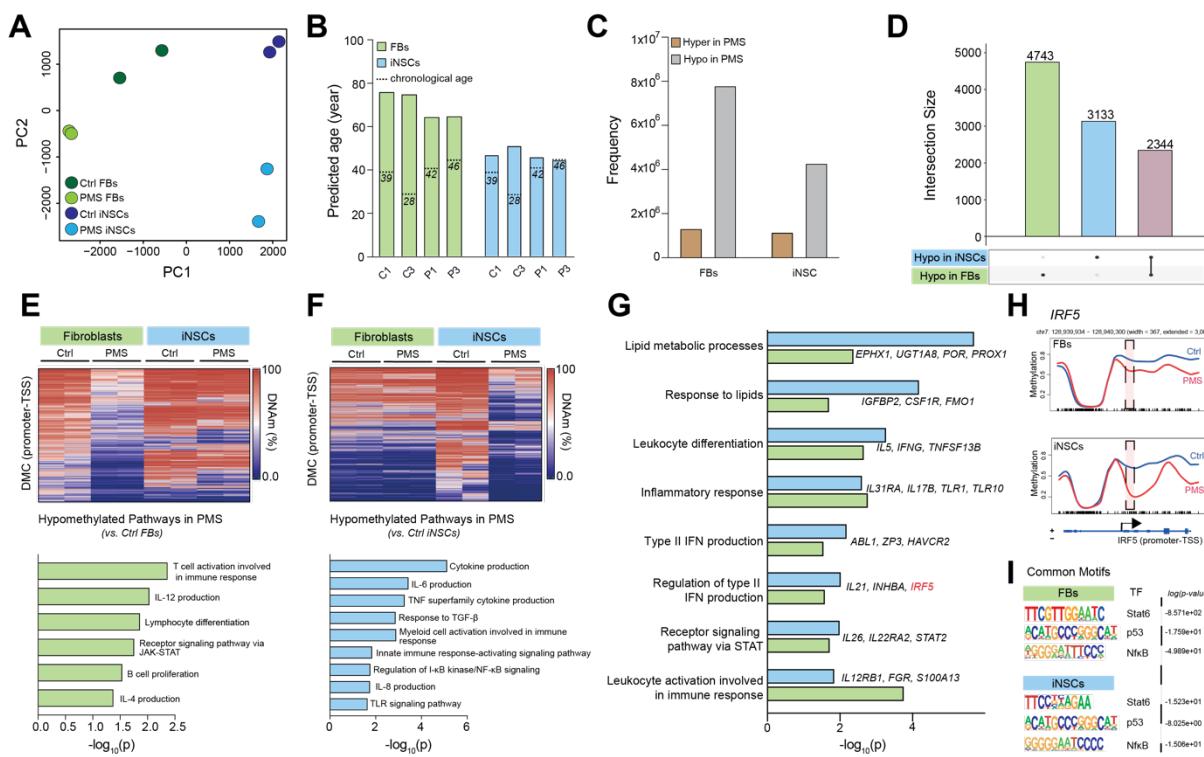
774 **(G)** Quantification of relative fluorescence intensity (RFI) of senescence-associated β-
775 galactosidase expression using SPiDER-β-gal. Data represented as a fold change over Ctrl
776 iNSCs.

777 **(H)** Flow cytometry-based quantification of iNSC cell cycle states. Data plotted as cells in
778 percent of cell cycle state.

779 **(I)** Quantification of changes in PMS relative telomere length (RTL) over Ctrl iNSCs.

780 Experiments in **F-I** were done on n= 3 Ctrl and n= 4 PMS iNSC lines each performed in n= 3
781 replicates. Data in **F-I** are mean values ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, un-paired t-
782 test, with unequal variances.

783



784

785 **Figure 2. Whole genome bisulfite sequencing (WGBS) uncovers inflammatory**
786 **pathways found commonly hypomethylated in PMS fibroblasts and iNSCs.**

787 (A) PCA summarizing methylation quantified in the WGBS data for fibroblasts and iNSC
788 samples (Table S1).

789 (B) Cortex age DNA methylation aging clock inference. Dashed line indicates chronological
790 age at which FBs samples were sampled.

791 (C) Frequency of differentially methylated cytosines (DMC), plotted as Ctrl vs. PMS.

792 (D) UpSet plot of hypomethylated genes within the promoter-transcription start site (TSS)
793 region.

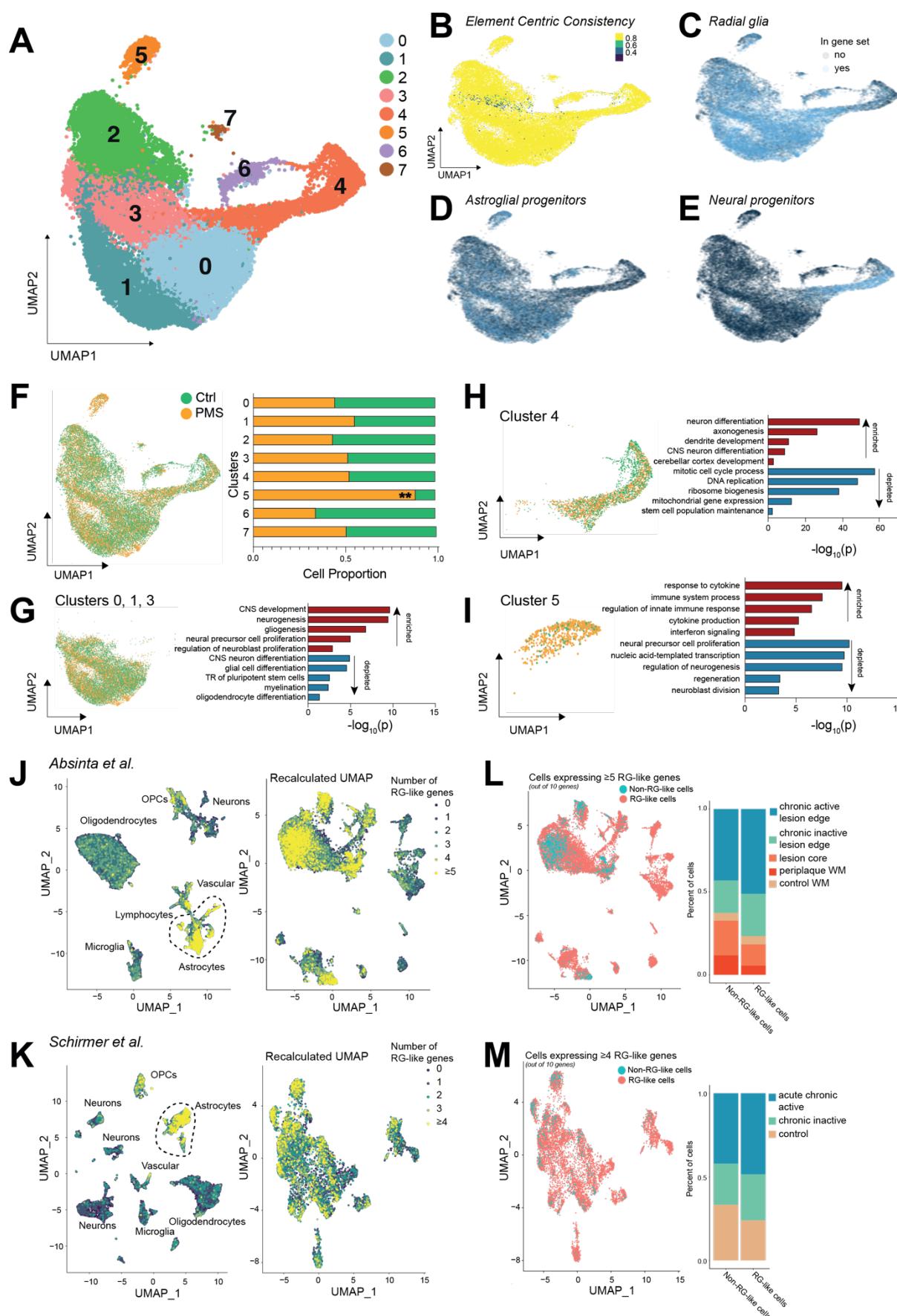
794 (E-F) Heatmap and enrichment analysis of hypomethylated genes.

795 (G) Enrichment analysis of commonly hypomethylated genes in PMS (vs Ctrl) fibroblasts (light
796 green) and iNSCs (light blue).

797 (H) Example of methylation difference for *IRF5* (genome browser tracks), as in G.

798 (I) Proportional sequence logos on HOMER motifs resulting from an enrichment analysis from
799 E.

800



802 **Figure 3. iNSCs display a RG-like transcriptomic signature that can be identified in the**
803 **adult human brain using single nuclei sequencing.**

804 **(A)** UMAP of Ctrl and PMS iNSC single-cell, -nucleus RNAseq samples, post quality checking
805 and filtering; a stable partitioning of cells is also highlighted.

806 **(B)** Element centric consistency, derived on 30 iterations, calculated per cell, and visualized
807 on the RNA UMAP.

808 **(C-E)** Voting scheme of genes associated with a RG-like signature **(C)**, astroglial progenitor
809 signature **(D)**, and neural progenitor signature **(E)** as in **A**.

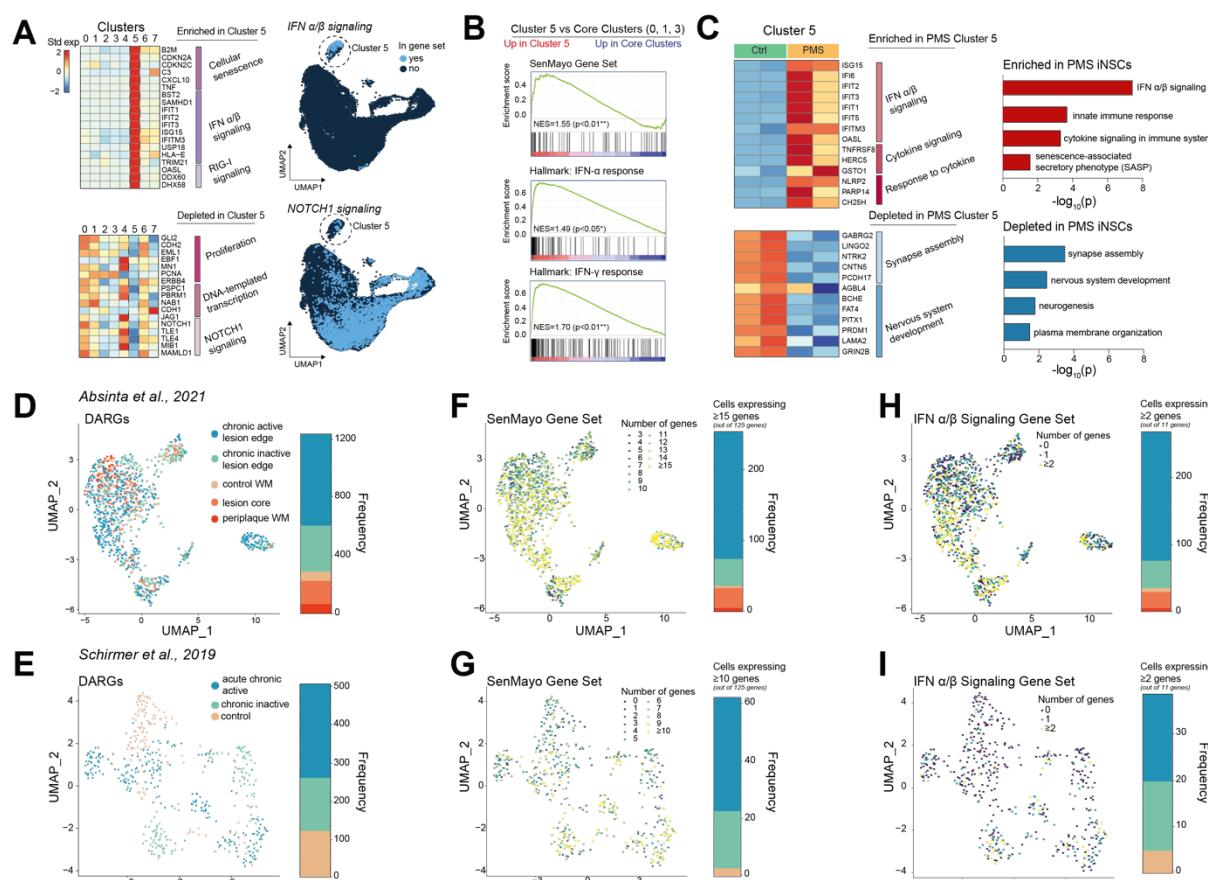
810 **(F)** Cluster distribution in human iNSCs on the RNA UMAP. The histogram summarizes cell
811 proportions per cluster. ** $p \leq 1e-106$ (χ^2 test).

812 **(G-I)** Enrichment analysis of enriched and depleted terms in clusters 0, 1, 3 **(G)**; cluster 4 **(H)**;
813 cluster 5 **(I)** vs all other clusters; recalculated RNA UMAPs illustrating the distribution Ctrl vs
814 PMS cells.

815 **(J-K)** Recalculated UMAPs of RG-like cells in two *ex vivo* MS datasets, *Absinta et al.*, 2021
816 **(J)** and *Schirmer et al.*, 2019 **(K)**. OPCs, oligodendrocyte progenitor cells.

817 **(L-M)** Voting scheme UMAPs and histograms summarizing the frequency of RG-like cells (and
818 non-RG-like cells per area of interest as in **J-K**. WM, white matter.

819



820

821 **Figure 4. A specific PMS iNSC cluster displays senescence and IFN-signalling which is**

822 also identified in DARGs of the PMS brain.

823 (A) Heatmap of RNA cluster 5 signature markers and summary of associated enrichment

824 terms. Voting scheme UMAP of genes associated with IFN- α/β signalling and NOTCH1

825 signalling.

826 (B) Enrichment plots of the SenMayo gene set, and the IFN- α , and IFN- γ response in cluster

827 5.

828 (C) Heatmap of standardized expression of highly expressed vs depleted transcripts, specific

829 to only PMS cells vs Ctrl cells in RNA cluster 5 and selected enriched pathways significant for

830 the selected genes.

831 (D-E) Recalculated UMAP on the filtered cells identified as DARGs in **Figure 3L-M**. Stacked

832 Histograms summarizing the frequency of cells per lesion area.

833 (F-I) UMAPs and histograms of DARG frequency that express genes in the SenMayo gene

834 set and IFN- α/β signalling gene set respectively from *Absinta et al.*, 2021 and *Schirmer et al.*,

835 2019 data.

836

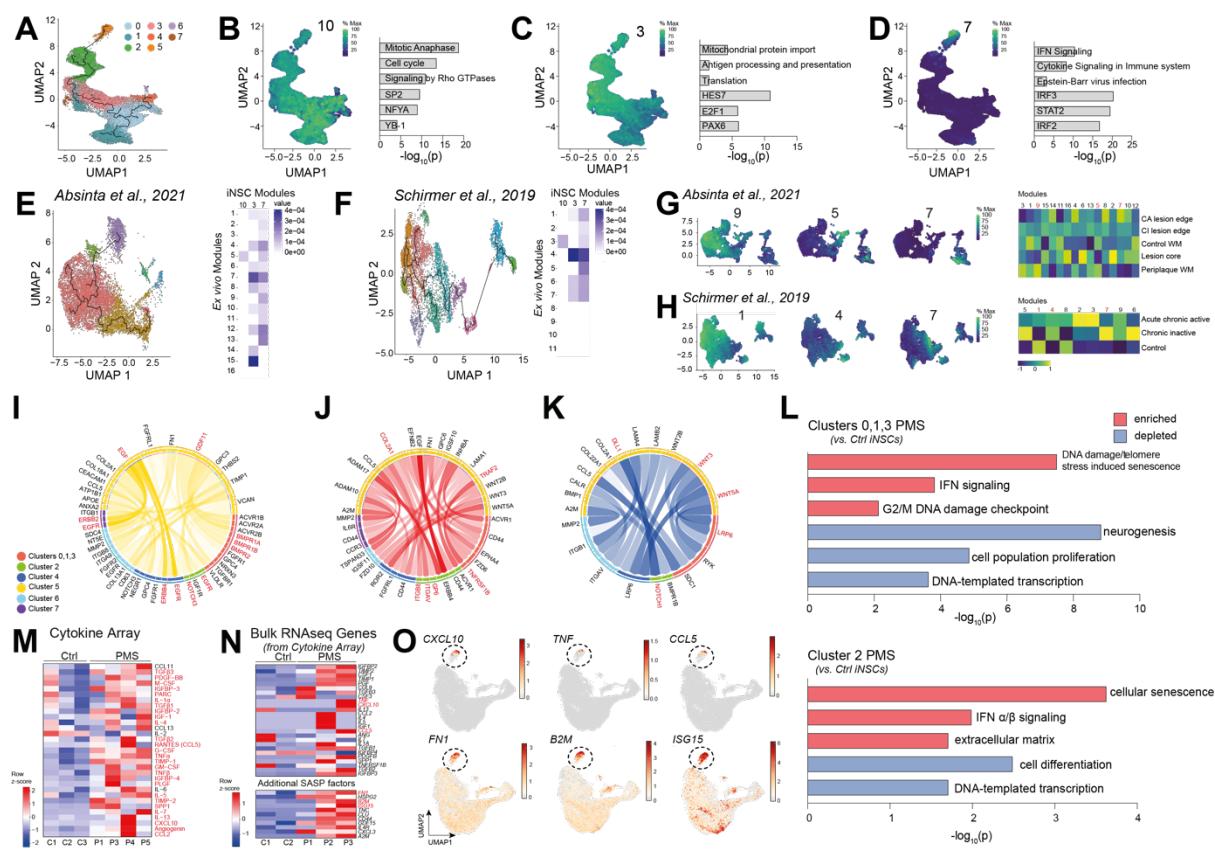


Figure 5. PMS iNSCs secrete a pro-inflammatory SASP that induces upregulation of genes associated with inflammation and senescence.

837

838 (A) Pseudotime trajectory inferred and displayed on the *in vitro* dataset UMAP. Cluster 5 was
 839 used as initialization point (*endpoint*).

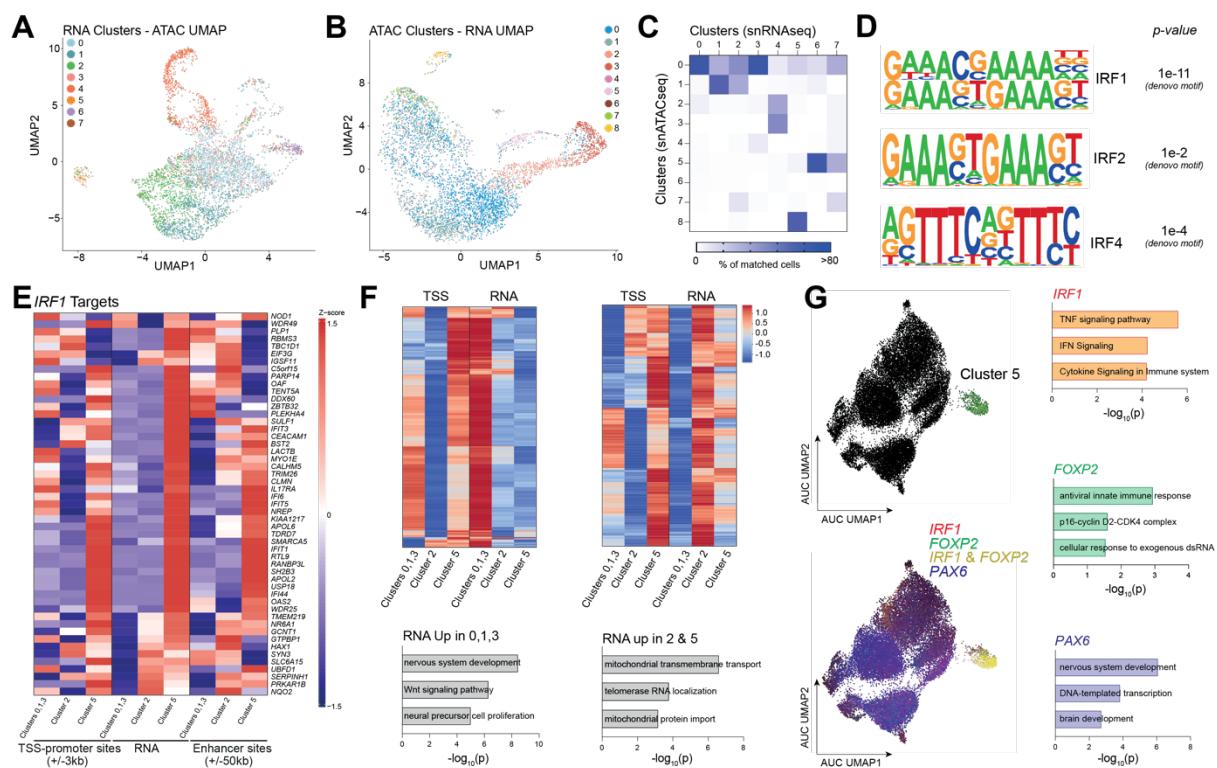
840 (B-D) UMAP of the distribution of intensity of genes clustered in modules 10 (B), 3 (C), and 7
 841 (D), determined based on the pseudotime ordering. GSEA summary and TFs corresponding
 842 to gene modules 10 (B), 3 (C), and 7 (D).

843 (E-F) UMAP of pseudotime trajectory inferred from the *Absinta et al., 2021* (E) and *Schirmer*
 844 *et al., 2021* (F) datasets, respectively. The heatmaps summarize the scaled proportions of
 845 common genes matching between iNSC *in vitro* modules 10, 3, and 7 with ex vivo modules.

846 (G-H) Modules selected from the ex vivo datasets as in E-F recapitulating the manually
 847 curated modules (B-D) identified on the *in vitro* pseudotime trajectory. The heatmaps
 848 summarize the scaled averaged expression of the *in vitro* gene modules, projected on the ex
 849 vivo datasets.

850 (I-K) Circos plots of the intercellular ligand-receptor interactions predicted using NicheNet. (I)
 851 Yellow directed edges indicate interactions, (J) red edges summarize enriched ligand/receptor
 852 interactions i.e. upregulated target genes, (K) blue edges summarize depleted ligand/receptor
 853 interactions i.e. downregulated target genes, between cluster 5 and complement clusters in
 854 Ctrl and PMS iNSCs.

857 (L) Enrichment summary on enriched and depleted genes in clusters 0,1,3 and cluster 2 (Ctrl
858 vs PMS).
859 (M) Heatmap of cytokine array performed on CM. Colour intensities are proportional with
860 standardized normalized intensities. Proteins investigated also in the mRNASeq (N) are
861 highlighted in red.
862 (N) Heatmap of standardized normalized expression levels of genes coding for secreted
863 proteins as in M. Genes investigated also in the single cell data (O) are highlighted in red.
864 (O) Expression gradient UMAPs of the selected secreted proteins as genes (N).
865



866

867 **Figure 6. Multi-omics RNA/ATAC integration with further epigenetic characterization of**
868 **cluster 5 cells.**

869 (A) ATAC UMAP of the overlaid localization of RNAseq clusters.
870 (B) RNA UMAP of the overlaid localization of snATACseq clusters.
871 (C) Heatmap of the percentage of matched assignations of cells across the snRNAseq and
872 snATACseq clusters. The analysis was performed solely on matched cells i.e. cells with both
873 RNA and ATAC expression.
874 (D) Enriched motifs of signature and differentially accessible genes identified on the RNA
875 cluster 5, and ATAC cluster 8.
876 (E) Heatmap of accessibility (ATAC) and expression (RNA) of *IRF1* targets, i.e. TSS, RNA,
877 and distal portions of marker genes identified as differentially expressed between grouped
878 RNA clusters 0, 1, 3 vs cluster 2, and cluster 5, respectively.
879 (F) Heatmap of marker genes, between clusters 0, 1, 3 vs 2 and 5. The summary of enrichment
880 analysis applied on the selected genes.
881 (G) SCENIC GRN inference summary and selection of *IRF1* specific regulons, corroborated
882 with enrichment analysis of regulons (*IRF1*, *FOXP2*, *PAX6*). The GRN inference was
883 performed on the scRNAseq dataset.

884 METHODS

885 Data and code availability

886 All codes used in the study are available on github: <https://github.com/Core->
887 https://github.com/Core-Bioinformatics/DARG_PMS

- 888 • Any additional information required to reanalyse the data reported in this paper is available
889 from the lead contacts upon request.
- 890 • All data generated for this study, in raw and processed format, are publicly available on
891 the Gene Expression Omnibus (GEO), under accessions GSE243319, GSE251839,
892 GSE251831, GSE251838, and GSE251830. Further data mining of processed data may be
893 performed on bulkAnalyseR for bulk sequencing datasets and ClustAssess and Shiny Cell
894 apps (https://bioinf.stemcells.cam.ac.uk/shiny/pluchino/DARG_PMS/bulkanalyser/,
895 <https://genomicspark.shinyapps.io/shinyApp/>) for single-cell/ nuclei datasets. UCSC genome
896 browser sessions for these datasets comprise: https://genome-euro.ucsc.edu/s/CSCI/DARG_PMS and <http://tinyurl.com/2ygsa6or>.

898

899

900 EXPERIMENTAL MODEL AND SUBJECT DETAILS

901 Patient cells

902 The cohort consists of 5 PMS and 3 healthy controls between 25 and 63 years of age. The
903 cohort includes representation from both genders, distributed across PMS and control groups
904 (Table S1). PMS fibroblasts were provided by the New York Stem Cell Foundation (NYSCF)
905 Research Institute through their Repository (<http://www.nyscf.org/repository>)¹⁰⁷. Patients were
906 recruited at the Tisch Multiple Sclerosis Research Center of New York, upon informed consent
907 and institutional review board approval (BRANY). PMS donors underwent clinical assessment
908 when recruited for the study. Control fibroblasts C1 and C2 (Table S1) were generated from
909 adult dermal fibroblasts after obtaining consent and ethical clearance by the ethics committee
910 of the University of Würzburg, Germany.

911

912 Generation and culturing of induced neural stem cells

913 iNSC lines were generated and quality controlled as described in *Ionescu, Nicaise et al.*⁴⁶ and
914 *Meyer et al.*⁴⁵ iNSCs were maintained in neural induction media (NIM) consisting of
915 DMEM/F12 and Neurobasal (1:1) (ThermoFisher), supplemented with N2 supplement (1x)
916 (ThermoFisher), 1% glutamax (ThermoFisher), B27 supplement (1x) (ThermoFisher),
917 CHIR99021 (3 µM) (Cell Guidance Systems), SB-431542 (2 µM) (Cayman Chemical), and
918 hLIF (10 ng/ml) (PeproTech) until 70% confluent, then lifted using accutase, spun at 300 x g
919 for 3 mins, and plated onto growth factor reduced (GFR) matrigel matrix coated plates

920 (Corning) (1:20 in DMEM/F12) with Y-27632 (10 μ M) (Miltenyi Biotec) between 1:3-1:5 in NIM
921 media. Media was changed every second day as needed. Experiments were performed on
922 cells from passages 20-35.

923

924 **Fibroblast maintenance**

925 Fibroblasts were maintained in growth medium (DMEM Glutamax I [Thermo Fisher])
926 supplemented with 10% fetal bovine serum, 1% non-essential amino acids and 1 mM sodium
927 pyruvate (ThermoFisher) at 37°C with 5% CO₂ and fed every 3-4 days. After reaching 90%
928 confluence the fibroblasts were detached with trypsin-EDTA 0.05% for 5 min followed by
929 neutralization in DMEM and spun down at 300xg for 5 min. They were split 1:4 into growth
930 media onto tissue-culture treated plasticware.

931

932

933 **METHOD DETAILS**

934 **mRNA sequencing, analysis, and inference of Gene Regulatory Networks (GRNs)**

935 iNSC lines, between passages 15-30, were plated at 500,000 cells per well in GFR-coated 6-
936 well plates. After 24 hours, the media was refreshed with new NIM. Cells were harvested in
937 RLT lysis buffer 72 hours after plating then frozen at -80°C until extraction. RNA extraction
938 was performed according to standard steps described for the RNeasy kit, followed by DNase
939 treatment (Qiagen). RNA was quantified using the NanoDrop 2000c instrument. Illumina
940 Sequencing libraries were prepared using the TruSeq low sample protocol from 1 μ g of total
941 RNA (Illumina, San Diego, CA, USA). The resulting libraries were sequenced in paired-end
942 mode, on 150 nts reads on an Illumina NovaSeq 6000 instrument.

943 The quality checking of the samples was assessed using fastQC v0.12.11, applied on raw
944 files; the outputs were summarised using multiQC 1.14.¹⁰⁸ Initial sequencing depths ranged
945 from 30M to 44M reads; subsampling without replacement, done using seqtk 1.3-r106¹⁰⁹, was
946 performed to 34M reads, to avoid inconsistencies caused by uneven sequencing depths.¹¹⁰

947 All samples were aligned to the GRCh38.p13 genome using STAR 2.7.10a (paired-end
948 mode).¹¹¹ Expression quantification was performed using featureCounts v.1.6.3.¹¹² The
949 distribution of signal across transcripts was assessed on the UCSC genome browser. The
950 tracks (bigwig format) were built from the bam files using samtools 1.17.¹¹³ Next, noisyR 1.0.0⁴⁸
951 was used to estimate and remove noise from the count matrix; the raw expression levels were
952 normalised using quantile normalisation.¹¹⁴ Differentially expressed genes (DEGs) were
953 identified using edgeR⁵⁰ and DESeq2⁴⁹; due to the noise correction the DEG calling
954 converged; p-values were adjusted using Benjamini-Hochberg multiple testing correction.

955 bulkAnalyseR 1.1.0⁴⁷ was used to build a shareable interface for the analysis and visualisation
956 of data.

957 The Gene Regulatory Networks (GRNs) were predicted, and their dynamics assessed, on the
958 bulk RNAseq data using a bulkAnalyseR ShinyApp.⁴⁷ Additional analyses were performed
959 using GENIE3¹¹⁵ and visNetwork¹¹⁶ to visualise subgraphs according to selected pathways
960 and a maximum of 30 edges. To assess the global trend in co-variation of expression, for
961 genes annotated to the selected pathways, density plots were created, per pathway, on the
962 weights of the edges in the larger GRNs (corresponding values in the global adjacency matrix).

963

964 **Immunoblotting**

965 iNSCs were homogenized in 10X RIPA buffer (Abcam) supplemented with 100X protease and
966 phosphatase inhibitors (ThermoFisher). Protein concentration was assessed using a BCA
967 assay (ThermoFisher). Equal protein amounts (25 µg) were resolved by SDS-PAGE on Bolt™
968 Bis-Tris Plus pre-cast 4-12% gradient gels (Invitrogen) and transferred to 0.45 mM
969 polyvinylidene fluoride (PVDF) membranes (Thermo Scientific). Membranes were blocked
970 with TBS blocking buffer (LI-COR Biosciences) and immunoblotted with the indicated
971 antibodies: mouse anti-p16^{Ink4a} (Invitrogen) at 1:500, rabbit anti-GDF15 (Proteintech) at
972 1:1000, and mouse anti-b-actin (Sigma) at 1:5000 in TBS blocking buffer (LI-COR
973 Biosciences) with 0.1% Tween, followed by fluorescent secondary antibodies IRDye 680RD
974 Goat anti-Rabbit or IRDye 800CW Goat anti-Mouse (LI-COR Biosciences) at 1:10,000 in TBS
975 blocking buffer (LI-COR Biosciences) with 0.1% Tween and 0.01% SDS. The immunoblots
976 were visualized with the ChemiDoc MP Imaging system (Bio-Rad). Densitometric analysis was
977 conducted with Fiji by ImageJ. Protein targets were normalized to β-actin.

978

979 **SPiDER-gal**

980 Cells were plated on black-walled, clear bottom 96-well plates (ThermoFisher, 165305) at
981 15,000 cells/well and maintained in culture for 5 days. Expression of senescence associated
982 β-galactosidase was measured by a SPiDER- β-gal-based cellular senescence plate assay kit
983 (Dojindo) according to manufacturer's instructions. Briefly, cells were washed with PBS,
984 stained with 1 µg/mL Hoechst (Sigma-Aldrich) as a measure of cell number, washed again,
985 before the fluorescence intensity was measured at 358nmEx/461nmEm. Cells were then lysed
986 with the provided buffer and the SPiDER-β-gal stain was added and incubated at 37°C
987 overnight. Fluorescence intensity was measured at 520ex/565em. The SPiDER-β-gal
988 fluorescence intensity of each well was corrected for the autofluorescence of empty wells and
989 normalized to the Hoechst fluorescence intensity of the respective well to normalize for cell

990 number. The resulting average SPiDER- β -gal/Hoechst fluorescence intensity of each cell line
991 was normalized to that of healthy control cell lines.

992

993 **Cell Cycle Analysis**

994 iNSCs were plated at a density of 80,000 cells/cm² on GFR-coated plates. After 3 days cells
995 were lifted using accutase and then pelleted at 500 x g for 5 minutes. The cells were fixed in
996 70% ethanol for 30 minutes on ice then pelleted at 850 x g for 5 minutes. The cell pellet was
997 resuspended in RNase (100 ug/mL) for 15 minutes and incubated at room temperature.
998 Propidium iodide (1 ug/mL) was added to each sample and cells were analysed on a BD
999 LSRFortessa with the flow rate on slow. 20,000 events were collected for each sample. The
1000 data was analysed using FlowJo 10.9 software using the Dean-Jett-Fox approach.

1001

1002 **Telomere length analysis**

1003 Relative telomere length was assessed using the *Joglekar et al.* protocol using quantitative
1004 PCR (qPCR) and comparison to that of a single copy gene.¹¹⁷ iNSCs were plated at a density
1005 of 80,000 cells/cm² on GFR-coated plates. After 3 days cells were lifted using accutase and
1006 then pelleted at 500 x g for 5 minutes. DNA was isolated according to the DNeasy Blood &
1007 Tissue Kit (Qiagen) and quantified using the Nanodrop 2000c instrument. For initial
1008 optimization of the qPCR reaction, the DNA was diluted to three different concentrations (100
1009 ng/ μ L, 25 ng/ μ L, 6.25 ng/ μ L), and it was determined that 100 ng/ μ L had the best efficiency for
1010 both the human β -globulin and telomere primers. Two PCR reactions were separately
1011 conducted, for human β -globulin the mastermix was made using 5 μ L Fast SYBR Green
1012 (ThermoFisher), 1 μ L of hbg1 primer (3 μ M), 1 μ L of hbg2 primer (7 μ M), and 2 μ L of nuclease-
1013 free water. The reaction was cycled at 58°C annealing temperature along with a melt curve
1014 analysis using a QuantStudio 7 Flex (ThermoFisher). For the telomere primers, the mastermix
1015 was made using 5 μ L Fast SYBR Green (ThermoFisher), 1 μ L of telomere A primer (1 μ M), 1
1016 μ L of telomere B primer (3 μ M), and 2 μ L of nuclease-free water. The reaction was cycled at
1017 56°C annealing temperature along with a melt curve analysis using a QuantStudio 7 Flex
1018 (ThermoFisher). Each sample was run in duplicate. Average telomere length was calculated
1019 as the $\Delta\Delta CT = (PMS \text{ average hbg Ct} - PMS \text{ average telomere Ct}) - (Control \text{ hbg Ct} - control$
1020 average telomere Ct).

1021

1022 **Whole genome bisulfite sequencing (WGBS)**

1023 Genomic DNA was extracted from 100,000 fibroblasts and iNSCs using the DNeasy Blood
1024 and Tissue Kit (Qiagen). The quantity of DNA was measured using the Quant-iT PicoGreen
1025 method and victor X2 fluorometry (ThermoFisher), and the integrity of the DNA was evaluated
1026 with Agilent genomic DNA screen tape. 500 ng of genomic DNA was used for sequencing. The

1027 sample quality control criteria for the WGBS library were set to having a DNA integrity number
1028 (DIN) score of 7.0 and above. The extracted DNA was fragmented to an average insertion
1029 size of 550 base-pairs and the fragments were attached to end-repaired adapters. Genomic
1030 DNA was bisulfite converted using the EZ DNA methylation Gold kit (Zymo, Catalog #D5005)
1031 following the manufacturer's instructions. We next applied the xGen Methyl-Seq Lib Prep kit
1032 (Integrated DNA technologies, Catalog #10009824) to the prepare the genomic DNA library.
1033 Library quality control was performed using qPCR (LightCycler 480) and TapeStation 4200
1034 (D1000 screen tape).

1035 The dataset comprises 8 samples (4 fibroblast lines and 4 iNSC lines), with sequencing depths
1036 varying from 213M to 408M, and an average of 315M reads per sample. Reads with adapter
1037 contamination were trimmed using Trim Galore (0.4.3)¹¹⁸ with options: --paired --q 25. Trimmed
1038 reads were aligned to the *H sapiens* reference genome (version hg38), using HISAT2¹¹⁹
1039 (version built in the current stable version of Bismark 0.23.1¹²⁰). A bisulfite-converted index
1040 (GA and CT conversion) was generated with default parameters. We identified 28M CpG sites
1041 per sample, with sequencing coverage varying from 24x to 39x, (an average of 30x coverage
1042 per sample). The bismark_methylation_extractor tool was used to summarize the methylation
1043 levels at CpG sites. After assessing the bias at 5'end regions using M-bias results, the first
1044 2nts were excluded, as follows: bismark_methylation_extractor -p -ignore 2 -ignore_r2 -
1045 comprehensive -no overlap -bedGraph -counts -buffer_size 16G (\$Aligned read bam file).

1046

1047 **Identification of differentially methylated sites and regions**

1048 MethylKit¹²¹ was used for DMC and DMR quantifications, and fibroblast vs iNSC comparisons.
1049 A minimum threshold minimum of 10nts coverage for downstream DNA methylation analysis
1050 was set. The aligned reads were split into 100nt tiles (DMRs) using metilene.¹²² Differential
1051 methylation was calculated, applying a McCullagh and Nelder¹²³ correction for overdispersion,
1052 as well as the sliding linear model (SLIM) proposed in methylKit to correct for multiple testing.
1053 Tiles with a q-value < 0.05 and over 20% methylation difference were called differentially
1054 methylated. Motif enrichment analysis was performed using Homer (*findMotifsGenome.pl*).
1055 Annotations relevant for the hg38 v6.4 of the *H sapiens* reference genome (genes, exons,
1056 introns, UTRs, and other annotations) were extracted using Homer annotation tools.
1057 AnnotatePeaks.pl DMR hg38¹²⁴ was used to evaluate the distribution of methylation across
1058 the genome. Next, a comparative analysis of the DMRs/DMCs across tissue types, contrasting
1059 the control and PMS samples was performed. In addition to the number of methylated tiles
1060 per annotation category was calculated, as well as their distance to the closest Transcription
1061 Start Site (TSS). To calculate the epigenetic age, we applied the Shireby-Cortex,⁵⁶ Hovarth,⁵⁷
1062 and Zhang,⁵⁸ ageing clocks frameworks. For the Hovarth and Zhang estimations Clockbase
1063 platform¹²⁵ was used, relying on matched Illumina methyl array IDs. The DNA methylation

1064 levels (0-100%) per CpG probe, and the sample metadata were submitted to Clockbase, and
1065 the predicted clock age was downloaded as CSV format. For the Shireby-Cortex⁵⁶ aging
1066 estimate, we downloaded the DNA methylation probes, and coefficient values and relied on
1067 matched Illumina methyl array IDs. We used total 347 DNA methylation CpG probes to predict
1068 epigenetic aging (> 20nts coverage).

1069

1070 **Nuclei isolation, library preparation, and RNA sequencing**

1071 For the single-nucleus single-omics, (ATAC) and multiomics experiments, respectively, 2 x10⁶
1072 cells were harvested; nuclei were isolated following the manufacturer's instructions with minor
1073 modifications. Briefly, cells were lysed in 100 µL of freshly prepared lysis buffer (1 mM Tris-
1074 HCl [pH 7.4], 1 mM NaCl, 300 µM MgCl₂, 0.01% Tween-20, 0.01% IGEPAL CA-630, 0.001%
1075 Digitonin, 0.1% BSA, 100 µM DTT, and 100 mU/µL RNase inhibitor) for 1 minute on ice,
1076 washed twice in 500 µL of wash buffer (1 mM Tris-HCl [pH 7.4], 1 mM NaCl, 300 µM MgCl₂,
1077 0.01% Tween-20, 0.1% BSA, 100 µM DTT, and 100 mU/µL RNase inhibitor), and the number
1078 of nuclei was assessed using the Countess II FL Automated Cell Counter (ThermoFisher).
1079 Thereafter, approximately 16,000 nuclei were incubated with the transposase enzyme, loaded
1080 into Chromium Next GEM Chip H Single Cell Kit (10x Genomics). snATAC libraries were
1081 generated using Chromium Single Cell ATAC Reagent Kits User Guide v1.1 (10x Genomics)
1082 according to manufacturer's instructions; for the multi-omics samples, nuclei were loaded into
1083 Chromium Next GEM Chip J Single Cell Kit (10x Genomics); libraries were prepared using
1084 Chromium Next GEM Single Cell Multiome ATAC + Gene Expression Reagent Kits (10x
1085 Genomics) according to manufacturer's instructions. The quality of the libraries was checked
1086 on the Agilent Bioanalyzer with High Sensitivity DNA kit (Agilent); per sample libraries were
1087 sequenced on Illumina Novaseq 6000 with target sequencing depths of 25,000 - 70,000 reads
1088 per nucleus.

1089 For single-cell (sc)RNAseq, cells were counted using a hemocytometer, 10,000 cells were
1090 loaded into Chromium Next GEM Chip G Single Cell Kit (10x Genomics), and scRNA libraries
1091 were generated with Chromium Single Cell 3' Reagent Kits v3.1 (10x Genomics) according to
1092 manufacturer's instructions. The quality of the libraries was checked on the 4200 Agilent
1093 Tapestation with High Sensitivity DNA kit (Agilent); per sample libraries were sequenced on
1094 Illumina Novaseq 6000 with target sequencing depths of 30,000 - 65,000 reads per cell.

1095

1096 **Single-cell transcriptomics/ epigenetics data pre-processing**

1097 Standard CellRanger pipeline (6.1.2) and CellRanger ARC (2.0.0) were applied for aligning
1098 reads to the aforementioned version of the *H sapiens* genome and for quantifying gene/ peak
1099 expression. For the RNA component, intron-matching reads contributed to the gene

1100 expression levels. The processed gene expression matrix was imported in Seurat.¹²⁶
1101 Additional filtering was performed on the distributions summarizing the number of counts,
1102 features, and percentages of reads incident to mitochondrial and ribosomal genes, across
1103 cells, per sample (accepted cells satisfied the criteria: number of UMIs > 8,000, number of
1104 genes per cell > 1,000, \log_{10} (genes per UMI) > 0.75). We observed different ranges for MT
1105 and RP proportions for the scRNAseq and snRNAseq samples, respectively (we retained cells
1106 with 15-40% RP [scRNAseq] and 2-25% RP [snRNAseq]). Post-filtering, on all retained cells,
1107 the MT and RP entries were excluded from the expression matrix, pre-normalization. The
1108 normalization of expression levels was based on \log_2 normalization (scale.factor = 10000).
1109 The cell cycle assignation was performed in Seurat using the 'CellCycleScoring' function and
1110 *a priori* defined gene set.

1111

1112 **Clustering**

1113 Next, we applied the ClustAssess framework to determine optimal, data-driven parameters,
1114 starting with the number and type features according the stability of resulting partitions.⁷⁰ We
1115 used Element-centric similarity,⁷⁰ summarized on 30 iterations into Element centric
1116 consistency (ECC),⁷¹ to objectively assess stability.¹²⁶ Highly variable features (N=1,000
1117 determined using the vst) approach, yielded optimal outputs. A 20-shared nearest neighbour
1118 (SNN) graph was constructed on the HGV PCA.¹²⁶ To address batch effect across sc and sn
1119 quantifications, we applied Harmony.¹²⁷ Clustering was performed using Louvain approach
1120 (resolution=0.2), implemented within Seurat¹²⁶ v4.0.5. 8 clusters produced a stable partition
1121 on scRNAseq and snRNAseq components. We excluded the smallest cluster (133 driven by
1122 a specific sample (i.e. C1-specific cluster). A χ^2 test was used to assess the significance of
1123 proportions of cells for PMS vs control samples. Marker genes (on cluster vs complement and
1124 pairwise differential expression) were identified using the 'findMarker' function. The top 5 most
1125 positively differentially expressed genes were visualized in a heatmap.

1126 Enrichment analyses were performed using gprofiler¹²⁸ on markers called on a Wilcox test
1127 with a $|\log_2(\text{FC})|$ threshold of 0.25, an adjusted p-value (Benjamini Hochberg multiple testing
1128 correction) less than 0.05 and a minimum percentage of cells expressing the gene of 0.1, in
1129 either subset. The background set for the enrichment analysis comprised all genes expressed
1130 in at least 10 cells.

1131

1132 **Voting Schemes**

1133 A variable voting-scheme was used to identify cell subsets requiring a minimum number of
1134 expressed genes corroborated with a minimum average expression level. The voting scheme
1135 for radial glial gene signature includes cells expressing 6 out of 9 manually curated genes
1136 (**Table S4**) with a normalized expression threshold of 1; glial progenitor cells express 7 out of

1137 10 genes (**Table S4**) with an expression threshold of 0.5; neural progenitor cells express 5 out
1138 of 7 genes (**Table S4**) with an expression threshold of 0.5. The voting scheme for IFNa/β
1139 signalling is based on cells expressing 3 out of 6 genes (**Table S4**) with an expression
1140 threshold of 0.5; NOTCH1 signalling comprises cells expressing 13 out of 16 genes (**Table**
1141 **S4**) with no abundance threshold (i.e. presence/ absence).

1142

1143 **Re-analysis of Absinta et al. and Schirmer et al. Data ex vivo datasets**

1144 Raw fastQ files from the studies by *Schirmer et al.* (2019)⁷⁷ and *Absinta et al.* (2021)¹⁶ were
1145 downloaded from ENA using fasterq-dump. The quality checking and mapping leading to the
1146 filtered feature-barcode matrices were performed as described above. For the *Schirmer et al.*
1147 (2019) dataset, cells with less than 4,000 features/genes were retained; an upper bound of
1148 15,000 was employed for the maximum number of UMIs per cell; 5% is maximum proportion
1149 of fragments incident to mitochondrial DNA; 10% is the maximum proportion of reads incident
1150 to nuclear ribosomal genes. For *Absinta et al.* (2021), cells with the number of features
1151 between 200 and 5000 were kept for subsequent steps of the analysis; an upper threshold of
1152 20,000 UMI counts was used, and the maximum mt% was set to 5%. Both datasets were
1153 normalized using SCTransform;¹²⁹ the *Absinta et al.* (2021) dataset was batch corrected using
1154 Harmony¹²⁷ on the patient variable, with $\theta = 2$. To detect stable partitions, on each separate
1155 dataset, ClustAssess⁷⁰ was used with 20-50 iterations, assessing resolution parameters
1156 between 0.1 and 1.5 (0.1 increment steps). For the *Schirmer et al.* (2019) dataset, the top
1157 4500 highly variable features yielded the most stable partitions; for the *Absinta et al.* (2021)
1158 dataset the top 3,500 highly variable features were selected. For both, the optimal resolution
1159 value was 0.6.

1160

1161 **Pseudotime Analysis**

1162 Monocle3¹³⁰ was used to infer trajectories for the *in vitro* data, as well as for the single-cell
1163 data from the *Schirmer et al.* and *Absinta et al.* studies. To identify the start and the endpoint,
1164 a selection of genes was used in a voting approach. The manually curated set of genes, used
1165 for determining the starting region in the *in vitro* data, comprises TOP2A, CENPF, UBE2C,
1166 ASPM, APOLD1 with an expression threshold of 2 and a tolerance of 1 gene, i.e. any one
1167 gene from the set maybe not expressed; for the ending region, genes IFIT2 and CDKN2A
1168 were used, with an expression threshold of 1.5 and a tolerance of 0.
1169 For the *Absinta et al.* and *Schirmer et al.*, larger subsets of genes were used; for the former,
1170 the following genes were used for the starting region: *LY6E*, *PPAN*, *FASN*, *CLU*, *SORD*,
1171 *TRAP1*, *TUBB2A*, *AP1S2*, *YBX3*, with an expression threshold of 0.5 and a tolerance of 4
1172 genes; for the ending region, the following genes were used *ISG15*, *B4GALT5*, *IFITM3*,
1173 *SAR1A*, *KIAA1217*, *TRPC4*, *FGF4*, *B2M*, *ZC3HAV1*, *WARS*, *FN1*, *IFIT1*, with an expression

1174 threshold of 0.5 and a tolerance of 4 genes missing. For the *Schirmer et al* dataset, the ending
1175 region was defined by genes *ISG15*, *B4GALT5*, *IFITM3*, *SAR1A*, *KIAA1217*, *TRPC4*, *FGF4*,
1176 *B2M*, *ZC3HAV1*, *WARS*, *DDX58*, with an expression threshold of 0.5 and a tolerance of 6
1177 genes.

1178 Using the ordering of cells based on their transcriptomic signatures, the ClustAssess stability
1179 framework was applied on gene expression levels. This yielded a stable number of gene-
1180 clusters, named gene modules, representing a precursor of GRN inference; the genes per
1181 module were further characterized from a pathway perspective (using gprofiler¹²⁸), against GO
1182 terms, KEGG and REAC terms, and functional elements (TFs and miRNAs). Next, we chose
1183 three gene modules that characterized sections of interest on the trajectory-based UMAPs of
1184 the *in vitro* dataset. The genes within each module were used to create a proxy (a
1185 transcriptomic pattern) subsequently employed to identify homologue gene modules
1186 computed based on the *ex vivo* datasets, *Schirmer et al.* and *Absinta et al.*, respectively.
1187 Briefly, we considered the percentage of genes present in the *ex vivo* gene modules using the
1188 three *in vitro* gene modules; to account for the variable number of genes for both *in vitro* and
1189 *ex vivo* modules the outputs are scaled by the size of the gene set, i.e. larger gene sets are
1190 penalized more than smaller gene sets. The pairwise comparison of gene modules (**Fig. S4A-D**)
1191 relies on Fisher's exact tests, using the *in vitro* data as baseline comparator. Benjamini-
1192 Hochber (FDR) correction was applied to account for the multiple testing pycenic¹³¹ was used
1193 to infer regulatory interactions, aligned with the metadata available for the *Homo sapiens*
1194 (hg38) reference genome. A docker container was used to generate a loom object from the
1195 existing Seurat object. Loompy was used¹³² to create a SCope object, explored using the
1196 SCope web application; figure 6G illustrates specific regulons.

1197

1198 **Cell-cell regulatory interactions and effects**

1199 NicheNet⁸⁰ (v 2.0.4) was used to predict intercellular regulatory interactions, based on ligand-
1200 receptor databases (weighted_networks_nsga2r_final.rds). The correlative analysis,
1201 summarized as interaction scores, was applied on cluster-specific marker genes (differentially
1202 expressed genes). Further analyses were focused on cluster 5 (“inflammatory cluster”)
1203 assigned as sender cells vs receiver cells, as the remaining clusters, respectively. The summary of
1204 interactions was visualized using circos plot (circlize library v.0.4.15).

1206

1207 **Cytokine Array**

1208 iNSCs were plated at a density of 100,000 cells/cm² on GFR-coated plates. Media was
1209 collected on day 5 from each line. The Human Cytokine Antibody Array C5 (RayBiotech) was
1210 used for semi quantitative detection of 80 proteins according to manufacturer's instructions.

1211 Overnight incubation was performed for steps when the option was given. Membranes were
1212 exposed using a Gel Doc XR imager (BioRad). Blots were analyzed using the Protein Array
1213 Analyzer macro for ImageJ (written by Gilles Carpentier, 2008). The relative quantity of each
1214 protein was normalized to the positive and negative controls included on the array. The array
1215 was performed once for each iNSC line. Control lines were averaged together to generate a
1216 fold change comparison over PMS iNSC lines. To visualize the results, we calculate the Z-
1217 score per cytokine using the heatmap function in an R environment.

1218

1219 **snATACseq analysis**

1220 CellRanger ARC2.0.0 (multi-omics) and CellRanger ATAC2.0.0 (snATAC only) were used to
1221 map reads and quantify expression for the single nuclei ATAC-seq datasets. The peak calling
1222 was performed on pseudobulked input, comprising cells with at least 100 reads sequencing
1223 depth. Union peaks (peaks present in at least one sample) were reported. We excluded peaks
1224 overlapping the ENCODE-defined blacklist regions (hg38). To address the variation in
1225 sequencing depths, across samples, we normalized expression levels using random
1226 subsampling without replacement.¹¹⁰ The set of fragments (with lengths varying from 200 to
1227 400 nts) vs the union-peaks were used to generate the ATAC expression matrix. For
1228 downstream analysis we relied on Seurat¹²⁶, Signac¹³³, and ArchR¹³⁴ packages. Additional
1229 quality controls include assessment of nucleosome signatures and TSS enrichment analysis.
1230 we filtered the fragments with nucleosome signals < 4 and TSS enrichment levels > 2. Peak
1231 intensities were normalized using the term frequency inverse document frequency (TF-IDF)
1232 normalization (scale factor = 10,000). The dimensionality reduction was performed using latent
1233 semantic indexing (LSI). Additionally, we performed Harmony integration across batches,
1234 which was used as input for the final clustering (resolution=0.2, SLM method¹²⁶). Differentially
1235 expressed peaks were identified using the 'findMarker' function (Seurat package). We
1236 performed *de novo* motif analysis using Homer (*findMotifsGenome.pl*) and GO term
1237 enrichment analysis using GREAT with the background of the whole genome.¹³⁵

1238

1239 **Integrative analysis of multimaps profiles**

1240 The integration of snRNAseq and snATACseq signals was performed on 5,242 cells with
1241 matched barcodes. The crosstalk between modalities was assessed using the partitioning
1242 information obtained on single modalities. The co-variation in expressed was summarized in
1243 joint ATAC/RNA heatmaps, with Z scores, calculated per modality, on pseudobulked
1244 expression per gene being presented for the gene itself (RNA modality), TSS proximal peaks
1245 (<3kb) and TSS distal peaks (greater than 3kb and less than 50kb). Both ATAC and RNA
1246 modalities were used to infer regulons using SCENIC+.¹³⁶

1247

1248 **Statistical analysis**

1249 For all phenotypic analyses, a p-value < 0.05 was considered significant (*). We performed
1250 statistical tests described in individual figure legends using Prism software version 10
1251 (GraphPad Software, San Diego CA). A Benjamini-Hochberg, False discovery rate (FDR)
1252 multiple testing correction was applied to account for Type I errors. For low throughput
1253 differential expression analysis on genes, we used a negative binomial test with the FDR cutoff
1254 value set to <0.05.

1255 All analyses were performed on R 4.2.3, on high memory computer (MacPro M1 Max, 64GB
1256 memory) and servers (Intel E7-8860v4, 3TB memory).

1257

1258 REFERENCES

1. Reich, D.S., Lucchinetti, C.F., and Calabresi, P.A. (2018). Multiple Sclerosis. *N Engl J Med* 378, 169-180. 10.1056/NEJMra1401483.
2. Giovannoni, G., Popescu, V., Wuerfel, J., Hellwig, K., Iacobaeus, E., Jensen, M.B., Garcia-Dominguez, J.M., Sousa, L., De Rossi, N., Hupperts, R., et al. (2022). Smouldering multiple sclerosis: the 'real MS'. *Ther Adv Neurol Disord* 15, 17562864211066751. 10.1177/17562864211066751.
3. Graves, J.S., Krysko, K.M., Hua, L.H., Absinta, M., Franklin, R.J.M., and Segal, B.M. (2023). Ageing and multiple sclerosis. *Lancet Neurol* 22, 66-77. 10.1016/S1474-4422(22)00184-3.
4. Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L., and Bohr, V.A. (2019). Ageing as a risk factor for neurodegenerative disease. *Nat Rev Neurol* 15, 565-581. 10.1038/s41582-019-0244-7.
5. Papadopoulos, D., Maglizzi, R., Mitsikostas, D.D., Gorgoulis, V.G., and Nicholas, R.S. (2020). Aging, Cellular Senescence, and Progressive Multiple Sclerosis. *Front Cell Neurosci* 14, 178. 10.3389/fncel.2020.00178.
6. Tian, Y.E., Cropley, V., Maier, A.B., Lautenschlager, N.T., Breakspear, M., and Zalesky, A. (2023). Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. *Nat Med* 29, 1221-1231. 10.1038/s41591-023-02296-6.
7. Cole, J.H., Raffel, J., Friede, T., Eshaghi, A., Brownlee, W.J., Chard, D., De Stefano, N., Enzinger, C., Pirpamer, L., Filippi, M., et al. (2020). Longitudinal Assessment of Multiple Sclerosis with the Brain-Age Paradigm. *Ann Neurol* 88, 93-105. 10.1002/ana.25746.
8. Liao, Q., He, J., Tian, F.F., Bi, F.F., and Huang, K. (2022). A causal relationship between leukocyte telomere length and multiple sclerosis: A Mendelian randomization study. *Front Immunol* 13, 922922. 10.3389/fimmu.2022.922922.
9. Krysko, K.M., Henry, R.G., Cree, B.A.C., Lin, J., University of California, S.F.M.S.E.T., Caillier, S., Santaniello, A., Zhao, C., Gomez, R., Bevan, C., et al. (2019). Telomere Length Is Associated with Disability Progression in Multiple Sclerosis. *Ann Neurol* 86, 671-682. 10.1002/ana.25592.
10. Buhring, J., Hecker, M., Fitzner, B., and Zettl, U.K. (2021). Systematic Review of Studies on Telomere Length in Patients with Multiple Sclerosis. *Aging Dis* 12, 1272-1286. 10.14336/AD.2021.0106.
11. Haider, L., Fischer, M.T., Frischer, J.M., Bauer, J., Hoftberger, R., Botond, G., Esterbauer, H., Binder, C.J., Witztum, J.L., and Lassmann, H. (2011). Oxidative damage in multiple sclerosis lesions. *Brain* 134, 1914-1924. 10.1093/brain/awr128.
12. Dutta, R., McDonough, J., Yin, X., Peterson, J., Chang, A., Torres, T., Gudz, T., Macklin, W.B., Lewis, D.A., Fox, R.J., et al. (2006). Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. *Ann Neurol* 59, 478-489. 10.1002/ana.20736.
13. Campbell, G.R., Ziabreva, I., Reeve, A.K., Krishnan, K.J., Reynolds, R., Howell, O., Lassmann, H., Turnbull, D.M., and Mahad, D.J. (2011). Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. *Ann Neurol* 69, 481-492. 10.1002/ana.22109.
14. Kular, L., Klose, D., Urdanoz-Casado, A., Ewing, E., Planell, N., Gomez-Cabrero, D., Needham, M., and Jagodic, M. (2022). Epigenetic clock indicates accelerated aging in glial cells of progressive multiple sclerosis patients. *Front Aging Neurosci* 14, 926468. 10.3389/fnagi.2022.926468.

1307 15. Choi, I.Y., Lee, P., Adany, P., Hughes, A.J., Belliston, S., Denney, D.R., and
1308 Lynch, S.G. (2018). In vivo evidence of oxidative stress in brains of patients with
1309 progressive multiple sclerosis. *Mult Scler* 24, 1029-1038.
1310 10.1177/1352458517711568.

1311 16. Absinta, M., Maric, D., Gharagozloo, M., Garton, T., Smith, M.D., Jin, J.,
1312 Fitzgerald, K.C., Song, A., Liu, P., Lin, J.P., et al. (2021). A lymphocyte-microglia-
1313 astrocyte axis in chronic active multiple sclerosis. *Nature*. 10.1038/s41586-021-
1314 03892-7.

1315 17. Nicaise, A.M., Wagstaff, L.J., Willis, C.M., Paisie, C., Chandok, H., Robson, P.,
1316 Fossati, V., Williams, A., and Crocker, S.J. (2019). Cellular senescence in progenitor
1317 cells contributes to diminished remyelination potential in progressive multiple
1318 sclerosis. *Proc Natl Acad Sci U S A* 116, 9030-9039. 10.1073/pnas.1818348116.

1319 18. Jokubaitis, V.G., Campagna, M.P., Ibrahim, O., Stankovich, J., Kleinova, P.,
1320 Matesanz, F., Hui, D., Eichau, S., Slee, M., Lechner-Scott, J., et al. (2022). Not all
1321 roads lead to the immune system: the genetic basis of multiple sclerosis severity.
1322 *Brain*. 10.1093/brain/awac449.

1323 19. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2023).
1324 Hallmarks of aging: An expanding universe. *Cell* 186, 243-278.
1325 10.1016/j.cell.2022.11.001.

1326 20. Studer, L., Vera, E., and Cornacchia, D. (2015). Programming and
1327 Reprogramming Cellular Age in the Era of Induced Pluripotency. *Cell Stem Cell* 16,
1328 591-600. 10.1016/j.stem.2015.05.004.

1329 21. Kabacik, S., Lowe, D., Fransen, L., Leonard, M., Ang, S.-L., Whiteman, C., Corsi,
1330 S., Cohen, H., Felton, S., Bali, R., et al. (2022). The relationship between epigenetic
1331 age and the hallmarks of aging in human cells. *Nature Aging* 2, 484-493.
1332 10.1038/s43587-022-00220-0.

1333 22. Chomyk, A.M., Volsko, C., Tripathi, A., Deckard, S.A., Trapp, B.D., Fox, R.J., and
1334 Dutta, R. (2017). DNA methylation in demyelinated multiple sclerosis hippocampus.
1335 *Sci Rep* 7, 8696. 10.1038/s41598-017-08623-5.

1336 23. Huynh, J.L., Garg, P., Thin, T.H., Yoo, S., Dutta, R., Trapp, B.D., Haroutunian, V.,
1337 Zhu, J., Donovan, M.J., Sharp, A.J., and Casaccia, P. (2014). Epigenome-wide
1338 differences in pathology-free regions of multiple sclerosis-affected brains. *Nat
1339 Neurosci* 17, 121-130. 10.1038/nn.3588.

1340 24. Mutukula, N., Man, Z., Takahashi, Y., Iniesta Martinez, F., Morales, M., Carreón-
1341 Guarnizo, E., Hernandez Clares, R., García-Bernal, D., Martinez Martinez, L., Lajara,
1342 J., et al. (2021). Generation of RRMS and PPMS specific iPSCs as a platform for
1343 modeling Multiple Sclerosis. *Stem Cell Res* 53, 102319. 10.1016/j.scr.2021.102319.

1344 25. Ghirotto, B., Oliveira, D.F., Cipelli, M., Basso, P.J., de Lima, J., Breda, C.N.S.,
1345 Ribeiro, H.C., Silva, C.C.C., Sertie, A.L., Oliveira, A.E.R., et al. (2022). MS-Driven
1346 Metabolic Alterations Are Recapitulated in iPSC-Derived Astrocytes. *Ann Neurol* 91,
1347 652-669. 10.1002/ana.26336.

1348 26. Clayton, B.L.L., Barbar, L., Sapar, M., Rusielewicz, T., Kalpana, K., Migliori, B.,
1349 Team, N.G.S.C.A., Paull, D., Brenner, K., Moroziewicz, D., et al. (2023). Patient iPSC
1350 models reveal glia-intrinsic phenotypes in multiple sclerosis. *bioRxiv*.
1351 10.1101/2023.08.01.551553.

1352 27. Obernier, K., and Alvarez-Buylla, A. (2019). Neural stem cells: origin,
1353 heterogeneity and regulation in the adult mammalian brain. *Development* 146.
1354 10.1242/dev.156059.

1355 28. Gould, E., Reeves, A.J., Graziano, M.S., and Gross, C.G. (1999). Neurogenesis
1356 in the neocortex of adult primates. *Science* 286, 548-552.
1357 10.1126/science.286.5439.548.

1358 29. Ponti, G., Peretto, P., and Bonfanti, L. (2008). Genesis of neuronal and glial
1359 progenitors in the cerebellar cortex of peripuberal and adult rabbits. *PLoS One* 3,
1360 e2366. 10.1371/journal.pone.0002366.

1361 30. Jhaveri, D.J., Tedoldi, A., Hunt, S., Sullivan, R., Watts, N.R., Power, J.M., Bartlett,
1362 P.F., and Sah, P. (2018). Evidence for newly generated interneurons in the basolateral
1363 amygdala of adult mice. *Mol Psychiatry* 23, 521-532. 10.1038/mp.2017.134.

1364 31. Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert,
1365 G., Druid, H., and Frisen, J. (2014). Neurogenesis in the striatum of the adult human
1366 brain. *Cell* 156, 1072-1083. 10.1016/j.cell.2014.01.044.

1367 32. Navarro Negredo, P., Yeo, R.W., and Brunet, A. (2020). Aging and Rejuvenation
1368 of Neural Stem Cells and Their Niches. *Cell Stem Cell* 27, 202-223.
1369 10.1016/j.stem.2020.07.002.

1370 33. Encinas, J.M., Michurina, T.V., Peunova, N., Park, J.H., Tordo, J., Peterson, D.A.,
1371 Fishell, G., Koulakov, A., and Enikolopov, G. (2011). Division-coupled astrocytic
1372 differentiation and age-related depletion of neural stem cells in the adult hippocampus.
1373 *Cell Stem Cell* 8, 566-579. 10.1016/j.stem.2011.03.010.

1374 34. Culig, L., Chu, X., and Bohr, V.A. (2022). Neurogenesis in aging and age-related
1375 neurodegenerative diseases. *Ageing Res Rev* 78, 101636.
1376 10.1016/j.arr.2022.101636.

1377 35. Knoth, R., Singec, I., Ditter, M., Pantazis, G., Capetian, P., Meyer, R.P., Horvat,
1378 V., Volk, B., and Kempermann, G. (2010). Murine features of neurogenesis in the
1379 human hippocampus across the lifespan from 0 to 100 years. *PLoS One* 5, e8809.
1380 10.1371/journal.pone.0008809.

1381 36. Wang, C., Liu, F., Liu, Y.Y., Zhao, C.H., You, Y., Wang, L., Zhang, J., Wei, B., Ma,
1382 T., Zhang, Q., et al. (2011). Identification and characterization of neuroblasts in the
1383 subventricular zone and rostral migratory stream of the adult human brain. *Cell Res*
1384 21, 1534-1550. 10.1038/cr.2011.83.

1385 37. Gonzalez-Perez, O. (2012). Neural stem cells in the adult human brain. *Biol
1386 Biomed Rep* 2, 59-69.

1387 38. Sorrells, S.F., Paredes, M.F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K.W.,
1388 James, D., Mayer, S., Chang, J., Auguste, K.I., et al. (2018). Human hippocampal
1389 neurogenesis drops sharply in children to undetectable levels in adults. *Nature* 555,
1390 377-381. 10.1038/nature25975.

1391 39. Tobin, M.K., Musaraca, K., Disouky, A., Shetti, A., Bheri, A., Honer, W.G., Kim,
1392 N., Dawe, R.J., Bennett, D.A., Arfanakis, K., and Lazarov, O. (2019). Human
1393 Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer's Disease Patients.
1394 *Cell Stem Cell* 24, 974-982 e973. 10.1016/j.stem.2019.05.003.

1395 40. Hagiwara, H., Murano, T., Ohira, K., Miwa, M., Nakamura, K., and Miyakawa, T.
1396 (2019). Expression of progenitor cell/immature neuron markers does not present
1397 definitive evidence for adult neurogenesis. *Mol Brain* 12, 108. 10.1186/s13041-019-
1398 0522-8.

1399 41. Sirko, S., Schichor, C., Della Vecchia, P., Metzger, F., Sonsalla, G., Simon, T.,
1400 Burkle, M., Kalpazidou, S., Ninkovic, J., Masserdotti, G., et al. (2023). Injury-specific
1401 factors in the cerebrospinal fluid regulate astrocyte plasticity in the human brain. *Nat
1402 Med* 29, 3149-3161. 10.1038/s41591-023-02644-6.

1403 42. Snethen, H., Love, S., and Scolding, N. (2008). Disease-responsive neural
1404 precursor cells are present in multiple sclerosis lesions. *Regen Med* 3, 835-847.
1405 10.2217/17460751.3.6.835.

1406 43. Nait-Oumesmar, B., Picard-Riera, N., Kerninon, C., Decker, L., Seilhean, D.,
1407 Hoglinger, G.U., Hirsch, E.C., Reynolds, R., and Baron-Van Evercooren, A. (2007).
1408 Activation of the subventricular zone in multiple sclerosis: evidence for early glial
1409 progenitors. *Proc Natl Acad Sci U S A* 104, 4694-4699. 10.1073/pnas.0606835104.

1410 44. Wang, H., Yang, Y., Liu, J., and Qian, L. (2021). Direct cell reprogramming:
1411 approaches, mechanisms and progress. *Nat Rev Mol Cell Biol* 22, 410-424.
1412 10.1038/s41580-021-00335-z.

1413 45. Meyer, S., Worsdorfer, P., Gunther, K., Thier, M., and Edenhofer, F. (2015).
1414 Derivation of Adult Human Fibroblasts and their Direct Conversion into Expandable
1415 Neural Progenitor Cells. *J Vis Exp*, e52831. 10.3791/52831.

1416 46. Ionescu, R.-B., Nicaise, A.M., Reisz, J.A., Williams, E.C., Prasad, P.,
1417 Dzieciatkowska, M., Stephenson, D., Cubero, M.S., Pirvan, L., Willis, C.M., et al.
1418 (2024). Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-
1419 Derived Model of Multiple Sclerosis. *bioRxiv*, 2024.2001.2016.575826.
1420 10.1101/2024.01.16.575826.

1421 47. Moutsopoulos, I., Williams, E.C., and Mohorianu, II (2023). bulkAnalyseR: an
1422 accessible, interactive pipeline for analysing and sharing bulk multi-modal sequencing
1423 data. *Brief Bioinform* 24. 10.1093/bib/bbac591.

1424 48. Moutsopoulos, I., Maischak, L., Lauzikaite, E., Vasquez Urbina, S.A., Williams,
1425 E.C., Drost, H.G., and Mohorianu, II (2021). noisyR: enhancing biological signal in
1426 sequencing datasets by characterizing random technical noise. *Nucleic Acids Res* 49,
1427 e83. 10.1093/nar/gkab433.

1428 49. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
1429 change and dispersion for RNA-seq data with DESeq2. *Genome Biol* 15, 550.
1430 10.1186/s13059-014-0550-8.

1431 50. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor
1432 package for differential expression analysis of digital gene expression data.
1433 *Bioinformatics* 26, 139-140. 10.1093/bioinformatics/btp616.

1434 51. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo,
1435 J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions
1436 of gene lists (2019 update). *Nucleic Acids Res* 47, W191-W198. 10.1093/nar/gkz369.

1437 52. Frisch, S.M., and MacFawn, I.P. (2020). Type I interferons and related pathways
1438 in cell senescence. *Aging Cell* 19, e13234. 10.1111/ace.13234.

1439 53. Park, H., Kim, C.H., Jeong, J.H., Park, M., and Kim, K.S. (2016). GDF15
1440 contributes to radiation-induced senescence through the ROS-mediated p16 pathway
1441 in human endothelial cells. *Oncotarget* 7, 9634-9644. 10.18632/oncotarget.7457.

1442 54. Moiseeva, V., Cisneros, A., Sica, V., Deryagin, O., Lai, Y., Jung, S., Andres, E.,
1443 An, J., Segales, J., Ortet, L., et al. (2023). Senescence atlas reveals an aged-like
1444 inflamed niche that blunts muscle regeneration. *Nature* 613, 169-178.
1445 10.1038/s41586-022-05535-x.

1446 55. Huang, W., Hickson, L.J., Eirin, A., Kirkland, J.L., and Lerman, L.O. (2022).
1447 Cellular senescence: the good, the bad and the unknown. *Nat Rev Nephrol* 18, 611-
1448 627. 10.1038/s41581-022-00601-z.

1449 56. Shireby, G.L., Davies, J.P., Francis, P.T., Burrage, J., Walker, E.M., Neilson,
1450 G.W.A., Dahir, A., Thomas, A.J., Love, S., Smith, R.G., et al. (2020). Recalibrating the
1451 epigenetic clock: implications for assessing biological age in the human cortex. *Brain*
1452 143, 3763-3775. 10.1093/brain/awaa334.

1453 57. Horvath, S. (2013). DNA methylation age of human tissues and cell types.
1454 *Genome Biol* 14, R115. 10.1186/gb-2013-14-10-r115.

1455 58. Zhang, Q., Vallerga, C.L., Walker, R.M., Lin, T., Henders, A.K., Montgomery,
1456 G.W., He, J., Fan, D., Fowdar, J., Kennedy, M., et al. (2019). Improved precision of
1457 epigenetic clock estimates across tissues and its implication for biological ageing.
1458 *Genome Med* 11, 54. 10.1186/s13073-019-0667-1.

1459 59. Dolatabadi, S., Jonasson, E., Andersson, L., Luna Santamaria, M., Linden, M.,
1460 Osterlund, T., Aman, P., and Stahlberg, A. (2022). FUS-DDIT3 Fusion Oncoprotein
1461 Expression Affects JAK-STAT Signaling in Myxoid Liposarcoma. *Front Oncol* 12,
1462 816894. 10.3389/fonc.2022.816894.

1463 60. Kidani, Y., Elsaesser, H., Hock, M.B., Vergnes, L., Williams, K.J., Argus, J.P.,
1464 Marbois, B.N., Komisopoulou, E., Wilson, E.B., Osborne, T.F., et al. (2013). Sterol
1465 regulatory element-binding proteins are essential for the metabolic programming of
1466 effector T cells and adaptive immunity. *Nat Immunol* 14, 489-499. 10.1038/ni.2570.

1467 61. Hennighausen, L., and Robinson, G.W. (2008). Interpretation of cytokine
1468 signaling through the transcription factors STAT5A and STAT5B. *Genes Dev* 22, 711-
1469 721. 10.1101/gad.1643908.

1470 62. Bailey, C.M., Abbott, D.E., Margaryan, N.V., Khalkhali-Ellis, Z., and Hendrix, M.J.
1471 (2008). Interferon regulatory factor 6 promotes cell cycle arrest and is regulated by the
1472 proteasome in a cell cycle-dependent manner. *Mol Cell Biol* 28, 2235-2243.
1473 10.1128/MCB.01866-07.

1474 63. Nyati, K.K., and Kishimoto, T. (2021). Recent Advances in the Role of Arid5a in
1475 Immune Diseases and Cancer. *Front Immunol* 12, 827611.
1476 10.3389/fimmu.2021.827611.

1477 64. International Multiple Sclerosis Genetics, C. (2019). Multiple sclerosis genomic
1478 map implicates peripheral immune cells and microglia in susceptibility. *Science* 365.
1479 10.1126/science.aav7188.

1480 65. International Multiple Sclerosis Genetics, C. (2013). Network-based multiple
1481 sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls.
1482 *Am J Hum Genet* 92, 854-865. 10.1016/j.ajhg.2013.04.019.

1483 66. Hussman, J.P., Beecham, A.H., Schmidt, M., Martin, E.R., McCauley, J.L.,
1484 Vance, J.M., Haines, J.L., and Pericak-Vance, M.A. (2016). GWAS analysis implicates
1485 NF-kappaB-mediated induction of inflammatory T cells in multiple sclerosis. *Genes*
1486 *Immun* 17, 305-312. 10.1038/gene.2016.23.

1487 67. Kristjansdottir, G., Sandling, J.K., Bonetti, A., Roos, I.M., Milani, L., Wang, C.,
1488 Gustafsdottir, S.M., Sigurdsson, S., Lundmark, A., Tienari, P.J., et al. (2008). Interferon
1489 regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three
1490 distinct populations. *J Med Genet* 45, 362-369. 10.1136/jmg.2007.055012.

1491 68. Hatami, M., Salmani, T., Arsang-Jang, S., Davood Omrani, M., Mazdeh, M.,
1492 Ghafouri-Fard, S., Sayad, A., and Taheri, M. (2018). STAT5a and STAT6 gene
1493 expression levels in multiple sclerosis patients. *Cytokine* 106, 108-113.
1494 10.1016/j.cyto.2017.10.022.

1495 69. Shang, Z., Sun, W., Zhang, M., Xu, L., Jia, X., Zhang, R., and Fu, S. (2020).
1496 Identification of key genes associated with multiple sclerosis based on gene
1497 expression data from peripheral blood mononuclear cells. *PeerJ* 8, e8357.
1498 10.7717/peerj.8357.

1499 70. Shahsavari, A., Munteanu, A., and Mohorianu, I. (2022). ClustAssess: tools for
1500 assessing the robustness of single-cell clustering. *bioRxiv*, 2022.2001.2031.478592.
1501 10.1101/2022.01.31.478592.

1502 71. Gates, A.J., Wood, I.B., Hetrick, W.P., and Ahn, Y.Y. (2019). Element-centric
1503 clustering comparison unifies overlaps and hierarchy. *Sci Rep* 9, 8574.
1504 10.1038/s41598-019-44892-y.

1505 72. Eze, U.C., Bhaduri, A., Haeussler, M., Nowakowski, T.J., and Kriegstein, A.R.
1506 (2021). Single-cell atlas of early human brain development highlights heterogeneity of
1507 human neuroepithelial cells and early radial glia. *Nat Neurosci* 24, 584-594.
1508 10.1038/s41593-020-00794-1.

1509 73. Chamling, X., Kallman, A., Fang, W., Berlinicke, C.A., Mertz, J.L., Devkota, P.,
1510 Pantoja, I.E.M., Smith, M.D., Ji, Z., Chang, C., et al. (2021). Single-cell transcriptomic
1511 reveals molecular diversity and developmental heterogeneity of human stem cell-
1512 derived oligodendrocyte lineage cells. *Nat Commun* 12, 652. 10.1038/s41467-021-
1513 20892-3.

1514 74. Marques, S., van Bruggen, D., Vanichkina, D.P., Floriddia, E.M., Munguba, H.,
1515 Varemo, L., Giacomello, S., Falcao, A.M., Meijer, M., Bjorklund, A.K., et al. (2018).
1516 Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during
1517 Development. *Dev Cell* 46, 504-517 e507. 10.1016/j.devcel.2018.07.005.

1518 75. Darmanis, S., Sloan, S.A., Zhang, Y., Enge, M., Caneda, C., Shuer, L.M., Hayden
1519 Gephart, M.G., Barres, B.A., and Quake, S.R. (2015). A survey of human brain
1520 transcriptome diversity at the single cell level. *Proc Natl Acad Sci U S A* 112, 7285-
1521 7290. 10.1073/pnas.1507125112.

1522 76. Luciani, M., Garsia, C., Beretta, S., Petiti, L., Peano, C., Merelli, I., Cifola, I.,
1523 Miccio, A., Meneghini, V., and Gritti, A. (2023). Human iPSC-derived neural stem cells
1524 display a radial glia-like signature *in vitro* and favorable long-term safety
1525 in transplanted mice. *bioRxiv*, 2023.2008.2004.551937. 10.1101/2023.08.04.551937.

1526 77. Schirmer, L., Velmeshev, D., Holmqvist, S., Kaufmann, M., Werneburg, S., Jung,
1527 D., Vistnes, S., Stockley, J.H., Young, A., Steindel, M., et al. (2019). Neuronal
1528 vulnerability and multilineage diversity in multiple sclerosis. *Nature* 573, 75-82.
1529 10.1038/s41586-019-1404-z.

1530 78. Saul, D., Kosinsky, R.L., Atkinson, E.J., Doolittle, M.L., Zhang, X., LeBrasseur,
1531 N.K., Pignolo, R.J., Robbins, P.D., Niedernhofer, L.J., Ikeno, Y., et al. (2022). A new
1532 gene set identifies senescent cells and predicts senescence-associated pathways
1533 across tissues. *Nat Commun* 13, 4827. 10.1038/s41467-022-32552-1.

1534 79. Johnson, C.A., and Ghashghaei, H.T. (2020). Sp2 regulates late neurogenic but
1535 not early expansive divisions of neural stem cells underlying population growth in the
1536 mouse cortex. *Development* 147. 10.1242/dev.186056.

1537 80. Browaeys, R., Saelens, W., and Saeys, Y. (2020). NicheNet: modeling
1538 intercellular communication by linking ligands to target genes. *Nat Methods* 17, 159-
1539 162. 10.1038/s41592-019-0667-5.

1540 81. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K., and Kageyama, R. (2010).
1541 Essential roles of Notch signaling in maintenance of neural stem cells in developing
1542 and adult brains. *J Neurosci* 30, 3489-3498. 10.1523/JNEUROSCI.4987-09.2010.

1543 82. Borghi, A., Verstrepen, L., and Beyaert, R. (2016). TRAF2 multitasking in TNF
1544 receptor-induced signaling to NF- κ B, MAP kinases and cell death. *Biochem
1545 Pharmacol* 116, 1-10. 10.1016/j.bcp.2016.03.009.

1546 83. Belenguer, G., Duart-Abadia, P., Jordan-Pla, A., Domingo-Muelas, A., Blasco-
1547 Chamarro, L., Ferron, S.R., Morante-Redolat, J.M., and Farinas, I. (2021). Adult
1548 Neural Stem Cells Are Alerted by Systemic Inflammation through TNF-alpha Receptor
1549 Signaling. *Cell Stem Cell* 28, 285-299 e289. 10.1016/j.stem.2020.10.016.

1550 84. Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-
1551 associated secretory phenotype: the dark side of tumor suppression. *Annu Rev Pathol*
1552 5, 99-118. 10.1146/annurev-pathol-121808-102144.

1553 85. Munoz-Fontela, C., Macip, S., Martinez-Sobrido, L., Brown, L., Ashour, J.,
1554 Garcia-Sastre, A., Lee, S.W., and Aaronson, S.A. (2008). Transcriptional role of p53
1555 in interferon-mediated antiviral immunity. *J Exp Med* 205, 1929-1938.
1556 10.1084/jem.20080383.

1557 86. Schauder, D.M., Shen, J., Chen, Y., Kasmani, M.Y., Kudek, M.R., Burns, R., and
1558 Cui, W. (2021). E2A-regulated epigenetic landscape promotes memory CD8 T cell
1559 differentiation. *Proc Natl Acad Sci U S A* 118. 10.1073/pnas.2013452118.

1560 87. Kandhaya-Pillai, R., Miro-Mur, F., Alijotas-Reig, J., Tchkonia, T., Kirkland, J.L.,
1561 and Schwartz, S. (2017). TNFalpha-senescence initiates a STAT-dependent positive
1562 feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine
1563 secretion. *Aging (Albany NY)* 9, 2411-2435. 10.1863/aging.101328.

1564 88. Van de Sande, B., Flerin, C., Davie, K., De Waegeneer, M., Hulselmans, G.,
1565 Aibar, S., Seurinck, R., Saelens, W., Cannoodt, R., Rouchon, Q., et al. (2020). A
1566 scalable SCENIC workflow for single-cell gene regulatory network analysis. *Nat Protoc*
1567 15, 2247-2276. 10.1038/s41596-020-0336-2.

1568 89. Factor, D.C., Barbeau, A.M., Allan, K.C., Hu, L.R., Madhavan, M., Hoang, A.T.,
1569 Hazel, K.E.A., Hall, P.A., Nisraiyya, S., Najm, F.J., et al. (2020). Cell Type-Specific
1570 Intralocus Interactions Reveal Oligodendrocyte Mechanisms in MS. *Cell* 181, 382-395
1571 e321. 10.1016/j.cell.2020.03.002.

1572 90. International Multiple Sclerosis Genetics, C., and Multiple, M.S.C. (2023). Locus
1573 for severity implicates CNS resilience in progression of multiple sclerosis. *Nature* 619,
1574 323-331. 10.1038/s41586-023-06250-x.

1575 91. Unnikrishnan, A., Hadad, N., Masser, D.R., Jackson, J., Freeman, W.M., and
1576 Richardson, A. (2018). Revisiting the genomic hypomethylation hypothesis of aging.
1577 *Ann N Y Acad Sci* 1418, 69-79. 10.1111/nyas.13533.

1578 92. Campagna, M.P., Xavier, A., Lea, R.A., Stankovich, J., Maltby, V.E., Butzkueven,
1579 H., Lechner-Scott, J., Scott, R.J., and Jokubaitis, V.G. (2022). Whole-blood
1580 methylation signatures are associated with and accurately classify multiple sclerosis
1581 disease severity. *Clin Epigenetics* 14, 194. 10.1186/s13148-022-01397-2.

1582 93. Roy, E., and Cao, W. (2022). Glial interference: impact of type I interferon in
1583 neurodegenerative diseases. *Mol Neurodegener* 17, 78. 10.1186/s13024-022-00583-
1584 3.

1585 94. Rasa, S.M.M., Annunziata, F., Krepelova, A., Nunna, S., Omrani, O., Gebert, N.,
1586 Adam, L., Kappel, S., Hohn, S., Donati, G., et al. (2022). Inflammaging is driven by
1587 upregulation of innate immune receptors and systemic interferon signaling and is
1588 ameliorated by dietary restriction. *Cell Rep* 39, 111017. 10.1016/j.celrep.2022.111017.

1589 95. Gulen, M.F., Samson, N., Keller, A., Schwabenland, M., Liu, C., Gluck, S.,
1590 Thacker, V.V., Favre, L., Mangeat, B., Kroese, L.J., et al. (2023). cGAS-STING drives
1591 ageing-related inflammation and neurodegeneration. *Nature* 620, 374-380.
1592 10.1038/s41586-023-06373-1.

1593 96. Tabula Muris, C. (2020). A single-cell transcriptomic atlas characterizes ageing
1594 tissues in the mouse. *Nature* 583, 590-595. 10.1038/s41586-020-2496-1.

1595 97. Xie, X., Ma, G., Li, X., Zhao, J., Zhao, Z., and Zeng, J. (2023). Activation of innate
1596 immune cGAS-STING pathway contributes to Alzheimer's pathogenesis in 5xFAD
1597 mice. *Nat Aging* 3, 202-212. 10.1038/s43587-022-00337-2.

1598 98. Standaert, D.G., and Childers, G.M. (2022). Alpha-synuclein-mediated DNA
1599 damage, STING activation, and neuroinflammation in Parkinson's disease. *Proc Natl
1600 Acad Sci U S A* 119, e2204058119. 10.1073/pnas.2204058119.

1601 99. Levine, K.S., Leonard, H.L., Blauwendraat, C., Iwaki, H., Johnson, N., Bandres-
1602 Ciga, S., Ferrucci, L., Faghri, F., Singleton, A.B., and Nalls, M.A. (2023). Virus
1603 exposure and neurodegenerative disease risk across national biobanks. *Neuron* 111,
1604 1086-1093 e1082. 10.1016/j.neuron.2022.12.029.

1605 100. Bjornevik, K., Cortese, M., Healy, B.C., Kuhle, J., Mina, M.J., Leng, Y., Elledge,
1606 S.J., Niebuhr, D.W., Scher, A.I., Munger, K.L., and Ascherio, A. (2022). Longitudinal
1607 analysis reveals high prevalence of Epstein-Barr virus associated with multiple
1608 sclerosis. *Science* 375, 296-301. 10.1126/science.abj8222.

1609 101. Wilkins, J.M., Gakh, O., Kabiraj, P., McCarthy, C.B., Tobin, W.O., Howe, C.L., and
1610 Lucchinetti, C.F. (2020). Signatures of cell stress and altered bioenergetics in skin
1611 fibroblasts from patients with multiple sclerosis. *Aging (Albany NY)* 12, 15134-15156.
1612 10.18632/aging.103612.

1613 102. Kury, P., Nath, A., Creange, A., Dolei, A., Marche, P., Gold, J., Giovannoni, G.,
1614 Hartung, H.P., and Perron, H. (2018). Human Endogenous Retroviruses in
1615 Neurological Diseases. *Trends Mol Med* 24, 379-394. 10.1016/j.molmed.2018.02.007.

1616 103. Garza, R., Sharma, Y., Atacho, D.A.M., Thiruvalluvan, A., Abu Hamdeh, S.,
1617 Jonsson, M.E., Horvath, V., Adami, A., Ingelsson, M., Jern, P., et al. (2023). Single-cell
1618 transcriptomics of human traumatic brain injury reveals activation of endogenous
1619 retroviruses in oligodendroglia. *Cell Rep* 42, 113395. 10.1016/j.celrep.2023.113395.

1620 104. Lin, B., Coleman, J.H., Peterson, J.N., Zunitch, M.J., Jang, W., Herrick, D.B., and
1621 Schwob, J.E. (2017). Injury Induces Endogenous Reprogramming and
1622 Dedifferentiation of Neuronal Progenitors to Multipotency. *Cell Stem Cell* 21, 761-774
1623 e765. 10.1016/j.stem.2017.09.008.

1624 105. Absinta, M., Sati, P., Masuzzo, F., Nair, G., Sethi, V., Kolb, H., Ohayon, J., Wu,
1625 T., Cortese, I.C.M., and Reich, D.S. (2019). Association of Chronic Active Multiple
1626 Sclerosis Lesions With Disability In Vivo. *JAMA Neurol* 76, 1474-1483.
1627 10.1001/jamaneurol.2019.2399.

1628 106. Preziosa, P., Pagani, E., Meani, A., Moiola, L., Rodegher, M., Filippi, M., and
1629 Rocca, M.A. (2022). Slowly Expanding Lesions Predict 9-Year Multiple Sclerosis
1630 Disease Progression. *Neurol Neuroimmunol Neuroinflamm* 9.
1631 10.1212/NXI.0000000000001139.

1632 107. Douvaras, P., and Fossati, V. (2015). Generation and isolation of oligodendrocyte
1633 progenitor cells from human pluripotent stem cells. *Nat Protoc* 10, 1143-1154.
1634 10.1038/nprot.2015.075.

1635 108. Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize
1636 analysis results for multiple tools and samples in a single report. *Bioinformatics* 32,
1637 3047-3048. 10.1093/bioinformatics/btw354.

1638 109. Shen, W., Le, S., Li, Y., and Hu, F. (2016). SeqKit: A Cross-Platform and Ultrafast
1639 Toolkit for FASTA/Q File Manipulation. *PLoS One* 11, e0163962.
1640 10.1371/journal.pone.0163962.

1641 110. Mohorianu, I., Bretman, A., Smith, D.T., Fowler, E.K., Dalmay, T., and Chapman,
1642 T. (2017). Comparison of alternative approaches for analysing multi-level RNA-seq
1643 data. *PLoS One* 12, e0182694. 10.1371/journal.pone.0182694.

1644 111. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut,
1645 P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq
1646 aligner. *Bioinformatics* 29, 15-21. 10.1093/bioinformatics/bts635.

1647 112. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general
1648 purpose program for assigning sequence reads to genomic features. *Bioinformatics*
1649 30, 923-930. 10.1093/bioinformatics/btt656.

1650 113. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O.,
1651 Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., and Li, H. (2021). Twelve
1652 years of SAMtools and BCFtools. *Gigascience* 10. 10.1093/gigascience/giab008.

1653 114. Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. (2003). A comparison
1654 of normalization methods for high density oligonucleotide array data based on
1655 variance and bias. *Bioinformatics* 19, 185-193. 10.1093/bioinformatics/19.2.185.

1656 115. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring
1657 regulatory networks from expression data using tree-based methods. *PLoS One* 5.
1658 10.1371/journal.pone.0012776.

1659 116. Almende, B., Thieurmel, B., and Robert, T. (2019). Package 'visnetwork'.

1660 117. Joglekar, M.V., Satoor, S.N., Wong, W.K.M., Cheng, F., Ma, R.C.W., and
1661 Hardikar, A.A. (2020). An Optimised Step-by-Step Protocol for Measuring Relative
1662 Telomere Length. *Methods Protoc* 3. 10.3390/mps3020027.

1663 118. Kechin, A., Boyarskikh, U., Kel, A., and Filipenko, M. (2017). cutPrimers: A New
1664 Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation
1665 Sequencing. *J Comput Biol* 24, 1138-1143. 10.1089/cmb.2017.0096.

1666 119. Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-
1667 based genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nat
1668 Biotechnol* 37, 907-915. 10.1038/s41587-019-0201-4.

1669 120. Krueger, F., and Andrews, S.R. (2011). Bismark: a flexible aligner and
1670 methylation caller for Bisulfite-Seq applications. *Bioinformatics* 27, 1571-1572.
1671 10.1093/bioinformatics/btr167.

1672 121. Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F.E., Figueiroa, M.E.,
1673 Melnick, A., and Mason, C.E. (2012). methylKit: a comprehensive R package for the
1674 analysis of genome-wide DNA methylation profiles. *Genome Biol* 13, R87. 10.1186/gb-
1675 2012-13-10-r87.

1676 122. Juhling, F., Kretzmer, H., Bernhart, S.H., Otto, C., Stadler, P.F., and Hoffmann, S.
1677 (2016). metilene: fast and sensitive calling of differentially methylated regions from
1678 bisulfite sequencing data. *Genome Res* 26, 256-262. 10.1101/gr.196394.115.

1679 123. McCullagh, P., and Nelder, J.A. (1998). Generalized linear models, 2nd Edition
1680 (Chapman & Hall/CRC).

1681 124. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X.,
1682 Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-
1683 determining transcription factors prime cis-regulatory elements required for
1684 macrophage and B cell identities. *Mol Cell* 38, 576-589. 10.1016/j.molcel.2010.05.004.

1685 125. Ying, K., Tyshkovskiy, A., Trapp, A., Liu, H., Moqri, M., Kerepesi, C., and
1686 Gladyshev, V.N. (2023). ClockBase: ClockBase: a comprehensive platform for
1687 biological age profiling in human and mouse. *bioRxiv*.
1688 <https://doi.org/10.1101/2023.02.28.530532>.

1689 126. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A.,
1690 Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of
1691 multimodal single-cell data. *Cell* 184, 3573-3587 e3529. 10.1016/j.cell.2021.04.048.

1692 127. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko,
1693 Y., Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate
1694 integration of single-cell data with Harmony. *Nat Methods* 16, 1289-1296.
1695 10.1038/s41592-019-0619-0.

1696 128. Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J., and Peterson, H. (2020). gprofiler2
1697 -- an R package for gene list functional enrichment analysis and namespace
1698 conversion toolset g:Profiler. *F1000Res* 9. 10.12688/f1000research.24956.2.
1699 129. Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization
1700 of single-cell RNA-seq data using regularized negative binomial regression. *Genome
Biol* 20, 296. 10.1186/s13059-019-1874-1.
1702 130. Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C.
1703 (2017). Reversed graph embedding resolves complex single-cell trajectories. *Nat
Methods* 14, 979-982. 10.1038/nmeth.4402.
1705 131. Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H.,
1706 Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., et al. (2017). SCENIC:
1707 single-cell regulatory network inference and clustering. *Nat Methods* 14, 1083-1086.
1708 10.1038/nmeth.4463.
1709 132. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell
1710 gene expression data analysis. *Genome Biol* 19, 15. 10.1186/s13059-017-1382-0.
1711 133. Stuart, T., Srivastava, A., Madad, S., Lareau, C.A., and Satija, R. (2021). Single-
1712 cell chromatin state analysis with Signac. *Nat Methods* 18, 1333-1341.
1713 10.1038/s41592-021-01282-5.
1714 134. Granja, J.M., Corces, M.R., Pierce, S.E., Bagdatli, S.T., Choudhry, H., Chang,
1715 H.Y., and Greenleaf, W.J. (2021). ArchR is a scalable software package for integrative
1716 single-cell chromatin accessibility analysis. *Nat Genet* 53, 403-411. 10.1038/s41588-
1717 021-00790-6.
1718 135. McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B.,
1719 Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of
1720 cis-regulatory regions. *Nat Biotechnol* 28, 495-501. 10.1038/nbt.1630.
1721 136. Bravo Gonzalez-Blas, C., De Winter, S., Hulselmans, G., Hecker, N., Matetovici,
1722 I., Christiaens, V., Poovathingal, S., Wouters, J., Aibar, S., and Aerts, S. (2023).
1723 SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks.
1724 *Nat Methods* 20, 1355-1367. 10.1038/s41592-023-01938-4.
1725
1726