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SUMMARY 44 

Progressive multiple sclerosis (PMS) is characterized by a primary smouldering pathological 45 
disease process associated with a superimposed inflammatory activity. Cellular and molecular 46 
processes sustaining the pathobiology of PMS remain to be identified. 47 

We previously discovered senescence signatures in neural stem/progenitor cells (NSCs) 48 
from people with PMS. Applying direct reprogramming to generate directly induced NSCs 49 
(iNSCs) from somatic fibroblasts, we retain epigenetic information and observe 50 
hypomethylation of genes associated with lipid metabolic processes and IFN signalling only 51 
in PMS lines. Single-cell/nucleus transcriptomic and epigenetic profiling reveal an 52 
inflammatory, senescent-like, IFN-responsive radial glia (RG)-like cell subcluster mainly in 53 
PMS iNSCs that is driven by IFN-associated transcription factors. Lastly, we identify a 54 
population of senescent, IFN-responsive, disease-associated RG-like cells (DARGs) in the 55 
PMS brain that share pseudotime trajectories with iNSCs in vitro.  56 

We describe the existence of a non-neurogenic, dysfunctional DARG population that has the 57 
potential to fuel smouldering inflammation in PMS. 58 
 59 
 60 
 61 
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INTRODUCTION 67 

Multiple sclerosis (MS) is a complex neuroinflammatory and neurodegenerative disease 68 
characterized by inflammation and demyelination in the central nervous system (CNS). It is 69 
believed to be caused by an interplay of genetic predisposition and environmental risk factors, 70 
such as exposure to viruses.1 The early phase of the disease, known as relapsing remitting 71 
MS (RRMS), pathologically manifests as acute demyelinating lesions with some endogenous 72 
repair. There are disease-modifying therapies (DMTs) available that target peripheral immune 73 
cells to reduce the risk of developing new lesions and clinical relapses. Over time, however, 74 
most people with RRMS transition into a progressive (PMS) stage of the disease that is 75 
characterized by the steady accumulation of neurological disability in the absence of 76 
endogenous repair that leads to neurodegeneration. Despite most available DMTs being 77 
effective in people with RRMS they are much less effective in people with PMS. This has made 78 
the progressive stage of the disease an unmet clinical need.1 79 

Pathological, neuroimaging, and clinical data suggest that progressive MS is driven by a 80 
primary smouldering process associated with inflammation. Several mechanisms have been 81 
proposed to drive smouldering MS, including innate immune activation, demyelination and 82 
energy deficits, adaptive immunity, and, recently, age-related mechanisms.2,3 83 

Age is one of the most significant risk factors in the development of PMS, which is similar 84 
to other neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease.4,5 85 
Longitudinal assessment of brain aging using imaging technologies showed that people with 86 
MS demonstrate increased ‘brain age’ compared to healthy controls that was defined by 87 
increased atrophy and decreased grey matter volumes.6,7 Pathological hallmarks of cellular 88 
aging, such as senescence and senescence-associated changes, have been identified in 89 
people with PMS. These include decreased telomere length in peripheral leukocytes,8-10 90 
increased DNA and mitochondrial damage in neurons in situ,11-13 increased epigenetic age in 91 
glial cells,14 senescence-associated secretory phenotype (SASP) in microglia and 92 
astrocytes,15,16 and p16/CDKN2A expression in glia and neural stem/progenitor cells 93 
(NSCs).16,17 The increasing body of evidence suggesting an association of PMS with cellular 94 
senescence requires further study to understand how the accumulation of senescent glial cells 95 
contributes to disease pathogenesis. 96 

The genetic components underlying MS risk and severity are incredibly complex. Genome 97 
wide association studies (GWAS) largely implicated cells of the peripheral immune system in 98 
the development of disease. However, mapping of MS susceptibility genes onto brain tissue 99 
has revealed enrichment of MS-susceptibility genes in glial cells of the CNS, including 100 
astrocytes, oligodendrocytes, and microglia. Moreover, prediction of MS severity from genetic 101 
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loci involved in the CNS were found to be associated with mitochondrial function, cellular 102 
senescence, and synaptic plasticity.18 103 

Recent work with induced pluripotent stem cells (iPSCs), which retain the genetic 104 
information from the starting cell and is maintained in the resulting cell type of interest, has 105 
allowed for modelling of complex human brain disorders in vitro. Although iPSCs offer a 106 
powerful platform for modelling of human diseases, epigenetic modifications, especially those 107 
associated with aging, are lost in the reprogramming process due to the use of the Yamanaka 108 
factors.19-21 Epigenetic changes, which can be reflected by environmental risk factors such as 109 
smoking and exposure to viruses, are likely contribute to MS susceptibility and progression. A 110 
few studies have identified aberrant DNA methylation patterns in both CNS tissue and 111 
peripheral blood and leukocytes in people with MS. Many of these patterns are associated 112 
with functional pathways related to immune response, neuronal survival22, and 113 
demyelination.23 Recent work has found that iPSC-NSCs from patients with PMS display 114 
markers of senescence and prevent oligodendrocyte progenitor cell differentiation via the 115 
SASP.17,24 Furthermore, iPSC-astrocytes from MS patients also display senescence-related 116 
gene expression, dysfunctional metabolism, and increased immune and inflammatory 117 
genes.25,26 118 

Stem cell exhaustion is a known hallmark of biological aging that is typically associated 119 
with reduced tissue repair. Adult brain stem cells/NSCs, also known as radial glia-like cells 120 
(RG), are astroglial-like cells that classically reside in the mammalian subventricular zone and 121 
dentate gyrus of the hippocampus and can give rise to mature neurons, astrocytes, and 122 
oligodendrocytes.27 Furthermore, noncanonical niches for RG have also been reported, 123 
including the neocortex of primates,28 the cerebellum of rabbits,29 the amygdala of mice,30 and 124 
the striatum of humans.31 Studies in animals have shown that with progressing age and 125 
neurodegenerative disease the capabilities of RGs, such as differentiation into neurons and 126 
repair capabilities.32-34 Many studies have attempted to address the existence, persistence, 127 
and role of NSC/RGs in the human brain following early post-natal life. Immunostaining of 128 
post-mortem human brains35 identified NSCs in the lining of the walls of the lateral ventricle, 129 
the dentate gyrus, and the olfactory epithelium.36,37 However, their capacity for neurogenesis 130 
and differentiation, as well as their presence outside of the main CNS germinal stem cell 131 
niches is much debated.38,39 More recently, phenomena such as inflammation and injury 132 
support both de-maturation of neurons40 and de-differentiation of astrocytes41 into NSC/RG-133 
like cell states. NSCs expressing glial markers and displaying features of senescence have 134 
also been identified near lesioned areas in post-mortem MS brain tissue.17,42,43 Their role and 135 
putative function in brain physiology and disease is not currently understood.  136 
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Disease modelling with stem cell technologies holds the promise for understanding cellular 137 
dynamics that were previously unreachable in brain cells in vivo. We employed the use of 138 
direct reprogramming technology, which better retains epigenetic memory of the donor cells 139 
,44 to better investigate the origin of the senescent phenotype in NSCs within the context of 140 
PMS.17,24,25, We directly converted skin-derived fibroblasts from healthy human controls and 141 
people with PMS into stably expandable induced NSCs (iNSC). This was done by exposing 142 
fibroblasts to a transient (24-hour long) exposure to the Yamanaka factors45 in the presence 143 
of NSC differentiation factors to generate a heterogenous population of stem and progenitor 144 
cells.  145 

By subjecting both the parental fibroblasts and iNSCs to whole genome bisulfite 146 
sequencing (WGBS), we identified hypomethylated genes encoding proteins that function in 147 
pathways similar to those associated with inflammatory and interferon (IFN) signalling in PMS 148 
cells, suggesting a predisposition to inflammation. Furthermore, direct reprogramming to 149 
iNSCs maintained epigenetic information from the donor cells. Through both bulk and single-150 
cell/ nucleus transcriptomics analyses, we found increased activation of pathways pertaining 151 
to cellular senescence, inflammation, and IFN signalling in a subset of PMS iNSCs. Combined 152 
single-nuclei ATACseq supported changes in chromatin accessibility and was linked to 153 
consistent pathways. Within the heterogenous iNSCs, we identified a focused inflammatory 154 
and senescent-like cluster and elevated expression of related upstream transcription factor 155 
IRF1 in PMS iNSCs. We integrated published post-mortem single-cell/nuclei transcriptomics 156 
data sets and confirmed the presence of non-neurogenic, disease-associated RG-like cells 157 
(DARGs) in the PMS brain, primarily in chronic active, slowly expanding lesions, exhibiting 158 
senescence and IFN-responsive characteristics. 159 

Our work confirms that direct reprogramming technology is a powerful tool to model 160 
disease-in-a-dish to study neurodegenerative disorders. In doing so, it led us to identify the 161 
existence of a long-neglected, non-neurogenic DARG cell cluster especially in chronic brain 162 
MS lesions that has the potential to fuel continuous smouldering inflammation in PMS. 163 

 164 
 165 
 166 

RESULTS 167 

Bulk (multi-modal) sequencing reveals upregulation of senescence and 168 

inflammatory pathways in PMS iNSCs 169 

To model disease and age associated NSC features, we directly reprogrammed skin-derived 170 
fibroblasts from control healthy subjects (Ctrl) and people with PMS (PMS) into stably 171 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579648
http://creativecommons.org/licenses/by-nc/4.0/


Park, Nicaise, Tsitsipatis et al. 
 

 6 

expandable iNSCs (Table S1).45 We confirmed the expression of established and accepted 172 
NSC markers, including the mRNAs, using RT-PCR, and proteins, using 173 
immunocytochemistry, that encode Nestin (NES), SOX2, ETNPPL, and PAX6, as well as the 174 
clearance of Sendai virus markers.46 PCA summary of transcriptomic signatures across 175 
samples (Fig. 1A) revealed robust signal across replicates and a clear separation between 176 
the Ctrl and PMS samples. Additional checks comprised incremental Jaccard similarity index 177 
(Fig. S1A),47 and assessment and removal of technical noise using noisyR (Fig. S1B),48 178 
followed by normalization of expression levels.47 The differential expression analyses (with 179 
convergent results on the DESeq249 and edgeR50 pipelines) led to 1,021 upregulated and 844 180 
downregulated genes (FDR < 0.05, |log2(FC)| ³ 0.5) that included transcripts related to 181 
senescence, such as CDKN1A, IRF7, and ISG15 (Fig. 1B). Gene set enrichment analysis 182 
(GSEA51), using genes expressed above noise level as background, identified several 183 
pathways enriched in the PMS iNSCs, including mRNAs encoded by gene sets that drive 184 
response to stress (TNC, STAT6), immune system processes (THBS1, SPP1), positive 185 
regulation of lipid metabolic process (APOE, SREBF1), regulation of cellular senescence 186 
(CDKN1A, IGF1R), interferon (IFN)-g signalling (ICAM1, HLA-DPB1), and transcription factors 187 
associated with IFN signalling (IRF-4, IRF-1, NF-kB) (Fig. 1C, Table S2). Instead, mRNAs 188 
encoded by gene sets associated with cell cycle (NASP, DPF1) and telomere organization 189 
(USP7, XRN1) were al depleted in PMS iNSCs (Fig. 1D). This is concordant with previous 190 
work identifying cellular senescence in the NSCs of individuals with PMS.17,24  191 

Next, we investigated the dynamics of gene regulatory networks (GRNs), inferred on 192 
differentially expressed genes, associated with enriched terms (inflammation, regulation of 193 
cellular senescence, and interferon signalling). We observed a clear hub centred on the 194 
senescence gene CDKN1A, which then strongly interacted with CDKN1C, CDKN2A, STAT1, 195 
and IRF1 in PMS iNSCs only (Fig. 1E). Previous studies have demonstrated that senescence 196 
induction via p21 (CDKN1A) and p16Ink4a (CDKN2A) expression activates IFN response.52 197 
Density plots of covariation of inflammatory and senescent transcripts (selected based on GO 198 
annotations) showed greater difference in weights (i.e. interaction strength/ co-variation in 199 
expression) between Ctrl and PMS samples (with stronger covariation in the PMS samples), 200 
compared with non-differentially expressed genes (Fig. S1C). These results support the 201 
predicted interactions between senescence and inflammation pathways.52 This GRN analysis 202 
also supports the hypothesis of an induction of a senescence program only in PMS iNSCs 203 
that then promotes IFN and inflammatory signalling activities. 204 

Because the sequencing data showed upregulation of genes associated with cellular 205 
senescence, we independently validated these findings using Western blot and senescence-206 
associated  b-galactosidase (SA-β-gal) staining. We found upregulation of markers of cellular 207 
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senescence p16Ink4a and GDF15 (Fig. 1F)53 and increased expression of SA-β-gal using 208 
SPiDER-b-gal dye in all PMS lines (Fig. 1G).54 Cellular senescence is primarily associated 209 
with a halt in cell cycle, which was supported by a depletion of cell-cycle pathways in the 210 
mRNAseq (Fig. 1D). We then assessed the cycling stage of iNSCs using flow cytometry. 211 
Despite iNSCs being analysed under proliferative conditions in chemically-defined media, we 212 
still identified a significantly higher proportion of PMS iNSCs in the G1 phase of the cell cycle 213 
(vs Ctrl), which is typical of quiescent or senescent cells (Fig. 1H).55 Lastly, quantitative 214 
(q)PCR-based analysis of relative telomere length revealed that PMS iNSCs have significantly 215 
decreased telomere lengths (vs Ctrl) (Fig. 1I).  216 

Therefore, PMS iNSCs phenotypically display intrinsic features of senescence, which are 217 
also reflected at the transcriptomic level via upregulation of pathways associated with 218 
inflammation and IFN signalling. 219 

 220 

PMS fibroblasts and iNSCs maintain pathological epigenetic hallmarks 221 

We further investigated the potential origin of the senescent and inflammatory signatures and 222 
phenotypes seen in PMS iNSCs. We postulated that the direct conversion from fibroblasts into 223 
iNSCs would maintain or even facilitate the emergence of new epigenetic landscapes that 224 
further promote the senescence phenotype.  225 

To this aim, we assessed the methylation status, genome-wide, using whole genome 226 
bisulfite sequencing (WGBS) on the parental fibroblasts and matched iNSC lines. PCA 227 
revealed a tight reproducibility of replicates and a clear separation between fibroblasts and 228 
iNSCs as well as between Ctrl and PMS samples (Fig. 2A).  229 

We identified 28 million CpG sites per sample and consistently observed increased 230 
hypermethylation in iNSCs (vs fibroblasts) (Fig. S1D-E). To provide insight to the extent the 231 
direct reprogramming reset the aging-related epigenome, we assessed the Cortex Age DNA 232 
methylation (DNAm) aging clock using methylation data from the human cortex.56 The cortex 233 
clock predicted an age similar to the chronological age of the donor cells used to generate the 234 
iNSCs, suggesting minimal epigenetic resetting occurred during the direct reprogramming 235 
(Fig. 2B).  We also matched this modality against the Horvath and Zhang DNAm clocks, which 236 
further confirmed the maintenance of epigenetic age after direct reprogramming for most cell 237 
lines (Fig. S1F).57,58 Thus, our own direct reprogramming technology to generate iNSCs from 238 
skin-derived fibroblasts maintains epigenetic information from the donor cells. 239 

We next investigated methylation commonalities and specific differences between Ctrl and 240 
PMS samples in both fibroblasts and iNSCs. We assessed the distribution of differentially 241 
methylated regions (DMRs) across genic and intergenic annotations, including a class linking 242 
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the DMR to the transcription start sites (TSS) and the resulting distribution was quasi uniform 243 
(Fig. S1G-H). The differentially methylated cytosines (DMCs) and DMRs indicated an 244 
increased hypomethylation in both PMS fibroblasts and iNSCs (vs Ctrl; Fig. 2C, Fig. S1I). To 245 
further explore how these differences in methylation profiles account for transcriptional and 246 
phenotypic changes, we investigated genes with hypomethylated DMRs located in proximity 247 
of the TSSs. We identified 4,743 genes hypomethylated only in PMS fibroblasts, 3,133 genes 248 
hypomethylated only in PMS iNSCs, with 2,344 hypomethylated genes shared between PMS 249 
fibroblasts and iNSCs (Fig. 2D).  250 

We performed GSEA on the specific hypomethylated genes of the PMS fibroblasts, and 251 
found pathways associated with T cell activation, IL-12 production, and JAK-STAT signalling 252 
(Fig. 2E, Table S3). This was further supported enriched motifs associated with transcription 253 
factors in the PMS fibroblasts. These include SREBP1, known to regulate T cell growth and 254 
survival, as well as DDIT3, which is closely connected to JAK-STAT signalling (Fig. S1J).59,60 255 
Gene pathways specific to hypomethylation PMS iNSCs included cytokine production, TNF 256 
superfamily cytokine production, and regulation of I-κB kinase/NF-κB signalling (Fig. 2F). 257 
Additional analyses of enriched motifs identified STAT5 and IRF6, encoding proteins known 258 
to be involved in cytokine production, immune response, and senescence (Fig. S1J),61,62 and 259 
ARID5A, which encodes a protein involved in the immune response by stabilizing IL-6 mRNA 260 
(Fig. 2F, Fig. S1J).63 261 

To determine which pathways were epigenetically modulated between the PMS fibroblasts 262 
and iNSCs, we performed GSEA on genes commonly hypomethylated in both cell types. The 263 
results revealed genes encoding proteins with functions in pathways associated with lipid 264 
metabolism, inflammation, and IFN production (Fig. 2G). In a separate study, we performed 265 
metabolomics and lipidomics on the same Ctrl and PMS cell lines, which led to the 266 
identification of increased cholesterol synthesis in PMS iNSCs and a new role for this pathway 267 
in establishing and sustaining their pathological and neurotoxic phenotype.46 In addition, using 268 
published GWAS studies, genes associated with MS progression and pathology were 269 
identified such as leukocyte activation and differentiation, STAT signalling, and IFN 270 
production.64-66 Another example is IRF5, known to have associated gene variants in MS,67 271 
which we found hypomethylated at the promoter-TSS region, in both PMS fibroblasts and 272 
iNSCs (Fig. 2H).  273 

We also analysed hypermethylated genes, with DMRs located in the promoter regions and 274 
in proximity of the TSS. We found 2,946 genes specifically hypermethylated in PMS fibroblasts 275 
(vs Ctrl), 858 specifically hypermethylated in PMS iNSCs (vs Ctrl), and 291 shared 276 
hypermethylated genes (PMS fibroblasts vs Ctr iNSCs) (Fig. S1K). Analysis of the unique 277 
differentially hypermethylated genes revealed differences in pathways associated with RNA 278 
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metabolic processes and cell cycle in fibroblasts and pathways associated with transcription 279 
and neuronal differentiation in iNSCs (Fig. S1L-M). The hypermethylation pattern of genes 280 
that is shared between PMS fibroblasts and iNSCs included DNA-templated transcription and 281 
telomerase holoenzyme complex assembly (Fig. S1N). 282 

To further investigate the epigenetic regulatory modules defined from the WGBS dataset, 283 
we used de novo and directed HOMER analysis is to assay for enrichment of shared binding 284 
motifs between the PMS fibroblasts and iNSCs. This analysis identified NF-κB, a major 285 
transcription factor that regulates genes responsible for both the innate and adaptive immune 286 
response and is associated with senescence (Fig. 2I).66,68,69 These results were corroborated 287 
by the GSEA of the mRNAseq data, where an enrichment in genes associated with NF-κB 288 
was also observed in the PMS iNSCs (Fig. 1C).  289 

Our data suggest that PMS pathology is strongly linked to alterations of the epigenome, 290 
which we identified first in patient fibroblasts and confirmed in iNSCs. Many of these epigenetic 291 
differences are features of senescence and involve genes that regulate inflammatory, 292 
metabolic/lipid, and IFN pathways. Furthermore, when PMS fibroblasts are directly 293 
reprogrammed into iNSCs they also adopt an epigenetic landscape that is permissive for 294 
increased expression of proteins associated with secretion of inflammatory cytokines, 295 
specifically IL-6 and TNF-a. 296 

 297 
iNSCs share an RG-like signature that is identified in transcriptomic signatures from 298 
post-mortem human datasets 299 

Next, we explored the heterogeneity of iNSCs and the respective subpopulations driving the 300 
phenotypes observed in mRNAseq and WGBSseq sequencing.  301 

We first performed single cell (sc) and single-nucleus (sn) RNAseq coupled with ATAC 302 
sequencing on the Ctrl and PMS iNSCs to determine if there was a subpopulation of cells that 303 
were driving the phenotypes observed in the mRNAseq and WGBSseq (Fig. S2A). To 304 
minimize technical discrepancies between the two approaches, data-driven, specific filters 305 
were applied, on the proportions of reads incident to mitochondrial (MT) DNA and ribosomal 306 
proteins (RP). We retained cells with 15-40% RP ratios for the scRNAseq samples and 2-25% 307 
RP ratios for the snRNAseq data samples; across the dataset, a 20% MT ratio filter was 308 
applied (Fig. S2B-C). Additional filters rely on number of UMIs > 8,000, number of genes per 309 
cell > 1,000, log10 (genes per UMI) > 0.75. A total of 26,138 cells, across all samples, passed 310 
all filtering criteria, with median UMI counts per cell of 22,296. The average number of cells 311 
per sample was 3,267, ranging from 1,277 to 5,545; the average number of genes per cell 312 
was 5,725, ranging from 4,357 to 6,731 (Fig. S2D-E). 313 
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Using these filtering criteria for RNA analysis, we identified a total of 8 clusters (Fig. 3A). 314 
We applied the ClustAssess70 framework to determine the optimal parameters in a data-driven 315 
way using the Element Centric Similarity (ECS)71 as assessment criteria for the crisp 316 
partitioning of cells. The type of features (highly variable or most abundant) and number of 317 
features retaining signal (i.e. not biased by noise or shallow sequencing) were first determined 318 
on 20 iterations of ECS and summarized as element centric consistency (ECC). Next the 319 
number of neighbours for the community detection approach and the clustering method was 320 
also determined on high ECC distribution. The stable configurations linked number of clusters, 321 
number of the most frequent partition, and the resolution parameter (Fig. S2F-G). The 322 
distribution of ECC across the UMAP indicated a high stability for the selected number of 323 
clusters (Fig. 3B). We observed a quasi-uniform distribution of cells across all samples and 324 
conditions for all clusters (Fig. S2H).  325 

An indirect assignment of cluster identity was based on co-localisation of expression of 326 
standard genes for radial glia (RG), astroglial progenitors, and neuronal progenitors (gene lists 327 
in Table S4). We found that a majority of the iNSC clusters were defined by an RG-gene or 328 
astroglial progenitor gene signature, including the expression of SOX2, NES, PAX6, PTPRZ1, 329 
HES1, and CKB mRNAs (Figs. 3C-D). The majority of clusters (0-3, 5-7) had a radial glia 330 
and/or astroglial progenitor gene signature, encompassing 20-80% of cells within each 331 
individual cluster, defined expression thresholds (Fig. S2I-J). We also found a small proportion 332 
of neural progenitor cells primarily represented by cluster 4 (Fig. 3E, Fig. S2K). Genes 333 
associated with cell differentiation, including oligodendrocyte progenitor cells (PDGRA), 334 
oligodendrocytes (OLIG1, OLIG2, MBP), astrocytes (AQP4, ALDH1L1), and mature neurons 335 
(CALB, CCK) were lowly expressed across the samples and clusters (Fig. S2L, gene list in 336 
Table S4).72-75 This initial voting-scheme analysis suggests that proliferating iNSCs – similarly 337 
to hiPSC-NSCs76 – are a heterogenous population of cells displaying a transcriptional 338 
signature reminiscent of RG-like, astroglial progenitor cells, and a small subpopulation of 339 
neural progenitor cells, with little to no detection of terminally differentiated cells. 340 

We next assessed the proportion of cells belonging to either Ctrl or PMS iNSCs within the 341 
individual clusters. Strikingly, we found mostly equal representation amongst all clusters but 342 
cluster 5, which was significantly enriched with PMS iNSCs (Fig. 3F). Towards further 343 
understanding the biological role of the individual clusters we performed GSEA. Core clusters 344 
0, 1, and 3 were enriched for terms linked to CNS development, gliogenesis, and proliferation, 345 
while depleted of terms associated with cellular differentiation and pluripotency (Fig. 3G, Table 346 
S5). Cluster 4 was enriched in pathways related to neuronal and cortical development, with a 347 
coordinated depletion in the mitotic cell cycle genes (Fig. 3H). The remaining clusters were 348 
associated with mitochondrial organization and oxidative phosphorylation (cluster 2), glial cell 349 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579648
http://creativecommons.org/licenses/by-nc/4.0/


Park, Nicaise, Tsitsipatis et al. 
 

 11 

differentiation (cluster 6), and ion transport (cluster 7) (Fig. S3A-C). Cluster 5, showing a 350 
striking 6-fold higher frequency in PMS iNSCs (85.6% PMS vs 14.4% Ctrl) (Fig. 3F), was 351 
characterized by genes enriched for cytokine production, immune processes, and IFN 352 
signalling, and genes depleted for proliferation and regeneration (Fig. 3I).  353 

To evaluate the contribution of cell cycle genes to the transcriptomics signature of clusters, 354 
we identified the cell cycle stage using a priori defined gene sets. We note a strong 355 
representation of cells expressing G1-phase specific genes in cluster 4, a depletion of cells 356 
expressing G1-phase specific genes in clusters 1, 2, 3, and a depletion of cells expressing S-357 
phase specific genes in cluster 5, which further supports the GSEA analysis per cluster (Fig. 358 
S3D). 359 

To investigate the relevance of the in vitro iNSC model to human disease, we aligned our 360 
in vitro results with two independent, publicly available ex vivo human snRNAseq datasets 361 
from post mortem MS cases and controls.16,77 Using a panel of canonical RG genes that were 362 
also used to characterize the iNSCs (Table S4), we identified disease associated RG-like cells 363 
within the annotated astrocyte clusters in both datasets (ranging between 6.5 – 7.8% of total 364 
astrocyte cluster, Fig. 3J-K). When compared to the non-RG-like cells within the astrocyte 365 
cluster, RG-like cells exhibited a significantly higher proportion and expression of RG genes 366 
ETNPPL, PTPRZ1, SOX2, PAX6, and PCNA encoding a cell cycle marker (Fig. S3E-F). RG-367 
like cells expressed astroglial genes (Fig. 3C-D) and very little microglia-specific or 368 
oligodendrocyte progenitor cell-specific genes (Fig. S3E-F), further supporting their identity. 369 
To determine whether these newly identified RG-like cells hold neurogenic potential, we 370 
assessed related genes, including SOX11, DCX, and TUBB3 and found little expression in 371 
both RG-like and non-RG-like cells within the astrocyte cluster in both datasets (Fig. S3G). A 372 
large proportion of the RG-like cells expressed genes specific of G2M or S phases, which 373 
indicated their ability to progress through the cell cycle (Fig. S3H). Lastly, we assessed the 374 
proportion of RG-like cells across the different MS lesion types. Out of all the RG-like cells in 375 
both datasets, we identified that 50% were in chronic active lesions, whereas the smallest 376 
proportion of cells were found in control tissue (Fig. 3L-M).  377 

Therefore, we identify a small proportion of non-neurogenic RG-like cells in the healthy 378 
adult human brain, which significantly increase in frequency in chronic active lesions in the 379 
PMS brain.  380 

 381 
Patient iNSCs harbour a senescent, IFN-responsive RG-like cell cluster reminiscent of 382 
Disease Associated RG the PMS brain 383 

As cluster 5 was predominant in PMS iNSCs (vs Ctrl), we sought to further the disease-384 
associated transcriptomic signature of this cluster. Transcriptionally across all samples, cluster 385 
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5 showed a significant enrichment of genes associated with cellular senescence, IFN  a/b 386 
signalling, and RIG-I signalling, along with a depletion of genes associated with cell 387 
proliferation, DNA-templated transcription, and NOTCH1 signalling (Fig. 4A). Cluster 5 also 388 
had the highest expression of genes associated with IFN-a and -g response and the SenMayo 389 
gene set78 (vs core clusters 0-3) (Fig. 4B). We performed a differential expression analysis 390 
followed by GSEA of cluster 5 only specific markers and identified a strong enrichment for IFN 391 
and cytokine signalling pathways and SASP that was associated with high expression of IFIT1, 392 
ISG15, and NLRP2 in PMS iNSCs (vs Ctrl) (Fig. 4C). We confirmed the high expression of 393 
IFN-response genes (IFIT1, IFIT2) was linked to the hypomethylated promoter regions 394 
associated with IFN signalling seen in both PMS fibroblasts and iNSCs, identified in WGBS 395 
analysis (Fig. 2H). 396 

We next wanted to assess the expression of SenMayo and IFN a/b signalling gene sets in 397 
RG-like cells from the two human ex vivo snRNAseq datasets16,77 of post-mortem MS brains 398 
(Fig. 4D-E). A proportion (16-28%) of total RG-like cells – which we termed Disease 399 
Associated RG (DARGs) – in chronic lesions showed non-zero expression of the SenMayo 400 
gene set, whereas <5% of RG-like cells with the same features were identified in control 401 
tissues (Fig. 4F-G, Fig. S4A-B). We also identified an enrichment in IFN-associated mRNAs 402 
in DARGs located in chronic active lesions (Fig. 4H-I, Fig. S4C-D). 403 

We assessed whether the senescence and IFN-associated expression signatures are 404 
unique to DARGs by applying the same expression thresholds to the non-RG-like cells and 405 
analysing the datasets. Within chronic active lesions we identified a ~2.3-fold increase in the 406 
proportion of senescent DARGs (vs senescent non-RG-like cells) in both datasets16,77 (Fig. 407 
S4A-B). We then compared all lesion areas and identified a ~2-fold increase in the fraction of 408 
senescent DARGs in the edge of chronic active lesions, when compared to lesion core, 409 
chronic inactive lesion edge, periplaque white matter, and control white matter16,77 (Fig. S4A-410 
B). DARGs in Absinta et al.16 showed high expression of IFN-associated genes (vs non-RG-411 
like cells) in chronic active lesions (Fig. S4C), while displaying the same trend in chronic 412 
inactive lesions in Schirmer et al.77 (Fig. S4D). 413 

These findings provide further support to the existence of non-neurogenic DARGs in the 414 
PMS brain, particularly in chronic active lesions, with an inflammatory and senescent 415 
transcription signature. Notably, the direct reprogramming of patient somatic cells into stably 416 
expandable iNSCs allows for the recapitulation of distinctive disease-associated cellular 417 
phenotypes and gene signatures found in the post-mortem MS brain. 418 

 419 
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Disease associated senescent RG-like cells spread dysfunctional features towards 420 
other clusters 421 

We then performed pseudotime analysis to better understand the developmental trajectories 422 
of the RG-like cell cluster of PMS iNSCs with senescent and inflammatory signatures (Fig. 5). 423 
We removed the neural progenitor-associated cells (cluster 4) which allowed our analysis to 424 
focus on the establishment of inflammatory cluster 5. The initialization of the pseudotime 425 
focused on cluster 5, defined as the endpoint. The predicted trajectory started with core 426 
clusters 0, 1, and 3, progressed to cluster 2 and ended in cluster 5 (Fig. 5A). A community-427 
based clustering was applied on the gene expression levels, with the stability assessed using 428 
ClustAssess.70 Several gene modules i.e. clusters of genes with similar expression profiles 429 
across the pseudotime were predicted (Fig. S4E). We focused on three gene modules with 430 
distinct expression patterns. The expression profile of the first module (module 10) focused 431 
on the core clusters 0, 1, and 3. A gene enrichment analysis identified significantly elevated 432 
expression of genes associated with cell cycle terms, as well as TFs known to maintain 433 
NSC/RG identity such as SP2 (Fig. 5B, Table S6).79 Module 3, which consisted of mostly cells 434 
assigned to cluster 2, showed enrichment in terms associated with mitochondria and antigen 435 
processing and presentation, including NSC/RG-associated TFs E2F1 and PAX6 (Fig. 5C). 436 
These results support the GSEA enrichment on cluster 2 characterized by mitochondrial and 437 
metabolic gene pathways (Fig. S3B). Module 7 mostly overlapped with cells in cluster 5 and 438 
exhibited enrichment in IFN and cytokine signalling pathways, as well as TFs associated with 439 
IFN signalling (IRF3, STAT2) (Fig. 5D). This suggests that the progression towards cluster 5 440 
may originate in iNSCs with a cluster 2-like gene signature and display pathways associated 441 
with mitochondria and cellular metabolism. Therefore, an altered metabolic signature in PMS 442 
iNSCs, which we have recently described,46 may promote the resurgence of the newly 443 
identified IFN responsive RG-like cell cluster 5. 444 

Using the modules derived from the in vitro dataset, we next identified cells with similar 445 
transcriptomic signatures in the ex vivo post-mortem datasets.16,77 Focusing on the 446 
recalculated ex vivo UMAPs and underlining the RG-like cells (Fig. 3J-K), we inferred 447 
pseudotime trajectories on both datasets using the core of the RG-like cells (clusters 0, 1, 3) 448 
as an initialization point. (Fig. 5E-F). Next, we matched the gene modules determined in the 449 
in vitro and ex vivo datasets, respectively. Using the gene lists from the individual modules we 450 
cross-referenced the gene modules from the in vitro perspective (Fig. 5B-D, Table S6) and 451 
from the ex vivo perspective (Fig. S4F-G). For the Absinta et al. dataset we found coordinated 452 
gene expression within modules 5 and 7 that matched our in vitro curated modules and module 453 
7 matched the inflammatory, senescent cluster 5 (Fig. 5E, G) and was associated with DARGs 454 
in the chronic active lesion (Fig. 5G). In the Schirmer et al. dataset we found coordinated gene 455 
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expression within modules 4 and 7 (Fig. 5F, H). Genes that strongly contributed to module 7 456 
were associated with chronic inactive lesions (Fig. 5H).  457 

This analysis highlights the identification of a new cluster of senescent-like, inflammatory 458 
non-neurogenic DARGs stemming from astrocyte-like cells in the post-mortem MS brain. 459 

As senescence is associated with and perpetuated by secreted proteins, we next 460 
investigated ligand-receptor interactions between cluster 5 (as source of ligands) and other 461 
clusters (as source of receptors) in iNSCs using NicheNet80. With this modelling, Ctrl iNSCs, 462 
were enriched for ligand-receptor interactions regulating cell maintenance and differentiation 463 
(i.e., Notch signalling) (Fig. 5I).81 However in PMS iNSC, modelling predicted strong 464 
interactions between TRAF2 in cluster 5 with TNFRSF1B in clusters 0, 1, and 3, which 465 
anticipates induction of NFκB activation82 and NSC activation,83 along with a depletion in Wnt 466 
signalling via LRP6 (Fig. 5J-K).  467 

Next, we performed a cluster-by-cluster GSEA analysis and found that clusters 0, 1, and 3 468 
in PMS iNSCS were enriched for senescence pathways, particularly those associated with 469 
DNA damage and corresponding depleted for proliferation-related terms (Fig. 5L, Table S7). 470 
We also detected significant interactions between COL2A1 from cluster 5 and integrin-based 471 
receptors in cluster 2 (ITGB8, ITGAV, GP6), coupled with a depletion in NOTCH1 signalling 472 
(Fig. 5J-K). Enrichment analysis of genes in cluster 2 of PMS iNSCs further indicated 473 
enrichment in senescence, IFN signalling, and ECM and corresponding depletion in 474 
differentiation and DNA transcription that is known to be regulated by NOTCH signalling (Fig. 475 
5L). Analysis of clusters 4, 6, and 7 consistently identified enrichment of inflammatory-476 
associated terms (i.e., neurodegeneration, oxidative stress-induced senescence, and 477 
signalling by Ils) and a depletion in terms associated with NSC maintenance (i.e., Wnt 478 
signalling and cell cycle) (Fig. S4H). The enrichment in inflammatory terms in PMS iNSCs 479 
were linked to increased inflammatory interactions, stemming from cluster 5, between CCR3-480 
CCL5 and between A2M-MMP2 (Fig. 5J). 481 

To further test the hypothesis that the ligand-receptor interactions predicted above are 482 
relevant, we ran a cytokine array on the conditioned media (CM) from the bulk iNSC lines. 483 
Quantification of the cytokine array confirmed an increased secretion of cytokines associated 484 
with the SASP84 and inflammation (IL-6, IGFBP-3, and TNFα) in PMS iNSCs (vs Ctrl) (Fig. 485 
5M). 486 

We then quantified the expression levels of the genes coding for the upregulated SASP 487 
(Fig. 5M) using our mRNAseq data (Fig. 1A-E). Both TIMP2 and IGFBP2, along with the 488 
known SASP gene GDF15, were upregulated both at gene and protein levels (Fig. 1F and 489 
Fig. 5M-N). Next, we re-analysed the single-cell data for the genes and proteins associated 490 
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with the secreted factors identified in the mRNAseq and cytokine array, respectively, and 491 
confirmed the elevated expression in cluster 5 of TNF, FN1, and ISG15 (Fig. 5O). 492 

Overall, our findings suggest that the developmental trajectories of RG-like cells in cluster 493 
5 arise from cluster 2. Additionally, PMS iNSCs secrete inflammatory factors as part of their 494 
SASP, and that this may induce a dysfunctional, senescent phenotype in cells in other clusters.  495 

 496 

Integrative multi-omics reveals regulons defining inflammatory RG-like cell in 497 

PMS iNSCs 498 

To further investigate the epigenetic mechanisms that may contribute to the transcriptomic 499 
signature of the PMS iNSC cluster 5, we integrated the RNAseq data with single-nuclei 500 
chromatin accessibility data (snATACseq) using both matched and un-matched samples. For 501 
a high proportion of cells, the matched RNA and ATAC quantification was distributed 502 
proportionally across clusters (Fig. S5A). Next, we selected data-driven parameters and 503 
stable configuration (high ECC scores) on the ATAC modality using 30 iterations (Fig S5B-D) 504 
of ClustAssess. We identified 8 stable clusters on the ATACseq dataset. 505 

We then projected the RNA clusters onto the ATAC UMAP, and the ATAC clusters onto the 506 
RNA UMAP, respectively to evaluate the concordance of the two modalities (Fig. 6A-B). Next, 507 
we quantified the equivalence between the RNA and ATAC clusters by summarizing matching 508 
cell types/states, which allowed highlighting the agreement between RNA cluster 5 and ATAC 509 
cluster 8, well separated in the non-linear space from the other cells (Fig. 6C). Then, we 510 
confirmed that the inflammatory ATAC cluster 8 was primarily composed of PMS iNSCs (Fig. 511 
S5E). 512 

We also examined differentially accessible regions (DARs) specific to inflammatory ATAC 513 
cluster 8, by selecting the corresponding peaks and enriched motifs on downstream genes, 514 
associated with TFs. Our analysis identified that DARs that gained accessibility were 515 
associated with immune processes, IFN signalling, and cytokine production (IRF3, STAT2), 516 
and DARs that lost accessibility were associated with genes pertaining to neuron and 517 
astrocyte differentiation and neural crest cell fate specification (SOX4, SOX8) (Fig. S5F, Table 518 
S8).  519 

We next assessed the overlapping motifs significantly enriched for epigenetic changes in 520 
both PMS fibroblasts and iNSCs from the WGBS and from the predicted signature genes of 521 
RNA cluster 5, and identified common TFs including p53, E2A, and SMAD2 (Fig. S5G). As 522 
p53 and E2A are implicated in promoting immune function, involved in senescence, and in 523 
mediating IFN responses,85,86 our findings suggest that the chromatin accessibility for RNA 524 
cluster 5 closely predicts its RNA expression signature. Biologically, these cells are strongly 525 
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IFN-responsive and display RG-like signatures. Our identification of common motifs 526 
maintained from the fibroblasts during reprogramming to iNSCs in PMS cell types further 527 
confirms the involvement of epigenetic regulation in perpetuating the senescent and IFN-528 
response in the iNSCs.  529 

Since IFN signalling was found to be strongly involved in RNA cluster 5, we next 530 
investigated the chromatin accessibility at the promotor regions. We identified increased 531 
accessibility of IFIT1 in ATAC cluster 8, corresponding to increased expression in RNA cluster 532 
5 (Fig. S5H). We next investigated genes that are known targets of the regulator of IFIT1, 533 
IRF1, which we identified to be enriched in the bulk mRNAseq of PMS iNSCs (Fig. 1C). IRF1 534 
is a key transcription factor implicated in facilitating TNF-a-induced senescence and is known 535 
to be anti-proliferative and pro-inflammatory.87 Within the IRF1 targets, notably IFIT3, IFIT5, 536 
and OAS2, known as IFN-response genes, we found clear associations between RNA 537 
expression (RNA cluster 5) and chromatin accessibility near TSS (+/- 3 kb) as well as in 538 
potential regulatory regions (+/- 50 kb from TSS) in ATAC cluster 8 (Fig. 6E). These data 539 
support the hypothesis that cells in RNA cluster 5 have permissive chromatin that underlies 540 
persistent activation of IFN-responses via IRF1. 541 

The pseudotime analysis predicts RNA cluster 2 was most closely related, and strongly 542 
interacting with RNA cluster 5 based on ligand-receptor inference, so we next examined if a 543 
similar gene expression and chromatin accessibility signature could be identified in both 544 
clusters.  545 

Some overlapping genes were found in cluster 2 with similar changes in nearby chromatin 546 
accessibility and included inflammatory genes HAX1 and SERPINH1 (Fig. 6E). Grouped 547 
clusters 0, 1, 3 exhibited little expression of IRF1 target genes. GSEA on shared ATAC 548 
signatures, both for gain and loss of accessibility suggested that common gain of accessible 549 
regions were associated with stress response and blood brain barrier (BBB) maintenance, 550 
whereas loss of accessible sites correlates with notch and BMP signalling, and senescence 551 
pertaining to cell proliferation (Fig. S5I-J). This downregulation in notch and BMP signalling in 552 
cluster 2, based on interactions with cluster 5, was also predicted from the ligand-receptor 553 
interaction analysis (Fig. 5K). Importantly, not all changes in chromatin accessibility correlate 554 
directly to variation in mRNA (Fig. S5J). 555 

To further understand patterns based on chromatin accessibility and RNA expression, we 556 
subdivided gene sets based on RNA upregulation in RNA clusters 0, 1, 3, and depletion in 557 
RNA clusters 2 and 5, and found enrichment for terms pertaining to Wnt signalling and NSC 558 
maintenance (Fig. 6F). We also found increased accessibility near the TSS of the RNA cluster 559 
5 upregulated genes, again suggesting aberrant permissive chromatin in these cells promoting 560 
increased expression. When assessing coordinated upregulation of gene expression in RNA 561 
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clusters 2 and 5, we found enrichment in terms associated with mitochondrial transmembrane 562 
transport, protein import, and telomerase RNA localization (Fig. 6F). These results support a 563 
close interaction between RNA clusters 2 and 5, with cluster 5 being specifically IFN-564 
responsive. 565 

Lastly, we inferred single-cell regulatory networks using SCENIC88. We observed that RNA 566 
cluster 5 was defined by two major regulons, IRF1 and FOXP2, that was associated with 567 
genes regulating TNF and IFN signalling, as well as the p16-cyclin complex related to 568 
senescence (Fig. 6F, Table S9). PAX6 was also identified as a major regulon across all 569 
clusters of the iNSCs and was defined by genes associated with nervous system 570 
development, supporting their RG-like state. Overall, RNA cluster 5, primarily represented in 571 
PMS iNSCs, is consistently defined by gene regulatory patterns that are associated with an 572 
IFN-responsive and senescence state. 573 

In summary, our work demonstrates that direct reprogramming technology maintains 574 
hallmarks of PMS in cells due to maintenance of epigenetic memory. We reveal that patient 575 
fibroblasts have hypomethylation at genes associated with lipid metabolic processes and IFN 576 
signalling, which then became further accentuated upon direct induction into iNSCs.  577 

Within the heterogeneous PMS iNSCs, we identify a novel disease associated cluster of 578 
IFN-responsive, inflammatory RG-like cells that display senescent features and are regulated 579 
by IRF1, which may spread dysfunctional features towards other clusters through their 580 
secreted factors. 581 

Integration with publicly available datasets further identifies and highlights a long-neglected 582 
non-neurogenic DARG population, which is found significantly increased in chronic active 583 
lesions areas and display IFN and senescence gene expression. 584 

 585 
 586 
 587 

DISCUSSION 588 

PMS is a complex neuroinflammatory and neurodegenerative disease that results from the 589 
interaction between environmental factors and genetic predisposition. The majority of genetic 590 
risk factors that have been identified in the development and progression of MS are associated 591 
with the peripheral immune system, mapping mainly to T cells, however recent work has also 592 
uncovered variants in genes expressed by glial cells.89,90 MS severity has also been linked to 593 
variants involved in mitochondrial function, synaptic plasticity, and cellular senescence in 594 
genes expressed in the CNS.18 To further understand how intrinsic glial cell dysfunction in 595 
PMS contributes to disease pathology we generated directly reprogrammed iNSCs.  596 
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Characterization of directly reprogrammed iNSCs showed PMS donor-derived cells 597 
reproduced reported phenotypes of increased expression of inflammatory signalling and 598 
senescence associated genes compared to Ctrl cells.17 Further, patient iNSCs maintained 599 
shorter telomere lengths compared to controls, indicating this type of reprogramming better 600 
maintains features of the donor cells that may be critical in driving the PMS phenotypes. We 601 
then established that iNSCs also maintained epigenetic signatures, as determined by DNA 602 
methylation age, after reprogramming from fibroblasts, indicating that this method of cellular 603 
reprogramming may conserve epigenetic information important for disease phenotypes. 604 
Globally, cell lines derived from people with PMS were found to have lower levels of DNA 605 
methylation, with enrichment of hypomethylation at promoter regions of targets for 606 
inflammatory transcription factors, such as STAT6 and NFκB. Interestingly, global 607 
hypomethylation has been identified to occur with aging in various organs in both mice and 608 
humans, which is believed to contribute to genome instability .91  609 

Concordantly, hypomethylated regions in the PMS fibroblasts and iNSCs were enriched for 610 
pathways involved in immune response, suggesting global aberrant epigenetic regulation in 611 
individuals with the disease. Previous work has characterized global methylation signatures 612 
in the whole blood of people with MS and identified that half of the differentially methylated 613 
positions mapped to genes enriched in CNS cells and pathways.92 This work identified 614 
neurodegenerative-related pathways as epigenetically dysregulated in severe MS cases, 615 
which correlated with acceleration of methylation age.92 Intriguingly, we also characterize a 616 
loss of methylation in genes that regulate lipid metabolism, implicated in Ionescu, Nicaise et 617 
al.46 Given these pathways appear to be highly relevant to PMS phenotypes, we believe 618 
human iNSC methodologies provides an excellent, and biologically valuable, platform for 619 
studying mechanisms driving disease. 620 

Combined single-cell and single-nucleus RNA data analysis allowed us to better 621 
characterize heterogenous iNSCs. Here we identified cells with both neural and RG 622 
phenotypes, and importantly were able to find cells with matching transcriptional profiles from 623 
datasets generated from post-mortem MS brains. We found that most of the cell clusters were 624 
identified by radial glial genes (SOX2, PAX6), with one cluster which we identified with a neural 625 
progenitor signature (DCX, ASCL1). Within these clusters, we define a novel subset of cells 626 
that is predominantly composed of cells derived from PMS donor fibroblasts. This unique RNA 627 
cluster 5 displays an inflammatory phenotype expressing many features of senescence and 628 
interferon signalling and response.  629 

The mechanisms underlying senescence and IFN signalling are intertwined. IFN response 630 
can be triggered by a myriad of stimuli, including extra and intracellular double-stranded (ds) 631 
RNA and DNA from cell stress and apoptosis, cytosolic DNA, viruses, and microbes, which in 632 
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turn activates a pro-inflammatory response.93 Over the course of aging, IFN pathways have 633 
been found to become aberrantly activated, which leads to global inflammation (inflammaging) 634 
and senescence.94 The presence of an IFN signature in brain cells is increasingly being 635 
associated with aging and neurodegenerative diseases in rodent models and humans.95-98 636 
Type I IFN signatures are found upregulated in the aged brain, especially the choroid plexus, 637 
and in neurodegenerative diseases, where it may lead to recruitment and activation of immune 638 
cells and eventual neurodegeneration. Interestingly, in our model system, we identify 639 
hypomethylation of genes associated with IFN signalling in PMS fibroblasts, indicating a 640 
potential predisposition for developing an IFN response in people with PMS. Once fibroblasts 641 
are reprogrammed to iNSCs, they take on an even more pronounced IFN phenotype 642 
associated with senescence gene expression. 643 

From the single-cell data, we establish not only the heterogeneity of iNSCs derived from 644 
both Ctrl and PMS donors, but also define a novel subset of disease associated RG-like cells 645 
that could be the ‘drivers’ of the inflammatory signature seen in the analysis of bulk PMS 646 
iNSCs. In fact, through ligand/receptor predicted interactions, the secretory factors from this 647 
– PMS mostly – IFN-responsive and senescent-like RNA cluster 5, could induce inflammatory-648 
associated signatures (i.e., neurodegeneration, oxidative stress induced senescence, and 649 
signalling by Ils) and inhibit NSC maintenance (i.e., Wnt signalling, and cell cycle) in the other 650 
iNSC clusters, thus suggesting that RNA cluster 5 can further affect surrounding cells via 651 
amplification of such inflammation. Independent work from our group, further supports a key 652 
role for disease associated paracrine factors in conditioned iNSC media to induce neurite 653 
retraction and neuronal apoptosis.46 654 

While the mechanisms of this RG-intrinsic intrinsic dysfunctional phenotype in PMS are still 655 
unknown, however, we do find epigenetic signatures starting even with the donor fibroblasts. 656 
Recently, neurodegenerative diseases have been found to be highly associated with viral 657 
exposure,99 and in the case of MS the Epstein Barr virus (EBV) increases risk of disease.100 658 
Viral exposure combined with chronic inflammation in PMS may induce global epigenetic 659 
changes, affecting cells such as fibroblasts, found to be stressed in people with MS.101 660 
Furthermore, the activation of human endogenous retroviruses (HERVs) in unique cell 661 
populations are also associated with chronic inflammatory neurodegenerative diseases102 and 662 
brain injuries.103 HERVs can be activated via inflammatory stimuli and induce an IFN response, 663 
similar to that of a viral infection. 664 

Epigenetically, we identify sites with gains of accessibility are associated with IFN-response 665 
and signaling as well as cytokine production in RNA cluster 5 (corresponding to ATAC cluster 666 
8) composed mainly of PMS derived cells. The epigenetic remodelling in this cluster was also 667 
associated with increased accessibility at binding sites of the p53 motif, known to be activated 668 
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in response to cellular stress and DNA damage and promotes sustained IFN signaling and 669 
response.85 670 

Using publicly available datasets from MS post-mortem brains, we assessed the 671 
expression of RG genes and identified non-neurogenic RG-like cells within well-known 672 
astrocyte clusters. Recent work has demonstrated that astrocytes exhibit plasticity in injury 673 
situations.41 Human pathologies which involved lesions and blood-brain barrier rupture were 674 
associated with a de-differentiation of astrocytes to replicating NSC/RG-like cells.41 675 
Furthermore, this has been previously validated in rodent models where epithelial injury allows 676 
for neural precursors to dedifferentiate into multipotent NSCs in the olfactory epithelium.104 677 
Based on these studies, astrocytes in PMS may be undergoing (i) a de-differentiation (or de-678 
maturation) process, where they begin to express cell cycle and early RG-like cell markers 679 
due to exposure of chronic inflammation, and a (ii) resurgence as non-neurogenic RG-like 680 
cells at the level of disease-associated, ectopic, non-canonical niches.  681 

Integration of our in vitro iNSC data with publicly available datasets in fact identifies and 682 
highlights a long-neglected, non-neurogenic disease-associated RG-like cell population, being 683 
found significantly increased in chronic active lesions areas and displaying IFN and 684 
senescence gene expression, which we term DARGs.  685 

Interestingly, we identify twice as many DARGs in chronic active PMS lesions, which are 686 
slowly expanding in nature, feature smouldering inflammatory demyelination at the edge, 687 
remyelination failure, and axonal degeneration,105 and are associated with a more aggressive 688 
disease106. Further characterization of the phenotype of this novel DARG population showed 689 
increased expression of the SenMayo and IFN-associated genes compared to the astrocyte 690 
cluster. 691 

Overall, our work shows there are epigenetic alterations in somatic fibroblasts isolated from 692 
people with PMS, and many of these epigenetic modifications remain following direct 693 
reprogramming into iNSCs. These epigenetic alterations are associated with de-repression 694 
(hypomethylation and increased chromatin accessibility) of IFN signalling and response as 695 
well as inflammation. We further uncover a novel subset of PMS iNSCs with high levels of 696 
inflammatory signalling, which we propose drives much of the bulk phenotype. 697 

Lastly, we uncover a long-neglected DARG population in the PMS brain, which has similar 698 
transcriptomic profiles as the in vitro PMS iNSCs, including expression of senescence and 699 
IFN transcripts.  700 

Our research lays the groundwork for further investigating ‘disease-pacemaker’ non-701 
neurogenic RG-like cells in potentially driving neuroinflammation in neurodegenerative 702 
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disease. Future work is needed to identify the origin and driver of epigenetic dysfunction 703 
arising in the cells of people with PMS.  704 

 705 
 706 
 707 

LIMITATIONS OF STUDY 708 

While we generated cell lines from individuals with PMS, the variations in genetic 709 
backgrounds, sex, and age among these lines pose a potential limitation. Despite our thorough 710 
analysis of both patient and control cell lines, we acknowledge the necessity for additional 711 
validation of our findings in situ. Additionally, the inclusion of induced pluripotent stem cells 712 
(iPSCs) from the same donors would have enhanced the data quality, allowing for a more 713 
robust interrogation of the observed cellular phenomena. Single-cell spatial assays could offer 714 
a more comprehensive understanding of our results, particularly in capturing differences 715 
related to disease-relevant microenvironments and surrounding cells (neighbours).  716 

 717 
 718 
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FIGURE LEGENDS 760 

 761 
Figure 1. Bulk mRNAseq reveals increased inflammatory signalling and senescence 762 
markers in PMS iNSCs. 763 
A) PCA summarizing the co-variation of expression levels in the mRNA sequencing. C and P 764 
are independent cell lines (Table S1).  765 
(B) Volcano plot illustrating differentially expressed genes, vs log2 abundance in PMS iNSCs 766 
compared to Ctrl iNSCs. Log2(FC) vs adjusted p-values (with Benjamini Hochberg multiple 767 
testing correction) are reported.  768 
(C-D) Pathway enrichment analysis on GO and REAC terms and enriched transcription factors 769 
(TF) based on TransfFac annotation, from mRNA sequencing.  770 
(E) Gene regulatory networks, inferred on manually curated, differentially expressed genes 771 
contrasting of Ctrl vs PMS iNSCs networks, derived from the mRNA sequencing. 772 
(F) Representative western blots and quantification for p16Ink4a, GDF15, and β-actin. 773 
(G) Quantification of relative fluorescence intensity (RFI) of senescence-associated β-774 
galactosidase expression using SPiDER-β-gal. Data represented as a fold change over Ctrl 775 
iNSCs. 776 
(H) Flow cytometry-based quantification of iNSC cell cycle states. Data plotted as cells in 777 
percent of cell cycle state. 778 
(I) Quantification of changes in PMS relative telomere length (RTL) over Ctrl iNSCs. 779 
Experiments in F-I were done on n= 3 Ctrl and n= 4 PMS iNSC lines each performed in n= 3 780 
replicates. Data in F-I are mean values ± SEM. *p £ 0.05, **p£ 0.01, ***p£ 0.001, un-paired t-781 
test, with unequal variances. 782 
  783 
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 784 
Figure 2. Whole genome bisulfite sequencing (WGBS) uncovers inflammatory 785 
pathways found commonly hypomethylated in PMS fibroblasts and iNSCs. 786 
(A) PCA summarizing methylation quantified in the WGBS data for fibroblasts and iNSC 787 
samples (Table S1). 788 
(B) Cortex age DNA methylation aging clock inference. Dashed line indicates chronological 789 
age at which FBs samples were sampled. 790 
(C) Frequency of differentially methylated cytosines (DMC), plotted as Ctrl vs. PMS. 791 
(D) UpSet plot of hypomethylated genes within the promoter-transcription start site (TSS) 792 
region. 793 
(E-F) Heatmap and enrichment analysis of hypomethylated genes. 794 
(G) Enrichment analysis of commonly hypomethylated genes in PMS (vs Ctrl) fibroblasts (light 795 
green) and iNSCs (light blue). 796 
(H) Example of methylation difference for IRF5 (genome browser tracks), as in G. 797 
(I) Proportional sequence logos on HOMER motifs resulting from an enrichment analysis from 798 
E. 799 
  800 
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Figure 3. iNSCs display a RG-like transcriptomic signature that can be identified in the 802 
adult human brain using single nuclei sequencing.  803 
(A) UMAP of Ctrl and PMS iNSC single-cell, -nucleus RNAseq samples, post quality checking 804 
and filtering; a stable partitioning of cells is also highlighted. 805 
(B) Element centric consistency, derived on 30 iterations, calculated per cell, and visualized 806 
on the RNA UMAP. 807 
(C-E) Voting scheme of genes associated with a RG-like signature (C), astroglial progenitor 808 
signature (D), and neural progenitor signature (E) as in A. 809 
(F) Cluster distribution in human iNSCs on the RNA UMAP. The histogram summarizes cell 810 

proportions per cluster. **p £ 1e-106 (X2 test). 811 
(G-I) Enrichment analysis of enriched and depleted terms in clusters 0, 1, 3 (G); cluster 4 (H); 812 
cluster 5 (I) vs all other clusters; recalculated RNA UMAPs illustrating the distribution Ctrl vs 813 
PMS cells. 814 
(J-K) Recalculated UMAPs of RG-like cells in two ex vivo MS datasets, Absinta et al., 2021 815 
(J) and Schirmer et al., 2019 (K). OPCs, oligodendrocyte progenitor cells. 816 
(L-M) Voting scheme UMAPs and histograms summarizing the frequency of RG-like cells (and 817 
non-RG-like cells per area of interest as in J-K. WM, white matter. 818 
  819 
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 820 
Figure 4. A specific PMS iNSC cluster displays senescence and IFN-signalling which is 821 
also identified in DARGs of the PMS brain. 822 
(A) Heatmap of RNA cluster 5 signature markers and summary of associated enrichment 823 
terms. Voting scheme UMAP of genes associated with IFN- a/b signalling and NOTCH1 824 
signalling. 825 
(B) Enrichment plots of the SenMayo gene set, and the IFN-a, and IFN- g response in cluster 826 
5. 827 
(C) Heatmap of standardized expression of highly expressed vs depleted transcripts, specific 828 
to only PMS cells vs Ctrl cells in RNA cluster 5 and selected enriched pathways significant for 829 
the selected genes. 830 
(D-E) Recalculated UMAP on the filtered cells identified as DARGs in Figure 3L-M. Stacked 831 
Histograms summarizing the frequency of cells per lesion area. 832 
(F-I) UMAPs and histograms of DARG frequency that express genes in the SenMayo gene 833 
set and IFN- a/b signalling gene set respectively from Absinta et al., 2021 and Schirmer et al., 834 
2019 data. 835 
  836 
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 837 
Figure 5. PMS iNSCs secrete a pro-inflammatory SASP that induces upregulation of 838 
genes associated with inflammation and senescence. 839 
(A) Pseudotime trajectory inferred and displayed on the in vitro dataset UMAP. Cluster 5 was 840 
used as initialization point (endpoint). 841 
(B-D) UMAP of the distribution of intensity of genes clustered in modules 10 (B), 3 (C), and 7 842 
(D), determined based on the pseudotime ordering. GSEA summary and TFs corresponding 843 
to gene modules 10 (B), 3 (C), and 7 (D). 844 
(E-F) UMAP of pseudotime trajectory inferred from the Absinta et al., 2021 (E) and Schirmer 845 
et al., 2021 (F) datasets, respectively. The heatmaps summarize the scaled proportions of 846 
common genes matching between iNSC in vitro modules 10, 3, and 7 with ex vivo modules. 847 
(G-H) Modules selected from the ex vivo datasets as in E-F recapitulating the manually 848 
curated modules (B-D) identified on the in vitro pseudotime trajectory. The heatmaps 849 
summarize the scaled averaged expression of the in vitro gene modules, projected on the ex 850 
vivo datasets. 851 
(I-K) Circos plots of the intercellular ligand-receptor interactions predicted using NicheNet. (I) 852 
Yellow directed edges indicate interactions, (J) red edges summarize enriched ligand/receptor 853 
interactions i.e. upregulated target genes, (K) blue edges summarize depleted ligand/receptor 854 
interactions i.e. downregulated target genes, between cluster 5 and complement clusters in 855 
Ctrl and PMS iNSCs.  856 
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(L) Enrichment summary on enriched and depleted genes in clusters 0,1,3 and cluster 2 (Ctrl 857 
vs PMS). 858 
(M) Heatmap of cytokine array performed on CM. Colour intensities are proportional with 859 
standardized normalized intensities. Proteins investigated also in the mRNAseq (N) are 860 
highlighted in red. 861 
(N) Heatmap of standardized normalized expression levels of genes coding for secreted 862 
proteins as in M. Genes investigated also in the single cell data (O) are highlighted in red. 863 
(O) Expression gradient UMAPs of the selected secreted proteins as genes (N). 864 
  865 
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 866 
Figure 6. Multi-omics RNA/ATAC integration with further epigenetic characterization of 867 
cluster 5 cells. 868 
(A) ATAC UMAP of the overlaid localization of RNAseq clusters. 869 
(B) RNA UMAP of the overlaid localization of snATACseq clusters. 870 
(C) Heatmap of the percentage of matched assignations of cells across the snRNAseq and 871 
snATACseq clusters. The analysis was performed solely on matched cells i.e. cells with both 872 
RNA and ATAC expression. 873 
(D) Enriched motifs of signature and differentially accessible genes identified on the RNA 874 
cluster 5, and ATAC cluster 8.  875 
(E) Heatmap of accessibility (ATAC) and expression (RNA) of IRF1 targets, i.e. TSS, RNA, 876 
and distal portions of marker genes identified as differentially expressed between grouped 877 
RNA clusters 0, 1, 3 vs cluster 2, and cluster 5, respectively. 878 
(F) Heatmap of marker genes, between clusters 0, 1, 3 vs 2 and 5. The summary of enrichment 879 
analysis applied on the selected genes. 880 
(G) SCENIC GRN inference summary and selection of IRF1 specific regulons, corroborated 881 
with enrichment analysis of regulons (IRF1, FOXP2, PAX6). The GRN inference was 882 
performed on the scRNAseq dataset.  883 
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METHODS 884 

Data and code availability 885 
All codes used in the study are available on github: https://github.com/Core-886 
Bioinformatics/DARG_PMS 887 
• Any additional information required to reanalyse the data reported in this paper is available 888 
from the lead contacts upon request.  889 
• All data generated for this study, in raw and processed format, are publicly available on 890 
the Gene Expression Omnibus (GEO), under accessions GSE243319, GSE251839, 891 
GSE251831, GSE251838, and GSE251830. Further data mining of processed data may be 892 
performed on bulkAnalyseR for bulk sequencing datasets and ClustAssess and Shiny Cell 893 
apps (https://bioinf.stemcells.cam.ac.uk/shiny/pluchino/DARG_PMS/bulkanalyser/, 894 
https://genomicspark.shinyapps.io/shinyApp/) for single-cell/ nuclei datasets. UCSC genome 895 
browser sessions for these datasets comprise: https://genome-896 
euro.ucsc.edu/s/CSCI/DARG_PMS and http://tinyurl.com/2ygsa6or. 897 
 898 

 899 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 900 
Patient cells 901 
The cohort consists of 5 PMS and 3 healthy controls between 25 and 63 years of age. The 902 
cohort includes representation from both genders, distributed across PMS and control groups 903 
(Table S1). PMS fibroblasts were provided by the New York Stem Cell Foundation (NYSCF) 904 
Research Institute through their Repository (http://www.nyscf.org/repository)107. Patients were 905 
recruited at the Tisch Multiple Sclerosis Research Center of New York, upon informed consent 906 
and institutional review board approval (BRANY). PMS donors underwent clinical assessment 907 
when recruited for the study. Control fibroblasts C1 and C2 (Table S1) were generated from 908 
adult dermal fibroblasts after obtaining consent and ethical clearance by the ethics committee 909 
of the University of Würzburg, Germany. 910 
 911 
Generation and culturing of induced neural stem cells 912 
iNSC lines were generated and quality controlled as described in Ionescu, Nicaise et al.46 and 913 
Meyer et al.45 iNSCs were maintained in neural induction media (NIM) consisting of 914 
DMEM/F12 and Neurobasal (1:1) (ThermoFisher), supplemented with N2 supplement (1x) 915 
(ThermoFisher), 1% glutamax (ThermoFisher), B27 supplement (1x) (ThermoFisher), 916 
CHIR99021 (3 µM) (Cell Guidance Systems), SB-431542 (2 µM) (Cayman Chemical), and 917 
hLIF (10 ng/ml) (PeproTech) until 70% confluent, then lifted using accutase, spun at 300 x g 918 
for 3 mins, and plated onto growth factor reduced (GFR) matrigel matrix coated plates 919 
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(Corning) (1:20 in DMEM/F12) with Y-27632 (10 µM) (Miltenyi Biotec) between 1:3-1:5 in NIM 920 
media. Media was changed every second day as needed. Experiments were performed on 921 
cells from passages 20-35. 922 
 923 
Fibroblast maintenance 924 
Fibroblasts were maintained in growth medium (DMEM Glutamax I [Thermo Fisher]) 925 
supplemented with 10% fetal bovine serum, 1% non-essential amino acids and 1 mM sodium 926 
pyruvate (ThermoFisher) at 37°C with 5% CO2 and fed every 3-4 days. After reaching 90% 927 
confluency the fibroblasts were detached with trypsin-EDTA 0.05% for 5 min followed by 928 
neutralization in DMEM and spun down at 300xg for 5 min. They were split 1:4 into growth 929 
media onto tissue-culture treated plasticware. 930 
 931 

 932 

METHOD DETAILS 933 
mRNA sequencing, analysis, and inference of Gene Regulatory Networks (GRNs) 934 
iNSC lines, between passages 15-30, were plated at 500,000 cells per well in GFR-coated 6-935 
well plates. After 24 hours, the media was refreshed with new NIM. Cells were harvested in 936 
RLT lysis buffer 72 hours after plating then frozen at -80°C until extraction. RNA extraction 937 
was performed according to standard steps described for the RNeasy kit, followed by DNase 938 
treatment (Qiagen). RNA was quantified using the NanoDrop 2000c instrument. Illumina 939 
Sequencing libraries were prepared using the TruSeq low sample protocol from 1 µg of total 940 
RNA (Illumina, San Diego, CA, USA). The resulting libraries were sequenced in paired-end 941 
mode, on 150 nts reads on an Illumina NovaSeq 6000 instrument. 942 
The quality checking of the samples was assessed using fastQC v0.12.11, applied on raw 943 
files; the outputs were summarised using multiQC 1.14.108 Initial sequencing depths ranged 944 
from 30M to 44M reads; subsampling without replacement, done using seqtk 1.3-r106 109, was 945 
performed to 34M reads, to avoid inconsistencies caused by uneven sequencing depths.110 946 
All samples were aligned to the GRCh38.p13 genome using STAR 2.7.10a (paired-end 947 
mode).111 Expression quantification was performed using featureCounts v.1.6.3.112 The 948 
distribution of signal across transcripts was assessed on the UCSC genome browser. The 949 
tracks (bigwig format) were built from the bam files using samtools 1.17.113 Next, noisyR 1.0.048 950 
was used to estimate and remove noise from the count matrix; the raw expression levels were 951 
normalised using quantile normalisation.114 Differentially expressed genes (DEGs) were 952 
identified using edgeR50 and DESeq249; due to the noise correction the DEG calling 953 
converged; p-values were adjusted using Benjamini-Hochberg multiple testing correction. 954 
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bulkAnalyseR 1.1.047 was used to build a shareable interface for the analysis and visualisation 955 
of data.  956 
The Gene Regulatory Networks (GRNs) were predicted, and their dynamics assessed, on the 957 
bulk RNAseq data using a bulkAnalyseR ShinyApp.47 Additional analyses were performed 958 
using GENIE3115 and visNetwork116 to visualise subgraphs according to selected pathways 959 
and a maximum of 30 edges. To assess the global trend in co-variation of expression, for 960 
genes annotated to the selected pathways, density plots were created, per pathway, on the 961 
weights of the edges in the larger GRNs (corresponding values in the global adjacency matrix). 962 
 963 
Immunoblotting 964 
iNSCs were homogenized in 10X RIPA buffer (Abcam) supplemented with 100X protease and 965 
phosphatase inhibitors (ThermoFisher). Protein concentration was assessed using a BCA 966 
assay (ThermoFisher). Equal protein amounts (25 µg) were resolved by SDS-PAGE on Bolt™ 967 
Bis-Tris Plus pre-cast 4-12% gradient gels (Invitrogen) and transferred to 0.45 mM 968 
polyvinylidene fluoride (PVDF) membranes (Thermo Scientific). Membranes were blocked 969 
with TBS blocking buffer (LI-COR Biosciences) and immunoblotted with the indicated 970 
antibodies: mouse anti-p16Ink4a (Invitrogen) at 1:500, rabbit anti-GDF15 (Proteintech) at 971 
1:1000, and mouse anti-b-actin (Sigma) at 1:5000 in TBS blocking buffer (LI-COR 972 
Biosciences) with 0.1% Tween, followed by fluorescent secondary antibodies IRDye 680RD 973 
Goat anti-Rabbit or IRDye 800CW Goat anti-Mouse (LI-COR Biosciences) at 1:10,000 in TBS 974 
blocking buffer (LI-COR Biosciences) with 0.1% Tween and 0.01% SDS. The immunoblots 975 
were visualized with the ChemiDoc MP Imaging system (Bio-Rad). Densitometric analysis was 976 
conducted with Fiji by ImageJ. Protein targets were normalized to β-actin. 977 
 978 
SPiDER-gal 979 
Cells were plated on black-walled, clear bottom 96-well plates (ThermoFisher, 165305) at 980 
15,000 cells/well and maintained in culture for 5 days. Expression of senescence associated 981 

β-galactosidase was measured by a SPiDER- b-gal-based cellular senescence plate assay kit 982 
(Dojindo) according to manufacturer’s instructions. Briefly, cells were washed with PBS, 983 
stained with 1 μg/mL Hoechst (Sigma-Aldrich) as a measure of cell number, washed again, 984 
before the fluorescence intensity was measured at 358nmEx/461nmEm. Cells were then lysed 985 
with the provided buffer and the SPiDER-b-gal stain was added and incubated at 37°C 986 

overnight. Fluorescence intensity was measured at 520ex/565em. The SPiDER-b-gal 987 
fluorescence intensity of each well was corrected for the autofluorescence of empty wells and 988 
normalized to the Hoechst fluorescence intensity of the respective well to normalize for cell 989 
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number. The resulting average SPiDER-b-gal/Hoechst fluorescence intensity of each cell line 990 
was normalized to that of healthy control cell lines.  991 
 992 
Cell Cycle Analysis 993 
iNSCs were plated at a density of 80,000 cells/cm2 on GFR-coated plates. After 3 days cells 994 
were lifted using accutase and then pelleted at 500 x g for 5 minutes. The cells were fixed in 995 
70% ethanol for 30 minutes on ice then pelleted at 850 x g for 5 minutes. The cell pellet was 996 
resuspended in RNase (100 ug/mL) for 15 minutes and incubated at room temperature. 997 
Propidium iodide (1 ug/mL) was added to each sample and cells were analysed on a BD 998 
LSRFortessa with the flow rate on slow. 20,000 events were collected for each sample. The 999 
data was analysed using FlowJo 10.9 software using the Dean-Jett-Fox approach.  1000 
 1001 
Telomere length analysis 1002 
Relative telomere length was assessed using the Joglekar et al. protocol using quantitative 1003 
PCR (qPCR) and comparison to that of a single copy gene.117 iNSCs were plated at a density 1004 
of 80,000 cells/cm2 on GFR-coated plates. After 3 days cells were lifted using accutase and 1005 
then pelleted at 500 x g for 5 minutes. DNA was isolated according to the DNeasy Blood & 1006 
Tissue Kit (Qiagen) and quantified using the Nanodrop 2000c instrument. For initial 1007 
optimization of the qPCR reaction, the DNA was diluted to three different concentrations (100 1008 
ng/μL, 25 ng/μL, 6.25 ng/μL), and it was determined that 100 ng/uL had the best efficiency for 1009 
both the human β-globulin and telomere primers. Two PCR reactions were separately 1010 
conducted, for human β-globulin the mastermix was made using 5 μL Fast SYBR Green 1011 
(ThermoFisher), 1 μL of hbg1 primer (3 μM), 1 μL of hbg2 primer (7 μM), and 2 μL of nuclease-1012 
free water. The reaction was cycled at 58°C annealing temperature along with a melt curve 1013 
analysis using a QuantStudio 7 Flex (ThermoFisher). For the telomere primers, the mastermix 1014 
was made using 5 μL Fast SYBR Green (ThermoFisher), 1 μL of telomere A primer (1 μM), 1 1015 
μL of telomere B primer (3 μM), and 2 μL of nuclease-free water. The reaction was cycled at 1016 
56°C annealing temperature along with a melt curve analysis using a QuantStudio 7 Flex 1017 
(ThermoFisher). Each sample was run in duplicate. Average telomere length was calculated 1018 
as the ΔΔCT = (PMS average hbg Ct – PMS average telomere Ct) – (Control hbg Ct – control 1019 
average telomere Ct). 1020 
 1021 
Whole genome bisulfite sequencing (WGBS)  1022 
Genomic DNA was extracted from 100,000 fibroblasts and iNSCs using the DNeasy Blood 1023 
and Tissue Kit (Qiagen). The quantity of DNA was measured using the Quant-iT PicoGreen 1024 
method and victor X2 fluorometry (ThermoFisher), and the integrity of the DNA was evaluated 1025 
with Agilent genomic DNA screen tape. 500 ng of genomic DNA was used for sequencing. The 1026 
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sample quality control criteria for the WGBS library were set to having a DNA integrity number 1027 
(DIN) score of 7.0 and above. The extracted DNA was fragmented to an average insertion 1028 
size of 550 base-pairs and the fragments were attached to end-repaired adapters. Genomic 1029 
DNA was bisulfite converted using the EZ DNA methylation Gold kit (Zymo, Catalog #D5005) 1030 
following the manufacturer’s instructions. We next applied the xGen Methyl-Seq Lib Prep kit 1031 
(Integrated DNA technologies, Catalog #10009824) to the prepare the genomic DNA library. 1032 
Library quality control was performed using qPCR (LightCycler 480) and TapeStation 4200 1033 
(D1000 screen tape).  1034 
The dataset comprises 8 samples (4 fibroblast lines and 4 iNSC lines), with sequencing depths 1035 
varying from 213M to 408M, and an average of 315M reads per sample. Reads with adapter 1036 
contamination were trimmed using Trim Galore (0.4.3)118 with options: --paired –q 25. Trimmed 1037 
reads were aligned to the H sapiens reference genome (version hg38), using HISAT2119 1038 
(version built in the current stable version of Bismark 0.23.1120). A bisulfite-converted index 1039 
(GA and CT conversion) was generated with default parameters. We identified 28M CpG sites 1040 
per sample, with sequencing coverage varying from 24x to 39x, (an average of 30x coverage 1041 
per sample). The bismark_methylation_extractor tool was used to summarize the methylation 1042 
levels at CpG sites. After assessing the bias at 5’end regions using M-bias results, the first 1043 
2nts were excluded, as follows: bismark_methylation_extractor -p –ignore 2 –ignore_r2 –1044 
comprehensive –no overlap –bedGraph –counts –buffer_size 16G ($Aligned read bam file).  1045 
 1046 
Identification of differentially methylated sites and regions 1047 
MethylKit121 was used for DMC and DMR quantifications, and fibroblast vs iNSC comparisons. 1048 
A minimum threshold minimum of 10nts coverage for downstream DNA methylation analysis 1049 
was set. The aligned reads were split into 100nt tiles (DMRs) using metilene.122 Differential 1050 
methylation was calculated, applying a McCullagh and Nelder123 correction for overdispersion, 1051 
as well as the sliding linear model (SLIM) proposed in methylKit to correct for multiple testing. 1052 
Tiles with a q-value < 0.05 and over 20% methylation difference were called differentially 1053 
methylated. Motif enrichment analysis was performed using Homer (findMotifsGenome.pl).   1054 
Annotations relevant for the hg38 v6.4 of the H sapiens reference genome (genes, exons, 1055 
introns, UTRs, and other annotations) were extracted using Homer annotation tools. 1056 
AnnotatePeaks.pl DMR hg38124 was used to evaluate the distribution of methylation across 1057 
the genome. Next, a comparative analysis of the DMRs/DMCs across tissue types, contrasting 1058 
the control and PMS samples was performed. In addition to the number of methylated tiles 1059 
per annotation category was calculated, as well as their distance to the closest Transcription 1060 
Start Site (TSS). To calculate the epigenetic age, we applied the Shireby-Cortex,56 Hovarth,57 1061 
and Zhang,58 ageing clocks frameworks. For the Hovarth and Zhang estimations Clockbase 1062 
platform125 was used, relying on matched Illumina methyl array IDs. The DNA methylation 1063 
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levels (0-100%) per CpG probe, and the sample metadata were submitted to Clockbase, and 1064 
the predicted clock age was downloaded as CSV format. For the Shireby-Cortex56 aging 1065 
estimate, we downloaded the DNA methylation probes, and coefficient values and relied on 1066 
matched Illumina methyl array IDs. We used total 347 DNA methylation CpG probes to predict 1067 
epigenetic aging (> 20nts coverage).  1068 
 1069 
Nuclei isolation, library preparation, and RNA sequencing 1070 
For the single-nucleus single-omics, (ATAC) and multiomics experiments, respectively, 2 x106 1071 
cells were harvested; nuclei were isolated following the manufacturer's instructions with minor 1072 
modifications. Briefly, cells were lysed in 100 μL of freshly prepared lysis buffer (1 mM Tris-1073 
HCl [pH 7.4], 1 mM NaCl, 300 μM MgCl2, 0.01% Tween-20, 0.01% IGEPAL CA-630, 0.001% 1074 
Digitonin, 0.1% BSA, 100 μM DTT, and 100 mU/μL RNase inhibitor) for 1 minute on ice, 1075 
washed twice in 500 μL of wash buffer (1 mM Tris-HCl [pH 7.4], 1 mM NaCl, 300 μM MgCl2, 1076 
0.01% Tween-20, 0.1% BSA, 100 μM DTT, and 100 mU/μL RNase inhibitor), and the number 1077 
of nuclei was assessed using the Countess II FL Automated Cell Counter (ThermoFisher). 1078 
Thereafter, approximately 16,000 nuclei were incubated with the transposase enzyme, loaded 1079 
into Chromium Next GEM Chip H Single Cell Kit (10x Genomics). snATAC libraries were 1080 
generated using Chromium Single Cell ATAC Reagent Kits User Guide v1.1 (10x Genomics) 1081 
according to manufacturer’s instructions; for the multi-omics samples, nuclei were loaded into 1082 
Chromium Next GEM Chip J Single Cell Kit (10x Genomics); libraries were prepared using 1083 
Chromium Next GEM Single Cell Multiome ATAC + Gene Expression Reagent Kits (10x 1084 
Genomics) according to manufacturer’s instructions.  The quality of the libraries was checked 1085 
on the Agilent Bioanalyzer with High Sensitivity DNA kit (Agilent); per sample libraries were 1086 
sequenced on Illumina Novaseq 6000 with target sequencing depths of 25,000 - 70,000 reads 1087 
per nucleus. 1088 

For single-cell (sc)RNAseq, cells were counted using a hemocytometer, 10,000 cells were 1089 
loaded into Chromium Next GEM Chip G Single Cell Kit (10x Genomics), and scRNA libraries 1090 
were generated with Chromium Single Cell 3' Reagent Kits v3.1 (10x Genomics) according to 1091 
manufacturer’s instructions. The quality of the libraries was checked on the 4200 Agilent 1092 
Tapestation with High Sensitivity DNA kit (Agilent); per sample libraries were sequenced on 1093 
Illumina Novaseq 6000 with target sequencing depths of 30,000 - 65,000 reads per cell. 1094 
 1095 
Single-cell transcriptomics/ epigenetics data pre-processing 1096 
Standard CellRanger pipeline (6.1.2) and CellRanger ARC (2.0.0) were applied for aligning 1097 
reads to the aforementioned version of the H sapiens genome and for quantifying gene/ peak 1098 
expression. For the RNA component, intron-matching reads contributed to the gene 1099 
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expression levels. The processed gene expression matrix was imported in Seurat.126 1100 
Additional filtering was performed on the distributions summarizing the number of counts, 1101 
features, and percentages of reads incident to mitochondrial and ribosomal genes, across 1102 
cells, per sample (accepted cells satisfied the criteria: number of UMIs > 8,000, number of 1103 
genes per cell > 1,000, log10 (genes per UMI) > 0.75). We observed different ranges for MT 1104 
and RP proportions for the scRNAseq and snRNAseq samples, respectively (we retained cells 1105 
with 15-40% RP [scRNAseq] and 2-25% RP [snRNAseq]). Post-filtering, on all retained cells, 1106 
the MT and RP entries were excluded from the expression matrix, pre-normalization. The 1107 
normalization of expression levels was based on log2 normalization (scale.factor = 10000). 1108 
The cell cycle assignation was performed in Seurat using the ‘CellCycleScoring’ function and 1109 
a priori defined gene set. 1110 
 1111 
Clustering 1112 
Next, we applied the ClustAssess framework to determine optimal, data-driven parameters, 1113 
starting with the number and type features according the stability of resulting partitions.70 We 1114 
used Element-centric similarity,70 summarized on 30 iterations into Element centric 1115 
consistency (ECC),71 to objectively assess stability.126 Highly variable features (N=1,000 1116 
determined using the vst) approach, yielded optimal outputs. A 20-shared nearest neighbour 1117 
(SNN) graph was constructed on the HGV PCA.126 To address batch effect across sc and sn 1118 
quantifications, we applied Harmony.127 Clustering was performed using Louvain approach 1119 
(resolution=0.2), implemented within Seurat126 v4.0.5.  8 clusters produced a stable partition 1120 
on scRNAseq and snRNAseq components. We excluded the smallest cluster (133 driven by 1121 
a specific sample (i.e. C1-specific cluster). A X2 test was used to assess the significance of 1122 
proportions of cells for PMS vs control samples. Marker genes (on cluster vs complement and 1123 
pairwise differential expression) were identified using the 'findMarker' function. The top 5 most 1124 
positively differentially expressed genes were visualized in a heatmap.  1125 
Enrichment analyses were performed using gprofiler128 on markers called on a Wilcox test 1126 
with a |log2(FC)| threshold of 0.25, an adjusted p-value (Benjamini Hochberg multiple testing 1127 
correction) less than 0.05 and a minimum percentage of cells expressing the gene of 0.1, in 1128 
either subset. The background set for the enrichment analysis comprised all genes expressed 1129 
in at least 10 cells. 1130 
 1131 
Voting Schemes 1132 
A variable voting-scheme was used to identify cell subsets requiring a minimum number of 1133 
expressed genes corroborated with a minimum average expression level. The voting scheme 1134 
for radial glial gene signature includes cells expressing 6 out of 9 manually curated genes 1135 
(Table S4) with a normalized expression threshold of 1; glial progenitor cells express 7 out of 1136 
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10 genes (Table S4) with an expression threshold of 0.5; neural progenitor cells express 5 out 1137 
of 7 genes (Table S4) with an expression threshold of 0.5. The voting scheme for IFNα/β 1138 
signalling is based on cells expressing 3 out of 6 genes (Table S4) with an expression 1139 
threshold of 0.5; NOTCH1 signalling comprises cells expressing 13 out of 16 genes (Table 1140 
S4) with no abundance threshold (I.e. presence/ absence). 1141 
 1142 
Re-analysis of Absinta et al. and Schirmer et al. Data ex vivo datasets 1143 
Raw fastQ files from the studies by Schirmer et al. (2019)77 and Absinta et al. (2021)16 were 1144 
downloaded from ENA using fasterq-dump. The quality checking and mapping leading to the 1145 
filtered feature-barcode matrices were performed as described above. For the Schirmer et al. 1146 
(2019) dataset, cells with less than 4,000 features/genes were retained; an upper bound of 1147 
15,000 was employed for the maximum number of UMIs per cell; 5% is maximum proportion 1148 
of fragments incident to mitochondrial DNA; 10% is the maximum proportion of reads incident 1149 
to nuclear ribosomal genes. For Absinta et al. (2021), cells with the number of features 1150 
between 200 and 5000 were kept for subsequent steps of the analysis; an upper threshold of 1151 
20,000 UMI counts was used, and the maximum mt% was set to 5%. Both datasets were 1152 
normalized using SCTransform;129 the Absinta et al. (2021) dataset was batch corrected using 1153 
Harmony127 on the patient variable, with θ = 2. To detect stable partitions, on each separate 1154 
dataset, ClustAssess70 was used with 20-50 iterations, assessing resolution parameters 1155 
between 0.1 and 1.5 (0.1 increment steps). For the Schirmer et al. (2019) dataset, the top 1156 
4500 highly variable features yielded the most stable partitions; for the Absinta et al. (2021) 1157 
dataset the top 3,500 highly variable features were selected. For both, the optimal resolution 1158 
value was 0.6. 1159 
 1160 
Pseudotime Analysis 1161 
Monocle3130 was used to infer trajectories for the in vitro data, as well as for the single-cell 1162 
data from the Schirmer et al. and Absinta et al. studies. To identify the start and the endpoint, 1163 
a selection of genes was used in a voting approach. The manually curated set of genes, used 1164 
for determining the starting region in the in vitro data, comprises TOP2A, CENPF, UBE2C, 1165 
ASPM, APOLD1 with an expression threshold of 2 and a tolerance of 1 gene, i.e. any one 1166 
gene from the set maybe not expressed; for the ending region, genes IFIT2 and CDKN2A 1167 
were used, with an expression threshold of 1.5 and a tolerance of 0. 1168 
For the Absinta et al. and Schirmer et al., larger subsets of genes were used; for the former, 1169 
the following genes were used for the starting region: LY6E, PPAN, FASN, CLU, SORD, 1170 
TRAP1, TUBB2A, AP1S2, YBX3, with an expression threshold of 0.5 and a tolerance of 4 1171 
genes; for the ending region, the following genes were used ISG15, B4GALT5, IFITM3, 1172 
SAR1A, KIAA1217, TRPC4, FGF4, B2M, ZC3HAV1, WARS, FN1, IFIT1, with an expression 1173 
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threshold of 0.5 and a tolerance of 4 genes missing. For the Schirmer et al dataset, the ending 1174 
region was defined by genes ISG15, B4GALT5, IFITM3, SAR1A, KIAA1217, TRPC4, FGF4, 1175 
B2M, ZC3HAV1, WARS, DDX58, with an expression threshold of 0.5 and a tolerance of 6 1176 
genes. 1177 
Using the ordering of cells based on their transcriptomic signatures, the ClustAssess stability 1178 
framework was applied on gene expression levels. This yielded a stable number of gene-1179 
clusters, named gene modules, representing a precursor of GRN inference; the genes per 1180 
module were further characterized from a pathway perspective (using gprofiler128), against GO 1181 
terms, KEGG and REAC terms, and functional elements (TFs and miRNAs). Next, we chose 1182 
three gene modules that characterized sections of interest on the trajectory-based UMAPs of 1183 
the in vitro dataset. The genes within each module were used to create a proxy (a 1184 
transcriptomic pattern) subsequently employed to identify homologue gene modules 1185 
computed based on the ex vivo datasets, Schirmer et al. and Absinta et al., respectively. 1186 
Briefly, we considered the percentage of genes present in the ex vivo gene modules using the 1187 
three in vitro gene modules; to account for the variable number of genes for both in vitro and 1188 
ex vivo modules the outputs are scaled by the size of the gene set, i.e. larger gene sets are 1189 
penalized more than smaller gene sets. The pairwise comparison of gene modules (Fig. S4A-1190 
D) relies on Fisher's exact tests, using the in vitro data as baseline comparator. Benjamini-1191 
Hochber (FDR) correction was applied to account for the multiple testing pyscenic131 was used 1192 
to infer regulatory interactions, aligned with the metadata available for the Homo sapiens 1193 
(hg38) reference genome. A docker container was used to generate a loom object from the 1194 
existing Seurat object. Loompy was used132 to create a SCope object, explored using the 1195 
SCope web application; figure 6G illustrates specific regulons. 1196 
 1197 
Cell-cell regulatory interactions and effects  1198 
NicheNet80 (v 2.0.4) was used to predict intercellular regulatory interactions, based on ligand-1199 
receptor databases (weighted_networks_nsga2r_final.rds). The correlative analysis, 1200 
summarized as interaction scores, was applied on cluster-specific marker genes (differentially 1201 
expressed genes). Further analyses were focused on cluster 5 (“inflammatory cluster”) 1202 
assigned as sender cells vs receiver cells, as the remaining clusters, respectively. The 1203 
analysis was performed separately on control and PMS iNSCs, respectively.  The summary of 1204 
interactions was visualized using circos plot (circlize library v.0.4.15). 1205 
 1206 
Cytokine Array 1207 
iNSCs were plated at a density of 100,000 cells/cm2 on GFR-coated plates. Media was 1208 
collected on day 5 from each line. The Human Cytokine Antibody Array C5 (RayBiotech) was 1209 
used for semi quantitative detection of 80 proteins according to manufacturer’s instructions. 1210 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579648
http://creativecommons.org/licenses/by-nc/4.0/


Park, Nicaise, Tsitsipatis et al. 
 

 40 

Overnight incubation was performed for steps when the option was given. Membranes were 1211 
exposed using a Gel Doc XR imager (BioRad). Blots were analyzed using the Protein Array 1212 
Analyzer macro for ImageJ (written by Gilles Carpentier, 2008). The relative quantity of each 1213 
protein was normalized to the positive and negative controls included on the array. The array 1214 
was performed once for each iNSC line. Control lines were averaged together to generate a 1215 
fold change comparison over PMS iNSC lines. To visualize the results, we calculate the Z-1216 
score per cytokine using the heatmap function in an R environment.  1217 
 1218 
snATACseq analysis 1219 
CellRanger ARC2.0.0 (multi-omics) and CellRanger ATAC2.0.0 (snATAC only) were used to 1220 
map reads and quantify expression for the single nuclei ATAC-seq datasets.  The peak calling 1221 
was performed on pseudobulked input, comprising cells with at least 100 reads sequencing 1222 
depth. Union peaks (peaks present in at least one sample) were reported. We excluded peaks 1223 
overlapping the ENCODE-defined blacklist regions (hg38). To address the variation in 1224 
sequencing depths, across samples, we normalized expression levels using random 1225 
subsampling without replacement.110 The set of fragments (with lengths varying from 200 to 1226 
400 nts) vs the union-peaks were used to generate the ATAC expression matrix. For 1227 
downstream analysis we relied onSeurat126, Signac133, and ArchR134 packages. Additional 1228 
quality controls include assessment of nucleosome signatures and TSS enrichment analysis. 1229 
we filtered the fragments with nucleosome signals < 4 and TSS enrichment levels > 2. Peak 1230 
intensities were normalized using the term frequency inverse document frequency (TF-IDF) 1231 
normalization (scale factor = 10,000). The dimensionality reduction was performed using latent 1232 
semantic indexing (LSI). Additionally, we performed Harmony integration across batches, 1233 
which was used as input for the final clustering (resolution=0.2, SLM method126). Differentially 1234 
expressed peaks were identified using the 'findMarker' function (Seurat package). We 1235 
performed de novo motif analysis using Homer (findMotifsGenome.pl) and GO term 1236 
enrichment analysis using GREAT with the background of the whole genome.135 1237 
 1238 
Integrative analysis of multimaps profiles 1239 
The integration of snRNAseq and snATACseq signals was performed on 5,242 cells with 1240 
matched barcodes. The crosstalk between modalities was assessed using the partitioning 1241 
information obtained on single modalities.  The co-variation in expressed was summarized in 1242 
joint ATAC/RNA heatmaps, with Z scores, calculated per modality, on pseudobulked 1243 
expression per gene being presented for the gene itself (RNA modality), TSS proximal peaks 1244 
(<3kb) and TSS distal peaks (greater than 3kb and less than 50kb). Both ATAC and RNA 1245 
modalities were used to infer regulons using SCENIC+.136 1246 
 1247 
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Statistical analysis 1248 
For all phenotypic analyses, a p-value < 0.05 was considered significant (*). We performed 1249 
statistical tests described in individual figure legends using Prism software version 10 1250 
(GraphPad Software, San Diego CA). A Benjamini-Hochberg, False discovery rate (FDR) 1251 
multiple testing correction was applied to account for Type I errors. For low throughput 1252 
differential expression analysis on genes, we used a negative binomial test with the FDR cutoff 1253 
value set to <0.05.  1254 
All analyses were performed on R 4.2.3, on high memory computer (MacPro M1 Max, 64GB 1255 
memory) and servers (Intel E7-8860v4, 3TB memory). 1256 
  1257 
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