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Abstract

Understanding the condensation and aggregation of intrinsically disordered proteins in a non-
equilibrium environment is crucial for unraveling many biological processes. Active enzymes catalyse
many processes by consuming chemical fuels such as ATP. Enzymes called kinases phosphorylate
disordered regions of proteins and thus profoundly affect their properties and interactions. Pro-
tein phosphorylation is implicated in neurodegenerative diseases and may modulate pathogenesis.
However, how protein sequence and molecular recognition of a disordered protein by kinases de-
termine phosphorylation patterns is not understood. In principle, molecular dynamics simulations
hold the promise to resolve how phosphorylation affects disordered proteins and their assemblies.
In practice, chemically-detailed simulations of enzymatic reactions and the dynamics of enzymes
are highly challenging, in particular it is difficult to verify whether implementations of driven sim-
ulations are thermodynamically consistent. We can now address this problem with residue-level
coarse-grained molecular dynamics simulations, integrating Metropolis Monte Carlo steps to model
chemical reactions. Importantly, we show how to verify by Markov-state modeling that the real-
isation of a non-equilibrium steady state satisfies local-detailed balance. We investigate TDP-43
phosphorylation by the kinase CK1¢§ in simulations, examining patterns of phosphorylation and
assessing its preventive role in chain aggregation, which may be a cytoprotective mechanism in
neurodegenerative diseases. We find that the degree of residue phosphorylation is determined by
sequence preference and charges, rather than by the position in the chain. The phosphorylation
frequency is also affected by the phosphorylation patterns, since the interactions between CK14
and TDP-43 actively change after each reaction. For TDP-43, our simulations show condensates
dissolution through phosphorylation with kinases binding to the condensates and phosphorylating
TDP-43 in the condensates.
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. Introduction

> Biological systems operate far from equilibrium|1]. The functionalities of cells and of their organelles
s and compartments are possible only through a very precise self-organization, driven by a continuous
+ injection of energy from the external environment [2]. In the cell, chemical energy is stored, e.g. in
s the form of ATP molecules among others|3|. This energy is then used to synthesize and degrade
s molecules through biological cycles. On time scales shorter than physiological changes, microscopic
7 rates are approximately constant and the system enters a non-equilibrium steady states (NESS)|3-
s 9.

9 Cellular compartmentalisation underpinning biological function is achieved not only by lipid
10 membranes and organelles surrounded by such membranes, but also by phase separation of pro-
u teins, giving rise to biomolecular condensates|6]. Membrane-less compartments of phase-separated
12 proteins can concentrate or exclude molecules and thus organize biochemical processes in time
13 and space, which is analogous to the compartmentalisation provided by lipid membranes. These
1 phase-separated condensates can often act as chemical reactions organizers|7|. However, these con-
15 densates of proteins can also age into solid aggregates, which are believed to contribute to neuronal
16 dysfunction and neurodegeneration|8) 9]. As condensates age and become less liquid-like, they
v frequently lose their biochemical functionalities|10]. Aggregates of intrinsically disordered proteins
18 (IDPs) are often linked to neurodegenerative diseases. Some examples are Tau protein aggregates,
1 associated with Alzheimer’s disease|11|, a-synucleic aggregates, associated with Parkinson’s disease
20 |12], or TAR DNA-binding protein 43 (TDP-43) aggregates, mostly found in patients with amy-
2 otrophic lateral sclerosis (ALS) |13], frontotemporal dementia [14], but also in many patients with
2 Alzheimer’s disease |15].

23 Proteins within condensates can also undergo chemical reactions themselves [2], driving the
2 system out of equilibrium by dissipating a biochemical fuel, such as ATP. The modification of
»s  those proteins by addition of chemical groups, such as phosphate groups, are referred to as post-
2 translational modifications (PTMs). IDRs are not only essential in driving the condensation of
2 proteins, but they are also prime targets of PTMs |16]. PTMs can drastically change the properties
s of individual proteins|17] and collectively of condensates [18|, enhancing|11}, |19] or suppressing
2 the condensation and aggregation of IDPs|20| 21]. For instance, it has been shown that chemical
w0 reactions can stabilize the size of liquid droplets by suppressing Ostwald ripening [22, 23].

a1 To connect these advances in the understanding of active processes in condensates to the biolog-
s ical roles of proteins, it will be important to elucidate how ATP driven phosphorylation shapes the
1 interactions of intrinsically disordered protein regions (IDRs) of neurodegeneration-linked proteins
s such as TDP-43. The disordered low-complexity domain (LCD) of TDP-43 is hyper-phosphorylated
s in disease, and in experiments such a hyper-phosphorylation has been found to suppress TDP-43
s condensation and aggregation[24]. Enzymes can add PTMs to IDPs in dilute solution, but en-
s zymatic addition of PTMs may also occur in protein condensates. Recently, it was shown that
;s phase-separated condensates can speed up phosphorylation of Tau protein|25|. Phosphorylation of
s the TDP-43 C-terminal residues Ser 379, Ser 403, Ser 404, Ser 409, and Ser 410 in patient samples
w0 is associated with neurodegenerative disease|26]. TDP-43 is phosphorylated by Casein kinase 16
a  (CK10). How the enzymatic phosphorylation of TDP-43 is modulated in dilute solution and how it
« is affected by protein condensates is not known. The disordered tail of CK10 is auto-inhibitory|27]
. 28], but how it inhibits TDP-43 phosphorylation is unclear on the molecular scale. IDRs of enzymes
« have multiple functions, such as auto-inhibition by binding to the active site. IDRs are involved in
s substrate binding, for instance IDRs can speed up reactions via fly casting effect, where the IDR
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Figure 1: Enzymatic phosphorylation cycle driven by the consumption of the chemical fuel ATP. In state
1 TDP-43 (grey) is unphosphorylated and is not bound to the kinase CK1§ (blue, active site in pink). In
state 2 TDP-43 binds to CK1J. In state 3 the reactive serine is phosphorylated by kinase, converting one
ATP into one ADP. In state 4 phosphorylated TDP-43 dissociates from CK1d. Phosphorylated and un-
phosphorylated TDP-43 are supplied through reservoirs and we consider exchanges between these reservoirs
and our simulation box. Serines are colored in yellow, while phospho-serines in red.

s increases the search volume for the binding of partner proteins[29).

a7 Phase behaviour of intrinsically disordered proteins (IDPs) and the biological functionalities
s of protein condensates have been studied in the past years using multi-scale molecular dynamics
w  (MD) simulations. Such simulations capture the spontaneous condensation of hundreds or more
so proteins while maintaining enough chemical detail in the simulations to elucidate sequence-specific
s interactions of proteins|24} 30]. Comparison to more highly-resolved coarse-grained methods [30-
2 [34] or atomistic molecular simulations [35, 36| can then highlight important drivers of protein
53 condensation|24].

54 However most of these studies assume thermodynamic equilibrium, neglecting the dynamical
ss changes in the properties of individual proteins and protein condensates, as well as the dissipation
ss  caused by chemical fluxes. Much progress has already been made in the simulations of mechanically-
57 driven non-equilibrium steady state (NESS), where external mechanical forces give rise to driven
s dynamics [37]. An important step was the construction of Markov state models to better under-
o stand the effects of driving on the molecular scale|38|. Analogously, a biological chemically-driven
o WNESS, such as molecular motors, can be simulated by maintaining a chemical potential difference,
s i.e. by fixing the ATP to ADP concentration ratio. |4} |39] Chemical reactions could in principle also
2 be modelled via quantum mechanical approaches|40|, but these are computationally very demand-


https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607948; this version posted September 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

63 ing, which can preclude their application to large-scales dynamics in complex biochemical systems.
e Recently, exciting progress has been made in integrating chemical reactions in molecular dynamics
s simulations via neural networks[41]. Even in the case of coarse-grained simulations, chemical reac-
e tions have been modelled through the use of reactive beads that can form bonds between molecules
s |42]. In many cases, one could model chemical reactions in complex system by combining MD with
s a suitably chosen Monte Carlo (MC) step [39, |43]. Arguably, the absence of a straightforward
e approach of validating the thermodynamic consistency of simulations of NESS has held back the
7 widespread application of MD/MC approaches to biochemical reactions on the molecular scale.

7 Here we demonstrate how to validate the thermodynamic consistency of simulations of enzymatic
22 phosphorylation of proteins using TDP-43 LCD and its phosphorylation by CK1é as an example.
7z We do so by constructing a Markov state model (MSM), which is a generally applicable approach.
7 Our coarse-grained simulations of enzymatic phosphorylation of TDP-43, show how the sequence
s specific interactions of CK1§ with TDP-43 LCD affects the phosphorylation frequency of serines
7 residues in the TDP-43 LCD in dilute solution and in condensates. In particular the C-terminal
77 domain is more phosphorylated than the N-terminus, in agreement with experiments. Indeed,
7z multiple serines of TDP-43 LCD have been found phosphorylated in patient samples, in particular
7o in the C-terminal region|44), 45|, with Ser 409/Ser 410 phosphorylation being established as a
s hallmark of TDP-43 pathology in disease [26] and detected, together with Ser 403/Ser 404 and
s Ser 379, by phospho-specific antibodies|46]. The phosphorylation frequency is also affected by the
22 phosphorylation patterns, since the interactions between CK14 and TDP-43 actively change after
&z each reaction, enhancing further phosphorylations[47|. Moreover we study the role of the CK1§ IDR
s (residues from 295 to 415) in phosphorylating TDP-43 both in condensate and dilute regime. CK14
s IDR strongly interacts with TDP-43 LCD, reducing its contacts with active site of the enzyme in
s dilute regime. In dense regime, the CK10 tail anchors of the enzyme to the droplet surface.

« Results

& [VMlarkov-state modeling demonstrates thermodynamic consistency of sim-
» ulations of chemically-driven dynamics

o Molecular dynamics (MD) simulations together with a thermostat holding the temperature fixed
a1 can be employed to sample from the canonical equilibrium distribution. However, introducing
e phosphorylation reactions in MD simulations generally inject energy into the system, thus breaking
o3 detailed balance and displacing the system away from thermal equilibrium. We simulate the action
o of the kinase CK1d (truncated at residue 294 for the purposes of this section) on the substrate
s protein TDP-43 by combining one-bead-per-residue implicit-solvent MD with MC phosphorylation
o steps and validate the thermodynamic consistency of our simulations by making use of Markov state
o models (MSMs). We assume that only the serines (Ser) of TDP-43 LCD can be phosphorylated
¢ into phospho-serines (pSer). The phosphorylation reaction is the following:

Ser + ATP = pSer + ADP (1)

oo Whenever a Ser (or pSer) is in contact with the active site of the kinase, we try to swap it with a
wo  pSer (or the opposite) with acceptance probability given by

A(Ser, pSer) = min (1, exp(—SAUp — fAup)) (2)
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Figure 2: Thermodynamic consistency of simulations with phosphorylation step using MSMs. (a) Example
of trajectory of the distance between Ser 403 of TDP-43 LCD and the active site of CK14 for the simulation
at App = —5 kJ/mol. In red the two output states of the neural network (bound and unbound) with
respective illustrative examples on the right. (b) Example of discretized 4-state MSM trajectory related
to the trajectory in a, we highlight complete cycles in red. (c) Example of implied timescales from the
4-state MSM trajectory shown in b; they remain stable for 7 > 10> MD steps (10 Markov chain steps).
(d) Example of Chapman-Kolmogorov test from the 4-state MSM trajectory shown in b; prediction and
model are in agreement. (e) We plot Apicycle vs Apup; for all the six different phosphorylation sites, the
chemical potential computed from Eq. @matches the applied chemical potential App. Errorbars on Agpecycle
are obtained via bootstrapping of the total simulation trajectory collected.

w where § = 1/(kgT), AUp is the difference between the potential energy of the configuration with
12 pSer and the one of the configuration with Ser, and Apup is the chemical potential difference between
0 the ATP and ADP molecules involved in the phosphorylation reaction (Eq. . ATP and ADP
s are modelled implicitly and are not explicitly simulated, with concentrations kept fixed and fully
s characterized through the choice of Aup. Indeed biological reactions, such as the phosphorylation
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ws reaction, in living cells happen in open systems in which the concentrations of substrates, products
w7 and the chemical fuel are kept approximately constant over relevant timescales by e.g. metabolic
s processes. A non-zero value of Aup biases the chemical reaction, pushing the simulation away from
10e thermodynamic equilibrium.

110 The first step is to validate the thermodynamic consistency of our simulations by showing that
m  the energy gain in a phosphorylation cycle (referred to as Aficycle in the following) is equal to the
12 chemical potential difference App in the phosphorylation step. In order to compute Apicycle, We
us  employ a discretization of the MD trajectory in a MSM. The simplest example of a phosphorylation
us  cycle that we can build is a system with one enzyme and one substrate protein in which only one
us residue is reactive. In order to get complete phosphorylation cycles, we assume the exchange
us  between TDP-43 and phosphorylated TDP-43 happens when substrate and enzyme are far away
w7 from each other without chemical driving and with equilibrium concentrations, through another
us  MC step (Methods). This naturally happens in cells through the action of phosphatases that can
o catalyze a dephosphorylation reaction.

120 To gain insights into the effects of including phosphorylation through Eq. 2] we build an MSM
2 from simulated MD trajectories. Firstly we distinguish between bound and unbound state using a
12 neural network called VAMPnet [48]. VAMPnet is able to map molecular coordinates to Markov
13 states through a score function called VAMP-2 score based on the Koopman’s theory. Finding the
124 transformation of the input variables that maximizes the VAMP-2 score is equivalent to optimizing
s the Markovianity of the output states. In this way we can easily distinguish between the two slowest
126 processes, binding and unbinding, without arbitrarily choosing an a priori criterion of contact. As
7 input for the neural network, we use the 154 distances between each residue of TDP-43 LCD and
vs  the active site of CK14, while as output we ask for 2 states (ideally bound and unbound). We then
o filter spurious transitions using transition-based state assignment|49]. As an example, we show in
1w Fig. [2h the trajectory of the distance between Ser 403 (the reactive residue) of TDP-43 LCD and
w1 the active site of CK10 for the simulation at Aup = —5 kJ/mol (SI Movie 1). We can see that
12 the two states predicted by the neural network comprise bound configurations (when the distance
113 between Ser and CK10 active site is smaller) and unbound configurations (when the distance is
w larger).

135 By distinguishing between Ser and pSer along the trajectory, we coarse-grain the system dynam-
15 ics into the 4 states sketched in Fig.[[] Assuming that our system is a NESS, we can then compute
w  the time-independent transition probabilities T;;(7) from state i to state j using the non-reversible
s Maximum Likelihood estimator [50, [51]. We report in Fig,. the resulting MSM discretized tra-
130 jectory referred to the simulation in panel A. Complete cycles 1 —+ 2 — 3 — 4 — 1 are highlighted
w in red. Every step of the Markov chain corresponds to 10* MD steps, or 0.1 ns in simulation time.
w1 For all our simulations, we choose a lag time 7 = 10 Markov chain steps (Methods). We show in
12 Fig. |2c the implied timescales for the example case of reactive Ser 403 and Aup = —5 kJ/mol. In
13 the end, we estimate the goodness of the MSM by looking at the Chapman-Kolmogorov test (CK
ua  test) [52,53]. In all the validation simulations, the CK tests suggest good agreement between model
us and prediction for a wide range of lag times, as shown in Fig. 2l for the example case of reactive
s Ser 403 and Ay, = —5 kJ/mol (SI Table Table Fig. [S1| for complete data, Methods).

17 If our system is a NESS, the local detailed balance condition must be satisfied [3, [5]:

T12T53T34T )

3
T14Ty3T32T51 )

A/}Lcycle = —kpT'In (

us  where Apicyele is the energy injected into the system in one forward cycle 1 -2 -3 —4 — 1. It
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uo 1S interesting to observe that the logarithm contains the ratio between the forward and backward
10 transition probabilities. In many formulations, Eq. [3]is via rate coefficients rather than transition
151 probabilities. For the short lag times considered here, we can estimate a rate matrix from the
12 transition probability matrix and find virtually indistinguishable results for Apicycre (SI Text). Since
153 the transitions 1 = 2, 3 = 4 (the binding/unbinding of the enzyme with TDP-43 or phosphorylated
s TDP-43) and 4 = 1 (the reservoir exchange step) satisfy detailed balance, while the phosphorylation
155 reaction 2 = 3 breaks detailed balance injecting into the system an amount of energy equal to Apup,
156 we expect Apeyele to be equal to App (SI Text). We compute the estimated energy gain Apicycle from
157 the transition probabilities 7;; and plot them against the parameter App of the phosphorylation
155 step for different reactive Ser and App. Encouragingly, for all the six different phosphorylation
10 sites, the chemical potential computed from Eq. [3] matches the applied chemical potential Apup
w (Fig. )

161 We repeated the estimate of Ajicycle using a 3-states MSM, in which the unbound states 1 and 4
162 are merged into the new state 1. The results are in agreement with the 4-states MSM (SI Table
163 SI Fig. . Indeed, the transition between state 1 and 4 has a very high rate and can be associated
1« with the smallest implied timescale, that is lower than the lag time for 7 = 10 Markov chain steps
165 or larger.

166 We also checked the reliability of VAMPnet by using considerably more input distances (4620
7 distances) and a different architecture for the case of reactive Ser 403 and Aup = —5 kJ/mol
s (Methods). The estimated Apcycle with the new version of VAMPnet is Apcycle = 4.7 £ 0.6 kJ/mol
1o (implied timescales and CK test in SI Fig. .

w Phosphorylation preferences are determined by sequence-specific interac-
m tlons

2 Having established a model of chemically-driven dynamics, we investigate how sequence context
173 determines the phosphorylation of the disordered protein TDP-43 LCD by the enzyme CK14, so
s that we can begin to rationalize sequence-specificity of TDP-43 phosphorylation in experiments|24]
s and why C-terminal Ser residues such as Ser 410 are frequently found to be phosphorylated in
ws experiments|24), 26, 44]. In our simulations, we follow directly the dynamics of TDP-43 LCD
w7 and CK16 folded domain (truncated at residue 294) on the single molecule level (Fig. [3h). We
ws run 100 simulations of TDP-43 LCD in presence of CK16 and at physiological ATP/ADP ratio
w  (App = —48 kJ/mol), which mimics in vitro kinase assays. In the simulations, unphosphorylated
10 TDP-43 LCD will eventually encounter CK14 and give rise to different phosphorylation patterns,
w  as shown for an example simulation on Fig. [Bp. In this simulation TDP-43 LCD is initially phos-
12 phorylated in the C-terminal region. The kinase dissociates after two phosphorylation events and
13 then binds again to the substrate. Multiple Ser residues in the C-terminus of TDP-43 LCD are
18s phosphorylated, including Ser 410, which gets phosphorylated after ten other residues. In our
s simulations, Ser residues towards the C-terminus of TDP-43 LCD (Ser 369 to Ser 410) are more
s readily phosphorylated than Ser residues in the N-terminal region of the LCD (Ser 266 to Ser 350),
17 with the phosphorylation rate rp on average roughly 3-4 times larger in the C-terminal segment
s than in the N-terminal segment (Fig. ) In mass spectrometry analysis of TDP-43 from ALS
1o patient samples, the phosphorylated sites (the 12 residues Ser 373, Ser 375, Ser 379, Ser 387, Ser
wo 389, Ser 393, Ser 395, Ser 403, Ser 404, Ser 407, Ser 409 and Ser 410 |24, |44] and also Ser 369
w1 |45]) are mostly in the C-terminal region and, interestingly, they are among the ones with largest
102 phosphorylation rate rp in our simulations. In particular, Ser 409/Ser 410 phosphorylation has long
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Figure 3: Analyzing the sequence dependence in phosphorylation dynamics of TDP-43. (a) Example
trajectory discretized in phosphorylation-states relative to Ser 410. mnp is the state with Ser 410 not
phosphorylated and n other phosphorylated Ser, pS410 are all the states with phosphorylated Ser 410.
(b) We compare the phosphorylation rates rp for every Ser for the wild type TDP-43 (blue), the averaged-
interaction sequence (orange) and the averaged-interaction with equally-spaced Ser (green). The C-terminal
is more phosphorylated. The ticks on top show the position of the charged (red ‘4’ positive, blue ‘-’ negative)
and aromatic (grey ‘a’) residues. (c) Same comparison for the rates of contact r. between Ser residues of
TDP-43 LCD and the active site of CK19 in equilibrium simulations without phosphorylations. The positive
charges in the N-terminal screen the interaction with the enzyme. Contact frequency are constant for the
averaged-interaction sequence. (d) Correlation plot of contact frequency in equilibrium and phosphorylation
rates for the wild type TDP-43. Ser 407 and Ser 410 have similar phosphorylation rate, but the probability
of contact of Ser 410 is larger. (e) Probability p(t(Ser;) < t(Ser;)) of Ser; being phosphorylated before
Ser;, data from 100 trajectories. C-terminal residues are much more likely to be phosphorylated before
N-terminal residues. (f) Phosphorylation pattern representation for Ser 410. The thickness of the arrows
represent the percentage of simulations in which Ser 410 was phosphorylated after n other Ser residues (e.g.
12% of simulations go from state 3p to pS410). We show in the inset some examples of 3p states.

13 been established as a hallmark of TDP-43 pathology in disease . This qualitative agreement
e with simulations tentatively suggests that sequence specific interactions of TDP-43 LCD with the
15 CK16 could explain why these residues are frequently found phosphorylated in experiments and in
105 patient samples.
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197 The differences in the phosphorylation rates can be largely accounted for by how readily Ser
s residues engage in contacts with the CK1§ active site (Fig. ), with the phosphorylation rates
1o strongly correlated with a sample Pearson correlation coefficient of 0.84 (Fig. [3{). In order to com-
200 pare the phosphorylation rates with the frequency of making contacts at equilibrium, we performed
20 MD simulations of the same system without phosphorylation MC steps. To establish to what extent
22 contacts predicts the relative phosphorylation rates, we consider a contact whenever all the three
203 distances to residues Asp 149, Phe 150 and Gly 151 close to the active site are less than 1 nm, in
204 the same way as for the MC phosphorylation step. By contrast, the acceptance probability for the
205 phosphorylation MC step for Ser residues once they are in contact is > 0.97 for the entire sequence
206 and the variations in the acceptance probability of the phosphorylation step are not correlated with
207 the variation of the phosphorylation rates (SI Fig. . Ser residues in the C-terminal segment of
28 the LCD, including Ser 369, Ser 393, Ser 395, Ser 403, and Ser 410, have the largest tendencies to
20 form contacts, as tracked by r., which is the rate at which a residue forms contacts with the CK14
20 active site (Fig. [3k). At the same time these residues have within the statistical uncertainty the
au  fastest phosphorylation rates of the TDP-43 LCD (Fig. ) . Ser residues in the N-terminal part
22 of the LCD (Ser 266 to Ser 350) form fewer contacts than serines in the C-terminal segment (Ser
23 369 to Ser 410), with the exception of Ser 373 in the latter segment, which also forms few contacts
2 with the active site of CK1d. The N-terminus is enriched in charged amino acids (mostly positive)
25 (Fig.|3b and c¢), which may hinder its binding to the CK16 active site, since the active site features
26 multiple charged residues and is overall positively charged (SI Fig. . On the other hand, the
27 C-terminus has more aromatic residues, which increase the attraction through cation-pi and pi-pi
25 interactions [54] (Fig. and c). This difference between the N- and C-terminal segments of the
29 TDP-43 LCD is also apparent on the correlation plot in Fig. [Bd, where the N-terminal residues
20 have both low rates and low number of contacts, whereas the C-terminal residues have mostly high
21 phosphorylation rates and many contacts with the active site.

» Dynamics of TDP-43 serine phosphorylation is influenced by preceding
» phosphorylation events

2¢  Although the correlation between the relative rates for CK16 and TDP-43 contact formation and
25 the phosphorylation rates is strong, there are deviations from the this simple relationship (Fig. ),
»s  which could hint at structural correlations and possible correlations between phosphorylation events.
27 For instance, Ser 410 forms contacts more than two times more readily than Ser 407 but their
»s  phosphorylation rates are the same within the statistical uncertainty (Fig. and Fig. ) To
29 better understand the underlying correlations, we expanded our analysis of the phosphorylation
20 kinetics. To estimate the phosphorylation rates rp, we assume that the phosphorylation process
a1 is a memory-less process, which follows single-exponential kinetics [55]. In this case, observing a
2 single event is in principle sufficient to estimate the rates of a process. In addition to the number
213 of events one observes, the time spent waiting before an event happens also contributes to the rate
2 estimate. We checked the results by fitting the cumulative histograms of phosphorylation time
25 for each Ser with a simple single-exponential process and an exponential process conditioned to
26 another exponential process (e.g. the binding of TDP-43 to CK16) (Methods). Most of the times
2 the conditioned exponential process fits perfectly. We found that the rate extrapolations from
28 the two fits are in agreement with the Bayesian estimates (SI Fig. [S9). It is interesting to notice
20 that the fastest rate is different for every Ser (Ser 266 with a second rate coeffiecent of 13.5us™*
20 and Ser 393 of 56us~!) suggesting that the phosphorylation of some serines could involve other
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an processes than the binding to CK16, e.g. the previous phosphorylation of another Ser. For Ser
a2 410, the two fit extrapolation and the single-exponential fit are in agreement, with differences in
23 the phosphorylation rate of about 2% , while for Ser 403 the conditioned process fit leads to an 8%
24 smaller rate compared to the single-exponential fit. For Ser 407, the conditioned process yields a
us  10% larger rate. These comparison suggests that the phosphorylation of Ser 403 and Ser 407 could
xs  actually follow a more complex process.

27 We determined the most likely order of phosphorylation to understand correlation between
28 phosphorylation events and differences from what the contact statistics at equilibrium would predict
29 better. In order to study more deeply the phosphorylation pattern of TDP-43, we count for each
250 Ser couple (Ser;, Ser;) how many times Ser; is phosphorylated before Ser; by aggregating data from
21 our 100 trajectories to compute the probability p(tp(Ser;) < tp(Ser;)), where tp(Ser;) is the time
22 of phosphorylation for Ser; from the start of the simulation. We show p(tp(Ser;) < tp(Ser;)) as
»3  a heatmap in Fig. [Bp. We see again that, on the single-molecule level, C-terminal residues are
4 typically phosphorylated first. The lower right corner shows that on average C-terminal residues
»s  are much more likely to be phosphorylated before N-terminal residues and as a corollary, the upper
6 left sub-matrix shows that C-terminal residues are rarely phosphorylated after N-terminal residues.
»7  Instead, looking at the lower left block, we see that Ser 266 and Ser 273 are usually the first
s phosphorylated in the N-terminal region, while the serines within residues 333 and 350 are the
0 last ones. In the end, by focusing in the C-terminus on the upper right block, we see that the
x%0 first phosphorylations occur on Ser 369, Ser 393, Ser 395, Ser 403 and Ser 410, followed by Ser
20 between 377 and 389 and Ser 407. In Fig. Bf we aggregate the data from the different trajectories
x%2 and illustrate the likelihood for Ser 410 of getting phosphorylated after n other Ser through the
»3  thickness of the arrows. In the figure, the state pS410 includes all the possible configurations in
»s  which Ser 410 is phosphorylated, while np are the configurations with n pSer different from Ser
x5 410, as shown in the inset for four different examples of state 3p. Very often Ser 410 is among
»6  the first three residues to be phosphorylated. Only in a few trajectories, Ser 410 is phosphorylated
%7 after nine or eleven other Ser residues are already phosphorylated. Ser 395 shows similar behaviour
s to Ser 410 (SI Fig. [S11)). While Ser 403 and Ser 407 are also phosphorylated early on by this
x0 analysis, they are less frequently the first Ser residues to be phosphorylated compared to Ser 410
20 (SI Fig. [S11)), which is in line with the deviations from single-exponential behaviour (SI Fig.
an A possible influence of prior phosphorylation can also be detected for Ser 373. Ser 373 forms
a2 few contacts but is readily phosphorylated. The phosphorylation rate of Ser 373 is just slightly
a3 lower than for Ser 375, which has twice as many contacts. Indeed Ser 369 engages in many more
o contacts and the rates are just slightly higher than for Ser 373 and Ser 375. Fig. [3e shows that the
zs  probability p(tp(Ser;) < tp(Ser;)) of Ser 369 to be phosphorylated before Ser 373 and Ser 375 is
a6 approximately 0.8 and 0.7. Fig. (SI) demonstrates that Ser 373 and Ser 375 are phosphorylated
a7 when multiple Ser residues are already phosphorylated. Changes in the interaction of CK1§ with
s TDP-43 LCD as more residues are phosphorylated could explain why phosphorylation rates are not
a9 fully accounted for by the interaction propensities of the LCD with the active site of the enzyme. By
20 analyzing long equilibrium MD simulations with VAMPnet[48|, we find that the phosphorylation
s facilitates the binding of CK14d to the substrate TDP-43 LCD, with the binding free energy going
222 from 5.0 kJ/mol in the case of wild type TDP-43 LCD to 1.2 kJ/mol for a chain with pSer 395,
23 pSer 403 and pSer 410 (SI Text). As a result, the first phosphorylation events speed up further
2 phosphorylation events, in agreement to what suggested by experiments [47], and we find that,
25 1n the simulations of enzymatic phosphorylation of TDP-43, phosphorylated TDP-43 LCD stays
25 attached to CK1d (SI Fig. [S3).
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» Phosphorylation dynamics is determined by sequence context not relative
x position to N- and C-termini

29 The relative position of the Ser residues to the N- and C-termini does not affect the phosphorylation
20 rates. It has been hypothesized that the tendency of C-terminal residues to get phosphorylated
20 could be due to the greater accessibility of residues close to the N- and C-termini of a disordered
202 protein chain [24]. In order to understand whether the phosphorylation pattern is affected by the
203 position of the Ser residues along the TDP-43 LCD chain and not only by the neighboring residues,
2a  we repeated the same simulation but replacing all the residues of TDP-43 LCD different from Ser
205 with an averaged interaction strength bead, 1) leaving the serines at their original positions and 2)
26 spreading them equally spaced along the chain. From the contact frequency 7. in the lower panel
o7 in Fig. Bk, we can see that in equilibrium, before any phosphorylation occurs, the probability of
28 contact is uniform along the chain, suggesting that the ends are not a priori more accessible and
200 hence that sequence context and its effects on molecular recognition likely explain the prominence
300 of C-terminal TDP-43 phosphorylation. By looking at the phosphorylation rates rp (lower panel
s in Fig. ), we can see that the C-terminal domain is more phosphorylated in the case of simple
sz averaged-interaction beads. We also computed the probability p(tp(Ser;) < tp(Ser;)) for the case
w03 of averaged-interaction chain (SI Fig. left), which also demonstrated that the C-terminus is
sa  phosphorylated before the N-terminus. This suggests that the negative charges of the pSer also
s plays a role. These are denser in the C-terminus when TDP-43 gets hyper-phosphorylated. Indeed
w6 by distributing the Ser residues at equal distances, phosphorylation rates are constant within the
s7  statistical uncertainty. A similar behavior has already been found in experiments for the case of
ss  cyclin-dependent kinases phosphorylation of multisite targets|56]. Overall, the phosphorylation
w0 rates, as well as the contact frequency in equilibrium, are one order of magnitude smaller in the
s case of averaged interaction sequence compared to the wild type TDP-43, highlighting once more
su  the importance of the sequence context.

22 CK16 binds to TDP-43 condensates and dissolves condensates by hyper-
as  phosphorylation

sis In our simulations, CK16 folded domain binds to TDP-43 LCD condensates and the LCD conden-
a5 sates dissolve when they are hyper-phosphorylated (Fig. k). In cells, TDP-43 often phase-separates
a6 into liquid-like droplets which has been linked to the formation of toxic aggregates. Recent experi-
si7 - ments have shown that hyper-phosphorylation of TDP-43 LCD can prevent phase separation and
us  aggregation by increasing the solubility of TDP-43 [24]. However it remains unclear whether ki-
a9 nases, such as CK19, actually bind to TDP-43 condensates, or only phosphorylate TDP-43 in dilute
20 solution. Snapshots from an example simulation with five CK19 enzymes are shown in Fig. (SI
= Movie 3), with the first snapshot depicting the starting configuration with 200 TDP-43 chains
2 phase-separated in a condensate and the enzymes (blue molecules) randomly placed in the box. Af-
23 ter 1 us of simulation time the enzymes are all attached at the surface of the condensate and they
2« are in the process of phosphorylating several serine residues (pSer in red). Hyper-phosphorylated
s TDP-43 chains start to disassociate from the condensate, which appears almost entirely dissolved
»s after 5 ps of simulation time in the last snapshot. We report in Fig. [db the percentage of chains
w27 in the condensate (blue, left y-axis) and the percentage of phosphorylated Ser (red, right y-axis)
w28 over time from simulations with 1,3 and 5 enzymes, averaged over 4 independent replicas. The
29 percentage of TDP-43 chains in condensate drops over time as the phosphorylation count increases.

11


https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607948; this version posted September 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

330

331

332

333

334

L ]
b .
o 100
-1 @ 1
g 2 K]
2 g0 %0 3 80 ]
3 g g
3
c — ° o
S 60 a0 & 5 S
° 402 8 S
w40 = £ 40 <
5 20 g 3
¥
£ 20 S 20} if 5}
5 . S i
R - = ®
< 0 ] ——1CK1l§ =-=--3CKl§ —-=5CKLl§ “¥~.= 0 0 ——1CK1l§ =--3CKl§ =—--5CK1§
1 2 3 4 5 00 02 04 06 08 10
time [steps] le8 time [steps] le8
@ e 2 e - : RS 2 : .
TN S ) A | N | gl I I L]
20 | -3- dense Neg;=1 ] ;
-4~ dense Ngi5=3 25 [mmm dense Negi;=3
_ 15| 3 dense Nes=5 iii ] mm dense Negis=5
7 -3 dilute L=30nm 3 4 7 20 FESdilute
A =
Z10
8
=3
=
SR
0

Figure 4: Analyzing the effect of hyper-phosphorylation of a TDP-43 LCD condensate and the interaction
of CK1§ with the condensate. All the simulations involved in the plots are performed in a cubic box of
100 nm side length with 200 TDP-43 LCD chains. (a) Snapshots from simulation with 5 CK1§ in cubic
box of 100 nm side length at times 0,1,3 and 5 us showing the dissolution of the TDP-43 condensate.
The enzymes are colored in blue and the phospho-serine in red. (b) Percentage of TDP-43 chains in the
condensate (blue, left y-axis) and percentage of phosphorylated Ser (red, right y-axis) in time for simulations
with 1,3 and 5 CK14. The condensate starts to dissolve after about 24 % pSer. (c) Percentage of CK14
attached to the condensate (blue, left y-axis) and percentage of phosphorylated Ser (red, right y-axis) in
time for simulations with 1,3 and 5 CK1§. The enzymes remain attached to the condensate after some
phosphorylations. (d) Percentage of CK1¢ attached to the condensate in time for equilibrium simulations
without phosphorylation with 1,3 and 5 CK1§. In absence of pSer, only about 35% of the enzymes stay
attached to the condensate in average. (e) Comparison of phosphorylation rates rp for every Ser of TDP-43
LCD divided by the number of CK1§ chains in dilute regime (grey) and in condensate in presence of 1,3
and 5 enzymes. In dense regime, phosphorylation of the ends of TDP-43 LCD is enhanced. The ticks on
top show the position of the charged (red ‘+’ positive, blue ‘-’ negative) and aromatic (grey ‘a’) residues.
(f) Contact rates r. for every Ser of TDP-43 LCD divided by the number of CK14 chains in dilute regime
(grey) and in condensate in presence of 1,3 and 5 enzymes at equilibrium.

We computed the size of the condensate using a standard clustering analysis algorithm, thanks to
which we were able to distinguish the chains in the larger condensate at every frame (Methods).
In every simulation, the condensate starts to lose TDP-43 chains when about 24-25% of Ser are
phosphorylated. As a result, the speed of phosphorylation decreases with time, as the TDP-43
chains start to migrate in the dilute regime, far from the action of the enzymes. This effect is
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s particularly evident in the case of 5 CK1§ after about 3.5 us. It is interesting to notice that the
1 speed of phosphorylation decreases slightly with time even before the beginning of the dissolution,
s with C-terminal Ser being the most affected (SI Fig. upper panel). The slowing down of the
ss phosphorylation rates of the most accessible Ser suggests a possible saturation effect. Moreover, we
s notice that, at least after about 5% of Ser are phosphorylated, most of the TDP-43 chains feature
s0 only 1 or 2 phosphates, with a small minority of chains being hyper-phosphorylated (SI Fig.
s grey), supporting the idea of an early saturation of the most accessible phosphosites.

2 TDP-43 phosphorylation facilitates CK14 binding to the condensate, compared to unphoshory-
w3 lated condensates at equilibrium. In Fig. [l we show the percentage of enzymes attached to the
s condensate in time compared to the percentage of phosphorylated Ser, averaged again over 4 repli-
us  cas. With increasing phosphorylations, CK1§ binds more stably to the condensate, suggesting that
us the negative charges of the pSer residues enhance the binding to the enzyme positively charged
sz residues. In equilibrium simulations without phosphorylation only about 35 % of enzymes are
us  attached to the droplet in average (Fig. [4{).

349 In our simulations, the protein sequence context determines how much a given Ser residue is
30 phosphorylated in the condensates. We compute the phosphorylation rates rp for each Ser of
s TDP-43 LCD from the counts of phosphorylations and we compare them with the single-chain
2 simulations results. For this computation, we use only the part of the simulations before the
s start of the condensate dissolution. We can see from Fig. [k that the phosphorylation rates scale
s proportionally to the number of enzymes in the box. Moreover, the phosphorylation of the N- and
35 C- terminal serines (namely Ser 266 and Ser 410) is enhanced, as well as for Ser 393, Ser 395 and
36 Ser 403, compared to the single-chain case (see correlation plot in SI Fig. left).

387 The probability of contact with the active site of CK16 in the condensate for every Ser of TDP-
s 43 LCD differs from the single-chain case roughly by a factor 6. The C-terminus is more accessible,
s in particular Ser 369, Ser 393, Ser 395, Ser 403 and Ser 410, as shown in Fig. [, similar to what
0 occurs in dilute regime. For the dense phase, the phosphorylation rates seem very well correlated
1 to contact rates in equilibrium for the C-terminal serines (sample Pearson correlation 0.91), while
2 the end of the N-terminus is more phosphorylated compared to what one would expect based on
w3 the contact statistics from equilibrium simulations (SI Fig. left).

w The role of CK16 disordered domain in the phosphorylation of TDP-43
s 1N dilute solution and condensates

6 In simulations with full-length CK14, we find that the disordered region of CK1§ (residues 295 to
s 415) slows down the phosphorylation of TDP-43 in accordance with experiments. In experiments
s truncated CK10 is more active than the full-length enzyme|27]. First, we run simulations in dilute
30 solution. In our simulations CK14 is unphosphorylated and we do not allow possible autophospho-
s rylations of the CK1§ IDR|28| (Fig. , SI Movie 4). With the full-length enzyme, phosphorylation
sn  is more restricted to a few residues in the C-terminal region and N-terminal serines are almost never
sz phosphorylated (Fig. [pf). This is due to a reduction of the contacts between TDP-43 residues and
sz the active site of CK14, located in the folded domain of the enzyme. Indeed, in Fig. we can see
s that also the rates of contact in equilibrium without pSer r. are reduced by one order of magnitude.
w5 However, the Ser residues from residue 379 to 410 (10 of the 12 Ser residues found phosphorylated
s in patient samples) have at least three times the phosphorylation rate of the N-terminus also in
sr7 - the case of full-length CK14, while Ser 373 and Ser 375 are only slightly more phosphorylated than
s the N-terminal serines. The rate of active-site contact formation and the phosphorylation rates are
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Figure 5: Assessing the role of CK14§ disordered domain in phosphorylating TDP-43 LCD both in dilute
and dense regime. (a) Example of simulation setup of full-length CK16 (blue) and TDP-43 LCD (grey, Ser
in yellow) in dilute regime. The inset shows TDP-43 interacting with CK16 IDR (light blue, active site in
red). (b) Example of simulation setup of full-length CK14 and condensate of 200 TDP-43 chains. The inset
shows CK16 IDR (light blue) anchoring the folded domain (dark blue) to the surface of the condensate.
(c-d) Phosphorylation rates rp (c) and contact frequency in equilibrium 7. (d) for every Ser of TDP-43
LCD in presence of full-length CK14 in dilute regime. The ticks on top show the position of the charged
(red ‘4’ positive, blue ‘-’ negative) and aromatic (grey ‘a’) residues. Results from simulations without
tail are reported in red on the right y-axis. (e-f) Phosphorylation rates rp (e) and contact frequency in
equilibrium r¢ (f) for every Ser of TDP-43 LCD in presence of full-length CK14 in condensate. Results
from simulations without tail are reported in red on the right y-axis. (g-h) Contact rates for every residue
of full-length CK14 in dilute (g) and dense (h) regime at equilibrium. The disordered region (residues 295
to 415) has more contacts. Simulations with full-length CK16 (red) have more contacts than without IDR
(yvellow), the insets show that contacts of the active site (Asp 149, Phe 150, Gly 151) are comparable.
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7 more correlated in this case than for the folded domain alone (Fig[S12). However Ser 404, Ser 407
s and Ser 409 have similar contacts in equilibrium compared to the N-terminal serines, but higher
s rate of phosphorylation. As neigboring Ser residues become phosphorylated, binding to the active
s site, and thus phosphorylation, is likely enhanced.

383 The disordered tail of CK16 partially auto-inhibits the enzyme not by occluding the active site,
s but by sequestering the substrate. TDP-43 LCD interacts more strongly with the tail of CK16
s than with the folded domain of CK14 (inset in Fig. ) Consequently, full-length CK14 binds more
s strongly to TDP-43 LCD than the folded domain on its own. From equilibrium simulation of the
s7 - enzyme and TDP-43 LCD as analysed by VAMPnet[48], the binding free energy energy goes from
s 5 kJ/mol to -4 kJ/mol. The tail sequesters the substrate in the dilute phase allowing less contacts
9 with the active site, that is located on the opposite side of the enzyme surface, and thus resulting
s0 in fewer TDP-43 LCD phosphorylation events. We can see in of Fig. [5lg that the disordered domain
s of CK16 (residues from 295 to 415) has more contacts with TDP-43 LCD compared to the folded
s domain surface residues in equilibrium simulations without pSer. By looking instead to the residues
9 in the folded domain (from 0 to 294), we notice that the full-length CK16 (red) has in general more
3¢ contacts than the CK1¢6 without tail (yellow), due to the stronger binding of TDP-43 LCD with the
s CK1§ IDR. However, the active site features a comparable amount of contacts in two cases, with
s residue 149 having even more contacts in the simulations without tail. By contrast, we find in our
s7  simulations that the IDR does not inhibit the CK1§ by occluding the active site. The disordered
w8 tail of CK14d rarely forms close contacts with the active site and any close contacts are lost very
w0 rapidly (Fig. .

400 We run simulations with 200 chains of TDP-43 LCD in a cubic box of 100 nm side length,
w  adding 1,2 and 3 chains of full-length CK14 (Fig. , ST Movie 5). In the dense regime there is high
w2 amount of chains, so both contacts and phosphorylation counts increase compared to the dilute
w3 case (Fig. [5|e and f). Contacts and phosphorylation counts are also highly correlated in this case,
w04 since the abundance of chains allows the enzyme to neglect the less accessible phosphosites and
ws phosphorylate the most accessible ones from every chain. This constitutes a disadvantage for Ser
w389, Ser 404, Ser 407 and Ser 409 that are less phosphorylated compared to the dilute case. We
w7 note that the phosphorylation rates are directly proportional to the number of enzymes acting on
w8 the condensate, as well as the contact statistics (SI Fig. [S14]). By comparing the phosphorylation
w0 rates in condensate with the simulations without IDR, we notice that they are in general lower for
a0 the full-length case. The tail acts as a filter, allowing only the phosphorylation of Ser 369, Ser 393,
a1 Ser 395, Ser 403, Ser 410 and to a lesser extent Ser 377, Ser 379, Ser 387 and Ser 389, apart from
a2 some other very rare phosphorylation events. The effect of the tail on the relative phosphorylation
a3 rates is even more pronounced than what we observed in the simulations of CK14 and single chains
as of TDP-43 LCD.When more than 5% of Ser residues in TDP-43 LCD are phosphorylated, most of
a5 the TDP-43 chains feature 1 or 2 phosphates. The distribution of the number of phosphorylated
a5 Ser residues per TDP-43 LCD chains is even narrower than in the simulations without the CK14
sz disordered tail (SI Fig. orange). As for the case without tail, the phosphorylation rate of the
ns  most accessible phosphosites decreases with time (SI Fig. This saturation effect of the most
a0 reactive Ser residues is apparent even before the eventual dissolution of the condensate (SI Fig.
w20 lower panel).

a2 The disordered tail of CK14 facilitates the binding of CK14 to TDP-43 condensates. We observe
a2 that the tail recruits the condensate and keeps the folded region anchored to its surface, as illustrated
23 in the inset of Fig.[Bp. Also in this case the disordered domain of CK14 has more contacts compared
24 to the folded domain surface residues, as shown in Fig.[fh. Thanks to the disordered tail, the enzyme
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s remains bound to the condensate surface even in absence of phosphorylations. As a consequence,
w26 the residues of the folded domain of CK14 form more contacts with TDP-43 compared to the case
w27 without the tail (Fig. , residues from 0 to 294). However, the number of contacts of TDP-43
23 with the active site are again comparable in the two cases, explaining why the rates of binding to
29 the active site shown in Fig. [Bff are not greater than the ones in Fig. [@f. As for the single-chain
a0 simulation, the inaccessibility of the active site seems to be due to its opposite location on the
s enzyme surface compared to the disordered tail. Despite the stable anchoring to the condensate,
s the enzyme active site faces outwards, making it less accessible to the TDP-43 serines. Even in this
.3 case the auto-inhibitory and self-regulatory effects of the enzyme tail do not seem to be due to an
14 obstruction of the active site, since CK14 IDR interacts strongly with the condensate (SI Fig. [S16)).

= Discussion

16 We have demonstrated how Markov-state models enable us to straightforwardly validate molecular
s simulations of chemically-driven non-equilibrium steady states (NESS). Chemically-driven NESS
s are essential in cell biology|l]. Cells require the constant turnover of fuels and metabolites to
s9  grow and thrive. Chemically-driven NESS are likely also essential in the function of biomolecular
s condensates in the cells|2].

441 We envisage that our approach to establish the thermodynamic consistency of simulations and
42 the combination of molecular dynamics and Monte Carlo can be readily applied to more complex
w3 systems and simulations of such systems in high resolution [41]. For more complex systems, extract-
ws  ing kinetically meaningful states becomes even more challenging. In this respect advances based on
ss  neural networks and Koopman theory are highly encouraging[48, 53, 57, 58].

446 PTMs such as phosphorylation of proteins are a fundamental regulatory mechanism in cells
47 and with molecular simulations we can start to investigate how protein sequence and structure de-
s termine substrate-enzyme interactions and PTM patterns. Our simulations demonstrate that the
wu  IDR of CK16 could have important roles in TDP-43 phosphorylation, 1) by facilitating the binding
s0  to condensates and 2) by auto-inhibiting the enzyme, which our simulations capture in line with
s experiments |27, 28]. It is important to note that details of the conformations of proteins will be
s critical for the molecular recognition of potential phosphorylation sites by kinases and more detailed
553 molecular simulations |59] will be required to fully understand the recognition mechanisms. A more
s detailed description of conformational flexibility will be particularly important to understand in
s5  detail how the disordered tail of CK14 inhibits phosphorylation and whether sequestering of the
ss6  disordered substrate rather than binding to the active site really underpins auto-inhibition by the
7 CK1d IDR. Overall our simulations point to a potential preference for the C-terminal residues of
s TDP-43 on account of its sequence. Aggregated TDP-43 in patient samples is frequently phospho-
s rylated at, e.g., Ser 379, Ser 403/Ser 404 and Ser 409/Ser 410 |26 |46|, which are among the most
w0 phosphorylated residues also in our simulations. Due to the high concentration of substrates in
w1 condensates, proteins are readily phosphorylated. The phosphorylation rates for Ser residues are
w2 larger for TDP-43 in condensates than in the dilute phase. Interestingly, phosphorylation patterns
w3 are overall similar in dilute solution and condensates. While there are differences in the phospho-
w4 rylation propensities, sequence context still determines which sites can be phosphorylated. One
w5 can speculate that differences between phosphorylation in dilute and dense solution could be partly
ws explained by the overall higher phosphorylation level in condensates, which means that some sites
wr - will effectively be more readily phosphorylated than in dilute solutions|25], while the kinase may
s retain sequence-dependent recognition of substrates in the condensates.

16


https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607948; this version posted September 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

« Methods

= Coarse-grained MD simulations

s In our work, we simulated TDP-43 LCD and the kinase CK16 using a one-bead-per-residue coarse-
w2 grained model called hydrophobicity scale model [31] (HPS model) and a modified version of it,
w3 referred to as modified HPS model in the text (SI Text). In these models, the water solvent and
s the ions concentration are implicit in the pair potential definition. We used the original HPS for
a5 the thermodynamic consistency validation simulations, in which we preferred to give priority to
as  the frequency of the binding and phosphorylation events at the expense of having a more realistic
s force field, in order to get better statistics. For the other simulations, we used the modified HPS
we  model [30] in which cation-pi interactions are enhanced [60] and folded domains interaction are
we  reduced by 30% [61, |62] (SI Text). Simulations were conducted using Langevin dynamics at a
w0 temperature of 300 K and friction coefficient of 0.001 ps~! and in a cubic box with periodic boundary
s conditions of side length of 30 nm for the single TDP-43 chain simulations and 100 nm for the
w2 condensate simulations. The simulated TDP-43 LCD includes residues from 261 to 414 of the
w3 full-length TDP-43. The folded domain of CK16 (residues from 1 to 294) follows a rigid body
s dynamics with rotational drag coefficient of 4 ps~! for every axis, the structure is provided by
s https://alphafold.ebi.ac.uk/entry /P48730.

486 For the dilute regime, 100 simulations with phosphorylation reaction step and without reservoir
@ exchange step were run, 2x108 MD steps long (2 ps in simulation time) for the case with 1 wild
ws  type TDP-43 LCD and 1 CK16 folded-domain, 4x10% MD steps long (4 ps in simulation time)
s both for the case with 1 averaged-interaction polymer and 1 CK1§ folded-domain and for the case
w0 with 1 wild type TDP-43 LCD and 1 full-length CK1§. To characterize the intrinsic affinity of the
w1 enzyme for TDP-43 LCD, we repeated the same simulations, but without phosphorylation reactions
w2 at thermodynamic equilibrium. We collected in total 450 us of simulation time for the case of wild
w3 type TDP-43 LCD and CK16§ folded-domain and 900 us for the averaged-interaction polymer and
s for full-length CK16. The averaged interaction polymer is built by substituting the TDP-43 LCD
w5 residues different from Ser with a bead having average TDP-43 LCD mass, size parameter o and
ws hydropathy parameter A (SI Text) 1) leaving the serines at their original positions and 2) spreading
a7 them equally spaced along the chain.

498 We also simulated a condensate of 200 TDP-43 LCD chains. We ran 4 simulations 5x10% MD
w9 steps long (5 s in simulation time) with phosphorylation steps without reservoir exchange step (as
so for the single chain simulations) in presence of 1,3 or 5 CK14 folded-domain chains and of 1,2 or 3
s full-length CK14 chains. We repeated the same simulations, but without phosphorylation reactions
s2  at thermodynamic equilibrium, collecting a total of 20 us of simulation time for each case.

503 All the simulations involved in this paper were performed using the Python package HOOMD-
sos  blue version 3.8.1. The code used for the simulations is available at https://github.com/ezippo/
sos hoomd3_phosphorylation. The Ashbaugh-Hatch pair potential for the non-bonded interactions is
sis available at https://github.com/ezippo/ashbaugh_plugin as a HOOMD-blue plugin.

s»  Phosphorylation reaction through a Monte Carlo step

se  In addition to the standard MD simulation, we added a Monte Carlo step to mimic the phosphory-
so0  lation reaction. Every 200 steps of MD simulation, we check if one of the TDP-43 phosphosites is in
s contact with the active site of CK14, the area of the enzyme that catalyzes the reaction, identified
su  with the residues Asp149, Phel50 and Glyl51. The contact criterion is the following: the three
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sz distances between the TDP-43 phosphosite and the residues of the CK1§ active site must all be
53 less than 1 nm; in case more than one phosphosite is in contact with the active site at the same
siu time-step, only the closest one is taken into account. When a contact occurs, we try to switch
sis the Ser in contact into pSer (or the opposite) with a Metropolis-like acceptance probability in
s Eq.[2] The reverse reaction, that is the exchange of pSer with Ser, can also occur with probability
sz A(pSer, Ser) = min (1, exp(BAUp + BApup)), but it is less likely to happen when there is a chemical
sis  potential difference favouring the protein phosphorylation. ATP, ADP are modelled implicitly and
s are not explicitly simulated, with concentrations kept fixed and fully characterized through the
s choice of Aup.

521 The chemical potential difference in a reaction in units of kg7 is given by the logarithm of
s2 the product to substrate concentration ratio. Considering that the ATP concentration in cells is
s3. around 1 mM, the concentration of ADP is around 10 gM and fixing a temperature 7' = 300 K
s for our simulations, we get a chemical potential difference for a phosphorylation reaction Aup =
s fiapp — parp =~ —11.5 kecal/mol ~ —48 kJ /mol (ST Text). Observe that the ATP concentration is
s26  two orders of magnitude larger than the ADP concentration, leading to a large negative Aup that
so7  favors the exchange of Ser into pSer and disfavors the opposite reaction. Moreover we can mimic the
s ATP to ADP concentration ratio by changing the chemical potential difference in our simulation
s0 at fixed temperature. We used App = 0,—5,—10 kJ/mol for the validation of the thermodynamic
s0  consistency simulations and Aup = —48 kJ/mol for all the other simulations in dilute regime and
sn  condensate.

s» Dephosphorylation step

s In our validation simulations, we assume the exchange between TDP-43 and phosphorylated TDP-43
s happens without chemical driving and with equilibrium concentrations, through another Metropolis-
s like step (reservoir exchange step). Every 200 MD steps, we check if the distances between the
s35. ' TDP-43 phosphosite and the 3 residues of the CK1§ active site is larger than 25 nm (half box side
s length). In that case, we randomly swap the pSer of the phosphorylated TDP-43 with a Ser (or the
s opposite) with a Metropolis-like acceptance probability:

Ap(pSer, Ser) = min (1, exp(—SAUp)) (4)

s where AUp is again the difference between the potential energy of the configuration with Ser and
s the one of the configuration with pSer. In this case there is no chemical driving force, the reaction
sa obeys detailed balance and thus it does not inject any additional energy into the system. This
se2 exchange step mimics a larger reservoir of TDP-43 and phosphorylated TDP-43 and thus enables
se3 us to simulate multiple phosphorylation cycles on the level of a single enzyme and single substrate
s protein simulation.

ss Thermodynamic consistency validation simulations

s We simulated the system with one CK1§ and one TDP-43 LCD with only one reactive residue.
se7 - We repatead the simulation for 6 different reactive serines along the TDP-43 LCD, i.e. Ser292,
sis Ser 317, Ser 369, Ser 387, Ser 403, Ser 409, and Aup = 0,—5,—10 kJ/mol. Simulations were
se0  conducted for 20 ps in a cubic box of 50 nm side length with periodic boundaries using HPS
sso - model force field. In order to get better statistics, we took a 100us long trajectory for Ser 403 and
st App = 0,—5 kJ/mol. We used these longer trajectories for the estimates of Apgycle with different

18


https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607948; this version posted September 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

s lag times and with the version of VAMPnet with more input distances. Errorbars on Aficycle Were
53 Obtained via bootstrapping of the total simulation trajectory collected.

s« VAMPnet architecture and training

sss For the bound state recognition, we performed a nonlinear dimension reduction using a neural
s network with two identical lobes, following the VAMPnet architecture and the hyper-parameter
ss7 optimization used by Mardt et al. [48]. Each lobe is composed by an input layer with 154 nodes,
sss one for each residue of TDP-43 LCD, one hidden layer with 30 nodes that employs exponential
0 linear units (ELU) and an output layer with 2 nodes, ideally bound and unbound state, and a
so  final Softmax classifier to obtain probabilities of bound and unbound configurations as output. As
sse  input for the neural network, we used the 154 distances between each residue of TDP-43 LCD and
sz the active site of CK16. We chose a learning rate of 0.5 x 1072 and a batch size of 4 x 10*. The
s neural network was trained for 100 epochs on 90us of equilibrium HPS model[31] simulation with
ssa one TDP-43 LCD and one CK16.

565 The neural network returns the probability of being in one of the 2 output states (ideally bound
ses and unbound state) for each snapshot of the trajectory. We assigned each snapshot to the state with
ss7  higher probability, filtering those with a probability between 30% and 70% using transition-based
s state assignment[49]. In other words, these configurations were assigned based on the state of the
sso  previous and following snapshots, in order to filter out spurious transitions.

570 In order to test the generality of our method, we repeated the bound state recognition with
sn. VAMPnet, but using more input nodes. In particular, we used the distances between all the
s residues of TDP-43 LCD and 30 equally spaced residues of CK16, resulting in an input layer of
sz 4620 nodes. This time we used 2 hidden layers with 154 and 30 nodes each, and an output layer
s with 2 nodes. We reduced the learning rate to 0.5 x 10~3 and the batch size to 10%.

s Implied timescales and Chapman-Kolmogorov test

s The choice of the lag time was done by looking at the implied timescales. We can estimate the
sz implied timescales of the Markov model from the eigenvalues of the transition matrix as:

tZ(T) =

T

W) ©)

s with A;(7) the eigenvalues of T;; (7). We chose a lag time 7 such that ¢,(7) is approximately constant
s for every 7 > 7. We estimated Apicycle for different lag times (1,10,20 Markov chain steps) for the
o0 case of reactive Ser 403 and Aup = 0, —5 kJ/mol. For 7 > 10 Markov chain steps, the estimated
st Aflcycle 1S in agreement with Apup (SI Table .

582 We estimated the goodness of the MSM by looking at the Chapman-Kolmogorov test (CK test)
ses |52] [53]. In a Markovian process, the transition matrix satisfies the relation

Tij(nt) = [Tij (7)]" (6)

ssa with m > 1. In other words, the transition matrix of the model estimated at lag time n7 must be
sss equal to the transition matrix to the power n of the model estimated at lag time 7. The CK test
sso  compares T;;(n7) (the estimated transition matrix) and 77;(7) (the predicted transition matrix) for
se7  every possible transition i = j and different lag times nr.
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= Hstimate of phosphorylation rates and fit of phosphorylation processes

seo  In all the single TDP-43 LCD chain simulations, we estimated the phosphorylation rates rp assum-
s ing the phosphorylation process is without memory and thus follows single-exponential kinetics. In
s all the collected 100 simulations, we had at most one phosphorylation event for each Ser residue,
s happening at time tip < tiot for simulation i, with o the total time of the simulation. In this case,
s we can use the maximum likelihood estimator for the rate with uniform prior distribution [55]

n+1 n+l . =
P =g var(rp) = o7 with © = th + (100 — n)ttot (7)
i=1

sa  Where n is the counts of simulations with one phosphorylation event for the Ser took in consider-
ss ation. Instead, for the simulations in condensate, in which we have multiple TDP-43 chains and
sss thus multiple phosphorylation events for each Ser residue, we computed rp as the total count of
s phosphorylation events in the simulation divided by the total simulation time. In this case, the
ses  error on the estimate of the rate is computed as the standard error of the mean from the different
s0  replicas. In the same way we also computed all the contacts rates r. and their error.

600 However, since the phosphorylation of a Ser can happen only if TDP-43 is bound to the enzyme,
s it is more appropriate to take into account the conditional probability of the phosphorylation event
s2 given the binding of TDP-43 and CK14 already occurred. Given pp(t)dt = rgexp (—rpt)dt the
s03 probability of binding between time ¢ and ¢ + dt and pp(t)dt = rpexp (—rpt)dt the probability
es of having a phosphorylation between time ¢ and t + dt, the conditional probability of having a
es phosphorylation between time ¢ and ¢ + dt given that TDP-43 is bound to CK1§ is

t
P(t[bound)dt = / pa(t)dt pp(t — t')dt = —2 L (e7mrt — ¢="5l) gt (8)
0 B —Tp

oo 1f we call P.(t < T) the probability of having a phosphorylation event within time 7' in our
e7 simulations, we can write its complementary as:

T —rpt —rpt
1-P(t<T)=1 —/ P(tydt = 2 (e _— ) 9)
0 B —Tp Tp B

s Instead, if we assume that the binding process is much faster than the phosphorylation one (rg >
0 7p), than we can approximate P(¢/bound) ~ pp(t) and 1 — P.(t < T) ~ exp (—rpt).

610 From the 100 simulations used to estimate the phosphorylation rates, we computed the normal-
e ized inverse cumulative histogram of the phosphorylation events time 7', where each time bin gives
612 the phosphorylation counts for that bin plus the counts of all the following bins, divided by the
sis  number of simulations. We fitted it with 1 — P.(¢ < T') both for a single-exponential process and a
s1a conditioned single-exponential process.

«s Condensate identification with clustering analysis

e In order to identify the TDP-43 LCD condensate in the trajectory file, we used the DBSCAN
sz (Density-Based Spatial Clustering of Applications with Noise) clustering analysis algorithm|63]. It
sz is an efficient algorithm to identify clusters based on a euclidean distance cut-off € and a minimum
610 cluster size parameter n,;,. Particles with at least nn,;, neighbors within a distance € are considered
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&0 core particles of the cluster. Instead, particles with less than n.,;, neighbors are considered non-core
e particles and they are assigned to a cluster only if at least one of their neighbors is a core particle.
622 For the estimate of the condensate size and of the percentage of CK1J in contact with the
&3 condensate, we used the positions of every bead as input data and we chose the parameters e = 1 nm
e and ngin = 2. With this choice, every isolated chain is considered as a cluster and two different
s chains belongs to the same cluster whenever at least one of their particles is in contact (within 1 nm).
e26 However, varying € between 0.8 nm and 3 nm and n,;, between 2 and 5 does not significantly change
e7  the results. We accounted for the periodic boundary conditions by centering the condensate in the
es box at every frame.
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» Supporting information

s Residue-level coarse-grained models with implicit solvent

w7 For our coarse-grained simulations we employed the hydrophobicity scale (HPS) model [31] and a
79s  modification of it [30]. The original HPS model was fitted with IDPs data and considers proteins
79 as fully flexible chains. In order to have a more realistic representation of the enzyme CK19,
so  we decided to employ also a modified version of it that takes into account the presence of folded
sn  domains. In both models every residue type is represented with a particle of Lennard-Jones (LJ)
sz size o, charge ¢, mass m and hydropathy scale parameter A\. For the HPS model, the pair potential
s3 has 3 contributions

UHPS - Ubond + U electrostatic + Uhydrophoblaty’ (Sl)

ss  while the modified HPS model has one more contribution to enhance cation-pi interactions:

17 _ 17
UHPS - Ubond + U electrostatic + Uhydrophobicity + U cation—m* (82)

ss The bonded interactions are described by an harmonic potential
2] ]- 2
Ubond - 5]@(7"1']' - TO) (S?))

s with r;; the distance between the neighboring residues i and j, spring constant k¥ = 8360kJ/(molnm?)
sov and equilibrium bond length r¢ = 0.381 nm.
808 The interactions between non-bonded residues are modeled through the Ashbaugh-Hatch po-
so  tential

Uy

Uy +e(1—Ngj), if ryy <2Y00;
hydrophobicity = { N ! v (84)

)\ZJULJ, if’f’ij > 21/6O'l'j

s where 0;; = (0; +05)/2, Aij = (A + A;)/2 and Uzjj is the standard Lennard-Jones potential

U, = e () - () | S5

[ (55)
sn  The interaction is truncated at a cutoff distance of 2 nm. The parameter € expresses the strength of
sz the Lennard-Jones interaction and it is fixed to € = 0.8368 kJ/mol, value fitted with experimental
sz Ry from single IDP chains [31], while the hydrophaty scale parameter )\;; scales down the inter-
sis action for distances larger than the minimum of U}’; and goes from 0 (fully hydrophilic case, no
as  attraction between residues) to 1 (fully hydrophobic case, the interaction becomes a standard LJ).

ais  Phosphorylated Ser residues are modelled as described by Perdikari et al |64].

817 Charged residues experience also salt-screened electrostatic interactions, which are modeled
sis  using a Yukawa/Debye-Hiickel potential

%%‘62
Uelectrostatic = m eXP(*T/TD) (86)
sio  where we used a Debye screening length rp = 1.0nm for an ionic strength of approximately 100
s20 mM and a relative dielectric constant of the water solvent €, = 80, following the ones of the original
e HPS model [31]. In this case the cutoff distance is 3.5 nm.
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822 For the modified HPS model, we added another LJ potential only between cation-m pairs
&3 (Arg/Lys with Phe/Trp/Tyr), as proposed by Das et al. [60]:
kJ

= UEJJ ’ with €cation—m = 3.138—— (S?)

iJ
U mol’

cation—m
22« Also in this case the cutoff is 2 nm.
825 In the modified HPS model, the dynamics of folded domains follows the one of a rigid body.
@26 Moreover, the parameter \ in Uﬁ;drophobicity and €cqtion—r I U2, are scaled down by 30% for
&7 pair interactions involving residues of the folded domains, as suggested by Krainer et al. [62].
828 The Ashbaugh-Hatch pair potential for the non-bonded interactions is available at https:
&0 |//github.com/ezippo/ashbaugh_plugin/as a HOOMD-blue plugin. The code used for the simu-

s lations is available at https://github.com/ezippo/hoomd3_phosphorylation.

s Chemical potential difference in a phosphorylation cycle

sz The chemical reaction difference in a reaction in units of kg7 is given by the logarithm of the product
83 to substrate concentration ratio: In the phosphorylation-dephosphorylation cycle, the chemical
s reactions involved are the two following ones:

Ser + ATP = pSer + ADP ; pSer = Ser + P;

835 The chemical potential differences for the two reactions are

B [TDP-43*][ADP]\ [TDP-43*][ADP] [TDP-43],[ATP].,
App = Apip + kpTlog < [TDP-43][ATP] ) = kpT log ( [TDP-43][ATP] [TDP-43%, [ADP]eq>
836 (SS)

s o () oo )

837 The total amount of chemical driving will be:

Apey = App + App =
b Tlog ([TDP-43*|[ADP] [TDP-43).,[ATP]., [TDP-43)[P;] [TDP-43*],,

— B Og( [TDP-43][ATP] [TDP-43*],,[ADP]., [IDP-43* [TDP—43]eq[Pi]eq)
ADPJ[P,] _[ATP].,

ATP] [ADPL.,[Pl.,

= (S10)

= k‘BTlog (

) = Arp + kT log (WW>

[ATP]

s Note that Ape, is equal to the chemical potential difference for the ATP hydrolysis reaction ATP =
sv  ADP + P;, for which the equilibrium value in standard conditions is Ap%,p = —7.3 keal/mol .

s Detailed balance breaking and local detailed balance

s In our NESS simulations of a 4-state MSM, we expect to have detailed balance for the transitions
s2 1 = 2and 3 =4, i.e. the binding/unbinding of the enzyme with TDP-43 or phosphorylated TDP-
sz 43, since they are determined by equilibrium MD simulations, but also 4 = 1, i.e. the reservoir
saa  exchange step, that is determined by a Metropolis step without chemical fuel. The detail balance
as  condition is:

piTy; = p; Ty (S11)
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ss  where Tj; is the transition probability from state ¢ to j and p; is the stationary probability of
a7 being in state 7. Instead the phosphorylation reaction 2 = 3 breaks detailed balance injecting
ss  into the system an amount of energy equal to Aup. Despite the Metropolis step is built in such
a0 a way to satisfy the detailed balance condition, the Apup added in the acceptance ratio breaks
so detailed balance once the algorithm is coupled to equilibrium MD simulations. In order to show
es1  this, let us call ‘A’ a microstate configuration in which we have a contact between the Ser of
g2 TDP-43 and the active site of CK14 and ‘B’ the same microstate configuration but soon after the
3 phosphorylation step, with pSer instead of Ser. The probability of being in the microstate ‘A’ or ‘B’
e 1S pa = exp (—BHa)/Z and pp = exp (—fHp)/Z, with 8 = 1/kpT and Z the canonical partition
g5 function, and they are sampled through the MD simulation. Since the velocities in ‘A’ and ‘B’ are
6 the same, the probability ratio will be pg/pa = exp (—SAUp).

857 The Metropolis acceptance ratio contains also an additional Aup, leading to the following
sss  transition probability for the phosphorylation step:

1, if pl /s >1
TAB{ Pp/PA >

Lo (S12)
o 1P /P <1

o where plz /p/y = pp/paexp (—BAup). Thus detailed balance is broken for Aup # 0 and we get:

Taspa _ PPA _ g (S13)
Teaps  P4PB

860 On the other side, if our system is a NESS, i.e. Tj; and p; are constant in time, for the local
ssr  detailed balance we should have

1 T12T53T34Ty1 )
A =——In|{—"——— S14
e B ( T14T43T32T5, (514)
s2  Using Eq. for the couples (7,7) = (1,2),(3,4), (4,1), we can simplify Eq. as
1 21530414 ) 1 (p2T23 >
Acce:_fln _ :—7111 :A 815
feyel B <P1T14P3T32 B 3132 pe (815)

s3  where in the last step we use the local detailed balance condition on the phosphorylation step in

864 Eq. @.

s Transition probabilities and transition rates

s In many formulations, Eq. [3| (or Eq. is expressed in terms of transition rates rather than
7 transition probabilities. The two are related and in our case give the same result for the Apcycle-
s We estimated the time-independent transition probability T;;(7), namely the probability of having
g0 the system in state j at time ¢ + 7 given that it was in state ¢ at time ¢ (for every t), using the
g0 non-reversible Maximum Likelihood Estimator|50, 51]:

oy ci(T)
Ti;(7) S can(r) (S16)

sn  where ¢;;(7) is the count of transitions from ¢ to j after a lag time 7.
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872 In principle, it could be useful in some cases, e.g. for continuous-time systems or non-linear
s reaction networks, to express Eq. [3| with transition rates k;;. For a Markov process, the transition
g probability matrix T(7) can be expressed in terms of transition rates matrix k as:

T = exp (k7). (S17)

srs For small 7 compared to the system timescales, Eq. [S17] can be approximated as
T;j . .,
T~1+7k = kj~—, Vi jsuchthati#j. (S18)
T

s In such case, using T;; or k;; to compute Aficycle does not change the result, since the factor 1/7
g7 would be cancelled out in the ratio in Eq. [3[ (or Eq. .

878 As an example, for the simulations with reactive Ser 403 and Aup = —5 kJ/mol, we computed
sn  T;; with lag time 7 = 10 Markov chain steps (or 1 ns in simulation time). Discretizing the trajectory
0 into 3 Markov states (state 1 with unbound CK1é and TDP-43, state 2 with bound configuration
s and unphosphorylated Ser 403 and state 3 with bound configuration and phosphorylated Ser 403)
sz leads to 2 implied timescales that are much larger than the the lag time 7 (Fig. [2] SI Fig.[S1]). The
g3 estimated transition probability matrix is

0.97706502 0.01522616 0.00770882
T = |0.03748648 0.92563442  0.0368791 (519)
0.02103749 0.00579359 0.97316892

ss« while the transition rates matrix is

—0.02293498 ns—1  0.01522616 ns~!  0.00770882 ns~
k= | 0.03748648 ns~!  —0.07436558 ns~'  0.0368791 ns~! (S20)
0.02103749 ns~!  0.00579359 ns—!  —0.02683108 ns~"

sss where for the diagonal elements we used the property of the rate matrices k;; = — ot kij.
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= L hermodynamic consistency data

Ser —App [kJ/mol] | —Apcyele [kJ/mol] | —Apieyere,3s [kJ/mol]
0 0.1 £0.6 0.1 £0.6
Ser292 5 4.6 + 0.9 4.6 +£0.9
10 10.3 £ 0.8 10.3 £ 0.9
0 -0.4 £ 0.5 -0.5 £ 0.5
Ser317 5 5.0 &£ 0.7 4.9 + 0.7
10 10.3 + 0.6 10.1 £ 0.8
0 0.5 &+ 0.7 0.5 £ 0.6
Ser369 5 5.0+ 0.6 514 0.5
10 10.3 &+ 0.7 10.2 + 0.5
0 0.0 £ 0.6 0.1 +£04
Ser387 5 5.3 £ 0.6 5.2+ 0.5
10 9.3 £ 0.7 9.1 &£ 0.7
0 0.51 £ 0.26 0.52 £+ 0.27
Ser403 5 4.87 + 0.27 4.9 £+ 0.3
10 9.7 £ 1.0 9.5 £ 0.7
0 0.0+ 0.8 0.1 £0.7
Ser409 5 4.1 +£ 0.7 4.1 £ 0.5
10 10.3 £ 0.8 10.2 £ 0.8

Table S1: Estimated Apicycie reported in Fig. of the main text.

Ser 7 [steps| | —App [kJ/mol] | —Apcyele [kJ/mol]
1 0 0.45 + 0.23
Ser403 10 0 0.51 £ 0.26
20 0 0.57 £ 0.27
1 -5 4.29 + 0.21
Ser403 10 -5 4.86 + 0.27
20 -5 4.99 +£ 0.34

Table S2: Estimated Apcycle for Ser 403 and Aup = 0, —5 kJ/mol for different lag times. The results for
Alpicycle are in agreement with App for 7 > 10 Markov chain steps.
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Figure S1: Implied timescales and CK test for every validation simulation. We estimated Aficycle also with
a 3-state MSM, merging together state 1 and 4 into the new state 1. We report the CK test also for the
3-state MSM case. The implied timescales are constant for 7 > 10 Markov chain steps. The smaller implied
timescale is smaller than the lag time for 7 > 10 Markov chain steps. The CK test confirm that the MSM
correctly fulfill the markovianity condition.
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Figure S2: Implied timescales and CK test for Ser403 and Aup = —5 kJ/mol using a version of VAMPnet
with 4260 input distances. We estimated Apicycie also with a 3-state MSM, merging together state 1 and 4
into the new state 1. We report the CK test also for the 3-state MSM case.

s Phosphorylation modifies interaction of CK16 with TDP-43 LCD

s Binding free energy

g0 We computed the binding free energy AGy;nq between 1) CK16 folded-domain and wild type TDP-
g0 43 LCD, 2) full-length CK1¢ and wild type TDP-43 LCD, 3) CK16 folded-domain and triple phos-
s phorylated TDP-43 LCD (pSer 395, pSer 403, pSer 410). For the first 2 cases, we used the data
g2 from the equilibrium simulations without phosphorylation step (450 s for case 1) and 900 us for
g3 case 2) ), while for case 3) we collected 20 us of simulation time.

804 The binding free energy is estimated as

AGying = —In @bbgg) (S21)

s where T, ;(7) is the probability to have a bound state at time ¢+ 7, given an unbound state at time
s t, and Ty ,,(7) is the probability to have an unbound state at time ¢+ 7, given a bound state at time
sr t. In order to get the transition probabilities, we discretize the simulation trajectories in bound
s and unbound state using VAMPnet (in the same way as in Fig. [2] as explained in Methods) and

g0 estimate Ty, and Ty, at lag time 7 = 5 X 10* MD steps using a Maximum Likelihood estimator
o0 for MSM |50|.

o1 Plots
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Figure S3: Example trajectory of minimum distance between residues of TDP-43 LCD and the active site
of CK16 folded-domain in equilibrium simulation without phosphorylation (blue) and in non-equilibrium
simulation (orange) in dilute concentration. The color of the non-equilibrium trajectory becomes darker
after every phosphorylation event. In this example TDP-43 stays bound to the enzyme after 3 phosphory-

lations.
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Figure S4: Example trajectory of minimum distance between residues of TDP-43 LCD and the active site
of full-length CK14 in equilibrium simulation without phosphorylation (blue) and in non-equilibrium sim-
ulation (orange) in dilute concentration. The color of the non-equilibrium trajectory becomes darker after
every phosphorylation event. In this example TDP-43 stays bound to the enzyme after 3 phosphorylations.
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Figure S5: Phosphorylation rates rp for every Ser of TDP-43 LCD in presence of 3 CK14§ folded-domain
(top panel) or 3 full-length CK16 (lower panel) in condensate for different parts of the trajectory. The
ticks on top show the position of the charged and aromatic residues. Phosphorylation rates of the most
phosphorylated Ser decrease with time.
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Figure S6: Histogram of the presence of phosphate per chain after 0.3 us for the simulation of TDP-43
condensate with 3 CK16 folded-domain (grey) and after 5 pus for the simulation of TDP-43 condensate with
3 full-length CK14 (orange). In both cases about 5% of total number of Ser are phosphorylated at the time
of the measurement.
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«» CK10 active sites and charges

Figure S7: CK14 with colored charged residue close to the active site. In blue the +e charged residues,

in light blue His residues (considered +0.5e in our simulations), in red -e charged residues. In yellow the
active site residues.

«s Phosphorylation acceptance
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Figure S8: Acceptance ratio for phosphorylation step for simulations with CK1§ folded-domain (blue) and
full-length CK16 (orange). The acceptance ratio is very close to 100% for every Ser of TDP-43 LCD.
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o« Phosphorylation process fit
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Figure S9: Normalized inverse cumulative histograms of phosphorylation times (black solid lines) and fit
with simple single-exponential process (blue dotted lines, rate estimates in blue) and conditioned single-
exponential process (red solid lines, rates estimates in red) for 8 different Ser residues. Most of the times the
conditioned exponential process fits perfectly. The rate extrapolations from the two fits are in agreement
with the bayesian estimates. The rate rp is different for every serine.
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Figure S10: Probability p(t(Ser;) < t(Ser;)) of Ser; being phosphorylated ahead of Ser; for system with
averaged-interaction chain and CK14 folded-domain (left) and for the system with TDP-43 LCD wild type
and full-length CK14 (right), data from 100 trajectories.

17


https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607948; this version posted September 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

11p——»12p

11p——»12p 10 &

11p——»12p

18


https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607948; this version posted September 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

11p——»12p

Figure S11: Phosphorylation pattern representation for every Ser of TDP-43 LCD. The thickness of the

arrows represent the percentage of simulations in which the Ser in the center of the graph was phosphorylated
after n other Ser residues.
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Correlation plots: rp vs r. in dilute regime for full-length CK16
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Figure S12: Correlation plots of contact frequency in equilibrium r. and phosphorylation rates rp in dilute
regime for simulations with full-length CK14.
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w7 Correlation plots: dilute vs dense regime phosphorylation rates
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Figure S13: Correlation plots of phosphorylation rates rp in dense (x-axis) and dilute (y-axis) regimes for
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oo CK16 disordered domain do not cover the active site
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Figure S15: Example trajectory of minimum distance between residues of full-length CK1§ IDR and its
active site in equilibrium simulation without phosphorylation (blue) and in non-equilibrium simulation
(orange) in dilute concentration. The color of the non-equilibrium trajectory becomes darker after every
phosphorylation event. The distance never stays stable around the contact distance, but oscillates around
larger values, suggesting that the CK16 IDR does not cover the active site for an extended time interval.
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Figure S16: Example trajectory of minimum distance between residues of full-length CK1§ IDR and its
active site in condensate simulations. The distance never stays stable around the contact distance, but
oscillates around larger values, suggesting that the CK1§ IDR does not cover the active site for an extended
time interval.
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a0 Movies
911 SI Movie 1

a2 Movie from simulation of single TDP-43 LCD chain and single CK1§ folded domain with phos-
sz phorylation step (Eq. and reservoir exchange step (Eq. in cubic box of 50 nm side length
o using HPS model. In this simulation, the only phosphosite is Ser403 and Aup = —5 kJ/mol. This
a5 simulation was used in Fig. [

s  SI Movie 2

sz Movie from simulation of single TDP-43 LCD chain and single CK16 folded domain with phospho-
ais  rylation step in cubic box of 30 nm side length using modified HPS model. This simulation was
a0 used in Fig. [B.

o0 SI Movie 3

o1 Movie from simulation of 200 TDP-43 LCD chains and 3 CK14 folded-domain with phosphorylation
a2 step in cubic box of 100 nm side length using modified HPS model.

o SI Movie 4

o2« Movie from simulation of single TDP-43 LCD chain and single full-length CK14 with phosphoryla-
o5 tion step in cubic box of 30 nm side length using modified HPS model.

s  SI Movie 5

ez Movie from simulation of 200 TDP-43 LCD chains and 3 full-length CK16 with phosphorylation
ws step in cubic box of 100 nm side length using modified HPS model.
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