
Molecular simulations of enzymatic phosphorylation of
disordered proteins and their condensates

Emanuele Zippo1,2, Dorothee Dormann2,3, Thomas Speck4, Lukas S. Stelzl2,3,5

1 Institute of Physics, Johannes Gutenberg University Mainz, Germany
2 Institute of molecular Physiology (ImP), Johannes Gutenberg University Mainz, Germany
3 Institute of Molecular Biology (IMB), Mainz, Germany
4 Institute for Theoretical Physics IV, University of Stuttgart, Germany
5 KOMET1, Institute of Physics, Johannes Gutenberg University Mainz, Germany

Abstract
Understanding the condensation and aggregation of intrinsically disordered proteins in a non-
equilibrium environment is crucial for unraveling many biological processes. Active enzymes catalyse
many processes by consuming chemical fuels such as ATP. Enzymes called kinases phosphorylate
disordered regions of proteins and thus profoundly affect their properties and interactions. Pro-
tein phosphorylation is implicated in neurodegenerative diseases and may modulate pathogenesis.
However, how protein sequence and molecular recognition of a disordered protein by kinases de-
termine phosphorylation patterns is not understood. In principle, molecular dynamics simulations
hold the promise to resolve how phosphorylation affects disordered proteins and their assemblies.
In practice, chemically-detailed simulations of enzymatic reactions and the dynamics of enzymes
are highly challenging, in particular it is difficult to verify whether implementations of driven sim-
ulations are thermodynamically consistent. We can now address this problem with residue-level
coarse-grained molecular dynamics simulations, integrating Metropolis Monte Carlo steps to model
chemical reactions. Importantly, we show how to verify by Markov-state modeling that the real-
isation of a non-equilibrium steady state satisfies local-detailed balance. We investigate TDP-43
phosphorylation by the kinase CK1δ in simulations, examining patterns of phosphorylation and
assessing its preventive role in chain aggregation, which may be a cytoprotective mechanism in
neurodegenerative diseases. We find that the degree of residue phosphorylation is determined by
sequence preference and charges, rather than by the position in the chain. The phosphorylation
frequency is also affected by the phosphorylation patterns, since the interactions between CK1δ
and TDP-43 actively change after each reaction. For TDP-43, our simulations show condensates
dissolution through phosphorylation with kinases binding to the condensates and phosphorylating
TDP-43 in the condensates.
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Introduction1

Biological systems operate far from equilibrium[1]. The functionalities of cells and of their organelles2

and compartments are possible only through a very precise self-organization, driven by a continuous3

injection of energy from the external environment [2]. In the cell, chemical energy is stored, e.g. in4

the form of ATP molecules among others[3]. This energy is then used to synthesize and degrade5

molecules through biological cycles. On time scales shorter than physiological changes, microscopic6

rates are approximately constant and the system enters a non-equilibrium steady states (NESS)[3–7

5].8

Cellular compartmentalisation underpinning biological function is achieved not only by lipid9

membranes and organelles surrounded by such membranes, but also by phase separation of pro-10

teins, giving rise to biomolecular condensates[6]. Membrane-less compartments of phase-separated11

proteins can concentrate or exclude molecules and thus organize biochemical processes in time12

and space, which is analogous to the compartmentalisation provided by lipid membranes. These13

phase-separated condensates can often act as chemical reactions organizers[7]. However, these con-14

densates of proteins can also age into solid aggregates, which are believed to contribute to neuronal15

dysfunction and neurodegeneration[8, 9]. As condensates age and become less liquid-like, they16

frequently lose their biochemical functionalities[10]. Aggregates of intrinsically disordered proteins17

(IDPs) are often linked to neurodegenerative diseases. Some examples are Tau protein aggregates,18

associated with Alzheimer’s disease[11], α-synucleic aggregates, associated with Parkinson’s disease19

[12], or TAR DNA-binding protein 43 (TDP-43) aggregates, mostly found in patients with amy-20

otrophic lateral sclerosis (ALS) [13], frontotemporal dementia [14], but also in many patients with21

Alzheimer’s disease [15].22

Proteins within condensates can also undergo chemical reactions themselves [2], driving the23

system out of equilibrium by dissipating a biochemical fuel, such as ATP. The modification of24

those proteins by addition of chemical groups, such as phosphate groups, are referred to as post-25

translational modifications (PTMs). IDRs are not only essential in driving the condensation of26

proteins, but they are also prime targets of PTMs [16]. PTMs can drastically change the properties27

of individual proteins[17] and collectively of condensates [18], enhancing[11, 19] or suppressing28

the condensation and aggregation of IDPs[20, 21]. For instance, it has been shown that chemical29

reactions can stabilize the size of liquid droplets by suppressing Ostwald ripening [22, 23].30

To connect these advances in the understanding of active processes in condensates to the biolog-31

ical roles of proteins, it will be important to elucidate how ATP driven phosphorylation shapes the32

interactions of intrinsically disordered protein regions (IDRs) of neurodegeneration-linked proteins33

such as TDP-43. The disordered low-complexity domain (LCD) of TDP-43 is hyper-phosphorylated34

in disease, and in experiments such a hyper-phosphorylation has been found to suppress TDP-4335

condensation and aggregation[24]. Enzymes can add PTMs to IDPs in dilute solution, but en-36

zymatic addition of PTMs may also occur in protein condensates. Recently, it was shown that37

phase-separated condensates can speed up phosphorylation of Tau protein[25]. Phosphorylation of38

the TDP-43 C-terminal residues Ser 379, Ser 403, Ser 404, Ser 409, and Ser 410 in patient samples39

is associated with neurodegenerative disease[26]. TDP-43 is phosphorylated by Casein kinase 1δ40

(CK1δ). How the enzymatic phosphorylation of TDP-43 is modulated in dilute solution and how it41

is affected by protein condensates is not known. The disordered tail of CK1δ is auto-inhibitory[27,42

28], but how it inhibits TDP-43 phosphorylation is unclear on the molecular scale. IDRs of enzymes43

have multiple functions, such as auto-inhibition by binding to the active site. IDRs are involved in44

substrate binding, for instance IDRs can speed up reactions via fly casting effect, where the IDR45
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Figure 1: Enzymatic phosphorylation cycle driven by the consumption of the chemical fuel ATP. In state
1 TDP-43 (grey) is unphosphorylated and is not bound to the kinase CK1δ (blue, active site in pink). In
state 2 TDP-43 binds to CK1δ. In state 3 the reactive serine is phosphorylated by kinase, converting one
ATP into one ADP. In state 4 phosphorylated TDP-43 dissociates from CK1δ. Phosphorylated and un-
phosphorylated TDP-43 are supplied through reservoirs and we consider exchanges between these reservoirs
and our simulation box. Serines are colored in yellow, while phospho-serines in red.

increases the search volume for the binding of partner proteins[29].46

Phase behaviour of intrinsically disordered proteins (IDPs) and the biological functionalities47

of protein condensates have been studied in the past years using multi-scale molecular dynamics48

(MD) simulations. Such simulations capture the spontaneous condensation of hundreds or more49

proteins while maintaining enough chemical detail in the simulations to elucidate sequence-specific50

interactions of proteins[24, 30]. Comparison to more highly-resolved coarse-grained methods [30–51

34] or atomistic molecular simulations [35, 36] can then highlight important drivers of protein52

condensation[24].53

However most of these studies assume thermodynamic equilibrium, neglecting the dynamical54

changes in the properties of individual proteins and protein condensates, as well as the dissipation55

caused by chemical fluxes. Much progress has already been made in the simulations of mechanically-56

driven non-equilibrium steady state (NESS), where external mechanical forces give rise to driven57

dynamics [37]. An important step was the construction of Markov state models to better under-58

stand the effects of driving on the molecular scale[38]. Analogously, a biological chemically-driven59

NESS, such as molecular motors, can be simulated by maintaining a chemical potential difference,60

i.e. by fixing the ATP to ADP concentration ratio. [4, 39] Chemical reactions could in principle also61

be modelled via quantum mechanical approaches[40], but these are computationally very demand-62

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.08.15.607948doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/


ing, which can preclude their application to large-scales dynamics in complex biochemical systems.63

Recently, exciting progress has been made in integrating chemical reactions in molecular dynamics64

simulations via neural networks[41]. Even in the case of coarse-grained simulations, chemical reac-65

tions have been modelled through the use of reactive beads that can form bonds between molecules66

[42]. In many cases, one could model chemical reactions in complex system by combining MD with67

a suitably chosen Monte Carlo (MC) step [39, 43]. Arguably, the absence of a straightforward68

approach of validating the thermodynamic consistency of simulations of NESS has held back the69

widespread application of MD/MC approaches to biochemical reactions on the molecular scale.70

Here we demonstrate how to validate the thermodynamic consistency of simulations of enzymatic71

phosphorylation of proteins using TDP-43 LCD and its phosphorylation by CK1δ as an example.72

We do so by constructing a Markov state model (MSM), which is a generally applicable approach.73

Our coarse-grained simulations of enzymatic phosphorylation of TDP-43, show how the sequence74

specific interactions of CK1δ with TDP-43 LCD affects the phosphorylation frequency of serines75

residues in the TDP-43 LCD in dilute solution and in condensates. In particular the C-terminal76

domain is more phosphorylated than the N-terminus, in agreement with experiments. Indeed,77

multiple serines of TDP-43 LCD have been found phosphorylated in patient samples, in particular78

in the C-terminal region[44, 45], with Ser 409/Ser 410 phosphorylation being established as a79

hallmark of TDP-43 pathology in disease [26] and detected, together with Ser 403/Ser 404 and80

Ser 379, by phospho-specific antibodies[46]. The phosphorylation frequency is also affected by the81

phosphorylation patterns, since the interactions between CK1δ and TDP-43 actively change after82

each reaction, enhancing further phosphorylations[47]. Moreover we study the role of the CK1δ IDR83

(residues from 295 to 415) in phosphorylating TDP-43 both in condensate and dilute regime. CK1δ84

IDR strongly interacts with TDP-43 LCD, reducing its contacts with active site of the enzyme in85

dilute regime. In dense regime, the CK1δ tail anchors of the enzyme to the droplet surface.86

Results87

Markov-state modeling demonstrates thermodynamic consistency of sim-88

ulations of chemically-driven dynamics89

Molecular dynamics (MD) simulations together with a thermostat holding the temperature fixed90

can be employed to sample from the canonical equilibrium distribution. However, introducing91

phosphorylation reactions in MD simulations generally inject energy into the system, thus breaking92

detailed balance and displacing the system away from thermal equilibrium. We simulate the action93

of the kinase CK1δ (truncated at residue 294 for the purposes of this section) on the substrate94

protein TDP-43 by combining one-bead-per-residue implicit-solvent MD with MC phosphorylation95

steps and validate the thermodynamic consistency of our simulations by making use of Markov state96

models (MSMs). We assume that only the serines (Ser) of TDP-43 LCD can be phosphorylated97

into phospho-serines (pSer). The phosphorylation reaction is the following:98

Ser + ATP ⇌ pSer + ADP (1)

Whenever a Ser (or pSer) is in contact with the active site of the kinase, we try to swap it with a99

pSer (or the opposite) with acceptance probability given by100

A(Ser,pSer) = min (1, exp(−β∆UP − β∆µP)) (2)

4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.08.15.607948doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/


0.0 0.2 0.4 0.6 0.8 1.0
t [ ]

0

10

20

30

40

di
st

(S
ER

, C
K1

δ)
 [n

m
]

0.0
0.5
1.0 1-> 1 1-> 2 1-> 3 1-> 4

0.0
0.5
1.0 2-> 1 2-> 2 2-> 3 2-> 4

0.0
0.5
1.0

pr
ob

ab
ili

ty

3-> 1

predicted estimated

3-> 2 3-> 3 3-> 4

0 40 80
0.0
0.5
1.0 4-> 1

0 40 80

4-> 2

0 40 80

4-> 3

0 40 80

4-> 4

unbound

bound

a

b

d

0.0 0.2 0.4 0.6 0.8 1.0
t [μs]

1

2

3

4

st
at

es

μs c

e

Figure 2: Thermodynamic consistency of simulations with phosphorylation step using MSMs. (a) Example
of trajectory of the distance between Ser 403 of TDP-43 LCD and the active site of CK1δ for the simulation
at ∆µP = −5 kJ/mol. In red the two output states of the neural network (bound and unbound) with
respective illustrative examples on the right. (b) Example of discretized 4-state MSM trajectory related
to the trajectory in a, we highlight complete cycles in red. (c) Example of implied timescales from the
4-state MSM trajectory shown in b; they remain stable for τ ≳ 105 MD steps (10 Markov chain steps).
(d) Example of Chapman-Kolmogorov test from the 4-state MSM trajectory shown in b; prediction and
model are in agreement. (e) We plot ∆µcycle vs ∆µP; for all the six different phosphorylation sites, the
chemical potential computed from Eq. 3 matches the applied chemical potential ∆µP. Errorbars on ∆µcycle

are obtained via bootstrapping of the total simulation trajectory collected.

where β = 1/(kBT ), ∆UP is the difference between the potential energy of the configuration with101

pSer and the one of the configuration with Ser, and ∆µP is the chemical potential difference between102

the ATP and ADP molecules involved in the phosphorylation reaction (Eq. 1). ATP and ADP103

are modelled implicitly and are not explicitly simulated, with concentrations kept fixed and fully104

characterized through the choice of ∆µP. Indeed biological reactions, such as the phosphorylation105
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reaction, in living cells happen in open systems in which the concentrations of substrates, products106

and the chemical fuel are kept approximately constant over relevant timescales by e.g. metabolic107

processes. A non-zero value of ∆µP biases the chemical reaction, pushing the simulation away from108

thermodynamic equilibrium.109

The first step is to validate the thermodynamic consistency of our simulations by showing that110

the energy gain in a phosphorylation cycle (referred to as ∆µcycle in the following) is equal to the111

chemical potential difference ∆µP in the phosphorylation step. In order to compute ∆µcycle, we112

employ a discretization of the MD trajectory in a MSM. The simplest example of a phosphorylation113

cycle that we can build is a system with one enzyme and one substrate protein in which only one114

residue is reactive. In order to get complete phosphorylation cycles, we assume the exchange115

between TDP-43 and phosphorylated TDP-43 happens when substrate and enzyme are far away116

from each other without chemical driving and with equilibrium concentrations, through another117

MC step (Methods). This naturally happens in cells through the action of phosphatases that can118

catalyze a dephosphorylation reaction.119

To gain insights into the effects of including phosphorylation through Eq. 2, we build an MSM120

from simulated MD trajectories. Firstly we distinguish between bound and unbound state using a121

neural network called VAMPnet [48]. VAMPnet is able to map molecular coordinates to Markov122

states through a score function called VAMP-2 score based on the Koopman’s theory. Finding the123

transformation of the input variables that maximizes the VAMP-2 score is equivalent to optimizing124

the Markovianity of the output states. In this way we can easily distinguish between the two slowest125

processes, binding and unbinding, without arbitrarily choosing an a priori criterion of contact. As126

input for the neural network, we use the 154 distances between each residue of TDP-43 LCD and127

the active site of CK1δ, while as output we ask for 2 states (ideally bound and unbound). We then128

filter spurious transitions using transition-based state assignment[49]. As an example, we show in129

Fig. 2a the trajectory of the distance between Ser 403 (the reactive residue) of TDP-43 LCD and130

the active site of CK1δ for the simulation at ∆µP = −5 kJ/mol (SI Movie 1). We can see that131

the two states predicted by the neural network comprise bound configurations (when the distance132

between Ser and CK1δ active site is smaller) and unbound configurations (when the distance is133

larger).134

By distinguishing between Ser and pSer along the trajectory, we coarse-grain the system dynam-135

ics into the 4 states sketched in Fig. 1. Assuming that our system is a NESS, we can then compute136

the time-independent transition probabilities Tij(τ) from state i to state j using the non-reversible137

Maximum Likelihood estimator [50, 51]. We report in Fig. 2b the resulting MSM discretized tra-138

jectory referred to the simulation in panel A. Complete cycles 1 → 2 → 3 → 4 → 1 are highlighted139

in red. Every step of the Markov chain corresponds to 104 MD steps, or 0.1 ns in simulation time.140

For all our simulations, we choose a lag time τ = 10 Markov chain steps (Methods). We show in141

Fig. 2c the implied timescales for the example case of reactive Ser 403 and ∆µP = −5 kJ/mol. In142

the end, we estimate the goodness of the MSM by looking at the Chapman-Kolmogorov test (CK143

test) [52, 53]. In all the validation simulations, the CK tests suggest good agreement between model144

and prediction for a wide range of lag times, as shown in Fig. 2d for the example case of reactive145

Ser 403 and ∆µin = −5 kJ/mol (SI Table S1, Table S2, Fig. S1 for complete data, Methods).146

If our system is a NESS, the local detailed balance condition must be satisfied [3, 5]:147

∆µcycle = −kBT ln

(
T12T23T34T41

T14T43T32T21

)
(3)

where ∆µcycle is the energy injected into the system in one forward cycle 1 → 2 → 3 → 4 → 1. It148
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is interesting to observe that the logarithm contains the ratio between the forward and backward149

transition probabilities. In many formulations, Eq. 3 is via rate coefficients rather than transition150

probabilities. For the short lag times considered here, we can estimate a rate matrix from the151

transition probability matrix and find virtually indistinguishable results for ∆µcycle (SI Text). Since152

the transitions 1 ⇌ 2, 3 ⇌ 4 (the binding/unbinding of the enzyme with TDP-43 or phosphorylated153

TDP-43) and 4 ⇌ 1 (the reservoir exchange step) satisfy detailed balance, while the phosphorylation154

reaction 2 ⇌ 3 breaks detailed balance injecting into the system an amount of energy equal to ∆µP,155

we expect ∆µcycle to be equal to ∆µP (SI Text). We compute the estimated energy gain ∆µcycle from156

the transition probabilities Tij and plot them against the parameter ∆µP of the phosphorylation157

step for different reactive Ser and ∆µP. Encouragingly, for all the six different phosphorylation158

sites, the chemical potential computed from Eq. 3 matches the applied chemical potential ∆µP159

(Fig. 2e).160

We repeated the estimate of ∆µcycle using a 3-states MSM, in which the unbound states 1 and 4161

are merged into the new state 1. The results are in agreement with the 4-states MSM (SI Table S1,162

SI Fig. S1). Indeed, the transition between state 1 and 4 has a very high rate and can be associated163

with the smallest implied timescale, that is lower than the lag time for τ = 10 Markov chain steps164

or larger.165

We also checked the reliability of VAMPnet by using considerably more input distances (4620166

distances) and a different architecture for the case of reactive Ser 403 and ∆µP = −5 kJ/mol167

(Methods). The estimated ∆µcycle with the new version of VAMPnet is ∆µcycle = 4.7± 0.6 kJ/mol168

(implied timescales and CK test in SI Fig. S2).169

Phosphorylation preferences are determined by sequence-specific interac-170

tions171

Having established a model of chemically-driven dynamics, we investigate how sequence context172

determines the phosphorylation of the disordered protein TDP-43 LCD by the enzyme CK1δ, so173

that we can begin to rationalize sequence-specificity of TDP-43 phosphorylation in experiments[24]174

and why C-terminal Ser residues such as Ser 410 are frequently found to be phosphorylated in175

experiments[24, 26, 44]. In our simulations, we follow directly the dynamics of TDP-43 LCD176

and CK1δ folded domain (truncated at residue 294) on the single molecule level (Fig. 3a). We177

run 100 simulations of TDP-43 LCD in presence of CK1δ and at physiological ATP/ADP ratio178

(∆µP = −48 kJ/mol), which mimics in vitro kinase assays. In the simulations, unphosphorylated179

TDP-43 LCD will eventually encounter CK1δ and give rise to different phosphorylation patterns,180

as shown for an example simulation on Fig. 3a. In this simulation TDP-43 LCD is initially phos-181

phorylated in the C-terminal region. The kinase dissociates after two phosphorylation events and182

then binds again to the substrate. Multiple Ser residues in the C-terminus of TDP-43 LCD are183

phosphorylated, including Ser 410, which gets phosphorylated after ten other residues. In our184

simulations, Ser residues towards the C-terminus of TDP-43 LCD (Ser 369 to Ser 410) are more185

readily phosphorylated than Ser residues in the N-terminal region of the LCD (Ser 266 to Ser 350),186

with the phosphorylation rate rP on average roughly 3-4 times larger in the C-terminal segment187

than in the N-terminal segment (Fig. 3b). In mass spectrometry analysis of TDP-43 from ALS188

patient samples, the phosphorylated sites (the 12 residues Ser 373, Ser 375, Ser 379, Ser 387, Ser189

389, Ser 393, Ser 395, Ser 403, Ser 404, Ser 407, Ser 409 and Ser 410 [24, 44] and also Ser 369190

[45]) are mostly in the C-terminal region and, interestingly, they are among the ones with largest191

phosphorylation rate rP in our simulations. In particular, Ser 409/Ser 410 phosphorylation has long192
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Figure 3: Analyzing the sequence dependence in phosphorylation dynamics of TDP-43. (a) Example
trajectory discretized in phosphorylation-states relative to Ser 410. np is the state with Ser 410 not
phosphorylated and n other phosphorylated Ser, pS410 are all the states with phosphorylated Ser 410.
(b) We compare the phosphorylation rates rP for every Ser for the wild type TDP-43 (blue), the averaged-
interaction sequence (orange) and the averaged-interaction with equally-spaced Ser (green). The C-terminal
is more phosphorylated. The ticks on top show the position of the charged (red ‘+’ positive, blue ‘-’ negative)
and aromatic (grey ‘a’) residues. (c) Same comparison for the rates of contact rc between Ser residues of
TDP-43 LCD and the active site of CK1δ in equilibrium simulations without phosphorylations. The positive
charges in the N-terminal screen the interaction with the enzyme. Contact frequency are constant for the
averaged-interaction sequence. (d) Correlation plot of contact frequency in equilibrium and phosphorylation
rates for the wild type TDP-43. Ser 407 and Ser 410 have similar phosphorylation rate, but the probability
of contact of Ser 410 is larger. (e) Probability p(t(Seri) < t(Serj)) of Seri being phosphorylated before
Serj , data from 100 trajectories. C-terminal residues are much more likely to be phosphorylated before
N-terminal residues. (f) Phosphorylation pattern representation for Ser 410. The thickness of the arrows
represent the percentage of simulations in which Ser 410 was phosphorylated after n other Ser residues (e.g.
12% of simulations go from state 3p to pS410). We show in the inset some examples of 3p states.

been established as a hallmark of TDP-43 pathology in disease [26]. This qualitative agreement193

with simulations tentatively suggests that sequence specific interactions of TDP-43 LCD with the194

CK1δ could explain why these residues are frequently found phosphorylated in experiments and in195

patient samples.196
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The differences in the phosphorylation rates can be largely accounted for by how readily Ser197

residues engage in contacts with the CK1δ active site (Fig. 3c), with the phosphorylation rates198

strongly correlated with a sample Pearson correlation coefficient of 0.84 (Fig. 3d). In order to com-199

pare the phosphorylation rates with the frequency of making contacts at equilibrium, we performed200

MD simulations of the same system without phosphorylation MC steps. To establish to what extent201

contacts predicts the relative phosphorylation rates, we consider a contact whenever all the three202

distances to residues Asp 149, Phe 150 and Gly 151 close to the active site are less than 1 nm, in203

the same way as for the MC phosphorylation step. By contrast, the acceptance probability for the204

phosphorylation MC step for Ser residues once they are in contact is > 0.97 for the entire sequence205

and the variations in the acceptance probability of the phosphorylation step are not correlated with206

the variation of the phosphorylation rates (SI Fig. S8). Ser residues in the C-terminal segment of207

the LCD, including Ser 369, Ser 393, Ser 395, Ser 403, and Ser 410, have the largest tendencies to208

form contacts, as tracked by rc, which is the rate at which a residue forms contacts with the CK1δ209

active site (Fig. 3c). At the same time these residues have within the statistical uncertainty the210

fastest phosphorylation rates of the TDP-43 LCD (Fig. 3b) . Ser residues in the N-terminal part211

of the LCD (Ser 266 to Ser 350) form fewer contacts than serines in the C-terminal segment (Ser212

369 to Ser 410), with the exception of Ser 373 in the latter segment, which also forms few contacts213

with the active site of CK1δ. The N-terminus is enriched in charged amino acids (mostly positive)214

(Fig. 3b and c), which may hinder its binding to the CK1δ active site, since the active site features215

multiple charged residues and is overall positively charged (SI Fig. S7). On the other hand, the216

C-terminus has more aromatic residues, which increase the attraction through cation-pi and pi-pi217

interactions [54] (Fig. 3b and c). This difference between the N- and C-terminal segments of the218

TDP-43 LCD is also apparent on the correlation plot in Fig. 3d, where the N-terminal residues219

have both low rates and low number of contacts, whereas the C-terminal residues have mostly high220

phosphorylation rates and many contacts with the active site.221

Dynamics of TDP-43 serine phosphorylation is influenced by preceding222

phosphorylation events223

Although the correlation between the relative rates for CK1δ and TDP-43 contact formation and224

the phosphorylation rates is strong, there are deviations from the this simple relationship (Fig. 3d),225

which could hint at structural correlations and possible correlations between phosphorylation events.226

For instance, Ser 410 forms contacts more than two times more readily than Ser 407 but their227

phosphorylation rates are the same within the statistical uncertainty (Fig. 3b and Fig. 3c). To228

better understand the underlying correlations, we expanded our analysis of the phosphorylation229

kinetics. To estimate the phosphorylation rates rP, we assume that the phosphorylation process230

is a memory-less process, which follows single-exponential kinetics [55]. In this case, observing a231

single event is in principle sufficient to estimate the rates of a process. In addition to the number232

of events one observes, the time spent waiting before an event happens also contributes to the rate233

estimate. We checked the results by fitting the cumulative histograms of phosphorylation time234

for each Ser with a simple single-exponential process and an exponential process conditioned to235

another exponential process (e.g. the binding of TDP-43 to CK1δ) (Methods). Most of the times236

the conditioned exponential process fits perfectly. We found that the rate extrapolations from237

the two fits are in agreement with the Bayesian estimates (SI Fig. S9). It is interesting to notice238

that the fastest rate is different for every Ser (Ser 266 with a second rate coeffiecent of 13.5µs−1
239

and Ser 393 of 56µs−1) suggesting that the phosphorylation of some serines could involve other240
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processes than the binding to CK1δ, e.g. the previous phosphorylation of another Ser. For Ser241

410, the two fit extrapolation and the single-exponential fit are in agreement, with differences in242

the phosphorylation rate of about 2% , while for Ser 403 the conditioned process fit leads to an 8%243

smaller rate compared to the single-exponential fit. For Ser 407, the conditioned process yields a244

10% larger rate. These comparison suggests that the phosphorylation of Ser 403 and Ser 407 could245

actually follow a more complex process.246

We determined the most likely order of phosphorylation to understand correlation between247

phosphorylation events and differences from what the contact statistics at equilibrium would predict248

better. In order to study more deeply the phosphorylation pattern of TDP-43, we count for each249

Ser couple (Seri,Serj) how many times Seri is phosphorylated before Serj by aggregating data from250

our 100 trajectories to compute the probability p(tP(Seri) < tP(Serj)), where tP(Seri) is the time251

of phosphorylation for Seri from the start of the simulation. We show p(tP(Seri) < tP(Serj)) as252

a heatmap in Fig. 3e. We see again that, on the single-molecule level, C-terminal residues are253

typically phosphorylated first. The lower right corner shows that on average C-terminal residues254

are much more likely to be phosphorylated before N-terminal residues and as a corollary, the upper255

left sub-matrix shows that C-terminal residues are rarely phosphorylated after N-terminal residues.256

Instead, looking at the lower left block, we see that Ser 266 and Ser 273 are usually the first257

phosphorylated in the N-terminal region, while the serines within residues 333 and 350 are the258

last ones. In the end, by focusing in the C-terminus on the upper right block, we see that the259

first phosphorylations occur on Ser 369, Ser 393, Ser 395, Ser 403 and Ser 410, followed by Ser260

between 377 and 389 and Ser 407. In Fig. 3f we aggregate the data from the different trajectories261

and illustrate the likelihood for Ser 410 of getting phosphorylated after n other Ser through the262

thickness of the arrows. In the figure, the state pS410 includes all the possible configurations in263

which Ser 410 is phosphorylated, while np are the configurations with n pSer different from Ser264

410, as shown in the inset for four different examples of state 3p. Very often Ser 410 is among265

the first three residues to be phosphorylated. Only in a few trajectories, Ser 410 is phosphorylated266

after nine or eleven other Ser residues are already phosphorylated. Ser 395 shows similar behaviour267

to Ser 410 (SI Fig. S11). While Ser 403 and Ser 407 are also phosphorylated early on by this268

analysis, they are less frequently the first Ser residues to be phosphorylated compared to Ser 410269

(SI Fig. S11), which is in line with the deviations from single-exponential behaviour (SI Fig. S9.270

A possible influence of prior phosphorylation can also be detected for Ser 373. Ser 373 forms271

few contacts but is readily phosphorylated. The phosphorylation rate of Ser 373 is just slightly272

lower than for Ser 375, which has twice as many contacts. Indeed Ser 369 engages in many more273

contacts and the rates are just slightly higher than for Ser 373 and Ser 375. Fig. 3e shows that the274

probability p(tP(Seri) < tP(Serj)) of Ser 369 to be phosphorylated before Ser 373 and Ser 375 is275

approximately 0.8 and 0.7. Fig. S11 (SI) demonstrates that Ser 373 and Ser 375 are phosphorylated276

when multiple Ser residues are already phosphorylated. Changes in the interaction of CK1δ with277

TDP-43 LCD as more residues are phosphorylated could explain why phosphorylation rates are not278

fully accounted for by the interaction propensities of the LCD with the active site of the enzyme. By279

analyzing long equilibrium MD simulations with VAMPnet[48], we find that the phosphorylation280

facilitates the binding of CK1δ to the substrate TDP-43 LCD, with the binding free energy going281

from 5.0 kJ/mol in the case of wild type TDP-43 LCD to 1.2 kJ/mol for a chain with pSer 395,282

pSer 403 and pSer 410 (SI Text). As a result, the first phosphorylation events speed up further283

phosphorylation events, in agreement to what suggested by experiments [47], and we find that,284

in the simulations of enzymatic phosphorylation of TDP-43, phosphorylated TDP-43 LCD stays285

attached to CK1δ (SI Fig. S3).286
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Phosphorylation dynamics is determined by sequence context not relative287

position to N- and C-termini288

The relative position of the Ser residues to the N- and C-termini does not affect the phosphorylation289

rates. It has been hypothesized that the tendency of C-terminal residues to get phosphorylated290

could be due to the greater accessibility of residues close to the N- and C-termini of a disordered291

protein chain [24]. In order to understand whether the phosphorylation pattern is affected by the292

position of the Ser residues along the TDP-43 LCD chain and not only by the neighboring residues,293

we repeated the same simulation but replacing all the residues of TDP-43 LCD different from Ser294

with an averaged interaction strength bead, 1) leaving the serines at their original positions and 2)295

spreading them equally spaced along the chain. From the contact frequency rc in the lower panel296

in Fig. 3c, we can see that in equilibrium, before any phosphorylation occurs, the probability of297

contact is uniform along the chain, suggesting that the ends are not a priori more accessible and298

hence that sequence context and its effects on molecular recognition likely explain the prominence299

of C-terminal TDP-43 phosphorylation. By looking at the phosphorylation rates rP (lower panel300

in Fig. 3b), we can see that the C-terminal domain is more phosphorylated in the case of simple301

averaged-interaction beads. We also computed the probability p(tP(Seri) < tP(Serj)) for the case302

of averaged-interaction chain (SI Fig. S10 left), which also demonstrated that the C-terminus is303

phosphorylated before the N-terminus. This suggests that the negative charges of the pSer also304

plays a role. These are denser in the C-terminus when TDP-43 gets hyper-phosphorylated. Indeed305

by distributing the Ser residues at equal distances, phosphorylation rates are constant within the306

statistical uncertainty. A similar behavior has already been found in experiments for the case of307

cyclin-dependent kinases phosphorylation of multisite targets[56]. Overall, the phosphorylation308

rates, as well as the contact frequency in equilibrium, are one order of magnitude smaller in the309

case of averaged interaction sequence compared to the wild type TDP-43, highlighting once more310

the importance of the sequence context.311

CK1δ binds to TDP-43 condensates and dissolves condensates by hyper-312

phosphorylation313

In our simulations, CK1δ folded domain binds to TDP-43 LCD condensates and the LCD conden-314

sates dissolve when they are hyper-phosphorylated (Fig. 4a). In cells, TDP-43 often phase-separates315

into liquid-like droplets which has been linked to the formation of toxic aggregates. Recent experi-316

ments have shown that hyper-phosphorylation of TDP-43 LCD can prevent phase separation and317

aggregation by increasing the solubility of TDP-43 [24]. However it remains unclear whether ki-318

nases, such as CK1δ, actually bind to TDP-43 condensates, or only phosphorylate TDP-43 in dilute319

solution. Snapshots from an example simulation with five CK1δ enzymes are shown in Fig. 4a (SI320

Movie 3), with the first snapshot depicting the starting configuration with 200 TDP-43 chains321

phase-separated in a condensate and the enzymes (blue molecules) randomly placed in the box. Af-322

ter 1 µs of simulation time the enzymes are all attached at the surface of the condensate and they323

are in the process of phosphorylating several serine residues (pSer in red). Hyper-phosphorylated324

TDP-43 chains start to disassociate from the condensate, which appears almost entirely dissolved325

after 5 µs of simulation time in the last snapshot. We report in Fig. 4b the percentage of chains326

in the condensate (blue, left y-axis) and the percentage of phosphorylated Ser (red, right y-axis)327

over time from simulations with 1,3 and 5 enzymes, averaged over 4 independent replicas. The328

percentage of TDP-43 chains in condensate drops over time as the phosphorylation count increases.329
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Figure 4: Analyzing the effect of hyper-phosphorylation of a TDP-43 LCD condensate and the interaction
of CK1δ with the condensate. All the simulations involved in the plots are performed in a cubic box of
100 nm side length with 200 TDP-43 LCD chains. (a) Snapshots from simulation with 5 CK1δ in cubic
box of 100 nm side length at times 0,1,3 and 5 µs showing the dissolution of the TDP-43 condensate.
The enzymes are colored in blue and the phospho-serine in red. (b) Percentage of TDP-43 chains in the
condensate (blue, left y-axis) and percentage of phosphorylated Ser (red, right y-axis) in time for simulations
with 1,3 and 5 CK1δ. The condensate starts to dissolve after about 24 % pSer. (c) Percentage of CK1δ
attached to the condensate (blue, left y-axis) and percentage of phosphorylated Ser (red, right y-axis) in
time for simulations with 1,3 and 5 CK1δ. The enzymes remain attached to the condensate after some
phosphorylations. (d) Percentage of CK1δ attached to the condensate in time for equilibrium simulations
without phosphorylation with 1,3 and 5 CK1δ. In absence of pSer, only about 35% of the enzymes stay
attached to the condensate in average. (e) Comparison of phosphorylation rates rP for every Ser of TDP-43
LCD divided by the number of CK1δ chains in dilute regime (grey) and in condensate in presence of 1,3
and 5 enzymes. In dense regime, phosphorylation of the ends of TDP-43 LCD is enhanced. The ticks on
top show the position of the charged (red ‘+’ positive, blue ‘-’ negative) and aromatic (grey ‘a’) residues.
(f) Contact rates rc for every Ser of TDP-43 LCD divided by the number of CK1δ chains in dilute regime
(grey) and in condensate in presence of 1,3 and 5 enzymes at equilibrium.

We computed the size of the condensate using a standard clustering analysis algorithm, thanks to330

which we were able to distinguish the chains in the larger condensate at every frame (Methods).331

In every simulation, the condensate starts to lose TDP-43 chains when about 24-25% of Ser are332

phosphorylated. As a result, the speed of phosphorylation decreases with time, as the TDP-43333

chains start to migrate in the dilute regime, far from the action of the enzymes. This effect is334
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particularly evident in the case of 5 CK1δ after about 3.5 µs. It is interesting to notice that the335

speed of phosphorylation decreases slightly with time even before the beginning of the dissolution,336

with C-terminal Ser being the most affected (SI Fig. S5 upper panel). The slowing down of the337

phosphorylation rates of the most accessible Ser suggests a possible saturation effect. Moreover, we338

notice that, at least after about 5% of Ser are phosphorylated, most of the TDP-43 chains feature339

only 1 or 2 phosphates, with a small minority of chains being hyper-phosphorylated (SI Fig. S6340

grey), supporting the idea of an early saturation of the most accessible phosphosites.341

TDP-43 phosphorylation facilitates CK1δ binding to the condensate, compared to unphoshory-342

lated condensates at equilibrium. In Fig. 4c we show the percentage of enzymes attached to the343

condensate in time compared to the percentage of phosphorylated Ser, averaged again over 4 repli-344

cas. With increasing phosphorylations, CK1δ binds more stably to the condensate, suggesting that345

the negative charges of the pSer residues enhance the binding to the enzyme positively charged346

residues. In equilibrium simulations without phosphorylation only about 35 % of enzymes are347

attached to the droplet in average (Fig. 4d).348

In our simulations, the protein sequence context determines how much a given Ser residue is349

phosphorylated in the condensates. We compute the phosphorylation rates rP for each Ser of350

TDP-43 LCD from the counts of phosphorylations and we compare them with the single-chain351

simulations results. For this computation, we use only the part of the simulations before the352

start of the condensate dissolution. We can see from Fig. 4e that the phosphorylation rates scale353

proportionally to the number of enzymes in the box. Moreover, the phosphorylation of the N- and354

C- terminal serines (namely Ser 266 and Ser 410) is enhanced, as well as for Ser 393, Ser 395 and355

Ser 403, compared to the single-chain case (see correlation plot in SI Fig. S13 left).356

The probability of contact with the active site of CK1δ in the condensate for every Ser of TDP-357

43 LCD differs from the single-chain case roughly by a factor 6. The C-terminus is more accessible,358

in particular Ser 369, Ser 393, Ser 395, Ser 403 and Ser 410, as shown in Fig. 4f, similar to what359

occurs in dilute regime. For the dense phase, the phosphorylation rates seem very well correlated360

to contact rates in equilibrium for the C-terminal serines (sample Pearson correlation 0.91), while361

the end of the N-terminus is more phosphorylated compared to what one would expect based on362

the contact statistics from equilibrium simulations (SI Fig. S14 left).363

The role of CK1δ disordered domain in the phosphorylation of TDP-43364

in dilute solution and condensates365

In simulations with full-length CK1δ, we find that the disordered region of CK1δ (residues 295 to366

415) slows down the phosphorylation of TDP-43 in accordance with experiments. In experiments367

truncated CK1δ is more active than the full-length enzyme[27]. First, we run simulations in dilute368

solution. In our simulations CK1δ is unphosphorylated and we do not allow possible autophospho-369

rylations of the CK1δ IDR[28] (Fig. 5a, SI Movie 4). With the full-length enzyme, phosphorylation370

is more restricted to a few residues in the C-terminal region and N-terminal serines are almost never371

phosphorylated (Fig. 5c). This is due to a reduction of the contacts between TDP-43 residues and372

the active site of CK1δ, located in the folded domain of the enzyme. Indeed, in Fig. 5d we can see373

that also the rates of contact in equilibrium without pSer rc are reduced by one order of magnitude.374

However, the Ser residues from residue 379 to 410 (10 of the 12 Ser residues found phosphorylated375

in patient samples) have at least three times the phosphorylation rate of the N-terminus also in376

the case of full-length CK1δ, while Ser 373 and Ser 375 are only slightly more phosphorylated than377

the N-terminal serines. The rate of active-site contact formation and the phosphorylation rates are378
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Figure 5: Assessing the role of CK1δ disordered domain in phosphorylating TDP-43 LCD both in dilute
and dense regime. (a) Example of simulation setup of full-length CK1δ (blue) and TDP-43 LCD (grey, Ser
in yellow) in dilute regime. The inset shows TDP-43 interacting with CK1δ IDR (light blue, active site in
red). (b) Example of simulation setup of full-length CK1δ and condensate of 200 TDP-43 chains. The inset
shows CK1δ IDR (light blue) anchoring the folded domain (dark blue) to the surface of the condensate.
(c-d) Phosphorylation rates rP (c) and contact frequency in equilibrium rc (d) for every Ser of TDP-43
LCD in presence of full-length CK1δ in dilute regime. The ticks on top show the position of the charged
(red ‘+’ positive, blue ‘-’ negative) and aromatic (grey ‘a’) residues. Results from simulations without
tail are reported in red on the right y-axis. (e-f) Phosphorylation rates rP (e) and contact frequency in
equilibrium rc (f) for every Ser of TDP-43 LCD in presence of full-length CK1δ in condensate. Results
from simulations without tail are reported in red on the right y-axis. (g-h) Contact rates for every residue
of full-length CK1δ in dilute (g) and dense (h) regime at equilibrium. The disordered region (residues 295
to 415) has more contacts. Simulations with full-length CK1δ (red) have more contacts than without IDR
(yellow), the insets show that contacts of the active site (Asp 149, Phe 150, Gly 151) are comparable.
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more correlated in this case than for the folded domain alone (Fig.S12). However Ser 404, Ser 407379

and Ser 409 have similar contacts in equilibrium compared to the N-terminal serines, but higher380

rate of phosphorylation. As neigboring Ser residues become phosphorylated, binding to the active381

site, and thus phosphorylation, is likely enhanced.382

The disordered tail of CK1δ partially auto-inhibits the enzyme not by occluding the active site,383

but by sequestering the substrate. TDP-43 LCD interacts more strongly with the tail of CK1δ384

than with the folded domain of CK1δ (inset in Fig. 5a). Consequently, full-length CK1δ binds more385

strongly to TDP-43 LCD than the folded domain on its own. From equilibrium simulation of the386

enzyme and TDP-43 LCD as analysed by VAMPnet[48], the binding free energy energy goes from387

5 kJ/mol to -4 kJ/mol. The tail sequesters the substrate in the dilute phase allowing less contacts388

with the active site, that is located on the opposite side of the enzyme surface, and thus resulting389

in fewer TDP-43 LCD phosphorylation events. We can see in of Fig. 5g that the disordered domain390

of CK1δ (residues from 295 to 415) has more contacts with TDP-43 LCD compared to the folded391

domain surface residues in equilibrium simulations without pSer. By looking instead to the residues392

in the folded domain (from 0 to 294), we notice that the full-length CK1δ (red) has in general more393

contacts than the CK1δ without tail (yellow), due to the stronger binding of TDP-43 LCD with the394

CK1δ IDR. However, the active site features a comparable amount of contacts in two cases, with395

residue 149 having even more contacts in the simulations without tail. By contrast, we find in our396

simulations that the IDR does not inhibit the CK1δ by occluding the active site. The disordered397

tail of CK1δ rarely forms close contacts with the active site and any close contacts are lost very398

rapidly (Fig. S15).399

We run simulations with 200 chains of TDP-43 LCD in a cubic box of 100 nm side length,400

adding 1,2 and 3 chains of full-length CK1δ (Fig. 5b, SI Movie 5). In the dense regime there is high401

amount of chains, so both contacts and phosphorylation counts increase compared to the dilute402

case (Fig. 5 e and f). Contacts and phosphorylation counts are also highly correlated in this case,403

since the abundance of chains allows the enzyme to neglect the less accessible phosphosites and404

phosphorylate the most accessible ones from every chain. This constitutes a disadvantage for Ser405

389, Ser 404, Ser 407 and Ser 409 that are less phosphorylated compared to the dilute case. We406

note that the phosphorylation rates are directly proportional to the number of enzymes acting on407

the condensate, as well as the contact statistics (SI Fig. S14). By comparing the phosphorylation408

rates in condensate with the simulations without IDR, we notice that they are in general lower for409

the full-length case. The tail acts as a filter, allowing only the phosphorylation of Ser 369, Ser 393,410

Ser 395, Ser 403, Ser 410 and to a lesser extent Ser 377, Ser 379, Ser 387 and Ser 389, apart from411

some other very rare phosphorylation events. The effect of the tail on the relative phosphorylation412

rates is even more pronounced than what we observed in the simulations of CK1δ and single chains413

of TDP-43 LCD.When more than 5% of Ser residues in TDP-43 LCD are phosphorylated, most of414

the TDP-43 chains feature 1 or 2 phosphates. The distribution of the number of phosphorylated415

Ser residues per TDP-43 LCD chains is even narrower than in the simulations without the CK1δ416

disordered tail (SI Fig. S6 orange). As for the case without tail, the phosphorylation rate of the417

most accessible phosphosites decreases with time (SI Fig. S5. This saturation effect of the most418

reactive Ser residues is apparent even before the eventual dissolution of the condensate (SI Fig. S5419

lower panel).420

The disordered tail of CK1δ facilitates the binding of CK1δ to TDP-43 condensates. We observe421

that the tail recruits the condensate and keeps the folded region anchored to its surface, as illustrated422

in the inset of Fig. 5b. Also in this case the disordered domain of CK1δ has more contacts compared423

to the folded domain surface residues, as shown in Fig. 5h. Thanks to the disordered tail, the enzyme424
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remains bound to the condensate surface even in absence of phosphorylations. As a consequence,425

the residues of the folded domain of CK1δ form more contacts with TDP-43 compared to the case426

without the tail (Fig. 5h, residues from 0 to 294). However, the number of contacts of TDP-43427

with the active site are again comparable in the two cases, explaining why the rates of binding to428

the active site shown in Fig. 5f are not greater than the ones in Fig. 4f. As for the single-chain429

simulation, the inaccessibility of the active site seems to be due to its opposite location on the430

enzyme surface compared to the disordered tail. Despite the stable anchoring to the condensate,431

the enzyme active site faces outwards, making it less accessible to the TDP-43 serines. Even in this432

case the auto-inhibitory and self-regulatory effects of the enzyme tail do not seem to be due to an433

obstruction of the active site, since CK1δ IDR interacts strongly with the condensate (SI Fig. S16).434

Discussion435

We have demonstrated how Markov-state models enable us to straightforwardly validate molecular436

simulations of chemically-driven non-equilibrium steady states (NESS). Chemically-driven NESS437

are essential in cell biology[1]. Cells require the constant turnover of fuels and metabolites to438

grow and thrive. Chemically-driven NESS are likely also essential in the function of biomolecular439

condensates in the cells[2].440

We envisage that our approach to establish the thermodynamic consistency of simulations and441

the combination of molecular dynamics and Monte Carlo can be readily applied to more complex442

systems and simulations of such systems in high resolution [41]. For more complex systems, extract-443

ing kinetically meaningful states becomes even more challenging. In this respect advances based on444

neural networks and Koopman theory are highly encouraging[48, 53, 57, 58].445

PTMs such as phosphorylation of proteins are a fundamental regulatory mechanism in cells446

and with molecular simulations we can start to investigate how protein sequence and structure de-447

termine substrate-enzyme interactions and PTM patterns. Our simulations demonstrate that the448

IDR of CK1δ could have important roles in TDP-43 phosphorylation, 1) by facilitating the binding449

to condensates and 2) by auto-inhibiting the enzyme, which our simulations capture in line with450

experiments [27, 28]. It is important to note that details of the conformations of proteins will be451

critical for the molecular recognition of potential phosphorylation sites by kinases and more detailed452

molecular simulations [59] will be required to fully understand the recognition mechanisms. A more453

detailed description of conformational flexibility will be particularly important to understand in454

detail how the disordered tail of CK1δ inhibits phosphorylation and whether sequestering of the455

disordered substrate rather than binding to the active site really underpins auto-inhibition by the456

CK1δ IDR. Overall our simulations point to a potential preference for the C-terminal residues of457

TDP-43 on account of its sequence. Aggregated TDP-43 in patient samples is frequently phospho-458

rylated at, e.g., Ser 379, Ser 403/Ser 404 and Ser 409/Ser 410 [26, 46], which are among the most459

phosphorylated residues also in our simulations. Due to the high concentration of substrates in460

condensates, proteins are readily phosphorylated. The phosphorylation rates for Ser residues are461

larger for TDP-43 in condensates than in the dilute phase. Interestingly, phosphorylation patterns462

are overall similar in dilute solution and condensates. While there are differences in the phospho-463

rylation propensities, sequence context still determines which sites can be phosphorylated. One464

can speculate that differences between phosphorylation in dilute and dense solution could be partly465

explained by the overall higher phosphorylation level in condensates, which means that some sites466

will effectively be more readily phosphorylated than in dilute solutions[25], while the kinase may467

retain sequence-dependent recognition of substrates in the condensates.468
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Methods469

Coarse-grained MD simulations470

In our work, we simulated TDP-43 LCD and the kinase CK1δ using a one-bead-per-residue coarse-471

grained model called hydrophobicity scale model [31] (HPS model) and a modified version of it,472

referred to as modified HPS model in the text (SI Text). In these models, the water solvent and473

the ions concentration are implicit in the pair potential definition. We used the original HPS for474

the thermodynamic consistency validation simulations, in which we preferred to give priority to475

the frequency of the binding and phosphorylation events at the expense of having a more realistic476

force field, in order to get better statistics. For the other simulations, we used the modified HPS477

model [30] in which cation-pi interactions are enhanced [60] and folded domains interaction are478

reduced by 30% [61, 62] (SI Text). Simulations were conducted using Langevin dynamics at a479

temperature of 300 K and friction coefficient of 0.001 ps−1 and in a cubic box with periodic boundary480

conditions of side length of 30 nm for the single TDP-43 chain simulations and 100 nm for the481

condensate simulations. The simulated TDP-43 LCD includes residues from 261 to 414 of the482

full-length TDP-43. The folded domain of CK1δ (residues from 1 to 294) follows a rigid body483

dynamics with rotational drag coefficient of 4 ps−1 for every axis, the structure is provided by484

https://alphafold.ebi.ac.uk/entry/P48730.485

For the dilute regime, 100 simulations with phosphorylation reaction step and without reservoir486

exchange step were run, 2×108 MD steps long (2 µs in simulation time) for the case with 1 wild487

type TDP-43 LCD and 1 CK1δ folded-domain, 4×108 MD steps long (4 µs in simulation time)488

both for the case with 1 averaged-interaction polymer and 1 CK1δ folded-domain and for the case489

with 1 wild type TDP-43 LCD and 1 full-length CK1δ. To characterize the intrinsic affinity of the490

enzyme for TDP-43 LCD, we repeated the same simulations, but without phosphorylation reactions491

at thermodynamic equilibrium. We collected in total 450 µs of simulation time for the case of wild492

type TDP-43 LCD and CK1δ folded-domain and 900 µs for the averaged-interaction polymer and493

for full-length CK1δ. The averaged interaction polymer is built by substituting the TDP-43 LCD494

residues different from Ser with a bead having average TDP-43 LCD mass, size parameter σ and495

hydropathy parameter λ (SI Text) 1) leaving the serines at their original positions and 2) spreading496

them equally spaced along the chain.497

We also simulated a condensate of 200 TDP-43 LCD chains. We ran 4 simulations 5×108 MD498

steps long (5 µs in simulation time) with phosphorylation steps without reservoir exchange step (as499

for the single chain simulations) in presence of 1,3 or 5 CK1δ folded-domain chains and of 1,2 or 3500

full-length CK1δ chains. We repeated the same simulations, but without phosphorylation reactions501

at thermodynamic equilibrium, collecting a total of 20 µs of simulation time for each case.502

All the simulations involved in this paper were performed using the Python package HOOMD-503

blue version 3.8.1. The code used for the simulations is available at https://github.com/ezippo/504

hoomd3_phosphorylation. The Ashbaugh-Hatch pair potential for the non-bonded interactions is505

available at https://github.com/ezippo/ashbaugh_plugin as a HOOMD-blue plugin.506

Phosphorylation reaction through a Monte Carlo step507

In addition to the standard MD simulation, we added a Monte Carlo step to mimic the phosphory-508

lation reaction. Every 200 steps of MD simulation, we check if one of the TDP-43 phosphosites is in509

contact with the active site of CK1δ, the area of the enzyme that catalyzes the reaction, identified510

with the residues Asp149, Phe150 and Gly151. The contact criterion is the following: the three511
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distances between the TDP-43 phosphosite and the residues of the CK1δ active site must all be512

less than 1 nm; in case more than one phosphosite is in contact with the active site at the same513

time-step, only the closest one is taken into account. When a contact occurs, we try to switch514

the Ser in contact into pSer (or the opposite) with a Metropolis-like acceptance probability in515

Eq. 2. The reverse reaction, that is the exchange of pSer with Ser, can also occur with probability516

A(pSer, Ser) = min (1, exp(β∆UP + β∆µP)), but it is less likely to happen when there is a chemical517

potential difference favouring the protein phosphorylation. ATP, ADP are modelled implicitly and518

are not explicitly simulated, with concentrations kept fixed and fully characterized through the519

choice of ∆µP.520

The chemical potential difference in a reaction in units of kBT is given by the logarithm of521

the product to substrate concentration ratio. Considering that the ATP concentration in cells is522

around 1 mM, the concentration of ADP is around 10 µM and fixing a temperature T = 300 K523

for our simulations, we get a chemical potential difference for a phosphorylation reaction ∆µP =524

µADP − µATP ≃ −11.5 kcal/mol ≃ −48 kJ/mol (SI Text). Observe that the ATP concentration is525

two orders of magnitude larger than the ADP concentration, leading to a large negative ∆µP that526

favors the exchange of Ser into pSer and disfavors the opposite reaction. Moreover we can mimic the527

ATP to ADP concentration ratio by changing the chemical potential difference in our simulation528

at fixed temperature. We used ∆µP = 0,−5,−10 kJ/mol for the validation of the thermodynamic529

consistency simulations and ∆µP = −48 kJ/mol for all the other simulations in dilute regime and530

condensate.531

Dephosphorylation step532

In our validation simulations, we assume the exchange between TDP-43 and phosphorylated TDP-43533

happens without chemical driving and with equilibrium concentrations, through another Metropolis-534

like step (reservoir exchange step). Every 200 MD steps, we check if the distances between the535

TDP-43 phosphosite and the 3 residues of the CK1δ active site is larger than 25 nm (half box side536

length). In that case, we randomly swap the pSer of the phosphorylated TDP-43 with a Ser (or the537

opposite) with a Metropolis-like acceptance probability:538

AD(pSer, Ser) = min (1, exp(−β∆UD)) (4)

where ∆UD is again the difference between the potential energy of the configuration with Ser and539

the one of the configuration with pSer. In this case there is no chemical driving force, the reaction540

obeys detailed balance and thus it does not inject any additional energy into the system. This541

exchange step mimics a larger reservoir of TDP-43 and phosphorylated TDP-43 and thus enables542

us to simulate multiple phosphorylation cycles on the level of a single enzyme and single substrate543

protein simulation.544

Thermodynamic consistency validation simulations545

We simulated the system with one CK1δ and one TDP-43 LCD with only one reactive residue.546

We repatead the simulation for 6 different reactive serines along the TDP-43 LCD, i.e. Ser292,547

Ser 317, Ser 369, Ser 387, Ser 403, Ser 409, and ∆µP = 0,−5,−10 kJ/mol. Simulations were548

conducted for 20 µs in a cubic box of 50 nm side length with periodic boundaries using HPS549

model force field. In order to get better statistics, we took a 100µs long trajectory for Ser 403 and550

∆µP = 0,−5 kJ/mol. We used these longer trajectories for the estimates of ∆µcycle with different551
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lag times and with the version of VAMPnet with more input distances. Errorbars on ∆µcycle were552

obtained via bootstrapping of the total simulation trajectory collected.553

VAMPnet architecture and training554

For the bound state recognition, we performed a nonlinear dimension reduction using a neural555

network with two identical lobes, following the VAMPnet architecture and the hyper-parameter556

optimization used by Mardt et al. [48]. Each lobe is composed by an input layer with 154 nodes,557

one for each residue of TDP-43 LCD, one hidden layer with 30 nodes that employs exponential558

linear units (ELU) and an output layer with 2 nodes, ideally bound and unbound state, and a559

final Softmax classifier to obtain probabilities of bound and unbound configurations as output. As560

input for the neural network, we used the 154 distances between each residue of TDP-43 LCD and561

the active site of CK1δ. We chose a learning rate of 0.5 × 10−2 and a batch size of 4 × 104. The562

neural network was trained for 100 epochs on 90µs of equilibrium HPS model[31] simulation with563

one TDP-43 LCD and one CK1δ.564

The neural network returns the probability of being in one of the 2 output states (ideally bound565

and unbound state) for each snapshot of the trajectory. We assigned each snapshot to the state with566

higher probability, filtering those with a probability between 30% and 70% using transition-based567

state assignment[49]. In other words, these configurations were assigned based on the state of the568

previous and following snapshots, in order to filter out spurious transitions.569

In order to test the generality of our method, we repeated the bound state recognition with570

VAMPnet, but using more input nodes. In particular, we used the distances between all the571

residues of TDP-43 LCD and 30 equally spaced residues of CK1δ, resulting in an input layer of572

4620 nodes. This time we used 2 hidden layers with 154 and 30 nodes each, and an output layer573

with 2 nodes. We reduced the learning rate to 0.5× 10−3 and the batch size to 104.574

Implied timescales and Chapman-Kolmogorov test575

The choice of the lag time was done by looking at the implied timescales. We can estimate the576

implied timescales of the Markov model from the eigenvalues of the transition matrix as:577

ti(τ) = − τ

ln |λi(τ)|
(5)

with λi(τ) the eigenvalues of Tij(τ). We chose a lag time τ such that ti(τ̂) is approximately constant578

for every τ̂ ≥ τ . We estimated ∆µcycle for different lag times (1,10,20 Markov chain steps) for the579

case of reactive Ser 403 and ∆µP = 0,−5 kJ/mol. For τ ≥ 10 Markov chain steps, the estimated580

∆µcycle is in agreement with ∆µP (SI Table S2).581

We estimated the goodness of the MSM by looking at the Chapman-Kolmogorov test (CK test)582

[52] [53]. In a Markovian process, the transition matrix satisfies the relation583

Tij(nτ) = [Tij(τ)]
n (6)

with n ≥ 1. In other words, the transition matrix of the model estimated at lag time nτ must be584

equal to the transition matrix to the power n of the model estimated at lag time τ . The CK test585

compares Tij(nτ) (the estimated transition matrix) and Tn
ij(τ) (the predicted transition matrix) for586

every possible transition i ⇌ j and different lag times nτ .587
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Estimate of phosphorylation rates and fit of phosphorylation processes588

In all the single TDP-43 LCD chain simulations, we estimated the phosphorylation rates rP assum-589

ing the phosphorylation process is without memory and thus follows single-exponential kinetics. In590

all the collected 100 simulations, we had at most one phosphorylation event for each Ser residue,591

happening at time tiP < ttot for simulation i, with ttot the total time of the simulation. In this case,592

we can use the maximum likelihood estimator for the rate with uniform prior distribution [55]593

rP =
n+ 1

Θ
, var(rP) =

n+ 1

Θ2
, with Θ =

n∑
i=1

tiP + (100− n)ttot (7)

where n is the counts of simulations with one phosphorylation event for the Ser took in consider-594

ation. Instead, for the simulations in condensate, in which we have multiple TDP-43 chains and595

thus multiple phosphorylation events for each Ser residue, we computed rP as the total count of596

phosphorylation events in the simulation divided by the total simulation time. In this case, the597

error on the estimate of the rate is computed as the standard error of the mean from the different598

replicas. In the same way we also computed all the contacts rates rc and their error.599

However, since the phosphorylation of a Ser can happen only if TDP-43 is bound to the enzyme,600

it is more appropriate to take into account the conditional probability of the phosphorylation event601

given the binding of TDP-43 and CK1δ already occurred. Given pB(t)dt = rB exp (−rBt)dt the602

probability of binding between time t and t + dt and pP(t)dt = rP exp (−rPt)dt the probability603

of having a phosphorylation between time t and t + dt, the conditional probability of having a604

phosphorylation between time t and t+ dt given that TDP-43 is bound to CK1δ is605

P (t|bound)dt =
∫ t

0

pB(t
′)dt′pP(t− t′)dt =

rBrP
rB − rP

(
e−rPt − e−rBt

)
dt (8)

If we call Pc(t < T ) the probability of having a phosphorylation event within time T in our606

simulations, we can write its complementary as:607

1− Pc(t < T ) = 1−
∫ T

0

P (t)dt =
rBrP

rB − rP

(
e−rPt

rP
− e−rBt

rB

)
(9)

Instead, if we assume that the binding process is much faster than the phosphorylation one (rB ≫608

rP), than we can approximate P (t|bound) ∼ pP(t) and 1− Pc(t < T ) ∼ exp (−rPt).609

From the 100 simulations used to estimate the phosphorylation rates, we computed the normal-610

ized inverse cumulative histogram of the phosphorylation events time T , where each time bin gives611

the phosphorylation counts for that bin plus the counts of all the following bins, divided by the612

number of simulations. We fitted it with 1− Pc(t < T ) both for a single-exponential process and a613

conditioned single-exponential process.614

Condensate identification with clustering analysis615

In order to identify the TDP-43 LCD condensate in the trajectory file, we used the DBSCAN616

(Density-Based Spatial Clustering of Applications with Noise) clustering analysis algorithm[63]. It617

is an efficient algorithm to identify clusters based on a euclidean distance cut-off ϵ and a minimum618

cluster size parameter nmin. Particles with at least nmin neighbors within a distance ϵ are considered619
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core particles of the cluster. Instead, particles with less than nmin neighbors are considered non-core620

particles and they are assigned to a cluster only if at least one of their neighbors is a core particle.621

For the estimate of the condensate size and of the percentage of CK1δ in contact with the622

condensate, we used the positions of every bead as input data and we chose the parameters ϵ = 1 nm623

and nmin = 2. With this choice, every isolated chain is considered as a cluster and two different624

chains belongs to the same cluster whenever at least one of their particles is in contact (within 1 nm).625

However, varying ϵ between 0.8 nm and 3 nm and nmin between 2 and 5 does not significantly change626

the results. We accounted for the periodic boundary conditions by centering the condensate in the627

box at every frame.628
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Supporting information795

Residue-level coarse-grained models with implicit solvent796

For our coarse-grained simulations we employed the hydrophobicity scale (HPS) model [31] and a797

modification of it [30]. The original HPS model was fitted with IDPs data and considers proteins798

as fully flexible chains. In order to have a more realistic representation of the enzyme CK1δ,799

we decided to employ also a modified version of it that takes into account the presence of folded800

domains. In both models every residue type is represented with a particle of Lennard-Jones (LJ)801

size σ, charge q, mass m and hydropathy scale parameter λ. For the HPS model, the pair potential802

has 3 contributions803

U ij
HPS = U ij

bond + U ij
electrostatic + U ij

hydrophobicity, (S1)

while the modified HPS model has one more contribution to enhance cation-pi interactions:804

U ij
HPS = U ij

bond + U ij
electrostatic + U ij

hydrophobicity + U ij
cation−π. (S2)

The bonded interactions are described by an harmonic potential805

U ij
bond =

1

2
k(rij − r0)

2 (S3)

with rij the distance between the neighboring residues i and j, spring constant k = 8360kJ/(molnm2)806

and equilibrium bond length r0 = 0.381 nm.807

The interactions between non-bonded residues are modeled through the Ashbaugh-Hatch po-808

tential809

U ij
hydrophobicity =

{
U ij
LJ + ϵ(1− λij), if rij ≤ 21/6σij

λijU
ij
LJ , if rij > 21/6σij

(S4)

where σij = (σi + σj)/2, λij = (λi + λj)/2 and U ij
LJ is the standard Lennard-Jones potential810

U ij
LJ = 4ϵ

[(
σij

rij

)12

−
(
σij

rij

)6
]
. (S5)

The interaction is truncated at a cutoff distance of 2 nm. The parameter ϵ expresses the strength of811

the Lennard-Jones interaction and it is fixed to ϵ = 0.8368 kJ/mol, value fitted with experimental812

Rg from single IDP chains [31], while the hydrophaty scale parameter λij scales down the inter-813

action for distances larger than the minimum of U ij
LJ and goes from 0 (fully hydrophilic case, no814

attraction between residues) to 1 (fully hydrophobic case, the interaction becomes a standard LJ).815

Phosphorylated Ser residues are modelled as described by Perdikari et al [64].816

Charged residues experience also salt-screened electrostatic interactions, which are modeled817

using a Yukawa/Debye-Hückel potential818

Uelectrostatic =
qiqje

2

4πϵ0ϵrr
exp(−r/rD) (S6)

where we used a Debye screening length rD = 1.0nm for an ionic strength of approximately 100819

mM and a relative dielectric constant of the water solvent ϵr = 80, following the ones of the original820

HPS model [31]. In this case the cutoff distance is 3.5 nm.821
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For the modified HPS model, we added another LJ potential only between cation-π pairs822

(Arg/Lys with Phe/Trp/Tyr), as proposed by Das et al. [60]:823

U ij
cation−π = U ij

LJ , with ϵcation−π = 3.138
kJ

mol
. (S7)

Also in this case the cutoff is 2 nm.824

In the modified HPS model, the dynamics of folded domains follows the one of a rigid body.825

Moreover, the parameter λ in U ij
hydrophobicity and ϵcation−π in U ij

cation−π are scaled down by 30% for826

pair interactions involving residues of the folded domains, as suggested by Krainer et al. [62].827

The Ashbaugh-Hatch pair potential for the non-bonded interactions is available at https:828

//github.com/ezippo/ashbaugh_plugin as a HOOMD-blue plugin. The code used for the simu-829

lations is available at https://github.com/ezippo/hoomd3_phosphorylation.830

Chemical potential difference in a phosphorylation cycle831

The chemical reaction difference in a reaction in units of kBT is given by the logarithm of the product832

to substrate concentration ratio: In the phosphorylation-dephosphorylation cycle, the chemical833

reactions involved are the two following ones:834

Ser + ATP ⇌ pSer + ADP ; pSer ⇌ Ser + Pi

The chemical potential differences for the two reactions are835

∆µP = ∆µ0
P + kBT log

(
[TDP-43*][ADP]
[TDP-43][ATP]

)
= kBT log

(
[TDP-43*][ADP]
[TDP-43][ATP]

[TDP-43]eq[ATP]eq
[TDP-43*]eq[ADP]eq

)
(S8)836

∆µD = ∆µ0
D + kBT log

(
[TDP-43][Pi]

[TDP-43*]

)
= kBT log

(
[TDP-43][Pi]

[TDP-43*]
[TDP-43*]eq

[TDP-43]eq[Pi]eq

)
(S9)

The total amount of chemical driving will be:837

∆µ⟳ = ∆µP +∆µD =

= kBT log

(
[TDP-43*][ADP]
[TDP-43][ATP]

[TDP-43]eq[ATP]eq
[TDP-43*]eq[ADP]eq

[TDP-43][Pi]

[TDP-43*]
[TDP-43*]eq

[TDP-43]eq[Pi]eq

)
=

= kBT log

(
[ADP][Pi]

[ATP]
[ATP]eq

[ADP]eq[Pi]eq

)
= ∆µ0

ATP + kBT log

(
[ADP][Pi]

[ATP]

) (S10)

Note that ∆µ⟳ is equal to the chemical potential difference for the ATP hydrolysis reaction ATP ⇌838

ADP + Pi, for which the equilibrium value in standard conditions is ∆µ0
ATP = −7.3 kcal/mol .839

Detailed balance breaking and local detailed balance840

In our NESS simulations of a 4-state MSM, we expect to have detailed balance for the transitions841

1 ⇌ 2 and 3 ⇌ 4, i.e. the binding/unbinding of the enzyme with TDP-43 or phosphorylated TDP-842

43, since they are determined by equilibrium MD simulations, but also 4 ⇌ 1, i.e. the reservoir843

exchange step, that is determined by a Metropolis step without chemical fuel. The detail balance844

condition is:845

piTij = pjTji (S11)
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where Tij is the transition probability from state i to j and pi is the stationary probability of846

being in state i. Instead the phosphorylation reaction 2 ⇌ 3 breaks detailed balance injecting847

into the system an amount of energy equal to ∆µP. Despite the Metropolis step is built in such848

a way to satisfy the detailed balance condition, the ∆µP added in the acceptance ratio breaks849

detailed balance once the algorithm is coupled to equilibrium MD simulations. In order to show850

this, let us call ‘A’ a microstate configuration in which we have a contact between the Ser of851

TDP-43 and the active site of CK1δ and ‘B’ the same microstate configuration but soon after the852

phosphorylation step, with pSer instead of Ser. The probability of being in the microstate ‘A’ or ‘B’853

is pA = exp (−βHA)/Z and pB = exp (−βHB)/Z, with β = 1/kBT and Z the canonical partition854

function, and they are sampled through the MD simulation. Since the velocities in ‘A’ and ‘B’ are855

the same, the probability ratio will be pB/pA = exp (−β∆UP).856

The Metropolis acceptance ratio contains also an additional ∆µP, leading to the following857

transition probability for the phosphorylation step:858

TAB =

{
1, if p′B/p

′
A ≥ 1

p′
B

p′
A
, if p′B/p

′
A < 1

(S12)

where p′B/p
′
A = pB/pA exp (−β∆µP). Thus detailed balance is broken for ∆µP ̸= 0 and we get:859

TABpA
TBApB

=
p′BpA
p′ApB

= e−β∆µP (S13)

On the other side, if our system is a NESS, i.e. Tij and pi are constant in time, for the local860

detailed balance we should have861

∆µcycle = − 1

β
ln

(
T12T23T34T41

T14T43T32T21

)
(S14)

Using Eq. S11 for the couples (i, j) = (1, 2), (3, 4), (4, 1), we can simplify Eq. S14 as862

∆µcycle = − 1

β
ln

(
p2T23p4T41

p1T14p3T32

)
= − 1

β
ln

(
p2T23

p3T32

)
= ∆µP (S15)

where in the last step we use the local detailed balance condition on the phosphorylation step in863

Eq. S13.864

Transition probabilities and transition rates865

In many formulations, Eq. 3 (or Eq. S14) is expressed in terms of transition rates rather than866

transition probabilities. The two are related and in our case give the same result for the ∆µcycle.867

We estimated the time-independent transition probability Tij(τ), namely the probability of having868

the system in state j at time t + τ given that it was in state i at time t (for every t), using the869

non-reversible Maximum Likelihood Estimator[50, 51]:870

Tij(τ) =
cij(τ)∑
k cik(τ)

(S16)

where cij(τ) is the count of transitions from i to j after a lag time τ .871
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In principle, it could be useful in some cases, e.g. for continuous-time systems or non-linear872

reaction networks, to express Eq. 3 with transition rates kij . For a Markov process, the transition873

probability matrix T(τ) can be expressed in terms of transition rates matrix k as:874

T = exp (kτ) . (S17)

For small τ compared to the system timescales, Eq. S17 can be approximated as875

T ≃ 1 + τk ⇒ kij ≃
Tij

τ
, ∀i, j such that i ̸= j. (S18)

In such case, using Tij or kij to compute ∆µcycle does not change the result, since the factor 1/τ876

would be cancelled out in the ratio in Eq. 3 (or Eq. S14).877

As an example, for the simulations with reactive Ser 403 and ∆µP = −5 kJ/mol, we computed878

Tij with lag time τ = 10 Markov chain steps (or 1 ns in simulation time). Discretizing the trajectory879

into 3 Markov states (state 1 with unbound CK1δ and TDP-43, state 2 with bound configuration880

and unphosphorylated Ser 403 and state 3 with bound configuration and phosphorylated Ser 403)881

leads to 2 implied timescales that are much larger than the the lag time τ (Fig. 2, SI Fig. S1). The882

estimated transition probability matrix is883

T =

0.97706502 0.01522616 0.00770882
0.03748648 0.92563442 0.0368791
0.02103749 0.00579359 0.97316892

 (S19)

while the transition rates matrix is884

k =

−0.02293498 ns−1 0.01522616 ns−1 0.00770882 ns−1

0.03748648 ns−1 −0.07436558 ns−1 0.0368791 ns−1

0.02103749 ns−1 0.00579359 ns−1 −0.02683108 ns−1

 (S20)

where for the diagonal elements we used the property of the rate matrices kii = −
∑

j ̸=i kij .885
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Thermodynamic consistency data886

Ser −∆µP [kJ/mol] −∆µcycle [kJ/mol] −∆µcycle,3s [kJ/mol]
0 0.1 ± 0.6 0.1 ±0.6

Ser292 5 4.6 ± 0.9 4.6 ±0.9
10 10.3 ± 0.8 10.3 ± 0.9
0 -0.4 ± 0.5 -0.5 ± 0.5

Ser317 5 5.0 ± 0.7 4.9 ± 0.7
10 10.3 ± 0.6 10.1 ± 0.8
0 0.5 ± 0.7 0.5 ± 0.6

Ser369 5 5.0 ± 0.6 5.1 ± 0.5
10 10.3 ± 0.7 10.2 ± 0.5
0 0.0 ± 0.6 0.1 ± 0.4

Ser387 5 5.3 ± 0.6 5.2 ± 0.5
10 9.3 ± 0.7 9.1 ± 0.7
0 0.51 ± 0.26 0.52 ± 0.27

Ser403 5 4.87 ± 0.27 4.9 ± 0.3
10 9.7 ± 1.0 9.5 ± 0.7
0 0.0 ± 0.8 0.1 ± 0.7

Ser409 5 4.1 ± 0.7 4.1 ± 0.5
10 10.3 ± 0.8 10.2 ± 0.8

Table S1: Estimated ∆µcycle reported in Fig. 2E of the main text.

Ser τ [steps] −∆µP [kJ/mol] −∆µcycle [kJ/mol]
1 0 0.45 ± 0.23

Ser403 10 0 0.51 ± 0.26
20 0 0.57 ± 0.27
1 -5 4.29 ± 0.21

Ser403 10 -5 4.86 ± 0.27
20 -5 4.99 ± 0.34

Table S2: Estimated ∆µcycle for Ser 403 and ∆µP = 0,−5 kJ/mol for different lag times. The results for
∆µcycle are in agreement with ∆µP for τ ≥ 10 Markov chain steps.
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Figure S1: Implied timescales and CK test for every validation simulation. We estimated ∆µcycle also with
a 3-state MSM, merging together state 1 and 4 into the new state 1. We report the CK test also for the
3-state MSM case. The implied timescales are constant for τ ≥ 10 Markov chain steps. The smaller implied
timescale is smaller than the lag time for τ ≥ 10 Markov chain steps. The CK test confirm that the MSM
correctly fulfill the markovianity condition.
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Figure S2: Implied timescales and CK test for Ser403 and ∆µP = −5 kJ/mol using a version of VAMPnet
with 4260 input distances. We estimated ∆µcycle also with a 3-state MSM, merging together state 1 and 4
into the new state 1. We report the CK test also for the 3-state MSM case.

Phosphorylation modifies interaction of CK1δ with TDP-43 LCD887

Binding free energy888

We computed the binding free energy ∆Gbind between 1) CK1δ folded-domain and wild type TDP-889

43 LCD, 2) full-length CK1δ and wild type TDP-43 LCD, 3) CK1δ folded-domain and triple phos-890

phorylated TDP-43 LCD (pSer 395, pSer 403, pSer 410). For the first 2 cases, we used the data891

from the equilibrium simulations without phosphorylation step (450 µs for case 1) and 900 µs for892

case 2) ), while for case 3) we collected 20 µs of simulation time.893

The binding free energy is estimated as894

∆Gbind = − ln

(
Tu,b(τ)

Tb,u(τ)

)
(S21)

where Tu,b(τ) is the probability to have a bound state at time t+τ , given an unbound state at time895

t, and Tb,u(τ) is the probability to have an unbound state at time t+ τ , given a bound state at time896

t. In order to get the transition probabilities, we discretize the simulation trajectories in bound897

and unbound state using VAMPnet (in the same way as in Fig. 2, as explained in Methods) and898

estimate Tu,b and Tb,u at lag time τ = 5 × 104 MD steps using a Maximum Likelihood estimator899

for MSM [50].900

Plots901
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Figure S3: Example trajectory of minimum distance between residues of TDP-43 LCD and the active site
of CK1δ folded-domain in equilibrium simulation without phosphorylation (blue) and in non-equilibrium
simulation (orange) in dilute concentration. The color of the non-equilibrium trajectory becomes darker
after every phosphorylation event. In this example TDP-43 stays bound to the enzyme after 3 phosphory-
lations.
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Figure S4: Example trajectory of minimum distance between residues of TDP-43 LCD and the active site
of full-length CK1δ in equilibrium simulation without phosphorylation (blue) and in non-equilibrium sim-
ulation (orange) in dilute concentration. The color of the non-equilibrium trajectory becomes darker after
every phosphorylation event. In this example TDP-43 stays bound to the enzyme after 3 phosphorylations.
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Figure S5: Phosphorylation rates rP for every Ser of TDP-43 LCD in presence of 3 CK1δ folded-domain
(top panel) or 3 full-length CK1δ (lower panel) in condensate for different parts of the trajectory. The
ticks on top show the position of the charged and aromatic residues. Phosphorylation rates of the most
phosphorylated Ser decrease with time.
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Figure S6: Histogram of the presence of phosphate per chain after 0.3 µs for the simulation of TDP-43
condensate with 3 CK1δ folded-domain (grey) and after 5 µs for the simulation of TDP-43 condensate with
3 full-length CK1δ (orange). In both cases about 5% of total number of Ser are phosphorylated at the time
of the measurement.
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CK1δ active sites and charges902

Figure S7: CK1δ with colored charged residue close to the active site. In blue the +e charged residues,
in light blue His residues (considered +0.5e in our simulations), in red -e charged residues. In yellow the
active site residues.
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Figure S8: Acceptance ratio for phosphorylation step for simulations with CK1δ folded-domain (blue) and
full-length CK1δ (orange). The acceptance ratio is very close to 100% for every Ser of TDP-43 LCD.
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Phosphorylation process fit904
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Figure S9: Normalized inverse cumulative histograms of phosphorylation times (black solid lines) and fit
with simple single-exponential process (blue dotted lines, rate estimates in blue) and conditioned single-
exponential process (red solid lines, rates estimates in red) for 8 different Ser residues. Most of the times the
conditioned exponential process fits perfectly. The rate extrapolations from the two fits are in agreement
with the bayesian estimates. The rate rB is different for every serine.

Phosphorylation rank905

Figure S10: Probability p(t(Seri) < t(Serj)) of Seri being phosphorylated ahead of Serj for system with
averaged-interaction chain and CK1δ folded-domain (left) and for the system with TDP-43 LCD wild type
and full-length CK1δ (right), data from 100 trajectories.
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Figure S11: Phosphorylation pattern representation for every Ser of TDP-43 LCD. The thickness of the
arrows represent the percentage of simulations in which the Ser in the center of the graph was phosphorylated
after n other Ser residues.

Correlation plots: rP vs rc in dilute regime for full-length CK1δ906
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Figure S12: Correlation plots of contact frequency in equilibrium rc and phosphorylation rates rP in dilute
regime for simulations with full-length CK1δ.
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Correlation plots: dilute vs dense regime phosphorylation rates907
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Figure S13: Correlation plots of phosphorylation rates rP in dense (x-axis) and dilute (y-axis) regimes for
simulations with one CK1δ folded-domain (left) and one full-length CK1δ (right).

Correlation plots: rP vs rc in condensate908
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Figure S14: Correlation plots of contact frequency in equilibrium rc and phosphorylation rates rP in
condensate for simulations with CK1δ folded-domain (left) and full-length CK1δ (right).
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CK1δ disordered domain do not cover the active site909

1p 2p 3p ...

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t [µs]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
in

 d
ist

(C
K1
δ-I

DR
,C

K1
δ-a

s)
 [n
m

]

non-equilibrium equilibrium

Figure S15: Example trajectory of minimum distance between residues of full-length CK1δ IDR and its
active site in equilibrium simulation without phosphorylation (blue) and in non-equilibrium simulation
(orange) in dilute concentration. The color of the non-equilibrium trajectory becomes darker after every
phosphorylation event. The distance never stays stable around the contact distance, but oscillates around
larger values, suggesting that the CK1δ IDR does not cover the active site for an extended time interval.
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Figure S16: Example trajectory of minimum distance between residues of full-length CK1δ IDR and its
active site in condensate simulations. The distance never stays stable around the contact distance, but
oscillates around larger values, suggesting that the CK1δ IDR does not cover the active site for an extended
time interval.
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Movies910

SI Movie 1911

Movie from simulation of single TDP-43 LCD chain and single CK1δ folded domain with phos-912

phorylation step (Eq. 2) and reservoir exchange step (Eq. 4) in cubic box of 50 nm side length913

using HPS model. In this simulation, the only phosphosite is Ser403 and ∆µP = −5 kJ/mol. This914

simulation was used in Fig. 2.915

SI Movie 2916

Movie from simulation of single TDP-43 LCD chain and single CK1δ folded domain with phospho-917

rylation step in cubic box of 30 nm side length using modified HPS model. This simulation was918

used in Fig. 3e.919

SI Movie 3920

Movie from simulation of 200 TDP-43 LCD chains and 3 CK1δ folded-domain with phosphorylation921

step in cubic box of 100 nm side length using modified HPS model.922

SI Movie 4923

Movie from simulation of single TDP-43 LCD chain and single full-length CK1δ with phosphoryla-924

tion step in cubic box of 30 nm side length using modified HPS model.925

SI Movie 5926

Movie from simulation of 200 TDP-43 LCD chains and 3 full-length CK1δ with phosphorylation927

step in cubic box of 100 nm side length using modified HPS model.928

22

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.08.15.607948doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.607948
http://creativecommons.org/licenses/by-nd/4.0/

