

Title: Evaluating the effects of archaic protein-altering variants in living human adults

Authors:

Barbara Molz^{1†}, Mikel Lana Alberro^{1†‡}, Else Eising¹, Dick Schijven^{1§}, Gökberk Alagöz¹, Clyde Francks^{1,2,3}, Simon E. Fisher^{1,3*}

Affiliations:

¹Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, Netherlands.

²Department of Cognitive Neuroscience, Radboud University Medical Center; Nijmegen, 6525 EN, Netherlands.

³Donders Institute for Brain, Cognition and Behaviour; Nijmegen, 6525 EN, Netherlands.

† These authors contributed equally to this work

† Present address: Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.

§ Present address: Donders Institute for Brain, Cognition and Behaviour; Nijmegen, 6525 EN, Netherlands.

*Corresponding author. Email: simon.fisher@mpi.nl

Abstract: Advances in paleo-genetics allowed the identification of protein-coding changes arising on the lineage leading to *Homo sapiens*, by comparing genomes of present-day and archaic hominins. Experimental validation of the potential impact of such changes has so far been restricted to functional assays and model organisms. Large-scale biobanking now makes it possible to identify present-day carriers of archaic alleles and to directly assess phenotypic consequences in living adults. We queried exomes of half a million people in the UK Biobank at 37 genomic positions with supposedly fixed human-specific protein-coding changes. This yielded 103 carriers at 17 positions, with variable allele counts across ancestries. Contrasting carriers and non-carriers of an exemplary archaic allele in *SSH2*, we observed no deviation from the norm in a range of health, psychological, and cognitive traits. We also identified 62 archaic-allele carriers for a *TKTL1* missense change, previously shown to have large effects on cortical neurogenesis in brain organoids and animal models. Carriers did not show differences in relevant anatomical brain measures, and a substantial proportion had college/university degrees. This work offers an empirical demonstration of how large-scale biobank investigations of living adults can transform our understanding of human evolution. The findings challenge the notion of fixed human-specific genomic changes, highlight that individual interrogation of relevant sites is unlikely to yield major insights into the emergence of complex human traits, and emphasise the importance of including diverse ancestries when investigating origins of our species.

34

Main Text:

35

Understanding the origins of modern humans and how our ancestors developed sophisticated cultural, social and behavioural skills has been a central issue for many fields of science (1–3). While latest research is gradually reaching a consensus that cognitive capacities of Neandertals were greater than previously appreciated, the question remains why *Homo sapiens* outlived its archaic cousins and was able to migrate all across the globe (2, 4–6). Advances in high-throughput DNA sequencing and the availability of three high quality Neandertal genomes (7–9) enabled comparative genomic approaches, opening up new ways to reconstruct aspects of the evolutionary history of *Homo sapiens*. In particular, such approaches yielded catalogues of missense variants (changes that substitute one amino acid for another in an encoded protein) that occurred after *Homo sapiens* split from its common ancestor with Neandertals ~600,000 years ago, and that reached (near) fixation on our lineage. These human-specific fixed derived alleles have been hailed as promising entry points for explaining human origins, given their enrichment in genes that are relevant for human-specific traits and involved in cortical development and neurogenesis^{1,2,7}.

48

Since a missense variant can potentially arise and spread through a population without any consequence to properties or functions of the encoded protein, experimental validation is crucial to determine the functional significance of derived alleles. In a prominent example, Pinson et al. (10) investigated the impacts of a lysine-to-arginine substitution in human *TKTL1* (chrX:154,315,258; G->A) by comparing the archaic and derived alleles using genome-edited cerebral organoid and *in vivo* models, as well as in primary brain tissue. The authors observed substantial differences between samples carrying the Neandertal and *Homo sapiens* versions of *TKTL1* in basal radial glia abundance and neurogenesis, and suggested that the modern human-derived allele might have played a key role in evolutionary expansion of the brain's frontal lobe. However, despite the multiple strengths of cerebral organoids for modelling events in early embryogenesis (11), cellular diversity and transcriptomic programmes of these models do not fully recapture human brain development, and lack insights from diversity across genetic ancestries (12). Similarly, expression of “humanised” genes in primary brain tissue of non-human species may lead to non-specific artefacts (12–14), due to inter-species differences in genetic background. Thus, the actual consequences of any such modern human-derived genetic changes may be more complex than those which can be observed in cellular/animal models (15).

64

A complementary approach for evaluating broader biological impact that has only recently become feasible, depends on the identification of present-day living carriers of archaic alleles at genomic positions that differ between modern humans and Neandertals (3). Indeed, databases like gnomAD highlight the existence of individuals carrying these archaic single nucleotide variants (aSNVs) (12), albeit in low numbers. With availability of large-scale biobanks with exome sequencing and trait data it is now possible not only to detect aSNVs in living humans, but also to investigate putative phenotypic consequences in a way that could not be done before.

71

In this study, we used the UK Biobank (UKB), a large-scale population resource with both exome and dense phenotype data available from around half a million individuals (16). This offers a unique opportunity to i) determine the frequencies of present-day aSNV carriers, and ii) assess how phenotypic profiles of carriers of the archaic allele compare to individuals that are homozygous for the derived present-day human allele. We focused our efforts on a catalogue of putative fixed genomic positions established from a prior survey of potential human-specific changes (2) and searched for carriers of ancestral alleles among UKB participants. To gain insight into the phenotypic profile of an exemplary aSNV in *SSH2*, we contrasted identified carriers with a curated set of non-carriers, homozygous for the derived allele, assessing a range of phenotypic

80 traits. Given the especially dramatic effects of the *TKTL1* aSNV on neurogenesis reported by
81 Pinson et al. in their cellular and animal models (10), we also included this high-frequency human-
82 specific change in our investigations. Specifically, we identified carriers of the archaic *TKTL1*
83 allele and used the available neuroimaging data (17) to study putative effects of the aSNV on brain
84 morphology and cognitive traits. We use our findings to make recommendations about how to
85 optimize future biobank-based investigations of human evolution.

86

87 **103 carriers of archaic SNVs in 17 positions identified in UK Biobank across different**
88 **ancestries**

89 Based on the Kuhlwilm & Boeckx (2) catalogue of single nucleotide changes that distinguish
90 modern humans and archaic hominins, we curated a list of 42 fixed missense changes with an
91 allele frequency of one (AF = 1) at the time of publication, indicating complete fixation within the
92 investigated modern human populations (see Methods, table S1). After quality control (see
93 Methods) we then queried the whole-exome sequencing data of approximately 455,000 individuals
94 (18–20) of the UKB to identify possible carriers of the archaic allele at 37 positions. We
95 investigated four ancestry superclusters: European, African, East & South Asian (fig. S1A). In
96 total, we identified 103 unique individuals carrying 118 aSNVs in 13 protein-coding genes (Table
97 1). All were heterozygous carriers, except for a female carrying a homozygous aSNV in *GRM6*
98 (chr5:178994530), a gene encoding the ON bipolar metabotropic glutamate receptor, which overall
99 also represents the genomic position with the largest carrier count.

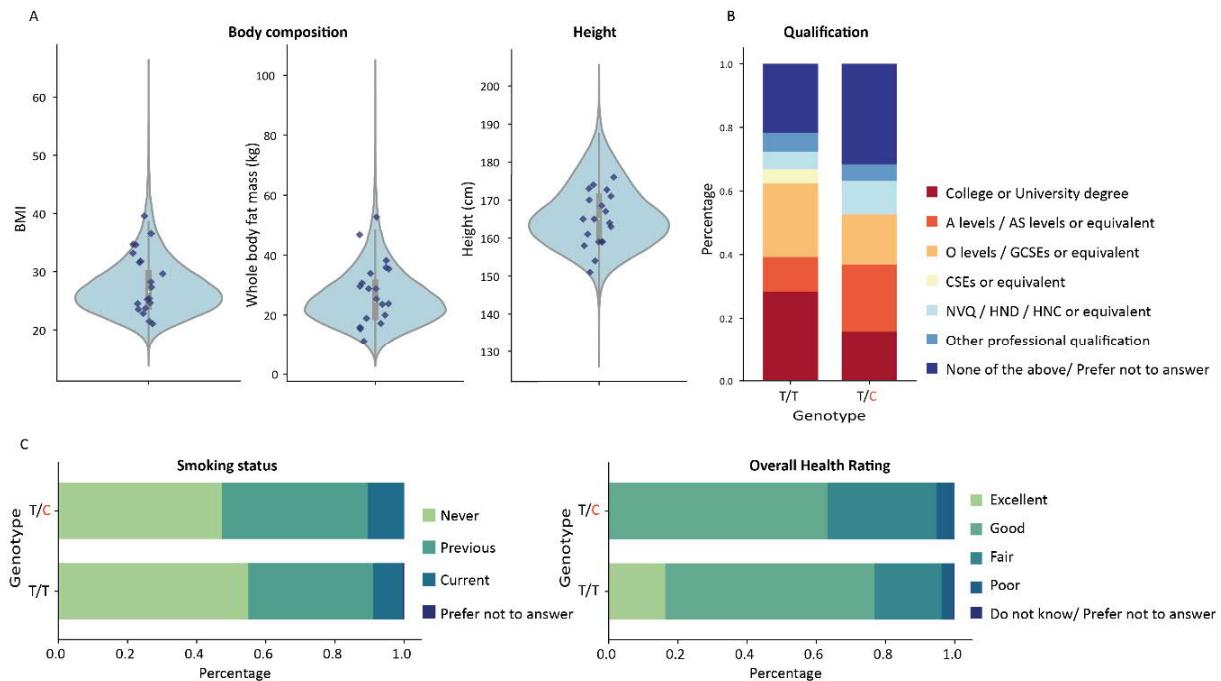
100 We observed diverging carrier counts for aSNVs across ancestry superclusters. Even though the
101 UKB is comprised of predominantly European ancestry individuals (16) with only around 0.5%
102 individuals of African and 1% of East Asian descent, nearly equal numbers of aSNV carriers were
103 identified in the European, East Asian and African ancestry superclusters, highlighting allele
104 frequency differences for these rare variants, and a bias towards European data being used
105 previously to identify aSNVs.

106 We identified five individuals carrying a combination of three aSNVs in *SPAG5*
107 (chr17:28,592,759; chr17:28,598,560; chr17:28,598,560), and two pairs of carriers who carry a
108 combination of two aSNVs on *ADAM18* and *KNL1*, respectively (*ADAM18*: chr8:39,680,099;
109 chr8:39,706,833; *KNL1*: chr15:40,620,662; chr15:40,623,442). In each case the aSNVs found in
110 the same carriers were in tight linkage disequilibrium, thus were likely inherited together.

111 We also queried the relatedness status (up to 3rd degree) of identified carriers and found only one
112 related pair carrying an aSNV in *SSH2*. Thus, it is unlikely that the allele counts of identified
113 aSNVs in our study are inflated due to relatedness.

Gene	<i>KIF26B</i>		<i>NOTO</i>		<i>GRM6</i>		<i>ADAM18</i>		<i>ADAM18</i>		<i>DCHS1</i>		<i>KNL1</i>		<i>KNL1</i>			
Chromosome	1		2		5		8		8		11		15		15			
Position (hg 38)	245419603		73210883		178994530		39680099		39706833		6633538		40620662		40623442			
Reference Allele	A		T		G		C		G		C		G		A			
Archaic allele	G		A		T		T		A		T		A		G			
	Het	Hom (Ref)	Het	Hom (Ref)	Hom (Alt)	Het	Hom (Ref)	Het	Hom (Ref)	Het	Hom (Ref)	Het	Hom (Ref)	Het	Hom (Ref)	Hom (Ref)		
SAS	8585		8585			8585		8585		8570		8585		8583		8585		
EAS	1887	3	1884			1886	2	1885	2	1881		1887	1	1885	1	1887		
EUR	423885		423883		3	423838	1	423882		423457		423887	3	423652		423885		
AFR	2	5091	5092		12	5077		5092		5075		5092		5087		5092		
Uncategorized	3	13343	3	13343	1	28	13316		13346		13319	1	13345	2	13339	1	13346	
Total N	5	452791	6	452787	1	43	452702	3	452790	2	452302	1	452796	6	452546	2	452795	
Gene	<i>ZNF106</i>		<i>SPAG5</i>		<i>SPAG5</i>		<i>SPAG5</i>		<i>SSH2</i>		<i>RFNG</i>		<i>GREB1L</i>		<i>LMNB2</i>		<i>C3</i>	
Chromosome	15		17		17		17		17		17		18		19		19	
Position (hg 38)	42450114		28592016		28592759		28598560		29632016		82049104		21505418		2434035		6685100	
Reference Allele	C		G		C		A		T		G		A		A		G	
Archaic allele	T		C		T		G		C		A		G		T		A	
	Het	Hom (Ref)	Het	Hom (Ref)	Hom (Alt)	Het	Hom (Ref)	Het	Hom (Ref)	Het	Hom (Ref)	Het	Hom (Ref)	Het	Hom (Ref)	Hom (Ref)		
SAS	8585		8585			8584		8585		8585		8584		8585		8585		8584
EAS	4	1883	1887			1887		1887		1887		1887	1	1886	2	1885	1887	
EUR	423887		423887	1	423883		423885	21	423866	2	423832		423877		423886	2	423861	
AFR	5092	5	5092	5	5092	5	5092		5092		5092		5092		5092		5092	
Uncategorized	1	13345	13346		13346		13346		13345		13345		13343		13346	13346	13346	
Total N	5	452792	5	452797	6	452792	5	452795	21	452775	2	452738	1	452786	2	452794	2	452770

Table 1: Overview of identified aSNV carriers in UK Biobank. Genotype count of carriers of each aSNV and respective individuals homozygous for the derived allele are noted per ancestry supercluster. Genomic positions are based on hg38; Het = Heterozygous, Hom = Homozygous, Ref = reference allele; SAS = South Asian; EAS = East Asian; EUR = European; AFR = African.


117
118

Phenotypes assessed in carriers of the *SSH2* aSNV do not deviate from matched non-carriers.

119
120
121
122
123
124
125
126
127
128

Next, we showed how availability of biobank trait data can be used to query whether aSNVs have major phenotypic consequences in living humans. We chose an aSNV in *SSH2* (chr17:29632016) to exemplify this, since the encoded protein is a protein phosphatase with enzymatic properties regulating actin filament dynamics and possible functions in neurite outgrowth (2, 21–23), and because the variant was found in a relatively large number of unrelated carriers within a strict ancestry cluster (N = 19, see Methods). We chose the following traits for phenotypic assessment: body composition measures (body mass index, whole body fat mass), height, overall health rating, smoking status and highest qualification level as an indication of educational attainment. These phenotypes were selected a priori based on previously identified GWAS trait associations of *SSH2* (24) that further overlapped with traits linked to Neandertal admixture (1, 25–29).

129

130

Figure 1: Investigating phenotypic effects in carriers of the *SSH2* aSNV. (A) Values of continuous traits are shown for each aSNV carrier as dark blue diamonds. Violin plots show the phenotypic distribution of matched set of non-carriers, with boxplots indicating the 25th and 75th percentiles, and whiskers representing 1.5 times the inter quartile range (IQR); (B & C) Stacked bar plots showing the percentage of highest qualification level, as well as health related measures for each genotype: T/T for matched non-carriers and T/C for aSNV carriers (N_{aSNV} = 19; N_{Non-carrier} = 39,501). A level = Advanced level, AS level = Advanced Subsidiary level, O level = Ordinary level, GCSE = General Certificate of Secondary Education, CSE = Certificate of Secondary Education, NVQ = National Vocational Qualification, HND = Higher National Diploma, HNC = Higher National Certificate.

131
132
133
134
135
136
137

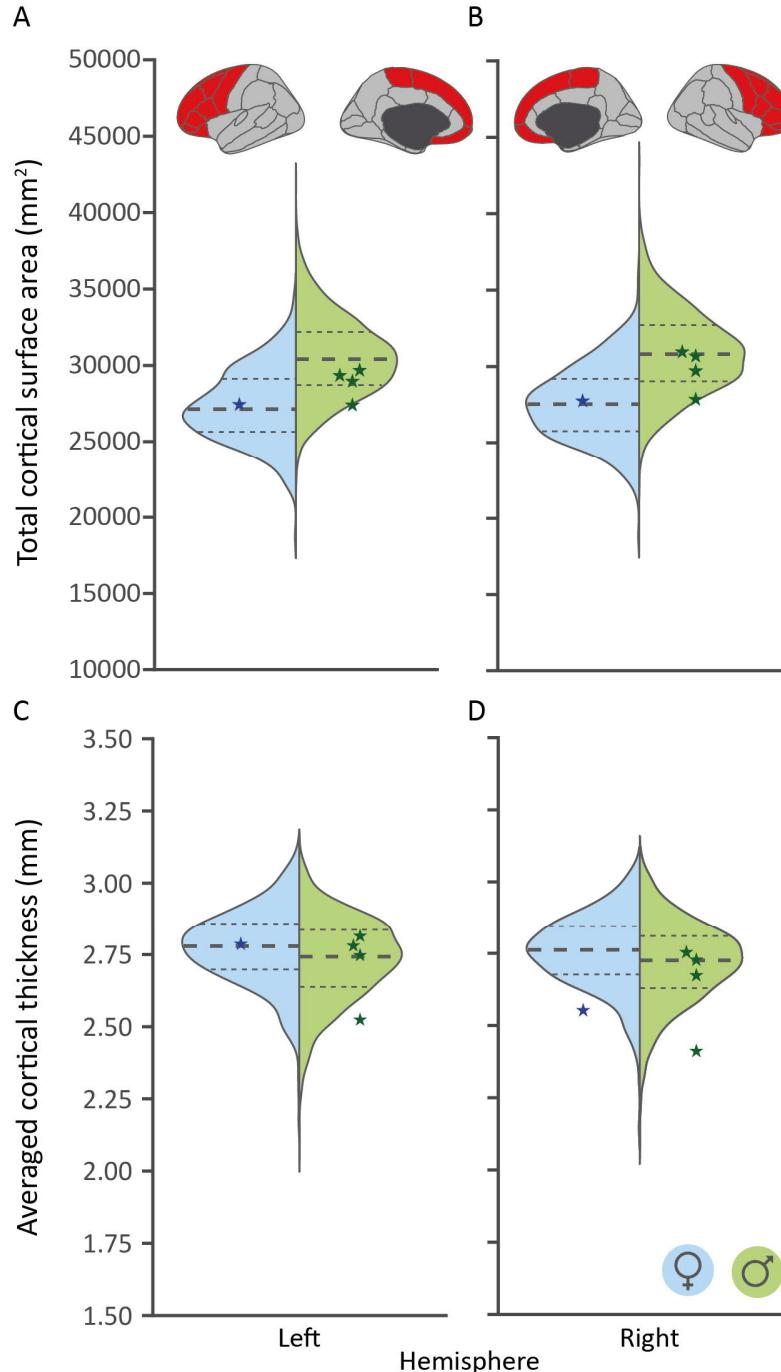
For all continuous traits, carriers of the *SSH2* aSNV were within the standard trait distribution based on a matched set of individuals homozygous for the derived alleles (non-carriers; see Methods), and did not show a trend towards extreme values (Fig. 1A). A similar pattern was observed for categorical traits, where carriers show no strong deviating pattern from the matched non-carrier cohort (Fig. 1B-C). Given its putative roles in neurite outgrowth, prior associations of common variants with a broad array of brain imaging metrics (24), and the general involvement

145 of protein phosphatases in psychiatric and neurological disorders (30), we tested the possible
146 consequences of carrying aSNVs in *SSH2* for a range of neuropsychological traits. We did not
147 observe diverging patterns for aSNV carriers compared to the non-carrier group (fig. S2).

148 **The archaic allele in *TKTL1* shows little consequence for frontal pole morphology and overall**
149 **cognition in adult humans**

150 We went on to study the archaic allele (A) of the rs111811311 polymorphism (A/G) of the *TKTL1*
151 gene, located on the X chromosome. This missense change (yielding a lysine-to-arginine change
152 at residue 317 of the long isoform) gained considerable prominence in recent literature when it
153 was proposed by Pinson et al. as a major driver of human/Neandertal brain differences in evolution
154 based on an array of functional experiments (10). Note that the variant was not among our curated
155 list of aSNVs above, since it did not fit the criteria of full fixation in Kuhlwilm & Boeckx (2) (AF
156 = 1), while a critique of Pinson et al. (10) has highlighted the existence of rs111811311 archaic
157 allele carriers in gnomAD (12), but without any phenotypic follow-up. Querying the UKB resource
158 for the *TKTL1* archaic allele, we identified 45 heterozygous and one homozygous female carrier,
159 as well as 16 hemizygous male carriers across multiple ancestry groups (Table 2, fig S1C). Among
160 these 62 carriers, we identified four pairs with a kinship coefficient below 0.042, indicating again
161 that relatedness (up to the 3rd degree) is unlikely to explain the larger number of carriers. One
162 individual was identified with an archaic allele in both *TKTL1* and *KIF26B*.

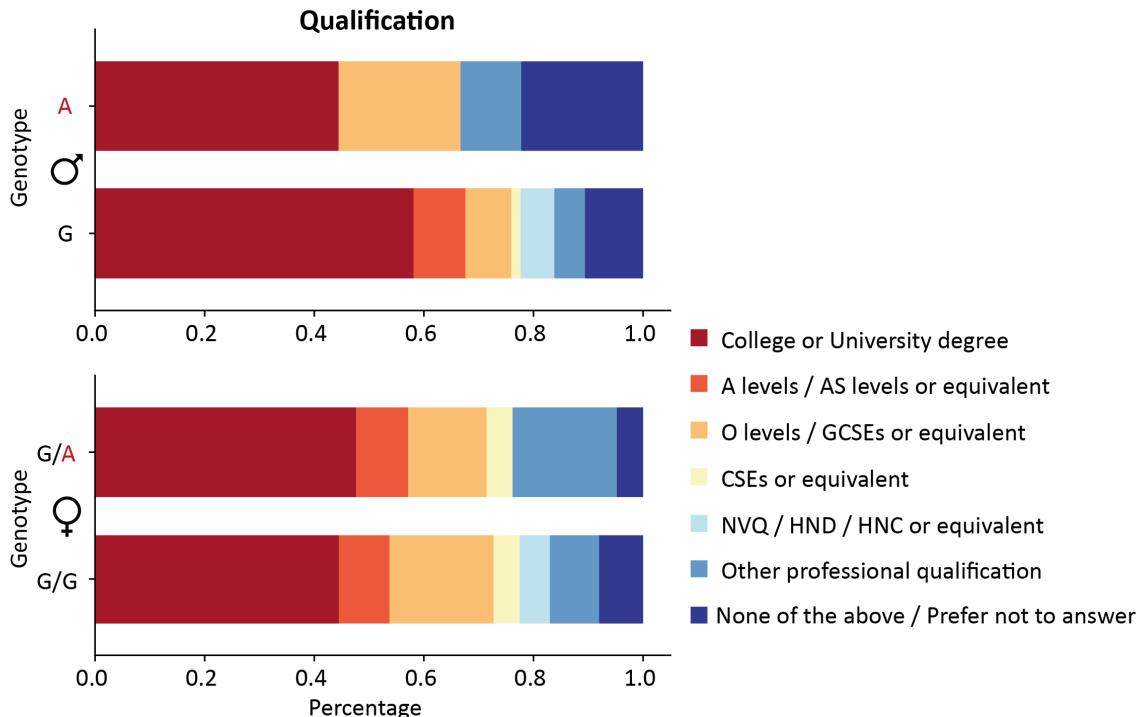
163


<i>TKTL1</i>		Population	Homozygotes (Alt)	Hemizygotes (Alt)	Heterozygotes	Hemizygotes (Ref)	Homozygotes (Ref)
Chromosome	X	SAS				4612	3960
Position (hg38)	154315258	EAS				600	1283
Reference Allele	G	EUR		4	12	193302	229987
Archaic Allele	A	AFR		1	10	2251	2822
rsID	rs111811311	Uncategorized	1	11	23	5774	7513
		Total N	1	16	45	206539	241605

164 **Table 2: Overview of identified aSNV carriers for *TKTL1* in UK Biobank.** Genotype count of carriers of the archaic allele and
165 individuals homozygous or hemizygous for the derived allele are noted per ancestry supercluster. Genomic positions based on
166 hg38; REF = reference allele; ALT = Alternative/Ancestral allele;

167 Given that the cellular/animal work of Pinson et al. (10) linked the human-derived allele of *TKTL1*
168 to substantial increases in neuron production in the prefrontal cortex, we contrasted imaging
169 derived structural brain metrics of the frontal lobe in unrelated aSNV carriers (N = 5) and matched
170 non-carriers, homozygous for the derived allele (N = 2145) to investigate the effects of carrying
171 an archaic allele on frontal lobe surface area and cortical thickness in living human adults (Fig. 2).

172 We found that the range of phenotypic variation of aSNV carriers lies in general within the 25th
173 and 75th percentiles of the non-carriers for all cortical measures. This is in stark contrast with the
174 pronounced effects shown in the various functional assays performed by Pinson et al. (10) which
175 would predict substantial reductions in prefrontal cortex brain metrics of carriers of the archaic
176 allele. As a sensitivity analysis, we repeated this approach in an ancestry matched cohort of only
177 European carriers (N = 3) and a matched non-carrier cohort (n = 30), and obtained an even clearer
178 overlap in phenotypic distributions (fig. S3).


179

180
181 **Figure 2: Carriers of the archaic allele of the *TKTL1* aSNV show no diverging cortical measures compared to a matched**
182 **set of non-carriers.** Archaic allele carrier values for each sex and metric are depicted as diamonds. These are overlaid over split
183 violin plots indicating the phenotypic variability for both the female (left, blue) and male (right, green) matched non-carrier sample
184 for total cortical surface area for both left and right hemisphere (A and B, respectively) and averaged cortical thickness (C and D,
185 respectively); G: Reference/derived allele, A: Archaic allele. Tick dotted line indicates the median, while the thin dotted lines
186 highlight both the 25th and 75th percentiles.

187 Increased neuronal proliferation and expansion of the neocortex along the lineage leading to
188 modern humans is argued by some to have been a driver of increased cognitive capacities of our
189 species (31, 32). Indeed, based on the Pinson et al. (10) findings, some other researchers and

190 commentators have proposed that the *TKTL1* protein-coding aSNV contributed to differences in
191 cognition between *Homo sapiens* and extinct archaic humans (33). Thus, we also assessed
192 educational qualification levels of carriers of the archaic *TKTL1* allele (N = 30) compared to
193 matched non-carriers (N = 600) (Fig. 2). Due to the difference in zygosity, this was done separately
194 for males and females.

195

196 **Figure 2: Qualification levels of carriers of archaic alleles of the *TKTL1* aSNV are similar to matched set of non-carriers.**
197 Stacked bar plots showing the percentage of highest qualification level by genotype. (Male sample: N_{aSNV} = 9; N_{Non-carriers} = 180;
198 Female sample: N_{aSNV} = 21; N_{Non-carriers} = 420); A level = Advanced level, AS level = Advanced Subsidiary level, O level = Ordinary
199 level, GCSE = General Certificate of Secondary Education, CSE = Certificate of Secondary Education, NVQ = National Vocational
200 Qualification, HND = Higher National Diploma, HNC = Higher National Certificate;

201 While the percentage of males with the highest qualification level was slightly lower for those with
202 the archaic allele of *TKTL1*, it is striking that in both sexes a substantial proportion of carriers of
203 this allele have a college or University degree. In particular, >44% of males with only an archaic
204 allele on this polymorphic site of the X chromosome have a college/University degree. This pattern
205 of findings casts doubt on the idea that the human-derived change in *TKTL1* was a key player in
206 the evolution of enhanced human cognitive abilities (33).

207

208 DISCUSSION

209 This study brings a novel source of empirical data to questions regarding evolutionary impacts of
210 protein-coding variants that distinguish between modern humans and our extinct archaic cousins,
211 adding to the rich prior literature in this area, recently reviewed by Zeberg and colleagues (3). Our
212 work identified 165 unique carriers of archaic SNVs for 18 out of a total of 38 interrogated
213 genomic positions in around 450,000 individuals with exome data in UKB. Regarding phenotypic
214 consequences of an exemplar aSNV in *SSH2*, one for which relatively large numbers of carriers
215 were available, all interrogated traits fell within the typical range of variation, with no obvious

216 divergence from the norm. A similar pattern was observable for *TKTL1* for frontal lobe structural
217 measures as well as overall qualification level, despite this variant previously showing large effects
218 on neocortical development in cellular/animal models.

219 Ever since the first high-coverage genome sequence of a Neandertal resulted in a catalogue of
220 fixed missense aSNVs (7), the overall number has continually decreased, as more high quality
221 Neandertal genomes and ever-increasing population databases of present-day humans have
222 become available. For such protein-coding changes, the present study reduces the number of
223 potential fully fixed genomic positions described in Kuhlwilm and Boeckx (2) that we investigated
224 here from 37 to only 20, while the true number is likely even smaller. This raises questions over
225 whether (some of) the aSNV carriers are explained by rare back-mutations, whether these sites
226 were never fixed to begin with, or whether the ancestral allele was reintroduced post-fixation
227 during admixture events (3). While for some genomic positions only a handful of carriers were
228 found in the UKB, some positions present with higher carrier counts that make back-mutations an
229 unlikely explanation (1). Further, higher ancestral allele counts were often evident in non-
230 European ancestry groups. High genetic diversity within African populations (34) might partially
231 explain this pattern, but considering the skewness of UKB towards White European ancestry (16)
232 it remains intriguing. While it is known that some isolated populations have higher levels of archaic
233 ancestry, either because they persisted since a common ancestor, as seen in the Khoi-San (35) or
234 due to relatively recent admixture with Neandertals/Denisovans (e.g., Oceanian populations) (36,
235 37), there is no detailed catalogue of fixed human-specific changes across a range of ancestries
236 that could be used as a reference point, given that most results of genomic studies are solely based
237 on populations with European ancestry (3).

238 The presence of aSNV carriers in population databases, however, does not rule out the possibility
239 that these DNA changes contributed to the formation of anatomically modern humans. While
240 experimental validation in model systems is crucial to understand the impact of variation at these
241 genomic positions, current approaches are laborious, with a range of known pitfalls (12, 38). The
242 availability of phenotypic data in UKB makes it possible for the first time to query possible
243 phenotypic consequences in present-day adult living humans that carry the variants of interest. As
244 contrasting a range of traits of interest indicated no systematic differences between matched
245 individuals homozygous for the derived allele and aSNV carriers, this could be seen as evidence
246 that there are no major phenotypic consequences of carrying an ancestral rather than a derived
247 version at the queried position. However, while the aSNV on *SSH2* was carefully chosen because
248 of its potential effects on the enzymatic properties of the encoded protein, increasing the likelihood
249 of observable phenotypic consequences, and based on the relatively large number of identified
250 carriers, the possibility remains that we did not have a sufficient sample size to detect trait
251 differences (3). Of note, all individuals were heterozygous carriers and still had one copy of the
252 derived allele, therefore not reflecting the homozygous state observed in the Neandertal genome.
253 Moreover, lacking power for a large genome-wide screen, we chose phenotypes to target a priori
254 based on broader literature, and might have thus missed a trait that is truly impacted by the variant.
255 This raises a larger question of importance for the field: which phenotype(s) would best represent
256 ‘the human condition’ in investigations of this kind? Latest archaeological evidence increasingly
257 suggests cognitive and behavioural similarities with our extinct archaic cousins, meaning that
258 differences, especially for complex traits, may well be subtle (2, 4–6). The lower carrier numbers
259 of other aSNVs (at least within ancestry clusters) further limit the scope of currently feasible
260 phenotypic investigations. A large genome-wide scan sensitive enough to detect small deviations
261 from the norm might highlight the most important phenotypes, as well as clarifying contributions

262 of these genomic positions, but this will only be feasible when even larger sample sizes are
263 available than at present.

264 While reported as only a human-specific high-frequency variant by Kuhlwilm and Boeckx (2),
265 several reasons led us to include the aSNV in *TKTL1* in the current investigation. Firstly, the
266 phenotypic consequences of ancestral versus derived alleles of this aSNV are well described in
267 Pinson et al., based on their experiments in animal/cellular models (10), allowing for a more
268 targeted phenotypic selection. Complementing findings from these models, the researchers also
269 reported that disrupting *TKTL1* expression in fetal human brain neocortical tissue significantly
270 reduced basal radial glial progenitors (10). Secondly, the effect sizes of the aSNV allele reported
271 in Pinson et al. (10) were substantial, indicating that even with only a small number of identified
272 carriers there should be good prospects of detecting such phenotypic consequences. Thirdly, the
273 position of the aSNV on the X chromosome should lead to even more pronounced effects in males,
274 who are hemizygous for either a derived or ancestral allele. Still, we saw no differences for carriers
275 and matched sample of non-carriers in neuroanatomical properties of the frontal lobe even in male
276 carriers, and a substantial proportion of these had a college/university degree, arguing against a
277 major impact on cognitive functions. While the absence of consequences for adults might possibly
278 be explained by compensatory mechanisms with mitigating effects on the developing frontal lobes,
279 our results show that effect sizes identified in functional assays and model organisms cannot be
280 directly extrapolated to the consequences of carrying these changes for adult human phenotypes
281 (15).

282 Beyond general challenges related to rare variant analysis and the choice of target phenotypes, as
283 discussed above, limitations of the current study include those related to the nature of the UKB
284 cohort (restricted age range, lack of diversity in ancestral background, existence of participation
285 bias (16, 39)), and the need for more and better-quality archaic hominin genomes to understand
286 the genetic variation patterns in their populations.

287 The findings here resonate well with the recent perspective of the field set out by Zeberg and
288 colleagues (3). With our concrete demonstration of biobank analyses, we provide new impetus
289 towards promising avenues for future investigations: i) The inclusion of more large-scale diverse
290 population databases (40–43) together with the information from the third high quality Neandertal
291 genome (9) (and additional archaic genomes that might be sequenced) will likely yield a more
292 representative catalogue of human-specific changes to help reconstruct how natural selection,
293 archaic gene flow, and our demographic history together shaped our genome (1, 3, 34, 44). ii)
294 Given the ever-decreasing number of such sites, it seems warranted to abandon the notion of fully-
295 fixed variants, broadening the scope to also take high-frequency non-fixed changes into account.
296 Kuhlwilm and Boeckx (2) already made a start in this direction and expanded their catalogue
297 accordingly, but with the availability of larger and more diverse databases, this list will need
298 updating. As more population databases are also including whole genome sequencing, the search
299 can be expanded further to include high-frequency changes in regulatory regions (45). iii) Our
300 results indicate that looking at each of these genomic positions individually might not be so
301 informative and that future work focusing on their aggregated effects could be valuable (2, 3). One
302 way to achieve this would be by grouping high-frequency changes according to their potential
303 functions [see Kuhlwilm and Boeckx (2) for an initial categorization]. Further, a list of high-
304 frequency variants could also be used for burden testing, which would additionally allow formal
305 statistical analyses of possible effects (46, 47).

306 Overall, by leveraging the availability of archaic variation in modern biobanks, our study has
307 provided evidence against the notion of fixed genomic changes on the human lineage, highlighted

308 that individual interrogation of the key sites is unlikely to yield major insights into the emergence
309 of complex human traits, and emphasises again the importance of including diverse ancestral
310 backgrounds in studies on the origins of our species.

311

312

313

References

1. S. Pääbo, The Human Condition—A Molecular Approach. *Cell* **157**, 216–226 (2014).
2. M. Kuhlwilm, C. Boeckx, A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. *Sci Rep* **9**, 8463 (2019).
3. H. Zeberg, M. Jakobsson, S. Pääbo, The genetic changes that shaped Neandertals, Denisovans, and modern humans. *Cell* **187**, 1047–1058 (2024).
4. E. M. L. Scerri, M. Will, The revolution that still isn't: The origins of behavioral complexity in *Homo sapiens*. *Journal of Human Evolution* **179**, 103358 (2023).
5. T. Wynn, F. L. Coolidge, The expert Neandertal mind. *Journal of Human Evolution* **46**, 467–487 (2004).
6. A. Nowell, Rethinking Neandertals. *Annu. Rev. Anthropol.* **52**, annurev-anthro-052621-024752 (2023).
7. K. Prüfer, F. Racimo, N. Patterson, F. Jay, S. Sankararaman, S. Sawyer, A. Heinze, G. Renaud, P. H. Sudmant, C. de Filippo, H. Li, S. Mallick, M. Dannemann, Q. Fu, M. Kircher, M. Kuhlwilm, M. Lachmann, M. Meyer, M. Ongyerth, M. Siebauer, C. Theunert, A. Tandon, P. Moorjani, J. Pickrell, J. C. Mullikin, S. H. Vohr, R. E. Green, I. Hellmann, P. L. F. Johnson, H. Blanche, H. Cann, J. O. Kitzman, J. Shendure, E. E. Eichler, E. S. Lein, T. E. Bakken, L. V. Golovanova, V. B. Doronichev, M. V. Shunkov, A. P. Derevianko, B. Viola, M. Slatkin, D. Reich, J. Kelso, S. Pääbo, The complete genome sequence of a Neanderthal from the Altai Mountains. *Nature* **505**, 43–49 (2014).
8. K. Prüfer, C. De Filippo, S. Grote, F. Mafessoni, P. Korlević, M. Hajdinjak, B. Vernot, L. Skov, P. Hsieh, S. Peyrégne, D. Reher, C. Hopfe, S. Nagel, T. Maricic, Q. Fu, C. Theunert, R. Rogers, P. Skoglund, M. Chintalapati, M. Dannemann, B. J. Nelson, F. M. Key, P. Rudan, Ž. Kućan, I. Gušić, L. V. Golovanova, V. B. Doronichev, N. Patterson, D. Reich, E. E. Eichler, M. Slatkin, M. H. Schierup, A. M. Andrés, J. Kelso, M. Meyer, S. Pääbo, A high-coverage Neandertal genome from Vindija Cave in Croatia. *Science* **358**, 655–658 (2017).
9. F. Mafessoni, S. Grote, C. De Filippo, V. Slon, K. A. Kolobova, B. Viola, S. V. Markin, M. Chintalapati, S. Peyrégne, L. Skov, P. Skoglund, A. I. Krivoshapkin, A. P. Derevianko, M. Meyer, J. Kelso, B. Peter, K. Prüfer, S. Pääbo, A high-coverage Neandertal genome from Chagyrskaya Cave. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 15132–15136 (2020).
10. A. Pinson, L. Xing, T. Namba, N. Kalebic, J. Peters, C. E. Oegema, S. Traikov, K. Reppe, S. Riesenber, T. Maricic, R. Derihaci, P. Wimberger, S. Pääbo, W. B. Huttner, Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. *Science* **377**, eab16422 (2022).
11. I. Chiaradia, M. A. Lancaster, Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. *Nat Neurosci* **23**, 1496–1508 (2020).
12. R. H. Herai, K. Semendeferi, A. R. Muotri, Comment on “Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals.” *Science* **379**, eadf0602 (2023).
13. B. Bolognesi, B. Lehner, Reaching the limit. *eLife* **7**, e39804 (2018).
14. W. Enard, S. Gehre, K. Hammerschmidt, S. M. Höltner, T. Blass, M. Somel, M. K. Brückner, C. Schreiweis, C. Winter, R. Sohr, L. Becker, V. Wiebe, B. Nickel, T. Giger, U. Müller, M. Groszer, T. Adler, A. Aguilar, I. Bolle, J. Calzada-Wack, C. Dalke, N. Ehrhardt, J. Favor, H. Fuchs, V. Gailus-Durner, W. Hans, G. Hözlwimmer, A. Javaheri, S. Kalaydjiev, M. Kallnik, E. Kling, S. Kunder, I. Moßbrugger, B. Naton, I. Racz, B. Rathkolb, J. Rozman, A. Schrewe, D. H. Busch, J. Graw, B. Ivandic, M. Klingenspor, T. Klopstock, M. Ollert, L. Quintanilla-Martinez, H. Schulz, E. Wolf, W. Wurst, A. Zimmer, S. E. Fisher, R. Morgenstern, T. Arendt, M. Hrabé De Angelis, J. Fischer, J. Schwarz, S. Pääbo, A Humanized Version of *Foxp2* Affects Cortico-Basal Ganglia Circuits in Mice. *Cell* **137**, 961–971 (2009).
15. A. Pinson, T. Maricic, H. Zeberg, S. Pääbo, W. B. Huttner, Response to Comment on “Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals.” *Science* **379**, eadf2212 (2023).
16. C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D. Vukcevic, O. Delaneau, J. O'Connell, A. Cortes, S. Welsh, A. Young, M. Effingham, G. McVean, S. Leslie, N. Allen, P. Donnelly, J. Marchini, The UK Biobank resource with deep phenotyping and genomic data. *Nature* **562**, 203–209 (2018).
17. F. Alfaro-Almagro, M. Jenkinson, N. K. Bangerter, J. L. R. Andersson, L. Griffanti, G. Douaud, S. N. Sotropoulos, S. Jbabdi, M. Hernandez-Fernandez, E. Vallee, D. Vidaurre, M. Webster, P. McCarthy, C. Rorden, A. Daducci, D. C. Alexander, H. Zhang, I. Dragonu, P. M. Matthews, K. L. Miller, S. M. Smith, Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. *NeuroImage* **166**, 400–424 (2018).
18. J. D. Szustakowski, S. Balasubramanian, E. Kvikstad, S. Khalid, P. G. Bronson, A. Sasson, E. Wong, D. Liu, J. Wade Davis, C. Haefliger, A. Katrina Loomis, R. Mikkilineni, H. J. Noh, S. Wadhawan, X. Bai, A. Hawes,

369 O. Krasheninina, R. Ulloa, A. E. Lopez, E. N. Smith, J. F. Waring, C. D. Whelan, E. A. Tsai, J. D. Overton,
370 W. J. Salerno, H. Jacob, S. Szalma, H. Runz, G. Hinkle, P. Nioi, S. Petrovski, M. R. Miller, A. Baras, L. J.
371 Mitnaul, J. G. Reid, UKB-ESC Research Team, O. Moiseyenko, C. Rios, S. Saha, G. Abecasis, N. Banerjee,
372 C. Beechert, B. Boutkov, M. Cantor, G. Coppola, A. Economides, G. Eom, C. Forsythe, E. D. Fuller, Z. Gu,
373 L. Habegger, M. B. Jones, R. Lanche, M. Lattari, M. LeBlanc, D. Li, L. A. Lotta, K. Manoochehri, A. J.
374 Mansfield, E. K. Maxwell, J. Mighty, M. Nafde, S. O'Keeffe, M. Orelus, M. S. Padilla, R. Panea, T. Polanco,
375 M. Pradhan, A. Rasool, T. D. Schleicher, D. Sharma, A. Shuldiner, J. C. Staples, C. V. Van Hout, L. Widom,
376 S. E. Wolf, S. John, C.-Y. Chen, D. Sexton, V. Kupelian, E. Marshall, T. Swan, S. Eaton, J. Z. Liu, S. Loomis,
377 M. Jensen, S. Duraisamy, J. Tetrault, D. Merberg, S. Badola, M. Reppell, J. Grundstad, X. Zheng, A. M.
378 Deaton, M. M. Parker, L. D. Ward, A. O. Flynn-Carroll, C. Austin, R. March, M. N. Pangalos, A. Platt, M.
379 Snowden, A. Matakidou, S. Wasilewski, Q. Wang, S. Deevi, K. Carss, K. Smith, M. Sogaard, X. Hu, X.
380 Chen, Z. Ye, Advancing human genetics research and drug discovery through exome sequencing of the UK
381 Biobank. *Nat Genet* **53**, 942–948 (2021).

382 19. C. V. Van Hout, I. Tachmazidou, J. D. Backman, J. D. Hoffman, D. Liu, A. K. Pandey, C. Gonzaga-Jauregui,
383 S. Khalid, B. Ye, N. Banerjee, A. H. Li, C. O'Dushlaine, A. Marcketta, J. Staples, C. Schurmann, A. Hawes,
384 E. Maxwell, L. Barnard, A. Lopez, J. Penn, L. Habegger, A. L. Blumenfeld, X. Bai, S. O'Keeffe, A. Yadav,
385 K. Praveen, M. Jones, W. J. Salerno, W. K. Chung, I. Surakka, C. J. Willer, K. Hveem, J. B. Leader, D. J.
386 Carey, D. H. Ledbetter, Geisinger-Regeneron DiscovEHR Collaboration, L. Cardon, G. D. Yancopoulos, A.
387 Economides, G. Coppola, A. R. Shuldiner, S. Balasubramanian, M. Cantor, Regeneron Genetics Center, M. R.
388 Nelson, J. Whittaker, J. G. Reid, J. Marchini, J. D. Overton, R. A. Scott, G. R. Abecasis, L. Yerges-
389 Armstrong, A. Baras, Exome sequencing and characterization of 49,960 individuals in the UK Biobank.
390 *Nature* **586**, 749–756 (2020).

391 20. J. D. Backman, A. H. Li, A. Marcketta, D. Sun, J. Mbatchou, M. D. Kessler, C. Benner, D. Liu, A. E. Locke,
392 S. Balasubramanian, A. Yadav, N. Banerjee, C. E. Gillies, A. Damask, S. Liu, X. Bai, A. Hawes, E. Maxwell,
393 L. Gurski, K. Watanabe, J. A. Kosmicki, V. Rajagopal, J. Mighty, Regeneron Genetics Center, DiscovEHR,
394 M. Jones, L. Mitnaul, E. Stahl, G. Coppola, E. Jorgenson, L. Habegger, W. J. Salerno, A. R. Shuldiner, L. A.
395 Lotta, J. D. Overton, M. N. Cantor, J. G. Reid, G. Yancopoulos, H. M. Kang, J. Marchini, A. Baras, G. R.
396 Abecasis, M. A. R. Ferreira, Exome sequencing and analysis of 454,787 UK Biobank participants. *Nature*
397 **599**, 628–634 (2021).

398 21. H. Cuberos, B. Vallée, P. Vourc'h, J. Tastet, C. R. Andres, H. Bénédetti, Roles of LIM kinases in central
399 nervous system function and dysfunction. *FEBS Letters* **589**, 3795–3806 (2015).

400 22. R. Niwa, K. Nagata-Ohashi, M. Takeichi, K. Mizuno, T. Uemura, Control of Actin Reorganization by
401 Slingshot, a Family of Phosphatases that Dephosphorylate ADF/Cofilin. *Cell* **108**, 233–246 (2002).

402 23. Y. Ohta, K. Kousaka, K. Nagata-Ohashi, K. Ohashi, A. Muramoto, Y. Shima, R. Niwa, T. Uemura, K.
403 Mizuno, Differential activities, subcellular distribution and tissue expression patterns of three members of
404 Slingshot family phosphatases that dephosphorylate cofilin. *Genes to Cells* **8**, 811–824 (2003).

405 24. E. Sollis, A. Mosaku, A. Abid, A. Buniello, M. Cerezo, L. Gil, T. Groza, O. Güneş, P. Hall, J. Hayhurst, A.
406 Ibrahim, Y. Ji, S. John, E. Lewis, J. A. L. MacArthur, A. McMahon, D. Osumi-Sutherland, K.
407 Panoutsopoulou, Z. Pendlington, S. Ramachandran, R. Stefancsik, J. Stewart, P. Whetzel, R. Wilson, L.
408 Hindorff, F. Cunningham, S. A. Lambert, M. Inouye, H. Parkinson, L. W. Harris, The NHGRI-EBI GWAS
409 Catalog: knowledgebase and deposition resource. *Nucleic Acids Res* **51**, D977–D985 (2023).

410 25. A. A. De Sousa, A. Beaudet, T. Calvey, A. Bardo, J. Benoit, C. J. Charvet, C. Dehay, A. Gómez-Robles, P.
411 Gunz, K. Heuer, M. P. Van Den Heuvel, S. Hurst, P. Lauters, D. Reed, M. Salagnon, C. C. Sherwood, F.
412 Ströckens, M. Tawane, O. S. Todorov, R. Toro, Y. Wei, From fossils to mind. *Commun Biol* **6**, 636 (2023).

413 26. E. McArthur, D. C. Rinker, J. A. Capra, Quantifying the contribution of Neanderthal introgression to the
414 heritability of complex traits. *Nat Commun* **12**, 4481 (2021).

415 27. M. Dannemann, Y. Milaneschi, D. Yermakovich, V. Stiglbauer, H. M. Kariis, K. Krebs, M. A. Friese, C. Otte,
416 Estonian Biobank Research Team, T. Esko, A. Metspalu, L. Milani, R. Mägi, M. Nelis, K. Lehto, B. W. J. H.
417 Penninx, J. Kelso, S. M. Gold, Neandertal introgression partitions the genetic landscape of neuropsychiatric
418 disorders and associated behavioral phenotypes. *Transl Psychiatry* **12**, 433 (2022).

419 28. S. Sankararaman, S. Mallick, M. Dannemann, K. Prüfer, J. Kelso, S. Pääbo, N. Patterson, D. Reich, The
420 genomic landscape of Neanderthal ancestry in present-day humans. *Nature* **507**, 354–357 (2014).

421 29. C. N. Simonti, B. Vernot, L. Bastarache, E. Bottinger, D. S. Carrell, R. L. Chisholm, D. R. Crosslin, S. J.
422 Hebbring, G. P. Jarvik, I. J. Kullo, R. Li, J. Pathak, M. D. Ritchie, D. M. Roden, S. S. Verma, G. Tromp, J. D.
423 Prato, W. S. Bush, J. M. Akey, J. C. Denny, J. A. Capra, The phenotypic legacy of admixture between modern
424 humans and Neandertals. *Science* **351**, 737–741 (2016).

425 30. N. An, K. Bassil, G. I. Al Jowf, H. W. M. Steinbusch, M. Rothermel, L. De Nijs, B. P. F. Rutten, Dual-
426 specificity phosphatases in mental and neurological disorders. *Progress in Neurobiology* **198**, 101906 (2021).
427 31. P. Rakic, Evolution of the neocortex: a perspective from developmental biology. *Nat Rev Neurosci* **10**, 724–
428 735 (2009).
429 32. C. K. Kovach, N. D. Daw, D. Rudrauf, D. Tranel, J. P. O'Doherty, R. Adolphs, Anterior Prefrontal Cortex
430 Contributes to Action Selection through Tracking of Recent Reward Trends. *Journal of Neuroscience* **32**,
431 8434–8442 (2012).
432 33. B. Malgrange, L. Nguyen, Scaling brain neurogenesis across evolution. *Science* **377**, 1155–1156 (2022).
433 34. A. Bergström, S. A. McCarthy, R. Hui, M. A. Almarri, Q. Ayub, P. Danecek, Y. Chen, S. Felkel, P. Hallast, J.
434 Kamm, H. Blanché, J.-F. Deleuze, H. Cann, S. Mallick, D. Reich, M. S. Sandhu, P. Skoglund, A. Scally, Y.
435 Xue, R. Durbin, C. Tyler-Smith, Insights into human genetic variation and population history from 929
436 diverse genomes. *Science* **367**, eaay5012 (2020).
437 35. C. M. Schlebusch, P. Sjödin, G. Breton, T. Günther, T. Naidoo, N. Hollfelder, A. E. Sjöstrand, J. Xu, L. M.
438 Gattepaille, M. Vicente, D. G. Scofield, H. Malmström, M. De Jongh, M. Lombard, H. Soodyall, M.
439 Jakobsson, Khoe-San Genomes Reveal Unique Variation and Confirm the Deepest Population Divergence in
440 *Homo sapiens*. *Molecular Biology and Evolution* **37**, 2944–2954 (2020).
441 36. M. Meyer, M. Kircher, M.-T. Gansauge, H. Li, F. Racimo, S. Mallick, J. G. Schraiber, F. Jay, K. Prüfer, C.
442 De Filippo, P. H. Sudmant, C. Alkan, Q. Fu, R. Do, N. Rohland, A. Tandon, M. Siebauer, R. E. Green, K.
443 Bryc, A. W. Briggs, U. Stenzel, J. Dabney, J. Shendure, J. Kitzman, M. F. Hammer, M. V. Shunkov, A. P.
444 Derevianko, N. Patterson, A. M. Andrés, E. E. Eichler, M. Slatkin, D. Reich, J. Kelso, S. Pääbo, A High-
445 Coverage Genome Sequence from an Archaic Denisovan Individual. *Science* **338**, 222–226 (2012).
446 37. S. Peyrégne, V. Slon, J. Kelso, More than a decade of genetic research on the Denisovans. *Nat Rev Genet* **25**,
447 83–103 (2024).
448 38. T. Maricic, N. Helmbrecht, S. Riesenber, D. Macak, P. Kanis, M. Lackner, A. D. Pugach-Matveeva, S.
449 Pääbo, Comment on “Reintroduction of the archaic variant of NOVA1 in cortical organoids alters
450 neurodevelopment.” *Science* **374**, eabi6060 (2021).
451 39. T. Schoeler, D. Speed, E. Porcu, N. Pirastu, J.-B. Pingault, Z. Kutalik, Participation bias in the UK Biobank
452 distorts genetic associations and downstream analyses. *Nat Hum Behav* **7**, 1216–1227 (2023).
453 40. The All of Us Research Program Genomics Investigators, Manuscript Writing Group, A. G. Bick, G. A.
454 Metcalf, K. R. Mayo, L. Lichtenstein, S. Rura, R. J. Carroll, A. Musick, J. E. Linder, I. K. Jordan, S. D.
455 Nagar, S. Sharma, R. Meller, All of Us Research Program Genomics Principal Investigators, M. Basford, E.
456 Boerwinkle, M. S. Cicek, K. F. Doheny, E. E. Eichler, S. Gabriel, R. A. Gibbs, D. Glazer, P. A. Harris, G. P.
457 Jarvik, A. Philippakis, H. L. Rehm, D. M. Roden, S. N. Thibodeau, S. Topper, Biobank, Mayo, A. L. Blegen,
458 S. J. Wirkus, V. A. Wagner, J. G. Meyer, M. S. Cicek, Genome Center: Baylor-Hopkins Clinical Genome
459 Center, D. M. Muzny, E. Venner, M. Z. Mawhinney, S. M. L. Griffith, E. Hsu, H. Ling, M. K. Adams, K.
460 Walker, J. Hu, H. Doddapaneni, C. L. Kovar, M. Murugan, S. Dugan, Z. Khan, E. Boerwinkle, Genome
461 Center: Broad, Color, and Mass General Brigham Laboratory for Molecular Medicine, N. J. Lennon, C.
462 Austin-Tse, E. Banks, M. Gatzen, N. Gupta, E. Henricks, K. Larsson, S. McDonough, S. M. Harrison, C.
463 Kachulis, M. S. Lebo, C. L. Neben, M. Steeves, A. Y. Zhou, Genome Center: University of Washington, J. D.
464 Smith, C. D. Frazar, C. P. Davis, K. E. Patterson, M. M. Wheeler, S. McGee, C. M. Lockwood, B. H. Shirts,
465 C. C. Pritchard, M. L. Murray, V. Vasta, D. Leistritz, M. A. Richardson, J. G. Buchan, A. Radhakrishnan, N.
466 Krumm, B. W. Ehmen, Data and Research Center, S. Schwartz, M. M. T. Aster, K. Cibulskis, A. Haessly, R.
467 Asch, A. Cremer, K. Degatano, A. Shergill, L. D. Gauthier, S. K. Lee, A. Hatcher, G. B. Grant, G. R. Brandt,
468 M. Covarrubias, E. Banks, A. Able, A. E. Green, R. J. Carroll, J. Zhang, H. R. Condon, Y. Wang, M. K.
469 Dillon, C. H. Albach, W. Baalawi, All of Us Research Demonstration Project Teams, S. H. Choi, X. Wang, E.
470 A. Rosenthal, NIH All of Us Research Program Staff, A. H. Ramirez, S. Lim, S. Nambiar, B. Ozenberger, A.
471 L. Wise, C. Lunt, G. S. Ginsburg, J. C. Denny, Genomic data in the All of Us Research Program. *Nature* **627**,
472 340–346 (2024).
473 41. M. I. Kurki, J. Karjalainen, P. Palta, T. P. Sipilä, K. Kristiansson, K. Donner, M. P. Reeve, H. Laivuori, M.
474 Aavikko, M. A. Kaunisto, A. Loukola, E. Lahtela, H. Mattsson, P. Laiho, P. Della Briotta Parolo, A. Lehisto,
475 M. Kanai, N. Mars, J. Rämö, T. Kiiskinen, H. O. Heyne, K. Veerapen, S. Rüeger, S. Lemmelä, W. Zhou, S.
476 Ruotsalainen, K. Pärn, T. Hiekkalinna, S. Koskelainen, T. Paajanen, V. Llorens, J. Gracia-Tabuenca, H.
477 Siirtola, K. Reis, A. G. Elnahas, K. Aalto-Setälä, K. Alasoo, M. Arvas, K. Auro, S. Biswas, A. Bizaki-
478 Vallaskangas, O. Carpen, C.-Y. Chen, O. A. Dada, Z. Ding, M. G. Ehm, K. Eklund, M. Färkkilä, H. Finucane,
479 A. Ganna, A. Ghazal, R. R. Graham, E. Green, A. Hakanen, M. Hautalahti, Å. Hedman, M. Hiltunen, R.
480 Hinttala, I. Hovatta, X. Hu, A. Huertas-Vazquez, L. Huilaja, J. Hunkapiller, H. Jacob, J.-N. Jensen, H.
481 Joensuu, S. John, V. Julkunen, M. Jung, J. Junntila, K. Kaarniranta, M. Kähönen, R. M. Kajanne, L. Kallio, R.

482 Kälviäinen, J. Kaprio, N. Kerimov, J. Kettunen, E. Kilpeläinen, T. Kilpi, K. Klinger, V.-M. Kosma, T.
483 Kuopio, V. Kurra, T. Laisk, J. Laukkanen, N. Lawless, A. Liu, S. Longerich, R. Mägi, J. Mäkelä, A. Mäkitie,
484 A. Malarstig, A. Mannermaa, J. Maranville, A. Matakidou, T. Meretoja, S. V. Mozaffari, M. Ek. Niemi, M.
485 Niemi, T. Niiranen, C. J. O'Donnell, M. Obeidat, G. Okafo, H. M. Ollila, A. Palomäki, T. Palotie, J. Partanen,
486 D. S. Paul, M. Pelkonen, R. K. Pendergrass, S. Petrovski, A. Pitkäranta, A. Platt, D. Pulford, E. Punkka, P.
487 Pussinen, N. Raghavan, F. Rahimov, D. Rajpal, N. A. Renaud, B. Riley-Gillis, R. Rodosthenous, E.
488 Saarentaus, A. Salminen, E. Salminen, V. Salomaa, J. Schleutker, R. Serpi, H. Shen, R. Siegel, K. Silander, S.
489 Siltanen, S. Soini, H. Soininen, J. H. Sul, I. Tachmazidou, K. Tasanen, P. Tienari, S. Toppila-Salmi, T.
490 Tukiainen, T. Tuomi, J. A. Turunen, J. C. Ulirsch, F. Vaura, P. Virolainen, J. Waring, D. Waterworth, R.
491 Yang, M. Nelis, A. Reigo, A. Metspalu, L. Milani, T. Esko, C. Fox, A. S. Havulinna, M. Perola, S. Ripatti, A.
492 Jalanko, T. Laitinen, T. Mäkelä, R. Plenge, M. McCarthy, H. Runz, M. J. Daly, A. Palotie, FinnGen: Unique
493 genetic insights from combining isolated population and national health register data. [Preprint] (2022).
494 <https://doi.org/10.1101/2022.03.03.22271360>.

495 42. A. Nagai, M. Hirata, Y. Kamatani, K. Muto, K. Matsuda, Y. Kiyohara, T. Ninomiya, A. Tamakoshi, Z.
496 Yamagata, T. Mushiroda, Y. Murakami, K. Yuji, Y. Furukawa, H. Zembutsu, T. Tanaka, Y. Ohnishi, Y.
497 Nakamura, M. Kubo, M. Shiono, K. Misumi, R. Kaieda, H. Harada, S. Minami, M. Emi, N. Emoto, H. Daida,
498 K. Miyauchi, A. Murakami, S. Asai, M. Moriyama, Y. Takahashi, T. Fujioka, W. Obara, S. Mori, H. Ito, S.
499 Nagayama, Y. Miki, A. Masumoto, A. Yamada, Y. Nishizawa, K. Kodama, H. Kutsumi, Y. Sugimoto, Y.
500 Koretsune, H. Kusuoka, H. Yanai, Overview of the BioBank Japan Project: Study design and profile. *Journal
501 of Epidemiology* **27**, S2–S8 (2017).

502 43. R. G. Walters, I. Y. Millwood, K. Lin, D. S. Valle, P. McDonnell, A. Hacker, D. Avery, N. Cai, W. W.
503 Kretzschmar, M. A. Ansari, P. A. Lyons, R. Collins, P. Donnelly, M. Hill, R. Peto, H. Shen, X. Jin, C. Nie, X.
504 Xu, Y. Guo, C. Yu, J. Lv, R. J. Clarke, L. Li, Z. Chen, the China Kadoorie Biobank Collaborative Group,
505 Genotyping and population structure of the China Kadoorie Biobank. [Preprint] (2022).
506 <https://doi.org/10.1101/2022.05.02.22274487>.

507 44. O. Gokcumen, Archaic hominin introgression into modern human genomes. *American J Phys Anthropol* **171**,
508 60–73 (2020).

509 45. J. Moriano, C. Boeckx, Modern human changes in regulatory regions implicated in cortical development.
510 *BMC Genomics* **21**, 304 (2020).

511 46. G. Povysil, S. Petrovski, J. Hostyk, V. Aggarwal, A. S. Allen, D. B. Goldstein, Rare-variant collapsing
512 analyses for complex traits: guidelines and applications. *Nat Rev Genet* **20**, 747–759 (2019).

513 47. E. T. Cirulli, S. White, R. W. Read, G. Elhanan, W. J. Metcalf, F. Tanudjaja, D. M. Fath, E. Sandoval, M.
514 Isaksson, K. A. Schlauch, J. J. Grzymski, J. T. Lu, N. L. Washington, Genome-wide rare variant analysis for
515 thousands of phenotypes in over 70,000 exomes from two cohorts. *Nat Commun* **11**, 542 (2020).

516 48. C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M.
517 Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman, R. Collins, UK
518 Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of
519 Middle and Old Age. *PLoS Med* **12**, e1001779 (2015).

520 49. Broad Institute, Picard toolkit, Broad Institute (2019); <https://github.com/broadinstitute/picard>.

521 50. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 1000
522 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools.
523 *Bioinformatics* **25**, 2078–2079 (2009).

524 51. K. J. Karczewski, M. Solomonson, K. R. Chao, J. K. Goodrich, G. Tiao, W. Lu, B. M. Riley-Gillis, E. A.
525 Tsai, H. I. Kim, X. Zheng, F. Rahimov, S. Esmaeeli, A. J. Grundstad, M. Reppell, J. Waring, H. Jacob, D.
526 Sexton, P. G. Bronson, X. Chen, X. Hu, J. I. Goldstein, D. King, C. Vittal, T. Poterba, D. S. Palmer, C.
527 Churchhouse, D. P. Howrigan, W. Zhou, N. A. Watts, K. Nguyen, H. Nguyen, C. Mason, C. Farnham, C.
528 Tolonen, L. D. Gauthier, N. Gupta, D. G. MacArthur, H. L. Rehm, C. Seed, A. A. Philippakis, M. J. Daly, J.
529 W. Davis, H. Runz, M. R. Miller, B. M. Neale, Systematic single-variant and gene-based association testing
530 of thousands of phenotypes in 394,841 UK Biobank exomes. *Cell Genomics* **2**, 100168 (2022).

531 52. P. Danecek, J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham, T. Keane, S. A.
532 McCarthy, R. M. Davies, H. Li, Twelve years of SAMtools and BCFtools. *GigaScience* **10**, giab008 (2021).

533 53. K. L. Miller, F. Alfaro-Almagro, N. K. Bangerter, D. L. Thomas, E. Yacoub, J. Xu, A. J. Bartsch, S. Jbabdi,
534 S. N. Sotiropoulos, J. L. R. Andersson, L. Griffanti, G. Douaud, T. W. Okell, P. Weale, I. Dragonu, S. Garratt,
535 S. Hudson, R. Collins, M. Jenkinson, P. M. Matthews, S. M. Smith, Multimodal population brain imaging in
536 the UK Biobank prospective epidemiological study. *Nat Neurosci* **19**, 1523–1536 (2016).

539

Acknowledgments:

540

This research was conducted using the UK Biobank resource under application no. 16066 with CF as the principal applicant. Our study made use of brain imaging derived phenotypes and pre-processed imaging data generated by an image processing pipeline developed and run on behalf of UK Biobank. SEF is a member of the Center for Academic Research and Training in Anthropogeny.

545

546

Funding

547

Max Planck Society core funding (BM, MLA, GA, EE, DS, CF, SEF)

548

Dutch Research Council NWO; VI.Veni.202.072 (EE)

549

550

Author contributions

551

Conceptualization: BM, MLA, EE, GA, SEF

552

Resources: CF, SEF

553

Methodology: BM, EE, GA, DS, SEF

554

Data analysis: BM, MLA

555

Writing – original draft: BM

556

Writing – review & editing: BM, MLA, EE, GA, DS, CF, SEF

557

558

Competing interests: Authors declare that they have no competing interests.

559

560

Data and materials availability: Whole exome sequencing data, imaging-derived phenotypes and other phenotypic data used in this study are available from UK Biobank (<https://www.ukbiobank.ac.uk>). All scripts used for the analyses are available on the project GitLab repository (<https://gitlab.gwdg.de/barmol/fixedVariant>).

564

565

Supplementary Materials

566

Materials and Methods

567

Figs. S1 to S3

568

Tables S1

569

References (48–53)

570