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Abstract 13

Machine learning-based approaches are particularly suitable for identifying essential 14

genes as they allow the generation of predictive models trained on features from 15

multi-source data. Gene essentiality is neither binary nor static but determined by the 16

context. The databases for essential gene annotation do not permit the personalisation 17

of the context, and their update can be slower than the publication of new experimental 18

data. We propose HELP (Human Gene Essentiality Labelling & Prediction), a 19

computational framework for labelling and predicting essential genes. Its double scope 20

allows for identifying genes based on dependency or not on experimental data. The 21

effectiveness of the labelling method was demonstrated by comparing it with other 22

approaches in overlapping the reference sets of essential gene annotations, where HELP 23

demonstrated the best compromise between false and true positive rates. The gene 24

attributes, including multi-omics and network embedding features, lead to 25

high-performance prediction of essential genes while confirming the existence of 26

essentiality nuances. 27

Author summary 28

Essential genes (EGs) are commonly defined as those required for an organism or cell’s 29

growth and survival. The essentiality is strictly dependent on both environmental and 30

genetic conditions, determining a difference between those considered common EGs 31

(cEGs), essential in most of the contexts considered, and those essential specifically to 32

one or few contexts (context-specific EGs, csEGs). In this paper, we present a library of 33

tools and methodologies to address the identification and prediction of cEGs and csEGs. 34

Furthermore, we attempt to experimentally explore the statement that essentiality is 35

not a binary property by identifying, predicting and analysing an intermediate class 36

between the Essential (E) and Not Essential (NE) genes. Among the multi-source data 37

used to predict the EGs, we found the best attributes combination to capture the 38

essentiality. We demonstrated that the additional class of genes we defined as “almost 39

Essential” shows differences in these attributes from the E and NE genes. We believe 40

that investigating the context-specificity and the dynamism of essentiality is particularly 41

relevant to unravelling crucial insights into biological mechanisms and suggesting new 42

candidates for precision medicine. 43
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Fig 1. Schematic illustration of the HELP framework. HELP can be applied to
each desired context (e.g. tissue, disease or the entire organism in the case of common
EGs). The context guides the selection of gene knockout experiments and the collection
of omics data and PPI. The CRISPR effect scores are used to derive the essentiality
labels through an unsupervised thresholding approach. The omics and PPI embedding
features are the input to train the machine learning prediction model. * Image from
https://commons.wikimedia.org/wiki/File:Human_body_silhouette.svg.

Introduction 44

Identifying essential genes (EGs) is challenging and involves multiple disciplines and 45

research areas. EGs are generally defined as necessary for the growth and survival of 46

any organism or cell. The identification of essential genes was initially a prerogative of 47

synthetic biology concerning the definition of the minimal genome [1]. In particular, 48

EGs were considered those that cannot be removed or silenced from a genome without 49

provoking a deleterious phenotype, reducing the organism’s viability or fitness. 50

Technological advancement, on the one hand, and the clear potentialities emerging from 51

EG research, on the other hand, led to the experimental scaling from microorganisms to 52

more complex organisms, including humans. The accumulation of data and biological 53

insights made the gene essentiality a key concept of genetics, with implications ranging 54

from basic research to evolutionary, systems biology, and precision medicine [2]. Still, 55

the definition is critical, as the term “essential" requires a specific contextualisation. In 56

this scenario, a crucial role is played by the conditions in which the experimental 57

procedures for the EGs recognition are performed. EGs are commonly identified 58

through in vitro experiments on cell lines aimed at deleting the gene of interest and 59

observing the effects on the phenotype. The more deleterious the phenotype, the more 60

essential the gene. Single gene deletion, antisense RNA, transposon mutagenesis and 61

CRISPR-Cas9 are the most used techniques. The latter is considered the state-of-the-art 62

method for simplicity and efficiency [3]. At a genome-wide level, these procedures must 63

be performed massively, becoming complex, costly, labour- and time-intensive. 64

Computational methods to support the experimental approaches, minimising the costs 65

and overcoming limitations related to the availability of in vitro models, are urgently 66

needed. Approaches based on Machine Learning (ML) allow the generation of predictive 67

models based on features coming from multi-modal, multi-source and multi-omics data, 68

an aspect of primary importance in the era of precision medicine and the need for 69

procedures able to capture context-specificity. The gene essentiality prediction is usually 70

treated as a supervised classification problem, where the model is trained by using 71

several characteristics of genes that are a priori labelled as Essential (E) or Not 72
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Essential (NE) [4, 5]. An efficient model requires both consistent data and labels. Along 73

with the biological and genetic features that can capture the gene essentiality, a set of 74

information can be derived from networks representing the interactions of biological 75

factors. The information contained in these systems can be learnt unsupervised through 76

Deep Learning (DL) techniques [6–8]. The network primarily used in the context of EGs 77

prediction is the Protein-Protein Interaction (PPI) network, describing the physical 78

connections among proteins. According to the centrality-lethality rule, the more central 79

a gene, or its product, the higher its probability of being essential [9]. While the 80

massive experiments on multiple cell lines and conditions evidenced that the essentiality 81

of a gene is strongly dependent on the context and that gene essentiality is neither a 82

binary nor a static property [10,11], the computational approaches proposed seem to 83

ignore these fundamental aspects, relying on a binary classification of organism-wide 84

EGs. Besides those that are considered commonly essential (precisely defined common 85

EGs), as essential to all or almost all contexts, and therefore involved in the vitality and 86

reproduction of all the cells, some genes are essential only in specific contexts, where the 87

context is given by the genetic and/or environmental background. In this scenario, the 88

context can be meant as a tissue, a disease or a specific condition, and the genes are 89

defined as context-specific EGs. The paper by Larrimore and Rancati [10] perfectly 90

summarises this concept with a clear graphic explanation. Rancati et al. [11] give some 91

examples of the potential therapeutic usage of this information for drug targeting and 92

disease therapies. In a disease like cancer, where the cells reprogram themselves, the 93

essentiality is expressed differently between healthy and disease conditions. Identifying 94

and targeting these differentially essential genes would mean hitting the cancerous cells 95

avoiding the healthy ones. Although the most investigated, cancer is not the only 96

disease for which the individuation and characterisation of EGs is of great 97

interest [12,13]. A crucial issue concerning the prediction of EGs is the labelling process. 98

In most cases, the annotation of human E genes is retrieved from dedicated databases. 99

An important resource is the Online GEne Essentiality (OGEE) database [2], which 100

provides both organism- and tissue-level data and the relative lists of EGs. The labels 101

derive from gene knockout experiments that produce scores reflecting cell fitness in the 102

wake of the deletion of a specific gene. However, a pre-compiled list represents a 103

limitation for context-specificity where the context of interest can include or exclude 104

some experiments. Furthermore, the update of these databases is often slower than the 105

publishing of new experimental data. Beyond databases, some tools for identifying EGs 106

based on gene deletion scores have been developed [14]. 107

To address the aspects mentioned above, we present HELP (Human Gene 108

Essentiality Labelling & Prediction), a computational framework for common and 109

context-specific EGs prediction that treats both the labelling and classification tasks. 110

HELP, schematically described in Fig 1, computes the labelling of genes as E/NE 111

through an unsupervised approach. For the validation of the labelling algorithm applied 112

to common EGs we exploited some reference sets (CENtools [15], Behan2019 [16], 113

Hart2017 [17], and Sharma2020 [15]): we evaluated the overlaps of HELP-based cEGs 114

labels with these sets. For the validation of HELP labelling applied to context-specific 115

EGs, due to the lack of similar reference sets, we could only validate HELP-labelled 116

csEGs by evaluating their overlaps with other labelling sets, such as those obtained 117

by [14] and by OGEE in the contexts object of the study. For the development of csEG 118

prediction models, we collected multi-source genetic features and the embedding 119

extracted from human and tissue-specific PPI networks by a DL approach to investigate 120

what characterises and can predict EGs. We individuated the best combination of gene 121

attributes to capture the essentiality and demonstrated that integrating omics and 122

network features improves the prediction performance. Finally, we exploited this flexible 123

labelling method to explore the existence of essentiality shades. 124
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Materials and methods 125

Labelling 126

The HELP framework labels genes based on the scores derived from gene knockout 127

experiments. In particular, we used the scores reported in the Gene Effect file (DepMap 128

v. 23Q4; https://depmap.org/portal), derived from the CRISPR knockout screens 129

published by Broad’s Achilles and Sanger’s SCORE projects. As described in DepMap, 130

negative scores imply inhibition of cell growth and/or death following gene knockout. 131

Through the labelling step, HELP identifies common EGs (cEGs), context-specific EGs 132

(csEGs) and uncommon context-specific EGs (ucsEGs), where the context (e.g. tissue or 133

disease) is a user-defined parameter. 134

The methodology for identifying csEGs is the core of the labelling approach. For a 135

chosen context, it consists in 136

1. selecting the knockout scores of the cell lines involved in the context, 137

2. for each cell line, automatically binarising the knockout scores to obtain E/NE cell 138

line-dependent labels for each gene and 139

3. for each gene, assigning it the final E/NE label obtained as the mode of its cell 140

line-dependent labels. 141

The selection in step 1 is obtained based on the annotations provided with the data, 142

mapping each context to a subset of cell lines related to it. The binarisation in step 2 is 143

obtained by thresholding the knockout scores, where the threshold is automatically 144

determined by minimising intra-class intensity variance, or equivalently, by maximising 145

inter-class variance, based on the Otsu method [18]; genes having scores lower/higher 146

than the threshold are assigned an E/NE cell line-dependent label. For the computation 147

of the mode in step 3, ambiguous cases (i.e. genes assigned an equal number of E/NE 148

cell line-dependent labels) are solved by assigning NE as the final gene label. 149

Even though the HELP framework has been conceived focusing on 150

context-specificity, it can also be adopted for identifying cEGs. To this end, our 151

methodology consists of identifying csEGs for all the tissue contexts covered by the 152

knockout data (using the above-described procedure) and assigning each gene the label 153

obtained as the mode of its tissue-dependent labels. This strategy avoids the bias due to 154

the different number of cell lines per tissue. Again, ambiguous cases in the mode 155

computation are solved by assigning genes to the NE class. 156

Finally, as csEGs contain all the genes essential in the specific context, they 157

implicitly include cEGs, which are therefore subtracted to obtain the very specific genes 158

that we call ucsEGs. 159

In the experiments, we focused on two case studies, one concerning tissue-specific 160

contexts and the other a disease-specific context, to extrapolate the differences between 161

lung cancer subtypes. Moreover, as a pre-processing step, we filtered the CRISPR data 162

by eliminating tissues having too few cell lines (<10) and genes having too many 163

missing values across all cell lines (>95%). 164

Prediction model 165

Training data 166

PPI embedding features. The human PPI network was downloaded from the 167

STRING database v.13 [19]; we filtered out connections with a combined score below 168

0.5 to reduce false positive interactions. Tissue-specific PPIs were downloaded from the 169

Integrated Interaction Database (IID) [20]. The edges of the IID human PPI are 170
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enriched with several annotations, including the tissue for which the interaction is 171

reported and/or predicted. Filtering the PPI by tissue, we obtained Kidney-, Lung- and 172

Brain-specific PPI networks of 19314 nodes/1110251 edges, 19334 nodes/1111550 edges 173

and 19322 nodes/1122029 edges, respectively. Topological attributes of the PPIs were 174

extracted using the node2vec algorithm [21]. It learns node embeddings, i.e. compact 175

but informative vector-based representations of network nodes, by using the network 176

topology as learning paths and maximising a neighbourhood-preserving objective 177

function. The approach is flexible because the core of the embedding mechanism is a 178

skipgram neural model [22] trained on simulated random walks and biased to allow 179

different definitions of node neighbourhoods. 180

Multi-omics features. To achieve the prediction task and investigate the 181

characteristics descriptive of essentiality, we collected generic and context-specific 182

genetic attributes from several sources. We generated Kidney (3331), Lung (3330) and 183

Brain (3330) numeric features regarding genomic, transcriptomic, epigenetic, functional, 184

evolutionary and disease-related characteristics, summarised and detailed in Table S.1. 185

For the organism-wide context (from now on referred to as Human) and prediction of 186

cEGs the multi-omics features were 3323. 187

Structural information was represented by attributes such as “Gene length", “GC 188

content", and “Transcript counts". 189

Four gene expression-related attributes were considered: “GTEX_*" (*= Kidney, 190

Lung, Brain or Human), median-normalised gene expression values in the tissue (for 191

Kidney, both medulla and cortex have been considered; for Human the median over all 192

the tissues has been calculated) from GTEX portal [23]; “UP_tissue", the number of 193

tissues in which the query gene has been found expressed as annotated in DAVID [24]; 194

“OncoDB_expression", mean of the log2Fold-Change values as results of the differential 195

expression analysis of three renal cancer (KIRC, KIRP, KIRC), two lung cancer (LUAD, 196

LUSC) and one brain cancer (GBM) molecular subtypes vs normal samples [25]. Only 197

genes with adjusted p-value Æ0.05 were considered; “HPA_*” (*= Kidney, Lung, Brain 198

or Human), normalised transcript expression values summarised by genes from 199

RNA-sequencing experiments (for Human the median over all the tissues has been 200

calculated) [26]. 201

Functional characteristics were retrieved from Gene Ontology (GO), KEGG and 202

REACTOME annotations. To convert the textual annotations into numerical attributes, 203

for each query gene, we calculated the number of GO-Molecular Functions (“GO-MF”), 204

GO-Biological Processes (“GO-BP”), GO-Cellular Components (“GO-CC”), KEGG 205

(“KEGG”) and REACTOME (“REACTOME”) annotations. Attributes concerning 206

protein sub-cellular localisation were also collected as confidence scores assigned to each 207

of the 3305 GO-CC terms retrieved (“CCcfs”) from COMPARTMENTS [27]. Each term 208

constitutes a single attribute. 209

As EGs are genes strongly involved in physical and functional interactions, we 210

considered two interactions-based attributes: “BIOGRID”, the number of interactions 211

annotated for each query gene [28], and “UCSC_TFBS”, the count of predicted 212

transcription factors binding sites (TFBSs) from the UCSC TFBS. 213

EGs and their functions are reported to be highly conserved. We added the number 214

of orthologs for each query gene as a measure of conservation (“Orthologs count”), 215

retrieved from [29]. 216

In the context of cancer, EGs strongly overlap with cancer-driver genes, in which 217

genetic mutations determining uncontrolled cellular growth occur with the highest 218

frequency. For this reason, we collected cancer-specific data from DriverDBv3, which 219

provides three types of driver sets according to the kind of alteration identified through 220

multiple dedicated bioinformatics algorithms [30]. We counted, for each query gene, the 221
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times in which it is predicted as a Mutation driver (“Driver_genes_MUT”), a Copy 222

Number Variation driver (“Driver_genes_CNV”) or a Methylation driver 223

(“Driver_genes_MET”) in all cancers and then specifically for renal (KIRCH, KIRP, 224

KICH), lung (LUAD, LUSC) and brain (GBM, LGG) cancer subtypes. To characterise 225

the genes according to their association with human diseases beyond cancer, we added 226

the attribute “Gene-Disease association”, in which the counts of these associations are 227

reported as annotated in DisGeNet [31]. 228

Features’ sets. The features described in the previous paragraph and those extracted 229

through graph embedding were organised into three sets to be evaluated in the 230

downstream experiments: 231

Bio: Kidney - 28 attributes, LungÎBrain - 25 attributes, Human - 18 attributes 232

(consisting of all the features described in Table S.1 except “CCcfs” ); 233

CCcfs: 3305 attributes (see Function and Localisation features in Table S.1); 234

N2V: 128 attributes, consisting of the node embeddings extracted as described in 235

Section PPI embedding features. 236

Feature data pre-processing. Gene feature data were pre-processed by removing 237

attributes having constant values. In the case of the Kidney context, we found two 238

attributes with constant values in the Bio set (“Driver_genes_CNV (KICH)”, 239

“Driver_genes_MET (KICH)”), which are context-specific and related to tumour 240

subtypes. In the case of the Lung context, instead, none of the Bio attributes was 241

constant, while for Brain two attributes were removed as constant 242

(“Driver_genes_MET_GBM”, “Driver_genes_MET_LGG”). For Human, three 243

attributes with constant values were found in the CCcfs set (“Integral component of 244

endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane”, 245

“Intrinsic component of endoplasmic reticulum-Golgi intermediate compartment 246

(ERGIC) membrane”, “Pentameric IgM immunoglobulin complex”). In addition, before 247

the prediction model training, all feature sets except the N2V set were normalised using 248

the z-score technique. 249

The meta-model classifier 250

We designed a new machine learning method [32], named Splitting Voting Ensemble 251

(SVE), consisting of a soft-voting ensemble of n classifiers exploiting a splitting strategy 252

on the training dataset based on labelled samples distribution (see Fig 2). The proposed 253

method can be considered a meta-learning algorithm since it uses another learning 254

method as a base model for all members of the ensemble to combine their predictions. 255

This algorithm was designed and developed to address the strong class unbalancing 256

inherent to the EGs prediction, although its applicability goes beyond the specific 257

domain and can be extended generically to improve the classification performance in 258

highly unbalanced datasets. In the following, we describe the logic and algorithmic 259

operation of the proposed method. Before training, the method partitions the set of 260

majority class samples into n parts, and it trains each classifier on a subset of training 261

data composed of one of these parts along with the entire set of minority class training 262

samples (Fig 2A). During testing on unseen data, each classifier of the ensemble 263

produces a probability for the label prediction; we compute the final probability 264

response of the ensemble as the average of the probabilities of the n voting classifiers 265

(Fig 2B). The number n of classifiers is chosen based on the class data distribution of 266

training data to train each of the n classifiers on a balanced subset of data. 267
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For the current study, we first conducted preliminary tests to select the optimal base 268

model of our ensemble (see section M.1 in Supplementary Material document and Table 269

S.2). By using our method with a base classifier like LGBM, Random Forests [33] or 270

AdaBoost [34], we outperform existing models in the PyCaret library in terms of BA 271

and Sensitivity. The top-ranked method is our splitting voting ensemble of LGBM 272

classifiers [35]. These experiments enforce our ensemble design of estimator acting on a 273

split of the original data, which encompasses strong unbalancing of labelled samples. 274

The counterpart of choosing sveLGBM is time costs: we pay a timing overhead in 275

executing an ensemble of LGBM classifiers, each one of them being by itself ensembles 276

of decision trees. In our opinion, this cost is reasonable for the gain obtained in 277

performance. Consequentially to these results, we named sveLGBM the implementation 278

of our meta-model as an ensemble of LGBM classifiers used in the current work. The 279

hyper-parameter configurations for each classification problem were defined through 280

optimisation tests (see section M.2 in Supplementary Material document and Table S.3) 281

and the results discussed in section Validation of cEG and csEG prediction .

(A) (B)
Fig 2. Splitting voting ensemble of classifiers: (A) In the training stage, the
majority class samples are partitioned into n slices, each one coupled with the minority
class samples to form datasets as inputs for the n trained models. (B) In the testing
stage, each new sample is predicted by each of the n classifiers, and the final probability
response is the average over the n partial responses.

282

Results 283

The purpose of the experimental study we conducted was threefold: 1) to demonstrate 284

the effectiveness of HELP labelling in identifying common EGs (cEGs), context-specific 285

EGs (csEGs) and uncommon context-specific EGs (ucsEGs); (see sections Validation of 286

common EGs (cEG) identification and Validation of context-specific EGs (csEG) and 287

uncommon csEGs (ucsEG) identification ); 2) to develop and validate a supervised 288

classifier to predict cEGs and csEGs on the basis of an optimal set of gene attributes 289

representative of gene essentiality (see section Validation of cEG and csEG prediction ); 290

3) to investigate the hypothesis of a class of genes that show an intermediate behaviour 291

between E and NE, providing proofs through the computational approach and biological 292

interpretation of the results (see section Investigating almost essentiality). 293
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(A)

(B) (C)

Fig 3. Comparison of HELP labelling with reference sets of cEGs. (A)
Diagram representing the intersection of E genes labelled by HELP with reference sets
of cEGs. Each row represents a different set of E genes. The last row reports the
number of genes that result from the intersections. The last column on the right
indicates the number of E genes for each set, with the dark grey shadow representing
the corresponding histogram. (B) ADaM, FiPer, HELP and OGEE cEGs overlap with
the reference sets of cEGs. In the legend, the number of cEGs identified by each
approach is reported in brackets. (C) ADaM, FiPer, HELP and OGEE cEGs false
positives, namely the genes not overlapping with the reference sets of cEGs. In the
legend, the number of cEGs identified by each approach is reported in brackets.

Validation of common EGs (cEG) identification 294

The HELP framework has been thought and created for identifying and predicting 295

specifically the csEGs, even if it also allows the identification of the cEGs. To prove the 296

effectiveness of the unsupervised HELP labelling, we intersected the cEGs computed as 297

described in Section Labelling with some sets used as reference in [14] (Fig 3A). As the 298

diagram shows, the overlap among all the sets contains 324 genes. The HELP labelling 299

agrees with CENtools [15] for 970 genes, Behan2019 [16] for 491, Hart2017 [17] for 584, 300

and Sharma2020 [15] for 999 cEGs. The best overlap was therefore achieved in the case 301

of the more recent sets of cEGs, i.e. CENtools and Sharma2020. 302

To further demonstrate the reliability of cEGs identification by HELP, we compared 303

it with the approaches proposed by [14], implemented into the CoRe R package, and the 304

list of cEGs provided by the OGEE database. The two methods of the CoRe package, 305

the supervised Adaptive Daisy Model (ADaM) and the unsupervised Fitness Percentile 306

(FiPer), were used on the CRISPR data matrix filtered on columns (cell lines) and rows 307

(genes) as explained above. In the case of ADaM, as the method requires a binarised 308

matrix, we first converted the input to binary scores by setting the threshold suggested 309

in the package documentation (Æ≠0.5 = E), then used the function 310

“CoRe.PanCancer_ADaM”. In the case of FiPer, we derived a consensus set of predicted 311

E genes by intersecting the output of the three less stringent FiPer variants (Fixed, 312

ROC-AUC, Slope). The comparison was performed through the evaluation of the 313
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(A) Kidney

93.01%
6.99%

NE=16678
E=1235

(B) Lung (C) Brain

93.11%
6.89%

NE=16696
E=1235 93.05%

6.95%

NE=16685
E=1246

(D) Lung Neuroendocrine Tumour (E) Non-Small-Cell Lung Cancer

93.30%
6.70%

NE=16596
E=1191 93.08%

6.92%

NE=16690
E=1241

Fig 4. Distribution of the csEGs according to HELP labelling. (A) Kidney, (B)
Lung, and (C) Brain tissues; (D) Lung Neuroendocrine Tumour and (E) Non-Small-Cell
Lung Cancer. The count (in the legend) and percentage (inside the pies) of labelled
genes are reported.

overlaps with the reference sets of cEGs mentioned above (Fig 3B). The OGEE list 314

provided the greatest overlap with all four sets. OGEE considers common genes 315

showing essentiality in at least 50% of cell lines. Such a low threshold determines a high 316

number of cEGS (1585), thus including many EGs of the reference sets but with a high 317

number of false positives (Fig 3C). The results by FiPer and ADaM confirmed what was 318

commented by their authors regarding the stringency of the two methods (1114 ADaM, 319

1430 FiPer). The stringency grade influences the risk of erroneously identifying EGs. 320

Indeed, FiPer detected much fewer cEGs than OGEE but with comparable false 321

positives. Adam, instead, showed the best results in terms of false positives but with 322

very low overlap percentages. In this scenario, HELP seems to provide the best 323

compromise between the two evaluations. In two cases (Sharma2020, CENtools), it 324

returned the lowest number of false positives and was the second-best in terms of 325

overlap percentages. 326

Validation of context-specific EGs (csEG) and uncommon csEGs 327

(ucsEG) identification 328

To demonstrate the effectiveness and usefulness of HELP, we applied it to two different 329

case studies: tissue- and disease-specific EGs. 330

Case study 1: tissue-specific EGs 331

We tested HELP in three tissue contexts: Lung, Kidney and Brain. The distributions 332

obtained for the classes E/NE in the three contexts are reported in Fig 4A- 4C. The E 333

genes in all three cases are almost 7%, in accordance with the 10% reported in the 334

literature. 335
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Although a standard validation is not possible due to the lack of experimentally 336

validated context-specific EGs, to evaluate the ability to identify the csEGs, we 337

compared the obtained results with tissue-specific EGs identified by the CoRe’s 338

methods and those annotated in the OGEE database. To apply the ADaM method by 339

CoRe, we used the “CoRe.CS_ADaM" function after binarising the input matrix, while 340

in the case of FiPer, we just selected the cell lines of the tissue of interest from the score 341

matrix and considered the E genes from the consensus set (Fixed, ROC-AUC, Slope). 342

Looking at the number of csEGs obtained (Fig. 5), the most stringent sets are those 343

provided by OGEE, even if, as already observed for cEGs, the threshold on cell lines for 344

considering a gene essential in a tissue is 50%. The higher stringency of ADaM 345

compared to FiPer is not confirmed in the case of csEGs. The intersection sets between 346

all the csEGs included 742, 830 and 993 genes for Kidney, Lung and Brain, respectively. 347

The highest overlaps are between HELP and ADaM in the case of Kidney (1192 genes) 348

and between ADaM and FiPer in the case of Lung and Brain (1271 and 1292, 349

respectively). In the Kidney and Brain contexts, FiPer showed the highest number of 350

genes not shared with the others (79 and 76, respectively), while for Lung, ADaM 351

provided the largest set of "unique" genes (200). 352

353

In our opinion, we cannot really talk about csEGs if we do not exclude from their 354

computation the genes identified as cEGs, i.e. considering what we named ucsEGs. In 355

the three tissues considered in this work, using the HELP framework, we obtained 28, 356

60 and 42 ucsEGs for Lung, Kidney and Brain, respectively. The difference in 357

numerosity could be ascribed partially to the different number of cell lines in the input 358

data, making the results of the context with more data (i.e. Lung) more stringent, but 359

likely also to the different nature of the tissues, where kidney and brain are 360

histologically more heterogeneous. The enrichment analysis of the three sets (Fig S.1) 361

highlighted that, besides the context-specificity, the EGs maintain their identity 362

characteristics, such as the main localisation in intracellular organelles, e.g. nucleus and 363

mitochondrion, (GO Component “Intracellular membrane bounded organelle", 364

“Intracellular organelle lumen"), or their involvement in growth functions (e.g. “Signal 365

Transduction", “Cell cycle", “Cellular component biogenesis"). Most of them (41/60 in 366

the Kidney and 22/28 in the Lung) contain the keyword “phosphoprotein" in their 367

UniProt description, where protein phosphorylation is the key process to transmit 368

extracellular and intracellular signals. Two genes were shared among the three tissues. 369

Kidney and Brain showed the highest sharing, with seventeen genes in common. The 370

results suggested that, besides the subtraction of the cEGs, some genes can be essential 371

in different contexts and, then, rarely unique to a single one. 372

Case study 2: disease-specific EGs 373

To demonstrate the potential use of HELP as a tool for identifying candidate disease 374

biomarkers, we applied HELP labelling to individuate disease-specific EGs in two lung 375

cancer subtypes, Non-Small-Cell Lung Cancer (NSCLC) and Lung Neuroendocrine 376

Tumour (NET), that account for 85% and 15% of lung cancer, respectively. The 377

distributions of the classes E/NE in the two contexts are reported in Fig 4D- 4E. The 378

labelling was performed using the same procedures described for the tissue contexts, 379

and the results were evaluated by comparing them with CoRe’s methods. The NET- 380

and NSCLC-specific EGs were obtained by subtracting the common EGs and 381

intersecting the ucsEGs of the two subtypes and those of the Lung (Fig S.2). The cEGs 382

subtracted werecalculated by the mode of the tissue-specific labels. The idea is that the 383

list of cEGs, namely the organism-wide EGs, must be unique. In our approach, the 384

different tissues with different cell populations were considered as they are what make 385

up the human organism. The three methods gave rise to different numbers of NET- and 386
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(A)

(B)

(C)

Fig 5. Comparison of HELP labelling with CoRe’s and OGEE csEGs. (A)
Kidney, (B) Lung and (C) Brain tissue. Diagram representing E genes intersections
among ADaM, FiPer, OGEE and HELP labelling. Each row represents the set of E
genes for a labelling. The last row reports the number of genes resulting from the
intersections. The last column on the right indicates the number of E genes for each set,
with the dark grey shadow representing the corresponding histogram.

NSCLC-specific EGs (8, 6 and 23 NSCLC-specific EGs, 43, 22 and 97 NET-specific EGs 387

by HELP, ADaM and FiPer, respectively). FiPer was the less stringent, although the 388

number of ucsEGs before the intersection between the two diseases was not the highest 389

(last column of the diagram in Fig S.2); on the contrary, HELP was the most stringent 390

both before and after the intersection. The NET-specific EGs identified by HELP 391

enriched pathways related to cancer cells’ progression and drug resistance strategies 392

involving cellular respiration and energy production (Fig S.3) and that are particularly 393

stressed in NETs [36]. The eight NSCLC-specific EGs were too few to perform an 394

enrichment analysis. Still, we observed that they are all significantly differentially 395

expressed when comparing the two NSCLC subtypes (LUAD and LUSC) with the 396

normal samples (Fig S.4). 397

Validation of cEG and csEG prediction 398

The prediction of cEGs and csEGs has been validated by 5-fold stratified 399

cross-validation. Each cross-validation round, with a different random partition of the 400
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Fig 6. Classification performance based onHELP labelling. Box plots of the
performance metrics obtained for classification “E vs NE” using different sets of features
on Kidney, Lung, Brain tissues and Human.

validation folds, was iterated ten times. In each validation step of the iteration, all 401

genes in the dataset were predicted in such a way that we were able to evaluate means 402

and standard deviations of single gene predictions as well as of the collected 403

performance metrics (described in Table S.4). 404

Features set for predicting EGs. We reported the prediction results (Fig 6 and 405

Table S.5) in terms of several metrics for evaluating the classification performance to 406

allow easy comparisons, although aware that the most reliable and informative one is 407

the Balanced Accuracy (BA), which in binary classification is the arithmetic mean of 408

Sensitivity and Specificity (Table S.4), recommended for its superior robustness to 409

imbalance and its applicability to both binary and multi-class prediction [37]. The 410

evaluation of each set alone showed that we obtained adequate results in all the cases. 411

The highest performance was in charge of CCcfs and the lowest of Bio attributes. 412

Despite this, the Bio set is the most varying one in terms of gene characteristics and 413

contains the context-specific attributes necessary for the prediction of ucsEGs. By 414

combining the CCcfs and Bio attributes, we noticeably improved the performance. The 415

N2V set containing the PPI networks’ embedding-derived topological attributes is also a 416

context-specific attribute and alone gave a good performance. Its addition to the 417

Bio+CCcfs set determined a slight improvement in the performance for all the tissue 418

cases (Kidney - BA=0.892±0.009; Lung - BA=0.895±0.009; Brain - BA=0.895±0.008), 419

a modest improvement Sensitivity (Kidney: 0.878±0.005; Lung: 0.879±0.005; Brain: 420

0.881±0.007), and a higher improvement in Specificity (Kidney: 0.905±0.019; Lung: 421

0.910±0.018; Brain: 0.910±0.018). This result confirmed the contribution of N2V 422

attributes specifically to the context-specific prediction. We then decided to consider 423

the combination including all the attributes as the best-performing set. 424

Prediction performance on ucsEGs. To evaluate the ability of the model to 425

precisely predict the csEGs and ucsEGs, we calculated the True Positive Rates (TPRs) 426

for both (Fig 7). ucsEGs of the three contexts and their intersections are shown in 427

Fig 7A, colored according to the prediction results. The TPR for csEGs (Fig 7B) 428

corresponds to the Sensitivity, whose mean is reported in Table S.5, and was 429

particularly high for all tissue cases. The TPRs for ucsEGs (Fig 7B) were instead lower 430

due to the strong specificity of these small sets of genes. Nevertheless, achieving 80% 431

July 29, 2024 12/42

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2024. ; https://doi.org/10.1101/2024.04.16.589691doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.16.589691
http://creativecommons.org/licenses/by/4.0/


(Kidney) and 75% (Lung) could be considered a significant outcome, suggesting 432

promising predictive potential. In the case of the Brain, we got a TPR of 66%. 433

(A) (B)

Fig 7. ucsEGs prediction. (A) Diagram representing the intersection of ucsEGs of
Kidney, Lung and Brain tissues. The ucsEGs for each tissue are computed by
subtracting the cEGs calculated over all tissues from csEGs. ucsEGs wrongly predicted
are highlighted in red. Only one gene for Kidney and one for Lung (grey-colored) were
not predicted as no attributes were retrieved for them. (B) TPRs of prediction of
ucsEGs and csEGs computed in one cross-validation round using the optimal features
set Bio+CCcfs+N2V.

Comparison with other predictors. Although finding similar works in the 434

literature to compare our results was difficult due to our focus on context-specificity, we 435

considered some of them to generally evaluate the goodness of the measures and 436

consolidate the effectiveness of HELP. In our opinion, the approaches cannot be split by 437

separating the model from the attributes, as these latter are a crucial part of the 438

prediction power. For this reason, the comparisons have been conducted using the 439

features proposed by the related works, and only the labels were uniform. In [38], the 440

authors proposed an ML method across six model eukaryotes, called CLEARER, 441

designed to predict cellular essential genes (CEG) and organismal essential gene (OEG), 442

where essentiality information was collected from the OGEE [39] and DEG [40] 443

databases. We compared the two methods (see section M.3) for the prediction of cEGs, 444

using the OGEE+DEG annotations exploited by CLEARER’s authors as labels. We 445

built the HELP prediction model (sveLGBM) by using as training data the 446

Bio+CCcfs+N2V input features for the Human context, while we built the CLEARER 447

prediction model (Random Forests) by using gene attributes and feature selection 448

method (Lasso) as described in their work [38]. The comparison of performances (see 449

Table S.6) proved the superiority of sveLGBM over CLEARER’s approach considering 450

BA, ROC-AUC and Sensitivity metrics. In particular, lower Sensitivity means a low 451

percentage of the E gene is correctly predicted. The cost to pay for a higher recall on 452

positive samples is a lower Specificity. 453

DeepHE [6], which predicts Human EGs using labels from the DEG database [40] 454

and integrating features derived from sequence data and PPI embedding, declared a 455
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ROC-AUC=0.941. EPGAT [7], a method based on Graph Attention Networks, achieved 456

a ROC-AUC=0.915±0.0034 predicting Human EGs using labels from the OGEE 457

database [39] to supervise the training of the GAT models and using as training data a 458

combination of PPI and sub-localisation annotations. The three methods, i.e., 459

sveLGBM, DeepHE, and EPGAT, were compared (see section M.4) the prediction of 460

both cEGs and csEGs. Given the adaptation of the two literature tools to the 461

context-specificity domain, we decided to perform the comparison using the HELP 462

labelling in the three tissue contexts (csEGs) and Human (cEGs). The performance 463

comparison results are reported in Table S.7 of the Supplementary Material document. 464

They showed the superiority of sveLGBM in all the first case studies and almost all the 465

metrics measurements. The optimal hyper-parameters setting is reported in Table S.8. 466

In [41], the authors proposed a model based exclusively on human PPI network 467

embedding and reported a BA lower than ours (BA=0.783). Unfortunately, we could 468

not investigate further the performance comparison due to the unavailability of code for 469

this method. 470

75.05%

6.99%
17.96%

sNE=13457
E=1235
aE=3221

Fig 8. Classification performance on Kidney based on the three-class HELP
labelling. (A) Three-class labelling distribution for Kidney csEGs, and (B) Box plots
of the performance metrics obtained for classification of “E vs sNE”, “E vs aE”, and
“aE vs sNE” using Bio+CCcfs+N2V features.

Investigating almost essentiality 471

One of the aims of the current work was to investigate the hypothesis of an intermediate 472

class between E and NE. To this extent, we subdivided the class NE into two further 473

classes, named aE (almost Essential) and sNE (strongly Not Essential), using the same 474

procedure described in Section Labelling. Briefly, we applied Otsu’s thresholding to the 475

CRISPR scores of the NE genes for each cell line and then computed the tissue-specific 476

gene labels as the mode of the aE or sNE labels obtained for the cell lines belonging to 477

the tissue. 478

We analysed the classification performance on the three binary problems “E vs sNE”, 479

“E vs aE”, and “aE vs sNE” on Kidney tissue by using the optimal input features 480

configuration Bio+CCcfs+N2V (Fig 8; Table S.9). As expected, discriminating E from 481

sNE genes resulted in better performance (BA=0.915±0.007 ) than considering NE all 482

the genes that are not E (BA=0.890±0.009 see Table S.5). The most challenging 483

problem was, as expected, the separation of the aE class from the other two (Fig 8; 484

second and third column of Table S.9 ), given the intermediate nature of these genes. 485
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The separation of E and aE genes, although not optimal like E vs sNE, was achieved 486

with a BA=0.813±0.012. A more pronounced reduction of the performance was 487

observed addressing the “aE vs sNE” problem (BA=0.687±0.010). 488

To get valuable insights about the three classes of genes, particularly the 489

intermediate aE, we investigated their profiles, analysing principally the attributes that 490

contribute to their discrimination (Bio+CCcfs+N2V). These genes showed a different 491

localisation in the PPI network (Fig 9, left side). As the layout used to represent the 492

networks is force-directed and tends to draw nodes with greater centrality to more 493

central positions, the resulting figures strengthen the centrality-lethality rule. The E 494

genes (blue nodes) essentially colocalise at the centre of the network, the aE genes 495

(yellow nodes) mostly occupy the surrounding area, and the sNE genes (orange nodes) 496

are distributed all around, with a sort of radial pattern. Looking at the GO-CC terms 497

enrichment (Fig 9, right side), E genes mainly enriched the nuclear body, the aE genes 498

the mitochondrion and, to a lesser extent, the nucleus, and the sNE genes the plasma 499

membrane and intra- and extra-cellular transport systems (e.g. granule, lysosomes, 500

membrane rafts). Furthermore, it was interesting to notice that while E and aE genes 501

shared some terms, even with different ranking positions, none shared any term with 502

the sNE genes. It is also worth noting that the Bio attributes were all but one 503

statistically different between E and sNE genes, remarking their profound difference 504

(Fig S.5, S.6). Comparing the aE class with the other two, the situation did not change 505

basically; 15/18 generic attributes and all the context-specific attributes were 506

statistically different in the contrasts aE vs E and aE vs sNE, confirming the hypothesis 507

that the aE genes were not from the same population of the other two groups. Some 508

similarities were also present. E and aE genes, for example, showed comparable gene 509

lengths and Driver_Genes profiles, while aE and sNE showed analogous numbers of 510

GO-MF, GO-BP and KEGG annotations. aE and sNE genes were both extracted from 511

the larger NE group. To demonstrate that the differences observed were not due to an 512

implicit variability of NE genes, we extracted 100 random partitions of 3000 genes (the 513

approximative number of aE genes) from the sNE group. We compared them to the rest 514

of the sNE genes. Fig S.7A shows that rarely the differences were significant and, even 515

if so, the p-value indicating the significance level was always lower than the one 516

obtained when comparing aE. Furthermore, the same partition never shows significance 517

for more than 5 attributes (Fig S.7B), while aE was significantly different in all but 518

three. Moreover, dosing different percentages of aE mixed with sNE genes (to 3000 519

genes) and performing 10 iterations of the Wilcoxon test to compare the mean to the 520

rest of sNE genes for some attributes, we observed a trend of the p-values, the more the 521

percentage of aE genes in the partition, the lower the p-value (Fig S.7C). We enriched 522

the Gene Families (gf) and GO-BP to demonstrate further that aE genes represent a 523

distinct category. The intersection of the enriched terms for the three classes among the 524

three tissue contexts (Fig S.8A- S.8C; S.8E- S.8G) and among the three classes for the 525

same context (Fig S.8D, S.8H) showed a high overlapping and coherence of the 526

characteristics of the 3 classes of genes changing the context and a very poor 527

overlapping among the three classes, fixing the context. The gf and GO-BP terms 528

enriched confirmed what we observed for GO-CC enrichment, assigning roles and 529

involvement in nuclear, mitochondrial and cytoplasmic/membrane complexes and 530

processes to E, aE and sNE genes, respectively (Supplementary file 2). 531

Discussion 532

This work was conceived to address two of the main issues concerning csEGs 533

identification: labelling and prediction. The first regards the assignment of E/NE labels 534

using the data furnished by gene deletion experiments. The need to create personalised 535
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Fig 9. Cellular localisation of E, aE and sNE genes. The cellular sublocation of
the three classes of genes is shown through the human PPI network representation (left
side) and the top-ranked enriched GO-CC terms (right side) for the human context. E,
aE and sNE genes are highlighted in blue, yellow and orange, respectively, in both
graphics. In favour of visualisation, only the largest connected component of the
network is shown. Grey nodes are genes in the PPI not labelled by HELP since they are
not included in the experimental data. The network was plotted through Cytoscape
v3.10.1 [42]. The rank-plots (right-side) show the top 15 significant terms ordered by
gene count. The number was chosen because of fifteen significant terms enriched by
sNE genes. The number of genes enriching each term is in brackets. The connection
lines indicate the terms shared by the groups. The enrichment analysis was performed
using the enrichR package v3.2 [43]. The list of genes with annotation of the group is
reported in the Supplementary file 1.

contexts and the incessant updates of the experiments require a flexible labelling method 536

to apply to the knockout experimental scores. The second issue regards predicting those 537

labels by training ML methods with gene attributes from multi-source data. 538

We presented the HELP framework and demonstrated its effectiveness on 539

organism-wide context, three human tissues and two subtypes of lung cancer. We 540

applied an unsupervised thresholding method to derive both cEGS and csEGs from 541

CRISPR scores. The obtained labels were validated by comparing the resulting cEGS 542

with the CoRe’s methods, ADaM and FiPer, and with four reference sets of cEGs. The 543

overlap with these sets was particularly high, especially in the case of the most recent 544

ones (Fig 3). The results make HELP the best compromise between the overlap with 545

reference sets and false positive rates, with the advantage over FiPer being more 546

stringent and over ADaM being unsupervised. The identification of cEGs allows to 547

better capture the context specificity by subtracting from the csEGs the genes essential 548

in most contexts. This subtraction step gives rise to what we call ucsEGs. The 549

stringency is crucial to guarantee higher confidence when approaching the 550

context-specificity. The discrimination of the “essentiality” classes was performed by 551

training a prediction model through knowledge from multi-omics data and embedding a 552

context-specific PPI. As evident, the classification faces a strong unbalanced issue, 553

where the majority class can be 13 times bigger than the minority. This strongly affects 554

classification performance, resulting in high specificity and low sensitivity. To this 555

extent, we propose a new meta-learning model, namely Splitting Voting Ensemble 556

(SVE), which is based on a soft-voting ensemble of classifiers, each one trained on an 557

equal portion of the majority class set based plus the rest of the dataset where the 558

number of ensemble members was given by partitioning the majority class set based on 559

the data distribution. This approach reduced the unbalancing, still using the whole 560

dataset, in contrast to the subsampling, without duplicating data, as done by the 561
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oversampling, and without introducing synthetic data, as in the augmentation. The 562

best-performing configuration was given by combining two sets of features, Bio+CCcfs, 563

with the addition of the embedding features N2V for better addressing the 564

context-specificity. The Bio set contains a collection of generic and context-specific 565

functional and structural characteristics; the CCcfs set contains information on cellular 566

localisation and involvement in molecular complexes; the N2V set contains topological 567

information from the PPI, which can be context-specific. The feature importance 568

analysis highlighted that the Bio attributes concerning interactions ("BIOGRID"), 569

context-specific gene expression ("OncoDB expression", "HPA", "GTEX"), and some 570

physical ("Gene length", "GC content") and conservative ("Orthologs count") properties 571

are the most discriminative between E and NE (Fig S.9). Among the CCcfs annotations, 572

the most important are the involvements in spliceosomal and polymerase complexes, 573

properties of EGs, as suggested by the enrichment of gene families and biological 574

processes (Supplementary file 2). The localization in cellular compartments, nucleus, 575

mitochondrion, and membrane also showed high importance when considering the CCcfs 576

attributes. The model could correctly predict around 90% of csEGs and between 577

66%-80% of ucsEGs. This discrepancy was likely due to the inherent challenge in 578

modelling the context-specificity of EGs, stemming from their small number compared 579

to the csEGs and the limited availability of context-specific information characterising 580

them accurately. 581

Several recent papers discussing the characteristics of EGs [11,44] reveal that 582

essentiality is not a binary fixed but a flexible status depending on the genetic and 583

environmental contexts. The characteristics predictive of essentiality are quantitative 584

traits, as are the essentiality scores. In this scenario, it is reasonable to think that the 585

dividing line between essentiality and not is uncertain and that a gene essential in some 586

contexts likely keeps involvement in essential functions in others. In our previous works, 587

using a different labelling strategy based on a knowledge-driven subdivision of CRISPR 588

scores (CS), we identified the best configuration of E and NE genes by ML trials. We 589

achieved the best performance training a model on biological and embedding attributes 590

(CS0 (E) vs CS6-9 (NE): BA=0.84 [45, 46]). The investigation of an intermediate group 591

led us to consider possibly overcoming the dichotomic view of essentiality. The 592

experimental evidence we got, along with the above considerations, suggest the 593

existence of shades of “essentiality”, that, in the most simplistic view, can be 594

represented by a third class of “almost Essentials” (aE). Our prediction results 595

demonstrated that the attributes we collected for classifying the genes are a 596

quantitative reflection of the essentiality, given the performance of the classification and 597

the improvement we got when trying to classify the most extreme groups of genes, E 598

and sNE. This means that the more distant the knockout scores, the more our 599

attributes separate the genes. Most features in the Bio set have values statistically 600

different between aE and the other two groups, E and sNE (Figs S.5, S.6). Another 601

piece of evidence for considering aE as a distinct class is the analysis of these genes’ 602

functional and physical involvement. Different gene families (gf), biological processes 603

(GO-BP) and cellular localisation (GO-CC) are shown by the three classes of genes, 604

with few overlapping between E and aE (giving reason to the name "almost Essential") 605

and no overlapping between aE and sNE, although they derive from the same larger 606

group NE. Changing the context, the characteristics of the three classes are maintained 607

(Fig S.8). E genes mostly enriched the nucleus area (GO-CC), the ribosomal, 608

proteasome, polymerase families (gf), and the replication machinery (GO-BP), while aE 609

genes mostly enriched the mitochondrion (GO-CC), its proteins (gf) and processes 610

(GO-BP) (Supplementary File 2). This result highlights the promising role of the aE as 611

candidate biomarkers, as the mitochondria are considered not only powerhouses but also 612

dynamic regulators of life, death, proliferation, motion and stemness of cancer cells [47]. 613
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Moreover, this perfectly aligns with the role of mitochondria to fill the functional gap 614

between the nucleus and cytoplasmic organelles and the interconnection between their 615

components [48]. sNE genes, instead, enriched the plasma membrane and cellular 616

transportation systems (GO-CC), cell surface molecules (gf) and cell adhesion and 617

communication systems (GO-BP) (Supplementary File 2). The different localisation 618

was also evident by visualising the three groups in the PPI network, which seems to 619

reproduce the picture of a human cell, with the E genes localised in the network’s core, 620

aE in the surrounding area and sNE widely spread at the borders (Fig 9). Our recent 621

work demonstrated that integrating the PPI with a metabolic network to add a 622

functional centrality to the physical one, the contribution was totally in charge of the 623

PPI [46]. This can likely be explained by the fact that while the metabolic machinery 624

comprises several alternative paths to achieve a specific objective, the lack of a 625

component involved in many physical complexes and interactions is hard to tolerate. 626

A fair and complete examination of the proposed model requires a discussion of its 627

limitations. For HELP, most of them regard the context-specific approach since it is a 628

more unexplored topic. First of all, the lack of experimental validation for csEGs 629

automatically determines the absence of ground truth to validate the model besides the 630

labels produced by the workflow and the difficulty of comparing our method to others 631

without adapting the provided codes and data. The usability of HELP for 632

context-specific investigations is strictly related to data availability. As an example, the 633

main limitation of the labelling process is the availability of sufficient gene deletion 634

score data. The lower the number of cell lines, the less significant the mode 635

computation over a small sample size of partial labels. Public context-specific attributes 636

are generally limited, but HELP’s flexibility has been thought to manage custom data. 637

Some sources used in this paper that contributed to the results presented could not 638

contain data for some contexts and should be replaced by different sources. For 639

example, HPA and GTEX data must be considered as gene expression annotations that 640

are not necessarily linked to a specific source. The context-specific PPIs used to extract 641

gene features by deep learning in embedding vectors are built considering the gene 642

expression in the specific tissue based on experimental, orthology or prediction evidence 643

and not on the real physical interactions experimentally evaluated in the specific 644

context. This implicitly involves limits regarding the reliability of the physical 645

connections. Furthermore, retrieving a PPI for each specific context of interest is 646

impossible, but the user can choose to use the generic human PPI or the one that can 647

be considered closer to the case study. Currently, the prediction method does not use 648

feature selection techniques to reduce the input data size. The feature selection adopted 649

can be defined as knowledge-driven, as the attributes potentially predictive of the 650

essentiality have been collected by examining the literature on the topic. However, the 651

only high-sized feature set is CCcfs. The experiments we conducted on feature 652

importance (see Section M.5 in Supplementary Methods document) show that these 653

features taken all together provide the larger contribution to the classification, and this 654

is reinforced by the finding that the reduction of this feature set does not determine any 655

performance improvements but rather a degradation of 1-2 % in terms of average BA 656

(over ten iterations of the experiments). Of course, if we consider additional features not 657

included in the current study, feature selection might also represent a valid approach for 658

performance improvements. The prediction model sveLGBM, although outperforming, 659

is time costly: we pay a timing overhead in executing an ensemble of LGBM classifiers, 660

each one of them being by itself an ensemble of decision trees. In our opinion, this cost 661

is reasonable for the gain obtained in performance. 662

Despite the cited limitations, we strongly believe that the promising insights 663

extracted open the way to future work to investigate the essentiality shades and apply 664

HELP to precision medicine purposes. In this regard, we here demonstrated its 665
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application to a disease case study, identifying the EGs specific to two different lung 666

cancer subtypes, NSCLC and NET, that can represent ideal candidates for a precise 667

recognition and targeting of cancer cells. The stringency of HELP in considering 668

NSCLC and NET ucsEGs is particularly advantageous as a small number of candidates 669

are manageable and can benefit disease studies. Furthermore, the genes identified 670

showed some interesting traits: NET ucsEGs are involved in cellular respiration and 671

energy production (Fig S.3), mechanisms particularly associated with NETs [36], while 672

the eight NSCLC ucsEGs are all significantly differentially expressed comparing the two 673

NSCLC subtypes (LUAD and LUSC) with the normal samples (Fig S.4). The novelty of 674

HELP is also represented by the attributes used for EGs prediction. To the best of our 675

knowledge, and as demonstrated by the comparison we performed, most of the tools 676

aimed at predicting EGs use few and recurrent attributes, such as PPI, gene expression, 677

orthologs count, and sequence information. Although, in literature, some characteristics 678

that we used as attributes have been associated with EGs, they have never been used 679

for their classification (e.g. BIOGRID, UP_tissue, Driver genes, Gene-Disease 680

association, TFBs). In this scenario, the attributes "BIOGRID", "REACTOME", and 681

"UCSC_TFBS", which annotate the functional interactions of genes, the involvement in 682

pathways and the transcription factors binding site predictions, respectively, are among 683

those showing the highest scores of importance (Figure S.9). Investigating the 684

diversified attributes that predict these genes has suggested new insights about their 685

cellular localization and functions. Last but not least, we would like to highlight that 686

the two strategies of HELP, labelling and prediction, which are distinct even if 687

connectable, serve a double scope: the labelling, also considered an identification 688

method, can help to process and rationalise the experimental knock-out results and are 689

therefore strictly dependent on the experiments, while the ML and DL approaches can 690

help in establishing the essentiality traits to recognise essential genes in different 691

contexts, not only supporting but potentially substituting massive wet lab genome-wide 692

experiments, which are not void of technical biases [49]. The learning models designed 693

not only represent a valuable tool for EGs prediction but may also be considered as an 694

additional strategy for the validation of labelling: a high performance in predicting 695

HELP-based labels suggests that those labels are well-fitted by learning models trained 696

on gene features known to represent facets of the concept of essentiality. 697
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Supporting information 848

Data/Software Availability 849

Gene Effect file (DepMap v.23Q4) and Model are third-party data used in this work 850

that can be retrieved from https://doi.org/10.25452/figshare.plus.24667905.v2. 851

All other data and software produced in this work are released under the GNU licence 852

and are available in three repositories: 853

• https://zenodo.org/doi/10.5281/zenodo.10964743 is the Zenodo DOI for 854

downloading the GitHub repository (https://github.com/giordamaug/HELP) 855

storing all data produced in the current study, i.e. gene labelling files, 856

context-specific EGs lists, EG prediction results and performance measurements 857

in each tissue/disease context. The repository includes a directory of notebooks 858

to carry on all processing and experiments discussed in the manuscript: the 859

extraction of PPI embeddings (embedding.ipynb), the identification of csEGs 860

(labelling.ipynb) and ucsEGs (csegs.ipynb), the prediction of csEGs 861

(prediction.ipynb), the importance analysis of gene features used to build 862

prediction models (feature_importance.ipynb), the hyper-parameters 863

optimization of the prediction model (optuna.ipynb) and the comparison with 864

alternative prediction methods (compare_models.ipynb). 865

• https://doi.org/10.5281/zenodo.12597679 is a Zenodo repository containing 866

only input data used for the classification of essential genes in tissue-specific 867

contexts. These data are huge and stored in a separate repository since we wanted 868

to provide users with a lighter downloadable repository for only the HELP 869

software and tools. In addition, the sizes of these files overcome the limits of the 870

GitHub archiving facility. 871

• https://doi.org/10.5281/zenodo.12598244 is the Zenodo DOI for 872

downloading the GitHub repository 873

(https://github.com/giordamaug/SVElearn) where you find source code and 874

examples of usage of the Splitting Voting Ensemble approach (SVE). We designed 875

and developed this machine learning method to provide high classification 876

performance in cases of highly unbalanced datasets. Therefore, its implementation 877

and application go beyond its specific use in the domain of essential gene 878

prediction, which is the focus of this work. 879
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Supplementary Material 880

Fig S.1. ucsEGs PPI enrichment. PPI networks built through STRING [50] using 881

the ucsEGs computed for Kidney (A), Lung (B) and Brain (C). The nodes are coloured 882

according to the enriched terms shown in the associated tables. The significant (False 883

Discovery Rate, FDR < 0.05) non-redundant terms were ranked by the number of 884

enriching genes (Count in the network: no. of enriching genes/no. of genes annotated 885

for the term). The edges were built with all the STRING information except “Text 886

mining". 887

Fig S.2. Disease-specific ucsEGs. Diagram representing disease-specific 888

(Non-Small-Cell Lung Cancer NSCLC and Lung Neuroendocrine Tumour NET) and 889

lung ucsEGs intersections by ADaM, FiPer, and HELP labelling. Each row represents 890

the set of ucsEGs for each labelling. The last row reports the number of genes resulting 891

from the intersections. The last column on the right indicates the number of ucsEGs for 892

each set, with the dark grey shadow representing the corresponding histogram. 893

Fig S.3. Reactome pathway enrichment of lung NET-specific EGs. The 894

significantly enriched pathways are shown on the y axis; the color bar indicates the 895

significance in terms of False Discovery Rate (FDR)-adjusted p-value, while the dot size 896

indicates the number of genes in the input set found in the pathway. On the x axis the 897

Fold Enrichment, namely the percentage of genes in the input list annotated in a 898

pathway divided by the corresponding percentage in the background human genes. 899

Fig S.4. Differential expression of NSCLC ucsEGs. The boxplots show the 900

expression levels of the eight NSCLC-specific EGs in the two NSCLC subtypes, LUAD 901

and LUSC, and normal samples, as collected in OncoDB. The significance of the 902

average difference between the two populations was evaluated with a Student’s t-test 903

using the OncoDB platform tool for the differential expression analysis. The legends 904

indicate the colours associated with the groups and the number of samples in brackets. 905

Fig S.5. Boxplots of the generic Human Bio attribute values for the E, aE, 906

and sNE classes. The stars on the top indicate the significance of the Wilcoxon test 907

for each pair of comparisons (**** Æ 0.0001, *** Æ 0.001, ** Æ 0.01, * Æ 0.05, ns = not 908

significant). In favour of visualisation, the values have been signed-square-root 909

transformed. 910

Fig S.6. Boxplots of the context-specific Bio attribute values of the three 911

tissues investigated for the E, aE, and sNE classes. The stars on the top indicate 912

the significance of the Wilcoxon test for each pair of comparisons (**** Æ 0.0001, *** Æ 913

0.001, ** Æ 0.01, * Æ 0.05, ns = not significant). The Driver genes attributes were not 914

shown as having small ranges of values and poor statistics. In favour of visualisation, 915

the values have been signed-square-root transformed. 916

Fig S.7. Random extraction of the intermediate class.. A) For each generic 917

attribute (taken as an example from the Kidney dataset) and cs attributes from the 918

three tissues, 100 random partitions of 3000 genes from the sNE groups have been 919

extracted and compared to the rest of the sNE genes. For each tissue, the 100 partitions 920

were fixed. Wilcoxon test was performed to evaluate the statistical significance (p-value) 921

and verify whether the groups come from the same population for each pair of 922

comparisons (**** Æ 0.0001, *** Æ 0.001, ** Æ 0.01, * Æ 0.05, ns = not significant). 923

The table indicates the number of partitions for each attribute and for each significance 924

July 29, 2024 24/42

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2024. ; https://doi.org/10.1101/2024.04.16.589691doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.16.589691
http://creativecommons.org/licenses/by/4.0/


level indicated in the column header. The level of significance given by comparing aE vs 925

sNE, and indicated in Figures S.5;S.6, was also shown by the orange text "aE". B) The 926

histogram shows the number of attributes (x-axis) for which the partitions are 927

simultaneously significant. The count of partitions (y-axis) for each frequency is also 928

shown on the bars. C) The line plot shows the mean of -log10(p-value) and the 929

standard deviation from Wilcoxon tests between different percentages of aE mixed with 930

sNE genes (to 3000 genes) obtained with 10 iterations and the rest of sNE genes for 931

some attributes indicated in the legend. 932

Fig S.8. Intersection of Gene Families and Biological Processes enrichment 933

among E, aE and sNE genes. The Venn diagrams show the intersection of Gene 934

Families (gf) and Gene-Ontology Biological Processes (BP) enriched by E, aE or sNE 935

genes among the three tissue contexts under study (A-C; E-G), as well as the 936

intersection of Gene Families (gf) and Gene-Ontology Biological Processes (BP) 937

enriched by genes of the three classes in one context (here Kidney tissue as example) 938

(D;H). The number of genes composing each set is shown in brackets. 939

Fig S.9. Feature importance analysis. Bio+CCcfs attributes importance 940

calculated by training a sveLGBM model on the entire dataset. The plot cuts-off 941

feature with importance lower than 0.25 %. 942

Table S.1. Collected genomic, transcriptomic, epigenetic, functional and 943

evolutionary features of genes. (cs) indicates the context-specific attributes. 944

Table S.2. Comparison of classifiers on prediction in “E vs NE” problem in 945

the Kidney case study. Ranking of methods is based on the Balanced Accuracy 946

metric. All methods with “sve” prefix are our meta-learning model proposal with a 947

different base classifier as member of the ensemble. All other methods are provided by 948

the PyCaret library. All models where trained with Bio+CCcfs+N2V attributes of 949

genes. CPU times are measured on Apple M2 with 16GB RAM. 950

Table S.3. sveLGBM tuning of parameters with Optuna library. 951

Optimiziation was carried out on “E vs NE” classification problem with a stratified 952

5-fold cross-validation with Bio+CCcfs+N2V features by maximising BA metric. 953

Table S.4. Classification performance metrics adopted in the experiments. 954

They are defined in terms of the number of true positives (TP), true negatives (TN), 955

false positives (FP), and false negatives (FN), where the first class in each binary task 956

(e.g. class E in the “E vs NE” classification task) is assumed as the positive class. 957

Table S.5. “E vs NE” classification performance based on HELP labelling. 958

(A) Kidney, (B) Lung, (C) Brain tissues, and (D) Human. Averages and errors of 959

metrics are obtained on fifty measurements related to ten times iterated 5-fold 960

cross-validation. The averaged Confusion Matrix (CM) is also shown. 961

Table S.6. Comparison of sveLGBM and CLEARER on OGEE+DEG 962

labelling for the prediction of cEGs. Hs Features refer to the features collected for 963

Homo Sapiens EGs prediction presented in the work [38]. sveLGBM hyperparameters: 964

n_voters=16, learning_rate=0.1, n_estimators=200, boosting_type=’gbdt’. 965

CLEARER hyperparameter: RF n_estimators=500 as in [38]. 966
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Table S.7. Comparison of sveLGBM, DeepHE and EPGAT predictions on 967

HELP labelling for Kidney-, Lung-, Brain-specific EGs, and cEGs (Human). 968

EPGAT running with PPI input and sublocalisation attributes. EPGAT 969

hyper-parameters are optimised by using the provided tuning function. DeepHE 970

running with DNA sequencing extracted features plus node2vec embedding 120-sized 971

features extracted from the PPI. HELP running with Bio+CCcfs + N2V embedding 972

120-sized features extracted from the PPI. 973

Table S.8. Optimal hyper-parameters of sveLGBM, DeepHE and EPGAT 974

methods used in comparison of Table S.7. 975

Table S.9 “E vs sNE”, “E vs aE” and “aE vs sNE” classification 976

performance based on HELP labelling. The case study is Kidney tissue using 977

Bio+CCcfs+N2V features. Averages and errors of metrics are obtained on fifty 978

measurements related to ten times iterated 5-fold cross-validation. The averaged 979

Confusion Matrix (CM) is also shown. 980

Supplementary Methods 981

M.1 Base estimator choice for SVE. Description of the experiments aimed at 982

tuning and comparing the performance of several classifiers on the binary classification 983

problem E/NE. 984

M.2 sveLGBM classifier tuning. Hyper-parameters optimisation of sveLGBM. 985

M.3 Comparison with CLEARER. Comparison of sveLGBM with CLEARER for 986

the prediction of cEGs. 987

M.4 Comparison with DeepHE and EPGAT. Comparison of sveLGBM with 988

DeepHE and EPGAT methods for the prediction of cEGs and csEGs. 989

M.5 Feature importance analysis. Analysis of features’ importance in E/NE genes 990

classification. 991

Supplementary files 992

Supplementary file 1 Excel file containing the gene names and the associated 993

HELP labelling E/aE/sNE used to assign colours in Figure 9. 994

Supplementary file 2 Excel file containing the results of Gene Families (gf) and 995

Biological Processes (GO-BP) enrichment. The first was obtained by downloading gene 996

families annotation from https://www.genenames.org/download/statistics-and-files/, 997

applying a hypergeometric test (R version 4.1.2) using all the genes in the DepMap 998

matrix as background. The GO-BP enrichment, instead, was performed by using 999

DAVID Bioinformatics tool (https://david.ncifcrf.gov/tools.jsp). Each sheet is named 1000

according to the content “tissue_enrichment_class". The columns content is detailed in 1001

each sheet. 1002
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