

¹ Global genomics of the man-o'-war (*Physalia*) ² reveals biodiversity at the ocean surface

³

⁴ Samuel H. Church^{1,*}, River B. Abedon¹, Namrata Ahuja¹, Colin J. Anthony², Diego A.
⁵ Ramirez¹, Lourdes M. Rojas³, Maria E. Albinsson⁴, Itziar Álvarez Trasobares⁵, Reza E.
⁶ Bergemann¹, Ozren Bogdanovic^{6,7}, David R. Burdick², Tauana J. Cunha⁸, Alejandro Damian-
⁷ Serrano⁹, Guillermo D'Elía¹⁰, Kirstin B. Dion¹, Thomas K. Doyle^{11,12}, João M. Gonçalves¹³,
⁸ Alvaro Gonzalez Rajal⁷, Steven H. D. Haddock^{14,15}, Rebecca R. Helm¹⁶, Diane Le Gouvello¹⁷,
⁹ Zachary R. Lewis¹⁸, Bruno I. M. M. Magalhães¹³, Maciej K. Mańko¹⁹, Alex de Mendoza²⁰,
¹⁰ Carlos J. Moura¹³, Ronel Nel¹⁷, Jessica N. Perelman^{21,22}, Laura Prieto⁵, Catriona Munro²³,
¹¹ Kohei Oguchi^{24,25}, Kylie A. Pitt^{26,27,28}, Amandine Schaeffer^{29,30}, Andrea L. Schmidt^{21,22},
¹² Javier Sellanes³¹, Nerida G. Wilson^{32,33}, Gaku Yamamoto³⁴, Eric A. Lazo-Wasem³, Chris
¹³ Simon³⁵, Mary Beth Decker¹, Jenn M. Coughlan¹, Casey W. Dunn^{1,3}

¹⁴ * corresponding author: samuelhchurch@gmail.com

- ¹⁵ 1. Yale University, Department of Ecology and Evolutionary Biology, New Haven, Connecticut, USA
- ¹⁶ 2. University of Guam, Marine Laboratory, Mangilao, Guam
- ¹⁷ 3. Yale University, Yale Peabody Museum, New Haven, Connecticut, USA
- ¹⁸ 4. Tassal, Animal Welfare and Genetics, Hobart, Australia
- ¹⁹ 5. Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencias Marinas de Andalucía (ICMAN), Cádiz, Spain
- ²⁰ 6. Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- ²¹ 7. University of New South Wales Sydney, School of Biotechnology and Biomolecular Sciences (BABS), Faculty of Science, Sydney, New South Wales, Australia
- ²² 8. Field Museum of Natural History, Chicago, Illinois, USA
- ²³ 9. University of Oregon, Oregon Institute of Marine Biology, Charleston, Oregon, USA
- ²⁴ 10. Universidad Austral de Chile, Instituto de Ciencias Ambientales y Evolutivas, Valdivia, Chile
- ²⁵ 11. University College Cork, School of Biological, Earth and Environmental Sciences, Cork, Ireland

32 12. University College Cork, MaREI – Science Foundation Ireland Research Centre for En-
33 ergy, Climate and Marine, Environmental Research Institute, Cork, Ireland

34 13. Universidade dos Açores, Okeanos-UAc – Instituto de Investigação em Ciências do Mar,
35 Horta, Açores, Portugal

36 14. Monterey Bay Aquarium Research Institute, Moss Landing, California, USA

37 15. University of California Santa Cruz, Department of Ecology and Evolutionary Biology,
38 Santa Cruz, California, USA

39 16. Georgetown University, Earth Commons, Washington D. C., USA

40 17. Nelson Mandela University, Department of Zoology, Port Elizabeth, South Africa

41 18. Allen Institute for Brain Science, Molecular Genetics, Seattle, Washington, USA

42 19. University of Gdańsk, Department of Marine Biology and Biotechnology, Gdańsk, Poland

43 20. Queen Mary University of London, School of Biological and Behavioural Sciences, Lon-
44 don, England

45 21. University of Hawaii, Cooperative Institute for Marine and Atmospheric Research
(CIMAR), Honolulu, Hawaii, USA

46 22. NOAA Pacific Islands Fisheries Science Center (PIFSC), National Marine Fisheries Ser-
47 vice, Honolulu, Hawaii, USA

49 23. Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire
50 de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer,
51 France

52 24. University of Tokyo, Misaki Marine Biological Station, Miura, Japan

53 25. Tokai University, Department of Biology, Undergraduate School of Biological Sciences,
54 Sapporo, Japan

55 26. Griffith University, Australian Rivers Institute, Queensland, Australia

56 27. Griffith University, Coastal and Marine Research Centre, Queensland, Australia

57 28. Griffith University, Griffith School of Environment and Science, Queensland, Australia

58 29. University of New South Wales Sydney, Mathematics and Statistics, New South Wales,
59 Australia

60 30. University of New South Wales Sydney, Centre of Marine Science and Innovation, Sydney,
61 New South Wales, Australia.

62 31. Universidad Católica del Norte, Departamento de Biología Marina, El centro de Ecología
63 y Manejo Sustentable de Islas Oceánicas (ESMOI), Coquimbo, Chile

64 32. University of Western Australia, School of Biological Sciences, Western Australia, Aus-
65 tralia

66 33. Western Australian Museum, Collections and Research, Western Australia, Australia

67 34. Enoshima aquarium, Exhibitions and breeding, Fujisawa, Japan

68 35. University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs,
69 Connecticut, USA

70 **Abstract**

71 The open ocean is a vast, highly connected environment, and the organisms found there have
72 been hypothesized to represent massive, well-mixed populations. Of these, the Portuguese
73 man-o'-war (*Physalia*) is uniquely suited to dispersal, sailing the ocean surface with a muscu-
74 lar crest. We tested the hypothesis of a single, panmictic *Physalia* population by sequencing
75 133 genomes, and found five distinct lineages, with multiple lines of evidence showing strong
76 reproductive isolation despite range overlap. We then scored thousands of citizen-science pho-
77 tos and identified four recognizable morphologies linked to these lineages. Within lineages, we
78 detected regionally endemic subpopulations, connected by winds and currents, and identified
79 individual long-distance dispersal events. We find that, even in these sailing species, genetic
80 variation is highly partitioned geographically across the open ocean.

81 **Summary**

82 The open ocean is a vast and highly connected environment. The organisms that live there
83 have a significant capacity for dispersal and few geographic boundaries to separate populations.
84 Of these, the Portuguese man-o'-war or bluebottle (genus *Physalia*) is uniquely suited to long-
85 distance travel, using its gas-filled float and muscular crest to catch the wind and sail the sea
86 surface. *Physalia* are distributed across the globe, and like many pelagic organisms, have been
87 hypothesized to represent a massive, well-mixed population that extends across ocean basins.
88 We tested this hypothesis by sequencing whole genomes of 133 samples collected from waters
89 of over a dozen countries around the globe. Our results revealed five distinct lineages, with
90 multiple lines of evidence indicating strong reproductive isolation, despite regions of range
91 overlap. We combined these data with an independent dataset of thousands of images of
92 *Physalia* uploaded to the citizen-science website inaturalist.org, which we scored for mor-
93 phological characters including sail size, tentacle arrangement, and color. From these images,
94 we identified four recognizable morphologies, described their geographical distribution, and
95 linked them to four of the lineages identified with genomic data. We conclude there are at
96 least four species, three of which correspond to species proposed by scientists in the 18th and
97 19th centuries: *P. physalis*, *P. utriculus*, and *P. megalista*, along with one as yet unnamed
98 species *Physalia* sp. from the Tasman Sea. Within each species, we observe significant pop-
99 ulation structure, with evidence of persistent subpopulations at a regional scale, as well as
100 evidence for individual long-distance dispersal events. Our findings indicate that, instead of
101 one well-mixed, cosmopolitan species, there are in fact multiple *Physalia* species with distinct
102 but overlapping ranges, each made up of regionally endemic subpopulations that are connected
103 by major ocean currents and wind patterns.

104 **Main text**

105 **Introduction**

106 The open ocean has few geographic barriers that might limit connectivity (1). The organisms
107 that live there often have strong dispersal potential (2) and massive effective population sizes
108 (3), contributing to the assumption that populations are predominantly well-mixed, even at a
109 global scale. However, a series of recent studies have found evidence for population structure
110 in the open ocean, despite the absence of geographic barriers (4–6). Those studies challenge
111 expectations of uninterrupted gene flow and bolster claims that open-ocean diversity has rou-
112 tinely been underestimated (7).

113 Studies of oceanic population structure have largely focused on benthic and planktonic species
114 (either holoplanktonic or planktonic in the larval stage), meaning far less is known about
115 populations that live at or near the ocean surface (8), collectively termed neuston (9). The
116 surface ecosystem represents a unique biological environment, and the physical processes at
117 play at the air-water interface (e.g. winds, surface currents) have distinct potential to mediate
118 dispersal (10). At the same time, the ocean surface ecosystem is imperiled by plastics and
119 pollutants that aggregate there, as well as by efforts to clean pollutants at a large scale (11).
120 A common but unproven justification for potentially destructive clean-up efforts is that there
121 is relatively little diversity at the ocean surface, and the organisms present there have robust
122 population sizes (12). It is urgent that we evaluate this claim by examining genetic diversity
123 at the surface to build informed strategies moving forward (13).

124 Bluebottles or Portuguese man-o'-war, cnidarians in the genus *Physalia*, present a compelling
125 test case for exploring open-ocean population structure. They are among the few invertebrates
126 to utilize wind-powered movement, sailing the ocean surface with a muscular crest, and they
127 are the largest to do so, making them particularly capable of long-distance dispersal. There
128 is only one species of *Physalia* currently recognized, with a hypothesized population that ex-
129 tends across the Atlantic, Indian, Pacific, and Southern Oceans (14–16). However, a recent
130 study, analyzing marker genes from samples around New Zealand, found preliminary evidence
131 of substantial genetic variation, even within a relatively small geographic area (17). An anal-
132 ysis of genomic variation in *Physalia* therefore represents a prime test for the existence of a
133 globally panmictic population, targeting a widespread taxon with a significant capacity for
134 long-distance dispersal (18).

135 *Physalia* populations are potentially influenced by the dynamics both at and below the ocean
136 surface. Reproduction occurs below the surface, as reproductive structures (gonodendra) sep-
137 arate from the main body, sink, and release gametes into the water column (19). Following
138 fertilization, juvenile *Physalia* return to the surface using specialized gas-producing tissues
139 to inflate their nascent float (20). Growth occurs through the addition of asexually-budded,
140 clonal bodies (called zooids) that remain integrated to one another through shared nervous
141 and gastric systems, similar to a colony of coral, but in *Physalia* these bodies perform spe-
142 cialized functions (e.g., reproduction, prey capture, digestion) (14). Mature *Physalia* colonies

143 are key predators within the neuston assemblage (21), extending their tentacles up to tens of
144 meters into the water column to kill and retrieve fish (22). They additionally serve as prey
145 within the neuston (9, 23) and shoreline ecosystems (24), since onshore winds can blow these
146 colonies onto beaches, often in large numbers (25, 26). Given their potent sting, near-shore
147 arrivals present a medical risk to humans and affect tourism via beach closures. These impacts
148 create an additional need to understand the factors influencing their dispersal and distribution
149 (27–29).

150 Variation in colony size is associated with ocean region (e.g., Atlantic specimens are typi-
151 cally the largest). Two alternative hypotheses can explain this pattern (14, 16): [1] the large
152 *Physalia* in certain parts of the world represent the oldest colonies – ones that sailed in from
153 elsewhere, or [2] there are distinct populations in different regions that reach different sizes
154 at maturity. New technologies make it possible to distinguish between these hypotheses, in-
155 cluding increased efficiency of next-generation sequencing that has made it feasible to collect
156 genomic data despite their large genome size (estimated at 2-3Gb (30)). In addition, partic-
157 ipatory science on the internet has generated thousands of images of *Physalia* from beaches
158 and waters around the world (Fig. 1B). In this study, we evaluate the population structure
159 and diversity of *Physalia* by evaluating two independent datasets of *Physalia* diversity: [1]
160 whole genome sequencing of 133 specimens, and [2] morphological data from more than 4,000
161 images submitted via participatory science to the natural history website inaturalist.org.
162 We test for evidence of multiple species associated with distinct morphologies, describe their
163 ranges and distributions, and analyze the spatiotemporal dynamics within each lineage.

164 Results

165 Reference genome

166 We generated a new genome assembly for *Physalia* from a specimen collected in Texas, USA in
167 2017. This assembly, along with its alternate haplotype counterpart, has high contiguity (N50
168 of 10.4 and 4.6 megabases, see Table S1) and high BUSCO completeness scores (89.7% and 86.9%,
169 Table S2). The length of the primary and alternate assemblies are 3.33 and 2.69 gigabases
170 (Gb) respectively, and like other siphonophores (31), the *Physalia* genome is characterized
171 by a substantial fraction of repeat sequences (~65%). To assess genome size variation, we
172 used a k-mer analysis to estimate the genome size of 11 specimens that were sequenced to an
173 coverage >20x of a 3.3Gb genome. This analysis estimated that genome sizes vary between
174 1.5 and 2.0 Gb (Fig. S1), indicating a potentially inflated number of repeat sequences in the
175 reference assembly (note however that these estimates are significantly smaller than previous
176 estimates based on flow cytometry that estimated the size as 3.2 Gb (30)). To account for this
177 in all downstream analyses we used only reads mapped to non-repeat regions of the primary
178 assembly. In addition to the genome assembly, we also generated a new transcriptome using
179 full-length cDNA generated with PacBio Iso-Seq on an additional specimen of *P. physalis*,

180 collected in Florida in 2023. We tested the robustness of our results to reference assembly by
181 repeating analyses over both the genome and transcriptome assemblies.

182 **Distinct clusters**

183 To test hypotheses about *Physalia* diversity and population structure, our team collected >350
184 specimens, the majority of which were deposited at the Yale Peabody Museum (Fig 1, and see
185 supplementary text). We sequenced the genomes of 133 samples, 123 of which were identified
186 as high quality datasets, and performed a principal component analysis (PCA). Results show
187 samples are divided into five clusters along the first two principal components of genomic
188 variation (Fig. 1C, S2). These five clusters are labeled as A, B1, B2, C1, and C2, given the
189 adjacency of the latter pairs to one another along principal components. We repeated the
190 PCA including the ten sequenced samples found to be of moderate (rather than high) quality,
191 and observed the same five clusters (Fig. S3). We also repeated the analysis mapping reads
192 to the Iso-Seq transcriptome reference, and observed the same results (Fig. S4), indicating
193 that population genomic studies similar to those presented here may not require reference
194 genomes.

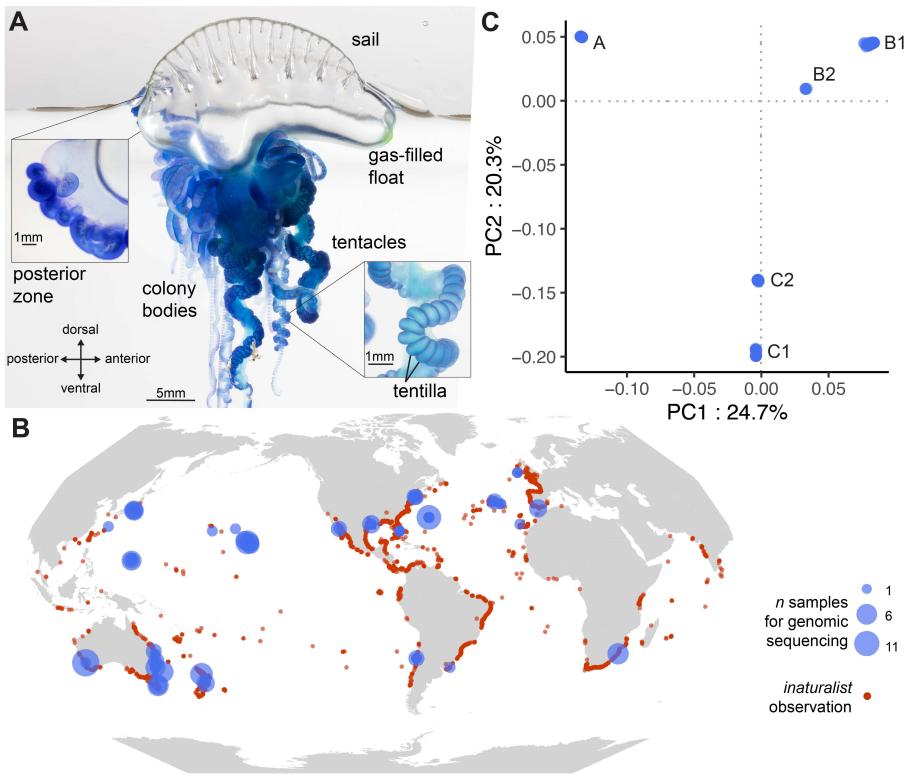


Figure 1: Anatomy, distribution, and genomic variation of *Physalia*. A, *Physalia* colonies comprise a muscular sail attached to a gas-filled float which maintains the mature animal at the surface of the water. Colony bodies (zooids), including those specialized for feeding (gastrozooids), prey capture (palpons with tentacles), and reproduction (gonozoooids) are added to the float via asexual reproduction at growth zones. Tentacles drape below the float to trap, sting, and retrieve fish using batteries of stinging capsules contained in tentilla. Photos of *Physalia* sp. C2, specimens YPM IZ 111236 (main), YPM IZ 111237 (growth zone), and YPM IZ 111240 (tentacle). B, *Physalia* are observed throughout the world, as shown by observations posted to inaturalist.org (red). Samples for genomic analysis (blue) were collected by an international collaboration of scientists. C, The first three principal components of genomic variation reveal five clusters labeled A, B1, B2, C1, and C2.

195 **Genomic differentiation**

196 The geographic distribution of the five clusters shows that at least two were observed across
197 multiple ocean basins (Fig. 2A): cluster B1 was found in the S. Atlantic, S. Indian, and S.
198 and N. Pacific; cluster C1 was found on both sides of the S. Indian and S. Pacific oceans. By
199 contrast, cluster A was observed only in the N. Atlantic, B2 on the northernmost sampling
200 locations on both sides of the N. Pacific, and C2 only in New Zealand and Tasmania. We

201 evaluated genomic differentiation by calculating the reciprocal fixation index (Fst), averaged
202 across non-repeat windows. Average Fst values range from 0.29 between B1 and B2, to 0.64
203 between A and C1, suggesting little genetic exchange between any pair of clusters (Fig. 2B,
204 see Fig. S5 for range across genomic windows). Estimates of nucleotide diversity, pi , indicate
205 that cluster A has the lowest overall diversity and clusters B1 and C2 have the highest (Fig.
206 S6), consistent with estimates of individual heterozygosity (Fig. S1B).

207 We tested the monophyly and phylogenetic relationships of these genomic clusters using two
208 approaches. First, we assembled mitochondrial genomes for each sample and inferred a mito-
209 chondrial tree. For this analysis, we combined the mitogenomes generated in this study with
210 all publicly available *Physalia* mitogenomes, and included all publicly available mitogenomes
211 of the closely related genus *Rhizophysa* as an outgroup. The most likely tree shows clusters
212 are monophyletic, with relatively little sequence variation within clusters (Fig. 2C). Clusters
213 B1 and B2 were found to be sister to one another with high bootstrap support, and the clade
214 of B1+B2 sister to cluster A. Support values were lower (bootstrap of 82) for the relationships
215 at the base of the *Physalia* phylogeny.

216 Second, we estimated the phylogeny from a dataset of 800k high-quality SNPs, using the
217 coalescent-based software **SVDQuartets**. A phylogeny of all specimens confirmed the reciprocal
218 monophyly of the five lineages (Fig. S7). We examined the relationships between lineages by
219 estimating a tree with individuals assigned to their respective clusters. Our results indicated a
220 split between the clade (C1, C2), and the clade of (A and B1+B2) (Fig. S7C). Support values
221 for both partitions in this unrooted tree showed unanimous support (bootstrap of 100).

222 We used a shared ancestry analysis to understand how genetic variants are partitioned across
223 these lineages. The results favored five ancestry groups, corresponding to the five clusters
224 above, and showed little evidence of mixture between groups (Fig. 2D, see Table S2 for
225 D-statistics indicating no significant signatures of introgression). Repeating this analysis in-
226 cluding the ten samples of moderate quality returned the same general results (Fig. S3), with
227 the exception of three moderate-quality specimens of C2 that showed a minor proportion of
228 mixture with C1 (Fig. S3). Repeating analyses using the reference transcriptome returned
229 the same results (Fig. S4).

230 Several studies have generated data on individual genetic markers from *Physalia* (17, 32–
231 35). In order to place those data in the context of our findings, we inferred individual trees
232 for four loci: mitochondrial CO1 and 16S, and nuclear ITS and 18S (Fig. S8–S11). We
233 combined publicly available sequences from the National Center for Biotechnology Information
234 (NCBI) with assembled marker sequences from our specimens, inferred using *in silico* PCR as
235 implemented in our custom software **sharkmer**. This tool uses PCR primer sequences to seed a
236 de Bruijn graph assembly of raw sequencing reads. These results furthered our understanding
237 of *Physalia* diversity in the following ways: [1] a specimen reported from the Sargasso Sea
238 (N. Atlantic) extended the predicted range of B1; [2] a specimen reported from Pakistan (N.
239 Indian) extended the predicted range of B2; [3] using the internally transcribed spacer gene
240 ITS, we were able to assign three clans, described in New Zealand (17), to clusters we describe
241 here: clan 1 = cluster C2, clan 2 = cluster B1, clan 3 = cluster C1; however, using COI we

242 found an incongruent result for the identity of clan 3. Without further information we cannot
 243 determine whether this result may be due to a potential exchange of mitochondrial sequences
 244 between clusters C1 and C2 in New Zealand.

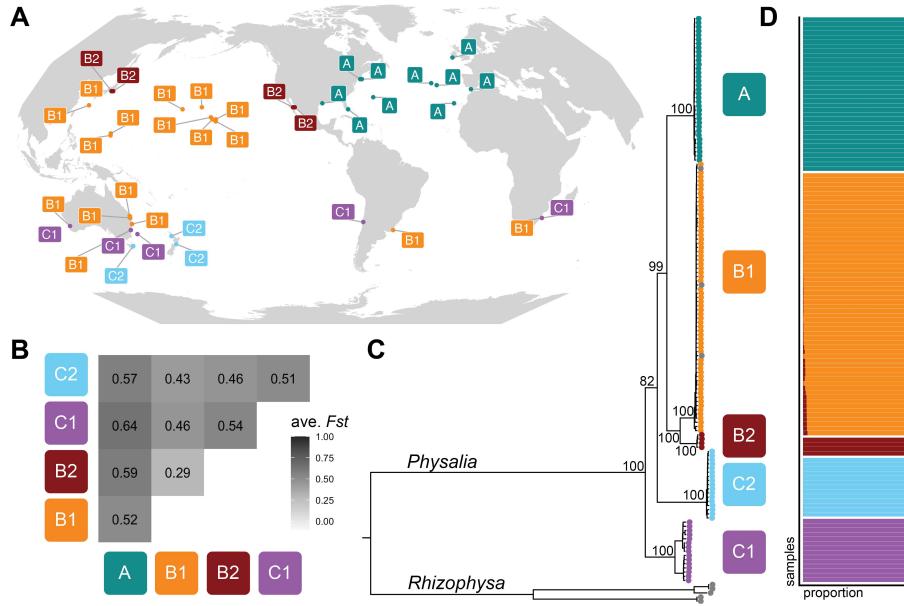


Figure 2: Multiple lines of evidence indicate reproductive isolation between lineages. A, The distribution of the five clusters from Fig. 1 shows some lineages span multiple ocean basins (e.g., B1, C1) and others are restricted to smaller areas (e.g., C2 observed in New Zealand and Tasmania). Labels indicate cluster present at collecting site. B, Reciprocal fixation index (Fst) averaged across non-repeat genomic windows indicate high levels of reproductive isolation between all lineages, with the weakest between B1 and B2. C, Phylogenetic analysis of 141 mitochondrial genomes shows reciprocal monophyly of lineages. Bootstrap values are shown at internal *Physalia* nodes. D, Shared ancestry analysis of 123 samples recovers five lineages with little evidence of mixture.

245 Morphology-based analysis

246 We tested for the evidence of distinct morphologies of *Physalia* by analyzing a dataset of images
 247 of *Physalia* uploaded to the citizen-science website inaturalist.org. While most of these
 248 images are of beached specimens, many aspects of the gross morphology are often preserved
 249 and identifiable. We scored the following characters (Fig. 3A): the height and length of the sail
 250 relative to the float; the color of the sail apex and the colony bodies (primarily gastrozooids);
 251 the arrangement of principal tentacles (defined as those with dense aggregations of tentilla);
 252 and the visible presence of a gap between the posterior and main zone of the colony. We
 253 scored characters on a dataset of 4,047 images, selected to include multiple images from all

254 represented countries and time zones, with additional images scored for locations hypothesized
255 to have increased diversity (e.g., New Zealand (17)). To ensure reproducibility of scoring, we
256 had three independent observers score the same set of 100 images.

257 From these images, we identified four distinct morphologies (Fig. 3A-C). These were defined
258 by describing a series of rules for positive identification based on suites of characters (Fig. S12),
259 excluding images of poor quality or of specimens scored as having juvenile characteristics (e.g.,
260 globular float, few zooids). These rules constitute a strict definition for a high-confidence
261 observation of each type; for example, images were positively identified as the *P. physalis*
262 morphology if they had reddish feeding bodies, multiple major tentacles, and a sail that is
263 as tall as the float and extends nearly to the anterior end. While individual specimens of *P.*
264 *physalis* may deviate from these characters (e.g., if the sail is not raised), the rules were designed
265 to minimize overlap between morphologies and allow for high-confidence identifications.

266 Three of the morphologies we identified are congruent with species proposed by scientists
267 centuries ago (16). *P. physalis* was named by Linneaus in 1758 based on specimens from
268 the Atlantic that had large sails and multiple major tentacles (Fig. 3A). *P. utriculus* was
269 named by Gmelin (1788) (36), based on illustrations by La Martinière (1787) (37) of a Pacific
270 specimen collected on the Lapérouse expedition that had a single major tentacle, yellow-tipped
271 gastrozooids, and a flared posterior growth zone. *P. megalista* was named and illustrated by
272 Lesueur and Petit (1807) (38) from specimens from the Southern Ocean that had a short
273 sail and a sinuously postured float. Each of these species was synonymized with *P. physalis* in
274 later centuries (14, 16, 39, 40); our results indicate these synonymies to have been incorrect.

275 We linked these morphotypes to clusters identified through genome sequencing by analyzing
276 the morphology of specimens we had analyzed genetically, using images taken upon collection,
277 when available, as well as the morphology of fixed specimens (Fig. 3D, see supplementary text
278 for specimen photos). Our results confirm that cluster A corresponds to *P. physalis*, B1 to *P.*
279 *utriculus*, C1 to *P. megalista*, and C2 to *P. sp.* Cluster B2 could not be assigned given that
280 no images of specimens were taken upon collection; analysis of the morphology of the single
281 available fixed specimen suggested a general similarity to specimens of B1, *P. utriculus*.

282 Based on the assignment of morphotypes to clusters, we re-examined the distribution of the
283 lineages using positively identified images (Fig. 3C). We found that cluster A, *P. physalis* was
284 observed in the N. Atlantic, consistent with genomic findings, as well as the SW. Atlantic; B1,
285 *P. utriculus* was found throughout the Pacific, Indian, as well as the SW. Atlantic and Gulf of
286 Mexico; C1, *P. megalista* was found in the Southern edges of the Pacific, Indian, as well as the
287 SW. Atlantic; and C2, *P. sp.* was found in New Zealand, Tasmania, as well as E. Australia.

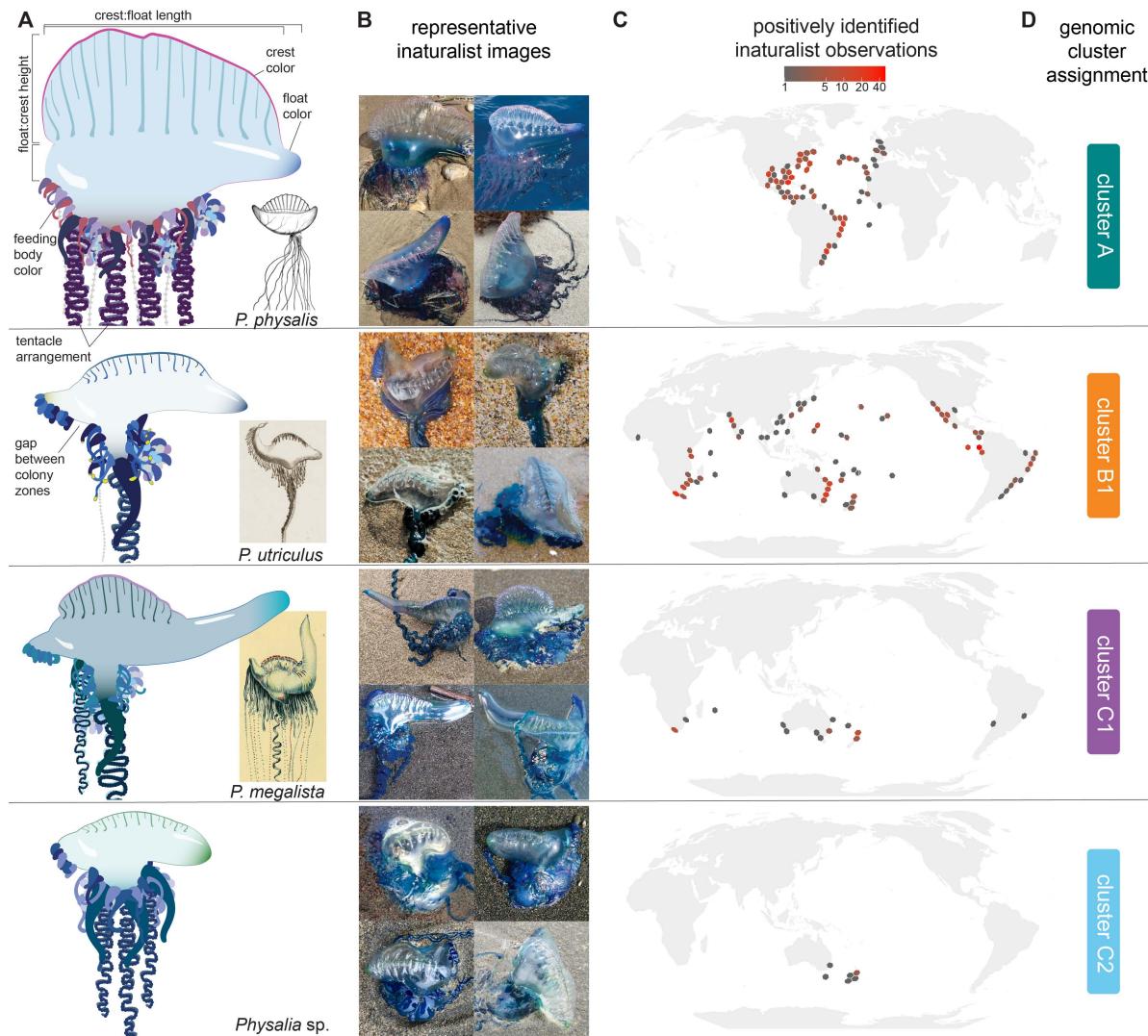


Figure 3: Distinct morphologies are detectable in citizen science images. A, Morphological traits such as aspects of size, color, and tentacle number were scored for thousands of images on inaturalist.org. From these, four morphologies were identified, three of which correspond to historically proposed species (38). B, Representative photos of each morphology from iNaturalist, image credits listed below. C, Ranges of positively identified iNaturalist records for each morphology, using a rule-based analysis of morphological traits. D, Morphologies were assigned to a genomic cluster by scoring the same traits of genomic specimens. Cluster B2 could not be definitively assigned due to lack of images and fixed material.

288 **Geographic population structure**

289 Given these animals can move with wind and currents, and combined with the evidence of
290 distributions extended across ocean basins, we tested for evidence of long-distance dispersal
291 and subpopulation structure by performing PCA on genomic variation within each of the
292 four species: *P. physalis*, *P. utriculus*, *P. megalista*, and *P. sp.* C2. For *P. utriculus* we
293 repeated this analysis both including and excluding cluster B2 (Fig. S13). Within species,
294 samples are largely grouped by geographic region (Fig. 4), and not by date of collection
295 (Fig. S14). The observation of a strong geographic signature, persistent even at sites with
296 collection events over the span of multiple years, suggests that *Physalia* subpopulations largely
297 stay in the same region over time. The extent of these geographic regions appears linked by
298 major ocean currents; for example *P. physalis* specimens from Florida, Bermuda, and New
299 England are highly similar, without substructure corresponding to collection sites, indicating
300 these samples are part of a subpopulation aligned with the Gulf Stream current system (Fig.
301 4A, E).

302 We observed several individual exceptions to the pattern of persistent regional subpopulations
303 within the dataset, indicating individuals can disperse over long distances (Fig. 4, S7A). In
304 *P. physalis*, two of the samples collected in Bermuda showed an E. Atlantic subpopulation
305 signature, and one sample in the Azores had a W. Atlantic signature, suggesting dispersal
306 events in both directions across the N. Atlantic. In *P. utriculus*, one sample collected in
307 Hawai'i showed a genomic signature associated with samples collected in Guam and Japan,
308 suggesting an individual eastward dispersal event across the N. Pacific. In *P. megalista*, one
309 sample collected in E. Australia had an Indian Ocean signature, suggesting dispersal across
310 ocean basins.

311 We also tested the strength of differentiation between subpopulations within species. Using a
312 k-means clustering analysis, we identified two subpopulations within *P. physalis*, three in *P.*
313 *utriculus*, and two each in *P. megalista* and *P. sp.* C2 (Fig. S15). Lineage B2 was treated
314 as a single cluster, given limited sampling. Genomic differentiation between subpopulations
315 (calculated as average *Fst*) was small (<0.05), with the exception of the division within *P.*
316 *megalista* (average *Fst* of 0.103, Fig. S16), a division also reflected in the mitochondrial and
317 nuclear phylogenetic results (Fig. 2C, S7A), suggestive of a barrier to gene flow within *P.*
318 *megalista*. We also examined genomic differentiation between specimens from different species
319 that shared the same sampling region (Fig. S17), and confirmed that genomic differentiation
320 is equivalent for groups of specimens regardless of co-occurrence (e.g., *P. utriculus* and *P.*
321 *megalista* that both occur in the SW. Pacific, average *Fst* value of 0.459).

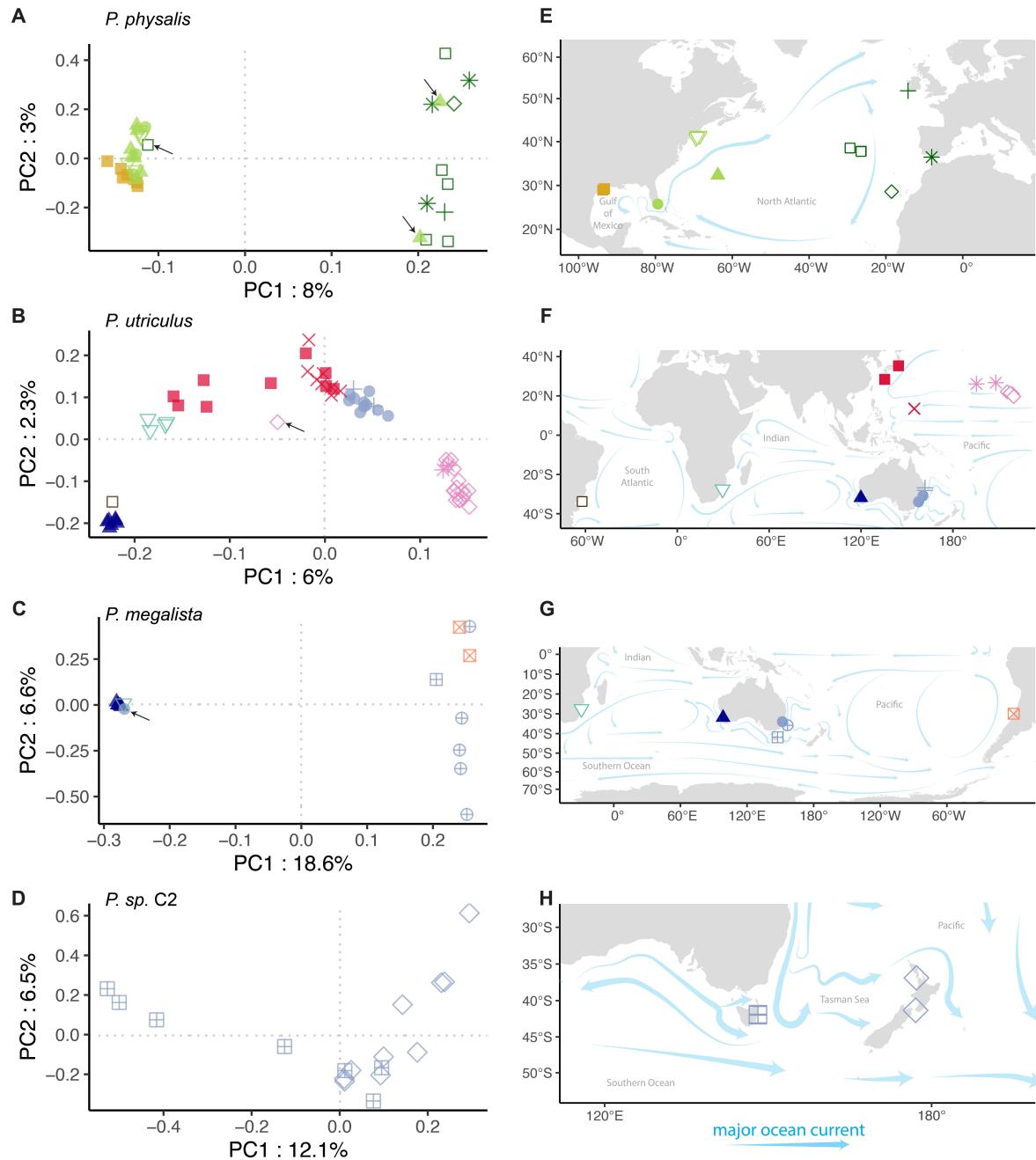


Figure 4: Principal component analyses within species show that subpopulations are largely defined by region. Exceptions to this pattern are marked with black arrows; these individuals suggest long-distance dispersal events across regions. A, *P. physalis*, B, *P. utriculus*, C, *P. megalista*, and D, *P. sp. C2*. Colors indicate regions of the ocean (e.g., Northwest Atlantic), and shapes indicate sampling location (e.g., Florida). E-H, Corresponding sampling locations and major ocean currents are shown, currents from National Oceanic and Atmospheric Administration (42).

322 Discussion

323 This study, targeting an organism capable of long distance dispersal via ocean currents and
324 winds, suggests that panmictic, cosmopolitan populations are the exception, and not the rule,
325 for marine invertebrates. Our results show multiple lines of evidence that there are at least
326 four species of *Physalia*, each composed of regionally endemic subpopulations. These lines of
327 evidence include high genomic differentiation (measured as average reciprocal *Fst*), reciprocal
328 monophyly of mitochondrial and nuclear phylogenies, clear morphological differentiation, and
329 consistent mapping between genomic and morphological groupings. The four species we iden-
330 tify have distinct but overlapping ranges: *Physalia physalis* from the Atlantic; *P. utriculus*,
331 present throughout the Pacific, Indian, and into the SW Atlantic; *P. megalista*, present in the
332 southern portion of the Pacific, Indian, and Atlantic, and *P. sp. C2*, present in the Tasman
333 Sea. We also find evidence to suggest a potential fifth species (cluster B2), but the absence
334 of morphological data for sequenced specimens, combined with the relatively lower *Fst* value
335 and phylogenetic proximity to *P. utriculus*, precludes its designation at this time.

336 Within species we observe genomic signatures endemic to specific regions, which are persistent
337 over multiple years of sampling. In the case of *P. utriculus* in Hawai'i, we collected reproduc-
338 tively mature adults (e.g., YPM IZ 110777), juveniles collected before surfacing (e.g. YPM IZ
339 110881, YPM IZ 110882, YPM IZ 110883, collected at ~6 meters depth), and a range of sizes
340 in between (see supplementary text), and observed that they shared the same subpopulation
341 signature, suggesting reproduction happens *in situ*. Regional genomic signatures are robust
342 despite our observation of five individual specimens with incongruent genomic and geographi-
343 cal signatures that suggest cross-regional dispersal events. Subpopulation boundaries appear
344 to be defined by patterns of winds and currents, as demonstrated by the close genetic affinity
345 of samples collected at sites adjacent to the Gulf Stream (Texas, Florida, Bermuda, and New
346 England).

347 The southern hemisphere, and in particular the southwest regions of ocean basins, consistently
348 represent centers of *Physalia* diversity: three species are found in the SW. Pacific (*P. utriculus*,
349 *P. megalista*, and *P. sp. C2*), two species in the S. Indian Ocean (*P. utriculus* and *P. megalista*),
350 and three species in the SW. Atlantic (*P. physalis*, *P. utriculus*, and *P. megalista*). In no case,
351 do we observe evidence of gene flow between species at the sites of range overlap (Fig. S17).
352 Furthermore, the phylogenetic relationships between species suggest that diversification may
353 have originated from the Pacific Ocean. The most recent species division is between *P. physalis*
354 and *P. utriculus*, potentially as the ancestral population of these lineages came to occupy the
355 Atlantic Ocean. In addition, we observe moderate genomic differentiation between clusters
356 B1 and B2 in the N. Pacific (ave. *Fst* of 0.29, Fig. 2), and between subpopulations of *P.*
357 *megalista* in the Pacific and Indian Oceans (ave. *Fst* of 0.12, Fig. S16), both suggesting
358 population structure due to potential ecological or geographic divides within species.

359 This study builds on the work and observations of sailors, swimmers, and scientists over
360 the course of centuries. As early as the 18th century, hypotheses about multiple species
361 emerged, based on reports from global voyages (16). Among these are three of the species we

362 observed, *P. physalis*, *utriculus*, and *megalista*. These species were not “cryptic”; they were
363 proposed, debated, and ultimately rejected over the course of 250 years. Our results vindicate
364 their original descriptions, showing clear and strong support for distinct species matching
365 the original illustrations. The central challenge faced by taxonomists in past centuries was
366 that there was no way to simultaneously observe live or recently beached *Physalia* across its
367 huge range, and key characteristics like posture, color, and behavior are lost during fixation.
368 These results underscore the power of participatory science and social media to provide an
369 unprecedented lens on biodiversity.

370 Conflicting expectations and observations of the number of planktonic species have spawned
371 multiple discourses in the literature (e.g., “the paradox of the plankton” (43) and its companion,
372 “the inverted paradox of the plankton” (44)). Here we demonstrate that, in the case of *Physalia*,
373 there is more diversity than previously assumed (four species instead of one), and that the open
374 ocean ecosystem might indeed have high evolutionary potential (4). Across the open ocean
375 we observe substantial geographic partitioning of genetic variation, evidence for reproductive
376 isolation events that have resulted in strong barriers to reproduction, as well as events that
377 suggest isolation may be currently underway (e.g. clusters B1 and B2), and in the case of *P. sp.*
378 C2, we report a previously undescribed species that represents a single-sea endemic. Future
379 research into the physical, environmental, and biological processes that generate and maintain
380 this genetic variation will be crucial in recalibrating our expectations towards open-ocean
381 biodiversity.

382 Acknowledgments

383 We thank Adachi Aya, Stephen Chiswell, Lynne Christianson, Gary Cobb, Andy Coetzee,
384 Joey DiBatista, Steve Dunn, Leanne Elder, Jose Fernández-Simón, Luke Finley, Steve Gerber,
385 Rosemary Hill, Kazuhisa Hori, Takato Izumi, Michiyo Kawabata, Itaru Kobayashi, Hisanori
386 Kohtsuka, Izumi Komori, Hiromi Kurihara, Yukio Kurihara, Nate Lo, Juan Moles, Kirrily
387 Moore, Natasha Picciani, Nicola Puharich, Fae Spafford, John Stimson, Hiroyuki Tachikawa,
388 Nikolai Tatarnic, Yi-Kai Tea, Kosuke Uchiwa, Diego Vazquez Alcaide, Kensuke Yanagi, the
389 Miura Fisher Cooperative Association, and the East Matunuck State Beach lifeguards for
390 additional support in collecting specimens. We thank Lawrence Gall, Gisella Caccone, and the
391 Caccone laboratory for early feedback. We thank the Western Australian Museum, Tasmanian
392 Museum and Art Gallery, and the Field Museum of Natural History for loaning specimens. We
393 also thank the Bingham Oceanographic Collection Endowment, the Yale Center for Genome
394 Analysis, and the Keck Microarray Shared Resource at Yale University for providing necessary
395 sequencing services.

396 **Image credits**

397 Images reproduced in Figure 3B were retrieved from <https://inaturalist.org> and are all made
398 available under Creative Commons licence CC-0 or CC-BY. They are credited as follows, left
399 to right and top to bottom:

- 400 1. Eileen Mattei, Texas, USA. CC-0. <https://inaturalist-open-data.s3.amazonaws.com/photos/271981781/original.jpg>
- 401 2. Seth Wollney, Atlantic Ocean. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/314857468/original.jpg>
- 402 3. Amanda Chase, Texas, USA. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/4323195/original.jpeg>
- 403 4. Lucian Vazquez, Matanzas, Cuba. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/249736410/original.jpg>
- 404 5. Tim (user [twan3253](#)), New South Wales, Australia. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/116503028/original.jpeg>
- 405 6. William Stephens. San Cristobal, Ecuador. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/64365445/original.jpg>
- 406 7. Andrew Gillespie, Eastern Cape, South Africa. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/349817115/original.jpeg>
- 407 8. Manuel R. Popp, Eastern Cape, South Africa. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/180673664/original.jpeg>
- 408 9. Hazel Valerie, Northland, New Zealand. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/145998383/original.jpeg>
- 409 10. Jacqui Geux, Auckland, New Zealand. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/3560793/original.JPG>
- 410 11. Emily Roberts, Taranaki, New Zealand. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/205384503/original.jpeg>
- 411 12. Arним LIttek, Manawatu-Wanganui, New Zealand. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/227840858/original.jpeg>
- 412 13. Arним LIttek, Manawatu-Wanganui, New Zealand. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/72081497/original.jpeg>
- 413 14. Jacqui Geux, Auckland, New Zealand. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/65125848/original.jpeg>
- 414 15. Roderic Page, Auckland, New Zealand. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/340905787/original.jpg>
- 415 16. Arним LIttek, Manawatu-Wanganui, New Zealand. CC-BY. <https://inaturalist-open-data.s3.amazonaws.com/photos/36406644/original.jpeg>

432 **Funding**

- 433 1. SHC was funded by the National Science Foundations (NSF) Fellowship 2109502 and
434 the Yale Institute of Biospheric Sciences (YIBS).
- 435 2. NA was funded by a YIBS graduate student grant, the Tal Waterman gift, and the
436 Training Grant in Genetics at Yale-NIH T32.
- 437 3. CJA and DRM was funded by NSF grant OIA-1946352.
- 438 4. DAR was funded by the STARS II Research Program at Yale College.
- 439 5. TJC was funded by the Field Museum Women's Board Postdoctoral Fellowship.
- 440 6. JMG, BIMMM, and CJM were funded by the Açores FEDER (85%) and regional funds
441 (15%) under Programa Operacional Açores 2020 project Águas-VivAz ACORES-01-0145-
442 FEDER-000119.
- 443 7. BIMMM was additionally funded by the Foundation for Science and Technology Portugal
444 PhD Grant SFRH/BD/129917/2017.
- 445 8. DLG and RN were funded by Nelson Mandela University Council Funding.
- 446 9. SHDH was funded by the David and Lucile Packard Foundation.
- 447 10. MKM was funded by the National Science Centre in Poland Grant 2018/29/N/NZ8/01305
- 448 11. KO was funded by a Grant-in-Aid for Research Activity Start-up 22K20662 from the
449 Ministry of Education, Culture, Sports, Science and Technology of Japan, and a grant
450 from the Research Institute of Marine Invertebrates.
- 451 12. KAP was funded by the Australian Research Council (ARC) Linkage LP210200689.
- 452 13. AS was funded by ARC linkage LP210200689.
- 453 14. JS was funded by ANID ATE 220044.
- 454 15. The Yale Center for Genome Analysis and Keck Microarray Shared Resource are in part
455 funded by the National Institutes of Health instrument grants 1S10OD028669-01 and
456 1S10OD030363-01A1.
- 457 16. This work was funded by the Bingham Oceanographic Collection Endowment of the Yale
458 Peabody Museum.

459 **Author contributions**

- 460 1. SHC-NA, KBD, MKM, CM, EALW-CWD contributed to conceptualization
- 461 2. SHC-NA, CWD contributed to data curation and validation
- 462 3. SHC-RBA, CWD contributed to formal analysis
- 463 4. EALW, CWD contributed to funding acquisition
- 464 5. SHC-NA, DAR, OB, KBD, AGR, ZRL, AdM, CM, CWD contributed to investigation
(e.g., DNA extraction, sequencing)
- 465 6. SHC, CWD contributed to methodology
- 466 7. SHC-BIMMM, AdM-BMD, CWD contributed resources (e.g., specimens)
- 467 8. SHC-RBA, CWD contributed to software development
- 468 9. CS-CWD contributed to project supervision
- 469 10. SHC-RBA, SHDH, JMC-CWD contributed to visualization

471 11. SHC-CJA, ADS, SHDH, RRH, MKM, KAP, AS, EALW-CWD contributed to writing
472 the original draft
473 12. SHC-CWD (all authors) contributed to reviewing and editing the final draft

474 **Competing interests**

475 The authors declare no competing interests

476 **Data and materials availability**

477 Sequence data for genome assembly (PacBio reads and 10X Genomics Chromium linked-reads)
478 are available at the National Center for Biotechnology Information (NCBI) Bioproject PR-
479 JNA735958, and the principal and haplotype assembly sequences are available at NCBI Bio-
480 project PRJNA1040906. Full-length, non-chimeric PacBio Iso-Seq RNA data are available at
481 BioProject PRJNA1126252. Illumina sequence data for specimens intended for population
482 genomic analysis are available at Bioproject PRJNA1092115. Sequence alignment and phylo-
483 genetic tree files, along with all code used to analyze data to reproduce the figures shown here
484 (`Snakemake` workflows and `Rmarkdown` files) are available at https://github.com/shchurch/Physalia_population_genomics, commit 7a2a4ac. Specimens collected for this study are de-
485 posited at the Yale Peabody Museum, with the exception of specimens deposited at the New
486 Zealand National Institute for Water and Atmospheric Research (NIWA) Invertebrate Col-
487 lection, and those loaned by the Western Australian Museum, Tasmanian Museum and Art
488 Gallery, and the Field Museum of Natural History. Specimen catalog numbers listed in sup-
489 plementary text: specimen collection information.

491 **Materials and Methods**

492 **Sample collection and DNA extraction**

493 *Physalia* specimens were collected by a global collaboration of scientists. Full sampling details
494 and required permit information can be found in the supplementary text: specimen collection
495 information. The majority of specimens were collected after they washed ashore, using appro-
496 priate safety protocols to avoid stings. A few specimens were collected directly from the water,
497 either sampling from a boat or while diving (for juvenile specimens that hadn't yet surfaced).
498 Specimens were preserved in >70% ethanol, when available, and stored at room temperature,
499 with the exception of two samples collected from Hawai'i that were stored in DNAshield, and
500 several samples from the Eastern United States that were flash-frozen.

501 When possible, whole specimens were collected and shipped to the Yale Peabody Museum,
502 Invertebrate Zoology Division (YPM IZ). All sequenced specimens were photographed, and

503 images are shown in the supplementary text. Additional specimens were loaned from the
504 Western Australia Museum, the Tasmanian Museum and Art Gallery, and the Field Museum
505 in Chicago.

506 High molecular weight DNA for genome sequencing and assembly was extracted from a flash-
507 frozen specimen, YPM IZ 110876, collected in Texas, USA in 2017. Extractions were performed
508 following the protocol described by Chen and Dellaporta, 1994 (45), with modifications. In this
509 protocol, tissue was homogenized under liquid nitrogen and extracted with 5 mL of a urea-based
510 extraction buffer for 15 minutes at 65 degrees C. Three 25:24:1 phenol:chloroform:isoamyl-
511 alcohol (P:C:I) extractions were performed, each allowed to rock for 5 minutes before centrifugation.
512 The P:C:I extractions were followed up with extraction with one volume of chloroform
513 prior to precipitation with isopropanol. Extracted DNA and RNA was resuspended in 100 μ L
514 Tris-EDTA buffer, analyzed by gel electrophoresis, then brought to a volume of 400 μ L and
515 subjected to RNase treatment with 3 μ L RNase I and 2 μ L of RNase Cocktail Enzyme Mix for
516 60 minutes at 37 degrees C. The RNA-free DNA was then brought to 500 μ L with 5M NaCl and
517 extracted with 400 μ L P:C:I. The aqueous phase was removed and 400 μ L of 5M NaCl, 500 mM
518 EDTA, 10 mM Tris was added to the P:C:I for back extraction. The back-extracted aqueous
519 phase was combined with the first aqueous phase and 0.3 volumes of 100% ethanol was added
520 to precipitate polysaccharides, pelleted at 17,000 x G. DNA was precipitated with 1.7 volumes
521 of 100% ethanol, pelleted, and washed with 70% ethanol and resuspended in Tris-EDTA. The
522 purified DNA was examined by pulse-field gel electrophoresis and showed a strong band at
523 >98kb.

524 RNA for transcriptome sequencing was extracted from a flash-frozen specimen, YPM IZ 110436,
525 collected in Florida, USA in 2023. Tissue was homogenized using a mortar and pestle chilled
526 to -80 degrees C, and RNA was extracted using the RNAqueous Total RNA Isolation Kit
527 following manufacturers instructions and including a lithium-chloride precipitation step. RNA
528 was processed for library preparation and PacBio Iso-Seq sequencing by the Keck Microarray
529 Shared Resource at Yale University. Delivered reads were clustered with the PacBio **isoseq**
530 **cluster2** command, version 1.0.1. These were then further deduplicated with **treeinform** (46)
531 as implemented in the code available at <https://github.com/dunnlab/isoseq>, commit **7a2a4ac**.
532 This tool implements a phylogenetically informed refinement of the transcriptome to remove
533 species-specific variants, by building gene trees from the target transcriptome (here *Physalia*)
534 and gene predictions for related species (here 23 species, including 10 cnidarians). Clades with
535 short total branch length and that contain only sequences from the target species are collapsed
536 to the longest sequence.

537 For samples intended for population genomic analysis, tentacle pieces were dissected from
538 whole specimens and stored in 95% ethanol prior to DNA extraction for genome sequencing.
539 DNA extractions were performed using the EZNA Mollusk kit following manufacturers instruc-
540 tions and an overnight digestion, with the exception of several samples from Japan, Guam, and
541 Texas that were extracted using the urea-based phenol-chloroform protocol described above, as
542 well as one sample from the Gulf of California, extracted at Monterey Bay Aquarium Research

543 Institute with the DNeasy DNA Blood and Tissue kit (Qiagen), following manufacturer's in-
544 structions. Whole genome DNA was processed for library preparation and sequencing by the
545 Yale Center for Genome Analysis.

546 **Genome assembly**

547 Eight Single-Molecule Real-Time (SMRT) sequencing cells of PacBio HiFi data were assembled
548 with `canu`, v. 2.2 (`-pacbio-hifi` option) (47–49), with the estimated genome size parameter
549 set to three gigabases. HiFi reads were mapped to this assembly with `minimap2`, v. 2.22-r1101
550 (50), to determine the appropriate cutoffs for purging duplicated contigs. These were removed
551 using `purge_haplotigs`, v. 1.1.2 (low, medium, and high cutoffs set at 5x, 40x, and 200x
552 respectively) (51), and overlapping contig ends were clipped with the same program. The
553 parameters for `purge_haplotigs` were modified to avoid memory limitation (`-I` was set to
554 1G, `-p` was dropped, and `-N` was set to 1000).

555 A foreign contamination screen (FCS, via the National Center for Biotechnology Information,
556 NCBI) was performed on both the purged and haplotype assemblies, using the tool provided
557 for GenBank submissions which detected and removed one adapter sequence. We used the tool
558 `LongStitch`, v. v1.0.4 (52), to scaffold both the purged (primary) and haplotype (alternate)
559 assemblies. Scaffolding was performed first using the eight HiFi cells used for assembly and
560 the `ntLink-arks` functionality, and then using a dataset of 225 gigabases of linked-read data
561 sequenced with 10XGenomics Chromium sequencing, interleaved with `LongRanger` (provided
562 by 10X Genomics). The FCS was repeated on this assembly and detected no further foreign
563 contaminants.

564 Repeat regions were detected and masked with `RepeatModeler` and `RepeatMasker`, v. 4.1.5
565 (53), to build a general feature format (gff) file, used to exclude repeats from downstream
566 analyses. `BUSCO`, v 5.4.4 (54), and `BBMap stats.sh` were used to evaluate final assemblies.
567 Genome assembly is made publicly available at NCBI, BioProject number PRJNA1040906.

568 **Genome mapping**

569 Paired-end genome sequencing targeting a read length of 150 base pairs was performed for 145
570 libraries using an Illumina NovaSeq at the Yale Center for Genome Analysis. Full details on
571 quality control, mapping statistics, and final library parameters are available in the GitHub
572 document https://github.com/shchurch/Physalia_population_genomics/manuscript_files/quality_control.html. Briefly, sequencing depth range varied across samples from a target
573 of 10-60x genome size. These 145 samples included two replicate libraries, generated from
574 repeated DNA extractions from the same specimens. In addition, from sequenced libraries
575 we generated two technical replicates by randomly splitting read files. These replicates were
576 used to evaluate reproducibility and were excluded from the main analyses presented in this
577 work.

579 Overall sequence quality (e.g. GC content, adapter content) was evaluated using **FastQC**, v.
580 0.11.9. Reads were trimmed for Illumina adapters using **Trimmomatic**, v. 0.39 (55). Potential
581 human, bacterial, and viral DNA contamination was evaluated using **Kraken2**, v. 2.1.2
582 (56), standard database. Additional cross-species contamination was evaluated using *in silico*
583 PCR of the ribosomal 18S gene from genomic reads, and comparing results to publicly
584 available datasets with a basic local alignment search tool, **BLAST**. Potential kinship or cross-
585 contamination between *Physalia* samples was evaluated by calculating the kinship-based infer-
586 ence for genomes (KING-robust) relatedness score on reads mapped to the assembled genome
587 using **PLINK2**, v. 2.00a5LM (57), calculated only using SNPs within Hardy-Weinberg equilib-
588 rium (p-value <1e-7), and excluding those with missing alleles >0.1 or a minor allele frequency
589 >0.01).

590 Based on the results of the quality control analyses, six samples were identified as contaminated
591 and an additional four samples were identified as replicated sampling events from a single
592 specimen (e.g. multiple tentacle tips taken from the same animal in the field). These samples
593 were excluded from downstream analyses, such that the final dataset, excluding technical and
594 biological replicates, consisted of 133 samples. Of those, 123 were marked as high quality
595 based on overall sequencing depth, read quality, and proportion of missing sites. Analyses
596 were performed on a strict dataset of only high-quality samples, and repeated on the full
597 dataset of high- and moderate-quality samples.

598 Reads were mapped to the reference genome using **BWA**, v. 0.7.17-r1188 (58). Mapped reads
599 were sorted, deduplicated, and indexed using **picard**, v. 2.25.6. Alleles were called using
600 **BCFtools**, v. 1.16, **mpileup** (59). To test the robustness of downstream analyses to reference
601 assembly, reads were mapped to the independent transcriptome assembly, using only R1 reads
602 as single-end data.

603 **Genome size estimates**

604 We estimated the genome size for 19 specimens sequenced to >20x coverage, estimated against
605 a genome size of 3.3 Gb. Genome size, repeat content, and heterozygosity were estimated
606 using **GenomeScope**, v. 2.0 (60) and **jellyfish**, v. 2.2.3 (61). **GenomeScope** was run on the
607 combined set of R1 and R2 reads, trimmed to remove Illumina adapters as described above.
608 Size estimates were discarded for eight samples with a maximum model fit <95% or when the
609 fitted model failed to follow the curve coverage histogram.

610 **Phylogenetics**

611 Mitochondrial genomes were assembled from a subset of ten million trimmed reads for each
612 sample, using the software **GetOrganelle**, v. 1.7.7.0 (62), using the **animal_mt** database
613 and default parameters. **GetOrganelle** failed to circularize the assemblies, in line with
614 the expected linear mitochondrial genomes in siphonophores (31); the resulting top path

615 assembly was used as the final linear genome. Assembled sequences were combined with
616 publicly available mitochondrial assemblies for *Physalia* and their outgroup *Rhizophysa*
617 from NCBI, accession numbers: OQ957220, KT809328, LN901209, KT809335, NC_080942,
618 NC_080941, OQ957206, OQ957199. Mitochondrial genomes were aligned using MAFFT, v.
619 7.505, --adjustdirectionaccurately option (63). A mitochondrial phylogeny was inferred
620 using IQtree2, v. 2.2.6 (64), model autoselected (65) and 1,000 ultrafast bootstraps (66),
621 with *Rhizophysa* selected as the outgroup.

622 Individual marker sequences were assembled from raw reads using *in silico* PCR as im-
623 plemented in **sharkmer** (available at <https://github.com/caseywdunn/sharkmer>, commit
624 c43cfcc2). Four markers were selected to infer individual gene trees: mitochondrial cy-
625 tochrome oxidase I (CO1), mitochondrial large ribosomal subunit 16S, nuclear ribosomal
626 internal transcribed spacer (ITS), as well as small nuclear ribosomal subunit 18S. These
627 markers were combined with all publicly available *Physalia* and *Rhizophysa* sequences for the
628 same genes, from NCBI. Sequences were aligned with MAFFT, and gene trees inferred with
629 IQtree2, as described above.

630 A phylogeny of single nucleotide polymorphisms (SNPs) was assembled using **SVDquartets**,
631 as implemented in PAUP*, v. 4.0a (67). SNPs were selected based on the following filters:
632 minimum Phred quality of 40, minimum and maximum depth of 2x and 99x respectively,
633 maximum proportion of missing data of 25%, minimum distance between SNPs set to 100
634 base pairs, excluding sites with only alternative alleles called, and only selecting bi-allelic SNPs.
635 The final dataset contained 839,510 SNPs. **SVDquartets** was used to infer a phylogeny of all
636 specimens without population-level information, and a phylogeny with specimens assigned to
637 populations based on results of the principal component and shared ancestry analyses. For
638 the latter, support was evaluated using 100 bootstraps.

639 Principal components analysis

640 Principal component analysis (PCA) was performed on estimated genotype likelihoods, calcu-
641 lated using **ANGSD**, v. 0.935 (68), on reads mapped to a random sample of 100,000 non-repeat
642 genomic regions, each larger than 1,000 base pairs. Sites were included based on the follow-
643 ing filters: p-value of variability below 1e-6, minimum Phred quality score of 40, minimum
644 and maximum depth of 2x and 99x respectively, and present in a minimum of 92 individuals
645 (75% of 123 samples). PCA and ancestry analyses were performed using **PCANGSD**, v. 1.21
646 (69), **-admix-alpha** set to 50 and allowing the software to choose the optimal number of
647 components.

648 PCA and shared ancestry analyses were repeated on the full subset of samples, using a min-
649 imum of 100 samples (75% of 133 samples), as well as with reads mapped to the reference
650 transcriptome. PCA was also performed within each lineage detected in this study. Subpopu-
651 lations were classified using k-means clustering of the resultant covariance matrices, with the
652 optimal number of clusters chosen using an elbow plot of eigenvalues.

653 **Population statistics**

654 Populations genomic statistics (pi , D_{xy} , and F_{st}) were calculated using **pixy**, v. 1.2.7 (70),
655 on a dataset of alleles filtered with the following metrics: minimum Phred quality score of
656 40, minimum and maximum depth of 2x and 99x respectively, maximum missingness of 25%.
657 Statistics were calculated on a random sample of 100,000 non-repeat genomic regions, each
658 larger than 1,000 base pairs, and summary statistics were averaged over these regions. Statistics
659 were calculated between lineages as assigned using PCA and ancestry analyses; between
660 subpopulations, as defined using PCA and ancestry within species; and between lineage +
661 sampling location combinations.

662 D-statistics were calculated using **Dsuite**, v. 0.5 r57 (71), the **Dquartets** function on the same
663 dataset of filtered alleles. Populations were defined using the results of the shared ancestry
664 analysis on 133 high and moderate quality samples. Significant signatures of introgression
665 were defined as having a Z-score >2 and a p-value <0.05 .

666 **Morphological scoring of images**

667 ID numbers for ~11,000 research-grade photos of *Physalia* were downloaded from
668 inaturalist.org in October, 2023. Of these, a subset of 4,047 images were scored,
669 selected to include multiple images from all represented countries and time zones, as well as
670 to maximize representation in areas hypothesized to have increased diversity (specifically New
671 Zealand, South Africa, and Brazil). Images were categorized based on quality and perspective
672 on the animal (e.g., ventral, dorsal, or lateral), and were scored for the following traits:

- 673 • sail height, binned into four categories: as tall as float, $>1/3$ the height of float, $<1/3$
674 the height of float, or flush with float / no visible height
- 675 • length of float anterior to the end of the sail, binned as $<1/4$ sail length, $>1/4$ and $<3/4$
676 sail length, and $>3/4$ sail length
- 677 • presence of pink or purple coloration on the sail
- 678 • presence of yellow or reddish coloration on gastrozooids
- 679 • clear, glassy float coloration
- 680 • arrangement of principal fishing tentacles (defined as having tentilla tightly packed),
681 categorized as having one central tentacle, two central tentacles, or many
- 682 • presence of a gap between the central (main) and posterior colony zone of zooids
- 683 • juvenile morphology, defined as having a globular float with one or no major tentacles,
684 no sail height, and few zooids.

685 Each trait was only scored when visible, therefore absence of a score is not evidence of trait
686 absence. Images were scored in batches by three different researchers (SHC, RBA, and NA).
687 To ensure consistency, researchers independently scored the same set of 100 randomly sampled
688 photos, and compared results to bring qualitative assignments into alignment. Images classified

689 as being of poor quality, taken from a ventral perspective, or of a juvenile specimen as defined
690 above, were excluded from downstream analyses.

691 Four morphological types were identified from scored images in combination with descriptions
692 and diagrams of historically hypothesized species. Rules for assigning images to one of these
693 four morphologies were established based on combinations of characters, see Fig. S12. Given
694 the potential plasticity of the traits in question (e.g., color, size), no single trait was considered
695 diagnostic. Genomic clusters were associated with these morphologies by scoring the same
696 traits on the specimens processed for genomic analyses.

697 When image assignments extended the known range of a genetically defined lineage, these
698 images were independently rescored by two researchers. If there was any discrepancy in the
699 resulting scores for a trait relative to the morphological assignment, the image was excluded
700 from the rule-based analysis.

701 References

- 702 1. S. Van der Spoel, The basis for boundaries in pelagic biogeography. *Progress in Oceanography* **34**, 121–133 (1994).
- 703 2. M. V. Angel, Biodiversity of the pelagic ocean. *Conservation Biology* **7**, 760–772 (1993).
- 704 3. R. D. Norris, Pelagic species diversity, biogeography, and evolution. *Paleobiology* **26**, 236–258 (2000).
- 705 4. K. T. Peijnenburg, E. Goetze, High evolutionary potential of marine zooplankton. *Ecology and Evolution* **3**, 2765–2781 (2013).
- 706 5. B. W. Bowen, M. R. Gaither, J. D. DiBattista, M. Iacchei, K. R. Andrews, W. S. Grant, R. J. Toonen, J. C. Briggs, Comparative phylogeography of the ocean planet. *Proceedings of the National Academy of Sciences* **113**, 7962–7969 (2016).
- 707 6. S. B. Johnson, J. R. Winnikoff, D. T. Schultz, L. M. Christianson, W. L. Patry, C. E. Mills, S. H. Haddock, Speciation of pelagic zooplankton: Invisible boundaries can drive isolation of oceanic ctenophores. *Frontiers in Genetics* **13**, 970314 (2022).
- 708 7. S. H. Haddock, A golden age of gelata: Past and future research on planktonic ctenophores and cnidarians. *Hydrobiologia* **530**, 549–556 (2004).
- 709 8. J. B. Pfaller, A. C. Payton, K. A. Bjorndal, A. B. Bolten, S. F. McDaniel, Hitchhiking the high seas: Global genomics of rafting crabs. *Ecology and Evolution* **9**, 957–974 (2019).
- 710 9. R. R. Helm, The mysterious ecosystem at the ocean’s surface. *PLOS Biology* **19**, e3001046 (2021).
- 711 10. C. J. Anthony, B. Bentlage, R. R. Helm, Animal evolution at the ocean’s water-air interface. *Current Biology* **34**, 196–203 (2024).
- 712 11. F. Chong, M. Spencer, N. Maximenko, J. Hafner, A. C. McWhirter, R. R. Helm, High concentrations of floating neustonic life in the plastic-rich north pacific garbage patch. *PLOS Biology* **21**, e3001646 (2023).
- 713 12. Z. Long, Begin ocean garbage cleanup immediately. *Science* **381**, 612–613 (2023).

714 13. I. T. Wysocki, M. Wang, C. Morales-Caselles, L. C. Woodall, K. Syberg, B. C. Almroth, M. Fernandez, L. Monclús, S. P. Wilson, M. Warren, D. Knoblauch, R. R. Helm, Plastics treaty text must center ecosystems. *Science* **382**, 525–526 (2023).

715 14. A. K. Totton, Studies on *Physalia physalis* (L.). Pt. 1 Natural history and morphology. *Discovery Reports* **30**, 301–368 (1960).

716 15. J. Bardi, A. C. Marques, Taxonomic redescription of the Portuguese man-of-war, *Physalia physalis* (Cnidaria, Hydrozoa, Siphonophorae, Cystonectae) from Brazil. *Iheringia. Série Zoologia* **97**, 425–433 (2007).

717 16. P. Pugh, A history of the sub-order Cystonectae (Hydrozoa: Siphonophorae). *Zootaxa* **4669**, 1–91 (2019).

718 17. D. Pontin, R. Cruickshank, Molecular phylogenetics of the genus *Physalia* (Cnidaria: Siphonophora) in New Zealand coastal waters reveals cryptic diversity. *Hydrobiologia* **686**, 91–105 (2012).

719 18. M. J. Costello, P. Tsai, P. S. Wong, A. K. L. Cheung, Z. Basher, C. Chaudhary, Marine biogeographic realms and species endemism. *Nature Communications* **8**, 1057 (2017).

720 19. C. Munro, Z. Vue, R. R. Behringer, C. W. Dunn, Morphology and development of the Portuguese man of war, *Physalia physalis*. *Scientific Reports* **9**, 15522 (2019).

721 20. Y. K. Okada, Développement post-embryonnaire de la Physalie Pacifique. *Memoirs of the College of Science, Kyoto Imperial University. Series B* **8**, 1–26 (1932).

722 21. J. E. Purcell, Predation on fish larvae by *Physalia physalis*, the Portuguese man of war. *Marine Ecology Progress Series. Oldendorf* **19**, 189–191 (1984).

723 22. A. Damian-Serrano, S. H. Haddock, C. W. Dunn, The evolution of siphonophore tentilla for specialized prey capture in the open ocean. *Proceedings of the National Academy of Sciences* **118**, e2005063118 (2021).

724 23. E. Dodge Wangersky, C. E. Lane, Interaction between the plasma of the loggerhead turtle and toxin of the Portuguese man-of-war. *Nature* **185**, 330–331 (1960).

725 24. C. J. Anthony, Beachside banquet: Ants' appetite for shipwrecked siphonophores. *Food Webs* **38**, e00332 (2024).

726 25. L. Prieto, D. Macías, A. Peliz, J. Ruiz, Portuguese Man-of-War (*Physalia physalis*) in the Mediterranean: A permanent invasion or a casual appearance? *Scientific Reports* **5**, 11545 (2015).

727 26. J. L. Headlam, K. Lyons, J. Kenny, E. S. Lenihan, D. T. G. Quigley, W. Helps, M. M. Dugon, T. K. Doyle, Insights on the origin and drift trajectories of Portuguese man of war (*Physalia physalis*) over the Celtic Sea shelf area. *Estuarine, Coastal and Shelf Science* **246**, 107033 (2020).

728 27. D. R. Pontin, M. J. Watts, S. P. Worner, “Using multi-layer perceptrons to predict the presence of jellyfish of the genus *Physalia* at New Zealand beaches” in *2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)* (IEEE, 2008), pp. 1170–1175.

729 28. A. Canepa, J. E. Purcell, P. Córdova, M. Fernández, S. Palma, Massive strandings of pleustonic Portuguese Man-of-War (*Physalia physalis*) related to ENSO events along the southeastern Pacific Ocean. *Latin American Journal of Aquatic Research* **48**, 806–817 (2020).

730 29. N. Bourg, A. Schaeffer, P. Cetina-Heredia, J. C. Lawes, D. Lee, Driving the blue fleet: Temporal variability and drivers behind bluebottle (*Physalia physalis*) beachings off Sydney, Australia. *PLOS One* **17**, e0265593 (2022).

731 30. K. Adachi, H. Miyake, T. Kuramochi, K. Mizusawa, S. Okumura, Genome size distribution in phylum Cnidaria. *Fisheries Science* **83**, 107–112 (2017).

732 31. N. Ahuja, X. Cao, D. T. Schultz, N. Picciani, A. Lord, S. Shao, K. Jia, D. R. Burdick, S. H. Haddock, Y. Li, others, Giants among Cnidaria: Large nuclear genomes and rearranged mitochondrial genomes in siphonophores. *Genome Biology and Evolution* **16**, evae048 (2024).

733 32. A. Collins, Phylogeny of medusozoa and the evolution of cnidarian life cycles. *Journal of Evolutionary Biology* **15**, 418–432 (2002).

734 33. A. G. Collins, S. Winkelmann, H. Hadrys, B. Schierwater, Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data. *Zoologica Scripta* **34**, 91–99 (2005).

735 34. C. W. Dunn, P. R. Pugh, S. H. Haddock, Molecular phylogenetics of the Siphonophora (Cnidaria), with implications for the evolution of functional specialization. *Systematic Biology* **54**, 916–935 (2005).

736 35. B. D. Ortman, A. Bucklin, F. Pages, M. Youngbluth, DNA barcoding the medusozoa using mtCOI. *Deep Sea Research Part II: Topical Studies in Oceanography* **57**, 2148–2156 (2010).

737 36. Linné Carl von, Gmelin Johann Friedrich, Bernuset Pierre, Delamollière Jean Baptiste, *Caroli a Linné, Systema Naturæ Per Regna Tria Naturæ, Secundum Classes, Ordines, Genera, Species; Cum Characteribus, Differentiis, Synonymis, Locis* (1788)vols. I, Part VI.

738 37. La Martinière, Sur quelques insects. *Observations et Mémoires sur la Physique, sur l'Histoire Naturelle et sur les Arts et Métiers tome 31*, Pl. II (1787).

739 38. Péron François, Freycinet Louis Claude Desaulses de, Lesueur Charles Alexandre, Petit Nicolas-Martin, Péron François, Baudin Nicolas, *Voyage de Découvertes Aux Terres Australes* (Paris, De l'Imprimerie impériale, 1807)vols. Historique, t. 1.

740 39. C. Chun, Die Siphonophoren der Plankton-Expedition. *Ergebnisse der in dem Atlantischen Ocean von Mitte Juli bis Anfang November Bd. 2.K.b*, 1–126 (1897).

741 40. K. C. Schneider, Mittheilungen über Siphonophoren. III. Systematische und andere Bemerkungen. *Zoologischer Anzeiger Bd. 21*, 51–53, 73–93, 114–133, 153–173, 185–200 (1898).

742 41. H. Sloane, *A Voyage to the Islands Madera, Barbados, Nieves, s. Christophers and Jamaica, with the Natural History of the Herbs and Trees, Four-Footed Beasts, Fishes, Birds, Insects, Reptiles, Etc. Of the Last of Those Islands.* (London, 1725)vol. 2.

743 42. National Oceanographic and Atmospheric Administration. National Weather Service, United States Army. arcGIS user: dhwilso1_NASA., Major ocean currents map.

744 43. G. E. Hutchinson, The paradox of the plankton. *The American Naturalist* **95**, 137–145 (1961).

745 44. M. J. Behrenfeld, R. O'Malley, E. Boss, L. Karp-Boss, C. Mundt, Phytoplankton biodiversity and the inverted paradox. *ISME Communications* **1**, 52 (2021).

746 45. J. Chen, S. Dellaporta, “Urea-based plant DNA miniprep” in *The Maize Handbook* (Springer, 1994), pp. 526–527.

747 46. A. Guang, M. Howison, F. Zapata, C. Lawrence, C. W. Dunn, Revising transcriptome assemblies with phylogenetic information. *PLOS One* **16**, e0244202 (2021).

748 47. S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, A. M. Phillippy, Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Research* **27**, 722–736 (2017).

749 48. S. Koren, A. Rhie, B. P. Walenz, A. T. Dilthey, D. M. Bickhart, S. B. Kingan, S. Hiendleder, J. L. Williams, T. P. Smith, A. M. Phillippy, De novo assembly of haplotype-resolved genomes with trio binning. *Nature Biotechnology* **36**, 1174–1182 (2018).

750 49. S. Nurk, B. P. Walenz, A. Rhie, M. R. Vollger, G. A. Logsdon, R. Grothe, K. H. Miga, E. E. Eichler, A. M. Phillippy, S. Koren, HiCanu: Accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. *Genome Research* **30**, 1291–1305 (2020).

751 50. H. Li, Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–3100 (2018).

752 51. M. J. Roach, S. A. Schmidt, A. R. Borneman, Purge Haplotigs: Allelic contig reassignment for third-gen diploid genome assemblies. *BMC Bioinformatics* **19**, 1–10 (2018).

753 52. L. Coombe, J. X. Li, T. Lo, J. Wong, V. Nikolic, R. L. Warren, I. Birol, LongStitch: High-quality genome assembly correction and scaffolding using long reads. *BMC Bioinformatics* **22**, 1–13 (2021).

754 53. J. M. Flynn, R. Hubley, C. Goubert, J. Rosen, A. G. Clark, C. Feschotte, A. F. Smit, RepeatModeler2 for automated genomic discovery of transposable element families. *Proceedings of the National Academy of Sciences* **117**, 9451–9457 (2020).

755 54. M. Manni, M. R. Berkeley, M. Seppey, F. A. Simão, E. M. Zdobnov, BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. *Molecular biology and evolution* **38**, 4647–4654 (2021).

756 55. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

757 56. D. E. Wood, J. Lu, B. Langmead, Improved metagenomic analysis with Kraken 2. *Genome Biology* **20**, 1–13 (2019).

758 57. C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, J. J. Lee, Second-generation PLINK: Rising to the challenge of larger and richer datasets. *Gigascience* **4**, s13742–015 (2015).

759 58. H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv* (2013).

760 59. H. Li, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987–2993 (2011).

761 60. T. R. Ranallo-Benavidez, K. S. Jaron, M. C. Schatz, GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. *Nature Communications* **11**, 1432 (2020).

762 61. G. Marcais, C. Kingsford, Jellyfish: A fast k-mer counter. *Tutorialis e Manuais* **1**, 1038 (2012).

763 62. J.-J. Jin, W.-B. Yu, J.-B. Yang, Y. Song, C. W. DePamphilis, T.-S. Yi, D.-Z. Li, GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. *Genome Biology* **21**, 1–31 (2020).

764 63. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Molecular biology and evolution* **30**, 772–780 (2013).

765 64. B. Minh, H. Schmidt, O. Chernomor, D. Schrempf, M. Woodhams, A. Von Haeseler, R. L. IQ-TREE, IQ-TREE2: New models and efficient methods for phylogenetic inference in the genomic era. *DOI: <https://doi.org/10.1093/molbev/msaa015>* **37**, 1530–1534 (2020).

766 65. S. Kalyaanamoorthy, B. Q. Minh, T. K. Wong, A. Von Haeseler, L. S. Jermiin, ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nature Methods* **14**, 587–589 (2017).

767 66. D. T. Hoang, O. Chernomor, A. Von Haeseler, B. Q. Minh, L. S. Vinh, UFBoot2: Improving the ultrafast bootstrap approximation. *Molecular Biology and Evolution* **35**, 518–522 (2018).

768 67. J. Chifman, L. Kubatko, Quartet inference from SNP data under the coalescent model. *Bioinformatics* **30**, 3317–3324 (2014).

769 68. T. S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: Analysis of Next Generation Sequencing Data. *BMC Bioinformatics* **15**, 356 (2014).

770 69. J. Meisner, A. Albrechtsen, Inferring population structure and admixture proportions in low-depth NGS data. *Genetics* **210**, 719–731 (2018).

771 70. K. L. Korunes, K. Samuk, Pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. *Molecular Ecology Resources* **21**, 1359–1368 (2021).

772 71. M. Malinsky, M. Matschiner, H. Svardal, Dsuite-fast D-statistics and related admixture evidence from VCF files. *Molecular Ecology Resources* **21**, 584–595 (2021).