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Abstract 

 

This study investigates brain dynamic connectivity patterns in psychosis and their relationship with 

psychopathological profile and cognitive functioning using a novel dynamic connectivity pipeline on 

resting-state EEG.  

Data from seventy-eight individuals with first-episode psychosis (FEP) and sixty control subjects 

(CTR) were analyzed. Source estimation was performed using eLORETA, and connectivity matrices 

in the alpha band were computed with the weighted phase-lag index. A modified k-means algorithm 

was employed to cluster connectivity matrices into distinct brain network states (BNS), from which 

metrics were extracted. 

The segmentation revealed five distinct BNSs. FEP exhibited significantly lower connectivity power 

in BNS 2 and 5 and a greater duration dispersion in BNS 1 than CTR. Negative correlations were 

identified between BNS metrics and negative symptoms in FEP. In CTR, correlations were found 

between BNS metrics and cognitive domains. 

This analysis method highlights the variability of neural dynamics in psychosis and their relationship 

with negative symptoms. 
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Introduction 

 

Psychosis is a multifaceted mental condition characterized by a significant disruption in the 

perception and cognition of reality, often manifesting through delusions, hallucinations, disorganized 

thought and speech processes, and self-disturbances, as well as cognitive and negative symptoms, 

particularly in primary or idiopathic psychoses, such as schizophrenia 1–3. Functional neuroimaging 

research has consistently shown that psychotic disorders are associated with altered patterns of brain 

function, both at rest and during the execution of cognitive tasks (see 4 for a critical review). 

Despite extensive research, inter-individual variability in patterns of brain function has limited the 

identification of a unifying model of neural mechanisms underlying psychosis 5–8, hindering the 

application of targeted diagnostic tools and early identification of the most effective treatment. This 

underscores the need for a new approach that can define patient-specific profiles. 

Among the available functional neuroimaging techniques, electroencephalography (EEG) provides a 

unique opportunity to correlate recurring activity patterns with their underlying brain functional 

properties, contributing to describing what we now define as brain states 9–11. Its unsurpassed 

temporal resolution has proven to be a valuable tool in studying intermediate phenotypes in psychosis 

12–14. Previous studies have reported abnormalities in brain electrical activity in psychotic disorders, 

such as decreased activity in the 8-12 Hz (alpha) frequency band 15,16. In addition to spectral EEG 

measures, EEG analysis techniques have increasingly focused on patterns of functional brain 

connectivity 17 and applied these methods to schizophrenia, identifying a disruption in the alpha-band 

connectivity 18. Magnetoencephalography (MEG) has confirmed network differences between 

psychosis and controls in the alpha band 19,20. Additionally, Phalen et al. 19 observed network features 

associated with psychopathological domains in psychosis. 

Traditional static connectivity measures, often combined with graph theory metrics, may not 

adequately capture brain activity's complex and rapidly changing nature 21. Measures of dynamic 
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connectivity and new methods to model the transient states of brain networks have been developed 

to monitor and decipher these complex electrophysiological oscillations 22,23. 

The current work introduces a novel methodology to analyze resting-state EEG (rsEEG) that 

integrates source localization techniques with dynamic functional connectivity and advanced 

clustering algorithms. This approach is inspired by the classical concept of EEG microstates, which 

have been used to capture the dynamic aspects of brain electrical activity 24,25. Defining the specific 

temporal properties of the EEG signal and connectivity patterns allows us to identify and characterize 

distinct brain network states (BNS). This method has recently been successfully applied to extract 

EEG dynamic connectivity patterns 26,27. The current study aimed to investigate source-space 

functional dynamic connectivity analysis in the rsEEG alpha band in individuals with first-episode 

psychosis (FEP) and healthy control subjects (CTR). Furthermore, we explored the potential 

relationships between these network (dynamic) states and measures of cognitive performance and 

psychopathological profiles. We hypothesize that BNS features may be related to cognition in both 

groups and, specifically, to negative symptoms in psychosis. 
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Results 

 

1. Clustering Results 

After applying the modified k-means algorithm to the EEG connectivity matrices, we identified five 

distinct BNS. Notably, BNS 2, 4, and 5 were characterized by a greater strength of visual regions. 

Besides this visual strength, BNS 4 revealed a more substantial activity in ROIs within the left 

hemisphere. In contrast, BNS 5 showed more significant activity in the right hemisphere, particularly 

for DAN and SAN. BNS 2 shows a balanced and almost symmetric activity in both hemispheres, 

mostly DAN and SAN. A greater strength of the DMN nodes marked BNS 1 and 3. On top of its 

DMN prevalence, BNS1 has more present activity in the left hemisphere, especially in the SAN and 

MOT networks, whereas the DAN activity is symmetric. For BNS 3, we observe stronger activity in 

the “Other” RSNs in the right hemisphere but symmetric activity in the DAN and SAN. 

Figure 1 shows a representation of the BNS and their prevalent function. 

 

 

Figure 1. The resulting BNS with their prevalent function and node distribution based on strength. 

 

Other DMN DAN SAN AUD VIS MOT
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2. Pairwise Comparisons 

Upon comparing the BNS metrics between the FEP and CTR, significant differences emerged in the 

following metrics: GCP, standard deviation of duration, and transition probabilities, as highlighted in 

Figure 2. Specifically, BNS 2 and 5 exhibited a lower GCP in FEP, indicating in CTR more robust 

functional connectivity within these states. In contrast, BNS 1 showed a higher variability in duration 

among FEP, suggesting altered temporal dynamics in this state. Transitions from BNS 5 to BNS 4 

occurred more frequently in FEP. 

 

 

Figure 2. Boxplots with individual values of the significant differences (p<0.05) of the BNS 

metrics between FEP and CTR. 

 

3. Correlation Analysis 

Significant correlations were observed between BNS metrics and cognitive performance only in CTR, 

as highlighted in Figure 3. 

In CTR, the metrics associated with the visually dominant BNS (BNS 2, 4, and 5) were positively 

correlated with the full IQ and Vocabulary scores on WASI. Furthermore, BNS 1 metrics were 
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negatively correlated with social cognition and overall performance on the MCCB. Transition 

metrics, particularly from the right to the left hemisphere (BNS 5 to BNS 4), were positively 

correlated with attention and vigilance scores on the MCCB. 

Conversely, in FEP, no significant correlations were found between BNS metrics and cognitive 

domain scores. However, negative correlations were identified between the GCP of BNS 1 and BNS 

2 and the SANS' Attention (SANS ATT) and Anhedonia–Asociality (SANS ANA) scales. 

No significant correlations were observed between the BNS metrics and GAS. 

 

 

Figure 3. Scatterplots with regression lines of significant correlations (p<0.01) between the BNS 

metrics and the cognitive domains (measured by WASI and MCCB) in FEP (blu circles) and CTR 

(orange circles) and negative symptoms (assessed by SANS) in FEP. 
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Discussion 

 

The current study proposes a new methodology based on dynamic connectivity from EEG resting-

state data and applies it to investigate neural correlates of psychosis and their relationship with 

cognitive and behavioral phenotypes. The clustering of alpha dynamic connectivity matrices revealed 

five distinct BNS, and some features showed significant differences between FEP and CTR. 

Particularly, BNS metrics correlated with cognition only in CTR and with negative symptoms in FEP, 

and, in line with the clinical characteristics of psychosis 1–3,8, this may underline potential neural 

correlates of the illness. 

 

1. Interpretation of Identified BNS 

Identifying distinct BNS provides crucial information on the neural dynamic processing at rest. To 

note, the five resulting BNS were observed in both groups without differences in terms of coverage 

and occurrence. This finding points out that our approach reveals brain connectivity reconfigurations 

in the alpha band during the resting state, a way for large-scale neural communication in the human 

brain without any specificity for psychotic illness. 

BNS 2, 4, and 5, associated with visual regions, confirm a significant role for visual processing in 

brain network activity 28. This was expected, the recording paradigm being with the eyes open. 

However, the hemispheric differences observed in BNS 4 and BNS 5, with stronger left and right 

hemisphere activities, highlight brain function lateralization 29. BNS 1 and 3, marked by a higher 

representation of the default mode network (DMN), confirm the involvement of internally focused 

thought processes in the resting state 30. 

 

2. Group Differences in BNS Metrics 

The observed differences in GCP, duration variability, and transition probabilities between FEP and 

CTR are noteworthy. Compared to CTR, the lower GCP in BNSs 2 and 5 in FEP suggests a reduced 
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alpha band functional connectivity. One of the possible explanations could be the instability of 

connections between ROIs in FEP. The greater variability in the duration of BNS 1 in FEP points to 

altered temporal dynamics, which may reflect a disruption in maintaining consistent brain states or 

the heterogeneity of psychosis 7. This extends the finding of altered MEG alpha neural dynamics 

previously observed in schizophrenia 31. 

Additionally, the increased frequency of transitions from BNS 5 to BNS 4 in FEP suggests an altered 

pattern of neural communication between the right and left hemispheres compared to CTR. 

Our results support data from other imaging modalities, which revealed group differences and altered 

network connectivity in schizophrenia 32. 

 

3. Relationship between BNS Metrics and Clinical assessment 

3.1 Relationship Between BNS Metrics and Cognitive Performance 

Contrary to our hypothesis, BNS features were only related to the cognitive domains in CTR but not 

FEP.  

In CTR, the positive correlations between metrics of visually dominant BNS (2, 4, and 5) and 

cognitive performance, including IQ and vocabulary scores, indicate that efficient visual processing 

is linked to higher general cognitive abilities 33. The relation of BNS 4 (stronger activity on the left 

hemisphere) and BNS 5 (stronger on the right hemisphere) confirms the links between changes in 

lateralization and cognitive performance 34. 

The negative correlations of BNS 1 metrics with social cognition and overall MCCB performance 

suggest that more pronounced DMN activity may burden these cognitive domains, confirming the 

complex links between this RSN and cognition 35,36. The transition metrics' positive correlation with 

attention and vigilance scores implies that specific brain state transitions are crucial for sustained 

attention. 

If, on the one hand, the relationship between descriptors of higher cognitive efficiency and BNS 

features in CTR suggests that BNS may serve as potential proxies for general brain functioning, on 
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the other hand, the presence of specific associations indicates that BNS could be a viable candidate 

for characterizing the physiological processes underlying certain cognitive domains in CTR. 

The lack of significant correlations in the psychosis group may be due to disrupted connectivity 

patterns that affect cognitive integration 8. As mentioned, this can also be explained by the 

heterogeneity of FEPs 7. A division into subgroups could be interesting to observe more specific 

discrimination between BNS metrics, cognitive performance, and clinical phenotype 37–40. 

 

3.2 Association Between BNS Metrics and Negative Symptoms 

In line with our hypothesis, BNS features were associated only with negative symptoms and not with 

other psychopathological domains in FEP. The negative correlations between GCP in BNS 1 and BNS 

2 with the SANS attention and anhedonia-asociality scales in FEP indicate that altered connectivity 

within these BNS is associated with specific psychopathological symptoms considered core of 

schizophrenia 41,42. These findings suggest that disruptions in particular brain states may underlie 

specific negative symptoms of psychosis, providing a potential pathophysiology and target for 

therapeutic interventions. 

 

4. Advantages of the BNS approach 

BNS metrics used in this study could discriminate patients from healthy subjects, revealing a strong 

relationship between the extracted metrics and cognitive profiles. They also correlated with the 

severity of negative symptoms. These findings are of interest, as they offer a new perspective in the 

analysis of psychosis. It points out that the methods and analysis of brain dynamics are crucial for 

clinical application as potential neural correlates of the disease.  

From the resulting BNS sequence, on top of the current usual metrics derived from classical 

microstates 43, new metrics can be extracted based on complexity measures 44, which have already 

shown results in the observed dataset 19. Therefore, our approach can offer extensive metrics 

correlating well with cognitive and clinical scales, describing the brain dynamics in resting and 
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potentially task-related states 26,27. These metrics could be input for future machine learning and 

classification work, which would help establish a patient-specific profile. 

 

5. Methodological Considerations and Limitations 

The current work focused on the alpha band based on previous literature. This could be extended to 

explore the behavior of other frequency bands, which could provide complementary but more 

speculative information. 

Our study employs advanced source localization and clustering techniques, which offer a detailed 

analysis of brain network dynamics. However, several limitations should be noted. Substantial 

variability can be observed depending on the inverse solution used, the connectivity technique 

approach, and the clustering algorithm. Moreover, while advantageous for identifying common 

patterns, the group-level clustering approach may overlook individual variability. Additionally, 

potential confounding factors such as medication effects were not fully controlled, which could 

influence the findings. In future works, some steps of the methodology can be tuned to increase the 

granularity of our proposed approach: a more robust group and subgroup definition and individual-

level vs. group-level clustering. Combining EEG with normative modeling is highly promising for 

developing patient-specific approaches 45. 

 

6. Future Directions and Clinical Implications 

The approach proposed in this study needs to be explored and validated with different datasets. 

Replicating our results and refining the methodology could lead to significant advancements in the 

field of psychosis. Like the classical microstate approach, defining BNS templates could facilitate 

easier categorization of resting-state brain activity and enable more global and comparable analyses 

between datasets. Future research should also consider longitudinal studies and multimodal 

neuroimaging approaches to validate and extend our findings. Investigating the stability of BNS over 

time and their relationship with treatment responses could provide valuable insights. The overall brain 
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state field could be vital in addressing the relationship between neural dynamics, physiological 

changes, and phenotypes 10. Clinically, our findings have the potential to enhance diagnostic accuracy 

and guide the development of personalized interventions based on specific brain network disruptions 

in psychosis. Identifying reliable biomarkers of psychosis through EEG could significantly impact 

the management and treatment of this complex disorder, thereby improving patient outcomes. 

 
 
Methods and Materials 
 

1 - Participants 

We examined rsEEG sourced from the OpenNeuro database 46,47 (data retrieved on November 29, 

2023). The dataset comprised 78 FEP (23 female; age 22.9±4.8 years) and 60 age-matched CTR (26 

female; 22.8±4.9). Table 1 contains a complete description with demographics and clinical and 

cognitive data. 

 FEPs Control Test-statistic 

n 78 60  
Age (years) 22.8 (13-36, 4.9) 22.9 (12.8-38.3, 4.8) t136 = 0.07, p = 0.94, g = 0.01 

Sex (F/M) 23/55 26/34 𝜒!"  = 2.84, p = 0.09 
Race  
(Asian/Black/Mixed/Undisclosed/White) 6/25/6/1/40 13/6/2/0/39 𝜒#"  = 15.15, p = 0.004 
Ethnicity  
(Hispanic/Not Hispanic/Unknown) 3/75/0 5/54/1 𝜒""  = 2.62, p = 0.27 

Medicated/Drug-Free/ Drug-Naïve 51/14/13 -  
WASI    
FULL IQ 105 (75-132, 13.8) 109 (90-143, 9.3) 

t136 = 2.03, p = 0.045,  
g = 0.34 

MATRIX TS 54 (32-68, 8.8) 58.7 (45-70, 5.4) 
t136 = 3.82, p < 0.001,  

g = 0.63 

VOCAB TS 51.8 (32-73, 9.8) 52 (34-76, 7.3) t136 = 0.2, p = 0.84, g = 0.03 

MCCB    
Attention/Vigilance 38.4 (11-60, 11.8) 47.3 (26-64, 8.5) 

t136 = 5.07, p < 0.001,  
g = 0.85 

Speed of processing 40.4 (8-74, 13.8) 51.8 (35-73, 9.3) 
t136 = 5.67, p < 0.001,  

g = 0.96 

Working memory 41.9 (15-75, 12.3) 48.2 (30-74, 8.9) 
t136 = 3.48, p < 0.001,  

g = 0.58 

Verbal learning 43.9 (25-67, 10.3) 53.6 (37-77, 9) 
t136 = 5.82, p < 0.001,  

g = 0.99 

Visual learning 40.2 (8-63, 13) 45.8 (25-61,7.9) 
t136 = 3.13, p = 0.002,  

g = 0.52 

Reasoning and problem-solving 44.2 (18-63, 11.4) 50.6 (33-65,8.1) 
t136 = 3.81, p < 0.001,  

g = 0.64 

Social cognition 44.5 (11-66, 11.9) 54.1 (35-67, 7.6) 
t136 = 5.71, p < 0.001,  

g = 0.95 
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Overall 36.8 (1-65, 14.3) 50.1 (28-71, 8) 
t136 = 6.89, p < 0.001,  

g = 1.15 

SAPS    
Hallucinations 6.2 (0-22, 5.9) -  
Delusions 10.8 (0-29, 7.3) -  
Bizarre Behavior 2.2 (0-17, 2.9) -  
Positive Formal Thought Disorder 3.5 (0-20, 4.7) -  
SANS    
Affective Flattening or Blunting 8.9 (0-29, 7) -  
Alogia 3.2 (0-12, 3.3) -  
Avolition-Apathy 7 (0-14, 4) -  
Anhedonia-Asociality 8.3 (0-22, 6) -  
Attention 3.7 (0-12, 3.3) -  
GAS 48.5 (23-90, 15) -  

 
Table 1. Dataset description. Continuous variables are reported in the format mean (range, standard 
deviation) and underwent a Welch’s t-test, and Hedges’g was computed. For the categorical variables, a c2 
test was performed. 
 

For each participant, a 5-minute rsEEG recording was acquired while they kept their eyes open. The 

EEG data were collected using the EEG channels of an Elekta Neuromag Vectorview MEG system. 

EEG was recorded using a low-impedance 10-10 system 60-channel cap at a sampling frequency of 

1000 Hz. Since the data was available in 2 different EEG sensor arrays, a further validation analysis 

was performed, and the results are reported in the supplementary material (Table S1). 

 

2 – Methods/Analysis 

Figure 4 is a graphical abstract of our novel methodology that will be detailed in the following 

sections. 
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Figure 4. Graphical abstract of methods. 

 

2.1 - Preprocessing 

Pre-processing was performed with the EEGLAB toolbox 48.  

First, a 1 Hz high-pass filter was applied. Then, a round of low-level cleaning to remove the artifacts 

was applied: flat channels were removed with a flatline criterion of 5 seconds, and line noise (60 Hz 

and harmonics) was removed. Channels with low correlation to their neighbors (< 0.6) were removed. 

The noisy channels were removed with a line noise criterion of 5. Artifact Subspace Reconstruction 

(ASR) was applied to correct non-periodic noise. 

Later, high-level cleaning with ICA was performed using the PICARD algorithm 49,50. Independent 

components were labeled using the ICLabel procedure 51, and components classified as non-brain 

activity were rejected. 

Removed channels were interpolated using the original channel locations using the spherical method. 

Data were re-referenced to the average reference. 

After the initial preprocessing, a second passage of high-level cleaning was performed, including a 

second ICA decomposition, component labeling, and rejection to remove the residual periodic non-

brain artifacts. 
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The final preprocessed data was used for further analysis. 

 

2.2 - Source estimation and connectivity computation 

We employed the exact Low-Resolution Brain Electromagnetic Tomography (eLORETA) algorithm 

for source localization 52. This method allowed us to estimate the cortical sources of EEG signals, 

focusing on 68 regions of interest (ROIs) as delineated by the Desikan-Killiany atlas 53. To perform 

this operation, we used the Boundary Element Method head model fitted to the ICBM MRI template, 

which is composed of three layers (scalp, outer skull, and inner skull), using the OpenMEEG 54 plugin 

from the Brainstorm toolbox 55. The ROI timeseries were estimated based on the average source 

strength of all voxels in each ROI. 

Our primary interest lies in dynamic functional connectivity within the alpha frequency band (7-13 

Hz), which aligns with recent studies showing alterations in the alpha band in EEG spectral 15,16 or 

connectivity 18 features. This was also based on MEG results, where part of the current dataset was 

analyzed 19, highlighting different networks in the alpha band. 

We quantified connectivity patterns using the weighted phase lag index (wPLI), a measure robust to 

the effects of volume conduction and field spread 56. A sliding window approach (window size: 

600ms, corresponding to 6 alpha frequency cycles as advised by Lachaux et al. 57, with a 50% overlap) 

was adopted to capture the temporal evolution of connectivity patterns, leading to 999 connectivity 

matrices per subject. 

 

2.3 - BNS Clustering 

Based on the principles of EEG microstate analysis, we conducted a clustering procedure using a 

modified k-means algorithm 58,59. This technique was chosen due to its ability to identify stable and 

recurring patterns of brain activity, as it was widely used in classical EEG microstate analyses 43,60, 

which we will refer to as BNS 26,27. 
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Unlike traditional approaches, our clustering was conducted at group rather than individual levels. 

The following pre-processing steps were performed on each subject's data. The dynamic connectivity 

matrices, being symmetric, were vectorized by extracting only the lower part (resulting in 2278 

elements for a 68×68 matrix), creating vectors sized 2278×999 for each subject. These vectors were 

then concatenated to generate a comprehensive dataset encompassing 138 subjects. This unified 

vector served as input for the clustering algorithm, following a methodology previously utilized by 

Duprez et al. (15). 

Initially, we explored solutions iteratively within a range of 2 to 20, conducting 100 restarts with 1000 

iterations each. To identify the optimal number of solutions, we designed a meta-criterion based on 

11 clustering criteria 59,61, following an approach proposed by Custo et al. 62. The list of criteria and 

the meta-criterion computation are described in the supplementary material (Table S2). Based on the 

converging results from the several tests performed with this approach, we narrowed the interval to 

between 3 and 7 solutions, with 200 restarts and 1000 iterations, to address the computational weight. 

 

2.4 - Smoothing and Backfitting 

Following the identification of distinct BNS, we applied backfitting to each individual based on global 

map dissimilarity (GMD) 63, which is a distance measure based on the topography of each map and 

is signal invariant 59. Then, after the backfitting, we applied label smoothing based on small segment 

rejection 59: each BNS lasting less than five consecutive matrices was rejected and relabeled. 

2.5 - BNS metrics and function 

From these resulting datasets, we extracted the following BNS metrics: global connectivity power 

(GCP), i.e., the standard deviation of all connectivity indices, as derived from global field power 

(GFP) 63, explained variance (GEV), coverage, duration, occurrence, and transition probabilities 43. 

These metrics provided a comprehensive characterization of the BNS dynamics.  

Additionally, we utilized node strength to link each BNS to resting-state networks (RSN) 27 and to 

characterize its prevalent functional role. Each node was assigned to one of seven RSNs (Figure 5) 
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based on topographic criteria. We then normalized the strength of each RSN by the number of its 

nodes and computed the mean and standard deviation of the normalized values. The RSNs with a 

value above the mean + 1SD were defined as prevalent. 

 

Figure 5. List of ROIs and RSN. AUD: Auditory Network; DAN: Dorsal Attentional Network;  
DMN: Default Mode Network; MOT: Motor Network; SAN: Salient Network; VIS: Visual Network 
2.6 - Statistical analysis 

A multivariate permutation approach was used for statistical analysis, with 10.000 permutations and 

family-wise error rate (FWER) correction based on max correction to control for multiple 

comparisons 64. To assess the differences in BNS metrics between FEP and CTR, we performed 

pairwise comparisons with a significant threshold set at a = 0.05. Furthermore, we conducted a 

Persons’ correlation analysis to explore the relationship between BNS metrics and cognitive 

performance, measured by the MATRICS Consensus Cognitive Battery (MCCB) and the Wechsler 

Abbreviated Scale of Intelligence (WASI), as well as psychopathological symptoms, assessed by the 

Scale for the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative 

Symptoms (SANS), and the Global Assessment Scales (GAS). Due to the explorative nature of this 

analysis, only correlations with p-values lower than the 0.01 threshold are reported.  

RSN Node RSN Node
Other l.BSTS DMN l.paraH
Other r.BSTS DMN r.paraH
DAN l.cACC DAN l.pOPER
DAN r.cACC DAN r.pOPER
SAN l.cMFG DAN l.pORB
SAN r.cMFG DAN r.pORB
VIS l.CUN DAN l.pTRI
VIS r.CUN DAN r.pTRI
Other l.ENT Other l.periCAL
Other r.ENT Other r.periCAL
Other l.FP MOT l.postC
Other r.FP MOT r.postC
VIS l.FUS DMN l.PCC
VIS r.FUS DMN r.PCC
Other l.IPL MOT l.preC
Other r.IPL MOT r.preC
DAN l.ITG DMN l.PCUN
DAN r.ITG DMN r.PCUN
SAN l.INS DMN l.rACC
SAN r.INS DMN r.rACC
DMN l.iCC SAN l.rMFG
DMN r.iCC SAN r.rMFG
VIS l.LOG Other l.sFG
VIS r.LOG Other r.sFG
DMN l.LOF Other l.SPL
DMN r.LOF Other r.SPL
VIS l.LING AUD l.STG
VIS r.LING AUD r.STG
DMN l.MOF SAN l.SMAR
DMN r.MOF SAN r.SMAR
DAN l.MTG Other l.TP
DAN r.MTG Other r.TP
MOT l.paraC Other l.TT
MOT r.paraC Other r.TT

Other DMN DAN SAN AUD VIS MOTNode and RSN affiliation
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Data availability 

The raw data from this study is available from the OpenNeuro database. 
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