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Abstract

This study investigates brain dynamic connectivity patterns in psychosis and their relationship with
psychopathological profile and cognitive functioning using a novel dynamic connectivity pipeline on
resting-state EEG.

Data from seventy-eight individuals with first-episode psychosis (FEP) and sixty control subjects
(CTR) were analyzed. Source estimation was performed using eLORETA, and connectivity matrices
in the alpha band were computed with the weighted phase-lag index. A modified k-means algorithm
was employed to cluster connectivity matrices into distinct brain network states (BNS), from which
metrics were extracted.

The segmentation revealed five distinct BNSs. FEP exhibited significantly lower connectivity power
in BNS 2 and 5 and a greater duration dispersion in BNS 1 than CTR. Negative correlations were
identified between BNS metrics and negative symptoms in FEP. In CTR, correlations were found
between BNS metrics and cognitive domains.

This analysis method highlights the variability of neural dynamics in psychosis and their relationship

with negative symptoms.
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Introduction

Psychosis is a multifaceted mental condition characterized by a significant disruption in the
perception and cognition of reality, often manifesting through delusions, hallucinations, disorganized
thought and speech processes, and self-disturbances, as well as cognitive and negative symptoms,
particularly in primary or idiopathic psychoses, such as schizophrenia !-3. Functional neuroimaging
research has consistently shown that psychotic disorders are associated with altered patterns of brain
function, both at rest and during the execution of cognitive tasks (see # for a critical review).

Despite extensive research, inter-individual variability in patterns of brain function has limited the
identification of a unifying model of neural mechanisms underlying psychosis 38, hindering the
application of targeted diagnostic tools and early identification of the most effective treatment. This
underscores the need for a new approach that can define patient-specific profiles.

Among the available functional neuroimaging techniques, electroencephalography (EEG) provides a
unique opportunity to correlate recurring activity patterns with their underlying brain functional

properties, contributing to describing what we now define as brain states °!!

. Its unsurpassed
temporal resolution has proven to be a valuable tool in studying intermediate phenotypes in psychosis
12714 Previous studies have reported abnormalities in brain electrical activity in psychotic disorders,
such as decreased activity in the 8-12 Hz (alpha) frequency band !>!'®. In addition to spectral EEG
measures, EEG analysis techniques have increasingly focused on patterns of functional brain
connectivity !7 and applied these methods to schizophrenia, identifying a disruption in the alpha-band
connectivity '8, Magnetoencephalography (MEG) has confirmed network differences between
psychosis and controls in the alpha band '*-?°. Additionally, Phalen et al. '° observed network features
associated with psychopathological domains in psychosis.

Traditional static connectivity measures, often combined with graph theory metrics, may not

adequately capture brain activity's complex and rapidly changing nature 2!. Measures of dynamic
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connectivity and new methods to model the transient states of brain networks have been developed
to monitor and decipher these complex electrophysiological oscillations 2223,

The current work introduces a novel methodology to analyze resting-state EEG (rsEEG) that
integrates source localization techniques with dynamic functional connectivity and advanced
clustering algorithms. This approach is inspired by the classical concept of EEG microstates, which
have been used to capture the dynamic aspects of brain electrical activity >*?°. Defining the specific
temporal properties of the EEG signal and connectivity patterns allows us to identify and characterize
distinct brain network states (BNS). This method has recently been successfully applied to extract
EEG dynamic connectivity patterns 2627, The current study aimed to investigate source-space
functional dynamic connectivity analysis in the rsEEG alpha band in individuals with first-episode
psychosis (FEP) and healthy control subjects (CTR). Furthermore, we explored the potential
relationships between these network (dynamic) states and measures of cognitive performance and

psychopathological profiles. We hypothesize that BNS features may be related to cognition in both

groups and, specifically, to negative symptoms in psychosis.
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Results

1. Clustering Results

After applying the modified k-means algorithm to the EEG connectivity matrices, we identified five
distinct BNS. Notably, BNS 2, 4, and 5 were characterized by a greater strength of visual regions.
Besides this visual strength, BNS 4 revealed a more substantial activity in ROIs within the left
hemisphere. In contrast, BNS 5 showed more significant activity in the right hemisphere, particularly
for DAN and SAN. BNS 2 shows a balanced and almost symmetric activity in both hemispheres,
mostly DAN and SAN. A greater strength of the DMN nodes marked BNS 1 and 3. On top of its
DMN prevalence, BNS1 has more present activity in the left hemisphere, especially in the SAN and
MOT networks, whereas the DAN activity is symmetric. For BNS 3, we observe stronger activity in
the “Other” RSNs in the right hemisphere but symmetric activity in the DAN and SAN.

Figure 1 shows a representation of the BNS and their prevalent function.

Other DMN DAN SAN AUD VIS MOT

Figure 1. The resulting BNS with their prevalent function and node distribution based on strength.
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2. Pairwise Comparisons

Upon comparing the BNS metrics between the FEP and CTR, significant differences emerged in the
following metrics: GCP, standard deviation of duration, and transition probabilities, as highlighted in
Figure 2. Specifically, BNS 2 and 5 exhibited a lower GCP in FEP, indicating in CTR more robust
functional connectivity within these states. In contrast, BNS 1 showed a higher variability in duration
among FEP, suggesting altered temporal dynamics in this state. Transitions from BNS 5 to BNS 4

occurred more frequently in FEP.
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Figure 2. Boxplots with individual values of the significant differences (p<0.05) of the BNS

metrics between FEP and CTR.

3. Correlation Analysis

Significant correlations were observed between BNS metrics and cognitive performance only in CTR,
as highlighted in Figure 3.

In CTR, the metrics associated with the visually dominant BNS (BNS 2, 4, and 5) were positively

correlated with the full IQ and Vocabulary scores on WASI. Furthermore, BNS 1 metrics were
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negatively correlated with social cognition and overall performance on the MCCB. Transition
metrics, particularly from the right to the left hemisphere (BNS 5 to BNS 4), were positively
correlated with attention and vigilance scores on the MCCB.

Conversely, in FEP, no significant correlations were found between BNS metrics and cognitive
domain scores. However, negative correlations were identified between the GCP of BNS 1 and BNS
2 and the SANS' Attention (SANS ATT) and Anhedonia—Asociality (SANS ANA) scales.

No significant correlations were observed between the BNS metrics and GAS.
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Figure 3. Scatterplots with regression lines of significant correlations (p<0.01) between the BNS
metrics and the cognitive domains (measured by WASI and MCCB) in FEP (blu circles) and CTR

(orange circles) and negative symptoms (assessed by SANS) in FEP.
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Discussion

The current study proposes a new methodology based on dynamic connectivity from EEG resting-
state data and applies it to investigate neural correlates of psychosis and their relationship with
cognitive and behavioral phenotypes. The clustering of alpha dynamic connectivity matrices revealed
five distinct BNS, and some features showed significant differences between FEP and CTR.
Particularly, BNS metrics correlated with cognition only in CTR and with negative symptoms in FEP,
and, in line with the clinical characteristics of psychosis !, this may underline potential neural

correlates of the illness.

1. Interpretation of Identified BNS

Identifying distinct BNS provides crucial information on the neural dynamic processing at rest. To
note, the five resulting BNS were observed in both groups without differences in terms of coverage
and occurrence. This finding points out that our approach reveals brain connectivity reconfigurations
in the alpha band during the resting state, a way for large-scale neural communication in the human
brain without any specificity for psychotic illness.

BNS 2, 4, and 5, associated with visual regions, confirm a significant role for visual processing in
brain network activity 2%. This was expected, the recording paradigm being with the eyes open.
However, the hemispheric differences observed in BNS 4 and BNS 5, with stronger left and right
hemisphere activities, highlight brain function lateralization 2. BNS 1 and 3, marked by a higher
representation of the default mode network (DMN), confirm the involvement of internally focused

thought processes in the resting state *°.

2. Group Differences in BNS Metrics
The observed differences in GCP, duration variability, and transition probabilities between FEP and

CTR are noteworthy. Compared to CTR, the lower GCP in BNSs 2 and 5 in FEP suggests a reduced
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alpha band functional connectivity. One of the possible explanations could be the instability of
connections between ROIs in FEP. The greater variability in the duration of BNS 1 in FEP points to
altered temporal dynamics, which may reflect a disruption in maintaining consistent brain states or
the heterogeneity of psychosis 7. This extends the finding of altered MEG alpha neural dynamics
previously observed in schizophrenia 3!.

Additionally, the increased frequency of transitions from BNS 5 to BNS 4 in FEP suggests an altered
pattern of neural communication between the right and left hemispheres compared to CTR.

Our results support data from other imaging modalities, which revealed group differences and altered

network connectivity in schizophrenia .

3. Relationship between BNS Metrics and Clinical assessment
3.1 Relationship Between BNS Metrics and Cognitive Performance

Contrary to our hypothesis, BNS features were only related to the cognitive domains in CTR but not
FEP.
In CTR, the positive correlations between metrics of visually dominant BNS (2, 4, and 5) and
cognitive performance, including 1Q and vocabulary scores, indicate that efficient visual processing
is linked to higher general cognitive abilities 3*. The relation of BNS 4 (stronger activity on the left
hemisphere) and BNS 5 (stronger on the right hemisphere) confirms the links between changes in
lateralization and cognitive performance **.
The negative correlations of BNS 1 metrics with social cognition and overall MCCB performance
suggest that more pronounced DMN activity may burden these cognitive domains, confirming the
complex links between this RSN and cognition 3>3¢, The transition metrics' positive correlation with
attention and vigilance scores implies that specific brain state transitions are crucial for sustained
attention.
If, on the one hand, the relationship between descriptors of higher cognitive efficiency and BNS

features in CTR suggests that BN'S may serve as potential proxies for general brain functioning, on
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the other hand, the presence of specific associations indicates that BNS could be a viable candidate
for characterizing the physiological processes underlying certain cognitive domains in CTR.
The lack of significant correlations in the psychosis group may be due to disrupted connectivity

patterns that affect cognitive integration ®

. As mentioned, this can also be explained by the
heterogeneity of FEPs 7. A division into subgroups could be interesting to observe more specific

discrimination between BNS metrics, cognitive performance, and clinical phenotype 374,

3.2 Association Between BNS Metrics and Negative Symptoms
In line with our hypothesis, BNS features were associated only with negative symptoms and not with
other psychopathological domains in FEP. The negative correlations between GCP in BNS 1 and BNS
2 with the SANS attention and anhedonia-asociality scales in FEP indicate that altered connectivity
within these BNS is associated with specific psychopathological symptoms considered core of
schizophrenia 12, These findings suggest that disruptions in particular brain states may underlie
specific negative symptoms of psychosis, providing a potential pathophysiology and target for

therapeutic interventions.

4. Advantages of the BNS approach

BNS metrics used in this study could discriminate patients from healthy subjects, revealing a strong
relationship between the extracted metrics and cognitive profiles. They also correlated with the
severity of negative symptoms. These findings are of interest, as they offer a new perspective in the
analysis of psychosis. It points out that the methods and analysis of brain dynamics are crucial for
clinical application as potential neural correlates of the disease.

From the resulting BNS sequence, on top of the current usual metrics derived from classical
microstates **, new metrics can be extracted based on complexity measures 4, which have already
shown results in the observed dataset '°. Therefore, our approach can offer extensive metrics

correlating well with cognitive and clinical scales, describing the brain dynamics in resting and

10
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potentially task-related states 2%?7. These metrics could be input for future machine learning and

classification work, which would help establish a patient-specific profile.

5. Methodological Considerations and Limitations

The current work focused on the alpha band based on previous literature. This could be extended to
explore the behavior of other frequency bands, which could provide complementary but more
speculative information.

Our study employs advanced source localization and clustering techniques, which offer a detailed
analysis of brain network dynamics. However, several limitations should be noted. Substantial
variability can be observed depending on the inverse solution used, the connectivity technique
approach, and the clustering algorithm. Moreover, while advantageous for identifying common
patterns, the group-level clustering approach may overlook individual variability. Additionally,
potential confounding factors such as medication effects were not fully controlled, which could
influence the findings. In future works, some steps of the methodology can be tuned to increase the
granularity of our proposed approach: a more robust group and subgroup definition and individual-
level vs. group-level clustering. Combining EEG with normative modeling is highly promising for

developing patient-specific approaches #°.

6. Future Directions and Clinical Implications
The approach proposed in this study needs to be explored and validated with different datasets.
Replicating our results and refining the methodology could lead to significant advancements in the
field of psychosis. Like the classical microstate approach, defining BNS templates could facilitate
easier categorization of resting-state brain activity and enable more global and comparable analyses
between datasets. Future research should also consider longitudinal studies and multimodal
neuroimaging approaches to validate and extend our findings. Investigating the stability of BNS over

time and their relationship with treatment responses could provide valuable insights. The overall brain

11
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state field could be vital in addressing the relationship between neural dynamics, physiological
changes, and phenotypes '°. Clinically, our findings have the potential to enhance diagnostic accuracy
and guide the development of personalized interventions based on specific brain network disruptions
in psychosis. Identifying reliable biomarkers of psychosis through EEG could significantly impact

the management and treatment of this complex disorder, thereby improving patient outcomes.

Methods and Materials

1 - Participants

We examined rsEEG sourced from the OpenNeuro database 447 (data retrieved on November 29,
2023). The dataset comprised 78 FEP (23 female; age 22.9+4.8 years) and 60 age-matched CTR (26
female; 22.8+4.9). Table 1 contains a complete description with demographics and clinical and

cognitive data.

FEPs Control Test-statistic
n 78 60
Age (years) 22.8 (13-36,4.9) 22.9(12.8-38.3,4.8) tize=0.07, p=0.94, g=0.01
Sex (F/M) 23/55 26/34 )(12 =2.84,p=0.09
Race
(Asian/Black/Mixed/Undisclosed/White) 6/25/6/1/40 13/6/2/0/39 )(Z =15.15, p = 0.004
Ethnicity )
(Hispanic/Not Hispanic/Unknown) 3/75/0 5/54/1 X7 =2.62,p=027
Medicated/Drug-Free/ Drug-Naive 51/14/13 -
WASI
t136=2.03, p = 0.045,
FULL IQ 105 (75-132, 13.8) 109 (90-143,9.3) g=0.34
tize=3.82, p <0.001,
MATRIX TS 54 (32-68, 8.8) 58.7 (45-70, 5.4) g=0.63
VOCAB TS 51.8 (32-73,9.8) 52 (34-76,7.3) tize=0.2,p=0.84, g=0.03
MCCB
tiz6=15.07, p <0.001,
Attention/Vigilance 38.4 (11-60, 11.8) 47.3 (26-64, 8.5) g=0.85
tiz6=5.67, p <0.001,
Speed of processing 40.4 (8-74, 13.8) 51.8 (35-73,9.3) g=0.96
tize=3.48, p <0.001,
Working memory 41.9 (15-75, 12.3) 48.2 (30-74, 8.9) g=0.58
tiz6=5.82, p <0.001,
Verbal learning 43.9 (25-67, 10.3) 53.6 (37-77,9) g=0.99
tiz6=3.13, p = 0.002,
Visual learning 40.2 (8-63, 13) 45.8 (25-61,7.9) g=0.52
tizs=3.81, p <0.001,
Reasoning and problem-solving 44.2 (18-63,11.4) 50.6 (33-65,8.1) g=10.64
tize=15.71, p < 0.001,
Social cognition 44.5 (11-66, 11.9) 54.1 (35-67,7.6) g=0.95

12
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tiz6= 6.89, p < 0.001,

Overall 36.8 (1-65, 14.3) 50.1 (28-71, 8) g=115
SAPS

Hallucinations 6.2 (0-22,5.9) -
Delusions 10.8 (0-29, 7.3) -
Bizarre Behavior 2.2 (0-17,2.9) -
Positive Formal Thought Disorder 3.5 (0-20, 4.7) -
SANS

Affective Flattening or Blunting 8.9 (0-29,7) -
Alogia 3.2(0-12,3.3) -
Avolition-Apathy 7(0-14,4) -
Anhedonia-Asociality 8.3 (0-22, 6) -
Attention 3.7 (0-12, 3.3) -
GAS 48.5 (23-90, 15) -

Table 1. Dataset description. Continuous variables are reported in the format mean (range, standard
deviation) and underwent a Welch’s t-test, and Hedges’g was computed. For the categorical variables, a y*

test was performed.

For each participant, a 5S-minute rsEEG recording was acquired while they kept their eyes open. The

EEG data were collected using the EEG channels of an Elekta Neuromag Vectorview MEG system.

EEG was recorded using a low-impedance 10-10 system 60-channel cap at a sampling frequency of

1000 Hz. Since the data was available in 2 different EEG sensor arrays, a further validation analysis

was performed, and the results are reported in the supplementary material (Table S1).

2 — Methods/Analysis

Figure 4 is a graphical abstract of our novel methodology that will be detailed in the following

sections.
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Figure 4. Graphical abstract of methods.

2.1 - Preprocessing

Pre-processing was performed with the EEGLAB toolbox #8.

First, a 1 Hz high-pass filter was applied. Then, a round of low-/level cleaning to remove the artifacts
was applied: flat channels were removed with a flatline criterion of 5 seconds, and line noise (60 Hz
and harmonics) was removed. Channels with low correlation to their neighbors (< 0.6) were removed.
The noisy channels were removed with a line noise criterion of 5. Artifact Subspace Reconstruction
(ASR) was applied to correct non-periodic noise.

Later, high-level cleaning with ICA was performed using the PICARD algorithm #°°, Independent
components were labeled using the /CLabel procedure °!, and components classified as non-brain
activity were rejected.

Removed channels were interpolated using the original channel locations using the spherical method.
Data were re-referenced to the average reference.

After the initial preprocessing, a second passage of high-level cleaning was performed, including a
second ICA decomposition, component labeling, and rejection to remove the residual periodic non-
brain artifacts.
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The final preprocessed data was used for further analysis.

2.2 - Source estimation and connectivity computation

We employed the exact Low-Resolution Brain Electromagnetic Tomography (eLORETA) algorithm
for source localization 2. This method allowed us to estimate the cortical sources of EEG signals,
focusing on 68 regions of interest (ROIs) as delineated by the Desikan-Killiany atlas 3. To perform
this operation, we used the Boundary Element Method head model fitted to the ICBM MRI template,
which is composed of three layers (scalp, outer skull, and inner skull), using the OpenMEEG > plugin
from the Brainstorm toolbox . The ROI timeseries were estimated based on the average source
strength of all voxels in each ROL.

Our primary interest lies in dynamic functional connectivity within the alpha frequency band (7-13

Hz), which aligns with recent studies showing alterations in the alpha band in EEG spectral !>16

or
connectivity '8 features. This was also based on MEG results, where part of the current dataset was
analyzed ', highlighting different networks in the alpha band.

We quantified connectivity patterns using the weighted phase lag index (wPLI), a measure robust to
the effects of volume conduction and field spread *°. A sliding window approach (window size:
600ms, corresponding to 6 alpha frequency cycles as advised by Lachaux et al. >, with a 50% overlap)

was adopted to capture the temporal evolution of connectivity patterns, leading to 999 connectivity

matrices per subject.

2.3 - BNS Clustering

Based on the principles of EEG microstate analysis, we conducted a clustering procedure using a
modified k-means algorithm °%>°. This technique was chosen due to its ability to identify stable and
43.60,

recurring patterns of brain activity, as it was widely used in classical EEG microstate analyses

which we will refer to as BNS 2627,
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Unlike traditional approaches, our clustering was conducted at group rather than individual levels.
The following pre-processing steps were performed on each subject's data. The dynamic connectivity
matrices, being symmetric, were vectorized by extracting only the lower part (resulting in 2278
elements for a 68x68 matrix), creating vectors sized 2278x999 for each subject. These vectors were
then concatenated to generate a comprehensive dataset encompassing 138 subjects. This unified
vector served as input for the clustering algorithm, following a methodology previously utilized by
Duprez et al. (15).

Initially, we explored solutions iteratively within a range of 2 to 20, conducting 100 restarts with 1000
iterations each. To identify the optimal number of solutions, we designed a meta-criterion based on

1. 92, The list of criteria and

11 clustering criteria !, following an approach proposed by Custo ef a
the meta-criterion computation are described in the supplementary material (Table S2). Based on the

converging results from the several tests performed with this approach, we narrowed the interval to

between 3 and 7 solutions, with 200 restarts and 1000 iterations, to address the computational weight.

2.4 - Smoothing and Backfitting

Following the identification of distinct BNS, we applied backfitting to each individual based on global
map dissimilarity (GMD) %, which is a distance measure based on the topography of each map and
is signal invariant >°. Then, after the backfitting, we applied label smoothing based on small segment
rejection >: each BNS lasting less than five consecutive matrices was rejected and relabeled.

2.5 - BNS metrics and function

From these resulting datasets, we extracted the following BNS metrics: global connectivity power
(GCP), i.e., the standard deviation of all connectivity indices, as derived from global field power
(GFP) %, explained variance (GEV), coverage, duration, occurrence, and transition probabilities 43.
These metrics provided a comprehensive characterization of the BNS dynamics.

Additionally, we utilized node strength to link each BNS to resting-state networks (RSN) 27 and to

characterize its prevalent functional role. Each node was assigned to one of seven RSNs (Figure 5)
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based on topographic criteria. We then normalized the strength of each RSN by the number of its
nodes and computed the mean and standard deviation of the normalized values. The RSNs with a

value above the mean + 1SD were defined as prevalent.
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Figure 5. List of ROIs and RSN. AUD: Auditory Network; DAN: Dorsal Attentional Network;
DMN: Default Mode Network; MOT: Motor Network; SAN: Salient Network; VIS: Visual Network
2.6 - Statistical analysis

A multivariate permutation approach was used for statistical analysis, with 10.000 permutations and
family-wise error rate (FWER) correction based on max correction to control for multiple
comparisons . To assess the differences in BNS metrics between FEP and CTR, we performed
pairwise comparisons with a significant threshold set at oo = 0.05. Furthermore, we conducted a
Persons’ correlation analysis to explore the relationship between BNS metrics and cognitive
performance, measured by the MATRICS Consensus Cognitive Battery (MCCB) and the Wechsler
Abbreviated Scale of Intelligence (WASI), as well as psychopathological symptoms, assessed by the
Scale for the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative
Symptoms (SANS), and the Global Assessment Scales (GAS). Due to the explorative nature of this

analysis, only correlations with p-values lower than the 0.01 threshold are reported.
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Data availability

The raw data from this study is available from the OpenNeuro database.
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