

1 **Chemotherapy-treated breast cancer cells activate the Wnt signaling pathway to
2 enter a diapause-DTP state.**

3

4

5 Youssef El Laithy¹, Willy Antoni Abreu De Oliveira¹, Anirudh Pabba², Alessandra Qualizza¹, François Richard², Paraskevi
6 Athanasouli¹, Carla Rios Luci³, Wout De Wispelaere⁴, Larissa Mourao⁵, Siân Hamer⁶, Stijn Moens⁴, Anchel De Jaime-
7 Soguero¹, Maria Francesca Baietti⁷, Stefan J Hutten^{8,9}, Jos Jonkers^{8,9}, Stephen-John Sammut^{10,11}, Stefaan Soenen³,
8 Colinda LGJ Scheele⁵, Alejandra Bruna⁶, Christine Desmedt², Daniela Annibali⁴, Frederic Lluis^{1*}.

9

10 ¹ Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven,
11 3000, Belgium.

12 ² Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, 3000 Belgium.

13 ³ NanoHealth and Optical Imaging Group, Department of Imaging & Pathology, KU Leuven, Leuven, 3000, Belgium.

14 ⁴ Gynecological Oncology, Department of Oncology, KU Leuven, Leuven, 3000, Belgium.

15 ⁵ Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, VIB-KU Leuven
16 Center for Cancer Biology, Leuven, 3000, Belgium.

17 ⁶ Preclinical Modelling of Pediatric Cancer Evolution, Institute of Cancer Research (ICR), London, SM2 5NG, United
18 Kingdom.

19 ⁷ TRACE – Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, 3000 Belgium.

20 ⁸ Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, 1066CX, The Netherlands.

21 ⁹ Oncode Institute, Amsterdam, 1066CX, The Netherlands.

22 ¹⁰ Breast Cancer Now Toby Robins Research Center, Institute of Cancer Research (ICR), London, SM2 5NG, United
23 Kingdom.

24 ¹¹ The Royal Marsden Hospital, NHS Foundation Trust, London, SW3 6JJ, United Kingdom.

25

26 * Correspondence to: Frederic Lluis – frederic.lluisvinas@kuleuven.be

27

28 **ABSTRACT**

29 The efficacy of chemotherapy is often hindered by the enrichment of a population of cancer cells that
30 enter a drug-tolerant persister (DTP) state, mimicking embryonic diapause, yet the underlying
31 mechanisms of this transition remain poorly understood. This study demonstrates that both parental and
32 chemotherapy-induced Wnt-active (Wnt^{High}) cells in Triple-negative breast cancer exhibit transcriptional
33 and functional properties characteristic of DTP cells, including a diapause transcriptional signature,
34 reduced MYC expression, reversible restricted proliferation, and pronounced chemoresistance. Our
35 findings reveal that the *de novo* activation of the Wnt signaling pathway, triggered by the transcriptional
36 upregulation of components essential for canonical Wnt ligand-secretion and -activation, is critical for
37 enriching the diapause-DTP (DTP^{Diap}) population across various chemotherapy regimens. The diapause-
38 DTP/Wnt^{High} population can be selectively ablated by concomitant, rather than sequential,
39 pharmacological inhibition of Wnt ligand-secretion alongside chemotherapy, highlighting new
40 vulnerabilities in DTP^{Diap} cell-emergence and potentially yielding a therapeutic opportunity against DTPs.
41 This study shows that activation of Wnt signaling pathway is sufficient and necessary for the induction of

42 a DTP^{Diap} state and enhances our understanding of the introductory mechanisms driving DTP cell-
43 enrichment upon chemotherapy.

44 INTRODUCTION

45 Accumulating evidence indicates that cancer cells can enter a reversible drug-tolerant persister (DTP) cell-
46 state to evade chemotherapy-induced cell death, leading to incomplete therapy responses and/or
47 recurrence¹⁻³. Eradicating DTP cells, or preferably, preventing their formation during cancer treatment,
48 represents a potential strategy to increase cancer sensitization to treatment and, ultimately, improve
49 patient survival rates.

50 The concept of persisters originates from microbial literature, where it is well established that antibiotic
51 treatment can reduce bacterial burden but sometimes fails to eliminate refractory bacteria^{4,5}. Similar
52 subpopulations of DTP cells have been identified in cancer cell lines that survive lethal dosages of targeted
53 therapies or chemotherapy, namely by entering a slow-cycling state. These DTP cells exhibit a distinct
54 transcriptomic profile reminiscent of embryonic diapause, a cellular state used across the animal kingdom,
55 including some mammals, to survive stressful environments⁶⁻⁸. In mouse embryonic stem cells (ESC),
56 genetic depletion of c-Myc and n-Myc induces a pluripotent dormant state mimicking diapause^{9,10}.
57 Similarly, in cancer cells, pharmacologic inhibition or depletion of MYC promotes a diapause-like state
58 characterized by reduced proliferation and increased resistance to therapy, highlighting the central role
59 of MYC in this process¹¹. In agreement, cancer DTP cells negatively correlate with transcriptional MYC
60 hallmark expression. Although the origin of DTP cells through non-genetic processes is well documented,
61 the molecular mechanisms preceding and consequently driving the acquisition of the diapause-DTP
62 (DTP^{Diap}) cell-state, are still obscure.

63 DTP^{Diap} cells exhibit features of epithelial-mesenchymal transition (EMT), which are associated with poor
64 drug responsiveness, a senescence-like gene signature, and enhanced stemness¹²⁻¹⁵. Furthermore, upon
65 discontinuation of treatment—commonly referred to as a drug holiday—DTP cells resume growth and
66 proliferation, and its progeny retains sensitivity to chemotherapy¹⁶.

67 Many patients with triple-negative breast cancer (TNBC) initially benefit from preoperative (neoadjuvant)
68 chemotherapy (NAC); however, about 30%–50% develop resistance, leading to poor overall survival
69 rates^{17,18}. Drug resistance has conventionally been attributed to the selection of pre-existing resistant
70 (stem) cell populations (intrinsic or Darwinian selection)¹⁹⁻²¹. However, recent research using genomic and
71 transcriptomic deep sequencing of matched longitudinal (pre- and post-NAC treatment) TNBC patient and
72 patient-derived xenograft (PDX) samples has also highlighted the role of acquired (drug-induced)

73 resistance during chemotherapy^{22,23}. Interestingly, residual TNBC tumors treated with NAC do not exhibit
74 an enrichment of a breast cancer stem cell (BCSC) population (CD24^{Low}/CD24^{High} cells)²³. DTP cell-
75 enrichment has been demonstrated across distinct chemotherapeutic agents; however, it remains
76 unknown whether the emergence of a DTP^{Diap} cell-state converges on common downstream molecular
77 mechanisms, even when induced by distinct chemotherapeutic agents with divergent pro-apoptotic
78 mechanisms of action.

79 Identifying the initial, non-genetic events responsible for the enrichment of DTP^{Diap} populations in TNBC
80 could pave the way for targeting DTP cells even before their emergence. In this study, we show that *de*
81 *novo* Wnt transcriptional-activation precedes DTP cell-enrichment, regardless of the chemotherapeutic
82 agent used (docetaxel or carboplatin). This activation of the Wnt signaling pathway by cytotoxic treatment
83 was not limited to *in vitro* 2D-cultured TNBC cell lines but was also consistently observed in 3D-cultured
84 TNBC patient-derived organoid (PDO) models and *in vivo* xenograft models. Our transcriptional and
85 functional analysis of the Wnt-active (Wnt^{High}) cell population in parental untreated (UNT) and early-
86 treated samples reveal that Wnt^{High} cells correlate transcriptionally and functionally with DTP^{Diap} cells.
87 Importantly, activation of the Wnt signaling pathway in parental cells replicates the functional DTP^{Diap} cell-
88 features, demonstrating that Wnt-activation alone suffices to induce a slow-proliferating DTP cell-state,
89 even under non-chemotherapeutic conditions.

90 We find that diapause-DTP/Wnt^{High} (DTP^{Diap}/Wnt^H) cell-enrichment during chemotherapy is driven by
91 increased expression of Wnt ligands, R-spondins, and molecules involved in Wnt ligand-secretion.
92 Surprisingly, although pharmacological inhibition of Wnt ligand-secretion significantly reduces the
93 percentage of the parental DTP^{Diap}/Wnt^H population, it does not mitigate DTP cell-enrichment once
94 chemotherapy is applied. In contrast, concomitant inhibition of Wnt ligand-secretion and chemotherapy
95 treatment significantly reduces the DTP^{Diap} population and sensitizes TNBC cell lines, xenograft models,
96 and PDO models to chemotherapy.

97 Our results demonstrate that distinct therapeutic agents converge on Wnt signaling pathway-activation to
98 drive *de novo* DTP^{Diap} cell-emergence in various TNBC models. This suggests that a combinatorial treatment
99 strategy involving both Wnt ligand secretion-inhibition and chemotherapy might effectively target the
100 initial mechanisms involved in the enrichment and acquisition of a DTP^{Diap} cell-phenotype, subsequently
101 benefiting patients with TNBC undergoing systemic chemotherapy.

102 **RESULTS**

103 **Wnt transcriptional-activation precedes early drug-tolerant cell(s) enrichment upon**
104 **chemotherapeutic treatment.**

105 To study the molecular basis underlying the emergence or enrichment of drug-tolerant cells during
106 therapy, we recapitulated this phenomenon *in vitro*. Three different TNBC cell lines (MDA-MB-231, MDA-
107 MB-468, and PDC-BRC-101) were subjected to two distinct cytotoxic chemotherapeutic agents: docetaxel
108 (DOC) and carboplatin (CAR). These agents operate through different mechanisms of action, with DOC
109 promoting microtubule stabilization and preventing depolymerization, and CAR inducing DNA damage^{24,25}.
110 IC50 concentrations (at 72h) were determined for each chemotherapeutic agent for every cell line and
111 used in successive studies (Supplementary Fig. S1A-F). To assess changes in the frequency of putative drug-
112 tolerant cells under chemotherapeutic pressure, the enzymatic activity of aldehyde dehydrogenase 1
113 (ALDH1), a functional marker in solid tumors for drug resistance and the DTP cell-phenotype in TNBC, was
114 measured²⁶. Treatment of all TNBC cell lines with IC50 concentrations of either DOC or CAR led to a
115 significant increase in the levels of ALDH^{High} cells compared to UNT conditions at 96hours(h) but not at 48h
116 (Fig. 1A), indicating a time-dependent effect on drug-tolerant cell(s) enrichment following
117 chemotherapeutic treatment. Although we detected a small proportion of BCSCs (CD24^{Low}/CD44^{High})
118 population, we recorded no significant enrichment at either 48h or 96h of treatment (Fig. 1B), supporting
119 previous studies²³ and suggesting that chemotherapy preferentially enriches for drug-tolerant cells rather
120 than BCSCs during early treatment events.

121 To gain insights into the signaling cues preceding and, potentially, driving this chemotherapy-mediated
122 enrichment of drug-tolerant (ALDH^{High}) cells at 96h, we performed bulk transcriptomic analysis of mRNA-
123 sequenced samples obtained from viable/drug-tolerant (DAPI⁻) MDA-MB-231 cells treated with either DOC
124 or CAR at 72h (Supplementary Fig. S1G). Gene Set Enrichment Analysis²⁷ (GSEA) using MSigDB²⁸ datasets
125 on differentially expressed genes (DEGs – Supplementary Fig. S1H, I, and Supplementary Table 1) between
126 DOC vs. UNT or CAR vs. UNT (FC > 1.5, p-val ≤ 0.05) identified an array of Hallmarks significantly enriched
127 in DOC or CAR treatments, including Apoptosis, p53 Pathway, and Interferon Gamma Response, all of
128 which align with the expected cell stress induced by chemotherapeutic exposure^{29,30} (Fig. 1C,
129 Supplementary Fig. S1J, K, and Supplementary Table 2). Conversely, Hallmarks associated with cell cycle
130 regulation, such as G2M checkpoint, DNA Repair, MYC targets, and E2F targets were significantly
131 downregulated in DOC- and CAR-treatment^{31,32} (Fig. 1C and Supplementary Fig. S1L, M). Interestingly,
132 genetic signatures and processes such as EMT and Hypoxia, both associated with tumorigenesis,

133 chemoresistance, and the DTP cell-phenotype were enriched in response to chemotherapeutic
134 exposure^{33,34} (Fig. 1D and Supplementary Table 2).

135

136 To elucidate common enriched transcriptomic alterations among distinct chemotherapeutic agents, we
137 performed Gene Ontology (GO) analysis using the commonly (DOC & CAR vs. UNT) upregulated (1381)
138 genes shared between both drugs (Fig. 1E and Supplementary Tables 1, 2). GO analysis repeatedly
139 highlighted a significant enrichment of (positive) regulation of Canonical Wnt signaling, which was
140 corroborated with an enrichment in the expression of Wnt-targets (*AXIN2* and *LGR5*) and upstream
141 regulators and activators (*WLS* and *WNT2B*) of the pathway (Fig. 1F, G). Conversely, GO analysis using
142 commonly downregulated (785) genes shared between both drugs highlighted significant enrichment in
143 processes related to cell cycle regulation and progression (Supplementary Fig. S1N, O).

144 Western Blot analysis of active (non-phosphorylated) β -catenin in TNBC cell lines confirmed increased
145 levels of active β -catenin, as early as 24h post-treatment, and prolonged for up to 6 days (Fig. 1H).
146 Consequently, the expression levels of Wnt signaling target-genes (*AXIN2* and *LGR5*) showed a significant
147 increase, confirming the transcriptional activation of the Wnt signaling pathway upon chemotherapeutic
148 treatment (Fig. 1I-K).

149

150 Our data reveals an upregulation of canonical Wnt signaling activity preceding DTP cell-enrichment.
151 Notably, this enrichment or activation of the Wnt signaling pathway appears to be a common phenomenon
152 shared among various TNBC cell lines and in response to two distinct cytotoxic treatments.

153

154 **Parental and chemotherapy-treated Wnt^{High} cells display DTP^{Diap} cell-properties.**

155 To gain a more comprehensive understanding of the transcriptional and functional features of Wnt-active
156 (Wnt^{High}) population, we generated clonal MDA-MB-231, MDA-MB-468, and PDC-BRC-101 TNBC cell lines
157 carrying a stable integrated Wnt-transcriptional (β -catenin-TCF/LEF-mediated transcriptional activity)
158 reporter (TOP-GFP/TGP cell lines)³⁵ (Fig. 2A). We observed a range of TOP-GFP expression patterns in all
159 three TNBC cell lines cultured in basal (UNT) conditions, with an approximate 6%, 2.5%, and 10% GFP⁺
160 (referred to hereafter as Wnt^{High}) cells in MDA-MB-231-TGP, MDA-MB-468-TGP, and PDC-BRC-101-TGP cell
161 lines, respectively (Fig. 2B – black bars). Upon exposure to either DOC or CAR agents, we observed a
162 significant increase both in the percentage of Wnt^{High} cells in viable/drug-tolerant (DAPI⁺) cells and in the
163 levels/degree of transcriptional Wnt-activation compared to UNT conditions (Fig. 2B and Supplementary
164 Fig. S2A, B). Prolonged exposure to either therapeutic agent for 6 days maintained or increased the

165 percentage of transcriptional Wnt^{High} cells (Fig. 2B), further confirming that the enrichment and/or
166 induction of Wnt^{High} cells is one of the early events directing drug-tolerance.

167 To unravel the transcriptional discrepancies between the Wnt^{Low} and Wnt^{High} populations, we conducted
168 bulk transcriptomic analysis on mRNA-sequenced samples derived from viable/drug-tolerant (DAPI⁻) MDA-
169 MB-231-dTGP sorted populations under chemotherapy-treated conditions³⁶ (Fig. 2C). Gene set variation
170 analysis (GSVA) revealed a plethora of MSigDB Hallmark signatures from DEGs between CAR or DOC (FC >
171 1.5, p-val ≤ 0.05) in Wnt^{High} vs. Wnt^{Low} sorted cells that were differentially up- or down-regulated
172 (Supplementary Fig. S2C, D, and Supplementary Tables 3-5).

173 As expected, the Wnt signaling pathway was significantly and positively associated in CAR- and DOC-sorted
174 Wnt^{High} populations compared to Wnt^{Low} populations (Fig. 2D and Supplementary Fig. S2E). While a few
175 signatures exhibited drug-dependent associations, most differentially regulated hallmarks followed a
176 similar associative trend among sorted chemo-treated Wnt^{High} and Wnt^{Low} cells observed across both drug
177 treatments (Fig. 2D and Supplementary Fig. S2E). Notably, developmental signaling pathways, including
178 Hedgehog, Notch, IL-6/JAK/STAT3, and TGF-β signaling, along with hallmarks linked to tumor progression,
179 stemness capacity, and metastasis³⁷⁻⁴⁰ (e.g., Angiogenesis and EMT), displayed a significant positive
180 association with Wnt^{High} populations in comparison to Wnt^{Low} populations (Fig. 2D and Supplementary Fig.
181 S2E). Conversely, the TNF-α signaling pathway via the NF-κB pathway notably exhibited a significant
182 negative association with Wnt^{High} cells (Fig. 2D and Supplementary Fig. S2E) aligning with previous findings
183 suggesting that active β-catenin can attenuate transcriptional NF-κB activity in breast cancer⁴¹.

184 Even though Wnt pathway-activation has been shown to correlate with increased proliferation^{42,43}, our
185 transcriptional analysis revealed that Wnt^{High} cells negatively correlated with transcriptional signatures of
186 proliferation, as evidenced by significant reduction of G2M checkpoint and E2F target signatures across
187 chemo-treated Wnt^{High} samples (Supplementary Tables 4, 5).

188 Recent studies by Rehman et al. and Dhimolea et al. have provided significant insights into the
189 transcriptional landscape of cancer DTP cells, drawing notable parallels with ESCs^{7,11}. These works
190 emphasize that DTP cells suppress MYC activity and exhibit a distinctive gene signature associated with
191 embryonic diapause. Interestingly, our transcriptional analyses revealed that chemo-sorted Wnt^{High} cells
192 had a significant negative association with the MYC hallmark signature whilst having a significant positive
193 association with the Rehman et. al. embryonic DTP^{Diap} gene signature (Fig. 2E, F, and Supplementary Fig.
194 S2E), further providing evidence and highlighting the similarities between the transcriptomes of DTP cells
195 and chemo-sorted Wnt^{High} cells. Furthermore, the coordinated up- and down-regulation of additional

196 hallmarks and processes (Notch, EMT, and Angiogenesis; upregulated) and (E2F targets, DNA repair, and
197 Apoptosis; downregulated) (Fig. 2G) was coequally recorded in DTP cells and chemo-sorted Wnt^{High} cells.
198 We aimed to explore if the observed transcriptional changes in Wnt^{High} cells under chemotherapy pressure
199 were already pre-existing in UNT (i.e. parental cells) conditions (Supplementary Fig. S2F). Despite a positive
200 correlation between Wnt^{High} cells obtained from UNT conditions and the Wnt/β-catenin hallmark
201 signature, the association was not statistically significant (Fig. 2D), consistent with our previous data
202 highlighting lower levels of Wnt signaling intensity in UNT samples (Supplementary Fig. S2B). Interestingly,
203 parental-sorted Wnt^{High} cells exhibited overall positive associations with developmental signaling pathways
204 and significant positive associations with EMT, while exhibiting significant negative associations with cell
205 cycle hallmarks, following a similar trend as chemo-sorted Wnt^{High} cells (Fig. 2D, Supplementary Fig. S2G,
206 and Supplementary Tables 3-5). Moreover, and with respect to DTP cell-phenotype, parental Wnt^{High} cells
207 displayed similar tendencies to chemo-sorted Wnt^{High} cells; presenting a significant negative association
208 with the MYC hallmark signature (Fig. 2E – UNT), a significant positive association with the Rehman et. al.
209 DTP^{Diap} gene signature (Fig. 2F – UNT), and other matching hallmarks and processes (Fig. 2G – UNT),
210 highlighting transcriptional Wnt-activity as a functional marker for DTP^{Diap} cells even in chemo-naïve
211 conditions. The significance of these correlations becomes more apparent in chemo-treated conditions,
212 where transcriptional Wnt-activation is strongly exacerbated.
213 Functional analyses confirmed reduced cell proliferation measured by cell number observed in chemo-
214 sorted Wnt^{High} compared to Wnt^{Low} populations (Fig. 2H). Furthermore, co-staining of GFP-expression
215 (reporter for Wnt-activity) alongside the apoptotic marker Annexin V revealed that Wnt^{High} cells displayed
216 reduced apoptotic activity confirming their enhanced drug-tolerant state (Fig. 2I).
217 In summary, our comprehensive data demonstrates that Wnt^{High} TNBC cells not only exhibit a
218 transcriptional DTP cell-phenotype but also function effectively as *bona fide* DTP^{Diap} cells in parental drug-
219 naïve cells or under chemotherapeutic conditions. This suggests that transcriptional Wnt-activity may
220 serve as a distinct functional biomarker of the DTP^{Diap} cell-state in parental cells, but especially in early
221 response to chemotherapeutic challenges.

222

223 **Wnt pathway-activation is sufficient to induce a DTP^{Diap} state in parental TNBC cells.**

224

225 Next, we investigated whether activating the Wnt signaling pathway in parental (chemo-naïve) TNBC cells
226 is sufficient to induce a paused, drug-tolerant state similar to that observed in treatment-induced
227 DTP^{Diap}/Wnt^H cells.

228 We stimulated Wnt transcriptional-activation using two distinct GSK3 inhibitors, CHIR99021 (CHIR) and 6-
229 Bromoindirubin-3'-oxime (BIO), which stabilize β -catenin⁴⁴. Treatment of parental MDA-MB-231-TGP and
230 MDA-MB-468-TGP cell lines with either CHIR or BIO resulted in activation of the Wnt signaling pathway as
231 evidenced by a significant increase (>90%) in levels of DTP^{Diap}/Wnt^H cells recorded via FACS (Fig. 3A, B)
232 alongside a significant increase in transcriptional levels of Wnt target-gene AXIN2 (Supplementary Fig.
233 S3A).

234 CHIR and BIO treatments were found to significantly inhibit the proliferation of MDA-MB-231 cells, as
235 observed with cell counts recorded over a 96h time-course, compared to UNT cells (Fig. 3C). While UNT
236 MDA-MB-231 cells maintained a consistent growth rate (μ) over the 96h time-course (μ : 0.8 at 24h – 0.77
237 at 96h), CHIR and BIO treated cells exhibited a significant decrease in growth rate at 96h (μ : 0.61 and 0.44
238 at 96h for CHIR and BIO, respectively) (Fig. 3D). Moreover, at 96h, the doubling time (27.2h and 40.4h) for
239 CHIR and BIO, respectively, was significantly increased when compared to UNT cells (doubling time =
240 21.66h) (Fig. 3E). These findings were corroborated by additional testing using the MDA-MB-468 cell line,
241 whereby cell counts (Supplementary Fig. S3B) and growth rate (Supplementary Fig. S3C) were significantly
242 decreased in CHIR and BIO treatment conditions while doubling time (Supplementary Fig. S3D) was
243 significantly increased, mirroring the results obtained using the MDA-MB-231 cell line. Notably, the decline
244 in cell count was not attributed to apoptotic effects exerted via either GSK3 inhibitors, as confirmed by an
245 Annexin V staining (Supplementary Fig. S3E). Further analysis using immunofluorescence-based staining
246 of proliferation marker Ki-67 highlighted a significant induction of growth arrest under Wnt-stimulatory
247 conditions (Fig. 3F), suggesting that activation of the Wnt signaling pathway prompts a state of paused
248 proliferation in TNBC cell lines.

249 Parallelly, and in conjunction with what has been reported in DTP^{Diap} cells and in chemo-treated
250 DTP^{Diap}/Wnt^H cells, treatment with CHIR or BIO resulted in significant decrease of transcriptional MYC and
251 NMYC expression levels and MYC protein levels in MDA-MB-231 and MDA-MB-468 cell lines (Fig. 3G, H
252 and Supplementary Fig. S3F), highlighting a direct correlation between Wnt-activation and an anti-
253 proliferative and a suppressed MYC phenotype. To evaluate if Wnt-activation could induce a functional
254 drug-tolerant state, we pre-treated TNBC cell lines with CHIR and BIO before administering chemotherapy.
255 The results showed a significant reduction in apoptosis induction in pre-treatment Wnt-stimulated cells
256 compared to those with sole chemotherapy treatment, across both DOC and CAR agents and in both cell
257 lines. (Fig. 3I, J, and Supplementary Fig. S3G).

258 Contrary to previous findings that associate Wnt-activation with increased proliferation and CSCs^{45,46}, our
259 results suggest that, in TNBC, Wnt-activation can promote a paused proliferative state,

260 reduced/suppressed MYC levels, and enhanced chemoresistance – effectively mimicking the chemo-
261 mediated DTP^{Diap} cell phenotype.

262

263 **Induction of transient *de novo* Wnt signaling transcriptional-activation in response to**
264 **chemotherapy in TNBC cell lines.**

265

266 The evolution of DTP cells during treatment continues to be a hotly debated topic with some studies
267 suggest that a pre-existing DTP-population is simply enriched during therapy^{19–21}, while others propose
268 that cells undergo a temporary phenotypic transition due to cellular plasticity^{1,22,23}. To better understand
269 the dynamics of this process, we monitored the activation of the Wnt-reporter (TOP-GFP/TGP) in the
270 Wnt^{High} population through live-cell imaging.

271 While live-cell imaging analysis of the MDA-MB-231-TGP cell line under UNT conditions did not reveal
272 significant changes in the total levels of Wnt^{High} cells (Fig. 4A – black line), treatment with either DOC or
273 CAR resulted in a gradual enrichment of Wnt^{High} cells over a similar chemo-culture timespan (Fig. 4A –
274 green and red lines), consistent with our previous FACS-based results.

275 To visualize Wnt transcriptional-activation dynamics at single-cell resolution, we tracked the original Wnt-
276 state of Wnt^{High} cells (starting at 60h back to 0h) under UNT or chemotherapy-treated conditions, defining
277 different dynamics of Wnt-activation (Fig. 4B). In UNT conditions, 55% of Wnt^{High} cells in the MDA-MB-231-
278 TGP cell line observed at 60h were initially Wnt^{High} at T₀, while 34% were activated during the culture span
279 (mode #2 and #1, respectively) (Fig. 4C, Supplementary rep. images Fig. S4A, and Supplementary Videos
280 SV1, V2). In contrast, under DOC or CAR treatment conditions, the majority of Wnt^{High} cells at 60h (58%
281 and 55%, respectively) were *de novo*-activated during treatment, indicating chemotherapy-induced Wnt-
282 activation in initially Wnt^{Low} cells (GFP⁻ at T₀ – mode #1). Conversely, only 27% and 34% of Wnt^{High} cells in
283 DOC and CAR treatment conditions were initially Wnt^{High} at T₀ (mode #2) (Fig. 4D, E, rep. images Fig. 4F, G,
284 Supplementary rep. images Fig. S4B, and Supplementary Videos SV3-6). These findings suggest that
285 chemotherapy-induced Wnt pathway-enrichment mainly results from *de novo* activation rather than only
286 passive selection of initially Wnt^{High} cells. Additional modes of Wnt-transcriptional activation dynamics
287 were observed in a minority of cases (mode #3 and #4) while cells that fell out of the imaging frame were
288 considered of unknown origin/state (mode #5). In accordance with these findings, similar observations
289 were validated using the PDC-BRC-101-TGP cell line (Supplementary Fig. S4D-G).

290 Next, we assessed the population dynamics of chemotherapy-induced DTP^{Diap}/Wnt^H cells after treatment
291 was halted (Fig. 4H). Interestingly, the percentage of DTP^{Diap}/Wnt^H cells was stabilized or even increased
292 upon chemotherapy removal for up to 3 weeks (Fig. 4I-L). Prolonged culture of these cells for 4 weeks in

293 chemo-free (i.e., a drug-holiday) conditions resulted in a significant reduction in the percentage of
294 DTP^{Diap}/Wnt^H cells, re-establishing the Wnt-population to levels similar to that of UNT/basal-cultured cells
295 (Fig. 4I-L). This data indicates that the chemotherapy-induced DTP^{Diap}/Wnt^H phenotype is transient and
296 reversible at the population level once treatment pressure is removed (Fig. 4I-L and Supplementary Fig.
297 S4H). Furthermore, upon restoration of levels of Wnt-activation to that of UNT/basal-cultured cells, we
298 observed that MDA-MB-231-TGP cell lines recovering DOC and CAR treatments (DOC^{REC} and CAR^{REC},
299 respectively) also reverted to normal (i.e., relative to UNT) rates of proliferation and drug tolerance (Fig.
300 4M, N), highlighting the transient nature of the DTP-phenotype mediated via chemotherapy-induced Wnt-
301 activation.

302

303 Altogether, these findings show that the DTP^{Diap}/Wnt^H phenotype results namely from a *de novo*
304 chemotherapy-driven action rather than solely representing a manifestation of an inherently
305 chemotherapy-resistant subpopulation selected under treatment pressure. Notably, upon chemotherapy
306 removal, Wnt-activity levels revert to baseline levels, indicating a transient enrichment of a DTP^{Diap}/Wnt^H
307 cell-state dependent on chemotherapy pressure.

308

309 **Chemotherapeutic treatment induces elevated transcriptional expression of Wnt ligands, Wnt
310 enhancers, and Wnt secretion machinery components.**

311

312 The Wnt signaling pathway is highly conserved and activated via the binding of (19) extracellular Wnt
313 ligands (Wnts) to membrane receptors^{47,48}. Secretion of Wnt ligands requires the action of the
314 acyltransferase Porcupine (PORCN) followed by Wntless/evenness interrupted (WLS/Evi) which supports
315 transport of Wnts from the Trans-Golgi Network to the plasma membrane. In addition, the Rspo protein
316 family has been shown to enhance Wnt ligand activity to further promote Wnt pathway-activation^{47,48}. A
317 RT-qPCR screening, focusing on established canonical Wnt ligands (Wnt-1, Wnt-2, Wnt-2b, Wnt-3, Wnt-3a,
318 and Wnt-7b), Wnt ligand enhancers/amplifiers (Rspo1-4), and Wnt secretion machinery components
319 (WLS/Evi and PORCN), revealed that the transcriptional expression of key genes, including *WNT2B*, *WNT3*,
320 *WNT3A*, *WNT7B*, *RSPO1*, *RSPO3*, *WLS*, and *PORCN* was found to be steadily expressed in basal conditions
321 across all analyzed TNBC cell lines (Supplementary Fig. S5A-C).

322 Importantly, these genes exhibited a consistent and statistically significant increase in expression levels
323 under chemotherapy-treatment conditions (Fig. 5A-C) suggesting that chemotherapeutic exposure
324 actively promotes elevated transcription levels of several key components involved in canonical Wnt
325 pathway-activation.

326 Subsequently, following chemotherapy removal and under one week chemo-recovery conditions, the
327 majority of Wnt-activation components maintained elevated expression levels (Fig. 5D, E – pink bars)
328 However, after four weeks of culture in chemo-free conditions and coinciding with the previous results
329 displaying the return of DTP^{Diap}/Wnt^H cells to basal levels (Fig. 4I-L), we observed a corresponding decrease
330 in expression level patterns of Wnt-activation components (Fig. 5D, E – light blue bars). This correlation
331 between the expression levels of Wnt-activation components and the dynamic induction of a DTP^{Diap}/Wnt^H
332 population highlights the transient nature of chemotherapy-induced Wnt-activation, providing a possible
333 mechanism for the enrichment of the DTP^{Diap}/Wnt^H population in response to treatment.
334 Western blot analysis confirmed the upregulation of the Wnt ligand Wnt-2b and the acyltransferase
335 PORCN, in response to either DOC or CAR treatments across all analyzed TNBC cell lines (Fig. 5F-K).
336 Treatment of chemo-naïve cells with concentrated conditioned media (CM) derived from MDA-MB-231
337 and MDA-MB-468 TNBC cell lines (Fig. 5L) confirmed increased and functional presence of Wnt ligands in
338 media collected under one week chemo-recovery conditions, resulting in a significant increase in
339 DTP^{Diap}/Wnt^H cells when compared to chemo-naïve cells treated with UNT CM (Fig. 5M, N). In a parallel
340 experiment, we co-cultured chemo-naïve (MDA-MB-231-mCherry-TGP) cells with chemo-recovering
341 (MDA-MB-231) cells (Fig. 4O). This co-culturing approach similarly resulted in a substantial and statistically
342 significant increase in the percentage of DTP^{Diap}/Wnt^H cells within the chemo-naïve cell population (Fig.
343 5P).
344 In summary, our findings demonstrate that chemotherapeutic treatment leads to elevated expression
345 levels of Wnt ligands, -enhancers, and -components of the Wnt secretory apparatus. Significantly,
346 concentrated CM obtained from chemo-treated and recovered cells induces an enrichment in the
347 DTP^{Diap}/Wnt^H cell-population, substantiating the functional impact of the chemo-secreted factors.

348
349
350
351

352 **Wnt ligand secretion-inhibition hinders DTP^{Diap}/Wnt^H population enrichment.**

353
354 The induction and/or enrichment of treatment-persistent residual tumor cells represents an important
355 barrier to curative outcomes. Therefore, a better understanding of the therapeutic vulnerabilities of the
356 DTP^{Diap}/Wnt^H cell-state potentially has major clinical implications.
357 We stably transduced MDA-MB-231, MBD-MB-468, and PDC-BRC-101 TNBC cell lines with lentiviral shRNA
358 constructs designed to silence the acetyltransferase PORCN, abrogating the O-palmitoylation and
359 functional secretion of Wnt ligands^{49,50} and resulting in a substantial reduction (approx. 80-90%) in PORCN

360 mRNA levels (Supplementary Fig. S6A-C). PORCN silenced (shPORCN#1) cell lines exposed to either
361 chemotherapeutic agent revealed reduced levels of active β -catenin or percentage of DTP^{Diap}/Wnt^H cells
362 compared to control (shPLKO) lines, confirming an essential role for PORCN in chemotherapy-induced
363 DTP^{Diap}/Wnt^H cell-enrichment (Fig. 6A-C and Supplementary Fig. S6D). While the silencing of PORCN had
364 no impact on cell viability in basal (UNT) culture conditions, we observed a marked and significant increase
365 in levels of apoptotic and necrotic (Annexin V⁺ and DAPI⁺) cells in shPORCN#1 TNBC cell lines compared to
366 shPLKO lines upon chemotherapy exposure, indicating a strong sensitization role of PORCN-inhibition (Fig.
367 6D-F). We validated the reduction of the chemotherapy-induced DTP^{Diap}/Wnt^H population and increased
368 sensitization to chemotherapy using a second independent lentiviral shRNA construct targeting PORCN
369 (shPORCN#4 – Supplementary Fig. S6E-G) confirming that genetic inhibition of Wnt ligand-secretion
370 effectively hinders the advent of a chemotherapy-induced DTP^{Diap}/Wnt^H population while significantly
371 enhancing the sensitization of TNBC cell lines to chemotherapy.

372
373 Although several pharmacological inhibitors targeting the acyltransferase PORCN have been developed
374 and shown efficacy in suppressing Wnt signaling in various solid tumors, notably in Wnt-deregulated colon
375 cancers, the ongoing clinical trials investigating PORCN inhibitors in TNBC do not currently consider their
376 interaction with chemotherapy⁵¹⁻⁵⁴. Given our previous findings that the Wnt signaling pathway is
377 activated in response to chemotherapeutic treatment, we sought to investigate whether pharmacological
378 inhibition of PORCN could also prove effective in curbing Wnt-activation and induction of DTP^{Diap}/Wnt^H
379 cells under treatment pressure. We examined two distinct approaches to therapeutically target treatment-
380 induced DTP^{Diap}/Wnt^H cells. In the first approach, we pre-treated MDA-MB-231, MBD-MB-468, and PDC-
381 BRC-101 TNBC cell lines with the Inhibitor of Wnt Production⁵⁵ (IWP-2) for 48h followed by the application
382 of either DOC or CAR agents (sequential treatment). In the second approach, we applied
383 chemotherapeutic treatment simultaneously and in combination with IWP-2 (combinatorial treatment).
384 Pre-treatment (sequential treatment strategy – Fig. 6G) of MDA-MB-231-TGP, MBD-MB-468-TGP, and PDC-
385 BRC-101-TGP TNBC cell lines with IWP-2 for 48h led to a notable and significant reduction in the
386 percentage of DTP^{Diap}/Wnt^H cells (Fig. 6H) with no effects on cell viability (Supplementary Fig. S6H).
387 However, upon chemotherapy addition, we observed robust chemotherapy-induced Wnt-activation both
388 in IWP-2 pre-treatment conditions and in sole chemo-treatment alike, seen in all TNBC cell lines (Fig. 6I).
389 Notably, pre-treatment with IWP-2 followed by chemotherapy addition did not result in increased cell
390 death nor sensitization to either agent (Supplementary Fig. S6I-K), suggesting that a sequential treatment

391 strategy to target *a priori* existent DTP^{Diap}/Wnt^H population might not be sufficient to prevent
392 chemotherapy-induced Wnt-activation and its subsequent implications.

393 In the second approach (combinatorial treatment strategy – Fig. 6J), simultaneous treatment of TNBC cell
394 lines with either DOC or CAR therapeutic agent in combination with IWP-2 led to a significant decrease in
395 the percentage of DTP^{Diap}/Wnt^H cells (Fig. 6K) underscoring the critical role of Wnt ligand-secretion in this
396 acquired Wnt-activation phenomenon. Intriguingly, combinatorial treatment involving chemotherapeutic
397 agents alongside IWP-2 resulted in a substantial increase in apoptotic cell death across all analyzed TNBC
398 cell lines compared to treatment with either chemotherapeutic agent alone (Fig. 6L). Interestingly, we
399 observed that the supplementation of IWP-2 alongside chemotherapy resulted in a significant rescue of
400 MYC levels (Fig. 6M). Furthermore, using a second pharmacological PORCN inhibitor, WNT-974^{53,54,56} (LGK-
401 974) resulted in similar outcomes obtained with Wnt ligand secretion-inhibitor IWP-2 (Supplementary Fig.
402 S6L-Q).

403

404 In summary, our findings collectively demonstrate that Wnt ligand-secretion plays a crucial role in driving
405 the enrichment of DTP^{Diap}/Wnt^H cells induced by chemotherapy. Notably, simultaneous-combinatorial
406 treatment, rather than sequential, encompassing chemotherapeutic agents and pharmacological
407 inhibitors of Wnt ligand-secretion can significantly reduce the induction and/or enrichment of
408 DTP^{Diap}/Wnt^H cells and enhance the sensitivity of TNBC cell lines to chemotherapy.

409

410 **Inhibition of Wnt ligand-secretion and chemotherapeutic treatment synergistically sensitize *in*
411 *vivo* xenograft TNBC model to treatment.**

412

413 A precise and complete understanding of Wnt-activation kinetics and dynamics in response to
414 chemotherapeutic treatment in *in vivo* models is lacking. To shed some light on this phenomenon, we
415 engineered the TNBC cell line MDA-MB-231 with the Wnt-transcriptional reporter TOPFLASH³⁵, a β -
416 catenin-responsive firefly luciferase reporter plasmid compatible for use with the *in vivo* live imaging
417 system (IVIS) (Fig. 7A).

418 Treatment with either DOC or CAR^{57,58} resulted in a significant overall decrease in tumor volume when
419 compared to the vehicle (VEH) treated group (Fig. 7B, C). Notably, at the administered doses, no significant
420 changes in mouse body weight were observed during the three weeks of treatment (Supplementary Fig.
421 S7A). We observed, as early as 48h and 72h (for DOC and CAR, respectively) upon chemotherapeutic
422 administration, a significant upregulation in transcriptional Wnt-activation recorded by IVIS (Fig. 7D, E, and
423 representative image Supplementary Fig. S7B). Notably, this activation started to decrease as the week

424 progressed following the 1st dose-administration and again increased significantly 48h and 72h (for DOC
425 and CAR, respectively) following administration of the 2nd and 3rd dose (Fig. 7D, E) highlighting the dynamic
426 behavior of chemotherapy-induced Wnt-activation *in vivo*. Gene expression analysis on the resected
427 tumors following the 3rd and final cycle of chemotherapeutic administration revealed elevated expression
428 of Wnt-targets (*AXIN2* and *LEF1*), Wnt ligands and -enhancers (*WNT2B*, *WNT3A*, *WNT7B*, *RSPO1*, and
429 *RSPO3*), and Wnt secretion machinery components (*WLS* and *PORCN*) (Fig. 7F and Supplementary Fig. S7C)
430 in chemotherapy-treated groups.

431 We next proceeded to assess whether a combinatorial treatment strategy encompassing the use of
432 chemotherapy with a pharmacological Wnt ligand secretion-inhibitor (Fig. 7G) could abrogate Wnt-
433 activation and lead to tumor sensitization, as indicated in our previous *in vitro* findings (Fig. 6K, L and
434 Supplementary Fig. S6L-Q). Administration of LGK-974 alone had no discernible effect on tumor growth^{56,59}
435 (Fig. 7H, I, and representative images Supplementary Fig. S7D). Conversely, the combination of LGK-974
436 with either DOC or CAR treatment resulted in a substantial and significant decrease in Wnt pathway-
437 activation, correlating with a marked reduction in tumor volume compared to solo chemo-treated or VEH-
438 groups (Fig. 7H-K and representative images Supplementary Fig. S7D). Notably, LGK-treatment, sole or in
439 combination with either chemotherapeutic agent, had no significant effect on mouse body weight
440 observed during the three weeks of treatment (Supplementary Fig. S7E).

441 Response Evaluation Criteria in Solid Tumors⁶⁰ (RECIST) analysis was performed to assess tumor response
442 to treatment, categorizing objective outcomes into progressive disease (PD), stable disease (SD), partial
443 response (PR), and complete response (CR). In the VEH-group, 75% (6/8) of tumors were classified as PD,
444 and 25% (2/8) were classified as SD (Fig. 7L). Sole LGK-974 treatment showed no difference in RECIST
445 classifications (75% PD and 25% SD) compared to VEH-conditions, indicating minimal impact on tumor
446 burden (Fig. 7L). In solo DOC- or CAR-treated groups, RECIST analysis classified 100% of tumors as SD,
447 demonstrating the efficacy of DOC or CAR treatments in controlling tumor growth (Fig. 7L). In the DOC+LGK
448 treatment arm, LGK-974 supplementation significantly improved objective response with tumors classified
449 as 28.6% SD (2/7) and 71.4% PR (5/7) (Fig. 7I), compared to sole DOC-treatment (100% SD). Similarly, in
450 the CAR+LGK treatment arm, tumors were classified as 42.8% SD (3/7), 28.6% PR (2/7), and 28.6% CR (2/7),
451 highlighting the positive impact of combining chemotherapy with Wnt secretion-inhibition (Fig. 7L).

452

453 Our study comprehensively characterizes the activation dynamics of the Wnt signaling pathway in
454 chemotherapy-treated tumors within an *in vivo* setting. We demonstrate that activation of the Wnt
455 pathway is primarily triggered by Wnt ligand-secretion as a combined treatment approach, which includes

456 chemotherapy and Wnt ligand secretion-inhibition, significantly reduces Wnt pathway-activation and
457 effectively curbs tumor growth.

458

459 **Preclinical PDO models recapitulate chemotherapy-mediated Wnt-activation and sensitization to**
460 **synergistic Wnt ligand secretion-inhibition.**

461 Transcriptomic analysis performed on RNA-sequencing-based datasets of longitudinally paired samples of
462 breast cancers patients during NAC treatment⁶¹ (GSE123845 – Fig. 8A and Supplementary Table 6) showed
463 that an in-house derived (Wnt^{High}) Wnt-signaling signature was significantly enriched in tumor samples
464 obtained from patients undergoing (on-NAC) NAC treatment (Fig. 8B). Parallelly, and in conjunction with
465 our findings in this study using *in vitro* cell lines, enrichment of Wnt-signaling was seen hand in hand with
466 an enrichment of the Rehman et. al. DTP^{Diap} gene signature and a suppressed MYC hallmark signature (Fig.

467 8C, D), further highlighting the interplay between the Wnt^{High} and DTP^{Diap} phenotypes in a clinical setting.

468 Next, we investigated the effects of chemotherapeutic treatment on the Wnt-signaling pathway in pre-
469 clinical 3D PDO models^{62,63}. Two different PDO models, R1-IDC113 (113 BCO) and R2-IDC159A (159A BCO)
470 (Representative images Fig. 8E and Supplementary Fig. S8A) were used. Typically, organoid models are
471 cultured in growth factor-rich medium⁶⁴, of which Wnt ligand (Wnt-3a) and Wnt ligand-enhancer (R-
472 spondin3) are components, possibly influencing studies of Wnt signaling pathway dynamics. Culturing of
473 either cancer organoid model for four passages in a Wnt⁻/Rspo⁻ breast cancer organoid (BCO) medium,
474 had no effects on the morphology, proliferation rate, or viability of either PDO model when compared to
475 a baseline (Wnt⁺/Rspo⁺) BCO medium⁶⁵ (Supplementary Fig. S8B, C). Upon exposure to IC50 concentrations
476 of either DOC or CAR agents (Supplementary Fig. S8D-G) in a Wnt⁻/Rspo⁻ BCO medium, both PDO models
477 exhibited a substantial and statistically significant increase in the expression levels of Wnt-target genes,
478 compared to UNT conditions (Fig. 8F, G). Immunofluorescence analysis of active β-catenin levels confirmed
479 increased Wnt-activation in both PDO models following exposure to either chemotherapeutic agent (Fig.
480 8H and Supplementary Fig. S8H).

481

482 To evaluate if activation of the Wnt signaling pathway would also suffice in inducing a growth-arrest, drug-
483 tolerant, DTP-state in a pre-clinical TNBC PDO model, we treated the 113 BCO PDO model with CHIR or
484 BIO to stimulate activation of the Wnt signaling pathway as previously done using TNBC cell lines.
485 Treatment with either CHIR or BIO resulted in transcriptional activation of the Wnt signaling pathway as
486 evidenced by a significant increase in Wnt-target gene expression (AXIN2 – Supplementary Fig. S8I).
487 Parallelly, and in accordance with our previous findings, treatment with CHIR or BIO led to a significant

488 decrease in cell number as a possible consequence of growth-arrest (Fig. 8I) seen in conjunction with
489 significant suppression of MYC activity (Fig. 8J and Supplementary Fig. S8J). Furthermore, pre-treatment
490 with either CHIR or BIO was able to induce a drug-tolerant phenotype in the 113 BCO PDO model, whereby
491 we observed a significant decrease in apoptosis induction in cells pre-treated with CHIR or BIO followed
492 by chemotherapeutic treatment when compared to sole chemotherapy exposure (Fig. 8K).
493 Next, we confirmed significant elevation in the expression levels of Wnt ligands, -enhancers, and -secretion
494 machinery components in chemotherapy-treated PDO models when compared to UNT conditions (Fig. 8L,
495 M). To investigate the efficacy of the combinatorial treatment strategy, both PDO models were exposed to
496 Wnt ligand secretion-inhibition alone and in combination with escalating concentrations of either
497 chemotherapeutic agent for 96h. Treatment of both PDO models with IWP-2 alone for 96h did not have
498 any effect on cell viability or proliferation (Supplementary Fig. S8K). However, the exposure of both PDO
499 models to chemotherapy in combination with IWP-2 demonstrated a significant reduction in the
500 percentage of viable cells compared to chemotherapeutic treatment alone (Fig. 8N, O). Interestingly, this
501 sensitization effect was most effective when IWP-2 was supplemented with sublethal concentrations of
502 chemotherapy (<16nM DOC and <50µM CAR – 113 BCO | <8nM DOC and <125µM CAR – 159A BCO).
503
504 In summary, our study demonstrates chemotherapy-induced Wnt-activation in TNBC pre-clinical PDO
505 models and in transcriptomic datasets derived from patients samples undergoing NAC. Notably, TNBC PDO
506 models exhibited a robust and enhanced sensitization to the combinatorial treatment comprising Wnt
507 ligand secretion-inhibition alongside sub-lethal chemotherapy (<determined IC50) concentrations. This
508 finding underscores the potential clinical significance of this combinatorial approach for breast cancer
509 treatment.
510

511 **DISCUSSION**

512 Understanding the introductory events that lead to the formation of DTP^{Diap} cells could provide new
513 therapeutic strategies to prevent the development of drug-resistant populations even before they are
514 steadily established.

515 Our findings reveal a significant enrichment in the percentage of a Wnt^{High} population alongside an increase
516 in the intensity of Wnt-activation in various TNBC models subjected to distinct chemotherapeutic agents.
517 We establish a significant transcriptional association between the Wnt^{High} population and DTP^{Diap}
518 population, including a unique DTP^{Diap} gene-signature and a reduction of MYC-targets hallmark; both
519 recently correlated with cancer DTP cells^{7,11}. Functional analyses confirmed that Wnt^{High} cells exhibit
520 DTP^{Diap} cell-traits such as reduced proliferation and an enhanced capacity for drug tolerance, indicating
521 that Wnt^{High} cells function as *bona fide* DTP^{Diap} cells. We find that the transcriptional activation of the Wnt
522 signaling pathway serves as a distinctive biomarker for the early emergence of the DTP^{Diap} cell-phenotype
523 in untreated parental cells, but particularly in cells responding to chemotherapeutic exposure.

524 Enrichment of DTP cells has been observed across various chemotherapeutic treatments. In our study, we
525 utilize two chemotherapeutics with distinct mechanisms of action: Docetaxel, which induces microtubule
526 stabilization leading to cell cycle arrest and apoptosis, and Carboplatin, which forms DNA crosslinks that
527 inhibit DNA replication and transcription, ultimately leading to cell death. Despite their different pro-
528 apoptotic mechanisms, both treatments result in an enrichment of DTP^{Diap}/Wnt^H cells, showing that
529 distinct chemotherapies converge on the enrichment of Wnt ligand-expression and activation of the Wnt
530 signaling pathway. Interestingly, in regenerative models, such as Hydra, increased Wnt ligand-expression
531 has been noted in cells undergoing apoptosis as a pro-survival mechanism in response to tissue damage⁶⁶.
532 This suggests that, under the stress of chemotherapeutic pressure, cells may activate similar pro-survival
533 mechanisms and signaling pathways. In this article, we propose a mechanistic model for acquired
534 chemoresistance in TNBC mediated by the enrichment of drug-tolerant cells, involving two phases.
535 Initially, cells sense environmental changes induced by therapeutic pressure, leading to elevated levels of
536 Wnt ligands and -enhancers, along with increased Wnt ligand-secretion. Subsequently, cells adapt to
537 these pressures by transcriptionally activating the Wnt signaling pathway, ultimately resulting in the
538 enrichment of DTP^{Diap}/Wnt^H cells.

539 DTP^{Diap} cells have been found to be susceptible to ferroptosis induction, a form of programmed cell death
540 dependent on iron and characterized by the accumulation of lipid peroxides⁶⁷. Recently, BET inhibitors
541 have also emerged as a promising therapeutic strategy for targeting and eliminating persister cells⁶⁸.
542 However, current research predominantly focuses on identifying and exploiting vulnerabilities in existing
543 DTP cells or in drug-tolerant expanded persisters (DTEPs) that have resumed cell division after a period of
544 drug withdrawal. Consequently, these therapeutic agents are designed to target DTP^{Diap} cells specifically,
545 rather than preventing the acquisition and emergence of a DTP^{Diap} cell-state. Our results show that
546 combinatorial treatment involving Wnt ligand secretion-inhibition supplemented alongside chemotherapy
547 reduces DTP^{Diap}/Wnt^H cell-enrichment and sensitizes tumors to treatment, holding significant promise for
548 future clinical trials in TNBC. Surprisingly, current clinical trials investigating PORCN inhibition in TNBC are
549 restricted only to Wnt-deregulated cancers and exclude consideration of chemotherapy (NCT03447470
550 and NCT01351103)^{53,54}. Our study also underscores the importance of temporal considerations in
551 treatment regimens. Crucially, we show that pre-treatment with PORCN inhibitors does not prevent a
552 substantial increase in DTP^{Diap}/Wnt^H cells once chemo-treatment is applied, indicating that patients
553 undergoing chemotherapy might not benefit from an initial treatment with Wnt-inhibitors. Therefore, our
554 findings suggest that simultaneous-combinatorial treatment, rather than sequential treatment,
555 encompassing Wnt-inhibitors and chemotherapy might provide a solution to effectively control and
556 prevent chemotherapy-induced drug tolerant cell-enrichment while simultaneously sensitizing tumors to
557 the effects of chemotherapy.

558 The origin of DTP cells is a subject of ongoing debate. Some research suggests that DTP cells may have a
559 stable clonal origin, while others propose that DTP cells enter a temporary drug-tolerant state under the
560 influence of external factors such as chemotherapy. Our live-cell imaging studies, which allow the tracking
561 and tracing of Wnt-reporter TNBC cell lines, indicate that chemotherapy treatment leads to a significant
562 enrichment of DTP^{Diap}/Wnt^H cells, primarily in cells that were initially in a Wnt^{Low} state. This suggests a vital
563 role of *de novo* activation of the Wnt signaling pathway in response to chemotherapeutic treatment.
564 Additionally, a lower but notable proportion of DTP^{Diap}/Wnt^H cells in chemo-treated conditions were
565 initially in a transcriptionally Wnt-active state. These observations imply that both intrinsic and acquired
566 resistance mechanisms, driven by Wnt transcriptional-activity, coexist and contribute to DTP cell-
567 formation. Importantly, our results show that activation of the Wnt signaling pathway through GSK3
568 inhibition is sufficient to induce a DTP^{Diap} state in parental breast cancer cells, even in the absence of
569 therapeutic pressure. This demonstrates that the DTP^{Diap} cell-state is not exclusive to chemotherapy-

570 treated samples and can emerge under non-challenging conditions, explaining its presence in untreated
571 populations.

572 Activation of the canonical Wnt signaling pathway and β -catenin stabilization have been correlated with
573 unfavorable prognosis in patients with TNBC^{47,69-73}. Wnt-activation has been extensively associated with
574 induction of proliferation, increased MYC expression^{74,75} and a CSC phenotype^{56,69,70,73,76}. Contrary to
575 previous research, our results establish a significant transcriptional link between the Wnt^{High} population
576 and the slow proliferating DTP^{Diap} cells with reduced MYC expression. The reductive proliferation effect of
577 Wnt-activation in TNBC is reminiscent of the effect of LGR5⁺ cells in mouse models of basal cell carcinoma
578 (BCC), in which therapy treated LGR5⁺ BCC cells correlate with increased Wnt-activity and a slow-
579 proliferative phenotype⁷⁷, suggesting that, in other cancer types, Wnt-activation might also promote a
580 diapause-like state.

581 Prior studies have shown that Wnt-activation reduces the proliferation of mouse pluripotent ESCs by
582 increasing the expression of cyclin-dependent kinase inhibitors (CDKis) such as p16^{Ink4a}, p21, and p27,
583 alongside a decrease in MYC expression^{78,79}. Whether Wnt-activation might also induce a diapause state
584 in mESCs needs further investigation, however RNA sequencing of dormant versus reactivated mouse
585 blastocysts identified differential regulation of the Wnt signaling pathway⁸⁰. This finding is consistent with
586 the work of Fan et al., who showed higher Wnt transcriptional-activity in epiblast cells of hormonally
587 diapaused embryos compared to actively cycling embryos⁸¹. This suggests that the Wnt signaling pathway
588 may play a direct role in promoting a diapause cell state also in preimplantation embryos or pluripotent
589 cells.

590 In summary, our research suggests that Wnt pathway-activation plays a pivotal role as an early event
591 enhancing the enrichment of DTP^{Diap}/Wnt^H cell populations in TNBC and contributing to the development
592 of therapeutic resistance, particularly in response to chemotherapy. Therefore, a potential strategy to
593 address DTP^{Diap}/Wnt^H cell enrichment could involve targeting Wnt ligand-secretion successively hindering
594 chemotherapy-induced Wnt/ β -catenin pathway-activation and subsequently diminishing the sustenance
595 and enrichment of DTP cell-populations.

596 REFERENCES

- 597 1. Zhang, Z., Tan, Y., Huang, C. & Wei, X. Redox signaling in drug-tolerant persister cells as an
598 emerging therapeutic target. *eBioMedicine* **89**, 104483 (2023).
- 599 2. Shi, Z.-D. *et al.* Tumor cell plasticity in targeted therapy-induced resistance: mechanisms
600 and new strategies. *Signal Transduct. Target. Ther.* **8**, 113 (2023).
- 601 3. Pu, Y. *et al.* Drug-tolerant persister cells in cancer: the cutting edges and future directions.
602 *Nat. Rev. Clin. Oncol.* **20**, 799–813 (2023).
- 603 4. Kaldalu, N. & Tenson, T. Slow growth causes bacterial persistence. *Sci. Signal.* **12**, (2019).
- 604 5. Van den Bergh, B., Fauvert, M. & Michiels, J. Formation, physiology, ecology, evolution and
605 clinical importance of bacterial persisters. *FEMS Microbiol. Rev.* **41**, 219–251 (2017).
- 606 6. Chen, H.-L. & Jin, W.-L. Diapause-like Drug-Tolerant Persister State: The Key to Nirvana
607 Rebirth. *Medicina (B. Aires)*. **60**, 228 (2024).
- 608 7. Rehman, S. K. *et al.* Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive
609 Chemotherapy. *Cell* **184**, 226-242.e21 (2021).
- 610 8. Sun, X. *et al.* The diapause-like colorectal cancer cells induced by SMC4 attenuation are
611 characterized by low proliferation and chemotherapy insensitivity. *Cell Metab.* **35**, 1563-
612 1579.e8 (2023).
- 613 9. Scognamiglio, R. *et al.* Myc Depletion Induces a Pluripotent Dormant State Mimicking
614 Diapause. *Cell* **164**, 668–680 (2016).
- 615 10. ter Huurne, M., Chappell, J., Dalton, S. & Stunnenberg, H. G. Distinct Cell-Cycle Control in
616 Two Different States of Mouse Pluripotency. *Cell Stem Cell* **21**, 449-455.e4 (2017).
- 617 11. Dhimolea, E. *et al.* An Embryonic Diapause-like Adaptation with Suppressed Myc Activity
618 Enables Tumor Treatment Persistence. *Cancer Cell* **39**, 240-256.e11 (2021).
- 619 12. Aldonza, M. B. D. *et al.* Prior acquired resistance to paclitaxel relays diverse EGFR-targeted
620 therapy persistence mechanisms. *Sci. Adv.* **6**, (2020).
- 621 13. Kurppa, K. J. *et al.* Treatment-Induced Tumor Dormancy through YAP-Mediated
622 Transcriptional Reprogramming of the Apoptotic Pathway. *Cancer Cell* **37**, 104-122.e12
623 (2020).
- 624 14. Rambow, F. *et al.* Toward Minimal Residual Disease-Directed Therapy in Melanoma. *Cell*
625 **174**, 843-855.e19 (2018).
- 626 15. Arasada, R. R., Amann, J. M., Rahman, M. A., Huppert, S. S. & Carbone, D. P. EGFR Blockade
627 Enriches for Lung Cancer Stem–like Cells through Notch3-Dependent Signaling. *Cancer Res.*
628 **74**, 5572–5584 (2014).
- 629 16. Recasens, A. & Munoz, L. Targeting Cancer Cell Dormancy. *Trends Pharmacol. Sci.* **40**, 128–
630 141 (2019).
- 631 17. Liedtke, C. *et al.* Response to Neoadjuvant Therapy and Long-Term Survival in Patients
632 With Triple-Negative Breast Cancer. *J. Clin. Oncol.* **26**, 1275–1281 (2008).

- 633 18. Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-Negative Breast Cancer. *N. Engl. J. Med.*
634 **363**, 1938–1948 (2010).
- 635 19. Danisik, N., Yilmaz, K. C. & Acar, A. Identification of collateral sensitivity and evolutionary
636 landscape of chemotherapy-induced drug resistance using cellular barcoding technology.
637 *Front. Pharmacol.* **14**, (2023).
- 638 20. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor Heterogeneity: The Rosetta Stone of
639 Therapy Resistance. *Cancer Cell* **37**, 471–484 (2020).
- 640 21. Mikubo, M., Inoue, Y., Liu, G. & Tsao, M.-S. Mechanism of Drug Tolerant Persister Cancer
641 Cells: The Landscape and Clinical Implication for Therapy. *J. Thorac. Oncol.* **16**, 1798–1809
642 (2021).
- 643 22. Kim, C. *et al.* Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by
644 Single-Cell Sequencing. *Cell* **173**, 879-893.e13 (2018).
- 645 23. Echeverria, G. V. *et al.* Resistance to neoadjuvant chemotherapy in triple-negative breast
646 cancer mediated by a reversible drug-tolerant state. *Sci. Transl. Med.* **11**, (2019).
- 647 24. Verweij, J., Clavel, M. & Chevalier, B. Paclitaxel (TaxolTM) and docetaxel (TaxotereTM): Not
648 simply two of a kind. *Ann. Oncol.* **5**, 495–505 (1994).
- 649 25. Rottenberg, S., Disler, C. & Perego, P. The rediscovery of platinum-based cancer therapy.
650 *Nat. Rev. Cancer* **21**, 37–50 (2021).
- 651 26. Raha, D. *et al.* The Cancer Stem Cell Marker Aldehyde Dehydrogenase Is Required to
652 Maintain a Drug-Tolerant Tumor Cell Subpopulation. *Cancer Res.* **74**, 3579–3590 (2014).
- 653 27. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for
654 interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci.* **102**, 15545–15550
655 (2005).
- 656 28. Liberzon, A. *et al.* The Molecular Signatures Database Hallmark Gene Set Collection. *Cell*
657 *Syst.* **1**, 417–425 (2015).
- 658 29. Weller, M. Predicting response to cancer chemotherapy: the role of p53. *Cell Tissue Res.*
659 **292**, 435–445 (1998).
- 660 30. Legrier, M.-E. *et al.* Activation of IFN/STAT1 signalling predicts response to chemotherapy
661 in oestrogen receptor-negative breast cancer. *Br. J. Cancer* **114**, 177–187 (2016).
- 662 31. Li, L., Guan, Y., Chen, X., Yang, J. & Cheng, Y. DNA Repair Pathways in Cancer Therapy and
663 Resistance. *Front. Pharmacol.* **11**, (2021).
- 664 32. Oshi, M. *et al.* G2M checkpoint pathway alone is associated with drug response and
665 survival among cell proliferation-related pathways in pancreatic cancer. *Am. J. Cancer Res.*
666 **11**, 3070–3084 (2021).
- 667 33. Weadick, B. *et al.* EMT-Induced Gemcitabine Resistance in Pancreatic Cancer Involves the
668 Functional Loss of Equilibrative Nucleoside Transporter 1. *Mol. Cancer Ther.* **20**, 410–422
669 (2021).
- 670 34. Minassian, L. M., Cotechini, T., Huitema, E. & Graham, C. H. Hypoxia-Induced Resistance

- 671 to Chemotherapy in Cancer. in 123–139 (2019). doi:10.1007/978-3-030-12734-3_9.
- 672 35. Fuerer, C. & Nusse, R. Lentiviral Vectors to Probe and Manipulate the Wnt Signaling
673 Pathway. *PLoS One* **5**, e9370 (2010).
- 674 36. Horst, D. *et al.* Differential WNT Activity in Colorectal Cancer Confers Limited Tumorigenic
675 Potential and Is Regulated by MAPK Signaling. *Cancer Res.* **72**, 1547–1556 (2012).
- 676 37. Nguyen, N. M. & Cho, J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and
677 Strategies to Overcome Drug Resistance. *Int. J. Mol. Sci.* **23**, 1733 (2022).
- 678 38. Wang, Z. *et al.* Targeting Notch signaling pathway to overcome drug resistance for cancer
679 therapy. *Biochim. Biophys. Acta - Rev. Cancer* **1806**, 258–267 (2010).
- 680 39. Jin, W. Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of
681 Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial–Mesenchymal Transition.
682 *Cells* **9**, 217 (2020).
- 683 40. Liu, S., Ren, J. & ten Dijke, P. Targeting TGF β signal transduction for cancer therapy. *Signal
684 Transduct. Target. Ther.* **6**, 8 (2021).
- 685 41. Ma, B. & Hottiger, M. O. Crosstalk between Wnt/ β -Catenin and NF- κ B Signaling Pathway
686 during Inflammation. *Front. Immunol.* **7**, (2016).
- 687 42. Shtutman, M. *et al.* The cyclin D1 gene is a target of the β -catenin/LEF-1 pathway. *Proc.
688 Natl. Acad. Sci.* **96**, 5522–5527 (1999).
- 689 43. Tetsu, O. & McCormick, F. β -Catenin regulates expression of cyclin D1 in colon carcinoma
690 cells. *Nature* **398**, 422–426 (1999).
- 691 44. Wagner, F. F. *et al.* Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide
692 Selectivity and Their Functional Effects. *ACS Chem. Biol.* **11**, 1952–1963 (2016).
- 693 45. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. *Nature* **434**, 843–850 (2005).
- 694 46. De Sousa e Melo, F. & Vermeulen, L. Wnt Signaling in Cancer Stem Cell Biology. *Cancers
(Basel)* **8**, 60 (2016).
- 696 47. Xu, X., Zhang, M., Xu, F. & Jiang, S. Wnt signaling in breast cancer: biological mechanisms,
697 challenges and opportunities. *Mol. Cancer* **19**, 165 (2020).
- 698 48. Niehrs, C. The complex world of WNT receptor signalling. *Nat. Rev. Mol. Cell Biol.* **13**, 767–
699 779 (2012).
- 700 49. Hofmann, K. A superfamily of membrane-bound O -acyltransferases with implications for
701 Wnt signaling. *Trends Biochem. Sci.* **25**, 111–112 (2000).
- 702 50. Torres, V. I., Godoy, J. A. & Inestrosa, N. C. Modulating Wnt signaling at the root: Porcupine
703 and Wnt acylation. *Pharmacol. Ther.* **198**, 34–45 (2019).
- 704 51. Zhong, Z. *et al.* PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted
705 cancers. *Oncogene* **38**, 6662–6677 (2019).
- 706 52. Madan, B. *et al.* Wnt addiction of genetically defined cancers reversed by PORCN
707 inhibition. *Oncogene* **35**, 2197–2207 (2016).

- 708 53. Rodon, J. *et al.* Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor,
709 in patients with advanced solid tumours. *Br. J. Cancer* **125**, 28–37 (2021).
- 710 54. Tabernero, J. *et al.* A Phase Ib/II Study of WNT974 + Encorafenib + Cetuximab in Patients
711 With BRAF V600E -Mutant KRAS Wild-Type Metastatic Colorectal Cancer. *Oncologist* **28**,
712 230–238 (2023).
- 713 55. García-Reyes, B. *et al.* Discovery of Inhibitor of Wnt Production 2 (IWP-2) and Related
714 Compounds As Selective ATP-Competitive Inhibitors of Casein Kinase 1 (CK1) δ/ϵ . *J. Med.*
715 *Chem.* **61**, 4087–4102 (2018).
- 716 56. Abreu de Oliveira, W. A. *et al.* Wnt/ β -Catenin Inhibition Disrupts Carboplatin Resistance in
717 Isogenic Models of Triple-Negative Breast Cancer. *Front. Oncol.* **11**, (2021).
- 718 57. MABUCHI MIYUKI. Systematic Trial for Evaluating Docetaxel in a Human Prostate Cancer
719 Cell DU145 Xenograft Model. *Anticancer Res.* **37**, 1665–1676 (2017).
- 720 58. Moisan, F. *et al.* Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in
721 ovarian cancers. *Mol. Oncol.* **8**, 1231–1239 (2014).
- 722 59. Yun, E.-J. *et al.* Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer. *Clin.*
723 *Cancer Res.* **22**, 670–679 (2016).
- 724 60. Eisenhauer, E. A. *et al.* New response evaluation criteria in solid tumours: Revised RECIST
725 guideline (version 1.1). *Eur. J. Cancer* **45**, 228–247 (2009).
- 726 61. Park, Y. H. *et al.* Chemotherapy induces dynamic immune responses in breast cancers that
727 impact treatment outcome. *Nat. Commun.* **11**, 6175 (2020).
- 728 62. Driehuis, E., Kretzschmar, K. & Clevers, H. Establishment of patient-derived cancer
729 organoids for drug-screening applications. *Nat. Protoc.* **15**, 3380–3409 (2020).
- 730 63. Wensink, G. E. *et al.* Patient-derived organoids as a predictive biomarker for treatment
731 response in cancer patients. *npj Precis. Oncol.* **5**, 30 (2021).
- 732 64. Sachs, N. *et al.* A Living Biobank of Breast Cancer Organoids Captures Disease
733 Heterogeneity. *Cell* **172**, 373–386.e10 (2018).
- 734 65. Muthuswamy, S. K. Organoid Models of Cancer Explode with Possibilities. *Cell Stem Cell*
735 **22**, 290–291 (2018).
- 736 66. Chera, S. *et al.* Apoptotic Cells Provide an Unexpected Source of Wnt3 Signaling to Drive
737 Hydra Head Regeneration. *Dev. Cell* **17**, 279–289 (2009).
- 738 67. Hangauer, M. J. *et al.* Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.
739 *Nature* **551**, 247–250 (2017).
- 740 68. Chen, M. *et al.* Targeting of vulnerabilities of drug-tolerant persisters identified through
741 functional genetics delays tumor relapse. *Cell Reports Med.* **5**, 101471 (2024).
- 742 69. Pohl, S.-G. *et al.* Wnt signaling in triple-negative breast cancer. *Oncogenesis* **6**, e310–e310
743 (2017).
- 744 70. Abreu de Oliveira, W. A., El Laithy, Y., Bruna, A., Annibali, D. & Lluis, F. Wnt Signaling in the
745 Breast: From Development to Disease. *Front. Cell Dev. Biol.* **10**, (2022).

- 746 71. Geyer, F. C. *et al.* β -Catenin pathway activation in breast cancer is associated with triple-
747 negative phenotype but not with CTNNB1 mutation. *Mod. Pathol.* **24**, 209–231 (2011).
- 748 72. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. *Oncogene* **36**, 1461–1473
749 (2017).
- 750 73. Khramtsov, A. I. *et al.* Wnt/ β -Catenin Pathway Activation Is Enriched in Basal-Like Breast
751 Cancers and Predicts Poor Outcome. *Am. J. Pathol.* **176**, 2911–2920 (2010).
- 752 74. You, Z. *et al.* Wnt signaling promotes oncogenic transformation by inhibiting c-Myc–
753 induced apoptosis. *J. Cell Biol.* **157**, 429–440 (2002).
- 754 75. Chachoua, I. *et al.* Canonical WNT signaling-dependent gating of MYC requires a
755 noncanonical CTCF function at a distal binding site. *Nat. Commun.* **13**, 204 (2022).
- 756 76. Liu, J. *et al.* Wnt/ β -catenin signalling: function, biological mechanisms, and therapeutic
757 opportunities. *Signal Transduct. Target. Ther.* **7**, 3 (2022).
- 758 77. Sánchez-Danés, A. *et al.* A slow-cycling LGR5 tumour population mediates basal cell
759 carcinoma relapse after therapy. *Nature* **562**, 434–438 (2018).
- 760 78. Hawkins, K. Cell signalling pathways underlying induced pluripotent stem cell
761 reprogramming. *World J. Stem Cells* **6**, 620 (2014).
- 762 79. De Jaime-Soguero, A. *et al.* Wnt/Tcf1 pathway restricts embryonic stem cell cycle through
763 activation of the Ink4/Arf locus. *PLOS Genet.* **13**, e1006682 (2017).
- 764 80. He, B. *et al.* Blastocyst activation engenders transcriptome reprogram affecting X-
765 chromosome reactivation and inflammatory trigger of implantation. *Proc. Natl. Acad. Sci.*
766 **116**, 16621–16630 (2019).
- 767 81. Fan, R. *et al.* Wnt/Beta-catenin/Esrbb signalling controls the tissue-scale reorganization
768 and maintenance of the pluripotent lineage during murine embryonic diapause. *Nat. Commun.* **11**, 5499 (2020).
- 770 82. Ince, T. A. *et al.* Characterization of twenty-five ovarian tumour cell lines that phenocopy
771 primary tumours. *Nat. Commun.* **6**, 7419 (2015).
- 772 83. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
773 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).
- 774 84. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).
- 775 85. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
776 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).
- 777 86. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
778 for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).
- 779 87. Desmedt, C. *et al.* Biological Processes Associated with Breast Cancer Clinical Outcome
780 Depend on the Molecular Subtypes. *Clin. Cancer Res.* **14**, 5158–5165 (2008).
- 781 88. R Core Team. R: A language and environment for statistical computing. (2021).

782

783 **AUTHOR CONTRIBUTIONS**

784 YEL, WO, and FL conceived and designed the study. WO partially carried out flow cytometry experiments,
785 RT-qPCR experiments, analysis of publicly available datasets. AP performed all bioinformatic and
786 biostatistical analyses under the supervision of FR and CD. AQ partially carried out flow cytometry
787 experiments, western blot analysis, RT-qPCR experiments, and *in vivo* experiments. FR provided critical
788 input for the bulk transcriptomic analysis under supervision of and in consultation with CD. PA participated
789 in library preparations for mRNA-seq samples and provided input in experimental design. CL and WDW
790 provided aid in the *in vivo* experiments under supervision of SS and DA. LM provided aid for the culturing
791 and maintenance of patient derived organoid (PDO) models. SH provided input and feedback into
792 experimental design under supervision of AB. SM generated the *in vitro* cell line, PDC-BRC-101. AdJS
793 provided critical input in experimental design and assisted in the generation of several fluorescent reporter
794 cell lines. MB provided input in the *in vivo* experimental design. SJS provided critical input in human patient
795 dataset analysis. CS provided the PDO models. AB provided critical input for experimental design. DA
796 provided critical input in *in vivo* data analysis. YEL carried out the remainder of the experimental work.
797 Data analysis and figure preparation were performed by YEL and WO and reviewed by FL. The manuscript
798 was written by YEL and FL and reviewed and approved by all authors. FL secured funding and supervised
799 and guided experimental work and manuscript preparation.

800
801

802 **ACKNOWLEDGEMENTS**

803 We are grateful to the KU Leuven FACS core team for providing the facility. We also thank the KU Leuven
804 Genomics Core (<http://genomicscore.be>) for RNA sequencing, and data processing. We also thank the KU
805 Leuven TRACE core and the MOSAIC core for help in *in vivo* experimental design and animal imaging. The
806 authors would like to extend their gratitude to the FWO Research Foundation – Flanders for the Ph.D.
807 fellowships awarded to P.A. (11M7822N). AdJS was supported by PhD Emmanuel van der Schueren (EvdS)
808 fellowship granted by Kom Op Tegen Kanker (KOTK) and a Postdoctoral Mandate (PDM) granted by KU
809 Leuven. The Lluis Lab is financed by the FWO Research Project Grants G091521N (AB, DA, FLL), G073622N
810 (FLL), and the C1 KU Leuven internal grant C14/21/115 (FLL).

811
812

813 **MATERIALS AND METHODS**

814 **Ethics declaration**

815 All xenograft animal experiments performed were approved by the Ethics Committee at KU Leuven
816 University under the ethical approval codes P055/2022 and P016/2023.

817

818 Patient derived organoid (PDO) models used in this study were established from freshly resected tumor
819 tissues obtained from TNBC patients at the Antoni van Leeuwenhoek Hospital. The study was approved by
820 the institutional review board (NKI-B17PRE) and the subjects provided informed consent.

821

822 All cell lines used in this study are approved for use by the Ethics Committee at the KU Leuven University
823 Biobank under the code S65166.

824

825 **TNBC cell line culture**

826 MDA-MB-231 (ATCC-HTB-26) and MDA-MB-468 (ATCC-HTB-132) were maintained in DMEM high glucose
827 (Gibco, 41965039) supplemented with 10% (v/v) fetal bovine serum, 1mM sodium pyruvate (Gibco,
828 11140035), 100µg/mL penicillin-streptomycin (Gibco, 15140163), and 0.01mM 2-mercaptoethanol
829 (Gibco, 31350010).

830

831 PDC-BRC-101 cell line (PDX-derived cell line) was obtained from collaborators, Daniela Anibali and Stijn
832 Moens (Amant Lab – Gynecological Oncology) – KU Leuven and maintained in OCMI media⁸² composed of
833 a composed of 1:1 mixture of Medium199 (Gibco, 31150022) and DMEM F-12 (Gibco, 11320074)
834 supplemented with 10% (v/v) fetal bovine serum, 100µg/mL penicillin-streptomycin, 20µg/mL insulin
835 (Sigma/Merck, I9278), 25ng/mL cholera toxin subunit B (Sigma/Merck, C9903-5MG), 0.5µg/mL
836 hydrocortisone (Sigma/Merck, H0888-1G), and 10ng/mL epidermal growth factor (Stem Cell Technologies,
837 78006.1).

838

839 All cell lines were cultured in 84mm x 20mm (D x H) tissue-culture treated dishes at 37°C and 5% CO₂ and
840 maintained at 70-80% confluence. For cell line passaging and plating, 1X phosphate-buffered saline (Gibco,
841 10010-015) was used as a washing solution followed by dissociation using 0.25% trypsin-EDTA (Gibco,
842 25200-056) and cell-pelleting by centrifugation for 4 minutes at 300G (0.3rcf). Cells were counted
843 manually via the BRAND counting chamber Neubauer improved (Sigma Aldrich/Merck, BR717810-1EA)
844 under a 10X objective lens using a Leica DMI inverted microscope. The same microscope, equipped with a
845 2.5 Megapixel HD Microscope Camera Leica MC120 HC, was used to obtain images of cultured cancer cell
846 lines. Unless specified otherwise, cancer cell lines were plated according to the following seeding
847 densities: $7.3 \times 10^3 \frac{\text{cells}}{\text{cm}^2}$ and $10.5 \times 10^3 \frac{\text{cells}}{\text{cm}^2}$ (MDA-MB-231 and MDA-MB-468/PDC-BRC-101,
848 respectively).

849

850 **Chemotherapeutic and small molecule treatment of TNBC cell lines and PDO models**

851 Cell lines were treated with increasing concentrations of docetaxel (Taxotere, 0–144 nM) and carboplatin
852 (Carbosin, 0–1600 µM) for 72h. Cell metabolic activity, reflecting cell-number and -viability) was assessed
853 using the MTT [Thiazolyl Blue Tetrazolium Bromide] assay (Sigma/Merck, M5655-500mg) according to
854 manufacturer's instructions and sigmoidal dose-response curves were generated to calculate the mean

855 IC50 values of each drug that were used in the subsequent study. Chemotherapeutic agents were obtained
856 from the pharmacy of Universitair Ziekenhuis (UZ) Leuven.

857

858 For Wnt pathway-stimulation, CHIR99021 (CHIR – Sigma/Merck, SML1046) and 6-Bromoindirubin-3'-
859 oxime (BIO – Sigma/Merck, B1686-5MG) were used at 8 μ M and 3 μ M, for CHIR and BIO, respectively.

860

861 **Lentiviral particle production and transduction**

862 Lentiviruses were produced according to the RNAi Consortium (TRC) protocol available from the Broad
863 Institute (<https://portals.broadinstitute.org/gpp/public/resources/protocols>). In brief, 7×10^5
864 HEK-293T cells were seeded per well in 6-well plates and transfected the following day with 750 μ g pCMV-
865 dR8.91, 250 μ g pCMV-VSV-G, and 1 μ g of the specific lentiviral plasmid/construct using FugeneHD
866 (Promega, E2311) in Optimem (Gibco, 31985070). One day after, the culture medium was refreshed. The
867 same day, lentivirus-recipient cells were plated in 6-well plates at their respective concentrations (see cell
868 line culture). Lentivirus-containing medium was collected from HEK293T cells 48h and 72h post-
869 transfection and added to recipient cancer cells after filtration using a 0.45 μ M filter (VWR-Corning,
870 431220). 48h post infection, recipient cancer cells were washed thoroughly with PBS, medium refreshed,
871 and the appropriate selection antibiotics applied until selection process was completed.

872

873 Wnt-transcriptional reporters, TOPGFP (7xTcf-eGFP // SV40-PuroR), TOPFLASH (7xTcf-FFluc), and mCherry-
874 TOPGFP (7xTcf-eGFP // SV40-mCherry) were obtained from Addgene (#24305, #24308, and #24304,
875 respectively). Wnt-transcriptional reporter dTOPGFP (dTGP) was gifted to us from the Moon lab University
876 of (Washington – USA).

877

878 For PORCN shRNA mediated silencing, we used the MISSION® Lentiviral shRNA (Sigma Aldrich/Merck,
879 SHCLNG – clones, TCRN000153848 and TCRN000157366) and the MISSION pLKO.1-puro Non-Target
880 shRNA Control Plasmid DNA (SHC016-1EA) as a negative control in experiments.

881

882 **Real-Time Quantitative Polymerase Chain Reaction and Gene Expression Analysis**

883 For RT-qPCR, total RNA was extracted (from TNBC cell lines or cryopreserved tumor tissue) using the
884 GenElute mammalian total RNA miniprep kit (Sigma/Merck, RTN350-1KT) according to manufacturer's
885 instructions with an additional step of DNA digestion using the On-Column DNase I digestion set according
886 to manufacturer's instructions (Sigma/Merck, DNASE70). cDNA was synthesized from 500 ng of total RNA
887 using the BIORAD iScript cDNA cDNA synthesis kit (BIORAD, CAT#1708891), according to manufacturer's
888 instructions. Quantitative real-time PCR reactions were set up in technical triplicates with Platinum SYBR
889 Green qPCR SuperMix-UDG (Invitrogen, 11733-046) on a ViiA7 Real-Time PCR System (Thermo-Scientific).
890 Expression levels were normalized to two housekeeping genes (HK) RPL19 and GAPDH to determine ΔCT
891 values. Statistical testing of differences in expression levels between samples was carried out based on
892 relative-expression values ($2^{-\Delta CT}$). In some figures, gene expression values are represented as fold-
893 change for convenience of interpretation, although statistical testing was performed on relative expression
894 values ($2^{-\Delta CT}$).

895

896 **SDS-PAGE and Western Blot analysis**

897 TNBC cell lines were washed with PBS and collected/pelleted by centrifugation. Whole cell lysates were
898 obtained via mechanical lysis using a needle (VWR-TERUMO, AN2138R1) and RIPA cell lysis buffer
899 (Sigma/Merck, R0278-50mL) supplemented with a cocktail of 1:100 phosphatase inhibitors cocktail 2 and
900 3 (Sigma/Merck, P5726-1ML and P0044-1ML, respectively) and 1:100 protease inhibitor cocktail
901 (Sigma/Merck, 11873580001). Samples were placed on a rotation wheel for a minimum of 30 minutes at
902 4 °C after which they were centrifuged at 16,000x g for 10 minutes at 4 °C. The supernatant from the
903 lysates was collected and protein concentration was determined using the Bradford Assay (Biorad,
904 50000006). For SDS-PAGE 20 mg of protein were mixed with 4x Laemmli buffer (240 mM Tris/HCl pH 6.8,
905 8% SDS, 0.04% bromophenol blue, 5% 2-mercaptoethanol, 40% glycerol) and denatured for 5 minutes at
906 95°C prior to electrophoretic protein separation. Resolved protein extracts were transferred to PVDF
907 membranes (BIORAD, 162-0177). Transfer success was assessed with Ponceau S solution, and membranes
908 were blocked with 5% non-fat milk or 5% BSA in TBS-T (0.1% Tween-20®) for 60 minutes. After blocking,
909 membranes were incubated with primary antibodies at 4°C overnight. The day after, membranes were
910 washed 3 times with PBS-T for 10 minutes and incubated with secondary HRP-conjugated antibodies.
911 Immunolabeled proteins were detected with Supersignal West Pico chemiluminescent kit (Fisher
912 Scientific, 34077) on autoradiography film (Santa Cruz, SC-201697). The primary antibodies used were
913 active rabbit anti-non-phosphorylated β-catenin (CellSignaling Technologies, #19807S), rabbit anti-PORCN
914 (Novus Biologicals, NBP1-59677), and rabbit anti-WNT2b (Abcam, ab178418). Mouse anti-β-Actin (Santa
915 Cruz Biotechnology; sc-47778) was used as a loading control.
916

917 **Flow Cytometry**

918 For Wnt-activation assessment, cells were washed with PBS and collected/pelleted by centrifugation. Cells
919 were resuspended in PBS2%FBS, counterstained with 5µg of 4',6-diamidino-2- phenylindole (DAPI – 1:1)
920 (Sigma/Merck, D9542-10mg) to eliminate dead cells before running through the flow cytometer. Cell lines
921 lacking any of the previously described Wnt-transcriptional reporters were used as gating controls.
922

923 For ALDH activity assay, cells were washed with PBS and collected/pelleted by centrifugation. Cells were
924 stained using the AldeRed ALDH detection assay (Sigma/Merck, SRC150) according to manufacturer
925 instructions. Cells were counterstained with 5µg of DAPI (1:1) to eliminate dead cells before running
926 through the flow cytometer.
927

928 For immunolabeling of CD44 and CD24, cells were detached, washed twice in PBS with 4% FBS, and
929 incubated with CD44-PE (BD Pharmigen, 555479) and CD24-APC (Invitrogen, 17-4714- 81) antibodies
930 according to manufacturer specifications at room temperature. After incubations, cells were washed twice
931 in PBS with FBS and resuspended in PBS containing 4% FBS and 100 nM of DAPI. Cells incubated with PE-
932 and APC- conjugated isotype-antibodies and single-stained cells were used as gating controls.
933

934 For Annexin V apoptosis analysis, cells were washed with PBS and collected/pelleted by centrifugation.
935 Cells were resuspended in 1x Annexin V binding buffer (BD Pharmigen, 51-66121E) and incubated at room
936 temperature in the dark for 15 minutes with APC-conjugated Annexin V (Thermo-eBioscience,
937 BMS306APC-100). After incubation, cells were diluted in 1X binding buffer supplemented with 100 nM of
938 DAPI before running through the flow cytometer. Unstained and single-stained (Annexin V-only or DAPI-
939 only stained) cells were used as gating controls.
940

941 To obtain chemotherapy-induced Wnt^{High} and Wnt^{Low} cells, cells were washed with PBS and
942 collected/pelleted by centrifugation. Cells were resuspended in PBS4%FBS, counterstained with 5µg of
943 DAPI (1:1) to eliminate dead cells before running through the SONY MA900 Multi-Application Cell Sorter.
944 Depending on the application, 2 – 3 x 10⁵ cells were sorted (based on their GFP expression) into 1.5mL
945 Eppendorf tubs (with 300µl of PBS4%FBS) and either used for RNA-extraction and gene expression analysis
946 or for re-culturing.

947
948 For immunostaining of active- (non-phosphorylated) β-catenin, cells were washed with PBS and
949 collected/pelleted by centrifugation. Cells were fixed with ice-cold 70% Ethanol. After which samples were
950 with PBS2%FBS and blocked with 5% donkey serum (in PBS) at room temperature for 30–60 minutes. Cells
951 were re-pelleted by centrifugation, washed with PBS2%FBS and incubated with active rabbit anti-non-
952 phosphorylated β-catenin antibody at room temperature for 60 minutes. Cells were re-pelleted by
953 centrifugation, washed with PBS2%FBS and incubated with a conjugated secondary (donkey anti-rabbit –
954 Alexa-647 – Thermo-Life tech, A31573) in the dark at room temperature for 30 minutes. Cells were re-
955 pelleted by centrifugation, washed with PBS2%FBS and counterstained with 5µg of DAPI (1:1) before
956 running through the flow cytometer. Unstained and single-stained (secondary antibody-only stained) cells
957 were used as gaiting controls.

958
959 Unless specified otherwise, all data were collected on a BD FACS Canto II at the KU Leuven Flow Cytometry
960 Core and analyzed using FlowJo v.10.6.2.

961
962 **Growth rate and Doubling time analysis**

963 For Growth rate (μ) analysis, the following mathematical equation was used: $\mu = \frac{\ln(\frac{N_t}{N_0})}{\Delta t} \times 24h$, whereby
964 N_0 is the number of cells seeded, N_t is the number of cells harvested/recorded, and Δt is the hours of
965 growth.

966
967 For Doubling time (t_d) analysis, the following mathematical equation was used: $t_d = \frac{\ln(2)}{\mu} \times 24h$.

968
969 **Conditioned media and co-culture analysis**

970 Conditioned media (CM) was collected from TNBC cell lines recovering from chemotherapy treatment (5
971 days of treatment and 1 week of recovery) and filtered using a 0.45µM filter to ensure removing cell-
972 debris. Filtered CM as concentrated 20x (20mL to 1mL) using Vivaspin centrifugal concentrator column
973 with a molecular weight cutoff of 50kDa (Sigma Aldrich, Z614645-12EA). Filtered media was centrifuged
974 for 45 minutes at 4°C. Concentrated CM was added to chemo-naïve TNBC cell lines for 48h in a 1:1 dilution
975 (Concentrated CM:basal culture cancer media) and Wnt-activation levels were evaluated using FACS.

976
977 For co-culture experiments, MDA-MB-231 cell line was treated with either chemotherapeutic agent for
978 72h after which treatment was stopped and an equal number of chemo-naïve MDA-MB-231-TGP.mC cells
979 was plated in the same dish and cultured in basal culture cancer media. After 72h of co-culture, Wnt-
980 activation levels in the MDA-MB-231-TGP.mC cell line was evaluated using FACS.

981
982 **Cell line derived xenograft establishment and *in vivo* live imaging analysis**

983 1×10^6 MDA-MB-231 TOPFLASH cells were engrafted subcutaneously (1:1 PBS: growth-factor reduced
984 Matrigel) into the right flank of female NMRI-Foxn1 mice (4-6 weeks old) to form a solid tumor. Upon
985 observation of visible/palpable solid growth, tumor volumes were measured using digital calipers (and
986 calculated as $L \times W \times \frac{\pi}{6}$; L: length and W: width). Animals were randomly assigned to one of three (or six)
987 treatment groups (n = 7-8 mice per group) with an average tumor volume of 150mm³ per group. Docetaxel
988 (15mg/kg) and Carboplatin (100mg/kg) were administered via intraperitoneal (IP) injection once weekly
989 (1 cycle) for a total of three cycles. LGK-974 (2mg/kg) was administered daily via oral gavage for a total of
990 3 cycles (3 weeks). For assessment of Wnt-activation dynamics, animals were subjected to live-
991 bioluminescent imaging before-, 24 h-, 48h-, and 72h- after chemotherapeutic administration. For live-
992 bioluminescent imaging, animals were injected (IP) with the luciferase substrate D-luciferin (200µL of
993 15mg/ml - assuming an average animal weight of 24-26gr) (Perkin Elmer, 122799) and incubated for 10
994 minutes at room temperature before images were taken using IVIS Spectrum In Vivo Imaging System
995 (Perkin Elmer). Wnt-activation signal was calculated as the bioluminescent signal captured by the IVIS
996 Spectrum normalized to the tumor volume recorded per animal. Analysis of bioluminescent images was
997 performed via the Aura software v.4.0.0. Tumor volume was recorded every 48h and body weight was
998 closely monitored throughout the treatment course and recorded every 72-96h using an automatic scale.
999 All animals were euthanized at the end of the treatment course and tumors (when available) were
1000 resected/collected for downstream analyses.

1001

1002 **RECIST Analysis**

1003 RECIST analysis was performed using tumor volumes measured and recorded (as described previously) at
1004 the onset of treatment and at the end of treatment (day of sacrifice). Relative tumor volume (RTV) was
1005 calculated by dividing the recorded volume at the end of treatment by the recorded volume at the onset
1006 of treatment. Response to therapy was based on the RECIST-based criterion: Complete response (CR),
1007 Partial response (PR), Stable disease (SD), and Progressive disease (PD); CR: RTV = 0, PR: 0 < RTV ≤ 0.657,
1008 SD: 0.657 < RTV ≤ 1.728, PD: RTV > 1.728.

1009

1010 **Tumorsphere Formation Assay**

1011 Cells were washed with PBS and collected/pelleted by centrifugation. Cells were resuspended in
1012 PBS4%FBS, counterstained with 5µg of DAPI (1:1) to eliminate dead cells before running through the SONY
1013 MA900 Multi-Application Cell Sorter. 1×10^3 single cells were sorted (based on their GFP expression)
1014 directly in ultra-low attachment 6-well plates (Fisher-Corning, 10154431) cultured in serum-free
1015 tumorsphere assay medium composed of DMEM/F12 (Gibco, 11320074), 1X B27 (Thermo-Scientific,
1016 12587010), 10ng/mL basic fibroblast growth factor (bFGF) (Peprotech, 100-18b), 20ng/mL EGF (Peprotech,
1017 AF-100-15), and 2% growth-factor reduced Matrigel (Corning, 734-0268). Sorted cells were allowed
1018 fourteen days to grow, at the end of which, spheres were collected and centrifuged at 50g for 10minutes,
1019 resuspended gently, and transferred to 96-well plates (Fisher-Falcon,353072). Plates were briefly
1020 centrifuged at 50g for an additional 1 minutes to pull down larger spheroid (>60 µm) which were counted
1021 under a microscope (10X) using a tally counter.

1022

1023 **Next-Generation mRNA Sequencing**

1024 Total RNA was obtained from cells using the GenElute mammalian total RNA miniprep kit (Sigma, RTN350-
1025 1KT). RNA-sequencing (RNA-seq) libraries were prepared using 750 ng of total RNA using the KAPA

1026 stranded mRNASeq kit (Roche, 8098123702) according to the manufacturer's specifications. 100 nM of
1027 KAPA-single index adapters (Roche, KK8702) were added to the A-tailed cDNA and the libraries underwent
1028 10 cycles of amplification. Agentcourt AMPure XP beads (Beckman Coulter, A63880) were used for the 1X
1029 library clean-up. The fragment size of the libraries was assessed using the Agilent Bioanalyzer 2100 with
1030 the High Sensitivity DNA kit (Agilent, 5067-4626). The concentration of the libraries was measured by the
1031 High Sensitivity QuBit kit (Invitrogen, Q33230). Each library was diluted to 4 nM and pooled for single-end
1032 50-bp sequencing on an Illumina Hiseq4000 with 20 – 27 million reads per sample (22 million reads on
1033 average).

1034

1035 **Bulk mRNA-sequencing analysis**

1036 FASTQ files generated from the sequencing (Sequencing run Fig. 1 and Fig. 3) were sent for downstream
1037 processing. Adapters were trimmed using Trimmomatic⁸³ v0.39 and the trimmed FASTQ file was aligned
1038 to the GRCh38 genome (hg38) using the STAR aligner⁸⁴ v2.7.10. Gene counts, gene annotation and sample
1039 read characteristics were obtained by applying standard filters within featureCounts⁸⁵ from the subread
1040 package v2.0.3. Gene counts were then normalized using the variance stabilizing transformation (VST). Z-
1041 scores used to describe the gene expression distribution across samples were calculated using median
1042 absolute deviation while the heatmaps comparing z-scores between samples were created using
1043 pheatmap v1.0.12. Differential gene expression analysis was performed using DESeq2⁸⁶ and batch effects
1044 were accounted for in the (Wnt^{High} vs. Wnt^{Low} cohort). Volcano plots were created using EnhancedVolcano
1045 v1.18.0 using custom settings of FCcutoff = 0.6 and pCutoff = 0.05. Gene set variation analysis was
1046 performed using GSVA v1.48.3. Signature scores for the Caspase 3/Apoptosis⁸⁷ and DTP^{Diap} signatures
1047 (Supplementary Table 4) were calculated after the gene counts were transformed using both log2(x) +1
1048 and VST methods. Box plots comparing the signature score(s) distribution between Wnt^{High} and Wnt^{Low}
1049 samples between treatment conditions were created using ggplot2 v3.4.3. Forest plots for regression
1050 analysis were created using forestplot v3.1.3. Analyses following the gene count extraction were all
1051 performed in R⁸⁸ v4.3.0.

1052

1053 **Functional Enrichment Analysis of publicly available datasets**

1054 To identify sets of genes associated with a Wnt-active (Wnt^{High}) signature, differential expression was
1055 performed on the TMM normalized gene counts using edgeR, taking into account treatment and Wnt
1056 population-status (High or Low) in the design matrix. The output this model was a list of differentially
1057 expressed genes. Wnt-signature, Diapause-DTP signature, and MYC-hallmark gene set enrichment was
1058 performed using the single-sample singscore R package.

1059

1060 **Patient derived organoid culture, treatment, and analysis**

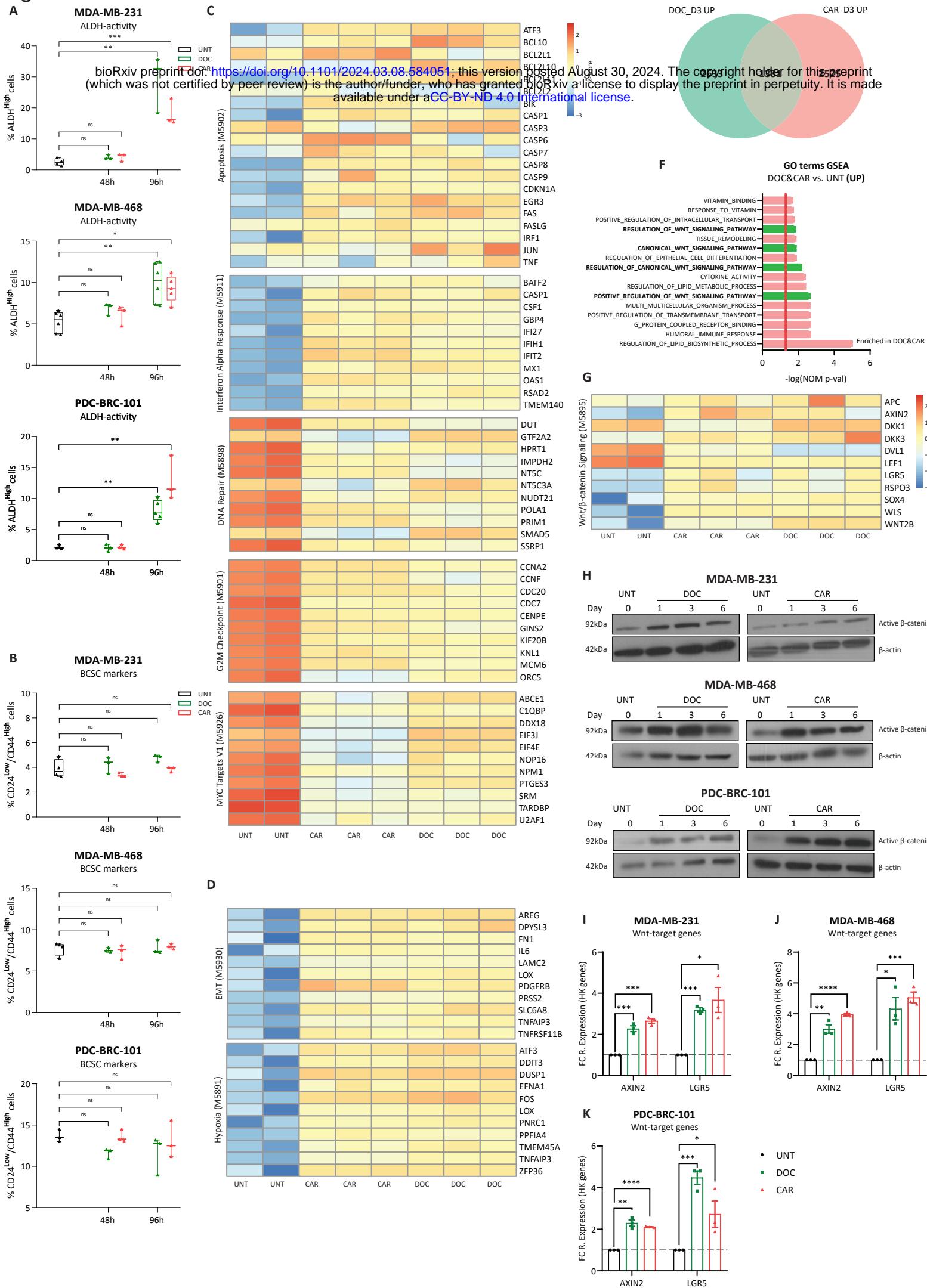
1061 R1-IDC113 and R2-IDC159A PDO lines were gifted by our collaborator, Laboratory of Colinda Scheele – VIB-
1062 KU Leuven. Both PDO lines were maintained in growth factor reduced type 2 Cultrex (Biotechne/R&D
1063 Systems, 3533-010-02) with phenol red-free DMEM/F-12, HEPES (Gibco, 11039021) supplemented with
1064 10mM Nicotinamide (Sigma/Merck, N0636-100G), 1.25mM N-acetyl-L-cystine (Sigma/Merck, A9165-5G),
1065 500ng/mL Hydrocortisone, 100nM β -estradiol (E8875-250MG), 500nM SB202190 (Stem Cell Technologies,
1066 72632), 500nM A83-01 (Stem Cell Technologies, 72022), 5uM Y-27632 (Stem Cell Technologies, 72304),
1067 50 μ g/mL Primocin (Invivogen, ant-pm-05), 10 μ M Forskolin (Sigma/Merck, F3917-10MG), 1X B27 (50X –
1068 ThermoFisher Scientific, 17504044), 100ng/mL r-Noggin (Stem Cell Technologies, 78060), 5ng/mL FGF-10

1069 (Stem Cell Technologies, 78037), 37.5 ng/mL Heregulin B-1 (Peprotech, 100-03), 5ng/mL EGF, 5ng/mL FGF-
1070 7 (Peprotech, 100-19), and 100 μ g/mL penicillin-streptomycin.

1071
1072 Both PDO lines were cultured in 24 well cell culture microplates – 22 mm x 20 (D x H) – at 37°C and 5%
1073 CO₂ and maintained at 70-80% confluence. For passaging and plating, (ice-cold) 1X phosphate-buffered
1074 saline (Gibco, 10010-015) was used to wash and dissociate the BME followed by single cell enzymatic
1075 dissociation using 0.05% trypsin-EDTA (Gibco, 25200-056) and cell-pelleting by centrifugation for 5
1076 minutes at 1500 rpm (4°C). Cells were counted manually via the BRAND counting chamber Neubauer
1077 improved (Sigma Aldrich/Merck, BR717810-1EA) under a 10X objective lens using a Leica DMI inverted
1078 microscope. The same microscope, equipped with a 2,5 Megapixel HD Microscope Camera Leica MC120
1079 HC, was used to obtain images of cultured PDO-lines. Unless specified otherwise, both PDO models were
1080 plated according to the following seeding density: $5.9 \times 10^2 \frac{\text{cells}}{\text{mm}^2}$

1081
1082 To determine working chemotherapy drug concentrations, PDO lines were treated with increasing
1083 concentrations of docetaxel (Taxotere, 0.0625–512 nM) and carboplatin (Carbosin, 0 – 1600 μ M) for 96h.
1084 Cell metabolic activity, reflecting cell-number and –viability was assessed using the CellTiter-Glo® 3D Cell
1085 Viability Assay (Promega, G9682) and sigmoidal dose-response curves were generated to calculate the
1086 mean IC₅₀ values of each drug that were used in the subsequent study. Chemotherapeutic agents were
1087 obtained from the pharmacy of Universitair Ziekenhuis (UZ) Leuven.

1088
1089 **Statistical Analysis**
1090 All data were analyzed using GraphPad Prism (v8.0.1), except for mRNA-sequencing derived data and
1091 transcriptomic datasets. Unless otherwise specified, comparisons between two groups were tested for
1092 statistical significance using Unpaired t-tests. Comparisons between multiple groups were performed
1093 using a One-way analysis of variance (ANOVA). Comparisons between multiple groups across multiple time
1094 points were performed using Two-way ANOVA. All statistical testing was corrected for multiple
1095 comparisons, using the Holm-Sidak method when comparing samples based on experimental design. For
1096 the reader's convenience, all statistical tests and sample sizes are indicated in the figure legends.

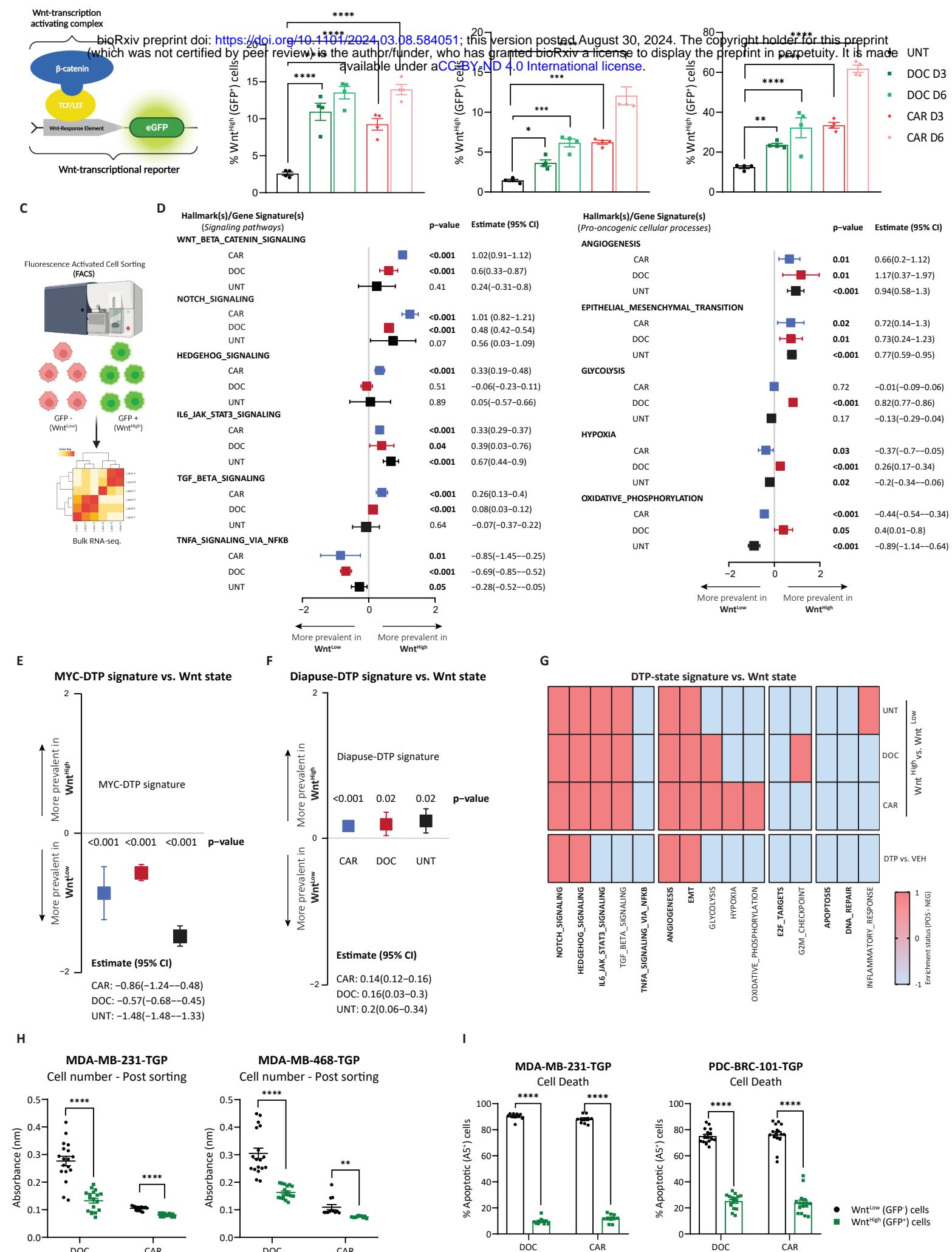

1097
1098 For mRNA-sequencing derived data, regression analysis was performed to observe associations between
1099 outcomes (in-house gene signature scores/GSVA signature scores) and independent co-variate (Wnt^{High} vs.
1100 Wnt^{Low}) per treatment condition (CAR or DOC or UNT) using lqmm v.1.5.8 and quantreg v5.97 while
1101 accounting for batch effects.

1102
1103 **Schematic Illustrations and artwork**
1104 All schematic illustrations were created using Biorender.com

1105
1106 **Data Availability**
1107 The bulk mRNA-sequencing data that support the findings of this study have been deposited in the Gene
1108 Expression Omnibus (GEO) repository under accession number GSE254558
1109 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE254558>).

1110
1111 For reviewers' access, please enter the following token into the box to retrieve the dataset:
1112 **etsxyqgyrjkbhqt**

Fig. 1



bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.08.584051>; this version posted August 30, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

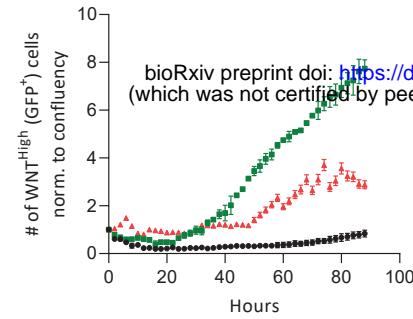
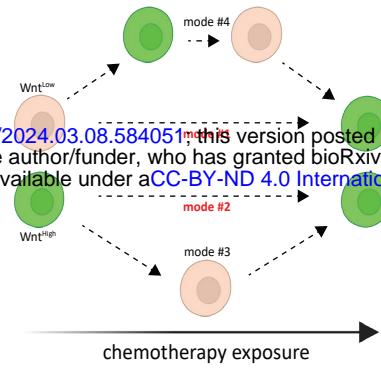
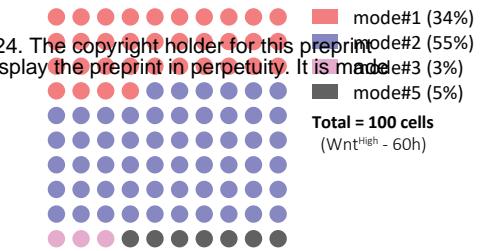
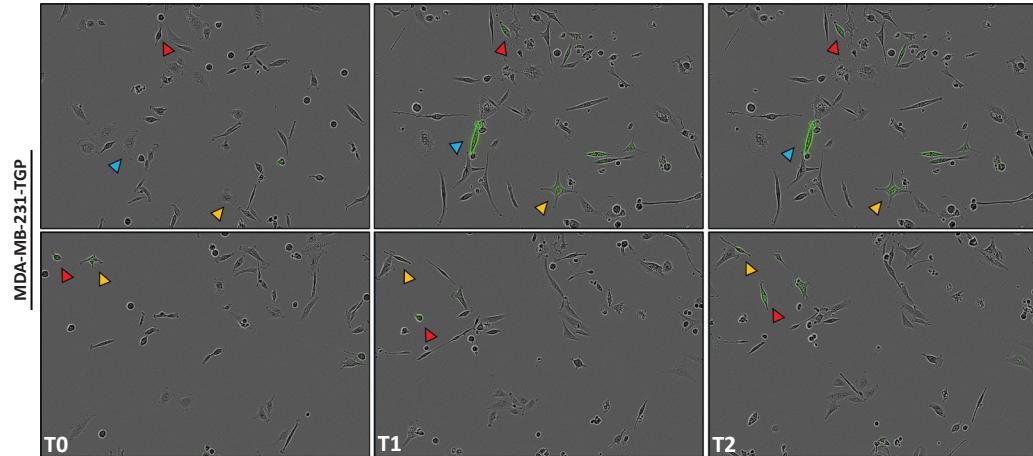
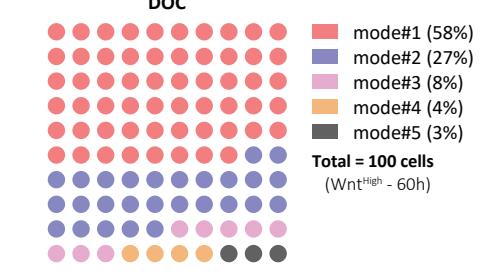
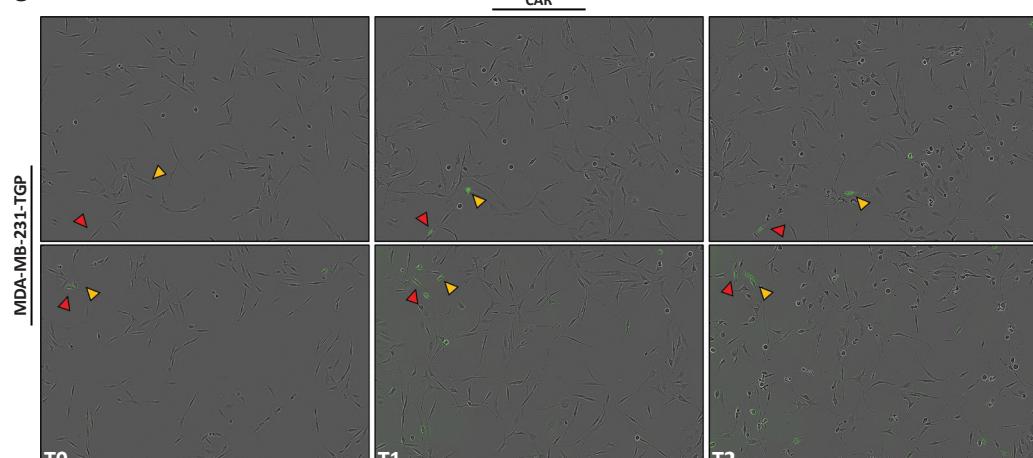
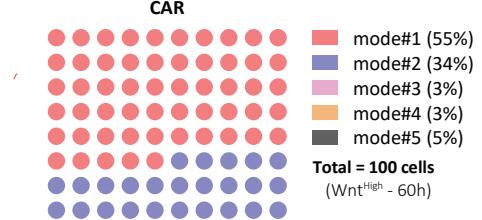
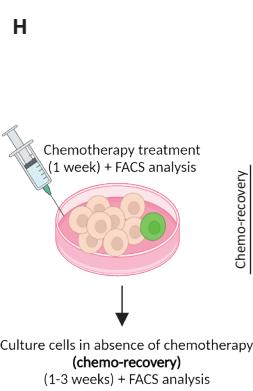
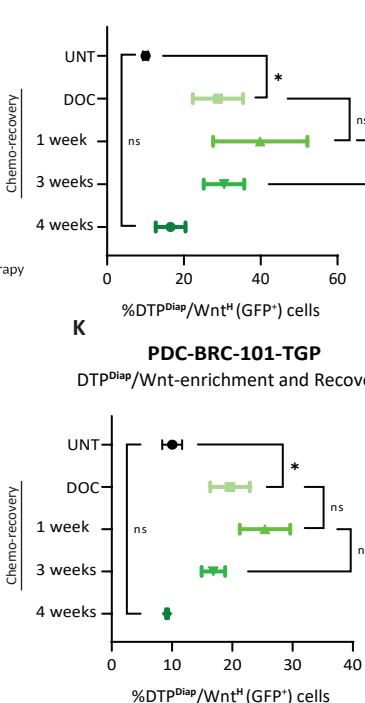
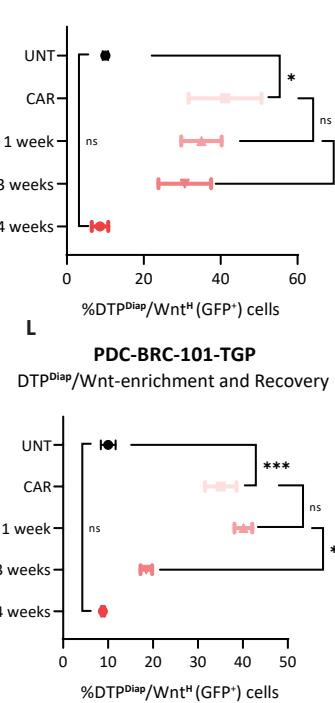
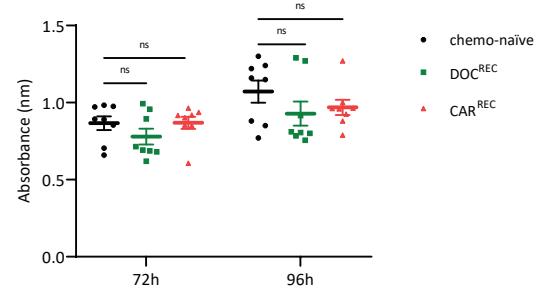
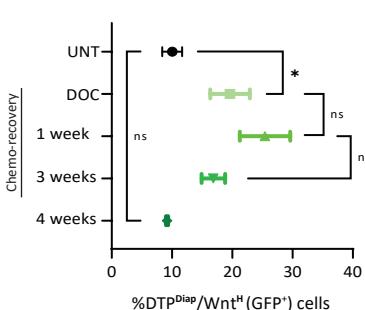
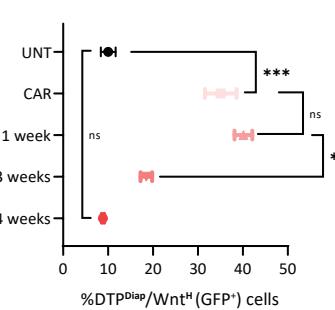
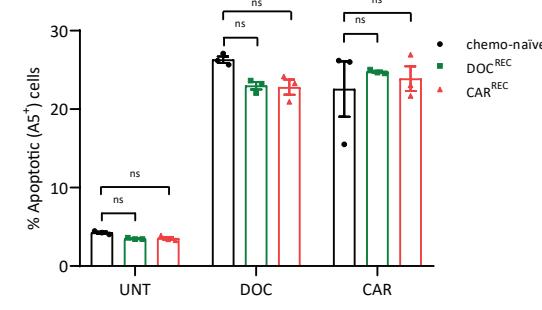
Fig. 1: Wnt transcriptional-activation precedes early drug-tolerant cell(s) enrichment upon chemotherapeutic treatment.

A) Flow cytometry analysis displaying %ALDH^{High} cells of MDA-MB-231, MDA-MB-468, and PDC-BRC-101 TNBC cell lines treated with DOC (4.5nM) or CAR (35uM, 25uM, 35uM for each cell line, respectively) for 48h and 96h. Multiple t-tests corrected for multiple comparisons using the Holms-Sidak method (n = 3 independent experiments). All data points shown from min. to max. (box and whiskers). **B)** Flow cytometry analysis displaying %CD24^{Low}/CD44^{High} cells of MDA-MB-231, MDA-MB-468, and PDC-BRC-101 TNBC cell lines treated with DOC, CAR for 48h and 96h. Multiple t-tests corrected for multiple comparisons using the Holms-Sidak method (n = 3 independent experiments). All data points shown from min. to max. (box and whiskers). **C-D** Box plot showing %ALDH^{High} cells of MDA-MB-231 cell line treated with DOC or CAR for 72h. The processes (and subsequent genes selected to represent every process) shown in panels **C-D** were based on enriched gene sets from Hallmarks databases analyzed by one-tailed GSEA ranked by Normalized Enrichment Score (NES) - **Supplementary Fig. S1J, K. E)** Venn diagram indicating commonly upregulated (1381) genes between DOC (2633) and CAR (2525) treatment (vs. UNT). **F)** Enriched processes from Gene Ontology (GO) terms databases analyzed by one-tailed GSEA ranked by a positive NES and based on commonly upregulated genes between DOC and CAR treatment. Red line indicates significance threshold value, (-log(NOM p-val) = 1.3) and highlighted bars indicate GO terms linked to Wnt/β-catenin signaling regulation. **G)** Normalized gene counts heatmap displaying (11) selected genes representing Wnt/β-catenin signaling in MDA-MB-231 cell line treated with DOC and CAR for 72h. Genes selected for heatmap **G** were based on Wnt/β-catenin signaling Hallmark – GSEA. Data used to generate panels **C-G** was obtained from mRNA sequencing of MDA-MB-231 cell line treated with DOC or CAR for 72h. **H)** Western blot analysis of active- (non-phosphorylated) β-catenin in MDA-MB-231, MDA-MB-468, and PDC-BRC-101 cell lines treated with DOC or CAR for 1, 3, or 6 days. **I-K)** Gene expression levels obtained via RT-qPCR of Wnt-target genes (*AXIN2* and *LGR5*) for TNBC cell lines treated with DOC or CAR for 72h, displayed as fold change (to UNT) of 2^{-ΔΔCt} values (relative to HK-genes). Multiple t-tests corrected for multiple comparisons using the Holms-Sidak method (n = 3 independent experiments). p values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant.

Fig. 2

Fig. 2: Parental and chemotherapy-treated Wnt^{High} cells display DTP^{Diap} cell-properties.

A) Schematic representation of Wnt/β-catenin-transcriptional reporter (TOPGFP/TGP). **B)** Flow Cytometry analysis displaying % of Wnt^{High} (GFP⁺) cells for MDA-MB-231-TGP, MDA-MB-468-TGP, and PDC-BRC-101-TGP cell lines treated with DOC or CAR for 3 and 6 days. One-way ANOVA corrected for multiple comparisons using the Holms-Sidak method (n = 4 independent experiments). Data are presented as Mean ± SEM. **C)** Schematic representation of the experimental setup designed for studying the transcriptional differences between Wnt^{High} vs. Wnt^{Low} cells. **D)** Forest plots depicting the association between gene signatures and Wnt-status of sorted Wnt^{High} vs. Wnt^{Low} cells obtained from samples treated with CAR or DOC. bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.08.584057>; this version posted August 30, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.















bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.08.584057>; this version posted August 30, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Quartile regression was used to observe the median change in regulated gene signatures after accounting for batch effects. Signatures having a non-zero positive estimate indicate increased activity in Wnt^{High} cells. **E-F)** Forest plot depicting the association between a MYC Hallmark signature (left) and a DTP^{Diap} signature⁷ (right) vs. Wnt-status of sorted Wnt^{High} vs. Wnt^{Low} cells obtained from samples treated with CAR or DOC and UNT samples. Analysis performed as in **D**. **G)** Correlation analysis between transcriptional DTP cells¹¹ and Wnt-status of sorted Wnt^{High} vs. Wnt^{Low} cells obtained from samples treated with CAR or DOC and UNT samples. Enrichment status score of -1 (light blue) indicates that a given hallmark/process is downregulated in DTPs or sorted Wnt^{High} cells while a score of 1 (red) indicates that a given hallmark/process is upregulated in DTPs or sorted Wnt^{High} cells. **H)** Absorbance values displaying cellular metabolic activity indicating cell number in sorted MDA-MB-231-TGP and MDA-MB-468-TGP cell lines 1 week after sorting (initial treatment before sorting was with DOC or CAR – 72h). Multiple t-tests corrected for multiple comparisons using the Holms-Sidak method (n = 3 independent experiments). Data are presented as Mean ± SEM. **I)** Flow cytometry analysis displaying % of Apoptotic (Annexin V⁺) and their respective Wnt-status (% of Wnt^{High} (GFP⁺) cells) of MDA-MB-231-TGP and PDC-BRC-101-TGP cell lines treated with DOC or CAR for 96h. Multiple t-tests corrected for multiple comparisons using the Holms-Sidak method (n = 5 independent experiments). Data are presented as Mean ± SEM. p values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant.

Fig. 3: Wnt pathway-activation is sufficient to induce a DTPDiap state in parental TNBC cells.

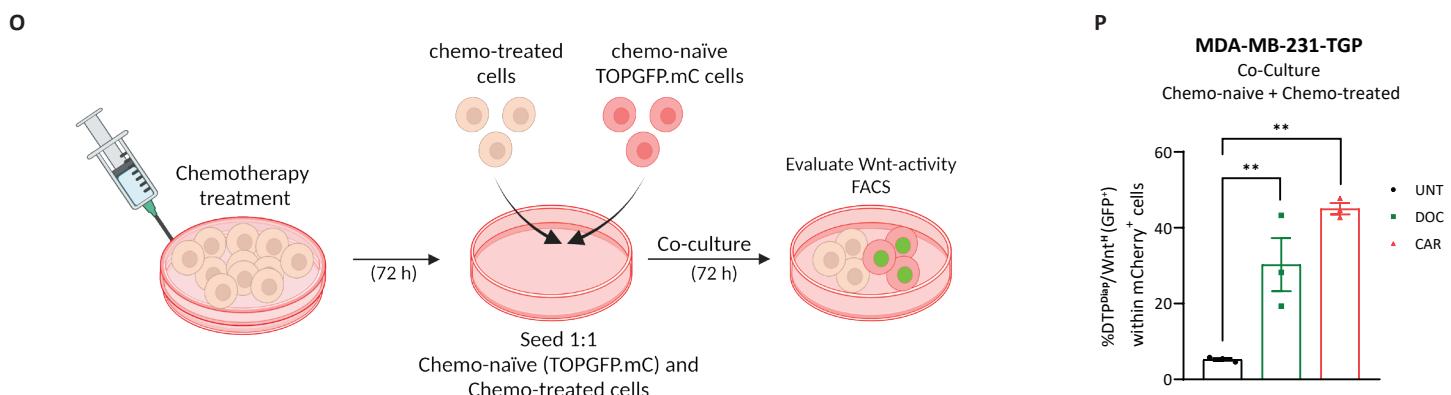
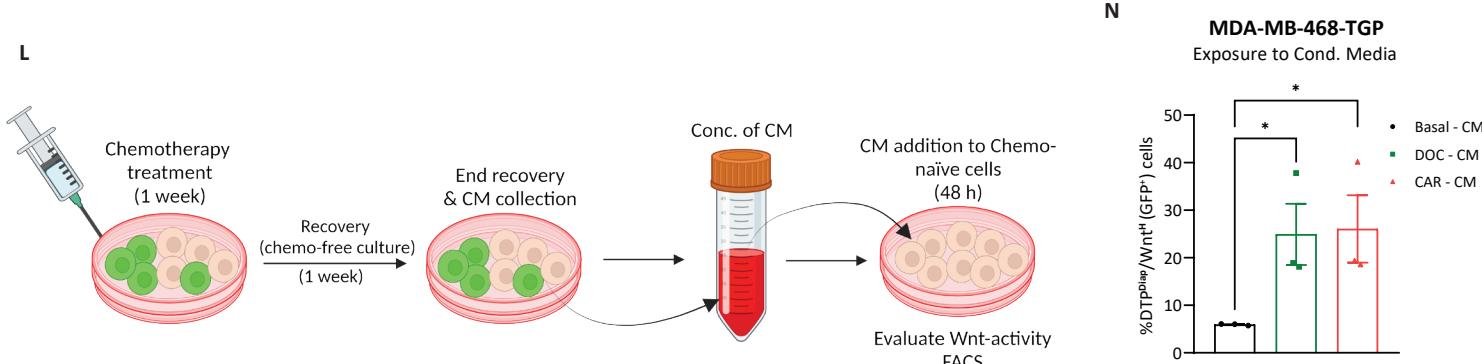
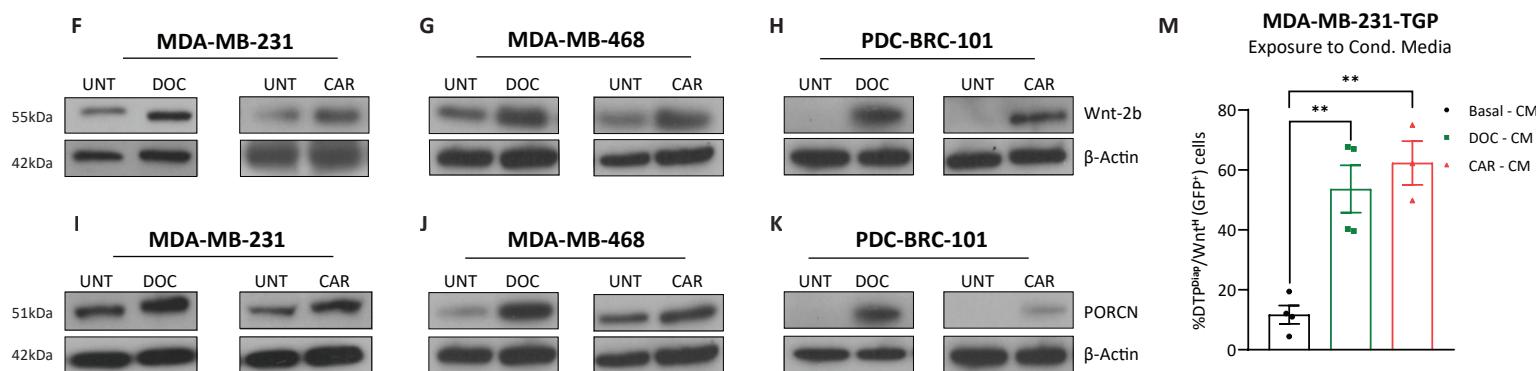
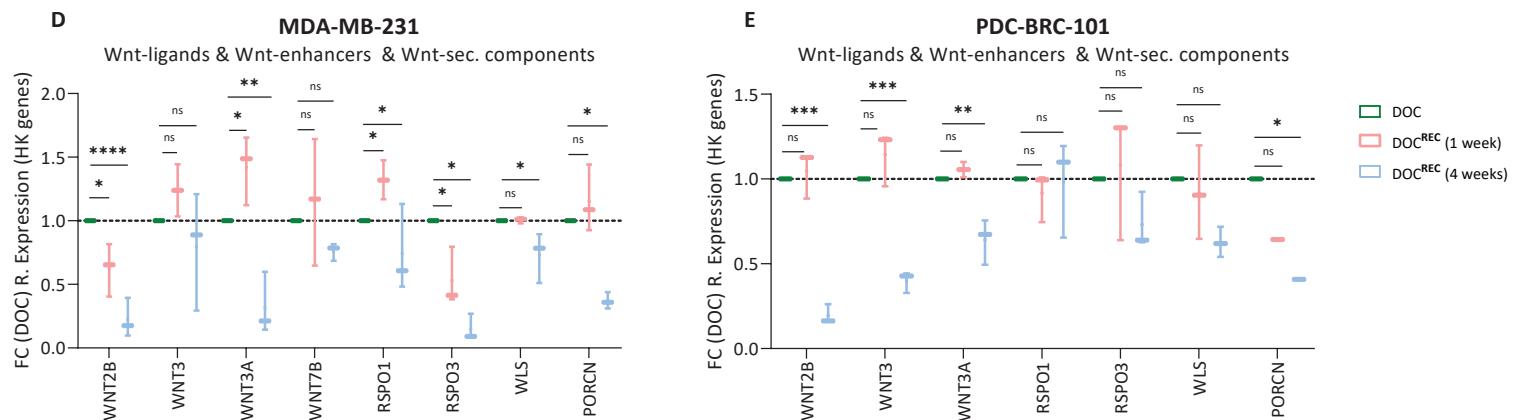
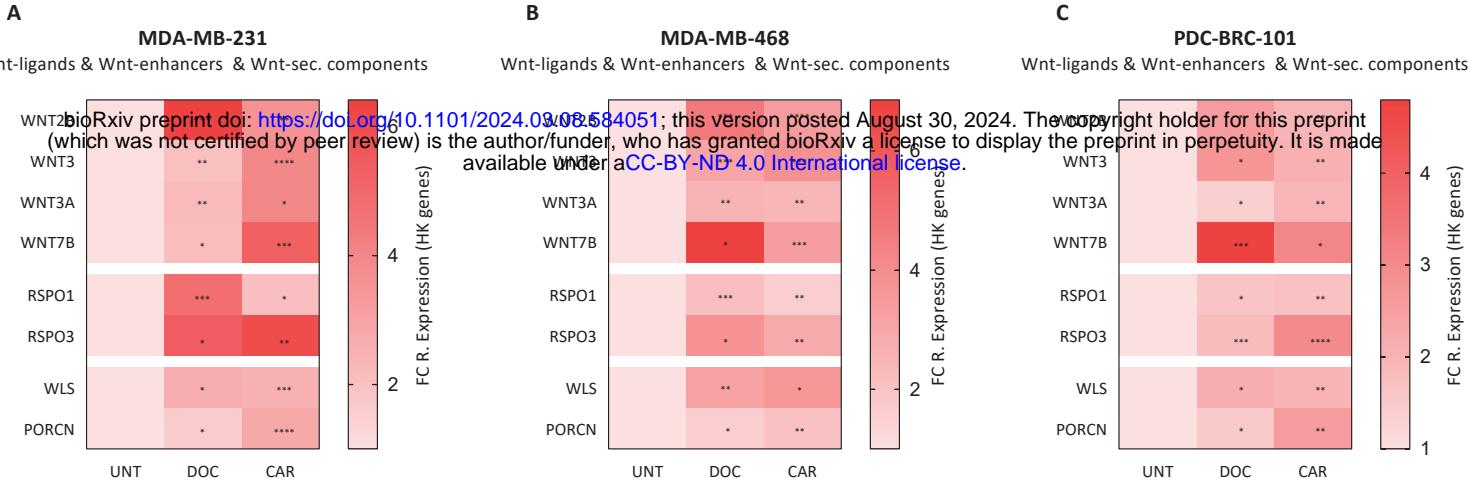





A) Representative flow cytometry contour plots displaying % of DTPDiap/Wnt^H (GFP⁺) cells for MDA-MB-231-TGP and MDA-MB-468-TGP cell lines in basal (UNT) culture conditions (top) and under Wnt-stimulation conditions (CHIR, 8μM, 72h – bottom). Right of the dashed green line indicates DTPDiap/Wnt^H (GFP⁺) cells. **B**) Flow cytometry analysis displaying % of DTPDiap/Wnt^H (GFP⁺) cells of MDA-MB-231-TGP and MDA-MB-468-TGP cell lines under Wnt-stimulatory conditions, treated with CHIR (8μM) or BIO (3μM) for 72h. Two-way ANOVA corrected for multiple comparisons using Tukey's test (n = 3 independent experiments). Data are presented as Mean ± SEM. **C**) Absolute cell number of MDA-MB-231 cell line treated with CHIR or BIO for a time-course of 96h. Two-way ANOVA corrected for multiple comparisons using Tukey's test (n = 3 independent experiments). Data are presented as Mean ± SEM. **D**) Growth rate of MDA-MB-231 cell line at 24h and 96h under UNT or under CHIR and BIO treatment conditions. Multiple t-tests corrected for multiple comparisons using the Holms-Sidak method (n = 3 independent experiments). Data are represented as Mean ± SEM. **E**) Doubling time of MDA-MB-231 cell line at 96h under UNT or under CHIR and BIO treatment conditions. Multiple t-tests corrected for multiple comparisons using the Holms-Sidak method (n = 3 independent experiments). Data are represented as Mean ± SEM. **F**) Flow cytometry analysis displaying % of cells in proliferation arrest (Ki-67^{low} cells) from MDA-MB-231 and MDA-MB-468 cell lines treated with CHIR or BIO for 96h. Multiple t-tests corrected for multiple comparisons using the Holms-Sidak method (n = 3 independent experiments). Data are presented as Mean ± SEM. **G**) Gene expression levels obtained via RT-qPCR of MYC for MDA-MB-231 and MDA-MB-468 cell lines treated with CHIR or BIO for 72h, displayed as fold change (to UNT) of 2^{-Δct} values (relative to HK-genes). Unpaired t-tests based on relative expression values (2^{-Δct}) (n = 3 independent experiments). Data are presented as Mean ± SEM. **H**) Western blot analysis of MYC in MDA-MB-231 and MDA-MB-468 cell lines treated with CHIR or BIO for 72h. **I-J**) Flow cytometry analysis displaying % of Annexin V⁺ cells of MDA-MB-231-TGP (left) and MDA-MB-468-TGP (right) cell lines treated with DOC or CAR for 72h (sole or pre-treated with CHIR or BIO for 48h). One-way ANOVA corrected for multiple comparisons using the Dunnett method (n = 3 independent experiments). Data are presented as Mean ± SEM. p values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant.

Fig. 4**MDA-MB-231-TGP**
Wnt-activation kinetics**B****MDA-MB-231-TGP**
Wnt-activation kinetics**UNT****F****MDA-MB-231-TGP**
Wnt-activation kinetics
DOC**G****MDA-MB-231-TGP**
Wnt-activation kinetics
CAR**H****MDA-MB-231-TGP**
DTP^{Diap}/Wnt-enrichment and Recovery**MDA-MB-231-TGP**
DTP^{Diap}/Wnt-enrichment and Recovery**MDA-MB-231-TGP**
Cell Number**PDC-BRC-101-TGP**
DTP^{Diap}/Wnt-enrichment and Recovery**PDC-BRC-101-TGP**
DTP^{Diap}/Wnt-enrichment and Recovery**MDA-MB-231-TGP**
Cell Death

Fig. 4: Induction of transient *de novo* Wnt signaling transcriptional-activation in response to chemotherapy in TNBC cell lines.

A) Number of Wnt^{high} (GFP⁺) cells detected by live-cell imaging normalized to the confluence of the well (total number of cells recorded) for MDA-MB-231-TGP cell line treated with DOC or CAR. **B)** Schematic representation of different fluctuation dynamics of Wnt-activation – mode numbered and color coded. **C-E)** Live-imaging quantification of different possible mechanisms of chemotherapy-induced Wnt-activation in MDA-MB-231-TGP TNBC cell line UNT or treated with DOC or CAR. n = 100 cells tracked every 2h for 60h, per treatment condition. Every single cell tracked is represented as a circle and color coded with the scheme shown in **B**. **F-G)** Snapshots of still-frames from time-lapse live imaging experiments of MDA-MB-231-TGP cells treated with the top concentrations of both treatments. The bottom panel shows the corresponding quantification. The numbers indicate Oh, T 1 indicates 30h, and T2 indicates approx. 50h. Yellow, red, and blue arrows indicate the same cell followed over the treatment period spanning different images (horizontal). **H)** Schematic representation of the experimental setup for chemotherapy treatment and recovery. **I-L)** Flow Cytometry analysis displaying % of DTP^{Diap}/Wnt^H (GFP⁺) cells for MDA-MB-231-TGP and PDC-BRC-101-TGP cell lines treated with DOC or CAR for 1 week followed by removal of chemotherapy for 1-, 3-, and 4-weeks post-recovery. Two-tailed Unpaired t-test (n=3 independent experiments). Data are presented as Mean ± SEM. **M)** Metabolic activity levels reflecting cell number and proliferation rates of MDA-MB-231-TGP cell lines (chemo-naïve vs. DOC^{REC} vs. CAR^{REC}), all in UNT conditions at 72h and 96h. Two-way ANOVA corrected for multiple comparisons using Tukey's test (n=3 independent experiments). Data are presented as Mean ± SEM. **N)** Flow cytometry analysis displaying % of Annexin V⁺ cells of MDA-MB-231-TGP cell lines (chemo-naïve vs. DOC^{REC} vs. CAR^{REC}), UNT or treated with DOC or CAR for 72h. Two-way ANOVA corrected for multiple comparisons using Tukey's test (n=3 independent experiments). Data are presented as Mean ± SEM. p values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant.

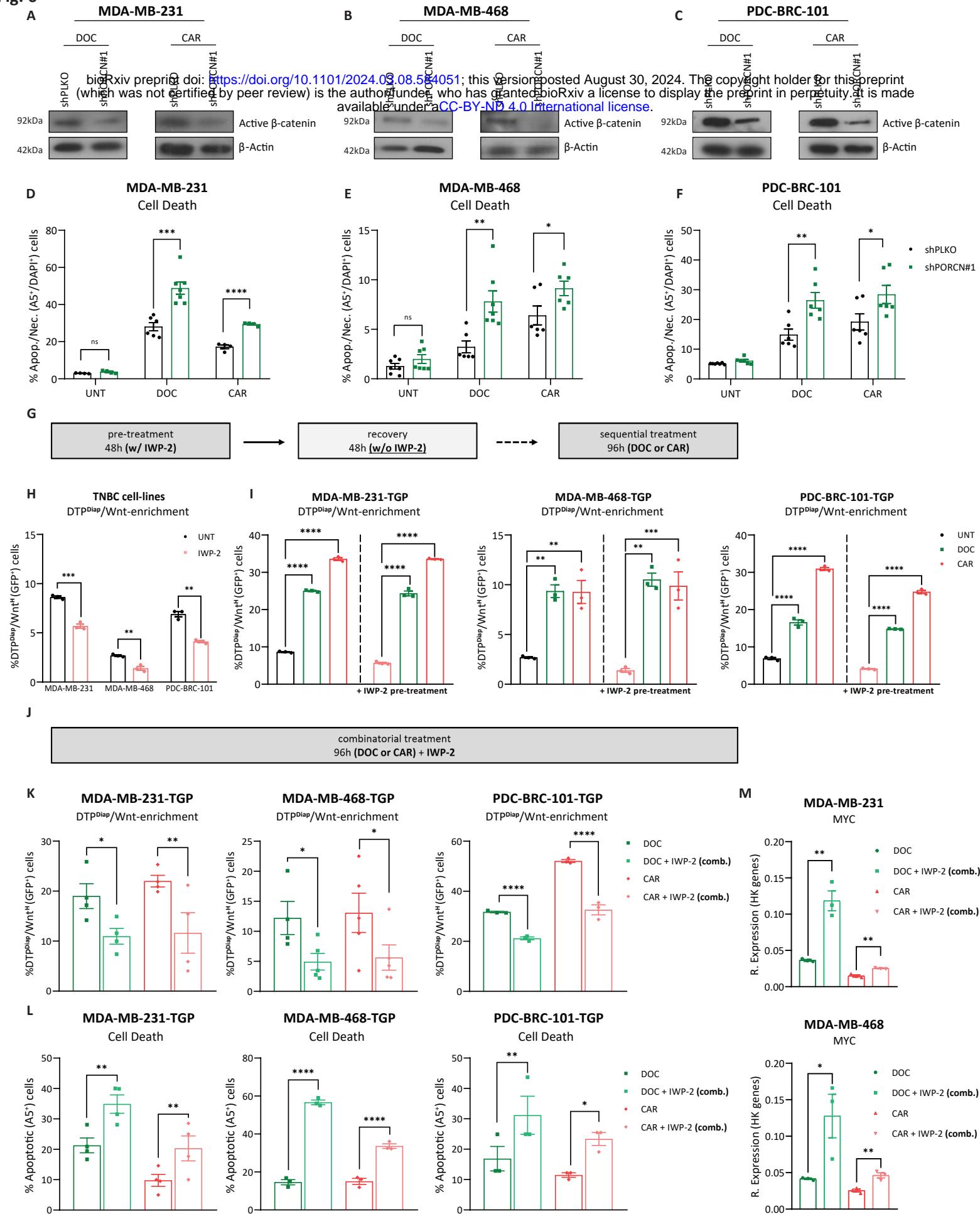
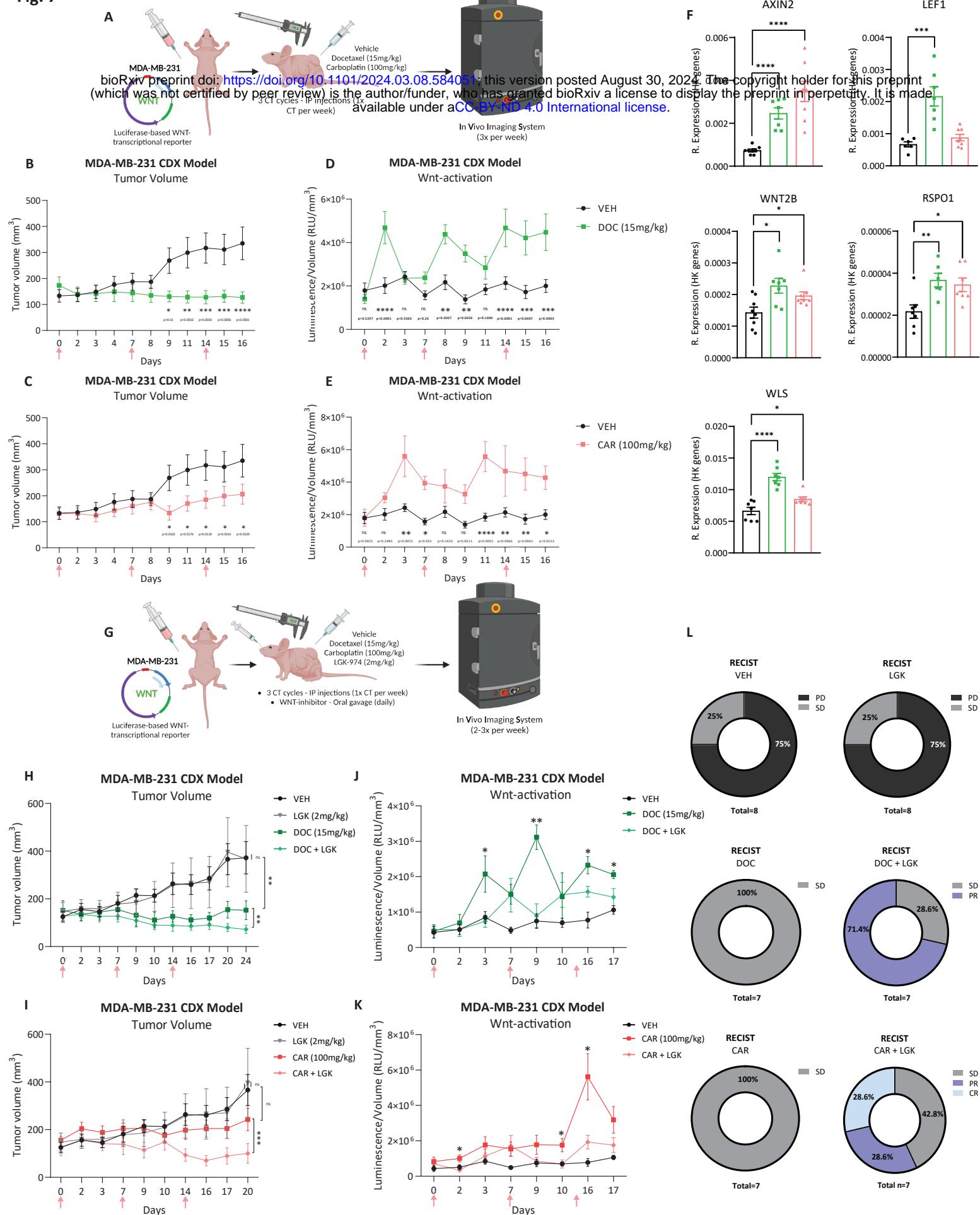

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.08.584054>; this version posted August 30, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Fig. 5

Fig. 5: Chemotherapeutic treatment induces elevated transcriptional expression of Wnt ligands, Wnt enhancers, and Wnt secretion machinery components.


A-C) Heatmaps showing gene expression levels obtained via RT-qPCR of Wnt ligands (WNT2B, WNT3, WNT3A and WNT7B), Wnt enhancers (RSPO1 and RSPO3), and Wnt ligand secretion machinery components (WLS and PORCN) for MDA-MB-231, MDA-MB-468, and PDC-BRC-101 cell lines treated with DOC or CAR for 72h, displayed as fold change (to UNT) of $2^{-\Delta Ct}$ values (relative to HK-genes). Unpaired t-tests based on relative expression values ($2^{-\Delta Ct}$) (n = 3 independent experiments). **D-E**) Gene expression levels as in **A-C** for MDA-MB-231 and PDC-BRC-101 cell lines treated with DOC following the treatment scheme shown in **Fig. 4H**, displayed as fold change (to DOC) of $2^{-\Delta Ct}$ values (relative to HK-genes). Unpaired t-tests based on relative expression values ($2^{-\Delta Ct}$) (n = 3 independent experiments). **F**) Western blot analysis of Wnt ligand Wnt-2b in MDA-MB-231, MDA-MB-468, and PDC-BRC-101 cell lines treated with DOC or CAR for 72h. **G**) Western blot analysis of PORCN in TNBC cell lines treated with DOC or CAR for 72h. **H**) Schematic representation of Conditioned Media (CM) experimental setup. **I**) Flow Cytometry analysis displaying % of DTP^{Diag}/Wnt^{hi} (GFP⁺) cells of MDA-MB-231-TGP and MDA-MB-468-TGP cell lines cultured with concentrated Basal-, DOC-, or CAR-CM for 48h. Unpaired t-tests (n = 3 independent experiments). Data are presented as Mean \pm SEM. **J**) Schematic representation of Co-culture experiment setup. **K**) Flow Cytometry analysis displaying % of DTP^{Diag}/Wnt^{hi} (GFP⁺) cells of chemo-naïve MDA-MB-231-TGP.mC co-cultured with chemo-treated DOC or CAR MDA-MB-231 cells for 72h. Unpaired t-tests (n = 3 independent experiments). Data are presented as Mean \pm SEM. p values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant.

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.08.584051>; this version posted August 30, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](#).

Fig. 6

Fig. 6: Wnt ligand secretion-inhibition hinders DTP^{Diap}/Wnt^H population enrichment.

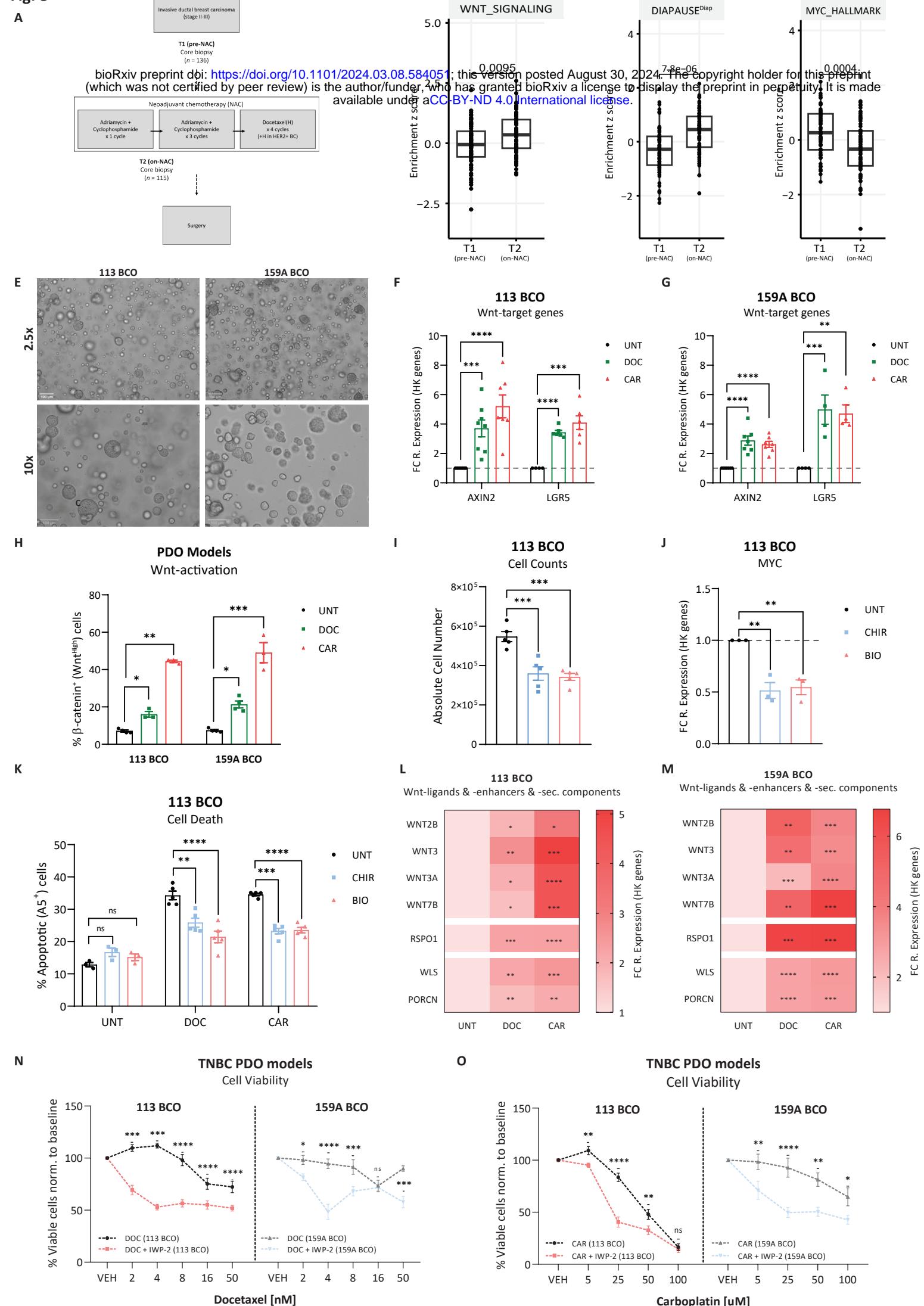

A-C) Western blot analysis of active- (non-phosphorylated) β -catenin in MDA-MB-231, MDA-MB-468, and PDC-BRC-101 (shPLKO vs. shPORCN#1) cell lines treated with DOC or CAR for 96h. **D-F**) Flow cytometry analysis displaying % Annexin V⁺/DAPI⁺ cells of MDA-MB-231, MDA-MB-468, and PDC-BRC-101 (shPLKO vs. shPORCN#1) cell lines treated with DOC or CAR for 96h. Unpaired t-tests (n = 4 independent experiments). Data are presented as Mean \pm SEM. **G**) Schematic representation of the Sequential Treatment (first IWP-2 pre-treatment followed by a recovery period then chemotherapy) model. **H**) Flow cytometry analysis displaying % of DTP^{Diap}/Wnt^H (GFP⁺) cells of MDA-MB-231-TGP, MDA-MB-468-TGP cell lines treated with DOC or CAR for 96h (sole or in combination with IWP-2). Unpaired t-tests for multiple comparisons using the Holm-Sidak method (n = 3 independent experiments). Data are presented as Mean \pm SEM. **I**) Flow cytometry analysis displaying % of DTP^{Diap}/Wnt^H (GFP⁺) cells of TNBC-TGP cell lines treated with DOC or CAR for 96h (sole or in combination with IWP-2). Unpaired t-tests (n = 4 independent experiments). Data are presented as Mean \pm SEM. **J**) Schematic Representation of the Combinatorial treatment model. **K**) Flow cytometry analysis displaying % of DTP^{Diap}/Wnt^H (GFP⁺) cells of TNBC-TGP cell lines treated with DOC or CAR for 96h (sole or in combination with IWP-2). Unpaired t-tests (n = 4 independent experiments). Data are presented as Mean \pm SEM. **L**) Flow cytometry analysis displaying % of Annexin V⁺ cells of TNBC cell lines treated with DOC or CAR for 96h (sole or in combination with IWP-2). Unpaired t-tests (n = 4 independent experiments). Data are presented as Mean \pm SEM. **M**) Gene expression levels obtained via RT-qPCR of MYC for MDA-MB-231 and MDA-MB-468 cell lines treated with DOC or CAR for 96h (sole or in combination with IWP-2). Unpaired t-tests based on relative expression values ($2^{-\Delta\Delta Ct}$) (n = 3 independent experiments). p values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant.

Fig. 7

Fig. 7: Inhibition of Wnt ligand-secretion and chemotherapeutic treatment synergistically sensitize *in vivo* xenograft TNBC model to treatment.

A) Schematic representation of cell line derived xenograft (CDX) experimental setup to study Wnt signaling pathway kinetics upon chemotherapeutic treatment *in vivo*. **B-C)** Tumor growth curves of subcutaneous generated xenograft models treated with VEH, DOC (15mg/kg/week – top), or CAR (100mg/kg/week – bottom). Pink arrows indicate administration of chemotherapy. Two-way ANOVA with Fisher's LSD test (n = 7 mice for all treatment groups). Data are presented as Mean ± SEM. **D-E)** Levels of Wnt-activation (RLU/mm³) displayed as luminescent signals (RLU) captured by IVIS Spectrum normalized to tumor volume (mm³) in xenograft models treated with VEH, DOC (top), or CAR (bottom). Two-way ANOVA with Fisher's LSD test (n = 7 mice for all treatment groups). Data are presented as Mean ± SEM. **F)** Gene expression levels obtained via RT-qPCR of various Wnt targets and Wnt-activators (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

G) Schematic available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/). **H-I)** Tumor growth curves of xenograft models treated with VEH, LGK (2mg/kg/day), DOC (top), DOC+LGK (top), CAR (bottom), and CAR+LGK (bottom). Pink arrows indicate administration of chemotherapy. Paired t-tests (based on final tumor volumes – obtained on day of sacrifice, n = 8,7,6,5 mice per treatment group). Data are presented as Mean ± SEM. **J-K)** Levels of Wnt-activation (RLU/mm³) displayed as luminescent signals (RLU) captured by IVIS Spectrum normalized to tumor volume (mm³) in xenograft models treated with VEH, DOC (top), DOC+LGK (top), CAR (bottom), and CAR+LGK (bottom). Multiple t-tests (n = 8,7,6,5 mice per treatment group). Data are presented as Mean ± SEM. **L)** RECIST analysis displayed as percentage of animals per treatment group (VEH, LGK, DOC, DOC+LGK, CAR, and CAR+LGK) classified/assigned to one of four distinct tumor responses to treatment: Progressive Disease (PD), Stable Disease (SD), Partial Response (PR), or Complete Response (CR). p values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant.

Fig. 8: Preclinical PDO models recapitulate chemotherapy-mediated Wnt-activation and sensitization to synergistic Wnt ligand secretion-inhibition.

A) Overview of supplementary information of patient dataset (GSE123845) analyzed in this study. **B-D)** Association analyses and enrichment scores of an in-house derived Wnt^{High} signature, DTP^{High} signature⁷, and MYC GSEA hallmark signature evaluated in core biopsies pre-NAC and during (on)-NAC. **E**) Phase-contrast images of TNBC-PDO models, 113 BCO (left) and 159A BCO (right) in basal culture conditions at 2.5x (top) and 10x (bottom) magnification **F-G)** Gene expression levels obtained via RT-qPCR of Wnt-targets (AXIN2 and LGR5) for 113 BCO and 159A BCO models treated with DOC (16nM for 113 BCO and 8nM for 159A BCO) or CAR (50 μ M for 113 BCO and 125 μ M for 159A BCO) for 96h, displayed as fold change (to UNT) of $2^{-\Delta\Delta Ct}$ values (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. **H-I)** Gene expression levels obtained via RT-qPCR of Wnt-targets (AXIN2 and LGR5) for 113 BCO and 159A BCO models treated with DOC or CAR for 96h. Multiple t-tests corrected for multiple comparisons using the Holm-Sidak method (n = 3 independent experiments). Data are presented as Mean \pm SEM. **J)** Absolute cell number of 113 BCO model treated with CHIR or BIO for 72h. Unpaired t-tests (n = 3 independent experiments). Data are represented as Mean \pm SEM. **K)** Gene expression levels obtained via RT-qPCR of MYC for 113 BCO model treated with CHIR or BIO for 72h, displayed as fold change (to UNT) of $2^{-\Delta\Delta Ct}$ values (relative to HK-genes). Unpaired t-tests (n=3 independent experiments). Data are represented as Mean \pm SEM. **L-M)** Heatmaps showing gene expression levels obtained via RT-qPCR of Wnt-ligands, -enhancers, and -secretion machinery components for 113 BCO (left) and 159A BCO (right) models treated with DOC or CAR for 96h, displayed as fold change (to UNT) of $2^{-\Delta\Delta Ct}$ values (relative to HK-genes). Unpaired t-tests based on relative expression values ($2^{-\Delta\Delta Ct}$) (n = 4 independent experiments). **N-O)** Drug dose-response curves of 113 BCO and 159A BCO models treated with increasing concentrations of DOC (right) or CAR (left) (sole or in combination with IWP-2, 50 μ M). Viability in sole- or combinatorial-treatment is normalized to UNT or sole-IWP-2 conditions (baseline). Multiple t-tests corrected for multiple comparisons using the Holm-Sidak method (n = 4 independent experiments). Data are presented as Mean \pm SEM. p values are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant.