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Abstract

The livestock-wildlife interface is one of the most essential issues threatening wildlife
conservation and public health. Identifying interface areas can help to prioritise disease
surveillance and implement mitigation measures and control programs for targeting
threatened wildlife. We predicted interface areas which were assumed to be areas at risk of
infectious disease transmission based on the spatial overlap between three Thai wild bovids
(including gaur, banteng and wild water buffalo) habitat suitability and domestic cattle. We
assumed that domestic cattle are the reservoir of bovine infectious disease, and that high
cattle density is a proxy for a higher risk of disease transmission. Our study indicated that the
highest risk areas for the native species are at the forest edges where overlap exists between
high habitat suitability and high cattle density. Wild water buffalo showed the largest
proportion of high-risk areas (8%), while gaur and banteng showed similar risk areas (4%) in
Thailand. The largest proportion of risk areas overlapping with protected areas was Namtok
Sam Lan PAs at 89% for gaur, 84% for banteng and 65% for wild water buffalo. Kuiburi NP has
the largest risk area around 274 km? (around 28% of the total protected area) for gaur and
banteng, whereas wild water buffalo has the largest risk area overlapping with Huai
Thabthan-Had Samran around 126 km? (10% of the PA). Kaengkrachan Forest Complex
showed the second largest risk area from 249 km? for gaur and 273 km? for banteng (8-9% of
the PA). Our results address how habitat suitability might be helpful for infectious disease
prevention and control strategies focused on native fauna and One Health. Furthermore, this
work may also support the wild bovid habitat conservation initiatives and land use planning
by informing decision-making about balancing wildlife habitats and livestock farming.
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Introduction

Wild Bovidae (Mammalia: Artiodactyla) are distributed worldwide and play crucial
ecosystem roles, because they determine the forest and ecosystem structure, transport
micronutrients, and disperse plant seeds (1, 2) and are also important prey species of
predators (3). In Asia, wild bovid populations are threatened by multiple factors, including
habitat loss and hunting, especially in South to Southeast Asia (4). Natural habitat loss often
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comes with increased free-grazing livestock interaction, which can lead to problems as varied
as resource competition, reducing wildlife population abundance (5), interbreeding between
domestic and wild water buffalo (6), and infectious disease transmission (7).

Among the twenty-seven recognized wild bovid species as of 2020 (IUCN), five species
remain in Thailand, including gaur (Bos gaurus), banteng (Bos javanicus), wild water buffalo
(Bubalus arnee), mainland serow (Capricornis sumatraensis) and Chinese goral (Naemorhedus
griseus). Their habitat and populations have been threatened by human activities such as
deforestation and hunting (8-10). Wild bovids, especially the large herbivores (e.g. gaur,
banteng and wild water buffalo), gradually adapt their distribution and behaviour to land use
change. For example, gaur has been found close to agricultural areas and forest edges where
they forage on crop plantations (e.g. grass, cassava) (11). Banteng is also well-adapted to
secondary forests near villages and logging sites (12). These wild bovids are, therefore, able
to share natural resources with free-grazing domestic bovids, which can potentially cause
disease transmission via direct and indirect contact with the sources of infections (e.g.
infectious cattle, host, environmental reservoirs (13).

The livestock-wildlife interface is one important issue threatening wildlife
conservation and global public health because 72% of reported emerging diseases originate
from wildlife to humans and/or livestock (14). Bovine infectious diseases, such as bovine
tuberculosis, brucellosis and foot and mouth disease, can be transmitted and circulate in
domestic and wild bovid populations (15). These diseases and their impact on wildlife and
livestock population health have been studied in Europe (16), North America (17) and Africa
(18), but less so in Asia, including Thailand.

Several factors can drive disease transmission between livestock and wildlife
populations, such as the expanding livestock production (19), the shrinking of wildlife habitat
(20) and changes in wildlife distribution, demography and behaviour (21). Among these
factors, high host density is potentially a determinant risk factor that can lead to successful
disease transmission as it may translate to a higher probability of between- and among-host
species interactions, contact and pathogen exposure (22, 23). The movement and spatial
overlap of wildlife and livestock can lead to increased infectious disease transmission risk.
Areas where there is potential for interaction between a new susceptible host and a reservoir
can increase the chance of disease transmission through increasing contact rates and time
(24). For wild and domesticated species, these areas are usually the transition areas between
two or more land use types, such as the edges of forest and agricultural areas, which are likely
to have more species activities leading to a greater chance of interaction and so disease
transmission among wildlife and livestock (25). Previous studies indicated the presence of
some infectious diseases, such as babesiosis and leptospirosis (26, 27) in domestic cattle at
the edge of forest, making these domestic animals a potential reservoir of disease
transmission to the wild bovids.
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75 Bovine infectious diseases can circulate between livestock and wild ungulates with
76  varying levels of virulence (15). Certain pathogens can circulate within either livestock or
77  wildlife populations without causing visible clinical signs but have a significant impact on other
78  species. For example, foot and mouth disease (FMD) might not affect African buffalo, but can
79 lead to mortality in gaur (28). Similarly, haemorrhagic septicaemia (Pasteurella multocida)
80 might be identified within the farm environment as non-pathogenic with limited mortality
81 except under certain circumstances but can cause mass mortality in saiga (29). Chronic
82  diseases like bovine tuberculosis and brucellosis with long incubation and relatively low
83  fatality rates could potentially have long-term consequences by reducing populations due to
84  disease, while FMD, which has a higher transmission rate with short incubation periods or
85 even highly fatal infections such as anthrax, may have lower impacts on populations (30)

86 Moreover, in the past twenty years, there have been numerous transboundary
87  emerging disease outbreaks among domestic animals in Thailand. For example, there have
88  been outbreaks of lumpy skin disease among cattle (31), African horse sickness among horses
89  (32), and African swine fever among pigs (33). Hence, it is crucial to investigate where there
90 are high risk areas to prevent disease transmission to wild populations, considering their
91  susceptibility to similar pathogens shared by livestock. Targeting the potential risks of disease
92 transmission in wildlife and livestock interface areas can support the implementation of
93  surveillance and control measures that may help prevent cross-species transmission (34).

94 In this study, we aim to 1) identify the potential risk of disease transmission of wild
95  bovids and livestock in Thailand and 2) provide suggestions for disease surveillance and
96 conflict mitigation measures in the wildlife-livestock interface areas of Thailand. The outputs
97  could be used to prioritise local surveillance and mitigation measures for optimising resource
98 allocation.

99 Methods
100 Study area
101 Thailand is located on the Indochina Peninsula, part of mainland Southeast Asia.

102  Thailand borders four countries, Myanmar, Laos, Cambodia and Malaysia, with the Gulf of
103  Thailand on the southeast connected to the Pacific Ocean and the southwest connected to
104 the Andaman Sea. The total country area is around 514,000 km?, with agricultural land
105 covering 41% and forested areas comprising around 32% of the country area. Most
106  agricultural areas consist of rice fields (51%) and crop plantations (34%), while livestock
107  farming covers only around 0.6% of the total agricultural area or around 0.3% of the total
108 country (land use data source: https://agri-map-online.moac.go.th/). There is high cattle

109  production in the central west, which includes free-range cattle and buffalo in some rural
110 areas. These free-ranging livestock have encroached into wildlife habitats and share the same
111  resources. Moreover, there is shared land use, for example, domestic buffalo may use rice
112 fields.
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113 Populations

114 This study focuses on wildlife and livestock populations, and we calculate the largest
115  potential for wildlife-livestock interface areas. We selected the remaining wild bovid species
116  in Thailand because they are widely distributed and likely to share the same resources and
117  pathogens as livestock, especially the large bovids (gaur, banteng and wild water buffalo)
118  distribution, which tends to overlap with free-ranging cattle and agricultural areas. For the
119 livestock population, we used the cattle population estimates as cattle production is all over
120  the country, with varied production scales and systems from intensive farming to free grazing.
121  We assume that domestic cattle can be a pathogen reservoir and transmit diseases to the
122  wild bovid population, and our focus is on livestock transmitting infection to wild species,
123 though the alternative is possible. Therefore, for our analysis, a high cattle density is assumed
124  to have a higher risk transmission risk and a lower cattle density have a lower risk, as reported
125  in previous studies (25, 35).

126 Identifying the potential risk

127 Briefly, we identified the risk area using two types of datasets: 1) wild bovid distribution
128 and 2) cattle density. Then, we overlaid these together and calculated the overlapping areas
129  in 1-km? cells as a sampling unit.

130 Wild bovid potential distribution

131 We assumed wild bovid distributions correlate with their suitable habitat we previously
132  predicted by ecological niche models (36). Ecological niche models used 28 as predictor
133 environmental variables using 8 algorithms. We conducted the ensemble models using the
134  weighted mean method and used True Skill Statistics as a threshold to convert the ensemble
135 models to binary values (1 = suitable areas and 0 = unsuitable). We selected three wild bovid
136  species for further analysis: gaur (B. gaurus), banteng (B. javanicus), and wild water buffalo
137  (B. arnee), and excluded Mainland serow (C. sumatraensis) or Chinese goral (N. griseus) from
138 the analyses because the ecological niche models did not perform well. Full methods and
139  model results can be found in Horpiencharoen et al. (2023) (36).

140 Cattle density

141 We downloaded cattle density data from Global Livestock of the World 2015, GLW 4
142  (link). This data gives values of cattle density at an original spatial resolution of 10 km?. We
143  cropped the raster layer to Thailand limits and disaggregated the raster to 1 km? per cell to
144  make it compatible with the habitat suitability raster using the raster package (37). Then, we
145  rescaled the density values to 0 - 1 using this equation:

146 X2 = (Xl - Xminimum)/(xmaximum - Xminimum)

147 Where X is the value in the cattle density cell. Then, we used the mean of cattle density
148  (0.14 cattle/km?) in Thailand calculated from the GLW 4 raster as a cut-off value for converting
149  the cattle density raster into the binary values of high and low. The raster cells containing
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150 values greater than the mean were converted to 1 (high density), and the values lower than
151  the mean were converted to O (low density).

152 We assumed that higher cattle density correlates with a greater risk of infectious
153  diseases. Therefore, we counted the number of outbreaks in low and high cattle density areas
154  to test this assumption. We divided the total number of outbreak events by the total area of
155 cattle density for each category to check whether the higher number of outbreaks in high-
156  density areas was not simply due to larger areas, as the following calculation:

157 Number of outbreak in high (or low) cattle density

Total area of high (or low) cattle density

158 The results found a higher incidence of outbreak events in high cattle density areas
159 compared to low cattle density areas. Thus, we used cattle density as the major risk factor to
160 identify the potential disease transmission areas (more details in the resultsTable 2Error!
161  Reference source not found.).

162 The potential risk areas

163 In this study, the potential high risk areas refer to the interface areas between wildlife
164  and livestock that potentially share the resources (e.g. water bodies, grassland, mineral lick)
165 and have a higher risk of disease transmission due to the increased opportunity of direct and
166  indirect contact with disease reservoirs and environment, compared to other areas (25, 35,
167  38).

168 To define the risk areas, we overlapped the cattle density raster with the species’

169  binary maps and calculated the percentages of the potential risk areas in Thailand. Then, we
170 intersected the risk areas with the national protected areas (PA) (39) to calculate the risk
171  areas inside and outside PAs and also classified the risk areas by land use types to prioritise
172  where to implement the disease surveillance. Lastly, we counted the occurrence of disease
173  outbreaks reported by the Department of Livestock Development, Thailand, within the

174  interface areas to explore the distribution of highly frequent diseases in the high risk areas
175  (see below). All spatial analyses were programmed in R 4.3.1 (40). The code is available at a
176  public repository (https://github.com/Wantidah/BovidRiskMaps). Data is available upon

177  reasonable request.

178 Disease occurrence data

179 We used the national database of livestock disease outbreak reports from 2013 to 2021
180 generated by the Department of Livestock Development, Thailand. The data collection starts
181 when an outbreak in livestock is reported by local authorities or farm owners. Then
182  epidemiological data are recorded, including the date of the index case, animal type, clinical
183  signs, and number of animals infected, followed by collecting the samples for laboratory
184  diagnosis. If a diagnosis is made and the causative pathogen and disease known, the
185  authorities will record this in the database. If the authorities cannot find the causing
186  pathogen, they will add the tentative diagnosis from the clinical signs. Each outbreak will be
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187 reported as confirmed if the causative pathogen is identified by laboratory diagnostics.
188 However, if there is no laboratory result, the authority will fill in the tentative diagnosis
189  according to animal clinical signs. The GPS location of the outbreak refers to the centroid of
190 the sub-district (average area of districts of Thailand = 87 km?, range: 0.88 - 2,387 km?) where
191  the outbreak occurred.

192 Here we selected five globally or regionally common bovine infectious diseases
193  considered important for livestock health: 1) foot and mouth disease (FMD), 2) haemorrhagic
194  septicaemia (HS - Pasteurella multocida), 3) bovine Tuberculosis (Mycobacterium bovis - bTB),
195  4) lumpy skin disease (LSD) and 5) brucellosis (Brucella abortus) from the national database.
196  We selected outbreaks from these five diseases in cattle, then cleaned the outbreak events
197 by excluding incorrect coordinates falling outside Thailand using R. Lastly, we counted the
198 number of outbreaks within overlapping areas for each species and cattle population
199 densities using the 'extract' function in the raster R package (37).

200 Results

201 The high-risk areas with high wild bovid habitat suitability and high cattle density are
202  mostly found in the central-western through the southern part of Thailand for the three
203  species (Figure 1). The districts that showed the highest percentages of the risk areas are
204  Nakhon Si Thammarat (south), Ratchaburi and Prachuap Khiri Khan) for all three species. Wild
205  water buffalo showed the largest of the total interface areas, covering ~44,000 km? (8% of
206  Thailand), due to their potential habitat suitability predicted across the country. However, in
207  the actual species distribution, only one population remains in the Huai Kha Khaeng Wildlife
208  Sanctuary. Banteng and Guar showed similar potential habitat suitability species, which also
209 resulted in the closest number of interface areas, ~22,000 km? (4% of Thailand) (Table 1).

210 The highest percentage of risk areas inside the PA were identified in Namtok Sam Lan
211  (also known as Phra Budda Chai) National Park (NP) (45 km?) in Saraburi Province, covering
212 approximately 89% for gaur, 83% for banteng and 65% for buffalo. The second highest
213  percentage for gaur and banteng is Namtok Huai Yang (160 km?) NP in Prachuap Khiri Khan,
214  covering 60% (~100 km?) of the total PA, and for wild water buffalo is Huai Thabthan-Had
215  Samran (498 km?) representing 25% (125 km?) of the total PA. However, for gaur and banteng,
216  the largest risk area is located in the same PA—Kuiburi NP (970 km?), representing 273 km?
217  (28% of the PA). This is followed by the Kaengkrachan forest complex, representing 249 km?
218  for gaur (8% of the PA) and 261 km? for banteng (9% of the PA). These two protected areas
219 arein close proximity, with high-risk areas situated along the western forest edge, connected
220  to agricultural areas with high cattle density, while the western side is connected to the
221  Myanmar forest (Figure 1). Moreover, the large intact forests like the Western, Eastern and
222  Dong Payayen - Khoa Yai forest complex illustrated high habitat suitability with low cattle
223 density within the PA, but showed high risk at the border of the forests, while the fragmented
224  forests in the north illustrated the potential high risk of disease transmission with high cattle
225  density and low habitat suitability.
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228  Figure 1 Bivariate maps of the potential risk area (A) between the habitat suitability (blue)

229  and cattle density (yellow) reveal the interface areas between three wild bovid species and
230 domestic cattle populations in Thailand. High-risk areas are represented in dark red, while
231  low-risk areas are represented in grey.The potential high risk areas for disease transmission
232  between three wild bovid species and cattle populations in Thailand (B). High-risk areas are
233 represented in dark red, extracted from the interface areas in (A).

234
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235 Table 1 The percentage of interface areas overlapped with protected areas by three wild
236  bovid species.

Interface area with livestock (km?) Percentage (%) of

overlap areain

Species inside PA outside PA total Thailand
Gaur 2,018 18,367 20,385 3.9
Banteng 2,089 20,477 22,566 4.4
Wild water buffalo 747 43,642 44,389 8.7
237 According to the national disease surveillance, the total number of outbreak events is

238 7,522 events for the five selected bovine infectious diseases from 2013 to 2021. LSD (6,913)
239  has the most recorded outbreak events among the others, followed by FMD (563) and
240  brucellosis (39), while HS and bTB have only 5 and 2 events, respectively (Table 2 and Figure
241  2).This is because the first LSD outbreak occurred in cattle herds in Thailand in 2021, leading
242  to a large number of events reported across the country in a short period, while the other
243  infections, which have lower records, are endemic in this area.

244 The cattle density demonstrated correlations with the number of infectious disease
245  outbreaks, and this correlation is proportional to the area size. We observed that in high cattle
246  density areas (190,076 km?), there were higher outbreak events, totalling around 6,894
247  events (0.036 events per km?), 18 times more than low cattle density areas (324,335 km?),
248  which had 640 events (0.002 events per km?). The results of outbreak events by cattle density
249  areas are presented in Table 2

250 Table 2 The occurrence of outbreak events classified by infectious disease and cattle density
251  from 2013 to 2021.

Cattle density

Low High
Infectious disease (<=mean) (>mean) Total
bTB 2 0 2
HS 3 2 5
LSD 445 6,473 6,918
FMD 175 395 563
Brucellosis 15 24 39
Total 640 6,894 7,534
Area of Thailand (km?) 324,335 190,076 514,411
Total outbreak event per area (km?) 0.0020 0.0363 0.0146

252
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Figure 2 Occurrence of recorded bovine infectious disease outbreaks in Thailand from 2013
to 2021 and protected area distribution (PA; green). The maps show that the outbreaks
occurred across Thailand, particularly in proximity to protected and forest areas that overlap
with suitable habitats for wild bovids.

Table 3 The reported outbreak events of bovine infectious disease occurrences in the high

risk areas.

Within high cattle density - high habitat
suitability

Bovine Infectious Diseases All occurrences Gaur Banteng  Wild water buffalo

Tuberculosis 2 0 0 0

HS 5 0 0 1

LSD 6,918 166 108 442

FMD 563 32 51 190

Brucellosis 39 1 3 14

Total 7,534 199 162 647

High risk areas (km?) 20,385 22,566 44,389

Thailand 514,411

Total outbreak event per risk area (km?) 0.015 0.010 0.008 0.015

We found that the density of outbreak events in cattle within the potential high risk
area of gaur (0.01) and especially for wild water buffalo (0.015) were similar to the average
density calculated for the country (0.0146) (Table 3). Wild water buffalo showed the highest
events (647) within the risk areas as they have the largest potential habitat areas across the
country while gaur (199) and banteng (162) show close results to each other. Similar to Table
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265 2, the greatest numbers of disease events within high risk areas was for LSD and FMD in all
266  species and the other diseases presented only small numbers.

267 Moreover, according to the land use types, the most extensive interface areas were
268 found in close unknown forests (meaning they did not match any of the other forest
269  definitions), followed by cropland for three species. Closed evergreen forests also contain risk
270 areas for gaur and banteng. The open deciduous forest had no interface areas detected
271  (Figure 3).

Interface areas by land use types

Closed unknown 4

Cropland

Closed evergreen, broad leaf -
Open unknown

Closed deciduous broad leaf -

Closed evergreen, needle leaf - Species

Permanent water bodies Banteng

Land use
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Herbaceous vegetation 4 . Gaur
Open Sea -~
Shrubs 4
Herbaceous wetland 4
Bare 4

Open deciduous broad leaf 4

0
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15000 7

Area (km?
272 (kem')

273  Figure 3 Interface areas of three wild bovid species are categorised based on land use types,
274  from the land cover layers dataset ((41), https://zenodo.org/records/3243509). The term
275 closed unknown forest denotes a type of forest that does not match any of the other
276  definitions.

277 Discussion

278 We examined potential risk areas of disease transmission between wild bovids and
279  livestock and provided the preliminary focus area that should be considered for disease
280  surveillance and mitigation in Thailand. Total risk areas in Thailand are between 4% (gaur and
281  banteng) to 9% (wild water buffalo) of the country, with the most high risk areas being from
282  the central west (Ratchaburi) to the south (Nakhon Si Thammarat). The highest risk
283  proportion inside PAs was at Namtok Sam Lan National Park (NP) in the central, and the
284  largest risk areas were Kuiburi NP and Kaengkrachan NP in the western forest, related to the
285  highest cattle density in Thailand. Gaur and banteng have similar risk areas mostly around the
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286  edge of forests, while wild water buffalo have risk widely across the country because models
287  predicted extensive amounts of suitable areas in the central down to the southern part that
288  coincide with the high cattle density areas.

289 Although the wild water buffalo showed the largest areas of predicted suitable habitat
290 among all three bovid species, it is also the most endangered. This is due to its current
291  distribution being confined solely to the Huai Kha Khaeng Wildlife Sanctuary, with the
292  population remaining stable and not exceeding 69 individuals for decades (42, 43). Thus,
293  many areas identified as high risk are unlikely to be current high risk areas but are important
294  for future planning should wild buffalo ranges expand to these or they be relocated. This
295  species is highly susceptible to endemic infectious diseases that could rapidly lead to serious
296  decline or even local extinction. For instance, diseases like HS can cause a high fatality rate of
297  up to 80% in domestic buffalo (44). The highly contagious and fatal nature of diseases like
298 rinderpest and FMD may be contributing factors to population disappearances in Nepal and
299 India (45). An outbreak could also lead to local extinction in a single fragmented population,
300 as the recovery process is prolonged and potentially results in a lack of gene flow (46),
301 especially with the independent mother origin of Thai wild water buffalo (47).

302 In contrast to wild water buffalo, gaur and banteng have more opportunities for contact
303  with domestic cattle and humans, while wild water buffalo may encounter livestock and
304 humans encroaching into the protected areas and suitable habitat. Gaur and banteng can
305 share habitats, making the interface areas similar to each other. However, gaur uses a wider
306 range of habitat types (e.g., evergreen, deciduous dipterocarp, mixed deciduous forests) than
307 banteng, which is restricted to dry and open forests (e.g., dry dipterocarp, mixed deciduous
308 forest) (48, 49). These two species show evidence of contact with livestock and humans due
309 to their ability to adapt and tolerate human activities, resulting in conflicts in overlapping
310 areas (11, 12, 50). However, their habitat suitability decreases when the distance is closer to
311 human settlement and the presence of domestic cattle grazing (51).

312 Our study identified the potential high-risk areas in the northeastern and southern
313  parts, which have the highest cattle density but low or even an absence of the actual species
314  distribution in some areas. This caveat is observed in the ecological niche modelling of wild
315 water buffalo, where high habitat suitability represents potential distribution and may not
316 necessarily correspond to the actual species distribution. Nevertheless, this caveat could be
317 mitigated by collecting and regularly updating occurrences of these bovid species, as well as
318 data on livestock density and distribution, or by restricting the analyses to areas with
319  sufficient data.

320 Urbanisation and expansion of agricultural areas increase the opportunity for contact
321  between domestic livestock and wildlife. Contact rate, the probability of transmission and the
322  location shifts of animals at each time step, are the major factors that need to be considered
323  for the spatial disease transmission model (52). The direct contact between wildlife and
324  livestock is unlikely but indirect contact in the same space at different times via shared
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325 resources (e.g. water, grassland, supplement) with domestic animals potentially causes a
326  chance of wildlife exposure to pathogens and disease transmission (13, 53). However, to
327 succeed in cross-species infection, several factors should converge to drive pathogens
328 through the natural barriers before having a pathogenic infection into a new host (54). We
329 found that the highest interfaced areas were identified in cropland and unclassified forests,
330 which potentially can be shared by free-ranging livestock and wild bovids. Thailand also
331 experienced significant land cover changes (55) primarily driven by the increase of crop
332  plantations and urbanisation with concurrent population growth, which leads to changing
333  wildlife and livestock interactions and risk of disease transmission as per the previous studies
334  (56).

335 Host density is one of the main risk factors in wildlife and livestock disease transmission
336 (57, 58). We used host density and distribution as the main risk factors to identify and
337  prioritise the potential risk areas of wildlife and livestock disease transmission, as has been
338 used in the other studies (53, 59, 60). The advantage is knowing the target place for
339 implementing the disease surveillance system, but the disadvantages can arise from the
340 complexity of disease transmission dynamics, which depend on factors such as host species
341 movement (60), contact pattern (61), high adaptability of wildlife behaviour, transmission
342  modes (e.g. density or frequency-dependent) (58, 62) and population size (63).

343 Understanding the underlying factors that contribute to disease outbreaks in a specific
344  potential risk area is essential for planning effective disease mitigation and control strategies.
345  Multidisciplinary approaches incorporating key elements like pathogens, hosts, and
346  environmental factors (supplementary materials Table S1-S2, describe the generic risk factors
347  for disease transmission and mitigation methods between wildlife and livestock) also help
348 policymakers develop disease control and mitigation measures. Pathogen spillover events are
349  complicated, with a convergence of risk factors, which are difficult to approach. Integrating a
350 complex system of human, animal and environmental will benefit prevention efforts or at
351 least mitigate the impact of the next spill-over event (64).

352 Mitigation strategies will likely vary according to local socioeconomic conditions, but
353 among the preventive actions are using vaccination of livestock or even wild species, targeted
354  reduction of infected individual animals, herds or farms (ideally with compensation), along
355  with reducing livestock herd sizes and densities, transport of livestock among farms, and
356  contacts between farmed animals and wild species (65, 66). Contact reduction might be
357 through measures such as altering land use at the local level, or with “natural” (e.g. plant-
358 based) or artificial (e.g. metal) fencing or barriers and zoning of forests, livestock and human
359  settlements to minimise the contact (17, 67), which may lead to reduce pathogen spillover
360 (68). Longer term strategies might include societal transitions to lower meat-based, more
361 plant-based proteins to reduce demand for meat and dairy products. Conserving intact forests
362  with effective surveillance can mitigate the risk of disease transmission at the interface,
363  especially in edge or transition areas. In contrast, fragmented forests increase the likelihood
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364  of wildlife being exposed to livestock and humans, leading to an elevated risk of disease
365 transmission (20, 69, 70).

366 Livestock vaccination is crucial for reducing outbreak incidences of endemic diseases,
367 requiring approximately 80% coverage to effectively prevent disease transmission for many
368 pathogens based on pathogen specific, particularly in high-risk areas and populations, as part
369 of routine practice (71, 72). However, capturing and delivering parenteral-route vaccinations
370 to free-ranging wild bovids pose significant challenges, especially in tropical forests where
371 animals might be hidden. Consequently, various aspects must be carefully considered in the
372  vaccination plan, including the target population, coverage, safety, and efficiency, to
373  effectively stimulate herd immunity (73). Non-invasive vaccination methods, like tuberculosis
374  oral vaccination, have been tested in domestic cattle and some wildlife and are planned for
375 use in wild cattle (74). Research and development for other endemic diseases like FMD, HS,
376  and brucellosis is still ongoing (75-77). Culling livestock infected with zoonotic diseases (e.g.,
377  bTB, brucellosis) is commonly implemented in Thailand (78, 79). However, infected animals
378 often undergo illegal translocation, potentially spreading the disease to other locations. To
379 manage this issue, the government should rigorously regulate animal movement, regulating
380 the guidelines for isolation of infectious animals during outbreaks, and providing appropriate
381 compensation for culling cases. The effectiveness of these mitigation actions is influenced by
382 the presence and use of effective infection and disease surveillance, as discussed below.

383 Livestock and, likely, wildlife disease surveillance in Thailand is based on the DLD, DNP
384 (Thailand) and WOAH guidelines (80), which cover significant transboundary disease
385  outbreaks in the country. Even though the passive surveillance system is useful for recording
386 the obvious clinical signs and emerging infectious diseases (like FMD and LSD), there is a gap
387 in collecting non-clinical to subclinical signs of disease due to these being challenging to
388 detect. Moreover, passive surveillance leads to underreporting by the farmers for some
389 zoonoses like bovine tuberculosis and brucellosis, for which animals must be condemned due
390 to the slow and partial (not less than 75% of the market price, but often not 100%)
391 compensation from the government. Another drawback is the clinical signs reported from
392  passive surveillance may not refer to the place where the animal got infected if those are
393 moved from the original area. Therefore, active surveillance such as risk-based (81), disease
394  surveys (Arjkumpa et al.,, 2020) screening or detecting seroprevalence are necessary in
395 hotspots or endemic areas to effectively allocate resources for disease mitigation and control
396  strategies. Furthermore, even when reported, further work must be undertaken to
397 understand the disease risk in depth. Reported data might refer to one event being a single
398 case or multiple cases, and infectious diseases are, by default, dynamic in their nature.
399  Without significant further work, passive surveillance data may offer a limited and biased
400 understanding of the true disease risk in a location at a particular time. The impact of the
401  detection of some infections on trade must be addressed, as this might be a barrier to
402  effective surveillance and reporting (82, 83). The involvement of field authorities is another
403  crucial aspect of data collection, indispensable for obtaining real-time information. Modern
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404  technologies or data sharing can help identify risk areas and plan preparedness
405 implementations (62, 84, 85). Therefore, one should consider investing more in field data
406 collection and incorporating field practitioners or epidemiologists into the team before
407  formulating policies (86).

408 Using a One Health approach, a framework for disease surveillance has been developed,
409 incorporating essential considerations of spillover events into the processes. To sustainably
410 manage data collection and surveillance systems, collaboration among government
411  organisations and stakeholders is a key step in the process, involving considerations of
412  political, ethical, administrative, regulatory, and legal (PEARL) aspects through all approaches
413  (87). An effective surveillance system, characterised by rapid detection and accurate results,
414  not only monitors emerging diseases but also reduces the risk of disease transmission and
415 minimizes the impact on lives, economies, and biodiversity during disease outbreaks (88).
416  Also, the use of non-invasive data collection for willdife disease surveillance and surveys, such
417  as faces, urine, saliva and environmental samples (e.g. soil, water) should be considered to
418 avoid direct contact and reduce disturbing wildlife during capturing and data collection (89).
419  Further studies may consider including other risk factors such as multi-species host
420  distribution, the distance of risk factors and contact pattern (90, 91), as well as improving the
421  model by using updated disease surveillance data and wild bovid species occurrences,
422  especially for areas where the uncertainty of model predictions is high.

423  Conclusion

424 Our study predicted the potential risk areas by using the interface areas between
425  wildlife and domestic cattle, where livestock disease is frequently reported. We overlaid
426  suitable habitats of three large wild bovids in Thailand with cattle density to create potential
427  risk maps. High-risk areas were identified in locations with both high cattle density and high
428  habitat suitability, particularly at the edges of forest-protected areas. Notably, small,
429  fragmented forest areas with high cattle density presented the highest proportion of the high-
430 risk areas. Among various land-use types, cropped land and some closed forests exhibited the
431  largest interface areas. Our findings highlight the importance of wildlife habitat and intact
432  forest conservation to mitigate contact and reduce vulnerability to extinction, reduce shared
433  areas and address the potential risk areas for disease transmission between wild bovids and
434  livestock. This methodology not only supports disease surveillance but also facilitates the
435 implementation of effective mitigation and control measures.
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