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Abstract

Missense variants can have a range of functional impacts depending on factors such as the
specific amino acid substitution and location within the gene. To interpret their deleteriousness,
studies have sought to identify regions within genes that are specifically intolerant of missense
variation*™2. Here, we leverage the patterns of rare missense variation in 125,748 individuals in
the Genome Aggregation Database (gnomAD)*® against a null mutational model to identify
transcripts that display regional differences in missense constraint. Missense-depleted regions
are enriched for ClinVar** pathogenic variants, de novo missense variants from individuals with

neurodevelopmental disorders (NDDs)™>*

, and complex trait heritability. Following ClinGen
calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less
than 20% of their expected missense variation achieve moderate support for pathogenicity. We
create a missense deleteriousness metric (MPC) that incorporates regional constraint and
outperforms other deleteriousness scores at stratifying case and control de novo missense
variation, with a strong enrichment in NDDs. These results provide additional tools to aid in

missense variant interpretation.
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Main text

Over the last decade, exome and genome sequencing have enabled variant discovery across
hundreds of thousands of individuals®**"*', These large reference databases have provided the
opportunity to study selective forces acting on the human genome and to identify genomic
regions under selective constraint by, for example, identifying regions with fewer variants than
expected based on mutational models'®*®#*7%> Gene-level metrics of predicted loss-of-function
(pLoF) variant depletion have proven to be valuable in variant classification and identification of
novel disease genes'>'*?* % The functional impact and selective pressures relevant to
missense variation, by contrast, remain challenging to predict, as the effect of a missense
variant is governed by the gene housing the variant, the position of the variant in the gene, and
the specific amino acid substitution caused by the variant. To address this, prior work has
sought to identify regions within coding genes that are specifically intolerant of missense
variation as a way to improve interpretation' 2. Here, we expand upon previous work® and show
a sub-genic measure of missense intolerance leveraging population-level variation facilitates
variant classification and risk stratification for association studies with de novo, rare, and

common variants.

We explored the patterns of rare missense variant presence or absence in 125,748 exomes in
the Genome Aggregation Database (gnomAD) v2.1.1 on GRCh37 to quantify missense
depletion at the sub-genic level. We searched 18,629 canonical protein-coding transcripts for
variability in missense constraint, quantified as the number of rare (allele frequency [AF] <
0.1%) missense variants observed in gnomAD divided by the number expected under neutral
evolution as estimated from previously described mutational models*®(observed/expected [OE]).
For each transcript, we applied a recursive search based on likelihood ratio tests over all
potential rare missense sites looking for breaks that divide the transcript coding sequence
(CDS) into distinct missense constraint regions (MCRs; Fig. 1a, b). We discover 5,127
transcripts (28%) harbor regional variability in missense constraint (Fig. 1c), i.e., have two or
more MCRs (minimum coding length 49bp, median 461bp; Supplementary Fig. 1). We thus
refine the resolution of missense constraint for 42% of coding sites (coding space in the 5,127
transcripts vs. 18,629 total assessed). After recalibrating the missense OE distribution over all
potential sites of missense variants using MCR-wide rather than transcript-wide missense OE
measurements, we discover widespread signatures of negative and neutral selection that are
obscured when quantifying over the unit of whole transcripts (Fig. 1d). We find a larger

proportion of the exome lies within strongly constrained sequences (5.6% vs. 1.7% at OE < 0.4;
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see Supplementary Note for OE threshold selection), and the mode of the distribution shifts
toward an OE indicative of evolutionary neutrality at approximately 1 (40.6% vs. 36.5% at 0.9 <
OE <1.1).
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Fig. 1: 28% of protein-coding genes in the human genome are discovered to harbor regional
variation in population-level missense depletion.

a, An example transcript that has two missense constraint regions (MCRS) with significantly
different levels of population-wide missense depletion, defined as the number of missense
variants observed in gnomAD at rare frequency (AF < 0.1%) divided by the number of rare
missense variants expected under neutral evolution (observed/expected or OE). Lower OE
values correspond to greater variant depletion in the population and suggest stronger constraint.
b, Flow chart describing the process of searching for breakpoints that divide a transcript into
multiple MCRs. Searching for breakpoints is recursive and leverages likelihood ratio tests at a
significance threshold of p = 0.001. ¢, The number of MCRs within the 5,127 transcripts
discovered to harbor regional differences in missense constraint. The other 13,502 transcripts
are deemed to have a single MCR (that is, a constant level of constraint across their entirety)
and are not shown. d, The distribution of local missense OE at all coding sites in canonical
transcripts. Local missense OE is defined as the OE calculated over the whole transcript (for
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“transcript OE”) or over the MCR (for “MCR OE”") where the site is located. Transcript OE and
MCR OE are equivalent for transcripts with one MCR.

Furthermore, we find that constrained MCRs overlap established disease-associated mutational
hotspots, including critical protein domains. One example is in the well-characterized KCNQ1, a
voltage-gated potassium channel gene, in which pathogenic variants cause cardiac disorders
such as long QT syndrome. We discover one moderately constrained MCR (missense OE =
0.60) overlapping the highly conserved C-terminus ?° and another (missense OE = 0.66)
encompassing the voltage-sensing and pore domains (Fig. 2a). Both the C-terminus of KCNQ1
and its voltage-sensing domain are established “hotspot” regions (specific missense-
constrained regions with ACMG/AMP hotspot/functional domain moderate support [PM1] for
pathogenicity)**'. All but two ClinVar pathogenic/likely pathogenic (P/LP) missense variants in

this gene fall within these two missense-constrained MCRs.

We also find that missense constraint within MCRs is able to identify regions associated with
severe, early-onset disease. One example is in BAP1, which plays a key role in chromatin
modeling by mediating histone deubiquitination. Disease-causing variants in this gene are linked
to cancer or, as recently discovered, Kury-Isidor syndrome®?. The first highly missense-
constrained MCR (missense OE = 0.33) in BAP1 encompasses the ubiquitin C-terminal
hydrolase domain connected to Kury-Isidor syndrome® (Fig. 2b), and all 11 variants reported to
be causal for Kury-Isidor fall within this MCR. The only ClinVar P/LP variants that do not fall
within any missense-constrained MCRs in BAP1 are associated with cancer phenotypes, which

may be under weaker selection than neurodevelopmental disorders (NDDs).
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Fig. 2: Missense constraint regions (MCRs) and the distribution of ClinVar pathogenic/likely
pathogenic (P/LP) missense variants in two genes associated with early-onset developmental
disorders. Exons are delineated with black outlines and MCRs are delineated by color. MCRs
are colored based on their missense observed/expected (OE) ratio, and MCRs with missense
OEs not significantly different from 1 (p > 0.001) are shaded gray. a, KCNQ1. Only two of the
210 P/LP missense variants in KCNQ1 do not fall within either constrained MCR. The first
constrained MCR encompasses the voltage-sensing and pore domains of this gene, and the
other constrained MCR overlaps the C-terminus. Both domains contain previously reported
hotspot regions, with some regions reaching moderate level (PM1) support for pathogenicity®'.
lon transport protein: domain that contains both the transmembrane voltage-sensing and pore
domains. KCNQ channel: C-terminal cytoplasmic domain that overlaps four helices (A-D). b,
BAP1. Variants in this gene can lead to cancer-predisposition syndromes, increased risk of
certain cancers, or the neurodevelopmental disorder Kury-Isidor syndrome®?. All of the ClinVar
P/LP variants associated with Kury-Isidor fall within the first MCR with a highly depleted
missense OE of 0.33. An additional five variants reported in Kury et al.®? but not ClinVar fall
within either highly constrained MCR in this gene. P/LP variants associated with Kury-Isidor are
colored in black, and all other cancer-associated P/LP variants are colored in gray. UCH:
Ubiquitin carboxyl-terminal hydrolase isozyme L5 domain. ClinVar data are from the October 15,

2023 release.

Next, we sought to determine if the signatures of selection revealed by MCRs recapitulated

biological and disease relevance of coding sequences. Overall, most transcripts that are
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120 intolerant to pLoF variation (as measured by the loss-of-function observed/expected upper
121 bound fraction [LOEUF] score'®) also tend to be intolerant to missense variation. This trend is
122  markedly more prominent when measuring missense constraint at the sub-genic level vs. the
123  transcript-level (Supplementary Note; Supplementary Fig. 2). We also discovered that 64%
124  (1697/2659) of genes that are both LOEUF- and MCR missense-constrained do not have
125 disease associations in OMIM®*, suggesting the existence of many undocumented genes
126  containing variants of significant consequence for disease (Supplementary Fig. 3). In a set of
127 730 strongly mutationally intolerant genes, defined here as exhibiting both population depletion
128  of pLoF variants (first three LOEUF deciles) and association with a developmental phenotype
129  (high-confidence membership in any non-cancer Gene2Phenotype [G2P]** gene list with
130 dominant inheritance), we observed strong transcript-wide missense depletion that was even
131  stronger for genes with multiple MCRs (Fig. 3a and Supplementary Fig. 4; Wilcoxon p < 10™°).

132  Given that we have greater power to detect missense constraint variability over longer

133 sequences (Supplementary Fig. 5), we controlled for transcript length but still found that
134 intolerant transcripts are eight times more likely to harbor multiple MCRs (p < 10°°). These
135 strongly intolerant transcripts are highly enriched for severely depleted regions (three times
136  more likely to have minimum MCR OE < 0.4 after regressing out transcript length, p < 10™),
137  whereas the most constrained MCRs in not strongly intolerant transcripts are less depleted and
138 more evenly distributed across the OE spectrum. Finally, we observe a group of genes with

139  strong overall missense depletion in which we did not detect multiple MCRs (n = 459 with

140 missense OE < 0.4; Supplementary Table 1), suggesting these genes are robustly intolerant to
141  missense variants across their length. When comparing missense constraint to selection over
142  longer timescales (measured by evolutionary conservation in placental mammals, phyloP*), we
143  found that genes with more conserved coding sequences also tended to be more overall

144  depleted of human missense variation (Spearman p = 0.56, p < 10"*°). However, a substantial
145  number of strongly constrained MCRs appear widely unconserved across mammals, potentially
146  pointing to human-specific negative selection pressures that are obscured at the whole-

147  transcript level (Supplementary Fig. 6).

148

149  We next aggregated de novo missense variants from 31,058 individuals with a severe

150  developmental disorder™® (DD), 15,036 autistic individuals (AUT), and 5,492 siblings not

151  diagnosed with a DD*® (Fig. 3b). The distribution of de novo missense variants across the

152  missense OE spectrum in unaffected siblings largely mirrored the exome-wide missense OE

153 distribution. In contrast, de novo missense variants in autistic individuals are enriched in
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154  missense-constrained sequences, and this pattern is more striking in individuals with DDs. For
155 example, relative to unaffected siblings, the rate of de hovo missense variants in MCRs with OE
156 < 0.2 is 2-fold higher in autistic individuals (p < 10%) and 6.6-fold higher in individuals with DDs
157  (p < 10™) (Supplementary Fig. 7; see Supplementary Note for OE threshold selection). This
158 is consistent with the expectations that a small subset of de novo missense variants in

159 individuals with developmental phenotypes are causal for those traits and that variants causal
160 for DD are generally more selectively deleterious than those for autism.

161

162  Beyond large-effect rare and de novo variation in traits under strong negative selection, we

163 additionally investigated whether our MCR metric, which was calculated using rare variants,
164  correlates with functional effects of common variants. Prior work found that pLoF-constrained
165 genes and their flanking 100kb sequences are enriched for SNP heritability across hundreds of
166 independent traits in the UK Biobank (UKBB) and other large genome-wide association studies
167  (GWAS) **. We partitioned common (AF > 5%) variant heritability of the same 268 independent
168 traits across MCRs to investigate relative enrichment. To establish a baseline, we computed the
169 heritability enrichment over all coding sequences comprising MCRs (3-fold). The most

170  constrained MCRs have the strongest heritability enrichment; the first quintile of MCR missense
171  OE harbors a 41-fold enrichment (Fig. 3c). Coding SNPs in missense-unconstrained MCRs
172  (e.g., in the two least constrained quintiles of MCR missense OE) harbor no detectable

173 heritability enrichment relative to the average genome-wide SNP. These findings suggest that:
174 1) regions depleted of rare missense variation can help prioritize common coding variants

175 important for complex traits (i.e., improve GWAS fine-mapping variant prioritization), and 2)

176  there exists a subset of coding sequence with no appreciable heritability enrichment, which rare
177  variant depletion can help identify.

178
179
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Fig. 3: Regional missense depletion reveals constraint obscured by gene-level measures. a,
Left: The distribution of transcript-wide missense observed/expected (OE) across 18,629
transcripts stratified by the combination of two factors: whether the transcript is strongly
mutationally intolerant (within first three LOEUF deciles and association with a developmental
phenotype in Gene2Phenotype [G2P]**) and whether we detect multiple missense constraint
regions (MCRs). Number of transcripts in each category are: strongly intolerant with multiple
MCRs (n=581,; red), strongly intolerant with one MCR (n=149; yellow), not strongly intolerant
with multiple MCRs (n=4,546; dark gray), not strongly intolerant with one MCR (n=13,353; light
gray). X-axis is cut off at 1.6 for visibility. Right: Minimum MCR missense OE using the same
groupings. Minimum MCR missense OE is the same as transcript missense OE for transcripts
with a single MCR. b, MCR missense OE at all sites of possible exome-wide missense variants
vs. sites of de novo missense variants in controls, autistic individuals (AUT), or individuals with
DD. De novo variants from individuals with developmental phenotypes are enriched in more
constrained sequences, with a more pronounced enrichment in DD than autism. ¢, Enrichment
in per-variant heritability explained by common (AF > 5%) protein-coding SNPs stratified by
MCR missense OE quintile, relative to the average SNP genome-wide. Enrichment is estimated
by linkage disequilibrium score regression, accounting for number of SNPs in each quintile, and
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198 is averaged across 268 independent traits in UKBB and other large genome-wide association
199 studies. Black dashed line at 1 indicates no enrichment. Blue dashed line at 3 indicates average
200 coding enrichment. Error bars represent 95% confidence intervals.

201

202

203  We examined the localization of high-quality ClinVar*® missense variants classified as P/LP

204  within genes with both unconstrained (missense OE > 0.9) and constrained (missense OE <
205 0.2) MCRs and found that P/LP variants occur much more frequently in missense constrained
206 MCRs (odds ratio [OR] = 15.2; p < 10™*°). We also examined the localization of P/LP and

207  benign/likely benign (B/LB) variants within MCRs in autosomal dominant disease-associated
208 genes and found that P/LP variants tend to localize to regions that are more strongly missense-
209  constrained than the overall transcript (Wilcoxon p = 3.5x10™°), while B/LB variants show the
210 opposite effect and tend to occur in regions with OEs closer to 1 (Wilcoxon p < 10™%; Fig. 4a).
211  While more subtle, these same patterns are also significant in autosomal recessive disease-
212  associated genes (Supplementary Fig. 8).

213

214  To enable use of our missense constraint metric in ACMG/AMP clinical variant classification, we
215 applied previously established probabilistic frameworks®’ to determine the MCR missense OE
216 thresholds that met different levels of clinical evidence strengths evaluated under the

217  hotspot/functional domain (PM1) and benign in silico prediction (BP4) criteria codes®*. MCR
218 missense OE < 0.37 met supporting (PM1_Supporting) and OE < 0.21 met moderate (PM1)
219 levels of evidence for pathogenicity (Fig. 4b), but no MCR missense OE threshold met any

220 levels of evidence to support benignity. However, separate calibration specifically in transcripts
221  with multiple MCRs found that MCR missense OE = 1.56 met moderate and OE = 0.97 met

222 supporting evidence for BP4, indicating that in transcripts where we are powered to characterize
223  regional constraint, MCRs with OEs close to one harbor an indication of benignity

224  (Supplementary Fig. 9). Calibration of two additional regional constraint metrics, Constrained
225  Coding Regions (CCRs®) and COntact Set MISsense tolerance (COSMIS™), which incorporates
226  predicted 3D structure information, revealed that these metrics also reach moderate support for
227  pathogenicity (PM1), and COSMIS only reaches supporting levels for benignity

228  (Supplementary Fig. 9; Supplementary Table 2).

229
230
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232  Fig. 4: ACMG/AMP calibration of missense constraint. a, The distribution within genes with
233  autosomal dominant disease associations of transcript-wide missense observed/expected (OE;
234  gray) and missense constraint region (MCR) OE for ClinVar pathogenic/likely pathogenic

235 missense variants (P/LP; red) and benign/likely benign missense variants (B/LB; blue). We
236 filtered to 1,007 transcripts with at least one P/LP and one B/LB missense variant. For the P/LP
237  and B/LB distributions, we annotated each variant with the missense OE across the MCR they
238 fell in and collapsed these values within each transcript by taking the respective medians. b,
239  Local posterior probabilities of pathogenicity given MCR missense OE in all transcripts. Gray
240 shading indicates the one-sided 95% confidence interval on the more stringent side. Horizontal
241 lines indicate thresholds required to meet ACMG/AMP evidence levels. From bottom to top:
242  supporting, moderate, strong, very strong. MCR missense OE reaches supporting (OE < 0.37)
243  and moderate (OE < 0.21) level evidence for PM1 (hotspot/functional domain).

244

245

246  We transformed our regional missense constraint measure into a variant-level predictor of

247  missense deleteriousness named MPC (Missense deleteriousness Prediction by Constraint)
248  that additionally incorporates information about amino acid substitution type and local context.
249  The logistic regression-based model integrates regional missense constraint-derived metrics
250 together with BLOSUM?®, Grantham®’, and PolyPhen-2*° and is trained on ClinVar pathogenic
251 and gnomAD common (AF > 0.1%) variants in 2,987 genes defined as haploinsufficient in

252  Collins et al.** and 366 genes with DD associations in G2P through non-LoF mechanisms.

253  Higher scores predict greater deleteriousness (Supplementary Fig. 10, 11). We assessed the
254 utility of MPC in prioritizing potentially disease-causing variation by evaluating its ability to

255  stratify case and control rare and de novo missense variation. Consistent with the regional

256 constraint results, the de novo missense variants from DD and AUT cases are enriched for high
257  MPC scores compared to controls (Supplementary Fig. 12). We further stratified by presence
258 in 373 genes previously associated with NDD*® and three bins of MPC scores (< 1.6, 1.6-2.6, =
259  2.6; see Supplementary Note for calibration of these bins), and found a very strong enrichment

260  of de novo missense variants in the two most deleterious bins among both the DD (Fig. 5a) and
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261  AUT cases (Fig. 5b) compared to unaffected individuals. However, while the enrichment in the
262 373 NDD-associated genes was significant for missense variants with MPC = 2.6 (RR in DD
263 cases =22.7,p <10 RRin AUT cases = 6.9, p < 10%), as well as missense variants with
264 MPC between 1.6-2.6 (RR in DD cases = 4.5, p < 10%% RR in AUT cases = 1.9, p= 3.0x10'5), it
265  was only significant in NDD-unassociated genes for missense variants with MPC = 2.6 (RR in
266 DD cases =3.1, p<10%; RR in AUT cases = 1.5, p = 5.9x10™). This suggests that while there
267 is a sizable reservoir of potentially causal variants in genes yet to be associated with NDDs,
268  they will be more difficult to find as they must reach stricter deleteriousness criteria. For autism,
269 we additionally assessed inheritance rates of rare missense variants (AF < 0.1%) from parents
270 to 13,384 probands and case-control rates for an additional 5,591 cases and 8,597 controls
271  without de novo information. While we did not find substantial enrichment in inheritance rates in
272  any missense category, we discovered substantial enrichment in the case-control analysis for
273  variants in the 373 NDD-associated genes with MPC = 2.6 (RR = 1.6, p < 10™*%), which we infer
274 s from de novo variants that are not recognizable as such due to lack of parental information.
275

276  We extended our assessment of case-control de novo stratification for a comparison of our

277  model against several other missense deleteriousness predictors: AlphaMissense*?, CCRs’, M-
278  CAP*, REVEL*, PrimateAl-3D**, MVP*®, Polyphen-2*°, CADD*"*®, mammalian conservation
279  phyloP%®, and SIFT*. For this assessment, we evaluated four additional early-onset

280 development-related phenotypes: epileptic encephalopathy (EE), orofacial cleft (OFC),

281  congenital heart disease (CHD), and congenital diaphragmatic hernia (CDH). To compare

282  across predictors with different score distributions, we used a ranking-based performance

283  assessment. For each predictor, we ranked the de novo missense variants from each case
284  cohort against those in the 5,492 controls and computed the OR of case vs. control variants in
285 the top percentiles of these rankings (Fig. 5¢). At the top 10% of variants, MPC displays the
286  highest OR for DD (OR = 5.2, Fisher’s exact p < 10*), EE (OR = 3.1, p = 2.2x10”), AUT (OR =
287 1.7, p=8.9x107), and OFC (OR = 1.5, p = 0.025), although there is substantial confidence

288 interval overlap with other predictors. This indicates that MPC effectively ranks high-impact de
289  novo variants in the most deleterious prediction regimes. Of the other predictors,

290 AlphaMissense also performs consistently well across all phenotypes. In particular, in CHD and
291  CDH, which have the least de novo enrichment across predictors, we observe MPC lagging in
292  performance, while AlphaMissense is one of the top performers. This may suggest that causal
293 de novo variants in these phenotypes may occur at a narrow set of sites where 3D structure is

294  important, which AlphaMissense can more deftly capture through integration of protein structure
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prediction. These observations are more or less consistent over a range of thresholds used to

define the ranking top percentiles (Supplementary Fig. 13).

a DD b AUT
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Fig. 5: MPC effectively stratifies case and control variation.

a, The difference relative to controls of missense variants stratified by MPC score and
localization to genes associated with neurodevelopmental disorders (NDDs) for a, individuals
with DD and b, autistic individuals (AUT). Relative difference is calculated as: for de novo
variants, the average rate of variants in probands divided by that in sibling controls; for case-
control, the average rate of variants in cases divided by that in controls from case-control data;
for inherited, the average rate in probands of transmitted variants divided by that of
untransmitted variants. Error bars represent 95% confidence intervals calculated from a
binomial test. ¢, The odds ratio of case to control de novo missense variants in the top 10% vs.
bottom 90% of respective rankings. De novo missense variants from each case cohort are
ranked against those in the 5,492 controls for each predictor. DD: developmental disorders, EE:
epileptic encephalopathy, AUT: autism, OFC: orofacial cleft, CHD: congenital heart disease,
CDH: congenital diaphragmatic hernia. Error bars represent 95% confidence intervals. Only
variants scored by all predictors are included. Points are solid colored if the difference from 1 is
statistically significant (binomial or Fisher exact p < 0.05).
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316

317  We have developed a method to identify sub-genic regions with differential intolerance to

318 missense variation at base-level resolution. We demonstrate that coding regions depleted for
319 missense variation in the general population are enriched for established disease-associated
320 variation, de novo variants from individuals with NDDs, and heritability for 268 complex traits
321  from the UK Biobank and other large GWAS. Additionally, we have calibrated these constraint
322  scores to establish that regions with less than 20% of their expected variation can achieve

323  moderate evidence for association to disease following ACMG/AMP guidelines. Finally, we
324  incorporated regional missense intolerance information into the missense deleteriousness

325 metric, MPC, and show that MPC effectively separates potentially risk-carrying variants

326 identified in various developmental disorder cases from those seen in controls.

327

328 At current sample sizes, we are unable to characterize constraint at single amino acid

329 resolution. Furthermore, because our approach relies on variant presence or absence in a large
330 reference dataset, many of the constrained regions we find are linked to variants that cause
331  severe, early-onset disease. However, the true nature of the variation we capture is more

332  accurately linked to reproductive fitness and the strength of selection acting on heterozygotes™.
333  Our methodology specifically searches for linear sub-genic regions in canonical transcripts that
334  are depleted of missense variants compared to a null mutational model. This means that our
335 model is unable to find depleted sequences that are clustered specifically in 3D space and is
336  also currently ignorant of coding sequences not present in the Ensembl canonical transcript.
337  However, we note that our linear metric achieves similar evidence for both pathogenicity and
338  benignity as the structural constraint-based COSMIS model* (Supplementary Fig. 9).

339

340 In summary, we identify 28% of canonical transcripts with variable levels of missense constraint
341  and demonstrate that coding regions specifically depleted of missense variation in the general
342  population are enriched for disease-associated variation. Additionally, we show that this

343  depletion of missense variation can be used as moderate evidence when classifying variants
344  according to ACMG/AMP guidelines and that incorporation of regional missense constraint into
345 anin silico predictor effectively prioritizes a subset of de novo missense variation in individuals
346  with developmental phenotypes for association testing. We have publicly released these data
347  for use in both research and clinical settings. We anticipate refined resolution of these metrics
348  as datasets grow, both in size and in ancestral diversity, and with the incorporation of

349 complementary structural or functional data.
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350 Methods

351  Transcripts

352  This study analyzed only canonical, coding transcripts as defined by GENCODE v19/Ensembl
353 v74. We excluded the same set of transcripts from this analysis that were excluded in the

354  previous gnomAD v2.1.1 genic constraint estimates™. Briefly, we excluded transcripts that had
355  outlier counts of variants expected under neutrality (zero expected pLoF, missense, or

356  synonymous variants; too many observed pLoF, missense, or synonymous variants compared
357  to expectation; or too few observed synonymous variants compared to expectation). In total, this
358  study analyzed 18,629 transcripts.

359

360 gnomAD variants

361  All analyses in this paper were conducted using the 125,748 gnomAD v2.1.1 exomes™ on

362 GRCh37. Median coverage was calculated on a random subset of the gnomAD exomes as

363  described previously™. We defined the set of sites with possible missense variants using a

364  synthetic Hail Table (HT) containing all possible single nucleotide variants in the exome. We
365 annotated this HT with the Variant Effect Predictor (VEP, version 85) against GENCODE

366  version 19, and filtered to variants with the consequence "missense_variant" in the canonical,
367 coding transcripts as defined in Transcripts. We then further filtered to variants that fit one of the
368  following criteria: (1) allele count (AC) > 0 and AF < 0.001, variant QC PASS, and median

369 coverage > 0in gnomAD v2.1.1 exomes; or (2) AC =0, i.e. variants not seen in gnomAD v2.1.1
370  exomes.

371

372 ClinVar variants

373  We annotated functional consequences for ClinVar'* (v.20230305) variants using the VEP table
374  described in gnomAD variants. Missense ClinVar variants with non-conflicting P, LP, B, LB

375 classification and a review status of at least one star were selected for analysis.

376

377 Rare and de novo variants from developmental cohorts

378 Case de novo mutations for association analyses were obtained from studies of developmental
379  disorders™ (DD), autism'® (AUT), congenital heart disease® (CHD), orofacial cleft** (OFC),
380 congenital diaphragmatic hernia® (CDH), and epileptic encephalopathy®* (EE). Control de novo
381 mutations were obtained from neurotypical siblings of the autistic probands®®. Variants from the
382  autism study were lifted over from GRCh38 to GRCh37 using the “liftover” function in Hail.

383  Variant functional consequences were re-annotated using the VEP table described in gnomAD
384  variants. Variants transmitted and not transmitted from parents to autistic probands were

385  procured from previously published ASC-SSC and SPARK cohorts, and case-control variants
386  for autism were procured from previously published iPSYCH and Swedish cohorts®®. Both the
387 inherited/uninherited and case-control variant sets were filtered to AF < 0.1%.

388
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389 Training, validation, and test datasets

390 To generate independent training and test sets, we selected 80% (14,894 transcripts) of the
391 18,629 canonical coding transcripts to comprise the training set and the remaining 20% (3,735
392 transcripts) to the test set. To ensure the training and test transcripts have similar distributions
393 of features that may impact constraint estimates, we used stratified randomization to match the
394  training and test transcripts on sy coefficients (as a measure of selection) and number of

395  potential missense sites (as a measure of power to detect transcript-wide constraint changes).
396  The training set was used for MPC model training and MCR model selection, and the test set
397  was used for MPC model evaluation. No similar hold-outs of data were performed for training of
398 the mutational model used to compute expected variant counts (see Modeling of mutation rates
399 and expected neutral missense variation).

400

401 Modeling of mutation rates and expected neutral missense variation

402  Expected missense variant counts were determined as described previously™. Briefly, we

403 created a model using the 15,708 gnomAD v2.1.1 genomes that estimated the mutation rate for
404  each single nucleotide substitution with one base of context (e.g., ACT > AGT) in non-coding
405 regions of the genome. We then calibrated this mutation rate against the proportion observed of
406  each context at synonymous sites to adjust for the larger size of the gnomAD v2 exomes,

407  adjusting for low coverage regions (median coverage < 40x) and methylation levels at CpG sites
408  using methylation data from the Roadmap Epigenomics Consortium®>. We created three

409 separate models (referred to as "plateau” models moving forwards): one for autosomal and

410 pseudoautosomal sites, one for chromosome X sites, and one for chromosome Y sites. Each of
411  these models contains mutation rate estimates for each substitution, context, and methylation
412  level. We then applied the plateau models to the proportion observed of each substitution and
413  its context, exome coverage, and methylation level. We counted all possible variants in our

414  synthetic Hail Table (HT) that passed the following criteria: (1) Median coverage > 0; (2) no low-
415  quality variant observed in gnomAD v2 exomes; (3) no variants above 0.1% AF observed in
416  gnomAD v2 exomes. We then correlated this proportion observed value with the mutation rate
417  calculated using the appropriate model above. For low coverage sites (median coverage below
418  40x), we calculated a scaling factor as described previously*®: briefly, we computed the total
419  number of observed synonymous variants in the gnomAD v2 exomes divided by the total

420  number of possible synonymous variants in the synthetic HT multiplied by the mutation rate
421  aggregated across all possible substitutions and their contexts and methylation levels. We used
422  this scaling factor to create a model to adjust the proportion of expected variation for low

423  coverage sites (coverage model).

424

425 Identifying breakpoints within transcripts of regional missense constraint

426  Observed missense variant counts were calculated using sites from the 125,748 gnomAD

427  exomes that passed all the following criteria: (1) Allele count (AC) > 0; (2) allele frequency (AF)
428 < 0.001; (3) variant QC PASS (passed gnomAD variant QC filters, including random forest
429  filters); (4) median coverage > 0. We filtered the gnomAD v2 exomes Hail Table (HT) to the
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430  sites that matched the above criteria and then annotated the synthetic HT with whether that
431  variant (chromosome/locus plus reference and alternate alleles) was observed in the gnomAD
432  exomes. We then aggregated the total number of observed variant counts per locus by

433  summing the number of observed variants for each possible substitution (reference and

434  alternate allele) at each locus. Finally, we grouped the synthetic HT by transcript annotation to
435  sum the total number of observed missense variants per transcript.

436

437  As previously described"®, we applied the two models (plateau and coverage) described in

438  Modeling of mutation rates and expected neutral missense variation to calculate the total

439  proportion of expected missense variation. Briefly, we summed the mutation rate (mu_agg) for
440  each substitution, context, and methylation level across the exome. We then applied the

441  appropriate plateau model (autosomal/pseudoautosomal, chromosome X, chromosome Y) and
442  adjusted CpG vs. non-CpG sites separately. After applying the appropriate plateau model, we
443  applied the coverage model to low coverage (median coverage < 40x) sites to create the final
444  adjusted mutation rate (mu_adj). We then aggregated the raw mutation rate sum (mu_agg) and
445  adjusted mutation rate (mu_ad)) per transcript to get the total mutation rate sum and proportion
446  of expected missense variation per transcript.

447

448  We implemented a minimum number of expected missense variants to prevent finding

449  breakpoint positions that would create very small (i.e., a handful of base pairs in size) transcript
450  subsections (see Supplementary Note).

451

452  We applied a likelihood ratio test to determine whether the missense observed/expected (OE)
453  ratio was uniform along a transcript or whether a transcript had evidence of distinct sections of
454  missense constraint. We used the observed and expected missense counts to search for

455  positions that would divide a transcript into two or more regions with varying levels of missense
456  depletion. For our analyses, we assume that the observed missense counts should follow a
457  Poisson distribution around the expected missense counts. We defined our null model as

458  transcripts not having any evidence of regional variability in missense depletion (where the
459  expectation, the OE ratio, is consistent across the length of the transcript). Our alternative

460  model was that transcripts exhibited evidence of distinct sections of missense depletion (OE
461 ratio calculated per transcript subsection). Because the alternative model should always have a
462  better fit than the null model, we require a chi square value above a given threshold (p = 0.001)
463  to establish significance. We used the following formulas to determine the significance of a
464  breakpoint that would split a transcript into two sections, A and B:

465

466 o po = Pois(obsa,exps ¥ OF) * Pois(obsg, ezpg * OF)
467 o D1 = Pois(obss,exps %+ OE,) % Pois(obsg, expp * OER)
468 o X =2(In(m) — In(po))

469

470  where OE is the missense observed/expected ratio across the entire transcript, obsais the

471  number of observed missense variants in transcript section A, expais the number of expected
472 missense variants in transcript section A, OE, is the OE ratio across transcript section A, obsgis
473  the number of observed missense variants in transcript section B, expg is the number of
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474  expected missense variants in transcript section A, OEg is the OE ratio across transcript section
475 B, and Pois is the Poisson likelihood.
476
477  We used the following formulas to determine the significance of a breakpoint that would split a
478  transcript into three sections, A, B, and C:
479

po = Pois(obsa, expa * OF) x Pois(obsg, expg * OF) * Pois(obsc, expc *
480 o OFE)

p1 = Pois(obsy, expsxOFE )% Pois(obsg, expp ¥ OFEp) % Pois(obsg, expe *
481 o OEg)
482 o X =2(In(p:) — In(po))
483
484  where OE is the missense observed/expected ratio across the entire transcript, obsais the
485  number of observed missense variants in transcript section A, expais the number of expected
486 missense variants in transcript section A, OE, is the OE ratio across transcript section A, obsgis
487  the number of observed missense variants in transcript section B, expg is the number of
488 expected missense variants in transcript section A, OEg is the OE ratio across transcript section
489 B, obscis the number of observed missense variants in transcript section C, expcis the number
490 of expected missense variants in section C, and Pois is the Poisson likelihood.
491
492  For the purposes of our analyses, all transcript subsections with more observed variants than
493  expected were capped at an OE of 1, as we were looking for areas of missense depletion and
494  not missense enrichment. We also converted the expected counts for transcript subsections
495  with zero expected variants from 0 to 10”°to prevent nonfinite OE values.
496
497  To search for a single breakpoint that would divide a transcript into two subsections, we
498 calculated chi square statistics (as discussed above) to conduct likelihood ratio tests
499  simultaneously for every eligible position within a transcript. The positions we considered were
500 positions with a possible missense variant substitution that had at least 16 expected missense
501 counts in either direction (i.e., both transcript subsections created by dividing the transcript at
502 this point would have at least 16 expected missense variants). We then aggregated chi square
503 values across each transcript to find the maximum value per transcript, and we marked any
504  positions as breakpoints if the chi square calculated at that position was equal to the maximum
505 chisquare value over all sites in the transcript and significant at p = 0.001.
506
507  Any transcripts that did not have a single significant breakpoint moved forwards into our two
508 simultaneous breaks search flow. In this search flow, we again calculated chi square statistics to
509 conduct likelihood ratio tests for every eligible position pair. For every position with a possible
510 missense, we calculated the chi square statistic of that position paired with each possible
511  position downstream as long as the two positions created transcript subsections with at least 16
512  expected missense variants (i.e., all three of the transcript subsections created would have at
513 least 16 expected missense variants). Because of the large number of pairwise computations,
514  this step is the most computationally intensive portion of our algorithm. After completing the
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515 single and two simultaneous break search workflows, we merged the results from both search
516  types.

517

518  Our breakpoint search flow is recursive, and the steps are as follows: Search for a single

519  significant breakpoint dividing a transcript into two subsections. If no single significant

520 Dbreakpoint was found in the transcript, search for two simultaneous breakpoints. Merge the
521  results from the single and two simultaneous breakpoint searches. Repeat the steps above,
522  treating each separate transcript subsection as if it were an independent transcript, until no
523  more significant breakpoints are found.

524

525 Modeling deleteriousness of missense substitution classes with missense constraint

526  We incorporated two MCR OE-based metrics to measure the increased deleteriousness of
527  amino acid substitution classes (e.g., Met to Tyr) in functionally important areas of proteins: the
528 overall OE for each substitution and the second derivative of this OE value per OE bin of

529  missense constraint (Supplementary Fig. 14). To calculate the first metric, the substitution
530 overall OE, we divided the total number of rare, high quality variants (see gnomAD variants)
531 causing that substitution by the total number of expected variants (see Modeling of mutation
532 rates and expected neutral missense variation). To calculate the second metric, the substitution
533  OE second derivative, we aggregated the OEs of each substitution by MCR OE bin in 10 bins
534  from 0O to 1.0+ (i.e., for the 0-0.1 OE bin, we calculated all of the observed substitutions that
535  occurred within regions with a OE between 0 and 0.1 and divided that number by the total

536  number of expected substitutions occurring in those regions).

537

538 Modeling deleteriousness of individual missense variants

539 We designed a missense variant deleteriousness predictor to explicitly incorporate information
540  on amino acid substitution class and position-specific variant effects. A logistic regression model
541  was first trained to differentiate pathogenic from benign missense variants. The pathogenic

542  training set consisted of high-quality ClinVar variants (see ClinVar variants) labeled as

543  pathogenic or likely pathogenic in 2,987 likely-haploinsufficient genes, defined as having

544  probability of haploinsufficiency (pHaplo) = 0.86*, or in 366 genes with DD associations in G2P
545  through non-LoF mechanisms. The latter gene set was created by filtering on the G2P DD panel
546  (accessed October 6, 2023) to select genes where: 1. confidence_category is either definitive or
547  strong evidence, 2. allelic_requirement was monoallelic, and 3. mutation_consequence included
548  altered gene product structure or increased gene product level. The benign training set

549  consisted of high-quality common variants as described in gnomAD variants. Variants matching
550 criteria for both the benign and pathogenic sets were removed from the training data. We

551  evaluated models with all possible combinations of the following complementary features: amino
552  acid substitution overall OE and OE second derivative (see Modeling deleteriousness of

553  missense substitution classes); BLOSUM® and Grantham®® scores of amino acid substitution
554  class severity; the local missense constraint level of a variant (missense OE across the MCR if
555  applicable, else across the transcript); and PolyPhen-2*. We selected BLOSUM, Grantham,
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556 and PolyPhen-2 because of the orthogonal information added on top of our OE-based (and
557 therefore population allele frequency-dependent) metrics. For each model, only variants with all
558 relevant annotations were used in training the regression model and the subsequent

559  calculations to produce deleteriousness scores. The deleteriousness score prediction for any
560 missense variantiis given as:

561

562 di = —logia(m:/M)

563 i =maz(0.83, f;)

564

565  where d; is the deleteriousness score prediction, f; is the number of common missense variants
566  with a fitted value from the regression that is less than the fitted value for variant i, and M is the
567 number of common missense variants (equivalent to the number of benign training variants for
568 the regression). m;is set to have a minimum value of 0.83 to avoid a mathematical error in the
569 log when the fitted value for a given variant is less than those of all common variants. Larger
570 values of d;indicate stronger predicted-deleteriousness. The best model was chosen to be the
571 model featurized with all six possible features. The training set for this model consisted of

572 64,023 benign variants and 12,955 pathogenic variants. This model was then applied to

573  produce MPC scores for the 68,576,965 possible exome-wide missense variants with all

574  features, and the distribution of these MPC scores is given in Supplementary Figs. 10, 11, and
575 12.

576  Comparison of MPC to other predictors

577  We compared our model to the following missense deleteriousness predictors:

578  AlphaMissense*?, Constrained Coding Regions (CCRs)’, MVP*®, M-CAP*, PrimateAl-3D**,

579 REVEL*, CADD*“® PolyPhen-2*, and SIFT*°. We annotated the case and control de novo
580 missense variants described in Rare and de novo variants from developmental cohorts and

581 ranked the variants based on their annotated scores. To assess each predictor's ability to

582  stratify case and control variation, we assessed the proportion of case to control variants among
583 the variants with the top 10% for each score and compared this number to the overall proportion
584  of case to control variation using a Fisher exact test.

585 Data availability

586  The missense constraint regions (MCRs) are displayed on the gnomAD v2 browser

587  (https://gnomad.broadinstitute.org) and available for download on the gnomAD website

588  (https://gnomad.broadinstitute.org/downloads#v2) and in the gnomAD v2 public datasets on
589  Google, Amazon, and Microsoft clouds. MPC scores for all possible variants in canonical

590 transcripts is available in the gnomAD v2 public datasets on Google (gs://gcp-public-data--
591 gnomad/release/2.1.1/regional_missense_constraint/gnomad_v2.1.1_mpc.ht). gnomAD v2
592  exome, genome, and coverage data and the table of all possible single nucleotide

593  polymorphisms used to calculate mutational models and search for MCRs are also available in
594  the gnomAD public buckets and are easily accessed using code in the gnomAD Hail utilities
595  GitHub repository

596  (https://github.com/broadinstitute/gnomad_methods/blob/7c0c994883f321492a48962674d5cae
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597  b289df4c7/gnomad/resources/grch37/gnomad.py#L107 and

598  https://github.com/broadinstitute/gnomad_methods/blob/7c0¢c994883f321492a48962674d5caeb
599  289df4c7/gnomad/utils/vep.py#L161).

600

601 ClinVar data were downloaded from ClinVar's FTP server

602  (https://ftp.ncbi.nlm.nih.gov/pub/clinvar/). De novo variants were extracted from the

603  supplemental files of the cited studies.

604

605 AlphaMissense scores were downloaded from https://github.com/google-

606 deepmind/alphamissense. CCRs were downloaded from https://github.com/quinlan-lab/ccrhtml.
607  MCAP scores were downloaded from http://bejerano.stanford.edu/MCAP/. REVEL scores were
608 downloaded from https://sites.qgoogle.com/site/revelgenomics/. PrimateAl-3D scores were

609 downloaded from https://primad.basespace.illumina.com/download. MVP scores were

610 downloaded from

611  https://figshare.com/articles/dataset/Predicting_pathogenicity of missense_variants_by deep |
612  earning/13204118. PolyPhen-2 and SIFT scores were obtained from VEP*°. CADD scores were
613 downloaded from the CADD website (https://cadd.gs.washington.edu/download). phyloP scores
614  were downloaded from the UCSC browser (https://genome.ucsc.edu/cgi-

615  bin/hgTrackUi?db=hg38&g=cons241way).

616 Code availability

617 Code to determine missense constraint regions (MCRSs) and calculate MPC is available at
618  https://qgithub.com/broadinstitute/regional_missense_constraint. Code used to generate the
619 mutational models is available at https://github.com/broadinstitute/gnomad_lof and

620  https://github.com/broadinstitute/gnomad-constraint. The Hail library is available at

621 https://hail.is/.
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