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Abstract 1 

Missense variants can have a range of functional impacts depending on factors such as the 2 

specific amino acid substitution and location within the gene. To interpret their deleteriousness, 3 

studies have sought to identify regions within genes that are specifically intolerant of missense 4 

variation1–12. Here, we leverage the patterns of rare missense variation in 125,748 individuals in 5 

the Genome Aggregation Database (gnomAD)13 against a null mutational model to identify 6 

transcripts that display regional differences in missense constraint. Missense-depleted regions 7 

are enriched for ClinVar14 pathogenic variants, de novo missense variants from individuals with 8 

neurodevelopmental disorders (NDDs)15,16, and complex trait heritability. Following ClinGen 9 

calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less 10 

than 20% of their expected missense variation achieve moderate support for pathogenicity. We 11 

create a missense deleteriousness metric (MPC) that incorporates regional constraint and 12 

outperforms other deleteriousness scores at stratifying case and control de novo missense 13 

variation, with a strong enrichment in NDDs. These results provide additional tools to aid in 14 

missense variant interpretation. 15 

  16 
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Main text 17 

Over the last decade, exome and genome sequencing have enabled variant discovery across 18 

hundreds of thousands of individuals13,17–21. These large reference databases have provided the 19 

opportunity to study selective forces acting on the human genome and to identify genomic 20 

regions under selective constraint by, for example, identifying regions with fewer variants than 21 

expected based on mutational models13,18,22–25. Gene-level metrics of predicted loss-of-function 22 

(pLoF) variant depletion have proven to be valuable in variant classification and identification of 23 

novel disease genes15,16,26–28. The functional impact and selective pressures relevant to 24 

missense variation, by contrast, remain challenging to predict, as the effect of a missense 25 

variant is governed by the gene housing the variant, the position of the variant in the gene, and 26 

the specific amino acid substitution caused by the variant. To address this, prior work has 27 

sought to identify regions within coding genes that are specifically intolerant of missense 28 

variation as a way to improve interpretation1–12. Here, we expand upon previous work1 and show 29 

a sub-genic measure of missense intolerance leveraging population-level variation facilitates 30 

variant classification and risk stratification for association studies with de novo, rare, and 31 

common variants. 32 

 33 

We explored the patterns of rare missense variant presence or absence in 125,748 exomes in 34 

the Genome Aggregation Database (gnomAD) v2.1.1 on GRCh37 to quantify missense 35 

depletion at the sub-genic level. We searched 18,629 canonical protein-coding transcripts for 36 

variability in missense constraint, quantified as the number of rare (allele frequency [AF] < 37 

0.1%) missense variants observed in gnomAD divided by the number expected under neutral 38 

evolution as estimated from previously described mutational models13(observed/expected [OE]). 39 

For each transcript, we applied a recursive search based on likelihood ratio tests over all 40 

potential rare missense sites looking for breaks that divide the transcript coding sequence 41 

(CDS) into distinct missense constraint regions (MCRs; Fig. 1a, b). We discover 5,127 42 

transcripts (28%) harbor regional variability in missense constraint (Fig. 1c), i.e., have two or 43 

more MCRs (minimum coding length 49bp, median 461bp; Supplementary Fig. 1). We thus 44 

refine the resolution of missense constraint for 42% of coding sites (coding space in the 5,127 45 

transcripts vs. 18,629 total assessed). After recalibrating the missense OE distribution over all 46 

potential sites of missense variants using MCR-wide rather than transcript-wide missense OE 47 

measurements, we discover widespread signatures of negative and neutral selection that are 48 

obscured when quantifying over the unit of whole transcripts (Fig. 1d). We find a larger 49 

proportion of the exome lies within strongly constrained sequences (5.6% vs. 1.7% at OE < 0.4; 50 
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see Supplementary Note for OE threshold selection), and the mode of the distribution shifts 51 

toward an OE indicative of evolutionary neutrality at approximately 1 (40.6% vs. 36.5% at 0.9 < 52 

OE ≤ 1.1). 53 

 54 
 55 

56 
Fig. 1: 28% of protein-coding genes in the human genome are discovered to harbor regional 57 
variation in population-level missense depletion. 58 
a, An example transcript that has two missense constraint regions (MCRs) with significantly 59 
different levels of population-wide missense depletion, defined as the number of missense 60 
variants observed in gnomAD at rare frequency (AF < 0.1%) divided by the number of rare 61 
missense variants expected under neutral evolution (observed/expected or OE). Lower OE 62 
values correspond to greater variant depletion in the population and suggest stronger constraint.63 
b, Flow chart describing the process of searching for breakpoints that divide a transcript into 64 
multiple MCRs. Searching for breakpoints is recursive and leverages likelihood ratio tests at a 65 
significance threshold of p = 0.001. c, The number of MCRs within the 5,127 transcripts 66 
discovered to harbor regional differences in missense constraint. The other 13,502 transcripts 67 
are deemed to have a single MCR (that is, a constant level of constraint across their entirety) 68 
and are not shown. d, The distribution of local missense OE at all coding sites in canonical 69 
transcripts. Local missense OE is defined as the OE calculated over the whole transcript (for 70 
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“transcript OE”) or over the MCR (for “MCR OE”) where the site is located. Transcript OE and 71 
MCR OE are equivalent for transcripts with one MCR.  72 
 73 
 74 
Furthermore, we find that constrained MCRs overlap established disease-associated mutational 75 

hotspots, including critical protein domains. One example is in the well-characterized KCNQ1, a 76 

voltage-gated potassium channel gene, in which pathogenic variants cause cardiac disorders 77 

such as long QT syndrome. We discover one moderately constrained MCR (missense OE = 78 

0.60) overlapping the highly conserved C-terminus 29 and another (missense OE = 0.66) 79 

encompassing the voltage-sensing and pore domains (Fig. 2a). Both the C-terminus of KCNQ1 80 

and its voltage-sensing domain are established “hotspot” regions (specific missense-81 

constrained regions with ACMG/AMP hotspot/functional domain moderate support [PM1] for 82 

pathogenicity)29–31. All but two ClinVar pathogenic/likely pathogenic (P/LP) missense variants in 83 

this gene fall within these two missense-constrained MCRs. 84 

 85 

We also find that missense constraint within MCRs is able to identify regions associated with 86 

severe, early-onset disease. One example is in BAP1, which plays a key role in chromatin 87 

modeling by mediating histone deubiquitination. Disease-causing variants in this gene are linked 88 

to cancer or, as recently discovered, Kury-Isidor syndrome32. The first highly missense-89 

constrained MCR (missense OE = 0.33) in BAP1 encompasses the ubiquitin C-terminal 90 

hydrolase domain connected to Kury-Isidor syndrome32 (Fig. 2b), and all 11 variants reported to 91 

be causal for Kury-Isidor fall within this MCR. The only ClinVar P/LP variants that do not fall 92 

within any missense-constrained MCRs in BAP1 are associated with cancer phenotypes, which 93 

may be under weaker selection than neurodevelopmental disorders (NDDs). 94 

 95 
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96 
Fig. 2: Missense constraint regions (MCRs) and the distribution of ClinVar pathogenic/likely 97 
pathogenic (P/LP) missense variants in two genes associated with early-onset developmental 98 
disorders. Exons are delineated with black outlines and MCRs are delineated by color. MCRs 99 
are colored based on their missense observed/expected (OE) ratio, and MCRs with missense 100 
OEs not significantly different from 1 (p > 0.001) are shaded gray. a, KCNQ1. Only two of the 101 
210 P/LP missense variants in KCNQ1 do not fall within either constrained MCR. The first 102 
constrained MCR encompasses the voltage-sensing and pore domains of this gene, and the 103 
other constrained MCR overlaps the C-terminus. Both domains contain previously reported 104 
hotspot regions, with some regions reaching moderate level (PM1) support for pathogenicity31. 105 
Ion transport protein: domain that contains both the transmembrane voltage-sensing and pore 106 
domains. KCNQ channel: C-terminal cytoplasmic domain that overlaps four helices (A-D). b, 107 
BAP1. Variants in this gene can lead to cancer-predisposition syndromes, increased risk of 108 
certain cancers, or the neurodevelopmental disorder Kury-Isidor syndrome32. All of the ClinVar 109 
P/LP variants associated with Kury-Isidor fall within the first MCR with a highly depleted 110 
missense OE of 0.33. An additional five variants reported in Kury et al.32 but not ClinVar fall 111 
within either highly constrained MCR in this gene. P/LP variants associated with Kury-Isidor are 112 
colored in black, and all other cancer-associated P/LP variants are colored in gray. UCH: 113 
Ubiquitin carboxyl-terminal hydrolase isozyme L5 domain. ClinVar data are from the October 15,114 
2023 release. 115 
 116 
 117 
Next, we sought to determine if the signatures of selection revealed by MCRs recapitulated 118 

biological and disease relevance of coding sequences. Overall, most transcripts that are 119 
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intolerant to pLoF variation (as measured by the loss-of-function observed/expected upper 120 

bound fraction [LOEUF] score13) also tend to be intolerant to missense variation. This trend is 121 

markedly more prominent when measuring missense constraint at the sub-genic level vs. the 122 

transcript-level (Supplementary Note; Supplementary Fig. 2). We also discovered that 64% 123 

(1697/2659) of genes that are both LOEUF- and MCR missense-constrained do not have 124 

disease associations in OMIM33, suggesting the existence of many undocumented genes 125 

containing variants of significant consequence for disease (Supplementary Fig. 3). In a set of 126 

730 strongly mutationally intolerant genes, defined here as exhibiting both population depletion 127 

of pLoF variants (first three LOEUF deciles) and association with a developmental phenotype 128 

(high-confidence membership in any non-cancer Gene2Phenotype [G2P]34 gene list with 129 

dominant inheritance), we observed strong transcript-wide missense depletion that was even 130 

stronger for genes with multiple MCRs (Fig. 3a and Supplementary Fig. 4; Wilcoxon p < 10-50). 131 

Given that we have greater power to detect missense constraint variability over longer 132 

sequences (Supplementary Fig. 5), we controlled for transcript length but still found that 133 

intolerant transcripts are eight times more likely to harbor multiple MCRs (p < 10-50). These 134 

strongly intolerant transcripts are highly enriched for severely depleted regions (three times 135 

more likely to have minimum MCR OE < 0.4 after regressing out transcript length, p < 10-18), 136 

whereas the most constrained MCRs in not strongly intolerant transcripts are less depleted and 137 

more evenly distributed across the OE spectrum. Finally, we observe a group of genes with 138 

strong overall missense depletion in which we did not detect multiple MCRs (n = 459 with 139 

missense OE < 0.4; Supplementary Table 1), suggesting these genes are robustly intolerant to 140 

missense variants across their length. When comparing missense constraint to selection over 141 

longer timescales (measured by evolutionary conservation in placental mammals, phyloP35), we 142 

found that genes with more conserved coding sequences also tended to be more overall 143 

depleted of human missense variation (Spearman ρ = 0.56, p < 10-50). However, a substantial 144 

number of strongly constrained MCRs appear widely unconserved across mammals, potentially 145 

pointing to human-specific negative selection pressures that are obscured at the whole-146 

transcript level (Supplementary Fig. 6). 147 

 148 

We next aggregated de novo missense variants from 31,058 individuals with a severe 149 

developmental disorder15 (DD), 15,036 autistic individuals (AUT), and 5,492 siblings not 150 

diagnosed with a DD16 (Fig. 3b). The distribution of de novo missense variants across the 151 

missense OE spectrum in unaffected siblings largely mirrored the exome-wide missense OE 152 

distribution. In contrast, de novo missense variants in autistic individuals are enriched in 153 
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missense-constrained sequences, and this pattern is more striking in individuals with DDs. For 154 

example, relative to unaffected siblings, the rate of de novo missense variants in MCRs with OE 155 

< 0.2 is 2-fold higher in autistic individuals (p < 10-23) and 6.6-fold higher in individuals with DDs 156 

(p < 10-50) (Supplementary Fig. 7; see Supplementary Note for OE threshold selection). This 157 

is consistent with the expectations that a small subset of de novo missense variants in 158 

individuals with developmental phenotypes are causal for those traits and that variants causal 159 

for DD are generally more selectively deleterious than those for autism. 160 

 161 

Beyond large-effect rare and de novo variation in traits under strong negative selection, we 162 

additionally investigated whether our MCR metric, which was calculated using rare variants, 163 

correlates with functional effects of common variants. Prior work found that pLoF-constrained 164 

genes and their flanking 100kb sequences are enriched for SNP heritability across hundreds of 165 

independent traits in the UK Biobank (UKBB) and other large genome-wide association studies 166 

(GWAS) 13. We partitioned common (AF > 5%) variant heritability of the same 268 independent 167 

traits across MCRs to investigate relative enrichment. To establish a baseline, we computed the 168 

heritability enrichment over all coding sequences comprising MCRs (3-fold). The most 169 

constrained MCRs have the strongest heritability enrichment; the first quintile of MCR missense 170 

OE harbors a 41-fold enrichment (Fig. 3c). Coding SNPs in missense-unconstrained MCRs 171 

(e.g., in the two least constrained quintiles of MCR missense OE) harbor no detectable 172 

heritability enrichment relative to the average genome-wide SNP. These findings suggest that: 173 

1) regions depleted of rare missense variation can help prioritize common coding variants 174 

important for complex traits (i.e., improve GWAS fine-mapping variant prioritization), and 2) 175 

there exists a subset of coding sequence with no appreciable heritability enrichment, which rare 176 

variant depletion can help identify. 177 

 178 
 179 
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180 
Fig. 3: Regional missense depletion reveals constraint obscured by gene-level measures. a, 181 
Left: The distribution of transcript-wide missense observed/expected (OE) across 18,629 182 
transcripts stratified by the combination of two factors: whether the transcript is strongly 183 
mutationally intolerant (within first three LOEUF deciles and association with a developmental 184 
phenotype in Gene2Phenotype [G2P]34) and whether we detect multiple missense constraint 185 
regions (MCRs). Number of transcripts in each category are: strongly intolerant with multiple 186 
MCRs (n=581; red), strongly intolerant with one MCR (n=149; yellow), not strongly intolerant 187 
with multiple MCRs (n=4,546; dark gray), not strongly intolerant with one MCR (n=13,353; light 188 
gray). X-axis is cut off at 1.6 for visibility. Right: Minimum MCR missense OE using the same 189 
groupings. Minimum MCR missense OE is the same as transcript missense OE for transcripts 190 
with a single MCR. b, MCR missense OE at all sites of possible exome-wide missense variants 191 
vs. sites of de novo missense variants in controls, autistic individuals (AUT), or individuals with 192 
DD. De novo variants from individuals with developmental phenotypes are enriched in more 193 
constrained sequences, with a more pronounced enrichment in DD than autism. c, Enrichment 194 
in per-variant heritability explained by common (AF > 5%) protein-coding SNPs stratified by 195 
MCR missense OE quintile, relative to the average SNP genome-wide. Enrichment is estimated 196 
by linkage disequilibrium score regression, accounting for number of SNPs in each quintile, and 197 
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is averaged across 268 independent traits in UKBB and other large genome-wide association 198 
studies. Black dashed line at 1 indicates no enrichment. Blue dashed line at 3 indicates average 199 
coding enrichment. Error bars represent 95% confidence intervals. 200 
 201 
 202 
We examined the localization of high-quality ClinVar36 missense variants classified as P/LP 203 

within genes with both unconstrained (missense OE > 0.9) and constrained (missense OE < 204 

0.2) MCRs and found that P/LP variants occur much more frequently in missense constrained 205 

MCRs (odds ratio [OR] = 15.2; p < 10-50). We also examined the localization of P/LP and  206 

benign/likely benign (B/LB) variants within MCRs in autosomal dominant disease-associated 207 

genes and found that P/LP variants tend to localize to regions that are more strongly missense-208 

constrained than the overall transcript (Wilcoxon p = 3.5x10-10), while B/LB variants show the 209 

opposite effect and tend to occur in regions with OEs closer to 1 (Wilcoxon p < 10-18; Fig. 4a). 210 

While more subtle, these same patterns are also significant in autosomal recessive disease-211 

associated genes (Supplementary Fig. 8). 212 

 213 

To enable use of our missense constraint metric in ACMG/AMP clinical variant classification, we 214 

applied previously established probabilistic frameworks37 to determine the MCR missense OE 215 

thresholds that met different levels of clinical evidence strengths evaluated under the 216 

hotspot/functional domain (PM1) and benign in silico prediction (BP4) criteria codes30. MCR 217 

missense OE ≤ 0.37 met supporting (PM1_Supporting) and OE ≤ 0.21 met moderate (PM1) 218 

levels of evidence for pathogenicity (Fig. 4b), but no MCR missense OE threshold met any 219 

levels of evidence to support benignity. However, separate calibration specifically in transcripts 220 

with multiple MCRs found that MCR missense OE ≥ 1.56 met moderate and OE ≥ 0.97 met 221 

supporting evidence for BP4, indicating that in transcripts where we are powered to characterize 222 

regional constraint, MCRs with OEs close to one harbor an indication of benignity 223 

(Supplementary Fig. 9). Calibration of two additional regional constraint metrics, Constrained 224 

Coding Regions (CCRs9) and COntact Set MISsense tolerance (COSMIS12), which incorporates 225 

predicted 3D structure information, revealed that these metrics also reach moderate support for 226 

pathogenicity (PM1), and COSMIS only reaches supporting levels for benignity 227 

(Supplementary Fig. 9; Supplementary Table 2). 228 

 229 
 230 
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231 
Fig. 4: ACMG/AMP calibration of missense constraint. a, The distribution within genes with 232 
autosomal dominant disease associations of transcript-wide missense observed/expected (OE; 233 
gray) and missense constraint region (MCR) OE for ClinVar pathogenic/likely pathogenic 234 
missense variants (P/LP; red) and benign/likely benign missense variants (B/LB; blue). We 235 
filtered to 1,007 transcripts with at least one P/LP and one B/LB missense variant. For the P/LP 236 
and B/LB distributions, we annotated each variant with the missense OE across the MCR they 237 
fell in and collapsed these values within each transcript by taking the respective medians. b, 238 
Local posterior probabilities of pathogenicity given MCR missense OE in all transcripts. Gray 239 
shading indicates the one-sided 95% confidence interval on the more stringent side. Horizontal 240 
lines indicate thresholds required to meet ACMG/AMP evidence levels. From bottom to top: 241 
supporting, moderate, strong, very strong. MCR missense OE reaches supporting (OE ≤ 0.37) 242 
and moderate (OE ≤ 0.21) level evidence for PM1 (hotspot/functional domain). 243 
 244 
 245 
We transformed our regional missense constraint measure into a variant-level predictor of 246 

missense deleteriousness named MPC (Missense deleteriousness Prediction by Constraint) 247 

that additionally incorporates information about amino acid substitution type and local context. 248 

The logistic regression-based model integrates regional missense constraint-derived metrics 249 

together with BLOSUM38, Grantham39, and PolyPhen-240 and is trained on ClinVar pathogenic 250 

and gnomAD common (AF > 0.1%) variants in 2,987 genes defined as haploinsufficient in 251 

Collins et al.41 and 366 genes with DD associations in G2P through non-LoF mechanisms. 252 

Higher scores predict greater deleteriousness (Supplementary Fig. 10, 11). We assessed the 253 

utility of MPC in prioritizing potentially disease-causing variation by evaluating its ability to 254 

stratify case and control rare and de novo missense variation. Consistent with the regional 255 

constraint results, the de novo missense variants from DD and AUT cases are enriched for high 256 

MPC scores compared to controls (Supplementary Fig. 12). We further stratified by presence 257 

in 373 genes previously associated with NDD16 and three bins of MPC scores (< 1.6, 1.6-2.6, ≥ 258 

2.6; see Supplementary Note for calibration of these bins), and found a very strong enrichment 259 

of de novo missense variants in the two most deleterious bins among both the DD (Fig. 5a) and 260 

10
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AUT cases (Fig. 5b) compared to unaffected individuals. However, while the enrichment in the 261 

373 NDD-associated genes was significant for missense variants with MPC ≥ 2.6 (RR in DD 262 

cases = 22.7, p < 10-50; RR in AUT cases = 6.9, p < 10-21), as well as missense variants with 263 

MPC between 1.6-2.6 (RR in DD cases = 4.5, p < 10-35; RR in AUT cases = 1.9, p = 3.0x10-5), it 264 

was only significant in NDD-unassociated genes for missense variants with MPC ≥ 2.6 (RR in 265 

DD cases = 3.1, p < 10-28; RR in AUT cases = 1.5, p = 5.9x10-4). This suggests that while there 266 

is a sizable reservoir of potentially causal variants in genes yet to be associated with NDDs, 267 

they will be more difficult to find as they must reach stricter deleteriousness criteria. For autism, 268 

we additionally assessed inheritance rates of rare missense variants (AF < 0.1%) from parents 269 

to 13,384 probands and case-control rates for an additional 5,591 cases and 8,597 controls 270 

without de novo information. While we did not find substantial enrichment in inheritance rates in 271 

any missense category, we discovered substantial enrichment in the case-control analysis for 272 

variants in the 373 NDD-associated genes with MPC ≥ 2.6 (RR = 1.6, p < 10-12), which we infer 273 

is from de novo variants that are not recognizable as such due to lack of parental information. 274 

 275 

We extended our assessment of case-control de novo stratification for a comparison of our 276 

model against several other missense deleteriousness predictors: AlphaMissense42, CCRs9, M-277 

CAP43, REVEL44, PrimateAI-3D45, MVP46, Polyphen-240, CADD47,48, mammalian conservation 278 

phyloP35, and SIFT49. For this assessment, we evaluated four additional early-onset 279 

development-related phenotypes: epileptic encephalopathy (EE), orofacial cleft (OFC), 280 

congenital heart disease (CHD), and congenital diaphragmatic hernia (CDH). To compare 281 

across predictors with different score distributions, we used a ranking-based performance 282 

assessment. For each predictor, we ranked the de novo missense variants from each case 283 

cohort against those in the 5,492 controls and computed the OR of case vs. control variants in 284 

the top percentiles of these rankings (Fig. 5c). At the top 10% of variants, MPC displays the 285 

highest OR for DD (OR = 5.2, Fisher’s exact p < 10-48), EE (OR = 3.1, p = 2.2x10-7), AUT (OR = 286 

1.7, p = 8.9x10-9), and OFC (OR = 1.5, p = 0.025), although there is substantial confidence 287 

interval overlap with other predictors. This indicates that MPC effectively ranks high-impact de 288 

novo variants in the most deleterious prediction regimes. Of the other predictors, 289 

AlphaMissense also performs consistently well across all phenotypes. In particular, in CHD and 290 

CDH, which have the least de novo enrichment across predictors, we observe MPC lagging in 291 

performance, while AlphaMissense is one of the top performers. This may suggest that causal 292 

de novo variants in these phenotypes may occur at a narrow set of sites where 3D structure is 293 

important, which AlphaMissense can more deftly capture through integration of protein structure 294 
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prediction. These observations are more or less consistent over a range of thresholds used to 295 

define the ranking top percentiles (Supplementary Fig. 13). 296 

 297 
 298 

299 
Fig. 5: MPC effectively stratifies case and control variation.  300 
a, The difference relative to controls of missense variants stratified by MPC score and 301 
localization to genes associated with neurodevelopmental disorders (NDDs) for a, individuals 302 
with DD and b, autistic individuals (AUT). Relative difference is calculated as: for de novo 303 
variants, the average rate of variants in probands divided by that in sibling controls; for case-304 
control, the average rate of variants in cases divided by that in controls from case-control data; 305 
for inherited, the average rate in probands of transmitted variants divided by that of 306 
untransmitted variants. Error bars represent 95% confidence intervals calculated from a 307 
binomial test. c, The odds ratio of case to control de novo missense variants in the top 10% vs. 308 
bottom 90% of respective rankings. De novo missense variants from each case cohort are 309 
ranked against those in the 5,492 controls for each predictor. DD: developmental disorders, EE: 310 
epileptic encephalopathy, AUT: autism, OFC: orofacial cleft, CHD: congenital heart disease, 311 
CDH: congenital diaphragmatic hernia. Error bars represent 95% confidence intervals. Only 312 
variants scored by all predictors are included. Points are solid colored if the difference from 1 is 313 
statistically significant (binomial or Fisher exact p < 0.05).  314 
 315 
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 316 

We have developed a method to identify sub-genic regions with differential intolerance to 317 

missense variation at base-level resolution. We demonstrate that coding regions depleted for 318 

missense variation in the general population are enriched for established disease-associated 319 

variation, de novo variants from individuals with NDDs, and heritability for 268 complex traits 320 

from the UK Biobank and other large GWAS. Additionally, we have calibrated these constraint 321 

scores to establish that regions with less than 20% of their expected variation can achieve 322 

moderate evidence for association to disease following ACMG/AMP guidelines. Finally, we 323 

incorporated regional missense intolerance information into the missense deleteriousness 324 

metric, MPC, and show that MPC effectively separates potentially risk-carrying variants 325 

identified in various developmental disorder cases from those seen in controls. 326 

 327 

At current sample sizes, we are unable to characterize constraint at single amino acid 328 

resolution. Furthermore, because our approach relies on variant presence or absence in a large 329 

reference dataset, many of the constrained regions we find are linked to variants that cause 330 

severe, early-onset disease. However, the true nature of the variation we capture is more 331 

accurately linked to reproductive fitness and the strength of selection acting on heterozygotes50. 332 

Our methodology specifically searches for linear sub-genic regions in canonical transcripts that 333 

are depleted of missense variants compared to a null mutational model. This means that our 334 

model is unable to find depleted sequences that are clustered specifically in 3D space and is 335 

also currently ignorant of coding sequences not present in the Ensembl canonical transcript. 336 

However, we note that our linear metric achieves similar evidence for both pathogenicity and 337 

benignity as the structural constraint-based COSMIS model12 (Supplementary Fig. 9). 338 

 339 

In summary, we identify 28% of canonical transcripts with variable levels of missense constraint 340 

and demonstrate that coding regions specifically depleted of missense variation in the general 341 

population are enriched for disease-associated variation. Additionally, we show that this 342 

depletion of missense variation can be used as moderate evidence when classifying variants 343 

according to ACMG/AMP guidelines and that incorporation of regional missense constraint into 344 

an in silico predictor effectively prioritizes a subset of de novo missense variation in individuals 345 

with developmental phenotypes for association testing. We have publicly released these data 346 

for use in both research and clinical settings. We anticipate refined resolution of these metrics 347 

as datasets grow, both in size and in ancestral diversity, and with the incorporation of 348 

complementary structural or functional data. 349 
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Methods 350 

Transcripts 351 

This study analyzed only canonical, coding transcripts as defined by GENCODE v19/Ensembl 352 
v74. We excluded the same set of transcripts from this analysis that were excluded in the 353 
previous gnomAD v2.1.1 genic constraint estimates13. Briefly, we excluded transcripts that had 354 
outlier counts of variants expected under neutrality (zero expected pLoF, missense, or 355 
synonymous variants; too many observed pLoF, missense, or synonymous variants compared 356 
to expectation; or too few observed synonymous variants compared to expectation). In total, this 357 
study analyzed 18,629 transcripts. 358 
 359 

gnomAD variants 360 

All analyses in this paper were conducted using the 125,748 gnomAD v2.1.1 exomes13 on 361 
GRCh37. Median coverage was calculated on a random subset of the gnomAD exomes as 362 
described previously13. We defined the set of sites with possible missense variants using a 363 
synthetic Hail Table (HT) containing all possible single nucleotide variants in the exome. We 364 
annotated this HT with the Variant Effect Predictor (VEP, version 85) against GENCODE 365 
version 19, and filtered to variants with the consequence "missense_variant" in the canonical, 366 
coding transcripts as defined in Transcripts. We then further filtered to variants that fit one of the 367 
following criteria: (1) allele count (AC) > 0 and AF < 0.001, variant QC PASS, and median 368 
coverage > 0 in gnomAD v2.1.1 exomes; or (2) AC = 0, i.e. variants not seen in gnomAD v2.1.1 369 
exomes. 370 
 371 

ClinVar variants 372 

We annotated functional consequences for ClinVar14 (v.20230305) variants using the VEP table 373 
described in gnomAD variants. Missense ClinVar variants with non-conflicting P, LP, B, LB 374 
classification and a review status of at least one star were selected for analysis. 375 
 376 

Rare and de novo variants from developmental cohorts 377 

Case de novo mutations for association analyses were obtained from studies of developmental 378 
disorders15 (DD), autism16 (AUT), congenital heart disease51 (CHD), orofacial cleft52 (OFC), 379 
congenital diaphragmatic hernia53 (CDH), and epileptic encephalopathy54 (EE). Control de novo 380 
mutations were obtained from neurotypical siblings of the autistic probands16. Variants from the 381 
autism study were lifted over from GRCh38 to GRCh37 using the “liftover” function in Hail. 382 
Variant functional consequences were re-annotated using the VEP table described in gnomAD 383 
variants. Variants transmitted and not transmitted from parents to autistic probands were 384 
procured from previously published ASC-SSC and SPARK cohorts, and case-control variants 385 
for autism were procured from previously published iPSYCH and Swedish cohorts16. Both the 386 
inherited/uninherited and case-control variant sets were filtered to AF < 0.1%. 387 
 388 
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Training, validation, and test datasets 389 

To generate independent training and test sets, we selected 80% (14,894 transcripts) of the 390 
18,629 canonical coding transcripts to comprise the training set and the remaining 20% (3,735 391 
transcripts) to the test set. To ensure the training and test transcripts have similar distributions 392 
of features that may impact constraint estimates, we used stratified randomization to match the 393 
training and test transcripts on shet coefficients (as a measure of selection) and number of 394 
potential missense sites (as a measure of power to detect transcript-wide constraint changes). 395 
The training set was used for MPC model training and MCR model selection, and the test set 396 
was used for MPC model evaluation. No similar hold-outs of data were performed for training of 397 
the mutational model used to compute expected variant counts (see Modeling of mutation rates 398 
and expected neutral missense variation). 399 
 400 

Modeling of mutation rates and expected neutral missense variation 401 

Expected missense variant counts were determined as described previously13. Briefly, we 402 
created a model using the 15,708 gnomAD v2.1.1 genomes that estimated the mutation rate for 403 
each single nucleotide substitution with one base of context (e.g., ACT > AGT) in non-coding 404 
regions of the genome. We then calibrated this mutation rate against the proportion observed of 405 
each context at synonymous sites to adjust for the larger size of the gnomAD v2 exomes, 406 
adjusting for low coverage regions (median coverage < 40x) and methylation levels at CpG sites 407 
using methylation data from the Roadmap Epigenomics Consortium55. We created three 408 
separate models (referred to as "plateau" models moving forwards): one for autosomal and 409 
pseudoautosomal sites, one for chromosome X sites, and one for chromosome Y sites. Each of 410 
these models contains mutation rate estimates for each substitution, context, and methylation 411 
level. We then applied the plateau models to the proportion observed of each substitution and 412 
its context, exome coverage, and methylation level. We counted all possible variants in our 413 
synthetic Hail Table (HT) that passed the following criteria: (1) Median coverage > 0; (2) no low-414 
quality variant observed in gnomAD v2 exomes; (3) no variants above 0.1% AF observed in 415 
gnomAD v2 exomes. We then correlated this proportion observed value with the mutation rate 416 
calculated using the appropriate model above. For low coverage sites (median coverage below 417 
40x), we calculated a scaling factor as described previously13: briefly, we computed the total 418 
number of observed synonymous variants in the gnomAD v2 exomes divided by the total 419 
number of possible synonymous variants in the synthetic HT multiplied by the mutation rate 420 
aggregated across all possible substitutions and their contexts and methylation levels. We used 421 
this scaling factor to create a model to adjust the proportion of expected variation for low 422 
coverage sites (coverage model). 423 
 424 

Identifying breakpoints within transcripts of regional missense constraint 425 

Observed missense variant counts were calculated using sites from the 125,748 gnomAD 426 
exomes that passed all the following criteria: (1) Allele count (AC) > 0; (2) allele frequency (AF) 427 
< 0.001; (3) variant QC PASS (passed gnomAD variant QC filters, including random forest 428 
filters); (4) median coverage > 0. We filtered the gnomAD v2 exomes Hail Table (HT) to the 429 
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sites that matched the above criteria and then annotated the synthetic HT with whether that 430 
variant (chromosome/locus plus reference and alternate alleles) was observed in the gnomAD 431 
exomes. We then aggregated the total number of observed variant counts per locus by 432 
summing the number of observed variants for each possible substitution (reference and 433 
alternate allele) at each locus. Finally, we grouped the synthetic HT by transcript annotation to 434 
sum the total number of observed missense variants per transcript. 435 
 436 
As previously described13, we applied the two models (plateau and coverage) described in 437 
Modeling of mutation rates and expected neutral missense variation to calculate the total 438 
proportion of expected missense variation. Briefly, we summed the mutation rate (mu_agg) for 439 
each substitution, context, and methylation level across the exome. We then applied the 440 
appropriate plateau model (autosomal/pseudoautosomal, chromosome X, chromosome Y) and 441 
adjusted CpG vs. non-CpG sites separately. After applying the appropriate plateau model, we 442 
applied the coverage model to low coverage (median coverage < 40x) sites to create the final 443 
adjusted mutation rate (mu_adj). We then aggregated the raw mutation rate sum (mu_agg) and 444 
adjusted mutation rate (mu_adj) per transcript to get the total mutation rate sum and proportion 445 
of expected missense variation per transcript. 446 
 447 
We implemented a minimum number of expected missense variants to prevent finding 448 
breakpoint positions that would create very small (i.e., a handful of base pairs in size) transcript 449 
subsections (see Supplementary Note). 450 
 451 
We applied a likelihood ratio test to determine whether the missense observed/expected (OE) 452 
ratio was uniform along a transcript or whether a transcript had evidence of distinct sections of 453 
missense constraint. We used the observed and expected missense counts to search for 454 
positions that would divide a transcript into two or more regions with varying levels of missense 455 
depletion. For our analyses, we assume that the observed missense counts should follow a 456 
Poisson distribution around the expected missense counts. We defined our null model as 457 
transcripts not having any evidence of regional variability in missense depletion (where the 458 
expectation, the OE ratio, is consistent across the length of the transcript). Our alternative 459 
model was that transcripts exhibited evidence of distinct sections of missense depletion (OE 460 
ratio calculated per transcript subsection). Because the alternative model should always have a 461 
better fit than the null model, we require a chi square value above a given threshold (p = 0.001) 462 
to establish significance. We used the following formulas to determine the significance of a 463 
breakpoint that would split a transcript into two sections, A and B: 464 
 465 

●  466 
●  467 
●  468 

 469 
where OE is the missense observed/expected ratio across the entire transcript, obsA is the 470 
number of observed missense variants in transcript section A, expA is the number of expected 471 
missense variants in transcript section A, OEA is the OE ratio across transcript section A, obsB is 472 
the number of observed missense variants in transcript section B, expB is the number of 473 
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expected missense variants in transcript section A, OEB is the OE ratio across transcript section 474 
B, and Pois is the Poisson likelihood. 475 
 476 
We used the following formulas to determine the significance of a breakpoint that would split a 477 
transcript into three sections, A, B, and C: 478 
 479 

●  480 

●  481 
●  482 

 483 
where OE is the missense observed/expected ratio across the entire transcript, obsA is the 484 
number of observed missense variants in transcript section A, expA is the number of expected 485 
missense variants in transcript section A, OEA is the OE ratio across transcript section A, obsB is 486 
the number of observed missense variants in transcript section B, expB is the number of 487 
expected missense variants in transcript section A, OEB is the OE ratio across transcript section 488 
B, obsC is the number of observed missense variants in transcript section C, expC is the number 489 
of expected missense variants in section C, and Pois is the Poisson likelihood.  490 
 491 
For the purposes of our analyses, all transcript subsections with more observed variants than 492 
expected were capped at an OE of 1, as we were looking for areas of missense depletion and 493 
not missense enrichment. We also converted the expected counts for transcript subsections 494 
with zero expected variants from 0 to 10-9 to prevent nonfinite OE values. 495 
 496 
To search for a single breakpoint that would divide a transcript into two subsections, we 497 
calculated chi square statistics (as discussed above) to conduct likelihood ratio tests 498 
simultaneously for every eligible position within a transcript. The positions we considered were 499 
positions with a possible missense variant substitution that had at least 16 expected missense 500 
counts in either direction (i.e., both transcript subsections created by dividing the transcript at 501 
this point would have at least 16 expected missense variants). We then aggregated chi square 502 
values across each transcript to find the maximum value per transcript, and we marked any 503 
positions as breakpoints if the chi square calculated at that position was equal to the maximum 504 
chi square value over all sites in the transcript and significant at p = 0.001. 505 
 506 
Any transcripts that did not have a single significant breakpoint moved forwards into our two 507 
simultaneous breaks search flow. In this search flow, we again calculated chi square statistics to508 
conduct likelihood ratio tests for every eligible position pair. For every position with a possible 509 
missense, we calculated the chi square statistic of that position paired with each possible 510 
position downstream as long as the two positions created transcript subsections with at least 16 511 
expected missense variants (i.e., all three of the transcript subsections created would have at 512 
least 16 expected missense variants). Because of the large number of pairwise computations, 513 
this step is the most computationally intensive portion of our algorithm. After completing the 514 
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single and two simultaneous break search workflows, we merged the results from both search 515 
types. 516 
 517 
Our breakpoint search flow is recursive, and the steps are as follows: Search for a single 518 
significant breakpoint dividing a transcript into two subsections. If no single significant 519 
breakpoint was found in the transcript, search for two simultaneous breakpoints. Merge the 520 
results from the single and two simultaneous breakpoint searches. Repeat the steps above, 521 
treating each separate transcript subsection as if it were an independent transcript, until no 522 
more significant breakpoints are found. 523 
 524 

Modeling deleteriousness of missense substitution classes with missense constraint 525 

We incorporated two MCR OE-based metrics to measure the increased deleteriousness of 526 
amino acid substitution classes (e.g., Met to Tyr) in functionally important areas of proteins: the 527 
overall OE for each substitution and the second derivative of this OE value per OE bin of 528 
missense constraint (Supplementary Fig. 14). To calculate the first metric, the substitution 529 
overall OE, we divided the total number of rare, high quality variants (see gnomAD variants) 530 
causing that substitution by the total number of expected variants (see Modeling of mutation 531 
rates and expected neutral missense variation). To calculate the second metric, the substitution 532 
OE second derivative, we aggregated the OEs of each substitution by MCR OE bin in 10 bins 533 
from 0 to 1.0+ (i.e., for the 0-0.1 OE bin, we calculated all of the observed substitutions that 534 
occurred within regions with a OE between 0 and 0.1 and divided that number by the total 535 
number of expected substitutions occurring in those regions). 536 
 537 

Modeling deleteriousness of individual missense variants 538 

We designed a missense variant deleteriousness predictor to explicitly incorporate information 539 
on amino acid substitution class and position-specific variant effects. A logistic regression model 540 
was first trained to differentiate pathogenic from benign missense variants. The pathogenic 541 
training set consisted of high-quality ClinVar variants (see ClinVar variants) labeled as 542 
pathogenic or likely pathogenic in 2,987 likely-haploinsufficient genes, defined as having 543 
probability of haploinsufficiency (pHaplo) ≥ 0.8641, or in 366 genes with DD associations in G2P 544 
through non-LoF mechanisms. The latter gene set was created by filtering on the G2P DD panel 545 
(accessed October 6, 2023) to select genes where: 1. confidence_category is either definitive or 546 
strong evidence, 2. allelic_requirement was monoallelic, and 3. mutation_consequence included 547 
altered gene product structure or increased gene product level. The benign training set 548 
consisted of high-quality common variants as described in gnomAD variants. Variants matching 549 
criteria for both the benign and pathogenic sets were removed from the training data. We 550 
evaluated models with all possible combinations of the following complementary features: amino 551 
acid substitution overall OE and OE second derivative (see Modeling deleteriousness of 552 
missense substitution classes); BLOSUM38 and Grantham39 scores of amino acid substitution 553 
class severity; the local missense constraint level of a variant (missense OE across the MCR if 554 
applicable, else across the transcript); and PolyPhen-240. We selected BLOSUM, Grantham, 555 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.11.588920doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.11.588920
http://creativecommons.org/licenses/by/4.0/


 19

and PolyPhen-2 because of the orthogonal information added on top of our OE-based (and 556 
therefore population allele frequency-dependent) metrics. For each model, only variants with all 557 
relevant annotations were used in training the regression model and the subsequent 558 
calculations to produce deleteriousness scores. The deleteriousness score prediction for any 559 
missense variant i is given as: 560 
 561 

 562 
 563 

 564 
where di is the deleteriousness score prediction, fi is the number of common missense variants 565 
with a fitted value from the regression that is less than the fitted value for variant i, and M is the 566 
number of common missense variants (equivalent to the number of benign training variants for 567 
the regression). mi is set to have a minimum value of 0.83 to avoid a mathematical error in the 568 
log when the fitted value for a given variant is less than those of all common variants. Larger 569 
values of di indicate stronger predicted-deleteriousness. The best model was chosen to be the 570 
model featurized with all six possible features. The training set for this model consisted of 571 
64,023 benign variants and 12,955 pathogenic variants. This model was then applied to 572 
produce MPC scores for the 68,576,965 possible exome-wide missense variants with all 573 
features, and the distribution of these MPC scores is given in Supplementary Figs. 10, 11, and 574 
12. 575 

Comparison of MPC to other predictors 576 

We compared our model to the following missense deleteriousness predictors: 577 
AlphaMissense42, Constrained Coding Regions (CCRs)9, MVP46, M-CAP43, PrimateAI-3D45, 578 
REVEL44, CADD47,48, PolyPhen-240, and SIFT49. We annotated the case and control de novo 579 
missense variants described in Rare and de novo variants from developmental cohorts and 580 
ranked the variants based on their annotated scores. To assess each predictor's ability to 581 
stratify case and control variation, we assessed the proportion of case to control variants among 582 
the variants with the top 10% for each score and compared this number to the overall proportion 583 
of case to control variation using a Fisher exact test. 584 

Data availability 585 

The missense constraint regions (MCRs) are displayed on the gnomAD v2 browser 586 
(https://gnomad.broadinstitute.org) and available for download on the gnomAD website 587 
(https://gnomad.broadinstitute.org/downloads#v2) and in the gnomAD v2 public datasets on 588 
Google, Amazon, and Microsoft clouds. MPC scores for all possible variants in canonical 589 
transcripts is available in the gnomAD v2 public datasets on Google (gs://gcp-public-data--590 
gnomad/release/2.1.1/regional_missense_constraint/gnomad_v2.1.1_mpc.ht). gnomAD v2 591 
exome, genome, and coverage data and the table of all possible single nucleotide 592 
polymorphisms used to calculate mutational models and search for MCRs are also available in 593 
the gnomAD public buckets and are easily accessed using code in the gnomAD Hail utilities 594 
GitHub repository 595 
(https://github.com/broadinstitute/gnomad_methods/blob/7c0c994883f321492a48962674d5cae596 
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b289df4c7/gnomad/resources/grch37/gnomad.py#L107 and 597 
https://github.com/broadinstitute/gnomad_methods/blob/7c0c994883f321492a48962674d5caeb598 
289df4c7/gnomad/utils/vep.py#L161). 599 
 600 
ClinVar data were downloaded from ClinVar's FTP server 601 
(https://ftp.ncbi.nlm.nih.gov/pub/clinvar/). De novo variants were extracted from the 602 
supplemental files of the cited studies.  603 
 604 
AlphaMissense scores were downloaded from https://github.com/google-605 
deepmind/alphamissense. CCRs were downloaded from https://github.com/quinlan-lab/ccrhtml. 606 
MCAP scores were downloaded from http://bejerano.stanford.edu/MCAP/. REVEL scores were 607 
downloaded from https://sites.google.com/site/revelgenomics/. PrimateAI-3D scores were 608 
downloaded from https://primad.basespace.illumina.com/download. MVP scores were 609 
downloaded from 610 
https://figshare.com/articles/dataset/Predicting_pathogenicity_of_missense_variants_by_deep_l611 
earning/13204118. PolyPhen-2 and SIFT scores were obtained from VEP56. CADD scores were 612 
downloaded from the CADD website (https://cadd.gs.washington.edu/download). phyloP scores 613 
were downloaded from the UCSC browser (https://genome.ucsc.edu/cgi-614 
bin/hgTrackUi?db=hg38&g=cons241way).  615 

Code availability 616 

Code to determine missense constraint regions (MCRs) and calculate MPC is available at 617 
https://github.com/broadinstitute/regional_missense_constraint. Code used to generate the 618 
mutational models is available at https://github.com/broadinstitute/gnomad_lof and 619 
https://github.com/broadinstitute/gnomad-constraint. The Hail library is available at 620 
https://hail.is/.  621 
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