

The landscape of regional missense mutational intolerance quantified from 125,748 exomes

Katherine R. Chao^{1,2*}, Lily Wang^{1,2,3*}, Ruchit Panchal^{1,2}, Calwing Liao^{4,5,6}, Haneen Abderrazzaq⁷, Robert Ye^{4,5}, Patrick Schultz^{1,4,5}, John Compitello^{1,4,5}, Riley H. Grant¹, Jack A. Kosmicki^{3,4,5}, Ben Weisburd^{1,2}, William Phu^{1,2}, Michael W. Wilson^{1,2}, Kristen M. Laricchia^{1,2}, Julia K. Goodrich^{1,2}, Daniel Goldstein^{1,4,5}, Jacqueline I. Goldstein^{1,4,5}, Christopher Vittal^{1,4,5}, Timothy Poterba^{1,4,5}, Samantha Baxter¹, Nicholas A. Watts^{1,4}, Matthew Solomonson^{1,4}, gnomAD Consortium, Grace Tiao^{1,2}, Heidi L. Rehm^{1,2}, Benjamin M. Neale^{1,4}, Michael E. Talkowski^{1,2,5}, Daniel G. MacArthur^{1,8,9}, Anne O'Donnell-Luria^{1,2,10}, Konrad J. Karczewski^{1,4,5}, Predrag Radivojac⁷, Mark J. Daly^{1,4,11}, Kaitlin E. Samocha^{1,2,4}

¹Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA

²Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA

³Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA

⁴Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA

⁵Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA

⁶Department of Medicine, Harvard Medical School, Boston, MA, USA

⁷Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA

⁸Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia

⁹Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia

¹⁰Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA

¹¹Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland

*Indicates equal contribution

Correspondence should be addressed to K.E.S. (samocha@broadinstitute.org)

1 **Abstract**

2 Missense variants can have a range of functional impacts depending on factors such as the
3 specific amino acid substitution and location within the gene. To interpret their deleteriousness,
4 studies have sought to identify regions within genes that are specifically intolerant of missense
5 variation^{1–12}. Here, we leverage the patterns of rare missense variation in 125,748 individuals in
6 the Genome Aggregation Database (gnomAD)¹³ against a null mutational model to identify
7 transcripts that display regional differences in missense constraint. Missense-depleted regions
8 are enriched for ClinVar¹⁴ pathogenic variants, *de novo* missense variants from individuals with
9 neurodevelopmental disorders (NDDs)^{15,16}, and complex trait heritability. Following ClinGen
10 calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less
11 than 20% of their expected missense variation achieve moderate support for pathogenicity. We
12 create a missense deleteriousness metric (MPC) that incorporates regional constraint and
13 outperforms other deleteriousness scores at stratifying case and control *de novo* missense
14 variation, with a strong enrichment in NDDs. These results provide additional tools to aid in
15 missense variant interpretation.

16

17 **Main text**

18 Over the last decade, exome and genome sequencing have enabled variant discovery across
19 hundreds of thousands of individuals^{13,17–21}. These large reference databases have provided the
20 opportunity to study selective forces acting on the human genome and to identify genomic
21 regions under selective constraint by, for example, identifying regions with fewer variants than
22 expected based on mutational models^{13,18,22–25}. Gene-level metrics of predicted loss-of-function
23 (pLoF) variant depletion have proven to be valuable in variant classification and identification of
24 novel disease genes^{15,16,26–28}. The functional impact and selective pressures relevant to
25 missense variation, by contrast, remain challenging to predict, as the effect of a missense
26 variant is governed by the gene housing the variant, the position of the variant in the gene, and
27 the specific amino acid substitution caused by the variant. To address this, prior work has
28 sought to identify regions within coding genes that are specifically intolerant of missense
29 variation as a way to improve interpretation^{1–12}. Here, we expand upon previous work¹ and show
30 a sub-genic measure of missense intolerance leveraging population-level variation facilitates
31 variant classification and risk stratification for association studies with *de novo*, rare, and
32 common variants.

33

34 We explored the patterns of rare missense variant presence or absence in 125,748 exomes in
35 the Genome Aggregation Database (gnomAD) v2.1.1 on GRCh37 to quantify missense
36 depletion at the sub-genic level. We searched 18,629 canonical protein-coding transcripts for
37 variability in missense constraint, quantified as the number of rare (allele frequency [AF] <
38 0.1%) missense variants observed in gnomAD divided by the number expected under neutral
39 evolution as estimated from previously described mutational models¹³(observed/expected [OE]).
40 For each transcript, we applied a recursive search based on likelihood ratio tests over all
41 potential rare missense sites looking for breaks that divide the transcript coding sequence
42 (CDS) into distinct missense constraint regions (MCRs; **Fig. 1a, b**). We discover 5,127
43 transcripts (28%) harbor regional variability in missense constraint (**Fig. 1c**), i.e., have two or
44 more MCRs (minimum coding length 49bp, median 461bp; **Supplementary Fig. 1**). We thus
45 refine the resolution of missense constraint for 42% of coding sites (coding space in the 5,127
46 transcripts vs. 18,629 total assessed). After recalibrating the missense OE distribution over all
47 potential sites of missense variants using MCR-wide rather than transcript-wide missense OE
48 measurements, we discover widespread signatures of negative and neutral selection that are
49 obscured when quantifying over the unit of whole transcripts (**Fig. 1d**). We find a larger
50 proportion of the exome lies within strongly constrained sequences (5.6% vs. 1.7% at OE < 0.4;

51 see **Supplementary Note** for OE threshold selection), and the mode of the distribution shifts
52 toward an OE indicative of evolutionary neutrality at approximately 1 (40.6% vs. 36.5% at $0.9 <$
53 $OE \leq 1.1$).

54

55



56
57 **Fig. 1:** 28% of protein-coding genes in the human genome are discovered to harbor regional
58 variation in population-level missense depletion.

59 **a**, An example transcript that has two missense constraint regions (MCRs) with significantly
60 different levels of population-wide missense depletion, defined as the number of missense
61 variants observed in gnomAD at rare frequency ($AF < 0.1\%$) divided by the number of rare
62 missense variants expected under neutral evolution (observed/expected or OE). Lower OE
63 values correspond to greater variant depletion in the population and suggest stronger constraint.

64 **b**, Flow chart describing the process of searching for breakpoints that divide a transcript into
65 multiple MCRs. Searching for breakpoints is recursive and leverages likelihood ratio tests at a
66 significance threshold of $p = 0.001$. **c**, The number of MCRs within the 5,127 transcripts
67 discovered to harbor regional differences in missense constraint. The other 13,502 transcripts
68 are deemed to have a single MCR (that is, a constant level of constraint across their entirety)
69 and are not shown. **d**, The distribution of local missense OE at all coding sites in canonical
70 transcripts. Local missense OE is defined as the OE calculated over the whole transcript (for

71 “transcript OE”) or over the MCR (for “MCR OE”) where the site is located. Transcript OE and
72 MCR OE are equivalent for transcripts with one MCR.

73

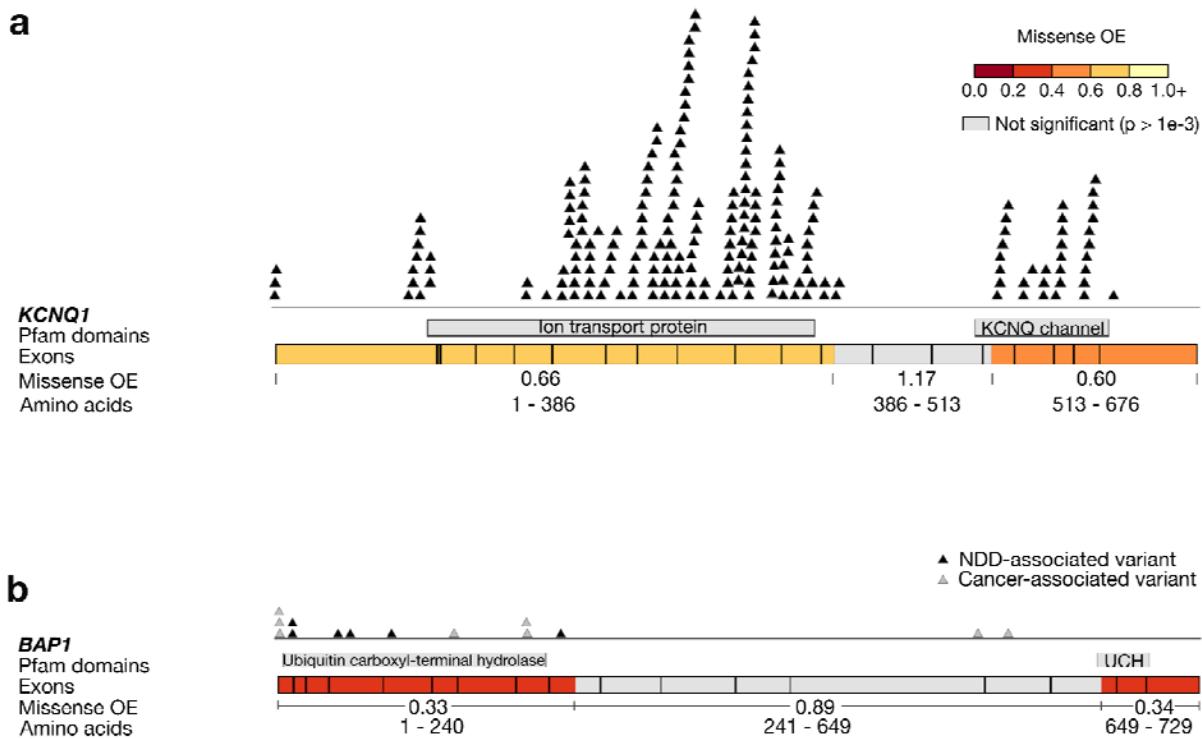
74

75 Furthermore, we find that constrained MCRs overlap established disease-associated mutational
76 hotspots, including critical protein domains. One example is in the well-characterized *KCNQ1*, a
77 voltage-gated potassium channel gene, in which pathogenic variants cause cardiac disorders
78 such as long QT syndrome. We discover one moderately constrained MCR (missense OE =
79 0.60) overlapping the highly conserved C-terminus²⁹ and another (missense OE = 0.66)
80 encompassing the voltage-sensing and pore domains (**Fig. 2a**). Both the C-terminus of *KCNQ1*
81 and its voltage-sensing domain are established “hotspot” regions (specific missense-
82 constrained regions with ACMG/AMP hotspot/functional domain moderate support [PM1] for
83 pathogenicity)^{29–31}. All but two ClinVar pathogenic/likely pathogenic (P/LP) missense variants in
84 this gene fall within these two missense-constrained MCRs.

85

86 We also find that missense constraint within MCRs is able to identify regions associated with
87 severe, early-onset disease. One example is in *BAP1*, which plays a key role in chromatin
88 modeling by mediating histone deubiquitination. Disease-causing variants in this gene are linked
89 to cancer or, as recently discovered, Kury-Isidor syndrome³². The first highly missense-
90 constrained MCR (missense OE = 0.33) in *BAP1* encompasses the ubiquitin C-terminal
91 hydrolase domain connected to Kury-Isidor syndrome³² (**Fig. 2b**), and all 11 variants reported to
92 be causal for Kury-Isidor fall within this MCR. The only ClinVar P/LP variants that do not fall
93 within any missense-constrained MCRs in *BAP1* are associated with cancer phenotypes, which
94 may be under weaker selection than neurodevelopmental disorders (NDDs).

95



96
97 **Fig. 2:** Missense constraint regions (MCRs) and the distribution of ClinVar pathogenic/likely
98 pathogenic (P/LP) missense variants in two genes associated with early-onset developmental
99 disorders. Exons are delineated with black outlines and MCRs are delineated by color. MCRs
100 are colored based on their missense observed/expected (OE) ratio, and MCRs with missense
101 OEs not significantly different from 1 ($p > 0.001$) are shaded gray. **a**, *KCNQ1*. Only two of the
102 210 P/LP missense variants in *KCNQ1* do not fall within either constrained MCR. The first
103 constrained MCR encompasses the voltage-sensing and pore domains of this gene, and the
104 other constrained MCR overlaps the C-terminus. Both domains contain previously reported
105 hotspot regions, with some regions reaching moderate level (PM1) support for pathogenicity³¹.
106 Ion transport protein: domain that contains both the transmembrane voltage-sensing and pore
107 domains. KCNQ channel: C-terminal cytoplasmic domain that overlaps four helices (A-D). **b**,
108 *BAP1*. Variants in this gene can lead to cancer-predisposition syndromes, increased risk of
109 certain cancers, or the neurodevelopmental disorder Kury-Isidor syndrome³². All of the ClinVar
110 P/LP variants associated with Kury-Isidor fall within the first MCR with a highly depleted
111 missense OE of 0.33. An additional five variants reported in Kury *et al.*³² but not ClinVar fall
112 within either highly constrained MCR in this gene. P/LP variants associated with Kury-Isidor are
113 colored in black, and all other cancer-associated P/LP variants are colored in gray. UCH:
114 Ubiquitin carboxyl-terminal hydrolase isozyme L5 domain. ClinVar data are from the October 15,
115 2023 release.
116
117
118 Next, we sought to determine if the signatures of selection revealed by MCRs recapitulated
119 biological and disease relevance of coding sequences. Overall, most transcripts that are

120 intolerant to pLoF variation (as measured by the loss-of-function observed/expected upper
121 bound fraction [LOEUF] score¹³) also tend to be intolerant to missense variation. This trend is
122 markedly more prominent when measuring missense constraint at the sub-genic level vs. the
123 transcript-level (**Supplementary Note; Supplementary Fig. 2**). We also discovered that 64%
124 (1697/2659) of genes that are both LOEUF- and MCR missense-constrained do not have
125 disease associations in OMIM³³, suggesting the existence of many undocumented genes
126 containing variants of significant consequence for disease (**Supplementary Fig. 3**). In a set of
127 730 strongly mutationally intolerant genes, defined here as exhibiting both population depletion
128 of pLoF variants (first three LOEUF deciles) and association with a developmental phenotype
129 (high-confidence membership in any non-cancer Gene2Phenotype [G2P]³⁴ gene list with
130 dominant inheritance), we observed strong transcript-wide missense depletion that was even
131 stronger for genes with multiple MCRs (**Fig. 3a** and **Supplementary Fig. 4**; Wilcoxon $p < 10^{-50}$).
132 Given that we have greater power to detect missense constraint variability over longer
133 sequences (**Supplementary Fig. 5**), we controlled for transcript length but still found that
134 intolerant transcripts are eight times more likely to harbor multiple MCRs ($p < 10^{-50}$). These
135 strongly intolerant transcripts are highly enriched for severely depleted regions (three times
136 more likely to have minimum MCR OE < 0.4 after regressing out transcript length, $p < 10^{-18}$),
137 whereas the most constrained MCRs in not strongly intolerant transcripts are less depleted and
138 more evenly distributed across the OE spectrum. Finally, we observe a group of genes with
139 strong overall missense depletion in which we did not detect multiple MCRs ($n = 459$ with
140 missense OE < 0.4 ; **Supplementary Table 1**), suggesting these genes are robustly intolerant to
141 missense variants across their length. When comparing missense constraint to selection over
142 longer timescales (measured by evolutionary conservation in placental mammals, phyloP³⁵), we
143 found that genes with more conserved coding sequences also tended to be more overall
144 depleted of human missense variation (Spearman $p = 0.56$, $p < 10^{-50}$). However, a substantial
145 number of strongly constrained MCRs appear widely unconserved across mammals, potentially
146 pointing to human-specific negative selection pressures that are obscured at the whole-
147 transcript level (**Supplementary Fig. 6**).
148

149 We next aggregated *de novo* missense variants from 31,058 individuals with a severe
150 developmental disorder¹⁵ (DD), 15,036 autistic individuals (AUT), and 5,492 siblings not
151 diagnosed with a DD¹⁶ (**Fig. 3b**). The distribution of *de novo* missense variants across the
152 missense OE spectrum in unaffected siblings largely mirrored the exome-wide missense OE
153 distribution. In contrast, *de novo* missense variants in autistic individuals are enriched in

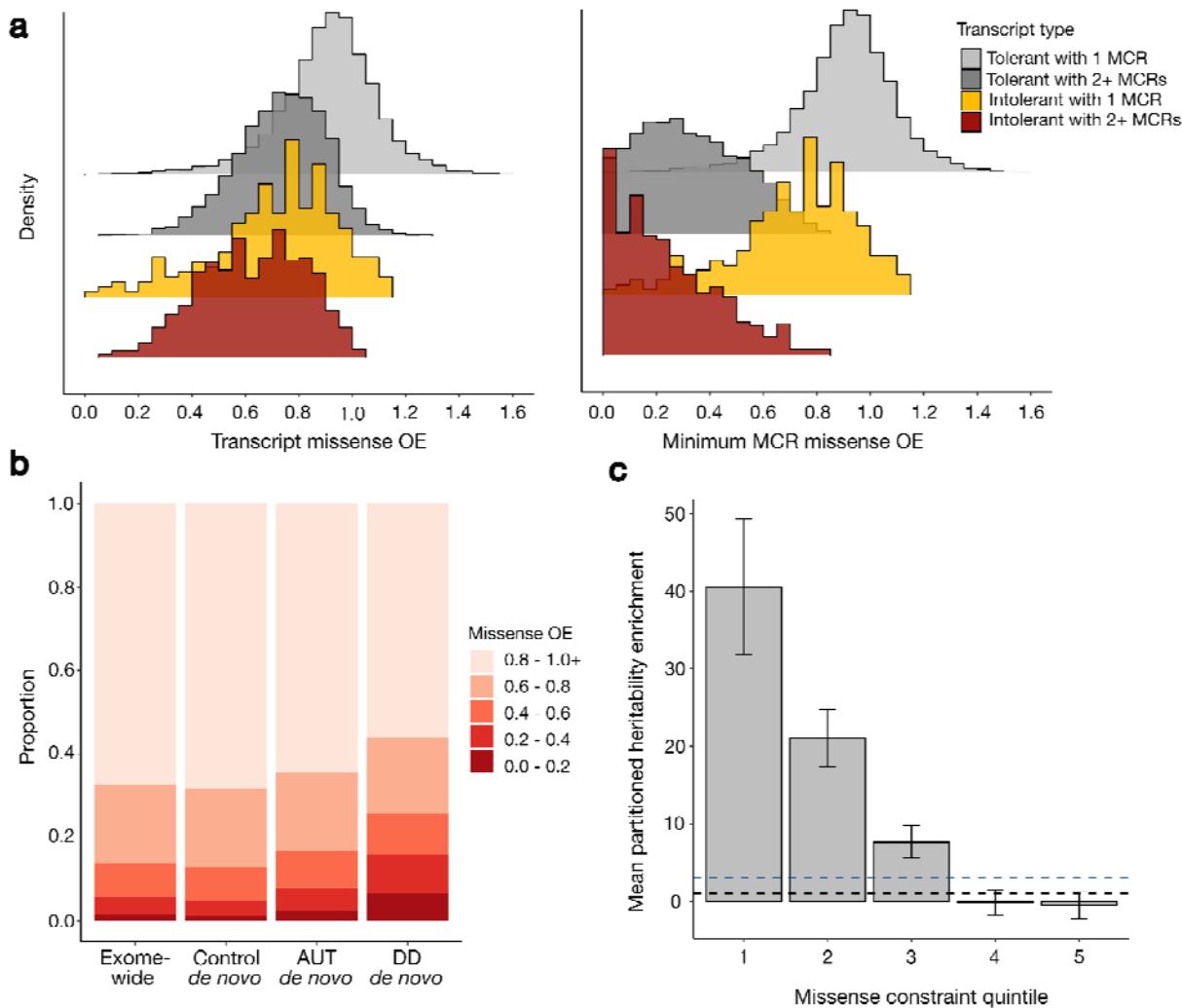
154 missense-constrained sequences, and this pattern is more striking in individuals with DDs. For
155 example, relative to unaffected siblings, the rate of *de novo* missense variants in MCRs with OE
156 < 0.2 is 2-fold higher in autistic individuals ($p < 10^{-23}$) and 6.6-fold higher in individuals with DDs
157 ($p < 10^{-50}$) (**Supplementary Fig. 7**; see **Supplementary Note** for OE threshold selection). This
158 is consistent with the expectations that a small subset of *de novo* missense variants in
159 individuals with developmental phenotypes are causal for those traits and that variants causal
160 for DD are generally more selectively deleterious than those for autism.

161

162 Beyond large-effect rare and *de novo* variation in traits under strong negative selection, we
163 additionally investigated whether our MCR metric, which was calculated using rare variants,
164 correlates with functional effects of common variants. Prior work found that pLoF-constrained
165 genes and their flanking 100kb sequences are enriched for SNP heritability across hundreds of
166 independent traits in the UK Biobank (UKBB) and other large genome-wide association studies
167 (GWAS)¹³. We partitioned common (AF > 5%) variant heritability of the same 268 independent
168 traits across MCRs to investigate relative enrichment. To establish a baseline, we computed the
169 heritability enrichment over all coding sequences comprising MCRs (3-fold). The most
170 constrained MCRs have the strongest heritability enrichment; the first quintile of MCR missense
171 OE harbors a 41-fold enrichment (**Fig. 3c**). Coding SNPs in missense-unconstrained MCRs
172 (e.g., in the two least constrained quintiles of MCR missense OE) harbor no detectable
173 heritability enrichment relative to the average genome-wide SNP. These findings suggest that:
174 1) regions depleted of rare missense variation can help prioritize common coding variants
175 important for complex traits (i.e., improve GWAS fine-mapping variant prioritization), and 2)
176 there exists a subset of coding sequence with no appreciable heritability enrichment, which rare
177 variant depletion can help identify.

178

179



180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Fig. 3: Regional missense depletion reveals constraint obscured by gene-level measures. **a**, Left: The distribution of transcript-wide missense observed/expected (OE) across 18,629 transcripts stratified by the combination of two factors: whether the transcript is strongly mutationally intolerant (within first three LOEUF deciles and association with a developmental phenotype in Gene2Phenotype [G2P]³⁴) and whether we detect multiple missense constraint regions (MCRs). Number of transcripts in each category are: strongly intolerant with multiple MCRs (n=581; red), strongly intolerant with one MCR (n=149; yellow), not strongly intolerant with multiple MCRs (n=4,546; dark gray), not strongly intolerant with one MCR (n=13,353; light gray). X-axis is cut off at 1.6 for visibility. Right: Minimum MCR missense OE using the same groupings. Minimum MCR missense OE is the same as transcript missense OE for transcripts with a single MCR. **b**, MCR missense OE at all sites of possible exome-wide missense variants vs. sites of *de novo* missense variants in controls, autistic individuals (AUT), or individuals with DD. *De novo* variants from individuals with developmental phenotypes are enriched in more constrained sequences, with a more pronounced enrichment in DD than autism. **c**, Enrichment in per-variant heritability explained by common (AF > 5%) protein-coding SNPs stratified by MCR missense OE quintile, relative to the average SNP genome-wide. Enrichment is estimated by linkage disequilibrium score regression, accounting for number of SNPs in each quintile, and

198 is averaged across 268 independent traits in UKBB and other large genome-wide association
199 studies. Black dashed line at 1 indicates no enrichment. Blue dashed line at 3 indicates average
200 coding enrichment. Error bars represent 95% confidence intervals.

201

202

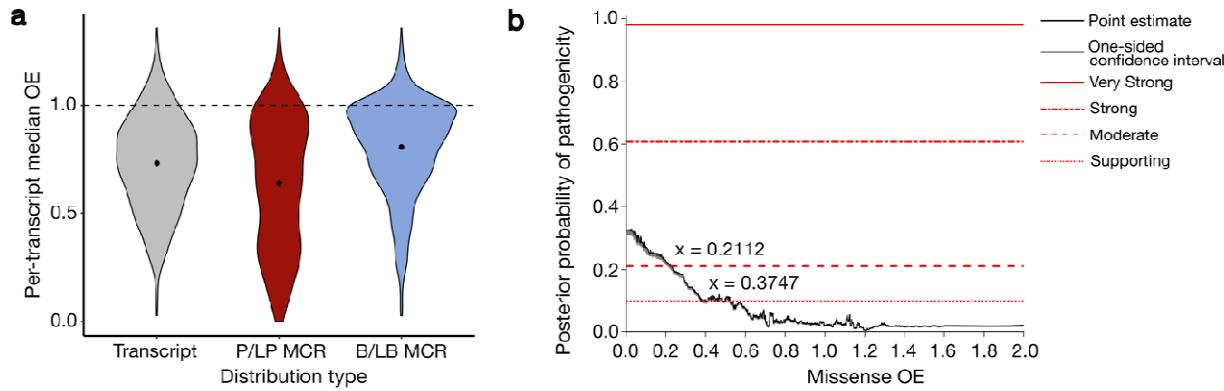
203 We examined the localization of high-quality ClinVar³⁶ missense variants classified as P/LP
204 within genes with both unconstrained (missense OE > 0.9) and constrained (missense OE <
205 0.2) MCRs and found that P/LP variants occur much more frequently in missense constrained
206 MCRs (odds ratio [OR] = 15.2; $p < 10^{-50}$). We also examined the localization of P/LP and
207 benign/likely benign (B/LB) variants within MCRs in autosomal dominant disease-associated
208 genes and found that P/LP variants tend to localize to regions that are more strongly missense-
209 constrained than the overall transcript (Wilcoxon $p = 3.5 \times 10^{-10}$), while B/LB variants show the
210 opposite effect and tend to occur in regions with OEs closer to 1 (Wilcoxon $p < 10^{-18}$; **Fig. 4a**).
211 While more subtle, these same patterns are also significant in autosomal recessive disease-
212 associated genes (**Supplementary Fig. 8**).

213

214 To enable use of our missense constraint metric in ACMG/AMP clinical variant classification, we
215 applied previously established probabilistic frameworks³⁷ to determine the MCR missense OE
216 thresholds that met different levels of clinical evidence strengths evaluated under the
217 hotspot/functional domain (PM1) and benign *in silico* prediction (BP4) criteria codes³⁰. MCR
218 missense OE ≤ 0.37 met supporting (PM1_Supporting) and OE ≤ 0.21 met moderate (PM1)
219 levels of evidence for pathogenicity (**Fig. 4b**), but no MCR missense OE threshold met any
220 levels of evidence to support benignity. However, separate calibration specifically in transcripts
221 with multiple MCRs found that MCR missense OE ≥ 1.56 met moderate and OE ≥ 0.97 met
222 supporting evidence for BP4, indicating that in transcripts where we are powered to characterize
223 regional constraint, MCRs with OEs close to one harbor an indication of benignity
224 (**Supplementary Fig. 9**). Calibration of two additional regional constraint metrics, Constrained
225 Coding Regions (CCRs⁹) and COnact Set MIssense tolerance (COSMIS¹²), which incorporates
226 predicted 3D structure information, revealed that these metrics also reach moderate support for
227 pathogenicity (PM1), and COSMIS only reaches supporting levels for benignity
228 (**Supplementary Fig. 9; Supplementary Table 2**).

229

230



231

232 **Fig. 4:** ACMG/AMP calibration of missense constraint. **a**, The distribution within genes with
233 autosomal dominant disease associations of transcript-wide missense observed/expected (OE;
234 gray) and missense constraint region (MCR) OE for ClinVar pathogenic/likely pathogenic
235 missense variants (P/LP; red) and benign/likely benign missense variants (B/LB; blue). We
236 filtered to 1,007 transcripts with at least one P/LP and one B/LB missense variant. For the P/LP
237 and B/LB distributions, we annotated each variant with the missense OE across the MCR they
238 fell in and collapsed these values within each transcript by taking the respective medians. **b**,
239 Local posterior probabilities of pathogenicity given MCR missense OE in all transcripts. Gray
240 shading indicates the one-sided 95% confidence interval on the more stringent side. Horizontal
241 lines indicate thresholds required to meet ACMG/AMP evidence levels. From bottom to top:
242 supporting, moderate, strong, very strong. MCR missense OE reaches supporting (OE ≤ 0.37)
243 and moderate (OE ≤ 0.21) level evidence for PM1 (hotspot/functional domain).

244

245

246 We transformed our regional missense constraint measure into a variant-level predictor of
247 missense deleteriousness named MPC (Missense deleteriousness Prediction by Constraint)
248 that additionally incorporates information about amino acid substitution type and local context.
249 The logistic regression-based model integrates regional missense constraint-derived metrics
250 together with BLOSUM³⁸, Grantham³⁹, and PolyPhen-2⁴⁰ and is trained on ClinVar pathogenic
251 and gnomAD common (AF > 0.1%) variants in 2,987 genes defined as haploinsufficient in
252 Collins *et al.*⁴¹ and 366 genes with DD associations in G2P through non-LoF mechanisms.

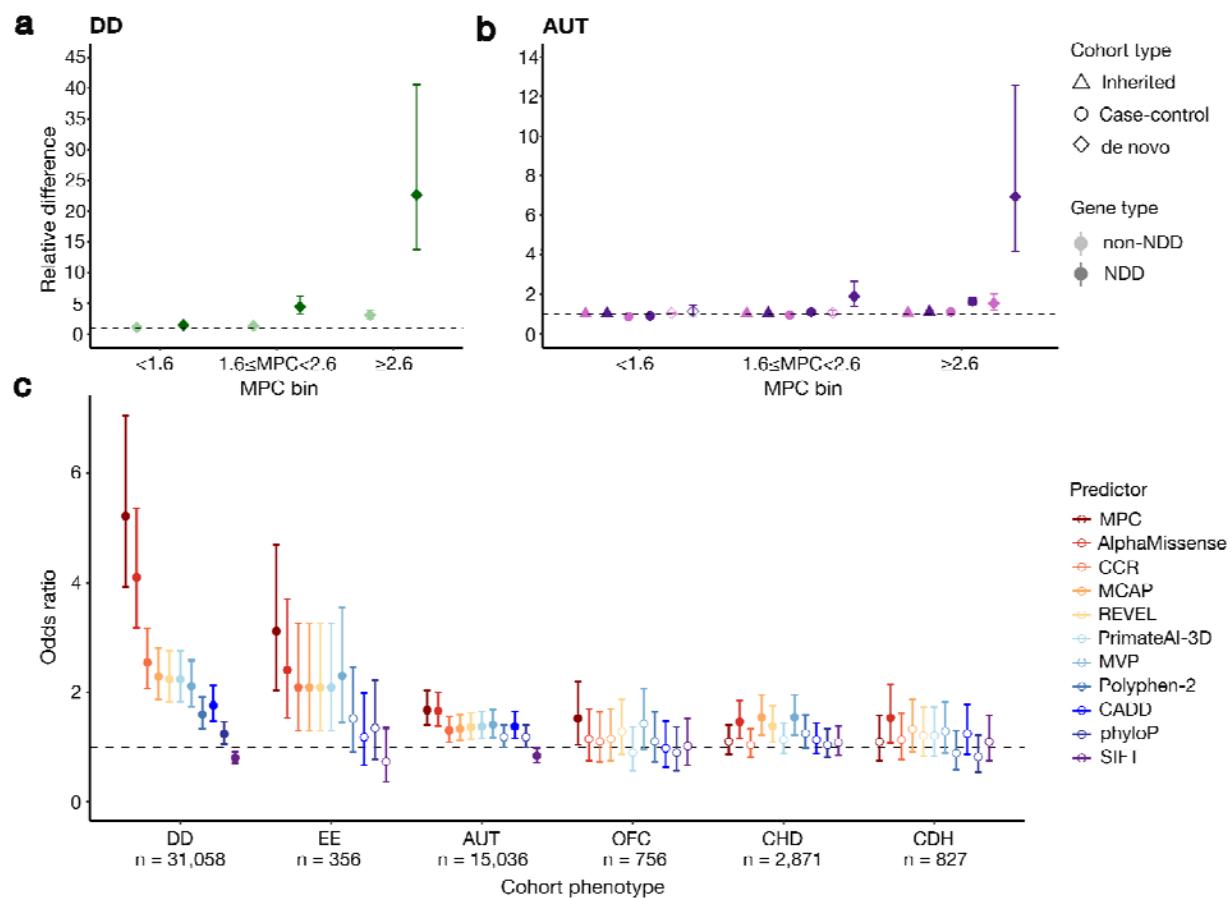
253 Higher scores predict greater deleteriousness (**Supplementary Fig. 10, 11**). We assessed the
254 utility of MPC in prioritizing potentially disease-causing variation by evaluating its ability to
255 stratify case and control rare and *de novo* missense variation. Consistent with the regional
256 constraint results, the *de novo* missense variants from DD and AUT cases are enriched for high
257 MPC scores compared to controls (**Supplementary Fig. 12**). We further stratified by presence
258 in 373 genes previously associated with NDD¹⁶ and three bins of MPC scores (< 1.6, 1.6-2.6, ≥
259 2.6; see **Supplementary Note** for calibration of these bins), and found a very strong enrichment
260 of *de novo* missense variants in the two most deleterious bins among both the DD (**Fig. 5a**) and

261 AUT cases (**Fig. 5b**) compared to unaffected individuals. However, while the enrichment in the
262 373 NDD-associated genes was significant for missense variants with MPC ≥ 2.6 (RR in DD
263 cases = 22.7 , $p < 10^{-50}$; RR in AUT cases = 6.9 , $p < 10^{-21}$), as well as missense variants with
264 MPC between 1.6-2.6 (RR in DD cases = 4.5 , $p < 10^{-35}$; RR in AUT cases = 1.9 , $p = 3.0 \times 10^{-5}$), it
265 was only significant in NDD-unassociated genes for missense variants with MPC ≥ 2.6 (RR in
266 DD cases = 3.1 , $p < 10^{-28}$; RR in AUT cases = 1.5 , $p = 5.9 \times 10^{-4}$). This suggests that while there
267 is a sizable reservoir of potentially causal variants in genes yet to be associated with NDDs,
268 they will be more difficult to find as they must reach stricter deleteriousness criteria. For autism,
269 we additionally assessed inheritance rates of rare missense variants (AF < 0.1%) from parents
270 to 13,384 probands and case-control rates for an additional 5,591 cases and 8,597 controls
271 without *de novo* information. While we did not find substantial enrichment in inheritance rates in
272 any missense category, we discovered substantial enrichment in the case-control analysis for
273 variants in the 373 NDD-associated genes with MPC ≥ 2.6 (RR = 1.6 , $p < 10^{-12}$), which we infer
274 is from *de novo* variants that are not recognizable as such due to lack of parental information.

275

276 We extended our assessment of case-control *de novo* stratification for a comparison of our
277 model against several other missense deleteriousness predictors: AlphaMissense⁴², CCRs⁹, M-
278 CAP⁴³, REVEL⁴⁴, PrimateAI-3D⁴⁵, MVP⁴⁶, Polyphen-2⁴⁰, CADD^{47,48}, mammalian conservation
279 phyloP³⁵, and SIFT⁴⁹. For this assessment, we evaluated four additional early-onset
280 development-related phenotypes: epileptic encephalopathy (EE), orofacial cleft (OFC),
281 congenital heart disease (CHD), and congenital diaphragmatic hernia (CDH). To compare
282 across predictors with different score distributions, we used a ranking-based performance
283 assessment. For each predictor, we ranked the *de novo* missense variants from each case
284 cohort against those in the 5,492 controls and computed the OR of case vs. control variants in
285 the top percentiles of these rankings (**Fig. 5c**). At the top 10% of variants, MPC displays the
286 highest OR for DD (OR = 5.2 , Fisher's exact $p < 10^{-48}$), EE (OR = 3.1 , $p = 2.2 \times 10^{-7}$), AUT (OR =
287 1.7 , $p = 8.9 \times 10^{-9}$), and OFC (OR = 1.5 , $p = 0.025$), although there is substantial confidence
288 interval overlap with other predictors. This indicates that MPC effectively ranks high-impact *de*
289 *novo* variants in the most deleterious prediction regimes. Of the other predictors,
290 AlphaMissense also performs consistently well across all phenotypes. In particular, in CHD and
291 CDH, which have the least *de novo* enrichment across predictors, we observe MPC lagging in
292 performance, while AlphaMissense is one of the top performers. This may suggest that causal
293 *de novo* variants in these phenotypes may occur at a narrow set of sites where 3D structure is
294 important, which AlphaMissense can more deftly capture through integration of protein structure

295 prediction. These observations are more or less consistent over a range of thresholds used to
296 define the ranking top percentiles (**Supplementary Fig. 13**).
297
298



299
300 **Fig. 5:** MPC effectively stratifies case and control variation.
301 **a**, The difference relative to controls of missense variants stratified by MPC score and
302 localization to genes associated with neurodevelopmental disorders (NDDs) for **a**, individuals
303 with DD and **b**, autistic individuals (AUT). Relative difference is calculated as: for *de novo*
304 variants, the average rate of variants in probands divided by that in sibling controls; for case-
305 control, the average rate of variants in cases divided by that in controls from case-control data;
306 for inherited, the average rate in probands of transmitted variants divided by that of
307 untransmitted variants. Error bars represent 95% confidence intervals calculated from a
308 binomial test. **c**, The odds ratio of case to control *de novo* missense variants in the top 10% vs.
309 bottom 90% of respective rankings. *De novo* missense variants from each case cohort are
310 ranked against those in the 5,492 controls for each predictor. DD: developmental disorders, EE:
311 epileptic encephalopathy, AUT: autism, OFC: orofacial cleft, CHD: congenital heart disease,
312 CDH: congenital diaphragmatic hernia. Error bars represent 95% confidence intervals. Only
313 variants scored by all predictors are included. Points are solid colored if the difference from 1 is
314 statistically significant (binomial or Fisher exact $p < 0.05$).
315

316

317 We have developed a method to identify sub-genic regions with differential intolerance to
318 missense variation at base-level resolution. We demonstrate that coding regions depleted for
319 missense variation in the general population are enriched for established disease-associated
320 variation, *de novo* variants from individuals with NDDs, and heritability for 268 complex traits
321 from the UK Biobank and other large GWAS. Additionally, we have calibrated these constraint
322 scores to establish that regions with less than 20% of their expected variation can achieve
323 moderate evidence for association to disease following ACMG/AMP guidelines. Finally, we
324 incorporated regional missense intolerance information into the missense deleteriousness
325 metric, MPC, and show that MPC effectively separates potentially risk-carrying variants
326 identified in various developmental disorder cases from those seen in controls.

327

328 At current sample sizes, we are unable to characterize constraint at single amino acid
329 resolution. Furthermore, because our approach relies on variant presence or absence in a large
330 reference dataset, many of the constrained regions we find are linked to variants that cause
331 severe, early-onset disease. However, the true nature of the variation we capture is more
332 accurately linked to reproductive fitness and the strength of selection acting on heterozygotes⁵⁰.
333 Our methodology specifically searches for linear sub-genic regions in canonical transcripts that
334 are depleted of missense variants compared to a null mutational model. This means that our
335 model is unable to find depleted sequences that are clustered specifically in 3D space and is
336 also currently ignorant of coding sequences not present in the Ensembl canonical transcript.
337 However, we note that our linear metric achieves similar evidence for both pathogenicity and
338 benignity as the structural constraint-based COSMIS model¹² (**Supplementary Fig. 9**).

339

340 In summary, we identify 28% of canonical transcripts with variable levels of missense constraint
341 and demonstrate that coding regions specifically depleted of missense variation in the general
342 population are enriched for disease-associated variation. Additionally, we show that this
343 depletion of missense variation can be used as moderate evidence when classifying variants
344 according to ACMG/AMP guidelines and that incorporation of regional missense constraint into
345 an *in silico* predictor effectively prioritizes a subset of *de novo* missense variation in individuals
346 with developmental phenotypes for association testing. We have publicly released these data
347 for use in both research and clinical settings. We anticipate refined resolution of these metrics
348 as datasets grow, both in size and in ancestral diversity, and with the incorporation of
349 complementary structural or functional data.

350 **Methods**

351 **Transcripts**

352 This study analyzed only canonical, coding transcripts as defined by GENCODE v19/Ensembl
353 v74. We excluded the same set of transcripts from this analysis that were excluded in the
354 previous gnomAD v2.1.1 genic constraint estimates¹³. Briefly, we excluded transcripts that had
355 outlier counts of variants expected under neutrality (zero expected pLoF, missense, or
356 synonymous variants; too many observed pLoF, missense, or synonymous variants compared
357 to expectation; or too few observed synonymous variants compared to expectation). In total, this
358 study analyzed 18,629 transcripts.

359

360 **gnomAD variants**

361 All analyses in this paper were conducted using the 125,748 gnomAD v2.1.1 exomes¹³ on
362 GRCh37. Median coverage was calculated on a random subset of the gnomAD exomes as
363 described previously¹³. We defined the set of sites with possible missense variants using a
364 synthetic Hail Table (HT) containing all possible single nucleotide variants in the exome. We
365 annotated this HT with the Variant Effect Predictor (VEP, version 85) against GENCODE
366 version 19, and filtered to variants with the consequence "missense_variant" in the canonical,
367 coding transcripts as defined in *Transcripts*. We then further filtered to variants that fit one of the
368 following criteria: (1) allele count (AC) > 0 and AF < 0.001, variant QC PASS, and median
369 coverage > 0 in gnomAD v2.1.1 exomes; or (2) AC = 0, i.e. variants not seen in gnomAD v2.1.1
370 exomes.

371

372 **ClinVar variants**

373 We annotated functional consequences for ClinVar¹⁴ (v.20230305) variants using the VEP table
374 described in *gnomAD variants*. Missense ClinVar variants with non-conflicting P, LP, B, LB
375 classification and a review status of at least one star were selected for analysis.

376

377 **Rare and *de novo* variants from developmental cohorts**

378 Case *de novo* mutations for association analyses were obtained from studies of developmental
379 disorders¹⁵ (DD), autism¹⁶ (AUT), congenital heart disease⁵¹ (CHD), orofacial cleft⁵² (OFC),
380 congenital diaphragmatic hernia⁵³ (CDH), and epileptic encephalopathy⁵⁴ (EE). Control *de novo*
381 mutations were obtained from neurotypical siblings of the autistic probands¹⁶. Variants from the
382 autism study were lifted over from GRCh38 to GRCh37 using the "liftover" function in Hail.
383 Variant functional consequences were re-annotated using the VEP table described in *gnomAD*
384 *variants*. Variants transmitted and not transmitted from parents to autistic probands were
385 procured from previously published ASC-SSC and SPARK cohorts, and case-control variants
386 for autism were procured from previously published iPSYCH and Swedish cohorts¹⁶. Both the
387 inherited/uninherited and case-control variant sets were filtered to AF < 0.1%.

388

389 Training, validation, and test datasets

390 To generate independent training and test sets, we selected 80% (14,894 transcripts) of the
391 18,629 canonical coding transcripts to comprise the training set and the remaining 20% (3,735
392 transcripts) to the test set. To ensure the training and test transcripts have similar distributions
393 of features that may impact constraint estimates, we used stratified randomization to match the
394 training and test transcripts on s_{het} coefficients (as a measure of selection) and number of
395 potential missense sites (as a measure of power to detect transcript-wide constraint changes).
396 The training set was used for MPC model training and MCR model selection, and the test set
397 was used for MPC model evaluation. No similar hold-outs of data were performed for training of
398 the mutational model used to compute expected variant counts (see *Modeling of mutation rates*
399 and *expected neutral missense variation*).

400

401 Modeling of mutation rates and expected neutral missense variation

402 Expected missense variant counts were determined as described previously¹³. Briefly, we
403 created a model using the 15,708 gnomAD v2.1.1 genomes that estimated the mutation rate for
404 each single nucleotide substitution with one base of context (e.g., ACT > AGT) in non-coding
405 regions of the genome. We then calibrated this mutation rate against the proportion observed of
406 each context at synonymous sites to adjust for the larger size of the gnomAD v2 exomes,
407 adjusting for low coverage regions (median coverage < 40x) and methylation levels at CpG sites
408 using methylation data from the Roadmap Epigenomics Consortium⁵⁵. We created three
409 separate models (referred to as "plateau" models moving forwards): one for autosomal and
410 pseudoautosomal sites, one for chromosome X sites, and one for chromosome Y sites. Each of
411 these models contains mutation rate estimates for each substitution, context, and methylation
412 level. We then applied the plateau models to the proportion observed of each substitution and
413 its context, exome coverage, and methylation level. We counted all possible variants in our
414 synthetic Hail Table (HT) that passed the following criteria: (1) Median coverage > 0; (2) no low-
415 quality variant observed in gnomAD v2 exomes; (3) no variants above 0.1% AF observed in
416 gnomAD v2 exomes. We then correlated this proportion observed value with the mutation rate
417 calculated using the appropriate model above. For low coverage sites (median coverage below
418 40x), we calculated a scaling factor as described previously¹³: briefly, we computed the total
419 number of observed synonymous variants in the gnomAD v2 exomes divided by the total
420 number of possible synonymous variants in the synthetic HT multiplied by the mutation rate
421 aggregated across all possible substitutions and their contexts and methylation levels. We used
422 this scaling factor to create a model to adjust the proportion of expected variation for low
423 coverage sites (coverage model).

424

425 Identifying breakpoints within transcripts of regional missense constraint

426 Observed missense variant counts were calculated using sites from the 125,748 gnomAD
427 exomes that passed all the following criteria: (1) Allele count (AC) > 0; (2) allele frequency (AF)
428 < 0.001; (3) variant QC PASS (passed gnomAD variant QC filters, including random forest
429 filters); (4) median coverage > 0. We filtered the gnomAD v2 exomes Hail Table (HT) to the

430 sites that matched the above criteria and then annotated the synthetic HT with whether that
431 variant (chromosome/locus plus reference and alternate alleles) was observed in the gnomAD
432 exomes. We then aggregated the total number of observed variant counts per locus by
433 summing the number of observed variants for each possible substitution (reference and
434 alternate allele) at each locus. Finally, we grouped the synthetic HT by transcript annotation to
435 sum the total number of observed missense variants per transcript.

436

437 As previously described¹³, we applied the two models (plateau and coverage) described in
438 *Modeling of mutation rates and expected neutral missense variation* to calculate the total
439 proportion of expected missense variation. Briefly, we summed the mutation rate (mu_agg) for
440 each substitution, context, and methylation level across the exome. We then applied the
441 appropriate plateau model (autosomal/pseudoautosomal, chromosome X, chromosome Y) and
442 adjusted CpG vs. non-CpG sites separately. After applying the appropriate plateau model, we
443 applied the coverage model to low coverage (median coverage < 40x) sites to create the final
444 adjusted mutation rate (mu_adj). We then aggregated the raw mutation rate sum (mu_agg) and
445 adjusted mutation rate (mu_adj) per transcript to get the total mutation rate sum and proportion
446 of expected missense variation per transcript.

447

448 We implemented a minimum number of expected missense variants to prevent finding
449 breakpoint positions that would create very small (i.e., a handful of base pairs in size) transcript
450 subsections (see **Supplementary Note**).

451

452 We applied a likelihood ratio test to determine whether the missense observed/expected (OE)
453 ratio was uniform along a transcript or whether a transcript had evidence of distinct sections of
454 missense constraint. We used the observed and expected missense counts to search for
455 positions that would divide a transcript into two or more regions with varying levels of missense
456 depletion. For our analyses, we assume that the observed missense counts should follow a
457 Poisson distribution around the expected missense counts. We defined our null model as
458 transcripts not having any evidence of regional variability in missense depletion (where the
459 expectation, the OE ratio, is consistent across the length of the transcript). Our alternative
460 model was that transcripts exhibited evidence of distinct sections of missense depletion (OE
461 ratio calculated per transcript subsection). Because the alternative model should always have a
462 better fit than the null model, we require a chi square value above a given threshold ($p = 0.001$)
463 to establish significance. We used the following formulas to determine the significance of a
464 breakpoint that would split a transcript into two sections, A and B:
465

- 466 • $p_0 = Pois(obs_A, exp_A * OE) * Pois(obs_B, exp_B * OE)$
- 467 • $p_1 = Pois(obs_A, exp_A * OE_A) * Pois(obs_B, exp_B * OE_B)$
- 468 • $\chi^2 = 2(\ln(p_1) - \ln(p_0))$

469

470 where OE is the missense observed/expected ratio across the entire transcript, obs_A is the
471 number of observed missense variants in transcript section A, exp_A is the number of expected
472 missense variants in transcript section A, OE_A is the OE ratio across transcript section A, obs_B is
473 the number of observed missense variants in transcript section B, exp_B is the number of

474 expected missense variants in transcript section A, OE_B is the OE ratio across transcript section
475 B, and Pois is the Poisson likelihood.

476

477 We used the following formulas to determine the significance of a breakpoint that would split a
478 transcript into three sections, A, B, and C:

479

$$p_0 = \text{Pois}(obs_A, exp_A * OE) * \text{Pois}(obs_B, exp_B * OE) * \text{Pois}(obs_C, exp_C * OE)$$

- $p_1 = \text{Pois}(obs_A, exp_A * OE_A) * \text{Pois}(obs_B, exp_B * OE_B) * \text{Pois}(obs_C, exp_C * OE_C)$
- $\chi^2 = 2(\ln(p_1) - \ln(p_0))$

483

484 where OE is the missense observed/expected ratio across the entire transcript, obs_A is the
485 number of observed missense variants in transcript section A, exp_A is the number of expected
486 missense variants in transcript section A, OE_A is the OE ratio across transcript section A, obs_B is
487 the number of observed missense variants in transcript section B, exp_B is the number of
488 expected missense variants in transcript section B, OE_B is the OE ratio across transcript section
489 B, obs_C is the number of observed missense variants in transcript section C, exp_C is the number
490 of expected missense variants in section C, and Pois is the Poisson likelihood.

491

492 For the purposes of our analyses, all transcript subsections with more observed variants than
493 expected were capped at an OE of 1, as we were looking for areas of missense depletion and
494 not missense enrichment. We also converted the expected counts for transcript subsections
495 with zero expected variants from 0 to 10^{-9} to prevent nonfinite OE values.

496

497 To search for a single breakpoint that would divide a transcript into two subsections, we
498 calculated chi square statistics (as discussed above) to conduct likelihood ratio tests
499 simultaneously for every eligible position within a transcript. The positions we considered were
500 positions with a possible missense variant substitution that had at least 16 expected missense
501 counts in either direction (i.e., both transcript subsections created by dividing the transcript at
502 this point would have at least 16 expected missense variants). We then aggregated chi square
503 values across each transcript to find the maximum value per transcript, and we marked any
504 positions as breakpoints if the chi square calculated at that position was equal to the maximum
505 chi square value over all sites in the transcript and significant at $p = 0.001$.

506

507 Any transcripts that did not have a single significant breakpoint moved forwards into our two
508 simultaneous breaks search flow. In this search flow, we again calculated chi square statistics to
509 conduct likelihood ratio tests for every eligible position pair. For every position with a possible
510 missense, we calculated the chi square statistic of that position paired with each possible
511 position downstream as long as the two positions created transcript subsections with at least 16
512 expected missense variants (i.e., all three of the transcript subsections created would have at
513 least 16 expected missense variants). Because of the large number of pairwise computations,
514 this step is the most computationally intensive portion of our algorithm. After completing the

515 single and two simultaneous break search workflows, we merged the results from both search
516 types.

517
518 Our breakpoint search flow is recursive, and the steps are as follows: Search for a single
519 significant breakpoint dividing a transcript into two subsections. If no single significant
520 breakpoint was found in the transcript, search for two simultaneous breakpoints. Merge the
521 results from the single and two simultaneous breakpoint searches. Repeat the steps above,
522 treating each separate transcript subsection as if it were an independent transcript, until no
523 more significant breakpoints are found.

524

525 Modeling deleteriousness of missense substitution classes with missense constraint
526 We incorporated two MCR OE-based metrics to measure the increased deleteriousness of
527 amino acid substitution classes (e.g., Met to Tyr) in functionally important areas of proteins: the
528 overall OE for each substitution and the second derivative of this OE value per OE bin of
529 missense constraint (**Supplementary Fig. 14**). To calculate the first metric, the substitution
530 overall OE, we divided the total number of rare, high quality variants (see *gnomAD variants*)
531 causing that substitution by the total number of expected variants (see *Modeling of mutation*
532 *rates and expected neutral missense variation*). To calculate the second metric, the substitution
533 OE second derivative, we aggregated the OEs of each substitution by MCR OE bin in 10 bins
534 from 0 to 1.0+ (i.e., for the 0-0.1 OE bin, we calculated all of the observed substitutions that
535 occurred within regions with a OE between 0 and 0.1 and divided that number by the total
536 number of expected substitutions occurring in those regions).

537

538 Modeling deleteriousness of individual missense variants

539 We designed a missense variant deleteriousness predictor to explicitly incorporate information
540 on amino acid substitution class and position-specific variant effects. A logistic regression model
541 was first trained to differentiate pathogenic from benign missense variants. The pathogenic
542 training set consisted of high-quality ClinVar variants (see *ClinVar variants*) labeled as
543 pathogenic or likely pathogenic in 2,987 likely-haploinsufficient genes, defined as having
544 probability of haploinsufficiency (pHaplo) $\geq 0.86^{41}$, or in 366 genes with DD associations in G2P
545 through non-LoF mechanisms. The latter gene set was created by filtering on the G2P DD panel
546 (accessed October 6, 2023) to select genes where: 1. confidence_category is either definitive or
547 strong evidence, 2. allelic_requirement was monoallelic, and 3. mutation_consequence included
548 altered gene product structure or increased gene product level. The benign training set
549 consisted of high-quality common variants as described in *gnomAD variants*. Variants matching
550 criteria for both the benign and pathogenic sets were removed from the training data. We
551 evaluated models with all possible combinations of the following complementary features: amino
552 acid substitution overall OE and OE second derivative (see *Modeling deleteriousness of*
553 *missense substitution classes*); BLOSUM³⁸ and Grantham³⁹ scores of amino acid substitution
554 class severity; the local missense constraint level of a variant (missense OE across the MCR if
555 applicable, else across the transcript); and PolyPhen-2⁴⁰. We selected BLOSUM, Grantham,

556 and PolyPhen-2 because of the orthogonal information added on top of our OE-based (and
557 therefore population allele frequency-dependent) metrics. For each model, only variants with all
558 relevant annotations were used in training the regression model and the subsequent
559 calculations to produce deleteriousness scores. The deleteriousness score prediction for any
560 missense variant i is given as:

561

$$d_i = -\log_{10}(m_i/M)$$
$$m_i = \max(0.83, f_i)$$

564
565 where d_i is the deleteriousness score prediction, f_i is the number of common missense variants
566 with a fitted value from the regression that is less than the fitted value for variant i , and M is the
567 number of common missense variants (equivalent to the number of benign training variants for
568 the regression). m_i is set to have a minimum value of 0.83 to avoid a mathematical error in the
569 log when the fitted value for a given variant is less than those of all common variants. Larger
570 values of d_i indicate stronger predicted-deleteriousness. The best model was chosen to be the
571 model featurized with all six possible features. The training set for this model consisted of
572 64,023 benign variants and 12,955 pathogenic variants. This model was then applied to
573 produce MPC scores for the 68,576,965 possible exome-wide missense variants with all
574 features, and the distribution of these MPC scores is given in **Supplementary Figs. 10, 11, and**
575 **12**.

576 Comparison of MPC to other predictors

577 We compared our model to the following missense deleteriousness predictors:
578 AlphaMissense⁴², Constrained Coding Regions (CCRs)⁹, MVP⁴⁶, M-CAP⁴³, PrimateAI-3D⁴⁵,
579 REVEL⁴⁴, CADD^{47,48}, PolyPhen-2⁴⁰, and SIFT⁴⁹. We annotated the case and control *de novo*
580 missense variants described in *Rare and de novo variants from developmental cohorts* and
581 ranked the variants based on their annotated scores. To assess each predictor's ability to
582 stratify case and control variation, we assessed the proportion of case to control variants among
583 the variants with the top 10% for each score and compared this number to the overall proportion
584 of case to control variation using a Fisher exact test.

585 Data availability

586 The missense constraint regions (MCRs) are displayed on the gnomAD v2 browser
587 (<https://gnomad.broadinstitute.org>) and available for download on the gnomAD website
588 (<https://gnomad.broadinstitute.org/downloads#v2>) and in the gnomAD v2 public datasets on
589 Google, Amazon, and Microsoft clouds. MPC scores for all possible variants in canonical
590 transcripts is available in the gnomAD v2 public datasets on Google (gs://gcp-public-data-
591 gnomad/release/2.1.1/regional_missense_constraint/gnomad_v2.1.1_mpc.ht). gnomAD v2
592 exome, genome, and coverage data and the table of all possible single nucleotide
593 polymorphisms used to calculate mutational models and search for MCRs are also available in
594 the gnomAD public buckets and are easily accessed using code in the gnomAD Hail utilities
595 GitHub repository
596 (https://github.com/broadinstitute/gnomad_methods/blob/7c0c994883f321492a48962674d5cae

597 b289df4c7/gnomad/resources/grch37/gnomad.py#L107 and
598 https://github.com/broadinstitute/gnomad_methods/blob/7c0c994883f321492a48962674d5caeb
599 289df4c7/gnomad/utils/vep.py#L161).
600
601 ClinVar data were downloaded from ClinVar's FTP server
602 (<https://ftp.ncbi.nlm.nih.gov/pub/clinvar/>). *De novo* variants were extracted from the
603 supplemental files of the cited studies.
604
605 AlphaMissense scores were downloaded from <https://github.com/google-deepmind/alphamissense>. CCRs were downloaded from <https://github.com/quinlan-lab/CCRHTML>.
606 MCAP scores were downloaded from <http://bejerano.stanford.edu/MCAP/>. REVEL scores were
607 downloaded from <https://sites.google.com/site/revelgenomics/>. PrimateAI-3D scores were
608 downloaded from <https://primad.basespace.illumina.com/download>. MVP scores were
609 downloaded from
610 https://figshare.com/articles/dataset/Predicting_pathogenicity_of_missense_variants_by_deep_Learning/13204118. PolyPhen-2 and SIFT scores were obtained from VEP⁵⁶. CADD scores were
611 downloaded from the CADD website (<https://cadd.gs.washington.edu/download>). phyloP scores
612 were downloaded from the UCSC browser (<https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=cons241way>).
613
614

616 **Code availability**

617 Code to determine missense constraint regions (MCRs) and calculate MPC is available at
618 https://github.com/broadinstitute/regional_missense_constraint. Code used to generate the
619 mutational models is available at https://github.com/broadinstitute/gnomad_lof and
620 <https://github.com/broadinstitute/gnomad-constraint>. The Hail library is available at
621 <https://hail.is/>.

622 **Acknowledgments**

623 We thank all of the individuals who contributed their data to gnomAD for enabling the research
624 presented here and in numerous other publications. We also thank members of the gnomAD
625 Production and Browser Teams for their behind-the-scenes efforts in producing and sharing the
626 gnomAD dataset, Dan King and the rest of the Hail team for enabling data processing at scale,
627 and Emma Pierce-Hoffman for her work curating gene lists. This work was supported by the
628 National Human Genome Research Institute (NHGRI; U24HG011450 to H.L.R. and M.J.D.;
629 U01HG011755 to A.O.D.L., H.L.R, and M.E.T.; U01HG012022 to P.R.; 5T32HG002295-18 to
630 L.W.), the Eunice Kennedy Shriver National Institute of Child Health and Human Development
631 (NICHD; F31HD111109 to L.W.), the National Science Foundation (NSF; GRFP#2022339661 to
632 L.W.; GRFP#2023361442 to H.A.) the Simons Foundation (SFARI 1009802 to M.E.T. and
633 K.E.S.), a National Health and Medical Research Council investigator grant (2009982) to
634 D.G.M., and the Massachusetts General Hospital Executive Committee on Research, Interim
635 Support Funding (K.E.S.).
636

637 **Author information**

638 These authors contributed equally: Katherine R. Chao and Lily Wang.

639 **Contributions**

640 K.R.C., L.W., K.E.S., B.M.N, and M.J.D conceived and designed experiments. K.R.C, L.W., and
641 K.E.S. performed primary writing of the manuscript. K.R.C., L.W., R.P., C.L., H.A., and R.Y.
642 performed the analyses and generated figures. P.S. and J.C. were instrumental to developing
643 methods. R.H.G., N.A.W., and M.S. developed visualizations for the web browser. B.W., W.P.,
644 M.W.W., K.M.L., J.K.G, K.J.K, and G.T. completed code review for methods. D.G., J.I.G., C.V.,
645 and T.P. helped debug runtime compute. J.A.K. provided data and analysis suggestions. S.B.
646 contributed analysis suggestions. H.L.R., B.M.N., M.E.T, D.G.M, A.O.D.L., K.J.K., P.R., M.J.D.,
647 and K.E.S. supervised the research. All authors listed under the Genome Aggregation Database
648 Consortium contributed to the generation of the primary data incorporated into the gnomAD
649 resource. All authors reviewed the manuscript.

650 **Ethics declarations**

651 Competing interests/Declaration of interests

652 J.A.K is a current employee of Regeneron Genetics Center. T.P. and G.T. are founders of E9
653 Genomics, Inc.. H.L.R. has received support from Illumina and Microsoft to support rare disease
654 gene discovery and diagnosis. B.M.N. is a member of the scientific advisory board at Deep
655 Genomics and Neumora. M.E.T. has received research support and/or reagents from Illumina,
656 Pacific Biosciences, Microsoft, Oxford Nanopore, and Ionis Therapeutics. D.G.M. is a paid
657 advisor to GSK, Insitro, and Overtone Therapeutics, and receives research funding from
658 Microsoft. A.O.D.L. has consulted for Tome Biosciences and Ono Pharma USA Inc, and is
659 member of the scientific advisory board for Congenica Inc and the Simons Foundation SPARK
660 for Autism study, and received research support from Pacific Biosciences for rare disease
661 diagnosis. K.J.K. is a consultant for Vor Biopharma, Tome Biosciences, and is on the Scientific
662 Advisory Board of Nurture Genomics. M.J.D. is a founder of Maze Therapeutics and Neumora
663 Therapeutics, Inc. (f/k/a RBNC Therapeutics). K.E.S. has received support from Microsoft for
664 work related to rare disease diagnostics. All other authors declare no competing interests.
665

References

1. Samocha, K. E. *et al.* Regional missense constraint improves variant deleteriousness prediction. *bioRxiv* 148353 (2017) doi:10.1101/148353.
2. Gussow, A. B., Petrovski, S., Wang, Q., Allen, A. S. & Goldstein, D. B. The intolerance to functional genetic variation of protein domains predicts the localization of pathogenic mutations within genes. *Genome Biol.* **17**, 9 (2016).
3. Wiel, L., Venselaar, H., Veltman, J. A., Vriend, G. & Gilissen, C. Aggregation of population-based genetic variation over protein domain homologues and its potential use in genetic diagnostics. *Hum. Mutat.* **38**, 1454–1463 (2017).
4. Sivley, R. M., Dou, X., Meiler, J., Bush, W. S. & Capra, J. A. Comprehensive Analysis of Constraint on the Spatial Distribution of Missense Variants in Human Protein Structures. *Am. J. Hum. Genet.* **102**, 415–426 (2018).
5. Lal, D. *et al.* Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders. *Genome Med.* **12**, 28 (2020).
6. Zhang, X. *et al.* Genetic constraint at single amino acid resolution improves missense variant prioritisation and gene discovery. (2022) doi:10.1101/2022.02.16.22271023.
7. Traynelis, J. *et al.* Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation. *Genome Res.* **27**, 1715–1729 (2017).
8. Perszyk, R. E., Kristensen, A. S., Lyuboslavsky, P. & Traynelis, S. F. Three-dimensional missense tolerance ratio analysis. *Genome Res.* **31**, 1447–1461 (2021).
9. Havrilla, J. M., Pedersen, B. S., Layer, R. M. & Quinlan, A. R. A map of constrained coding regions in the human genome. *Nat. Genet.* **51**, 88–95 (2019).
10. Silk, M. *et al.* MTR3D: identifying regions within protein tertiary structures under purifying selection. *Nucleic Acids Res.* **49**, W438–W445 (2021).
11. Hicks, M., Bartha, I., di Iulio, J., Venter, J. C. & Telenti, A. Functional characterization of 3D protein structures informed by human genetic diversity. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 8960–8965 (2019).
12. Li, B., Roden, D. M. & Capra, J. A. The 3D mutational constraint on amino acid sites in the human proteome. *Nat. Commun.* **13**, 3273 (2022).
13. Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature* **581**, 434–443 (2020).
14. Landrum, M. J. *et al.* ClinVar: improvements to accessing data. *Nucleic Acids Res.* **48**, (2020).
15. Kaplanis, J. *et al.* Evidence for 28 genetic disorders discovered by combining healthcare and research data. *Nature* **586**, 757–762 (2020).
16. Fu, J. M. *et al.* Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. *Nat. Genet.* **54**, 1320–1331 (2022).
17. 1000 Genomes Project Consortium *et al.* A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).
18. Lek, M. *et al.* Analysis of protein-coding genetic variation in 60,706 humans. *Nature* **536**,

285–291 (2016).

19. Taliun, D. *et al.* Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. *Nature* **590**, 290–299 (2021).
20. Backman, J. D. *et al.* Exome sequencing and analysis of 454,787 UK Biobank participants. *Nature* **599**, 628–634 (2021).
21. All of Us Research Program Genomics Investigators. Genomic data in the All of Us Research Program. *Nature* (2024) doi:10.1038/s41586-023-06957-x.
22. Petrovski, S. *et al.* The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity. *PLoS Genet.* **11**, e1005492 (2015).
23. Samocha, K. E. *et al.* A framework for the interpretation of de novo mutation in human disease. *Nat. Genet.* **46**, 944–950 (2014).
24. Weghorn, D. *et al.* Applicability of the Mutation-Selection Balance Model to Population Genetics of Heterozygous Protein-Truncating Variants in Humans. *Mol. Biol. Evol.* **36**, 1701–1710 (2019).
25. Agarwal, I., Fuller, Z. L., Myers, S. R. & Przeworski, M. Relating pathogenic loss-of-function mutations in humans to their evolutionary fitness costs. *Elife* **12**, (2023).
26. Kosmicki, J. A. *et al.* Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. *Nat. Genet.* **49**, 504–510 (2017).
27. Bamshad, M. J., Nickerson, D. A. & Chong, J. X. Mendelian Gene Discovery: Fast and Furious with No End in Sight. *Am. J. Hum. Genet.* **105**, 448–455 (2019).
28. Seaby, E. G., Rehm, H. L. & O'Donnell-Luria, A. Strategies to Uplift Novel Mendelian Gene Discovery for Improved Clinical Outcomes. *Front. Genet.* **12**, 674295 (2021).
29. Kapplinger, J. D. *et al.* Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel. *J. Cardiovasc. Transl. Res.* **8**, 187–197 (2015).
30. Richards, S. *et al.* Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet. Med.* **17**, 405–424 (2015).
31. Whiffin, N. *et al.* CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation. *Genet. Med.* **20**, 1246–1254 (2018).
32. Küry, S. *et al.* Rare germline heterozygous missense variants in BRCA1-associated protein 1, BAP1, cause a syndromic neurodevelopmental disorder. *Am. J. Hum. Genet.* **109**, 361–372 (2022).
33. Hamosh, A., Amberger, J. S., Bocchini, C., Scott, A. F. & Rasmussen, S. A. Online Mendelian Inheritance in Man (OMIM®): Victor McKusick's magnum opus. *Am. J. Med. Genet. A* **185**, 3259–3265 (2021).
34. Thormann, A. *et al.* Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. *Nat. Commun.* **10**, 2373 (2019).
35. Christmas, M. J. *et al.* Evolutionary constraint and innovation across hundreds of placental mammals. *Science* **380**, eabn3943 (2023).
36. Landrum, M. J. *et al.* ClinVar: improving access to variant interpretations and supporting evidence. *Nucleic Acids Res.* **46**, D1062–D1067 (2018).
37. Pejaver, V. *et al.* Calibration of computational tools for missense variant pathogenicity

classification and ClinGen recommendations for PP3/BP4 criteria. *Am. J. Hum. Genet.* **109**, 2163–2177 (2022).

- 38. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. *Proc. Natl. Acad. Sci. U. S. A.* **89**, 10915–10919 (1992).
- 39. Grantham, R. Amino acid difference formula to help explain protein evolution. *Science* **185**, 862–864 (1974).
- 40. Adzhubei, I. A. *et al.* A method and server for predicting damaging missense mutations. *Nat. Methods* **7**, 248–249 (2010).
- 41. Collins, R. L. *et al.* A cross-disorder dosage sensitivity map of the human genome. *Cell* **185**, 3041–3055.e25 (2022).
- 42. Cheng, J. *et al.* Accurate proteome-wide missense variant effect prediction with AlphaMissense. *Science* **381**, eadg7492 (2023).
- 43. Jagadeesh, K. A. *et al.* M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. *Nat. Genet.* **48**, 1581–1586 (2016).
- 44. Ioannidis, N. M. *et al.* REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. *Am. J. Hum. Genet.* **99**, 877–885 (2016).
- 45. Gao, H. *et al.* The landscape of tolerated genetic variation in humans and primates. *Science* **380**, eabn8153 (2023).
- 46. Qi, H. *et al.* MVP predicts the pathogenicity of missense variants by deep learning. *Nat. Commun.* **12**, 510 (2021).
- 47. Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of human genetic variants. *Nat. Genet.* **46**, 310–315 (2014).
- 48. Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. *Genome Med.* **13**, 31 (2021).
- 49. Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. *Nucleic Acids Res.* **31**, 3812–3814 (2003).
- 50. Fuller, Z. L., Berg, J. J., Mostafavi, H., Sella, G. & Przeworski, M. Measuring intolerance to mutation in human genetics. *Nat. Genet.* **51**, 772–776 (2019).
- 51. Jin, S. C. *et al.* Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. *Nat. Genet.* **49**, 1593–1601 (2017).
- 52. Bishop, M. R. *et al.* Genome-wide Enrichment of De Novo Coding Mutations in Orofacial Cleft Trios. *Am. J. Hum. Genet.* **107**, 124–136 (2020).
- 53. Qiao, L. *et al.* Rare and de novo variants in 827 congenital diaphragmatic hernia probands implicate LONP1 as candidate risk gene. *Am. J. Hum. Genet.* **108**, 1964–1980 (2021).
- 54. EuroEPINOMICS-RES Consortium, Epilepsy Phenome/Genome Project & Epi4K Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. *Am. J. Hum. Genet.* **95**, 360–370 (2014).
- 55. Roadmap Epigenomics Consortium *et al.* Integrative analysis of 111 reference human epigenomes. *Nature* **518**, 317–330 (2015).
- 56. McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biol.* **17**, 122 (2016).

Genome Aggregation Database Consortium

Maria Abreu¹², Carlos A. Aguilar Salinas¹³, Tariq Ahmad¹⁴, Christine M. Albert^{15,16}, Jessica Alföldi^{1,3}, Diego Ardiissino¹⁷, Irina M. Armean^{1,3}, Gil Atzmon^{18,19}, Eric Banks²⁰, John Barnard²¹, Samantha M. Baxter¹, Laurent Beaugerie²², Emelia J. Benjamin^{23,24,25}, David Benjamin²⁰, Louis Bergelson²⁰, Michael Boehnke²⁶, Lori L. Bonnycastle²⁷, Erwin P. Bottinger²⁸, Donald W. Bowden^{29,30,31}, Matthew J. Bown^{32,33}, Harrison Brand^{2,34}, Steven Brant^{35,36,37}, Ted Brookings^{20,38}, Hannia Campos^{39,40}, John C. Chambers^{41,42,43}, Juliana C. Chan⁴⁴, Katherine R. Chao^{1,3}, Sinéad Chapman^{1,3,5}, Daniel I. Chasman^{6,15}, Siwei Chen^{1,3}, Rex Chisholm⁴⁵, Judy Cho²⁸, Rajiv Chowdhury⁴⁶, Mina K. Chung⁴⁷, Wendy K. Chung^{48,49,50}, Kristian Cibulskis²⁰, Bruce Cohen^{51,52}, Ryan L. Collins^{1,2,53}, Kristen M. Connolly⁵⁴, Adolfo Correa⁵⁵, Miguel Covarrubias²⁰, Beryl B. Cummings^{1,53}, Dana Dabelea⁵⁶, Mark J. Daly^{1,3,57}, John Danesh⁴⁶, Dawood Darbar⁵⁸, Phil Darnowsky¹, Joshua C. Denny⁵⁹, Stacey Donnelly⁶⁰, Ravindranath Duggirala⁶¹, Josée Dupuis^{62,63}, Patrick T. Ellinor^{1,64}, Roberto Elosua^{65,66,67}, James Emery²⁰, Eleina England^{1,68}, Jeanette Erdmann^{69,70,71}, Tönu Esko^{1,72}, Emily Evangelista¹, Yossi Farjoun⁷³, Martti Färkkilä^{74,75,76}, Diane Fatkin^{77,78,79}, Steven Ferriera⁸⁰, Jose Florez^{6,81,82}, Laurent Francioli^{1,3}, Andre Franke^{83,84}, Jack Fu^{1,2,34}, Stacey Gabriel⁸⁰, Kiran Garimella²⁰, Laura D. Gauthier²⁰, Jeff Gentry²⁰, Gad Getz^{6,85,86}, David C. Glahn^{87,88}, Benjamin Glaser⁸⁹, Stephen J. Glatt⁹⁰, David Goldstein^{91,92}, Clicerio Gonzalez⁹³, Julia Goodrich^{1,2}, Riley H. Grant¹, Leif Groop^{94,95}, Sanna Gudmundsson^{1,3,10}, Namrata Gupta^{1,80}, Andrea Haessly²⁰, Christopher Haiman⁹⁶, Ira Hall⁹⁷, Craig L. Hanis⁹⁸, Matthew Harms^{99,100}, Qin He¹, Mikko Hiltunen¹⁰¹, Matti M. Holi¹⁰², Christina M. Hultman^{103,104}, Steve Jahl^{1,3}, Chaim Jalas¹⁰⁵, Thibault Jeandet²⁰, Mikko Kallela¹⁰⁶, Diane Kaplan²⁰, Jaakko Kaprio⁹⁵, Konrad J. Karczewski^{1,3,5}, Sekar Kathiresan^{2,6,107}, Eimear E. Kenny¹⁰⁸, Bong-Jo Kim¹⁰⁹, Young Jin Kim¹⁰⁹, Daniel King¹, George Kirov¹¹⁰, Zan Koenig^{3,5}, Jaspal Kooner^{42,111,112}, Seppo Koskinen¹¹³, Harlan M. Krumholz^{114,115}, Subra Kugathasan¹¹⁶, Soo Heon Kwak¹¹⁷, Markku Laakso^{118,119}, Nicole Lake¹²⁰, Trevyn Langsford²⁰, Kristen M. Laricchia^{1,3}, Terho Lehtimäki^{121,122}, Monkol Lek¹²⁰, Emily Lipscomb¹, Christopher Llanwarne²⁰, Ruth J.F. Loos^{28,123,124}, Wenhan Lu¹, Steven A. Lubitz^{1,64}, Teresa Tusie Luna^{125,126}, Ronald C.W. Ma^{44,127,128}, Daniel G. MacArthur^{1,129,130}, Gregory M. Marcus¹³¹, Jaume Marrugat^{132,133}, Daniel M. Marten^{1,10}, Alicia R. Martin^{1,3,5}, Kari M. Mattila¹³⁴, Steven McCarroll^{5,135}, Mark I. McCarthy^{136,137,138}, Jacob L. McCauley^{139,140}, Dermot McGovern¹⁴¹, Ruth McPherson¹⁴², James B. Meigs^{1,6,143}, Olle Melander¹⁴⁴, Andres Metspalu¹⁴⁵, Deborah Meyers¹⁴⁶, Eric V. Minikel¹, Braxton D. Mitchell¹⁴⁷, Ruchi Munshi²⁰, Aliya Naheed¹⁴⁸, Saman Nazarian^{149,150}, Benjamin M. Neale^{1,3}, Peter M. Nilsson¹⁵¹, Sam Novod²⁰, Anne H. O'Donnell-Luria^{1,2,10}, Michael C. O'Donovan¹⁵², Yukinori Okada^{153,154,155}, Dost Ongur^{6,51}, Lorena Orozco^{156,157}, Michael J. Owen¹⁵², Colin Palmer¹⁵⁸, Nicholette D. Palmer²⁹, Aarno Palotie^{3,5,95}, Kyong Soo Park^{117,159}, Carlos Pato¹⁶⁰, Nikelle Petrillo²⁰, William Phu^{1,10}, Timothy Poterba^{1,3,5}, Ann E. Pulver¹⁶¹, Dan Rader^{149,162}, Nazneen Rahman¹⁶³, Heidi Rehm^{1,2}, Alex Reiner^{164,165}, Anne M. Remes^{166,167}, Dan Rhodes¹, Stephen Rich^{168,169}, John D. Rioux^{170,171}, Samuli Ripatti^{60,95,172}, David Roazen²⁰, Dan M. Roden^{173,174}, Jerome I. Rotter¹⁷⁵, Valentin Ruano-Rubio²⁰, Nareh Sahakian²⁰, Danish Saleheen^{176,177,178}, Veikko Salomaa¹⁷⁹, Andrea Saltzman¹, Niles J. Samani^{33,180}, Kaitlin E. Samocha^{1,2}, Jeremiah Scharf^{1,2,5}, Molly Schleicher¹, Sebastian Schönherr¹⁸¹, Patrick Schultz^{1,3,5}, Heribert Schunkert^{182,183}, Eleanor G. Seaby^{1,184}, Cotton Seed^{3,5}, Svti H. Shah^{185,186}, Megan Shand²⁰, Ted Sharpe²⁰, Moore B. Shoemaker¹⁸⁷, Tai Shyong^{188,189}, Edwin K. Silverman^{190,191}, Moriel Singer-Berk¹, Pamela Sklar^{192,193,194}, J. Gustav Smith^{195,196,197}, Hilkka Soininen¹⁹⁸, Harry Sokol^{199,200,201}, Matthew Solomonson^{1,3}, Rachel G. Son¹, Jose Soto²⁰, Tim Spector²⁰², Christine Stevens^{1,3,5}, Nathan O. Stitzel^{203,204,205}, Patrick F. Sullivan^{103,206}, Jaana Suvisaari¹⁷⁹, E. Shyong Tai^{207,208,209}, Michael E. Talkowski^{1,2,5}, Yekaterina Tarasova¹, Kent D. Taylor¹⁷⁵, Yik Ying Teo^{207,210,211}, Grace Tiao^{1,3}, Kathleen Tibbetts²⁰, Charlotte Tolonen²⁰, Ming Tsuang^{212,213}, Tiinamaija Tuomi^{95,214,215}, Dan Turner²¹⁶, Teresa Tusie-Luna^{217,218}, Erkki Vartiainen²¹⁹, Marquis Vawter²²⁰, Christopher Vittal^{1,3}, Gordon Wade²⁰, Arcturus Wang^{1,3,5}, Lily Wang²²¹, Qingbo

Wang^{1,153}, James S. Ware^{1,222,223}, Hugh Watkins²²⁴, Nicholas A. Watts^{1,3}, Rinse K. Weersma²²⁵, Ben Weisburd²⁰, Maija Wessman^{95,226}, Nicola Whiffin^{1,227,228}, Michael W. Wilson^{1,3}, James G. Wilson²²⁹, Ramnik J. Xavier^{230,231}, Mary T. Yohannes¹

¹²University of Miami Miller School of Medicine, Gastroenterology, Miami, USA

¹³Unidad de Investigacion de Enfermedades Metabolicas, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico

¹⁴Peninsula College of Medicine and Dentistry, Exeter, UK

¹⁵Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA

¹⁶Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

¹⁷Department of Cardiology University Hospital, Parma, Italy

¹⁸Department of Biology Faculty of Natural Sciences, University of Haifa, Haifa, Israel

¹⁹Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA

²⁰Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA

²¹Department of Quantitative Health Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA

²²Sorbonne Université, APHP, Gastroenterology Department Saint Antoine Hospital, Paris, France

²³NHLBI and Boston University's Framingham Heart Study, Framingham, MA, USA

²⁴Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA

²⁵Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA

²⁶Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA

²⁷National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA

²⁸The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA

²⁹Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA

³⁰Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA

³¹Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA

³²Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK

³³NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK

³⁴Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

³⁵Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA

³⁶Department of Genetics and the Human Genetics Institute of New Jersey, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

³⁷Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA

³⁸Fulcrum Genomics, Boulder, CO, USA

³⁹Harvard School of Public Health, Boston, MA, USA

⁴⁰Central American Population Center, San Pedro, Costa Rica

⁴¹Department of Epidemiology and Biostatistics, Imperial College London, London, UK

⁴²Department of Cardiology, Ealing Hospital, NHS Trust, Southall, UK

⁴³Imperial College, Healthcare NHS Trust Imperial College London, London, UK

⁴⁴Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China

⁴⁵Northwestern University, Evanston, IL, USA
⁴⁶University of Cambridge, Cambridge, England
⁴⁷Departments of Cardiovascular, Medicine Cellular and Molecular Medicine Molecular Cardiology, Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
⁴⁸Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
⁴⁹Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
⁵⁰Department of Medicine, Columbia University Medical Center, New York, NY, USA
⁵¹McLean Hospital, Belmont, MA, USA
⁵²Department of Psychiatry, Harvard Medical School, Boston, MA, USA
⁵³Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
⁵⁴Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
⁵⁵Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
⁵⁶Department of Epidemiology Colorado School of Public Health Aurora, CO, USA
⁵⁷Institute for Molecular Medicine Finland, (FIMM) Helsinki, Finland
⁵⁸Department of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
⁵⁹Vanderbilt University Medical Center, Nashville, TN, USA
⁶⁰Broad Institute of MIT and Harvard, Cambridge, MA, USA
⁶¹Department of Life Sciences, College of Arts and Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
⁶²Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
⁶³Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
⁶⁴Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
⁶⁵Cardiovascular Epidemiology and Genetics, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
⁶⁶CIBER CV, Spain
⁶⁷Departament of Medicine, Faculty of Medicine, University of Vic-Central University of Catalonia, Vic Catalonia, Spain
⁶⁸Clalit Genomics Center, Ramat-Gan, Israel
⁶⁹Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
⁷⁰German Research Centre for Cardiovascular Research, Hamburg/Lübeck/Kiel, Lübeck, Germany
⁷¹University Heart Center Lübeck, Lübeck, Germany
⁷²Estonian Genome Center, Institute of Genomics University of Tartu, Tartu, Estonia
⁷³Richards Lab, Lady Davis Institute, Montreal, QC, Canada
⁷⁴Helsinki University and Helsinki University Hospital Clinic of Gastroenterology, Helsinki, Finland
⁷⁵Helsinki University and Helsinki University Hospital, Helsinki, Finland
⁷⁶Abdominal Center, Helsinki, Finland
⁷⁷Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
⁷⁸Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
⁷⁹Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia
⁸⁰Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
⁸¹Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
⁸²Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
⁸³Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
⁸⁴University Hospital Schleswig-Holstein, Kiel, Germany

⁸⁵Bioinformatics Program MGH Cancer Center and Department of Pathology, Boston, MA, USA
⁸⁶Cancer Genome Computational Analysis, Broad Institute of MIT and Harvard, Cambridge, MA, USA
⁸⁷Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
⁸⁸Harvard Medical School Teaching Hospital, Boston, MA, USA
⁸⁹Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
⁹⁰Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
⁹¹Institute for Genomic Medicine, Columbia University Medical Center Hammer Health Sciences, New York, NY, USA
⁹²Department of Genetics & Development Columbia University Medical Center, Hammer Health Sciences, New York, NY, USA
⁹³Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico
⁹⁴Lund University Sweden, Sweden
⁹⁵Institute for Molecular Medicine Finland, (FIMM) HiLIFE University of Helsinki, Helsinki, Finland
⁹⁶Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
⁹⁷Washington School of Medicine, St Louis, MO, USA
⁹⁸Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
⁹⁹Department of Neurology Columbia University, New York City, NY, USA
¹⁰⁰Institute of Genomic Medicine, Columbia University, New York City, NY, USA
¹⁰¹Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
¹⁰²Department of Psychiatry, Helsinki University Central Hospital Lapinlahdentie, Helsinki, Finland
¹⁰³Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
¹⁰⁴Icahn School of Medicine at Mount Sinai, New York, NY, USA
¹⁰⁵Bonei Olam, Center for Rare Jewish Genetic Diseases, Brooklyn, NY, USA
¹⁰⁶Department of Neurology, Helsinki University, Central Hospital, Helsinki, Finland
¹⁰⁷Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
¹⁰⁸Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
¹⁰⁹Division of Genome Science, Department of Precision Medicine, National Institute of Health, Republic of Korea
¹¹⁰MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University School of Medicine, Cardiff, Wales
¹¹¹Imperial College, Healthcare NHS Trust, London, UK
¹¹²National Heart and Lung Institute Cardiovascular Sciences, Hammersmith Campus, Imperial College London, London, UK
¹¹³Department of Health THL-National Institute for Health and Welfare, Helsinki, Finland
¹¹⁴Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
¹¹⁵Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, Connecticut
¹¹⁶Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA
¹¹⁷Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea

¹¹⁸The University of Eastern Finland, Institute of Clinical Medicine, Kuopio, Finland
¹¹⁹Kuopio University Hospital, Kuopio, Finland
¹²⁰Department of Genetics, Yale School of Medicine, New Haven, CT, USA
¹²¹Department of Clinical Chemistry Fimlab Laboratories, Tampere University, Finland
¹²²Finnish Cardiovascular Research Center-Tampere Faculty of Medicine and Health Technology, Tampere University, Finland
¹²³The Mindich Child Health and Development, Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
¹²⁴The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
¹²⁵National Autonomous University of Mexico, Mexico City, Mexico
¹²⁶Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City, Mexico
¹²⁷Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
¹²⁸Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
¹²⁹Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, Australia
¹³⁰Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
¹³¹Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
¹³²Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
¹³³CIBERCV, Madrid, Spain
¹³⁴Department of Clinical Chemistry Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere Faculty of Medicine and Health Technology, Tampere University, Finland
¹³⁵Department of Genetics, Harvard Medical School, Boston, MA, USA
¹³⁶Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital Old Road Headington, Oxford, OX, LJ, UK
¹³⁷Welcome Centre for Human Genetics, University of Oxford, Oxford, OX, BN, UK
¹³⁸Oxford NIHR Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX, DU, UK
¹³⁹John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
¹⁴⁰The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
¹⁴¹F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
¹⁴²Atherogenomics Laboratory University of Ottawa, Heart Institute, Ottawa, Canada
¹⁴³Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
¹⁴⁴Department of Clinical Sciences University, Hospital Malmö Clinical Research Center, Lund University, Malmö, Sweden
¹⁴⁵Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
¹⁴⁶University of Arizona Health Science, Tuscon, AZ, USA
¹⁴⁷University of Maryland School of Medicine, Baltimore, MD, USA
¹⁴⁸International Centre for Diarrhoeal Disease Research, Bangladesh
¹⁴⁹Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
¹⁵⁰Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
¹⁵¹Lund University, Dept. Clinical Sciences, Skåne University Hospital, Malmö, Sweden
¹⁵²Centre for Neuropsychiatric Genetics & Genomics, Cardiff University School of Medicine, Cardiff, Wales
¹⁵³Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan

¹⁵⁴Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan

¹⁵⁵Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan

¹⁵⁶Instituto Nacional de Medicina Genómica, (INMEGEN) Mexico City, Mexico

¹⁵⁷Laboratory of Immunogenomics and Metabolic Diseases, INMEGEN, Mexico City, Mexico

¹⁵⁸Medical Research Institute, Ninewells Hospital and Medical School University of Dundee, Dundee, UK

¹⁵⁹Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea

¹⁶⁰Department of Psychiatry Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA

¹⁶¹Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA

¹⁶²Children's Hospital of Philadelphia, Philadelphia, PA, USA

¹⁶³Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK

¹⁶⁴University of Washington, Seattle, WA, USA

¹⁶⁵Fred Hutchinson Cancer Research Center, Seattle, WA, USA

¹⁶⁶Medical Research Center, Oulu University Hospital, Oulu Finland

¹⁶⁷Research Unit of Clinical Neuroscience Neurology University of Oulu, Oulu, Finland

¹⁶⁸Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA

¹⁶⁹Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA

¹⁷⁰Research Center Montreal Heart Institute, Montreal, Quebec, Canada

¹⁷¹Department of Medicine, Faculty of Medicine Université de Montréal, Québec, Canada

¹⁷²Department of Public Health Faculty of Medicine, University of Helsinki, Helsinki, Finland

¹⁷³Departments of Medicine, Pharmacology, Biomedical Informatics Vanderbilt, University Medical Center, Nashville, TN, USA

¹⁷⁴Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA

¹⁷⁵The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA

¹⁷⁶Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

¹⁷⁷Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

¹⁷⁸Center for Non-Communicable Diseases, Karachi, Pakistan

¹⁷⁹National Institute for Health and Welfare, Helsinki, Finland

¹⁸⁰Department of Cardiovascular Sciences, University of Leicester, Leicester, UK

¹⁸¹Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria

¹⁸²Department of Cardiology, Deutsches Herzzentrum München, Technical University of Munich, DZHK Munich Heart Alliance, Germany

¹⁸³Technische Universität München, Germany

¹⁸⁴Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK

¹⁸⁵Duke Molecular Physiology Institute, Durham, NC

¹⁸⁶Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA

¹⁸⁷Division of Cardiovascular Medicine, Nashville VA Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA

¹⁸⁸Division of Endocrinology, National University Hospital, Singapore

¹⁸⁹NUS Saw Swee Hock School of Public Health, Singapore

¹⁹⁰Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
¹⁹¹Harvard Medical School, Boston, MA, USA
¹⁹²Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
¹⁹³Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
¹⁹⁴Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
¹⁹⁵The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University
¹⁹⁶Department of Cardiology, Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
¹⁹⁷Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
¹⁹⁸Institute of Clinical Medicine Neurology, University of Eastern Finland, Kuopio, Finland
¹⁹⁹Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, F-75012 Paris, France
²⁰⁰INRA, UMR1319 Micalis, Jouy en Josas, France
²⁰¹Paris Center for Microbiome Medicine, (PaCeMM) FHU, Paris, France
²⁰²Department of Twin Research and Genetic Epidemiology King's College London, London, UK
²⁰³Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
²⁰⁴Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
²⁰⁵The McDonnell Genome Institute at Washington University, Saint Louis, MO, USA
²⁰⁶Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA
²⁰⁷Saw Swee Hock School of Public Health National University of Singapore, National University Health System, Singapore
²⁰⁸Department of Medicine, Yong Loo Lin School of Medicine National University of Singapore, Singapore
²⁰⁹Duke-NUS Graduate Medical School, Singapore
²¹⁰Life Sciences Institute, National University of Singapore, Singapore
²¹¹Department of Statistics and Applied Probability, National University of Singapore, Singapore
²¹²Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, CA, USA
²¹³Institute of Genomic Medicine, University of California San Diego, San Diego, CA, USA
²¹⁴Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
²¹⁵Institute of Genetics, Folkhalsan Research Center, Helsinki, Finland
²¹⁶Juliet Keidan Institute of Pediatric Gastroenterology Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
²¹⁷Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
²¹⁸Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
²¹⁹Department of Public Health Faculty of Medicine University of Helsinki, Helsinki, Finland
²²⁰Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
²²¹Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA
²²²National Heart and Lung Institute, Imperial College London, London
²²³UK/MRC London Institute of Medical Sciences, Imperial College London, London, UK
²²⁴Radcliffe Department of Medicine, University of Oxford, Oxford, UK
²²⁵Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
²²⁶Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland

²²⁷Big Data Institute, University of Oxford, UK

²²⁸Wellcome Centre for Human Genetics, University of Oxford, UK

²²⁹Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA USA

²³⁰Program in Infectious Disease and Microbiome, Broad Institute of MIT and Harvard, Cambridge, MA, USA

²³¹Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA

Authors received funding as follows:

Emelia J. Benjamin: R01HL092577; American Heart Association AF AHA_18SFRN34110082

Matthew J. Bown: British Heart Foundation awards CS/14/2/30841 and RG/18/10/33842

Steven Brant: National Institutes of Health DK062431

Ravindranath Duggirala: U01 DK085524 National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK)

Josée Dupuis: National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) R DK

Roberto Elosua: Agència de Gestió d'Ajuts Universitaris i de Recerca: 2021 SGR 00144

Jeanette Erdmann: VIAGenomics, Leducq network PlaqOmics, Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167);

Martti Färkkilä: State funding for university level health research

Laura D. Gauthier: Intel, Illumina

Benjamin Glaser: 5U01 DK085584

Stephen J. Glatt: U.S. NIMH Grant R MH

Leif Groop: The Academy of Finland and University of Helsinki: Center of Excellence for Complex Disease Genetics (grant number 312063 and 336822), Sigrid Jusélius Foundation; IMI 2 (grant No 115974 and 15881)

Christopher Haiman: U01CA164973

Mikko Hiltunen: Academy of Finland (grant 338182), Sigrid Jusélius Foundation, the Strategic Neuroscience Funding of the University of Eastern Finland

Chaim Jalas: Bonei Olam

Mikko Kallela: Grants from State funding for university level health research and from Department of Neurology, Helsinki University, Central Hospital; Grant from Maire Taponen Foundation

Jaakko Kaprio: Academy of Finland (grants 312073 and 336823)

Ruth J.F. Loos: Novo Nordisk Foundation (NNF18CC0034900, NNF20OC0059313); NIH (R01DK110113; R01DK124097)

Ronald C.W. Ma: Research Grants Council of the Hong Kong Special Administrative Region (CU R4012-18), Research Grants; Council Theme-based Research Scheme (T12-402/13N), University Grants Committee Research Grants Matching Scheme

Jaume Marrugat: Agència de Gestió d'Ajuts Universitaris i de Recerca: 2021 SGR 00144

Jacob L. McCauley: National Institute of Diabetes and Digestive and Kidney Disease Grant R01DK104844

Michael C. O'Donovan: Medical Research Council UK: Centre Grant No. MR/L010305/1, Program Grant No. G0800509

Yukinori Okada: JSPS KAKENHI (19H01021, 20K21834), AMED (JP21km0405211, JP21ek0109413, JP21gm4010006, JP21km0405217, JP21ek0410075), JST Moonshot R&D (JPMJMS2021)

Michael J. Owen: Medical Research Council UK: Centre Grant No. MR/L010305/1, Program Grant No. G0800509

Aarno Palotie: the Academy of Finland Center of Excellence for Complex Disease Genetics (grant numbers 312074 and 336824) and Sigrid Jusélius Foundation

John D. Rioux: National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK; DK062432), from the Canadian Institutes of Health (CIHR GPG 102170), from Genome Canada/Génome Québec (GPH-129341), and a Canada Research Chair (#230625)

Samuli Ripatti: the Academy of Finland Center of Excellence for Complex Disease Genetics (grant number) Sigrid Jusélius Foundation

Jerome I. Rotter: Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for “NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)” (phs001416.v1.p1) was performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Core support including centralized genomic read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1; contract HHSN268201800002I). Core support including phenotype harmonization, data management, sample-identity QC, and general program coordination were provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract HHSN268201800001I). We gratefully acknowledge the studies and participants who provided biological samples and data for MESA and TOPMed. JSK was supported by the Pulmonary Fibrosis Foundation Scholars Award and grant K23-HL-150301 from the NHLBI. MRA was supported by grant K23-HL-150280, AJP was supported by grant K23-HL-140199, and AM was supported by R01-HL131565 from the NHLBI. EJB was supported by grant K23-AR-075112 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases. The MESA project is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420. Also supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center

Veikko Salomaa: Juho Vainio Foundation and Finnish Foundation for Cardiovascular Research

Jeremiah Scharf: NIH Grants U01 NS40024, K02 NS085048, NS102371

Eleanor G. Seaby: Kerkut Charitable Trust, Foulkes Fellowship, University of Southampton Presidential Scholarship

Edwin K. Silverman: NIH Grants U01 HL089856 and U01 HL089897

J. Gustav Smith: The Swedish Heart-Lung Foundation (2022-0344, 2022-0345), the Swedish Research Council (2021-02273), the European Research Council (ERC-STG-2015-679242), Gothenburg University, Skåne University Hospital, governmental funding of clinical research within the Swedish National Health Service, a generous donation from the Knut and Alice Wallenberg foundation to the Wallenberg Center for Molecular Medicine in Lund, and funding from the Swedish Research Council (Linnaeus grant Dnr 349-2006-237, Strategic Research Area Exodiab Dnr 2009-1039) and Swedish Foundation for Strategic Research (Dnr IRC15-0067) to the Lund University Diabetes Center

Harry Sokol: AgroParisTech, Jouy en Josas, France

Nathan O. Stitziel: National Human Genome Research Institute Grant UM1HG008853

Kent D. Taylor: Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for “NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)” (phs001416.v1.p1) was performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Core support including centralized genomic read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1; contract HHSN268201800002I). Core support including phenotype harmonization, data management, sample-identity QC, and

general program coordination were provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract HHSN268201800001I). We gratefully acknowledge the studies and participants who provided biological samples and data for MESA and TOPMed. JSK was supported by the Pulmonary Fibrosis Foundation Scholars Award and grant K23-HL-150301 from the NHLBI. MRA was supported by grant K23-HL-150280, AJP was supported by grant K23-HL-140199, and AM was supported by R01-HL131565 from the NHLBI. EJB was supported by grant K23-AR-075112 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases. The MESA project is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420. Also supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. Tiinamaija Tuomi: The Academy of Finland and University of Helsinki: Center of Excellence for Complex Disease Genetics (grant number 312072 and 336826), Folkhalsan Research Foundation, Helsinki University Hospital, Ollqvist Foundation, Liv och Halsa foundation; NovoNordisk Foundation

Teresa Tusie-Luna: CONACyT Project 312688

James S. Ware: Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK

Rinse K. Weersma: The Lifelines Biobank initiative has been made possible by subsidy from the Dutch Ministry of Health Welfare and Sport the Dutch Ministry of Economic Affairs the University Medical Centre Groningen (UMCG the Netherlands) the University of Groningen and the Northern Provinces of the Netherlands

Conflicts of interest are as follow:

Mikko Kallela: No related COI

Eimear E. Kenny: EEK has received personal fees from Regeneron Pharmaceuticals, 23&Me, Allelica, and Illumina; has received research funding from Allelica; and serves on the advisory boards for Encompass Biosciences, Foresite Labs, and Galateo Bio

Ronald C.W. Ma: No related COI

Benjamin M. Neale: B.M.N. is a member of the scientific advisory board at Deep Genomics and Neumora.

Veikko Salomaa: VS has had research collaboration with Bayer Ltd (not related to the present study)

Edwin K. Silverman: Research grants from GSK and Bayer

James S. Ware: JSW has received consultancy fees or grant support from MyoKardia (now Bristol-Myers Squibb), Pfizer, and Foresite Labs