

1 Have AI-Generated Texts from LLM Infiltrated the Realm of 2 Scientific Writing? A Large-Scale Analysis of Preprint Platforms

3 Huzi Cheng¹, Bin Sheng², Aaron Lee³, Varun Chaudary^{4,5}, Atanas G. Atanasov^{6,7}, Nan Liu⁸, Yue
4 Qiu⁹, Tien Yin Wong^{10,11}, Yih-Chung Tham^{12,13}, Yingfeng Zheng¹⁴

5 ¹Program in Neuroscience, Indiana University, Bloomington, USA.

6 ²Shanghai International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Department
7 of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao
8 Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to
9 Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes,
10 Shanghai 200240, China; MOE Key Laboratory of Artificial Intelligence, Artificial Intelligence Institute, Shanghai Jiao
11 Tong University, Shanghai 200240, China.

12 ³Department of Ophthalmology, University of Washington, School of Medicine, Seattle, Washington, USA.

13 ⁴Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.

14 ⁵Department of Surgery, McMaster University, Hamilton, ON, Canada.

15 ⁶Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.

16 ⁷Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland.

17 ⁸Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.

18 ⁹Institute for Hospital Management of Tsinghua University, Tsinghua University, Beijing, China.

19 ¹⁰Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.

20 ¹¹Tsinghua Medicine, Tsinghua University, Beijing, China.

21 ¹²Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.

22 ¹³Centre for Innovation and Precision Eye Health; and Department of Ophthalmology, Yong Loo Lin School of
23 Medicine, National University of Singapore, Singapore.

24 ¹⁴State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong
25 Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

26 March 31, 2024

27 Abstract

28 Since the release of ChatGPT in 2022, AI-generated texts have inevitably permeated various
29 types of writing, sparking debates about the quality and quantity of content produced by such large
30 language models (LLM). This study investigates a critical question: Have AI-generated texts from
31 LLM infiltrated the realm of scientific writing, and if so, to what extent and in what setting? By
32 analyzing a dataset comprised of preprint manuscripts uploaded to arXiv, bioRxiv, and medRxiv
33 over the past two years, we confirmed and quantified the widespread influence of AI-generated
34 texts in scientific publications using the latest LLM-text detection technique, the Binoculars LLM-
35 detector. Further analyses with this tool reveal that: (1) the AI influence correlates with the trend
36 of ChatGPT web searches; (2) it is widespread across many scientific domains but exhibits distinct
37 impacts within them (highest: computer science, engineering sciences); (3) the influence varies with
38 authors who have different language speaking backgrounds and geographic regions according to the
39 location of their affiliations (Italy, China, etc.); (4) AI-generated texts are used in various content
40 types in manuscripts (most significant: hypothesis formulation, conclusion summarization); (5)
41 AI usage has a positive influence on paper's impact, measured by its citation numbers. Based on
42 these findings, suggestions about the advantages and regulation of AI-augmented scientific writing
43 are discussed.

44 1 Introduction

45 The advent of AI in various sectors has marked a new era in the production and consumption of digital
46 content (Brynjolfsson et al., 2023). Among the most notable developments is the rapid development of

47 generative AI and large language models (LLMs). ChatGPT¹, introduced in 2022, is an LLM based on
48 GPT3 (Brown et al., 2020) with uncanny ability to generate text that closely mimics human writing.
49 The ability of ChatGPT and similar models to produce coherent, contextually relevant texts has
50 revolutionized content creation, leading to its adoption across multiple writing forms. This proliferation
51 has not been without controversy, however, as it raises significant concerns regarding the authenticity,
52 originality, and quality of AI-generated content (Brynjolfsson et al., 2023; Cardon et al., 2023; McKee
53 and Porter, 2020; Salvagno et al., 2023). Moreover, the potential of these technologies to contribute
54 to information overload by producing large volumes of content rapidly has been a subject of debate
55 among academics and industry professionals alike (Jakesch et al., 2019; Dergaa et al., 2023).

56 In the scientific community, the penetration of AI-generated texts poses unique challenges and
57 opportunities. Scientific writing is typically characterized by its rigorous standards for accuracy, clar-
58 ify, and conciseness, and some of these tasks could be assisted with LLM and AI-generated text.
59 However, scientific writing also requires the art of human inquisition, perception, and a nuanced un-
60 derstanding and explanation of the key observations and findings; these parts of the scientific writing
61 are not currently possible with LLM models. Thus, scientific writing may be a crossroads with the
62 integration of AI-generated content. The core of this study focuses on exploring the extent to which
63 AI-generated texts have made their way into scientific literature, particularly within the domain of
64 preprint manuscripts. By leveraging a large open composite dataset of preprint submission and ad-
65 vanced detection tools, such as the Binoculars LLM-detector (Hans et al., 2024), this research aims
66 to map out the landscape of AI influence in scientific writing. Our investigation spans across different
67 disciplines and examines the correlation between the surge in AI-generated content and various factors,
68 including search trends, domain-specific impacts, and the demographic characteristics of authors. We
69 also examined the relationship between a paper's impact and its AI usage, revealing that AI usage
70 positively correlated with citation numbers. This comprehensive analysis provides insights into how
71 AI is reshaping the conventions of scientific writing and offers more fine-grained suggestions about safe
72 use of AI in academic research.

¹In this study we may use LLM, ChatGPT and AI alternately. As in the use case of text generation, the most advanced AI tools are usually transformer based LLMs, and ChatGPT has been the dominating choice among these LLMs at the time of writing.



Figure 1: Overview of the data processing pipeline and analyses of AIs influence on scientific literature A: Schematic of the data processing workflow. Manuscripts and metadata were downloaded from three platforms: arXiv, bioRxiv, and medRxiv. Next, country/region information was extracted from the metadata using APIs provided by services such as nationalize.io and Google Maps. Following this preprocessing process, manuscripts were segmented into chunks. These chunks were then analyzed using Binoculars detectors to obtain chunk-level Binoculars scores. B: Interpretation of the Binoculars score. A higher Binoculars score suggests human authorship and a lower score indicates potential AI generation. C: Summary of dataset characteristics including the distribution of manuscripts across different preprint platforms (left), domain diversity within the dataset (middle), and country/region distribution (right). D: Examination of the AIs influence before and after the release of ChatGPT. Left: The weekly level comparisons between ChatGPT Google Trends and Binoculars indices. Top: the average variance of Binoculars values; Middle: the average of mean values of Binoculars; Bottom: the average of min Binoculars values. Middle: daily level comparisons of Binoculars indices before and after the release of ChatGPT. Right: daily level comparisons between ChatGPT Google Trends and Binoculars indices, after the release of ChatGPT. (For all statistical tests performed in D, * : $p < 0.05$, ** : $p < 0.01$, *** : $p < 0.001$, **** : $p < 0.0001$)

73 2 Results

74 2.1 Dataset

75 The publishing life-cycle of a paper may take various time periods, with some of them longer than
76 a year. On the other hand, LLM-based text generation AI tools like ChatGPT, have gained broad
77 popularity since the end of 2022. Such a short time span makes it difficult to analyze the AI footprint
78 in officially published literatures. Therefore, we have instead focused on manuscripts submitted to
79 preprint platforms. Such platforms like arXiv are good choices for our purpose for several reasons:
80 First, more and more authors tend to upload a preprint version before they submit the manuscript to
81 a journal to plant a flag about the timing of their discovery. Thus, the timeliness of content may be the
82 latest we can get from the science community; Second, the number of manuscripts submitted to these
83 platforms are high even in a short interval, making it possible to do more fine-grained analysis; Last,
84 to our knowledge, all preprint platforms are open to bulk access, making large scale analysis possible.

85 In this study, we collected manuscripts in the form of PDF files from three mainstream preprint
86 platforms: arXiv, bioRxiv and medRxiv (Fig. 1A, Fig. 1C left), covering domains spanning from
87 math and engineering to biology and medicine (Fig. 1C middle). For all platforms, we downloaded
88 manuscripts from 2022.01.01 to 2024.03.01. We chose this time period because it includes one year
89 before and one year after the release of ChatGPT in December 2022. For each month, at most
90 1000 random manuscripts (in some months medRxiv has fewer than 1000 papers submitted) were
91 downloaded in each platform using the provided API. After cleaning and preprocessing (see Method),
92 some invalid documents were removed and 45129 manuscripts were used for analysis. The domains of
93 these papers are categorized into following classes: Biological Sciences, Computer Science, Economics
94 and Finance, Engineering, Environmental Sciences, Mathematical Sciences, Medicine, Neurosciences,
95 and Physical Sciences.

96 On the other side, since we have no internal access to the specific traffic data of OpenAIs website,
97 to investigate the influence and usage of ChatGPT, we used Google Trends data as a proxy (Nuti
98 et al., 2014). Daily and Weekly level world-wide Google Trends of the keyword ChatGPT are used for
99 analyses at different temporal resolutions.

100 2.2 Binoculars scores before and after the release of ChatGPT

101 In early models like LSTM or GRU (Hochreiter and Schmidhuber, 1997; Cho et al., 2014), machine-
102 generated texts could be easily spotted and were generally considered useless in production. However,
103 since the advent of transformer-based models, detecting AI-generated texts has become challenging due
104 to the transformative power of the architecture. The release of ChatGPT at the end of 2022 further
105 complicated detection, as detectors may not have access to the model. On the other hand, LLMs
106 like ChatGPT can generate seemingly realistic texts at first glance, making catch-by-eye detection
107 implausible. Detectors that use hidden statistical patterns have become advantageous in this context,
108 as they require no knowledge of the specific LLMs used and little to no training at all.

109 Some common choices are based on the perplexity of the given text (Dhaini et al., 2023; Ghosal
110 et al., 2023; Tang et al., 2023). The general idea behind this approach is that texts generated by
111 LLMs tend to have lower perplexities. However, this may only work for texts that are completely
112 generated by LLMs. In the case of scientific writing, authors may rely on LLMs more for revising
113 content rather than using LLMs to generate an entire manuscript from scratch. Detecting such revised
114 texts could be extremely challenging. We noted that a tool developed recently, the Binoculars score
115 (Hans et al., 2024), specifically addresses this issue. When Binoculars is high, it indicates that the
116 input text is more likely generated by humans. When Binoculars is lower than a certain threshold,
117 the text is more suspicious of containing LLM-generated content (Fig. 1B). By utilizing two instead
118 of one LLM, Binoculars allows us to detect texts that may have prompts mixed into the content. This
119 feature enables it to outperform several other known LLM detectors, such as Ghostbuster (Verma et al.,

120 2023), GPTZero², and DetectGPT (Mitchell et al., 2023), in many benchmark tests, including datasets
121 involving arXiv samples. Given its outstanding performance efficiency, we use it as the main tool for
122 detecting LLM-generated texts in this study (for details, see [Material and Methods, Supplementary](#)
123 [Materials](#)).

124 Since a complete manuscript is usually too long for a single pass of Binoculars detector, we first
125 split each manuscript into even-sized chunks. Then, each chunk is fed into the Binoculars detector,
126 and a Binoculars score is calculated. For a manuscript, its LLM fingerprint is then the sequence of the
127 corresponding Binoculars scores. In our study, we observed that the mean, variance, and minimum
128 values of this sequence are crucial for spotting AI-generated texts. For all manuscripts in the dataset,
129 we calculated their paper-level mean, variance, and minimum Binoculars scores. Next, a forward
130 rolling average of these three scores with a window of 30 days was used to compute three Binoculars
131 indices from 2022 to 2024, assuming the current usage of ChatGPT may be reflected in the manuscripts
132 submitted in the near future rather than at the same moment, given that a manuscript usually takes
133 a relatively long time to finish (a 30-day average lag is assumed).

134 We then compared these three indices with the weekly Google Trends of the keyword ChatGPT,
135 which is used to indirectly measure the usage and popularity of AI tools in writing. As shown by
136 the gray lines in the left column of Fig. 1, the search trend for ChatGPT rises after its release on
137 2022.11.30. Compared with this trend, we noticed that the three Binoculars indices correlate with the
138 trend in various ways: The average mean and minimum Binoculars values are higher before the release
139 of ChatGPT, while the variance is higher after the release. This suggests a divergence in content
140 generated by humans and ChatGPT after the release, given the increase in variance and minimum
141 value. The overall content containing ChatGPT-generated text is also higher, as indicated by the
142 decrease in mean Binoculars indices.

143 We further examined whether this relationship holds in an even more refined temporal domain.
144 Similarly, daily-level ChatGPT Google Trends were compared with Binoculars indices at the same
145 resolution, but only for the time after the release of ChatGPT. The results on the right side of Fig.
146 1D indicate that the correlation persists and is consistent with the weekly level analysis. A closer look
147 at the correlation significance reveals that, compared with mean Binoculars scores, minimum values
148 and variances are more representative. This matches the impression we got from the weekly data
149 that minimum values are stronger signs of the Google trend. It also implies the same aforementioned
150 divergence tendency and the increased variance could be mainly driven by the increased min values.
151 Therefore, in the later analysis we focus on the min and mean values of Binoculars indices.

²available from <https://gptzero.me>

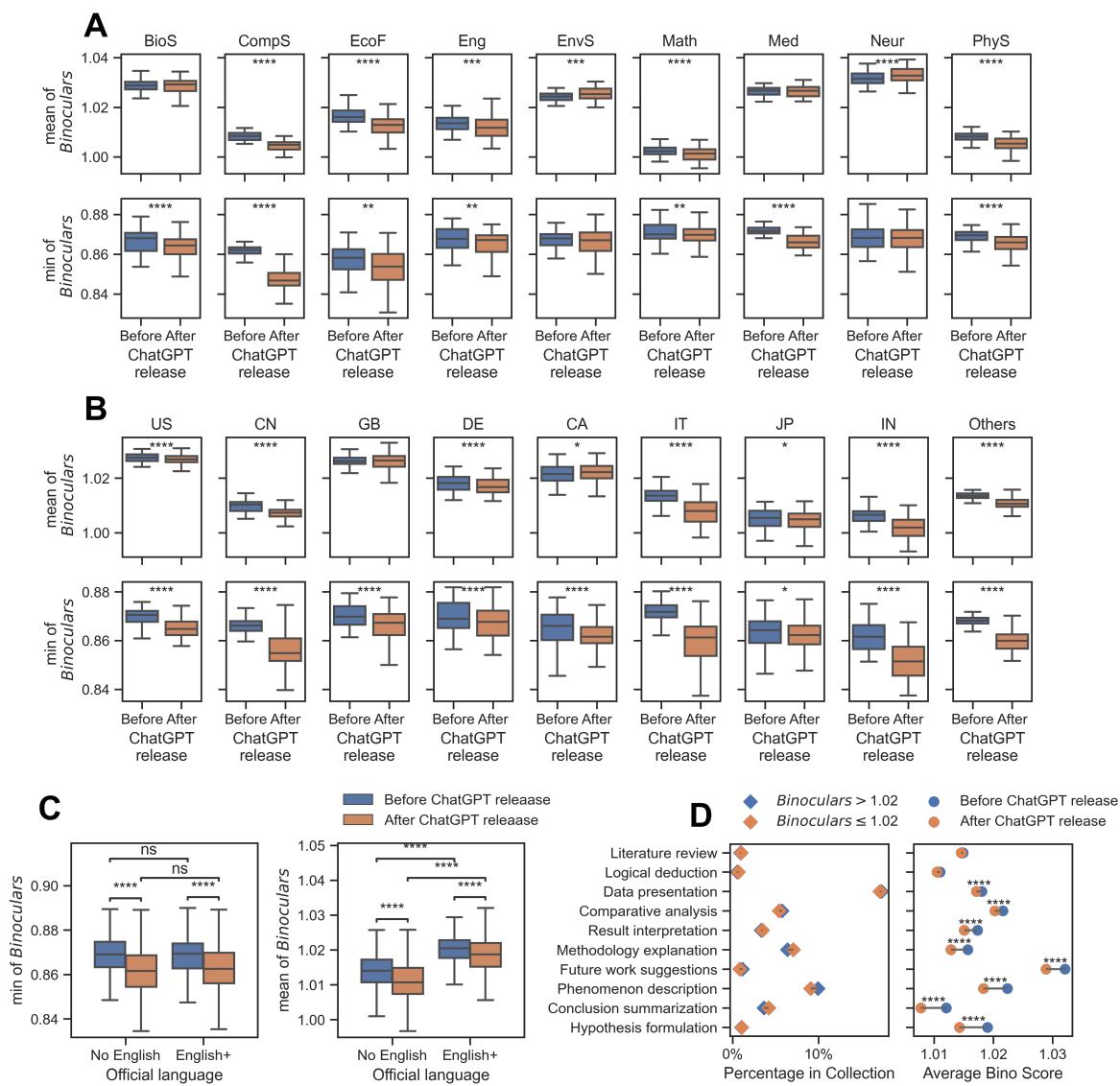


Figure 2: Distributions of Binoculars mean and min values across different domains (A), countries/regions(B), authors languages (C), and content types (D). A: Mean (top) and min (bottom) values across scientific domains before and after the release of ChatGPT. For each domain, the distribution of Binoculars scores is compared between manuscripts submitted before and after the release of ChatGPT on November 30, 2022. Domains are represented by their abbreviations: Biological Sciences (BioS), Computer Science (CompS), Economics and Finance (EcoF), Engineering (Eng), Environmental Sciences (EnvS), Mathematical Sciences (Math), Medicine (Med), Neurosciences (Neur), and Physical Sciences (PhyS). Asterisks denote the level of statistical significance for the difference in Binoculars scores before and after ChatGPT's release within each domain. B: Same as A, but for different countries/regions. Note that besides the top 8 countries, the “other” column aggregates the results from all other countries/regions in the dataset. C: Similar to A and B, but for countries/regions with and without English as an official language before and after the release of ChatGPT. The box plots show the distribution of Binoculars scores for manuscripts from countries/regions where English is an official language versus those where English is not an official language. D: Analysis of content types in relation to AI-generated text. Left: Distribution of content types in texts with high (Binoculars scores above the average score of 1.02) and low (Binoculars scores below the average score of 1.02) Binoculars scores; Right: Distribution of content types before and after the release of ChatGPT, ordered by descending differences, from top to bottom. (For all statistical tests performed, * : $p < 0.05$, ** : $p < 0.01$, *** : $p < 0.001$, **** : $p < 0.0001$)

152 2.3 Domains

153 The results in Fig. 1D lay the ground for a more detailed analysis. We next ask: Is there a difference
154 in the use of ChatGPT or other LLMs across different domains? If so, several factors could contribute
155 to it: The distribution of corpora used for LLM training might be imbalanced, leading to differenti-
156 ated performance across various domains, which in turn affects domain-specific usage preferences. For
157 example, domains like mathematics, which often involve more abstract descriptions and highly con-
158 textualized symbols, may find it challenging to use ChatGPT directly, potentially resulting in higher
159 Binoculars scores. The reliance on and familiarity with the latest digital tools may also lead to varying
160 attitudes towards using LLMs in writing. For instance, the computer science community might be
161 more open to integrating ChatGPT into their workflow.

162 To understand this, we categorized all manuscripts into several domains (Fig. 1C middle) and
163 analyzed the distribution of mean and minimum Binoculars scores before and after the release of
164 ChatGPT. Fig. 2A reveals the existence of the hypothesized differentiation. Domains such as biological
165 science, computer science, and engineering show the largest drop in minimum Binoculars values after
166 the release of ChatGPT, suggesting a relatively heavy use of it. In the domains of engineering and
167 computer science, the mean Binoculars scores also significantly decrease. However, these domains also
168 exhibit a relatively low average Binoculars score even before the release, which may be attributed to the
169 size of the corpus of these domains in the training dataset of LLMs like ChatGPT. All other domains
170 also demonstrate a decrease in either mean or minimum Binoculars scores, suggesting a widespread
171 use of ChatGPT in scientific writing after its release.

172 2.4 Countries/languages

173 Another important factor that may influence the use of ChatGPT is the native language spoken by
174 the authors of the paper (El kah et al., 2023; Hwang et al., 2023). Since most of the manuscripts
175 analyzed and published are in English, it is reasonable to hypothesize that individuals who use English
176 as a second language may rely more on ChatGPT. However, directly analyzing this is impractical,
177 as platforms do not provide the nationality of all authors. Additionally, an author may be fluent in
178 more than one language. For each platform, we devised workarounds to address this issue (for details,
179 see Methods) and therefore assigned a country/region for each manuscript in the dataset (Fig. 1C
180 right). Top 8 countries with highest number of submissions are selected for analysis. For remaining
181 countries/regions, we aggregated them into the "Others" category.

182 Similar to Fig. 2A, we analyzed the distribution of mean and minimum Binoculars values before
183 and after the release of ChatGPT. From Fig. 2B, it is evident that almost all countries exhibit a
184 decrease in minimum Binoculars values, while the decrease in mean Binoculars values is present but
185 not as pronounced. Additionally, countries like China, Italy, and India show a larger gap in both the
186 mean and minimum Binoculars values drop after the release of ChatGPT. We hypothesized that this
187 is related to the fact that the native languages in some of these countries do not include English.

188 To validate this hypothesis, we classified countries/regions by their official languages (Fig. 2C). The
189 results show that, although Binoculars scores decrease for all after the release of ChatGPT, the overall
190 levels of mean and minimum Binoculars values are still higher in countries/regions where English is
191 one of the official languages. This finding aligns with some previous studies indicating that some LLM
192 detectors tend to recognize texts written by non-native English speakers as LLM-generated (Liang
193 et al., 2023).

194 2.5 Content types

195 Another aspect to consider is the influence of AI-generated text on content types. Intuitively, content
196 that introduces previous findings or contains more existing information might be more influenced by
197 AI, as the training dataset could already have the knowledge. In contrast, highly specific content and
198 new findings might be less suitable for generation by AIs. To examine this, we used the NLI-based

199 Zero Shot Text Classification model to categorize all chunks in each manuscript into these types:
 200 phenomenon description, hypothesis formulation, methodology explanation, data presentation, logical
 201 deduction, result interpretation, literature review, comparative analysis, conclusion summarization,
 202 future work suggestions, bibliography, and publishing metadata. Excluding the last two types, which
 203 are irrelevant to our analysis and are introduced by the parsing process of PDF files, we analyzed the
 204 distribution of all these types in the dataset.

205 Specifically, we first checked if the distribution of content types is stable across text chunks with high
 206 and low Binoculars score distributions (Fig. 2D, left). All text chunks were split into two sets: those
 207 with Binoculars scores higher than the average score of the whole dataset (1.02) and those that were
 208 lower. We found that the average Binoculars scores of different content types matched our intuition:
 209 literature review content has very low Binoculars scores, while contents containing novel information,
 210 such as data presentation and phenomenon description, have the highest average Binoculars scores.
 211 Additionally, the content type distributions in high and low Binoculars score collections are relatively
 212 stable, as the portion shifts are small.

213 Next, we examined the Binoculars score differences for each content type before and after the release
 214 of ChatGPT (Fig. 2D, right). Although most content types showed signs of a decrease in Binoculars
 215 scores, literature reviews did not experience a significant drop after the release of ChatGPT. Contents
 216 previously considered "novel," such as hypothesis formulation, conclusion summarization, phenomenon
 217 description, and future work suggestions, instead show the largest score drops.

218 2.6 Binoculars score and paper's impact

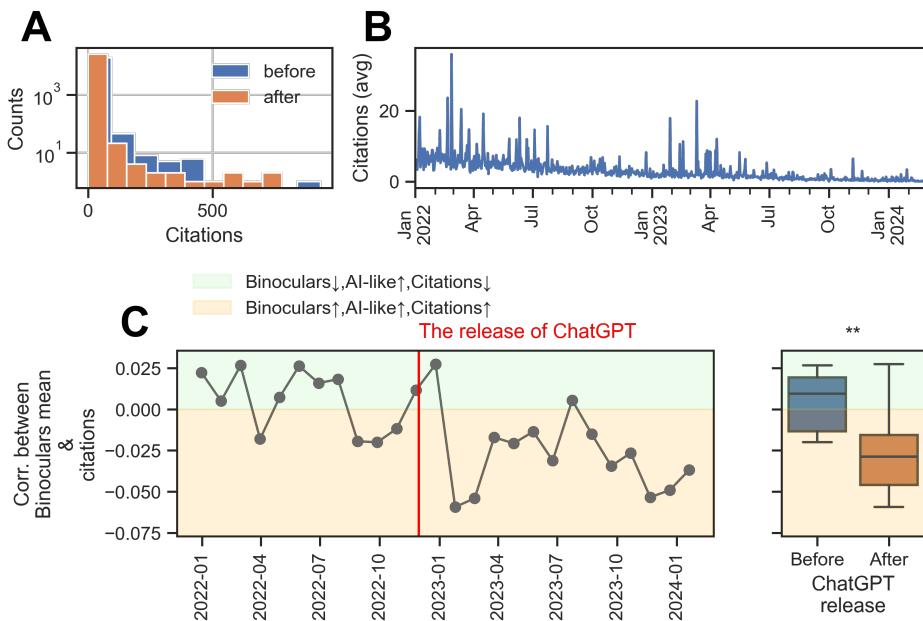


Figure 3: A: The histogram of manuscripts' citation number before (blue) and after (orange) the release of ChatGPT. B: The daily average citation numbers in the whole dataset across all preprint platforms. C: The 30-day correlations between a manuscripts' mean Binoculars score and their citation numbers from 2022 to 2024 (left) and the aggregated distributions of 30-day correlations before (blue) and after (orange) the release of ChatGPT (right). The light green regions indicate that when a manuscript more likely contains AI-generated text, it has a lower Binoculars score mean and less likely receives citations (positive correlation). For the light blue regions the trend is flipped due to the negative correlation.

219 One of the common reasons people worry about the use of AI is that it may “contaminate” content
220 quality, but is this really the case? Since directly accessing such a subjective measure is hard, we
221 turned to citation numbers as a proxy for a paper’s impact. Using the API provided by Semantic
222 Scholar, we collected citation numbers for nearly all manuscripts in the dataset. We first compared
223 the correlation between the Binoculars score mean values and the number of citations in two sets:
224 manuscripts submitted before and after the release of ChatGPT. The correlation before the ChatGPT
225 release is not significant (0.004214, $p=0.56$). However, after the release, the correlation changes to
226 -0.018911, with a p -value of 0.002566. A difference in correlation analysis shows that the change in
227 correlation is significant (p -value = 0.007994). This surprisingly implies that since people can use
228 ChatGPT, the more one uses it (lower Binoculars score mean values), the more likely one will get
229 citations.

230 To rule out the possibility that this difference is caused by the time elapsed effect on citations, we
231 conducted a more fine-grained analysis. We first noticed that the distribution of citation numbers is
232 highly imbalanced, with most papers receiving a few citations (Fig. 3A). Besides, citation numbers
233 naturally accumulate, and thus more recent papers usually get fewer citations compared with older
234 ones, though their actual impact may be comparable. This is reflected in the “decaying” daily citation
235 average of citation numbers in the dataset (Fig. 3B). With such heterogeneous distributions, we
236 compared correlations between the mean Binoculars scores and citations in a 30-day period, ranging
237 from 2022 to 2024 (Fig. 3C left), as the accumulation effect could be ignored in such a short interval.
238 The results show that, after the release of ChatGPT, there’s indeed a declining trend of this correlation
239 down to negative regions. The difference in these month-level correlations is also significant, being
240 consistent with our preliminary analysis above.

241 3 Discussion

242 By analyzing around 45,000 manuscripts submitted to 3 preprint platforms over the past two years, we
243 have identified a significant increase in the use of AI in scientific writing following the release of Chat-
244 GPT in late 2022. This was achieved by examining the Binoculars score statistics for each manuscript.
245 We observed that the average Binoculars scores have significantly decreased after 2022.11.30, and this
246 decrease correlates with the Google Trends data for the keyword “ChatGPT”, indicating a widespread
247 presence of AI-generated text in scientific manuscripts. Further analyses reveal an imbalance in AI
248 usage across different disciplines and countries. Fields like computer science and engineering show a
249 higher incidence of AI use. A similar trend is observed in countries where English is not the official
250 language, as confirmed by integrated Ordinary Least Squares (OLS) regression analysis (see [Material](#)
251 and [Methods](#), [Supplementary Materials](#)). The influence of AI on content type is also uneven. Texts
252 that are believed to contain new information exhibit a larger decline in Binoculars scores compared
253 to literature reviews. Additionally, we have tracked the evolution of correlations between the mean
254 Binoculars scores and citation numbers each month. An unexpected trend reversal was noted: before
255 the release of ChatGPT, the correlation was weakly positive and at times insignificant, suggesting
256 that writing style had a minimal impact on a paper’s influence. However, post-release, the correlation
257 turned negative, indicating that papers with AI-generated content are more likely to be cited.

258 Nevertheless, the analysis pipeline constructed still has a few limitations. First, as pointed out by
259 [Hans et al. \(2024\)](#), it is impossible to completely determine whether a text is generated by AI. Since
260 the Binoculars score relies on statistical patterns more commonly found in AI-generated texts, there’s
261 a chance that improper use and attacks may reduce its reliability ([Sadasivan et al., 2023](#)). This is
262 also why we observe fluctuations in Binoculars values in manuscripts before the release of ChatGPT.
263 Other statistical tools we used for analysis, like the zero-shot text classification model, also make
264 similar errors. Second, although an increasing number of authors tend to upload their manuscripts
265 to preprint platforms ([Piwowar et al., 2018](#)), these platforms still do not cover all scientific papers,
266 not to mention that different domains also have varying tendencies in using preprints as a distribution
267 channel. Therefore, the dataset we used cannot represent the entire picture, though the statistical

268 results are stable for major domains and countries/regions. Third, due to the limitations of platforms
269 like arXiv, we have no direct access to the authors' country/region/native language information. The
270 introduction of nationality inference services inevitably leads to errors in specific papers. Moreover,
271 as discussed above, a manuscript may contain contributions from people speaking different languages,
272 making the country/region analysis imprecise.

273 Despite the limitations outlined above, this study represents, to our knowledge, the first endeavor
274 to reveal the trend of AI's footprint in contemporary scientific writing activities through quantitative,
275 large-scale analysis. Regardless of personal opinions, AI tools such as ChatGPT have become embedded
276 in daily human communication. However, unlike scenarios where students employ AI to complete
277 assignments, scientific writing has traditionally been viewed as a means of disseminating ideas and
278 new knowledge to humanity, raising concerns within the community about ethical issues more than
279 just plagiarism (Sadasivan et al., 2023).

280 Our analysis suggests that, for the regulation purpose, the impact of AI on scientific writing should
281 be discussed at more detailed levels, rather than simple usage disclosure. First, although the mean
282 Binoculars scores have significantly decreased following the introduction of ChatGPT (Fig. 1D), they
283 remain above 1.01, which is considerably higher than the threshold of around 0.9 set by (Hans et al.,
284 2024). This suggests that while the use of AI in scientific writing may be widespread, it is not
285 predominantly for generating extensive texts. Authors may primarily use AI for editing and revising
286 purposes, especially in content that is about the creation of new knowledge (Fig. 2D). With such
287 applications, we can't see any reasons to simply oppose the use of AI in writing, as it can be used to
288 bridge the communication gap caused by region/language barriers. The heterogeneous use of AI in
289 countries without English as their official languages indirectly confirmed this point (Fig. 2C). Analysis
290 about the correlation between Binoculars scores and citation numbers, on the other side, also suggests
291 the positive influence of AI usage in improving papers' impact (Fig. 3C).

292 4 Material and Methods

293 4.1 Data source and preprocessing

294 To extract submitted manuscript information from bioRxiv and medRxiv, we used the official "details"
295 API in these platforms <https://api.biorxiv.org/> and <https://api.medrxiv.org/>. For arXiv,
296 manuscript information is downloaded directly from Kaggle (<https://www.kaggle.com/datasets/Cornell-University/arxiv>) as it provides free bulk access to all submissions on arXiv. For all
297 platforms, we collect at most 1000 submissions in each month, starting from 2022.01 to 2024.03.

298 All PDF files were directly download from the corresponding platforms using the URLs in the
299 meta data fetched above. Once downloaded, we used pymupdf (<https://pymupdf.readthedocs.io/en/latest/>) to parse the PDF files and turn them into plain text files. Non-ASCII characters are
300 filtered out in this step, for the convenience of later analyses. Next, for each manuscript, we segment
301 it into chunks of with length 512 for further Binoculars calculation.

304 4.2 Identification of country/region information

305 For country/region and language analysis (Fig. 2), at least one country/region and language must be
306 assigned to each manuscript. All platforms do not provide author country/region information directly.
307 bioRxiv and medRxiv provide the corresponding author name and institution information. arXiv
308 provides only a list of author names for each paper.

309 To simplify and implement our analysis, we made several decisions in this process. First, we assume
310 that corresponding author largely determines the content and writing style of the manuscript. Second,
311 we assume the last author provided by arXiv at most of the time, can be treated as the corresponding
312 author of that paper. bioRxiv and medRxiv do not rely on this assumption as they provide the
313 information directly. for bioRxiv and medRxiv, when the corresponding author is affiliated with more
314 than one institution, we selected the first one as the only institution for our analysis. Third, when

315 the corresponding author’s institution information is available, we use Google Maps API to get the
316 country/region information of the institution and treat this as the country/region of the paper. Lastly,
317 when the corresponding author’s institution information is not available (arXiv), we use nationalize.io’s
318 service to infer the country/region of the corresponding author, as one’s name statistically can be used
319 to infer their ethnicity/nationality (needs citation). Then the official language is determined using the
320 ISO-3166 Country Codes and ISO-639 Language Codes. Since nationalize.io also returns unknown for
321 some names occasionally, we excluded such manuscripts for the country/region/language analysis.

322 4.3 ChatGPT Google Trends

323 We downloaded worldwide Google Trends data for the keyword “ChatGPT”, both weekly and daily,
324 from <https://trends.google.com/trends/>. Weekly trends data is downloaded directly from the
325 server. But for the daily trends data, since Google only provides a limited time interval for each
326 query and the results are normalized within the interval from 0 to 100, we downloaded daily data in
327 two-month intervals and forced different queries to overlap. This approach allows the reconstruction
328 of long-interval daily trends data using the earliest month as the base.

329 4.4 Binoculars score

330 For each manuscript, after segmenting into text chunks with size 512, we used the detector package
331 <https://github.com/ahans30/Binoculars> provided by (Hans et al., 2024) to calculate the Binoc-
332 ulars score. Specifically, the input text is first tokenized into a sequence of tokens and then fed into
333 two separate LLMs. In our case, we used the Falcon-7b model and the Falcon-7b-instruct model (Al-
334 mazrouei et al., 2023). This method first calculates the log perplexity (logPPL) of one LLM using
335 the negative average of the logarithm of the next token probability in the input sequence. Next, a log
336 “cross”-perplexity (logX-PPL) for another LLM is calculated using the negative weighted average of
337 the second LLM’s logarithm of the next token probability, with weights provided by the first LLM. The
338 Binoculars score is then defined by dividing the first negative average by the second “cross”-negative
339 average:

$$\text{Binoculars score} = \frac{\text{logPPL}}{\text{logX-PPL}} \quad (1)$$

340 In our analysis, we calculate Binoculars scores for each text chunk in a manuscript. At the
341 manuscript level, we compute the variance, mean, and min values of all Binoculars scores in the
342 manuscript.

343 4.5 Content type classification

344 To examine the correlation between content types and Binoculars scores, we classified all text pieces
345 into the following 12 content types: phenomenon description, hypothesis formulation, methodology
346 explanation, data presentation, data presentation, logical deduction, result interpretation, literature
347 review, comparative analysis, conclusion summarization, future work suggestions, bibliography, pub-
348 lishing metadata.

349 This list covers the majority of content found in a typical scientific paper. Subsequently, we em-
350 ployed Meta’s NLI-based Zero Shot Text Classification model (<https://huggingface.co/facebook/bart-large-mnli>) (Lewis et al., 2019; Yin et al., 2019) to perform zero-shot text classification us-
351 ing the above list of content types. Except for bibliography and publishing metadata, which are not
352 essential for our analysis, the distributions are analyzed.

354 4.6 Regression analysis of language and country/region

355 We employed Ordinary Least Squares (OLS) regression analysis to investigate the influence of domains
356 and language, and the release of ChatGPT on the min, mean and variance of Binoculars scores of all

357 manuscripts. The models used correspondingly are:

$$\text{min/min/var(Binoculars Scores)} \sim C(\text{domain}) + C(\text{has_en}) + \text{afterChatGPT} \quad (2)$$

358 where the domain is from the analysis in Fig. 2A, has_en denotes whether the manuscript is from
359 a country/region that has English as one of its official languages (Fig. 4) and afterChatGPT indicates
360 if the manuscript is uploaded after the release of ChatGPT (0: before or 1: after).

361 References

362 Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A., Cojocaru, R., Debbah, M., Goffinet, E.,
363 Heslow, D., Launay, J., Malartic, Q., et al. (2023). Falcon-40b: an open large language model
364 with state-of-the-art performance. *Findings of the Association for Computational Linguistics: ACL*,
365 2023:10755–10773.

366 Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
367 P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. *Advances in neural*
368 *information processing systems*, 33:1877–1901.

369 Brynjolfsson, E., Li, D., and Raymond, L. R. (2023). Generative ai at work. Technical report, National
370 Bureau of Economic Research.

371 Cardon, P., Fleischmann, C., Aritz, J., Logemann, M., and Heidewald, J. (2023). The challenges and
372 opportunities of ai-assisted writing: Developing ai literacy for the ai age. *Business and Professional*
373 *Communication Quarterly*, 86(3):257–295.

374 Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Ben-
375 gio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine
376 translation. *arXiv preprint arXiv:1406.1078*.

377 Dergaa, I., Chamari, K., Zmijewski, P., and Saad, H. B. (2023). From human writing to artificial
378 intelligence generated text: examining the prospects and potential threats of chatgpt in academic
379 writing. *Biology of sport*, 40(2):615–622.

380 Dhaini, M., Poelman, W., and Erdogan, E. (2023). Detecting chatgpt: A survey of the state of
381 detecting chatgpt-generated text. *arXiv preprint arXiv:2309.07689*.

382 El kah, A., Zahir, A., and Zeroual, I. (2023). Identifying chatgpt-generated essays against native
383 and non-native speakers. In *The International Conference on Artificial Intelligence and Smart*
384 *Environment*, pages 242–247. Springer.

385 Ghosal, S. S., Chakraborty, S., Geiping, J., Huang, F., Manocha, D., and Bedi, A. S. (2023).
386 Towards possibilities & impossibilities of ai-generated text detection: A survey. *arXiv preprint*
387 *arXiv:2310.15264*.

388 Hans, A., Schwarzschild, A., Cherepanova, V., Kazemi, H., Saha, A., Goldblum, M., Geiping, J., and
389 Goldstein, T. (2024). Spotting llms with binoculars: Zero-shot detection of machine-generated text.

390 Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. *Neural computation*, 9(8):1735–
391 1780.

392 Hwang, S. I., Lim, J. S., Lee, R. W., Matsui, Y., Iguchi, T., Hiraki, T., and Ahn, H. (2023). Is chatgpt a
393 fire of prometheus for non-native english-speaking researchers in academic writing? *Korean Journal*
394 *of Radiology*, 24(10):952.

395 Jakesch, M., French, M., Ma, X., Hancock, J. T., and Naaman, M. (2019). Ai-mediated communication:
396 How the perception that profile text was written by ai affects trustworthiness. In *Proceedings of the*
397 *2019 CHI Conference on Human Factors in Computing Systems*, pages 1–13.

398 Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation,
399 translation, and comprehension. *arXiv preprint arXiv:1910.13461*.

400 Liang, W., Yuksekgonul, M., Mao, Y., Wu, E., and Zou, J. (2023). Gpt detectors are biased against
401 non-native english writers. *Patterns*, 4(7).

402 McKee, H. A. and Porter, J. E. (2020). Ethics for ai writing: The importance of rhetorical context.
403 In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, pages 110–116.

404 Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D., and Finn, C. (2023). Detectgpt: Zero-shot
405 machine-generated text detection using probability curvature. In *International Conference on Ma-*
406 *chine Learning*, pages 24950–24962. PMLR.

407 Nuti, S. V., Wayda, B., Ranasininghe, I., Wang, S., Dreyer, R. P., Chen, S. I., and Murugiah, K. (2014).
408 The use of google trends in health care research: a systematic review. *PLoS one*, 9(10):e109583.

409 Piwowar, H., Priem, J., Larivière, V., Alperin, J. P., Matthias, L., Norlander, B., Farley, A., West,
410 J., and Haustein, S. (2018). The state of oa: a large-scale analysis of the prevalence and impact of
411 open access articles. *PeerJ*, 6:e4375.

412 Sadasivan, V. S., Kumar, A., Balasubramanian, S., Wang, W., and Feizi, S. (2023). Can ai-generated
413 text be reliably detected? *arXiv preprint arXiv:2303.11156*.

414 Salvagno, M., Taccone, F. S., and Gerli, A. G. (2023). Can artificial intelligence help for scientific
415 writing? *Critical care*, 27(1):75.

416 Tang, R., Chuang, Y.-N., and Hu, X. (2023). The science of detecting llm-generated texts. *arXiv*
417 *preprint arXiv:2303.07205*.

418 Verma, V., Fleisig, E., Tomlin, N., and Klein, D. (2023). Ghostbuster: Detecting text ghostwritten by
419 large language models. *arXiv preprint arXiv:2305.15047*.

420 Yin, W., Hay, J., and Roth, D. (2019). Benchmarking zero-shot text classification: Datasets, evaluation
421 and entailment approach. *arXiv preprint arXiv:1909.00161*.

423

A Supplementary Materials

424

A.1 Comparison of AI content detectors

425 We sampled 1,000 manuscripts from those submitted prior to the release of ChatGPT, of which 500
426 were used as positive samples. For these manuscripts, a maximum of 5 chunk per manuscript were
427 selected to be revised by GPT-3.5, using the following prompt:

You are a helpful assistant. The user will send you a message containing an unoptimized piece
of academic writing that is excerpted from a paper. You will revise the piece and improve it.
Notice that the piece may be incomplete paragraphs and may have unfinished beginning and
ending sentences. You need to respect these parts, do not modify them, and only edit parts that
will not influence its original content. Your response should be pluggable to the original paper
seamlessly. Your response will be nothing but the modified content. DONOT reply anything
else.

428

429 This step thus constructed a dataset with ground truth labels of AI revision.

430 Next, we used Binoculars score detector and an open sourced implementation³ of GPTZero to
431 calculate a label for all chunks in each manuscript. Two Logistic regression models are trained based
432 on the label sequence statistics of each manuscript, using the mean, min and variance values. These
433 models predict the presence or absence of AI-revised content in a manuscript. From the dataset of
434 1,000 manuscripts with ground truth, 80% was used for training and 20% for testing. Both models
435 work with a higher than chance accuracy. The model trained with Binoculars scores achieved an AUC
436 of 0.67, while the one with GPTZero scores achieving a lower 0.64 (Fig. 4).

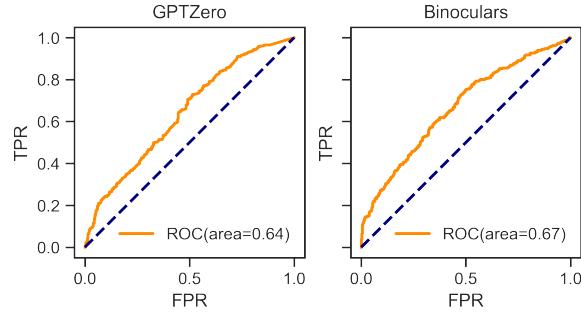


Figure 4: The ROC comparison between GPTZero (left) and Binoculars (right) models.

437 A.1.1 AI usage declaration

438 We randomly sampled 1000 papers from the manuscripts with lowest 10% average Binoculars scores in
439 the whole dataset. Using GPT and human evaluation, we found no signs of any explicit declarations
440 of AI/LLM/ChatGPT usage in them. Below is the prompt used for initial AI usage declaration:

You are an AI assistant whose role is to analyze academic papers submitted by users in plain text format. Your specific task is to determine whether the paper includes any declarations or statements indicating that it has been edited, revised, or written with the assistance of Artificial Intelligence (AI), Language Models (LLM), or specifically ChatGPT. It is crucial to focus solely on the content generation aspect of writing, excluding any involvement of AI in data preparation, data analysis, or other non-writing related activities. After your analysis, you will respond with a single letter: "Y" for Yes if you find evidence indicating that the paper's textual content was AI-generated, or "N" for No if there is no indication of AI-generated writing. Your evaluation should be accurate, honing in on explicit acknowledgments of AI's role in the creation of the paper's written content.

442 A.2 OLS results

443 To investigate domain/language influence on Binoculars scores, OLS regressions are performed for the
444 mean/min/variance of manuscripts' Binoculars scores.

³<https://github.com/BurhanUlTayyab/GPTZero>

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.0285	0	2657.55	0	1.028	1.029
C(fields)[T.Computer Science]	-0.0221	0	-54.817	0	-0.023	-0.021
C(fields)[T.Economics and Finance]	-0.014	0.001	-12.03	0	-0.016	-0.012
C(fields)[T.Engineering]	-0.0157	0.001	-14.899	0	-0.018	-0.014
C(fields)[T.Environmental Sciences]	-0.0029	0.001	-2.34	0.019	-0.005	0
C(fields)[T.Mathematical Sciences]	-0.0266	0.001	-52.156	0	-0.028	-0.026
C(fields)[T.Medicine]	-0.0019	0	-5.018	0	-0.003	-0.001
C(fields)[T.Neurosciences]	0.003	0.001	4.598	0	0.002	0.004
C(fields)[T.Physical Sciences]	-0.022	0	-52.336	0	-0.023	-0.021
C(has_en)[T.1]	0.0014	0	6.445	0	0.001	0.002
afterChatGPT[T.True]	-0.0014	0	-6.423	0	-0.002	-0.001

Table 1: OLS results for mean values of Binoculars scores

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.8697	0.001	1034.91	0	0.868	0.871
C(fields)[T.Computer Science]	-0.012	0.001	-13.728	0	-0.014	-0.01
C(fields)[T.Economics and Finance]	-0.011	0.003	-4.345	0	-0.016	-0.006
C(fields)[T.Engineering]	0.0014	0.002	0.592	0.554	-0.003	0.006
C(fields)[T.Environmental Sciences]	0.0033	0.003	1.224	0.221	-0.002	0.009
C(fields)[T.Mathematical Sciences]	0.0042	0.001	3.839	0	0.002	0.006
C(fields)[T.Medicine]	0.0036	0.001	4.392	0	0.002	0.005
C(fields)[T.Neurosciences]	0.0014	0.001	0.982	0.326	-0.001	0.004
C(fields)[T.Physical Sciences]	0.0009	0.001	0.935	0.35	-0.001	0.003
C(has_en)[T.1]	-0.0003	0	-0.551	0.582	-0.001	0.001
afterChatGPT[T.True]	-0.0063	0	-13.504	0	-0.007	-0.005

Table 2: OLS results for min values of Binoculars scores

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0039	4.01E-05	97.361	0	0.004	0.004
C(fields)[T.Computer Science]	-5.20E-05	4.17E-05	-1.247	0.213	0	2.98E-05
C(fields)[T.Economics and Finance]	-0.0001	0	-1.026	0.305	0	0
C(fields)[T.Engineering]	-0.0001	0	-1.221	0.222	0	8.07E-05
C(fields)[T.Environmental Sciences]	1.91E-05	0	0.147	0.883	0	0
C(fields)[T.Mathematical Sciences]	-0.0011	5.27E-05	-20.566	0	-0.001	-0.001
C(fields)[T.Medicine]	0.0004	3.92E-05	10.184	0	0	0
C(fields)[T.Neurosciences]	-0.0001	6.86E-05	-2.004	0.045	0	-3.02E-06
C(fields)[T.Physical Sciences]	-0.0006	4.36E-05	-13.279	0	-0.001	0
C(has_en)[T.1]	5.15E-05	2.32E-05	2.225	0.026	6.14E-06	9.69E-05
afterChatGPT[T.True]	0.0002	2.23E-05	8.232	0	0	0

Table 3: OLS results for Binoculars scores variance