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Abstract

Creating protein structure language has attracted increasing attention in unifing
the modality of protein sequence and structure. While recent works, such as
FoldToken1&2&3 have made great progress in this direction, the relationship
between languages created by different models at different scales is still unclear.
Moreover, models at multiple scales (different code space size, like 25, 26, · · · , 212)
need to be trained separately, leading to redundant efforts. We raise the question:
Could a single model create multiscale fold languages? In this paper, we propose
FoldToken4 to learn the consistency and hierarchy of multiscale fold languages. By
introducing multiscale code adapters and code mixing techniques, FoldToken4 can
generate multiscale languages from the same model, and discover the hierarchical
token-mapping relationships across scales. To the best of our knowledge, FoldTo-
ken4 is the first effort to learn multi-scale token consistency and hierarchy in VQ
research; Also, it should be more novel in protein structure language learning.

1 Introduction
"SE-(3) structure should not be special and difficult. Let’s lower the barrier."

– Our Goal

Creating protein structure language has attracted increasing attention in unifing the modeling paradigm
of sequence and structure. Recent works, such as FoldToken1, FoldToken2, and FoldToken3, have
made great progress in this direction: FoldToken2 improves the reconstruction RMSD by 80%
compared to FoldToken1, and FoldToken3 further enhances the compression ratio using 0.39% code
space of FoldToken2. Generally, there is a balance between compression and reconstruction: model
with smaller code space captures the coarse geometry with higher compression ability, and vise versa.
The multi-scale consistency and hierarchy of fold language would be valuable for understanding
and analyzing protein structures. Unfortunately, current vector quantization works have ignored this.
How to associate multiscale languages and discover their intristic laws remain an open question.

Existing fold tokenization methods are limited to single-scale expression ability. For example,
FoldToken2 [7], ESM3 [9], and FoldToken3 [3] have the codebook size of 65536, 4096, and 256,
respectively. By gradually reducing the codebook size, one can get a better compression ratio, while
the reconstruction quality is compromised, resulting in a coarse-grained hierarchical representation.
The consistency and hierarchy of fold language across different scales remain unknown, as models at
different scales are trained separately, lacking a unified representation space for knowledge sharing.
Consequently, there is no way to analyze the language’s consistency and hierarchy without building
another model to translate tokens across scales. In addition, the training of models at different scales
is time-consuming and resource-intensive, and saving codes for each scale violates the compression
principle. Can we design one model to generate semantically consistent multiscale tokens without
redundance in both model training and code saving?

We propose FoldToken4 to create a consistent and hierarchical fold language across scales. Firstly,
we make multi-scale models share the same encoder to learn a consistent semantic space. To align
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multi-scale tokens with encoder’s output, we introduce code adapters to generate code embeddings
at different scales and mix codes across scales. Secondly, we can compute the token embedding
similarity to reveal translation relationships across scales, recorded by the transition matrix that
reflects the hierarchy of the fold language. This hierarchy helps to understand and visualize protein
structures in a coarse-to-fine manner. Finally, FoldToken4 can remove redundant efforts in training
and code saving: One just needs to train one model for all scales, and save the finest-scale code,
which can be translated to any other scale using the transition matrix without rerunning the model.

We evaluate FoldToken4 on both single-chain and multi-chain reconstruction tasks, showing that it
achieves competitive performance compared to FoldToken3. FoldToken4 achieves competitive but
slightly worse reconstruction quality than FoldToken3. However, FoldToken4 further compress the
code space to 32, and multi-scale languages, such as 32, 64, 128, 256, · · · , 4096, can be generated
from the same model. In summary, FoldToken4 offers advantages in consistency, hierarchy, and
efficiency, in addition to FoldToken2&3’s invariant, compact, and generative merits. We believe
FoldToken4 will be valuable for analyzing fold languages from a coarse-to-fine perspective and
benefit a wide range of protein structure-related tasks.

2 Method

2.1 Overall Framework

As shown in Fig.1, the overall framework keeps the same as FoldToken1 [5, 7], FoldToken2 [6] and
FoldToken3 [3], including encoder, quantifier and decoder:

Brief Overview

Step1: Encoding. Given the protein G, we use BlockGAT [8] to learn residue features:

[f1,f2, · · · ,fn]← BlockGATs(G) (1)

where f is the learned features of the s-th residue.
Step2: Quantization. Given F = [f1,f2, · · · ,fn], we quantize the embeddings into
discrete tokens (VQ-IDs) Z = [z1, z2, · · · , zn] using the binary stochastic quantifier (BSQ).
The quantifier (Q : f 7→ z) and de-quantifier (Q−1 : z 7→ f̂ ) converts continuous embedding
f as a discrete latent code z, and vise versa:{

zs = Q(fs)

f̂s = Q−1(zs)
(2)

By setting the codebook size as 2m, the discrete tokens are restricted to [0, 2m−1]. Similar
to 20 amino acid types that describing protein sequence, VQ-IDs are used to represent the
protein structures. The quantized sequence Z = [z1, z2, · · · , zn] is termed as fold fanguage.
Step3: Decoding. We apply the SE-(3) BlockGAT Decoder to recover the protein structures:

x1,x2, · · · ,xn = SE3BlockGAT(l)(z1, z2, · · · , zn) (3)

where xs ∈ R4,3 is the coordinates of the s-th residue’s backbone atoms.

Contribution. From FoldToken3 to FoldToken4, we make the following improvements:

1. Scale-aware Code Adapter: We introduce code adapters to generate code embeddings at
different scales, all of whcih are aligned with the encoder’s output embedding space.

2. Multiscale Mix-Token Training: Multiscale models, with code book size of 25, 26, · · · , 212,
are trained simultaneously, avoiding redundant efforts in model training. The shared encoder,
quantifier, and decoder also provide knowledge consensus across scales.

3. Consistency & Hierarchy Analysis: We determine the token transition matrix to reveal
the multi-scale hierarchy via computing the token similarity. The transition matrix could be
used to translate multi-scale fold language without rerun the model.
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Figure 1: The overall framework of FoldTokenizer4, which contains contains encoder, quantifier, and decoder.
We use BlockGAT to encoder protein structures as invariant embeddings, BSQ to quantize the embeddings into
discrete tokens, and SE-(3) layer to recover the protein structures iteratively.

2.2 Invariant Graph Encoder

Due to the rotation and translation equivariant nature, the same protein may have different coordinate
records, posing a challenge in learning compact invariant representations. Previous works [4, 12, 2, 8]
have shown that the invariant featurizer can extract informative structure patterns, and we follow
the same road: representing the protein structures as a graph consisting of invariant node and edge
features. We then use BlockGAT [8] to learn high-level representations.

Protein Block Graph. Given a proteinM = {Bs}ns=1 containing n blocks, where each block
represents an amino acid, we build the block graph G({Bs}ns=1, E) using kNN algorithm. In the block
graph, the s-th node is represented as Bs = (Ts,fs), and the edge between (s, t) is represented as
Bst = (Tst,fst). Ts = (Rs, ts) and Tst = T−1

s ◦ Tt are the local frames of the s-th and the relative
transform between the s-th and t-th blocks, respectively. fs and fst are the node and edge features.
Rs and ts are the rotation and translation of the s-th block, serving as the local frame parameters.
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BlockGAT Encoder. We use the BlockGAT [8] layer fθ to learn block-level representations:

f (l+1)
s ,f

(l+1)
st ← BlockGATs(f (l)

s ,f
(l)
st |Ts, Tst, E) (4)

where f
(l)
s and f

(l)
st represent the input node and edge features of the l-th layer. Ts = (Rs, ts) is the

local frame of the s-th block, and Tst = T−1
s ◦ Tt = (Rst, tst) is the relative transform between the

s-th and t-th blocks. Ts, Tst,f
(0)
s and f

(0)
st are initialized from the ground truth structures using the

invariant featurizer proposed in UniIF [8]. We write the encoder’s output as F = [f1,f2, · · · ,fn],
where fs is the embedding of the s-th residue, and refer to the encoding space as the semantic space.

2.3 Multiscale Code Generator

Multiscale Code. We introduce masked-binary code to serve as unified representation across scales.
When the codebook size is 2m and padding length M , the binary code of the decimal integer z is:

bz|m = [b0, b1, · · · , bM−1], bi ∈ {−1, 0, 1} (5)

where bi is the i-th bit of the binary code. Note that bi = −1 if i < M −m; otherwise, b(M−m):M−1

is the binary form of z. For example, if M = 4, we have b0|2 = [−1,−1, 0, 0], b1|2 = [−1,−1, 0, 1],
b3|2 = [−1,−1, 1, 1], b7|3 = [−1, 1, 1, 1], · · · , b15|4 = [1, 1, 1, 1]

Code Embedding via Adapter. A MLP, i.e., CodeAdapterm : RM → Rd, is used to project
bi|m ∈ RM to code vectors vi ∈ Rd to consider correlations in each bit position. Formally, we write

bi = Bitlog2(m)(zi)

bi|m = Pad(bi, (M −m, 0),−1)
vi|m = CodeAdapterm(bi|m)

(6)

where Bit(·) convert decimal numbers to its binary form, bi|m is the masked binary vector, and vj is
the j-th code embedding at scale m. If m = 10, the codebook size is 210, and the MLP projects 1024
binary vectors into 1024 d-dimension code embeddings.

Code Consistency & Hierarchy. By training multiscale models simultaneously, the
CodeAdapterm projects the masked-binary code into the same semantic space, aligning with the
output of the shared encoder. Therefore, one can discover the code mapping relationship between
different scales by computing the similarity in the semantic space. For scale m and m′, where
m > m′, we define a transition matrix Mm→m′ to record the code transition relationship:

Mi,j = argmax
k

(vT
i|mvk|m′) and

∑
j

Mi,j = 1 (7)

If Mi,j = 1, the i-th code at scale m is associate to the j-th code at scale m′. The transition matrix
could be used to translate the code embeddings across scales without rerunning the model.

2.4 Quantifier: Code Alignment, Optimization, and Mixing

As in FoldToken3 [3], we apply a novel quantifier, called Binary Stochastic Quantifier (BSQ), to
quantize the embeddings. The key problem is: how to replace latent embedding fi with the most
similar token embedding vj in a differential way?

Find Neighbor. In vanilla vector quantization, they use "argmax" operation to find the nearest code
vector, which is non-differential. In this paper, we take the selection process as sampling from a
multi-class distribution zi|m ∼ Mult(pi|m) at scale m:{

pi|m = SoftMax([fT
i v0|m/T,fT

i v1|m/T, · · · ,fT
i vm−1|m/T ])

zi|m ∼ Mult(pi|m)
(8)

and then, we optimize pi|m in a differential way. The temperature parameter T controls the softness
of the attention query operation. When T is large, the attention weights will be close to uniform;
otherwise, the attention weights will be close to one-hot.
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Optimize Neighbor. In Eq. 8, the sampling operation is non-differentiable, and we use a reparame-
terization trick to optimize pi|m:

ci|m = zi|m ⊙ (1− pi|m) + (1− zi|m)⊙ (−pi|m)

ẑi|m = pi|m + sg(ci|m)

f̂i|m = ẑT
i|mV + fi|m − sg(fi|m)

(9)

where sg(·) is the stop gradient operation, ⊙ is the element-wise multiplication, and zi|m ∈ Rm is
the onehot version of zi at scale m. The first two equations reparameterize zi|m as ẑi|m to allow pi|m
get gradient, inspired by [10]; the third equation allows hi|m to get direct gradient for optimizing the
encoder. ẑT

i|mV→ vzi|m operation selects the zi-th code vector using the onehot ẑi|m.

Multiscale Code Mixing. During training, we uniformly sample the scale m and generate the code
embeddings f̂i|m to serve as f̂i: {

m ∼ U(5, 12)

f̂i ← f̂i|m
(10)

where U(a, b) is the uniform distribution between a and b. The average code embedding is a mixture
of codes across scales:

E[f̂i] =
∑
m

f̂i|mp(m) =
1

8

12∑
5

f̂i|m (11)

Teacher Guidance. To accelerate training convergence, we randomly copy encoder output fi as
decoder input f̂i in probability T :

f̂i =

{
ẑT
i V + fi − sg(fi) if p > T ;

hi else.
(12)

where p ∼ U(0, 1) is sampled from uniform distribution. When T = 1.0, the vector quantization
module is skipped, allowing the encoder-decoder to be easily optimized. When T = 0.0, the vector
quantization module is fully used. For values of 0.0 < T < 1.0, the shortcut guides the vector
quantization model to learn code vectors aligning with the encoder’s inputs. The adaptive temperature
scheduler is dependent on the loss L:

β =


1.0, if 0.1 < L
0.05, if 0.05 < L ≤ 0.1

0.01, if 0.02 < L ≤ 0.05

0.001, if L ≤ 0.02

(13)

Stable Gradient. The scaled softmax operation in Eq. 9 bridges the continual model (T > 0)
to discrete vector quantization (T = 0); thus allowing precise gradient computation rather than
gradient mismatch in the VVQ. During training, we gradually anneal the temperature from 1.0 to
1e-8; however, the gradient of the scaled softmax tend to explode when T is extremely small:{

[p1, p2, · · · , pk] = Softmax(a1/T, a2/T, · · · , ak/T )
∂pi

∂aj
= 1

T pi · (1(i = j)− pj)
(14)

The unstable gradient would lead to representation and codebook collapses, as the CodeAdapterm
and encoder parameters collapse after one step of updating a large gradient. To overcome the issue,
we introduce the trick of ’partial gradient’:

1

T
hT
i vj ← (

1

T
− 1)sg(hT

i vj) + hT
i vj (15)

where the first term is stoped gradient and only the second term contribute to gradient computation.
Obviously, Eq.15 has the same forward behavior like Eq.9 while the gradient is stable and do not
affected by the extreme small value of T .
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2.5 Equivariant Graph Decoder

Generating the protein structures conditioned on invariant representations poses significant challenges
in computing efficiency. For example, training well-known AlphaFold2 from scratch takes 128
TPUv3 cores for 11 days [13]; OpenFold takes 50000 GPU hours for training [1]. In this work, we
propose an efficiency plug-and-play SE(3)-layer that could be added to any GNN layer for structure
prediction. Thanks to the simplified module of the SE(3)-layerand BlockGAT with sparse graph
attention, we can train the model on the entire PDB dataset in 1 day using 8 NVIDIA-A100s.

SE-(3) Frame Passing Layer. We introduce frame-level message passing, which updates the local
frame of the s-th block by aggregating the relative rotation Rs and translation ts from its neighbors:

vec(Rs) =
∑

j∈Ns
arsjvec(Rsj)

Rs ← Quat2Rot ◦ Norm ◦MLP9→4(vec(Rs)) Normalize quanternion
ts =

∑
j∈Ns

atsjtsj

(16)

where arsj and atsj are the rotation and translation weights, and Ns is the neighbors of the s-th block.
vec(·) flattens 3 × 3 matrix to 9-dimensional vector. MLP9→4(·) maps the 9-dim rotation matrix
to 4-dim quaternion, and Norm(·) normalize the quaternion to ensure it represents a valid rotation.
Quat2Rot(·) is the quaternion to rotation function. We further introduce the details as follows:


wr

st, w
t
st = σ(MLP(fst))

vec(Rst)← wr
stvec(Rst) + (1− wr

st)MLPd→9(fst)

tst ← wt
sttst + (1− wt

st)MLPd→3(fst)

arst, a
t
st = Softmax(MLPd→1(fst))

(17)

where wr
st and wt

st are the updating weights for rotation and translation, arst and atst are the attention
weights. The proposed SE-(3) layer could be add to any GNN for local frame updating.

Iterative Refinement We propose a new module named SE-(3) BlockGAT by adding a SE-(3)
layer to BlockGAT. We stack multi-layer SE-(3) BlockGAT to iteratively refine the structures:

E(l) = kNN(T (l)
s )

T
(l)
st = T

(l)
s

−1
◦ T (l)

t

f
(l+1)
s ,f

(l+1)
st = BlockGAT(l)(f

(l)
s ,f

(l)
st |T

(l)
s , T

(l)
st , E(l))

T
(l+1)
s = SE3Layer(sg(T (l)

st ),f
(l+1)
st )

(18)

where sg(·) is the stop-gradient operation, and SE3Layer(·) is the SE-(3) layer described in Eq.17.
Given the predicted local frame T

(l)
s , we can obtain the 3D coordinates by:{

hs = MLP(f (l)
s )

xs = T
(l)
s ◦ hs

(19)

2.6 Reconstruction Loss

Inspired by Chroma [11], we use multiple loss functions to train the model. The overall loss is:

L = Lglobal + Lfragment + Lpair + Lneighbor + Ldistance (20)

To illustrate the loss terms, we define the aligned RMSD loss as Lalign(X
(l),X) = ∥Align(X̂,X)−

X∥, given the the ground truth 3D coordinates X ∈ Rn,3 and the predicted 3D coordinates X̂ =
{x1,x2,x3, · · · ,xn} ∈ Rn,3. The global, fragment and pair loss are defined by the aligned MSE
loss, but with different input data shape:

• Global Loss: X with shape [n, 4, 3]. RMSD of the global structure.

• Fragment Loss: X with shape [n, c, 4, 3]. RMSD of c neighbors for each residue.
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• Pair Loss: X with shape [n,K, c · 2, 4, 3]. RMSD of c neighbors for each kNN pair.
• Neighbor Loss: X with shape [n,K, 4, 3]. RMSD of K neighbors for each residue.

where n is the number of residues, c = 7 is the number of fragments, K = 30 is the number of kNN,
4 means we consider four backbone atoms {N,CA,C,O}, and 3 means the 3D coordinates. The
distance loss is defined as the MSE loss between the predicted and ground truth pairwise distances:

Ldistance = ∥Dist(X̂)− Dist(X)∥ (21)

where Dist(X) ∈ Rn,n is the pairwise distance matrix of the 3D coordinates X. We apply the loss on
each decoder layer, and the final loss is the average, whcih is crucial for good performance.

3 Experiments

We conduct systematic experiments to evaluate FoldToken4:

• Single-Chain Benchmark (Q1): How well FoldToken4 perform on single-chain data?
• Multi-Chain Benchmark (Q2): How well FoldToken4 perform on multi-chain data?
• Code Analysis (Q3): What can we learn from FoldToken4’s hierarchical code space?

Multi-chain PDB Data for Training We train the model using all proteins collected from the PDB
dataset as of 1 March 2024. After filtering residues with missing coordinates and proteins less than
30 residues, we obtain 162K proteins for training. We random crop proteins to ensure that the length
range from 5 to 1024. Protein complexes are supported by adding chain encoding features cij to the
edge eij : cij = 0, if i and j are in different chains; else cij = 1. The model is trained for up to 60
epochs with a batch size of 8 and a learning rate of 0.001, using 8 NVIDIA-A100s.

Metrics Regarding reconstruction, we evaluate the model using the average TMscore and aligned
RMSD. In FoldToken2, we uses Kabsch algorithm to align the predicted structure to the ground
truth structure; however, the aligned RMSD seems to be different to that of PyMol. We do not know
what is the reason for this discrepancy. Finally, we use PyMol’s API for computing RMSD. We also
introduce a similarity metric to evaluate the codebook diversity:

Sim =
1

N

∑
i

vT
i vî (22)

where vi and vî are the i-th and nearest neighbor code vectors, respectively. The similarity metric
ranges from -1 to 1, with 1 indicating that there is always a very similar code vector for each one. To
make discrete tokens distinguishable, the smaller the similarity, the better the diversity, and the easier
it is to predict. Considering the extreme case where the similarity is 1, one code id can be replaced by
that of its nearest neighbor without affecting the reconstruction quality, leading to inconsistent fold
languages. Also, high similarity indicates that the model do not robust to noise of the embeddings, as
similar code vectors may be easily confused by each other.

3.1 Single-Chain Benchmark (Q1)

Single-Chain Data for Evaluation Following FoldToken2, we evaluate models on T493 and T116
datasets for head-to-head comparison, which contains 493 and 116 proteins, respectively. We also
evaluate methods on 128 novel proteins released after the publication of AlphaFold3, called N128.

In Table. 1, we show the reconstruction results of FoldToken4 and conclude that:

FoldToken4 is comparable to FoldToken3 using a unified model. Although FoldToken4 is
trained once for all scales, it achieves comparable reconstruction performance to FoldToken3, which
is trained separately for each scale. The phenomenon is consistent across multiple datasets, including
T493, T116, and N128, and multiple scales, including 26, 27, · · · , 212. We emphasize that it is
non-trival to jointly learn multi-scale models at different scales without performance drop, as the
model has to strike a balance between different scales, like mult-task learning. The keys to the good
performance are the proposed conditional code adapters and token mixing operation.
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Model Data Config TMScore ↑ RMSD ↓
#Code #Enc #Dec #Hid #KNN Avg Max Min Avg Max Min

FT1 T116 65536 12 12 480 full 0.77 0.96 0.39 3.31 24.53 0.52
FT2 T116 65536 8 8 128 30 0.97 0.99 0.90 0.52 0.76 0.30
ESM3 T116 4096 2 30 1024 full 0.97 0.99 0.76 1.97 13.27 0.01
FT3 T116 4096 8 8 128 30 0.95 0.98 0.88 0.64 0.98 0.30
FT3 T116 1024 8 8 128 30 0.93 0.97 0.83 0.73 1.20 0.26
FT3 T116 256 8 8 128 30 0.93 0.98 0.86 0.76 1.10 0.44
FT3 T116 128 8 8 128 30 0.91 0.96 0.82 0.87 1.36 0.46
FT3 T116 64 8 8 128 30 0.89 0.96 0.74 1.02 1.80 0.32
FT4 T116 4096 8 8 128 30 0.95 0.98 0.78 0.67 1.25 0.28
FT4 T116 2048 8 8 128 30 0.94 0.98 0.82 0.70 1.08 0.27
FT4 T116 1024 8 8 128 30 0.94 0.98 0.79 0.71 1.11 0.30
FT4 T116 512 8 8 128 30 0.94 0.98 0.81 0.73 1.19 0.27
FT4 T116 256 8 8 128 30 0.93 0.98 0.80 0.78 1.26 0.30
FT4 T116 128 8 8 128 30 0.92 0.97 0.79 0.86 1.54 0.28
FT4 T116 64 8 8 128 30 0.89 0.96 0.73 1.02 1.97 0.29
FT4 T116 32 8 8 128 30 0.86 0.94 0.62 1.22 2.12 0.31
FT1 T493 65536 12 12 480 full 0.74 0.96 0.44 3.09 18.09 0.48
FT2 T493 65536 8 8 128 30 0.95 0.99 0.78 0.64 1.99 0.36
ESM3 T493 4096 2 30 1024 full 0.95 0.99 0.32 2.40 15.97 0.01
FT3 T493 4096 8 8 128 30 0.92 0.99 0.57 0.86 6.48 0.35
FT3 T493 1024 8 8 128 30 0.90 0.98 0.61 0.98 7.52 0.38
FT3 T493 256 8 8 128 30 0.90 0.98 0.52 1.03 6.14 0.38
FT3 T493 128 8 8 128 30 0.88 0.97 0.49 1.15 7.70 0.39
FT3 T493 64 8 8 128 30 0.85 0.96 0.45 1.33 7.47 0.47
FT4 T493 4096 8 8 128 30 0.92 0.98 0.55 0.95 5.88 0.33
FT4 T493 2048 8 8 128 30 0.91 0.98 0.59 0.95 6.00 0.37
FT4 T493 1024 8 8 128 30 0.91 0.98 0.54 0.98 7.18 0.31
FT4 T493 512 8 8 128 30 0.91 0.98 0.56 1.02 5.78 0.36
FT4 T493 256 8 8 128 30 0.90 0.97 0.58 1.07 6.90 0.41
FT4 T493 128 8 8 128 30 0.88 0.97 0.56 1.17 6.75 0.39
FT4 T493 64 8 8 128 30 0.84 0.95 0.47 1.40 7.98 0.36
FT4 T493 32 8 8 128 30 0.80 0.94 0.44 1.71 7.77 0.48
FT1 N128 65536 12 12 480 full 0.62 0.93 0.26 11.20 53.25 0.47
FT2 N128 65536 8 8 128 30 0.94 0.99 0.17 0.78 5.88 0.27
ESM3 N128 4096 2 30 1024 full 0.92 1.00 0.30 4.50 22.51 0.04
FT3 N128 4096 8 8 128 30 0.92 0.99 0.26 1.16 4.42 0.41
FT3 N128 1024 8 8 128 30 0.91 0.98 0.29 1.25 4.31 0.39
FT3 N128 256 8 8 128 30 0.89 0.98 0.22 1.49 7.76 0.37
FT3 N128 128 8 8 128 30 0.89 0.96 0.27 1.60 6.78 0.39
FT3 N128 64 8 8 128 30 0.84 0.95 0.23 2.34 15.64 0.49
FT4 N128 4096 8 8 128 30 0.91 0.99 0.21 1.34 7.75 0.38
FT4 N128 2048 8 8 128 30 0.91 0.98 0.21 1.37 8.96 0.38
FT4 N128 1024 8 8 128 30 0.90 0.98 0.22 1.42 8.87 0.46
FT4 N128 512 8 8 128 30 0.90 0.98 0.21 1.43 8.39 0.53
FT4 N128 256 8 8 128 30 0.89 0.98 0.21 1.53 7.37 0.33
FT4 N128 128 8 8 128 30 0.88 0.97 0.20 1.64 9.67 0.52
FT4 N128 64 8 8 128 30 0.85 0.95 0.20 2.02 8.64 0.65
FT4 N128 32 8 8 128 30 0.78 0.93 0.11 2.91 12.76 0.86

Table 1: Single-chain Reconstruction Benchmark. FT1, FT2, FT3, and FT4 indicates FoldToken1 [5, 7],
FoldToken2 [6], FoldToken3 [3], and FoldToken4, respectively. We also report the reconstruction results of
ESM3 [9] for comprehensive understanding. When KNN is ’full’, the approach uses full attention.

FoldToken4 supports minimum 32 code size. Beyond FoldToken3, FoldToken4 can support a
minimum code size of 32, which is the lowest code size feasible in our experiments. If we futher
reduce the code size to 16, the model could not reconstruct reasonable protein structures. From
25 to 212 code sizes, we find that the model achieves performance plateau in the code size of 128.
Therefore, considering both reconstruction quality and compression ratio, we recommend using a
code size of 128 or 256 for FoldToken4. However, smaller codebook like 64 or 32 can be used for
structure alignment or similarity search tasks, as the algorithm do not require exact structure details.
In Fig. 2, we show the cases with codebook size 32 in N128. We observe that for proteins with fewer
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than 500 amino acids, the model can provide reasonable reconstruction results. When the protein is
too long, the model may fail to recover fine secondary structures, but the coarse global shape is well
preserved. It is amazing to find that the 32 words can reconstruct the protein structures effectively.

9b0mA, L=96 (0.498) 9bkwA, L=131 (0.644) 8rk2A,L=176 (1.067)

9b1rA, L=427 (1.558) 9bczA, L=604 (3.302)

Figure 2: The cases with codebook size 32 in N128. Grey structures are the ground truth, and colored structures
are the reconstructed ones by FoldToken3 and FoldToken4. We provide the RMSD in the brackets.

When FoldToken4 will fail in single-chain data? In Fig. 3, we show cases in N128 where the
TMScore is less than 0.5, the the codebook size of 256. We observe that both FoldToken3 and
FoldToken4 model have low TMScore when the protein is too short. This is because proteins with
fewer than 30 amino acids were filtered out in the training set. Nevertheless, we can see that the
global shape of the protein is still well preserved, although the accuracy of the secondary structure is
not satisfactory. Moreover, FoldToken4 generally performs better than FoldToken3 in these cases.

8rxbB, L=8
(1.918, 1.283)

8s32Z, L=12
(0.784, 1.211)

8visE,L=20
(0.865, 0.957)

8xzgL, L=12
(1.050, 0.858)

8xzhL, L=13
(1.303, 0.927)

8xzjL, L=12
(1.585, 1.527)

Figure 3: The cases when TMScore<0.5 in N128. Grey structures are the ground truth, and colored structures
are the reconstructed ones by FoldToken3 and FoldToken4. We provide the RMSD in the brackets.

FT4 is comparable to ESM3 using less parameters and data. When comparing FoldToken4 with
ESM3, we find that FoldToken4 achieves comparable reconstruction performance to ESM3 while
using fewer parameters and less data. In terms of trainable parameters, the encoder and decoder of
FoldToken4 have 4.31M and 4.92M parameters, respectively. In comparison, ESM3’s encoder and
decoder have 30.1M and 618.6M parameters, respectively. Regarding the training data, FoldToken4 is
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trained on the PDB dataset, which is a small subset of ESM3’s training set. Additionally, FoldToken4
is specifically trained for multi-chain protein reconstruction, a more challenging task than the single-
chain protein reconstruction that ESM3 is trained for. Nevertheless, the checkpoints learned from the
multi-chain task generalize well to single-chain tasks.

3.2 Multi-Chain Benchmark (Q2)

Multi-Chain Data for Evaluation We evaluate the model on the antibody-antigen dataset
(SAbDab), which contains 6741 protein complexes. We use foldseek to cluster protein chains
into 1323 clusters:

1 foldseek easy -cluster ab_pdb/ res tmp -c 0.7

The representative chains of each cluster are used for evaluation. After filtering representative proteins
with less than 30 residues or more than 1000 residues, we get the evaluation dataset containing 1031
protein complexes, named M1031.

Model Data Config TMScore ↑ RMSD ↓
#Code #Enc #Dec #Hid #KNN Avg Max Min Avg Max Min

FT2 M1031 65536 8 8 128 30 0.96 0.99 0.08 0.85 27.77 0.49
FT3 M1031 4096 8 8 128 30 0.94 0.99 0.07 1.10 27.57 0.41
FT3 M1031 1024 8 8 128 30 0.93 0.98 0.07 1.16 27.43 0.40
FT3 M1031 256 8 8 128 30 0.93 0.98 0.07 1.32 27.37 0.47
FT3 M1031 128 8 8 128 30 0.91 0.97 0.07 1.51 28.10 0.56
FT3 M1031 64 8 8 128 30 0.88 0.97 0.07 2.15 28.31 0.67
FT4 M1031 4096 8 8 128 30 0.93 0.98 0.07 1.34 27.52 0.42
FT4 M1031 2048 8 8 128 30 0.92 0.98 0.07 1.36 27.31 0.44
FT4 M1031 1024 8 8 128 30 0.92 0.98 0.07 1.35 27.68 0.47
FT4 M1031 512 8 8 128 30 0.92 0.98 0.07 1.41 27.43 0.42
FT4 M1031 256 8 8 128 30 0.91 0.98 0.07 1.53 27.44 0.48
FT4 M1031 128 8 8 128 30 0.90 0.97 0.07 1.61 27.59 0.50
FT4 M1031 64 8 8 128 30 0.87 0.96 0.07 2.07 28.85 0.58
FT4 M1031 32 8 8 128 30 0.80 0.92 0.07 3.02 28.36 0.98

Table 2: Multi-chain Reconstruction Benchmark. FT1 and ESM3 are ignored here, as they cannot process
multi-chain proteins.

1qgc, L=660 (2.379) 2hmi, L=663 (2.909) 3gbm, L=732 (2.518)

3j6a, L=984 (2.043) 3ulu, L=890 (3.521) 6p9y, L=998 (2.420)

Figure 4: Large protein complexes reconstructed by FoldToken4 with codebook size of 4096. Grey structures
are the ground truth, and colored structures are the reconstructed ones. We provide the RMSD in the brackets.
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In Table. 2, we show the reconstruction results of FoldToken4 and conclude that:

The compact code space can represent complex interactions. When using 256 code vectors or
less, FoldToken4 can reconstruct protein complex structures effectively. Before FoldToken2, we
believed that tokenizing single-chain proteins was difficult, especially with very small codebooks.
However, FoldToken4 demonstrates that even protein complexes can be represented well using a
small codebook, which is indeed surprising. This discovery will promote complex modeling, such as
similar interface searching, complex alignment, and complex generation.

Learning multi-scale consistent models slightly reduces the reconstruction performance. In
Table. 2, we observe that FoldToken4 achieves slightly worse performance than FoldToken3 with
the same codebook size. This is because the model has to learn multi-scale tokenization in the same
training session, where the learning objectives may conflict with each other. Considering the slight
performance drop is acceptable, while the model can provide a consistent fold language across scales,
we believe FoldToken4 would have more application scenarios. In Fig.4, we show some the largest
reconstructed protein systems using FoldToken4 with codebook size of 4096.

4 Consistency and Hierarchy (Q3)

Code Diversity. We compute the cosine similarity for each code and its nearest neighbor and show
the code similarity; refer to Eq. 22. In Table. 3, we observe that FoldToken4 has the most diverse
code vectors, indicating the learnged language is more distinguishable than FoldToken1&2&3. In
addition, the code diversity increases as the codebook size decreases, which is consistent with our
expectation: the CodeAdapter should learn uniformly distributed code vectors in the encoding space
to represent the protein structures effectively.

Model #Code Avg↓ Max↓ Min↓

FT1 65536 0.9959 1.0 0.7447
FT2 65536 0.9999 1.0 0.9625
FT3 256 0.9070 0.9711 0.7371
FT4 4096 0.9872 0.9999 0.7563
FT4 2048 0.9776 0.9995 0.8045
FT4 1024 0.9602 0.9991 0.7673
FT4 512 0.9346 0.9940 0.7949
FT4 256 0.8962 0.9693 0.7294
FT4 128 0.8389 0.9064 0.7047
FT4 64 0.7775 0.8551 0.6763
FT4 32 0.7098 0.7956 0.6113

Table 3: The code vector similarity.

#𝑐𝑜𝑑𝑒 = 2!
𝑟𝑚𝑠𝑑 = 3.591

#𝑐𝑜𝑑𝑒 = 2",
𝑟𝑚𝑠𝑑 = 1.615

#𝑐𝑜𝑑𝑒 = 2#
𝑟𝑚𝑠𝑑 = 1.226

#𝑐𝑜𝑑𝑒 = 2$
𝑟𝑚𝑠𝑑 = 1.186

#𝑐𝑜𝑑𝑒 = 2%&
𝑟𝑚𝑠𝑑 = 1.060𝑇𝑟𝑢𝑒	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

Figure 5: Multi-scale structures generated by FoldToken4.

Consistency. FoldToken4 can generate consistent fold languages across scales, as shown in Fig. 5.
The larger the code size, the more detailed structures will be preserved. Thanks to the shared encoder-
decoder architecture, multi-scale code vectors can be projected to the same space, and the hierarchical
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token-mapping relationships across scales can be discovered; refer to Fig. 6. One can also fuse
multi-scale languages, where complex structures use more detailed tokens, and simple structures use
fewer tokens.

0 0 1
0 1 1
0 1 7

0 0 1
x x x

0 0 1
0 1 1
0 1 15

0 0 1
0 0 1

... ...

CodeAdapter

Scale=5

0 0 1
0 1 1
0 1 3

x x x
x x x

...

CodeAdapter

Scale=6 Scale=12

CodeAdapter

...

Shared space

Figure 6: Multi-scale models share the same encoding space.

Hierarchy. In the shared encoding space, we compute the token similarity across scales to get the
token-mapping matrices, as illustrated by Eq. 7. Fig. 7 shows examples of hierarchically translating
fold languages from scale=12 to scale=5 using the learned token-mapping matrices. We observe
that, without rerunning the model, we can generate multi-scale fold languages from the most detailed
scale to the coarsest scale with good reconstruction quality. This approach is highly efficient in both
computation and storage: one only needs to record languages at scale 12, and can then generate
languages at other scales using the token-mapping matrices.

8, 10, 26, 11, 16, 16, 12, 28, 13, 28, 28, 28, 4, 4, 10, 23, 
23, 1, 14, 23, 8, 26, 26, 26, 26, 7, 18, 6, 6, 15, 30, 15, 
10, 2, 2, 22, 10, 27, 6, 16, 16, 16, 0, 0, 14, 14, 14, 29, 
21,  3, 5, 5, 24, 6, 5, 18, 21, 26, 21, 26, 8, 10, 10, 11, 
26, 26, 11, 9, 9, 22, 21, 11, 11, 19

43,  3, 3,    19,  9, 56,   56, 31,   13,   18, 18, 36,   26,  3,   62, 47, 
40, 53,   53, 4, 61, 45, 45,   45,   27, 4, 57, 29, 49,   11, 38, 11, 
20, 35, 55, 46,  20, 21, 14, 21,    9,    9, 60,   22, 4, 53,   25,   24, 
28, 28, 5, 30,   7,    7,   29, 57,   57,   12,   24,   45, 17, 50,   21, 50, 
27, 45,   19, 51, 51, 1, 51, 36,   50,   37

51,  88, 28,   112, 124, 116, 120, 64, 64,  98,  78,  112, 115, 12,    9,  51, 
118,  55,  110, 51,  40,   24, 113,   56, 56, 105, 77, 67,   30, 126, 58, 22, 
108,   6,  104,   100, 108,   48, 94, 99, 25,  124,   35,   35,  2, 110,   76,   79,  
36,  121, 102, 83,  53, 53,   83,   77,  102,  56, 113,  113,   74, 123,  123,   88,  
56, 56, 107,  71,  93,   87,   90, 4, 88, 26

216,  96, 186, 54,  105, 24,   52,  178,  214, 56, 56,  112, 147, 41,  207,  216,  
90, 101,   67,  228, 181, 241, 240, 182, 166, 38, 98,  205,   45, 60,  221,  245,  
64,   144, 180,  250,  126,  195, 70, 24, 24,  105, 51,  26, 26, 95, 21,   65,   
2, 107, 141, 141,  128, 32,   25,   98,   31,  166,  242, 240,  181,   96, 185,   55, 
211, 182,   54, 197, 134, 100,  113, 113, 16, 33

2979,  155, 2428, 3646, 1919,  242, 1313, 1691, 1013, 3070, 1931, 2262,  520,  523, 2551, 2535, 
2807, 3978, 2221,  792,  442,   40, 1843,  831,  234, 1878, 1284, 2632, 3352, 2100, 1385, 3402, 
1657,  198,   97, 2415, 1156, 4065, 1508,  882, 2408, 1919, 2436, 2374,  508, 3979, 2782, 2178, 
3589, 2069, 1144, 3696, 2383, 2470, 2208, 1284, 2272, 3080,  963, 1843, 2842, 1338, 1507, 1267,   
59,    831, 1038, 1297, 1696, 2915, 1177,  918,  548, 1430

#𝑐𝑜𝑑𝑒 = 2!
𝑟𝑚𝑠𝑑 = 1.587

#𝑐𝑜𝑑𝑒 = 2"
𝑟𝑚𝑠𝑑 = 1.714

#𝑐𝑜𝑑𝑒 = 2#
𝑟𝑚𝑠𝑑 = 1.124

#𝑐𝑜𝑑𝑒 = 2$
𝑟𝑚𝑠𝑑 = 1.048

#𝑐𝑜𝑑𝑒 = 2%&
𝑟𝑚𝑠𝑑 = 0.709

𝐌%&→$

𝐌%&→#

𝐌%&→"

𝐌%&→!

Figure 7: Large protein complexes reconstructed by FoldToken4 with codebook size of 4096. Grey structures
are the ground truth, and colored structures are the reconstructed ones.

5 Conclusion

This paper introduces FoldToken4, a novel protein structure tokenization method that learns multi-
scale consistent fold languages by introducing CodeAdapter and token-mixing techniques. Fold-
Token4 offers advantages in consistency, hierarchy, and efficiency, in addition to FoldToken2&3’s
invariant, compact, and generative merits. This advancement will benefit a wide range of protein
structure-related tasks, including protein structure alignment, generation, and representation learning.
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