

1 *Full paper*

2 New insights into the mechanisms of plant isotope fractionation from combined analysis
3 of intramolecular ^{13}C and deuterium abundances in *Pinus nigra* tree-ring glucose

4 Thomas Wieloch^{1,2,*}, Meisha Holloway-Phillips³, Jun Yu⁴, Totte Niittylä¹

5

6 ¹ Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå
7 Plant Science Centre, 90183 Umeå, Sweden

8 ² Division of Geological and Planetary Sciences, California Institute of Technology, 91125 Pasadena, USA

9 ³ Research Unit of Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research
10 WSL, 8903 Birmensdorf, Switzerland

11 ⁴ Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden

12 * Corresponding author, Thomas Wieloch, thomas.wieloch@slu.se

13

14 **Keywords:** carbon stable isotopes, hydrogen stable isotopes, intramolecular isotope analysis, isotope
15 fractionation mechanisms, leaf water status, plant-environment interactions, stem water status, tree rings

16

17 6449 words (Introduction, Material and Methods, Results, Discussion), 6 Figures (colour), 7 Tables,
18 Supporting Information including 3 Notes, 6 Tables, and 1 Figure

19

Author	Email address	ORCID
Thomas Wieloch	thomas.wieloch@slu.se	0000-0001-9162-2291
Meisha Holloway-Phillips	meisha.holloway@wsl.ch	0000-0002-8353-3536
Jun Yu	jun.yu@umu.se	0000-0001-5673-620X
Totte Niittylä	totte.niittyla@slu.se	0000-0001-8029-1503

20

21 **Summary**

22 - Understanding isotope fractionation mechanisms is fundamental for analyses of plant ecophysiology and
23 paleoclimate based on tree-ring isotope data.

24

25 - To gain new insights into isotope fractionation, we analysed intramolecular ^{13}C discrimination in tree-ring
26 glucose (Δ_i' , $i = \text{C-1 to C-6}$) and metabolic deuterium fractionation at H^1 and H^2 (ε_{met}) combinedly. This dual-
27 isotope approach was used for isotope-signal deconvolution.

28

29 - We found evidence for metabolic processes affecting Δ_1' and Δ_3' which respond to air vapour pressure
30 deficit (VPD), and processes affecting Δ_1' , Δ_2' , and ε_{met} which respond to precipitation but not VPD. These
31 relationships exhibit change points dividing a period of homeostasis (1961-1980) from a period of metabolic
32 adjustment (1983-1995). Homeostasis may result from sufficient groundwater availability. Additionally, we
33 found Δ_5' and Δ_6' relationships with radiation and temperature which are temporally stable and consistent
34 with previously proposed isotope fractionation mechanisms.

35

36 - Based on the multitude of climate covariates, intramolecular carbon isotope analysis has a remarkable
37 potential for climate reconstruction. While isotope fractionation beyond leaves is currently considered to be
38 constant, we propose significant parts of the carbon and hydrogen isotope variation in tree-ring glucose
39 originate in stems (precipitation-dependent signals). As basis for follow-up studies, we propose
40 mechanisms introducing Δ_1' , Δ_2' , Δ_3' , and ε_{met} variability.

41

42 **Introduction**

43 Analysis of the systematic $^{13}\text{C}/^{12}\text{C}$ variation (commonly termed “ ^{13}C signal”; abbreviations in Table 1) across
44 tree-ring series is widely used to study past climate conditions, plant-environment interactions, and
45 physiological traits such as leaf water-use efficiency (CO_2 uptake relative to H_2O loss) (Leavitt & Roden,
46 2022). Signals found at the whole-tissue or whole-molecule level (Fig. 1A, top and middle) are commonly
47 interpreted based on a simplified mechanistic model of ^{13}C discrimination, Δ (denoting $^{13}\text{C}/^{12}\text{C}$ variation
48 caused by physiological processes) (Farquhar *et al.*, 1982). This model considers isotope effects of CO_2
49 diffusion from ambient air into intercellular air spaces (Craig, 1953) and CO_2 assimilation by rubisco
50 (Roeske & O’Leary, 1984) and phosphoenolpyruvate carboxylase (PEPC; Fig. 2) (Farquhar, 1983;
51 Farquhar & Richards, 1984). Manifestation of these effects as ^{13}C discrimination depends on the ratio of
52 intercellular-to-ambient CO_2 partial pressure (p_i/p_a) (Farquhar *et al.*, 1982), and a highly significant positive
53 relationship between p_i/p_a and leaf Δ was confirmed experimentally (Evans *et al.*, 1986). Environmental
54 parameters influence p_i/p_a and thus leaf Δ (Evans *et al.*, 1986) by affecting the stomatal aperture and CO_2
55 assimilation. For instance, in response to drought, isohydric plant species such as *Pinus nigra* (studied
56 here) close their stomata (McDowell *et al.*, 2008). This can be expected to decrease p_i/p_a and leaf Δ
57 (Farquhar *et al.*, 1982; Evans *et al.*, 1986).

58

59 Isotope fractionation by metabolic processes downstream of CO₂ assimilation is complex (Hobbie &
60 Werner, 2004), incompletely understood (Badeck *et al.*, 2005; Cernusak *et al.*, 2009) and has yet to be
61 adequately integrated into ¹³C-discrimination models (Ubierna *et al.*, 2022). Specifically, the simple ¹³C
62 discrimination model described above requires multiple adaptations to enable correct interpretation of the
63 ¹³C composition of tree-ring glucose (studied here). For instance, we recently argued that incorporation of
64 carbon assimilated by PEPC into tree-ring glucose is negligible because leaves lack a high-flux pathway
65 shuttling this carbon into glucose metabolism (Fig. 2) (Wieloch *et al.*, 2022c). Therefore, all carbon in tree-
66 ring glucose proposedly derives from rubisco-assimilated CO₂. Rubisco catalyses the addition of CO₂ to
67 ribulose 1,5-bisphosphate (RuBP). Since this reaction is essentially the sole carbon source of glucose, ¹³C
68 discrimination accompanying CO₂ diffusion and subsequent rubisco CO₂ assimilation (denoted diffusion-
69 rubisco discrimination) is expected to affect all glucose carbon positions equally (Wieloch *et al.*, 2018,
70 2022c).

71

72 Moreover, we recently measured Δ intramolecularly at all six carbon positions, *i*, of glucose (Fig. 1A, bottom)
73 extracted across an annually resolved tree-ring series of *Pinus nigra* (Wieloch *et al.*, 2018). The resultant
74 Δ'_i dataset comprises 6*31 values (study period: 1961 to 1995; four years missing: 1977, 1978, 1981, 1982)
75 which were corrected for ¹³C signal redistribution by heterotrophic triose phosphate cycling (indicated by
76 prime, Supporting Information Notes S1). We found that, at least, four ¹³C signals contribute to the
77 interannual ¹³C/¹²C variability in tree-ring glucose (Fig. 1B) and proposed the following theories on
78 underlying mechanisms.

79

80 We initially proposed the diffusion-rubisco signal is preserved at C-1 to C-3 (Figs. 1B and 2) (Wieloch *et al.*,
81 2018); although this view is modified here. Additionally, C-1 and C-2 are thought to carry ¹³C signals due
82 to fractionation at phosphoglucose isomerase (PGI has carbon isotope effects at both C-1 and C-2) and
83 glucose-6-phosphate dehydrogenase (G6PD has a carbon isotope effect at C-1) (Wieloch *et al.*, 2018,
84 2022a). Two leaf-level mechanisms of signal introduction were proposed. First, with decreasing carbon
85 assimilation, the PGI reaction in chloroplasts moves from being on the side of fructose 6-phosphate (F6P)
86 towards equilibrium (Fig. 2) (Dietz, 1985). This shift is expected to cause ¹³C enrichments at C-1 and C-2
87 of glucose 6-phosphate (G6P) and its derivatives starch and tree-ring glucose (Table 2) (Wieloch *et al.*,
88 2018). Moreover, shifts towards PGI equilibrium are associated with G6P increases (Dietz, 1985).
89 Increasing G6P is thought to cause G6PD activation and thus increasing flux through the oxidative pentose
90 phosphate pathway (OPPP) in chloroplasts (Cossar *et al.*, 1984; Sharkey & Weise, 2016; Preiser *et al.*,
91 2019) resulting in additional ¹³C enrichment at C-1 of G6P and its derivatives (Wieloch *et al.*, 2022a).
92 Hydrogen isotope evidence consistent with these proposed metabolic shifts was reported recently (Wieloch
93 *et al.*, 2022a). Second, the PGI reaction in chloroplasts is usually displaced from equilibrium on the side of
94 F6P whereas the PGI reaction in the cytosol is closer to or in equilibrium (Dietz, 1985; Gerhardt *et al.*, 1987;

95 Leidreiter *et al.*, 1995; Schleucher *et al.*, 1999; Szecowka *et al.*, 2013). This is expected to result in $^{13}\text{C}/^{12}\text{C}$
96 differences between starch and sucrose at both hexose C-1 and C-2 (Table 2) (Wieloch *et al.*, 2022b). By
97 extension, changes in the relative contribution of starch to the biosynthesis of tree-ring glucose is expected
98 to contribute to the ^{13}C signals at C-1 and C-2.

99
100 In addition to ^{13}C signals at C-1 and C-2, tree-ring glucose samples discussed here carry deuterium signals
101 caused by metabolic processes at H^1 and H^2 . These signals are strongly correlated and were approximated
102 as

$$\varepsilon_{\text{met}} = \frac{(\text{D}_1 + \text{D}_2)/2}{(\text{D}_3 + \text{D}_4 + \text{D}_5 + \text{D}_{6\text{S}} + \text{D}_{6\text{R}})/5} - 1 \quad (1)$$

103
104 where D_i denotes relative deuterium abundances at individual H-C positions (Wieloch *et al.*, 2022a,b).
105 Variability of ε_{met} pertaining to glucose H^1 and H^2 was attributed to isotope effects of G6PD ($k_{\text{H}}/k_{\text{D}} = 2.97$)
106 (Hermes *et al.*, 1982) and PGI (Table 2) (Rose & O'Connell, 1961; Wieloch *et al.*, 2022a,b), respectively.
107 Proposedly, G6PD and PGI-dependent metabolic processes in both leaves and tree rings may contribute
108 to ε_{met} signal introduction (Wieloch *et al.*, 2022b). Interestingly, Wacker (2022) recently reported that the
109 commonly observed whole-molecule deuterium depletion of leaf starch which derives from deuterium
110 depletion at starch glucose H^2 (Schleucher *et al.*, 1999; Wieloch *et al.*, 2022a) is not detectable in nocturnal
111 sucrose. Proposedly, this depletion is either washed out at the level of cytosolic PGI or masked either by
112 the vacuolar sucrose pool or deuterium enrichments at other sucrose hydrogen positions. Washout would
113 imply that any ε_{met} signal present at leaf-level G6P H^2 is lost to the medium. In this case, the ε_{met} signal at
114 tree-ring glucose H^2 may originate outside of leaves.

115
116
117 At tree-ring glucose C-4 (Fig. 1B), the diffusion-rubisco ^{13}C signal is thought to be absent due to
118 counteracting fractionation by leaf-cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH; Fig.
119 2) (Wieloch *et al.*, 2021). Signal removal may involve both changes in 3-phosphoglycerate (PGA) flux into
120 downstream metabolism including the tricarboxylic acid cycle (TCAC) relative to flux into tree-ring glucose
121 and changes of flux through the cytosolic oxidation-reduction cycle (Wieloch, 2021; Wieloch *et al.*, 2021).

122
123 The ^{13}C signal at C-5 and C-6 (Fig. 1B) is thought to derive from the postulated (but not yet measured)
124 isotope effects of leaf-level enzymes that modify the carbon double bond in phosphoenolpyruvate (PEP,
125 Fig. 2) (Wieloch *et al.*, 2022c). This includes enolase, pyruvate kinase (PK), PEPC, and 3-deoxy-D-arabino-
126 heptulosonate-7-phosphate synthase (DAHPS), the first enzyme of the shikimate pathway. Breaking the
127 double bond in PEP is thought to proceed faster when ^{12}C instead of ^{13}C forms this bond (Wieloch *et al.*,
128 2022c). Consequently, increasing relative flux into metabolism downstream of PEP is thought to ^{13}C enrich
129 remaining PEP at the double-bond carbons and their derivatives including glucose C-5 and C-6 (Wieloch
130 *et al.*, 2022c). For example, O_3 causes downregulation of rubisco, upregulation of PEPC, and DAHPS

131 expression (Dizengremel, 2001; Janzik *et al.*, 2005; Betz *et al.*, 2009). This is expected to cause increasing
132 relative flux into metabolism downstream of PEP (Wieloch *et al.*, 2022c). Accordingly, we previously found
133 a negative relationship between reconstructed tropospheric O₃ concentration and tree-ring glucose Δ_{5-6'}
134 (arithmetic average of Δ_{5'} and Δ_{6'}, Table 1) (Wieloch *et al.*, 2022c).

135
136 By contrast, the diffusion-rubisco signal is not evident at C-5 and C-6 (Wieloch *et al.*, 2022c). This was
137 explained (*inter alia*) by interaction between photorespiration and the TCAC (Fig. 2, Wieloch *et al.*, 2022c).
138 Photorespiration increases with drought which results in increasing supply of mitochondrial NADH via the
139 glycine decarboxylase complex. Since this NADH can feed oxidative phosphorylation, NADH and FADH₂
140 supply by the TCAC which requires injection of PEP into the TCAC via PK and PEPC may be reduced. This
141 should result in Δ_{5-6'} increases counteracting drought-induced decreases in diffusion-rubisco discrimination
142 (see above).

143
144 The theories of isotope signal introduction outlined above require further testing. They derive from separate
145 analyses of either the Δ' or deuterium dataset. However, some reactions exhibit both carbon and hydrogen
146 isotope effects (e.g., G6PD at G6P C-1 and H¹; PGI at G6P C-1, C-2, and H² but not H¹) and should
147 therefore introduce intercorrelated ¹³C and deuterium signals (suggested terminology: hydro-carbon isotope
148 signals and hydro-carbon isotope fractionation). Combined analysis of intramolecular ¹³C and deuterium
149 data can, in principle, help to separate those signals from signals introduced by reactions which merely
150 exhibit either carbon or hydrogen isotope effects. Therefore, we here studied the relationships between Δ'
151 and ε_{met} and their dependence on environmental parameters. Based on our results, we critically examine
152 and revise existing isotope theory and provide new insights into a central open question—whether carbon
153 and hydrogen isotope variability across tree rings derives from leaf-level processes only (as supported by
154 current evidence) or whether processes in the stem contribute as well.

155

156 **Material and Methods**

157 The Δ' and ε_{met} datasets reanalysed here are described in Wieloch *et al.* (2018, 2022b) and in Notes S1.
158 Data of relative humidity, precipitation (PRE), global radiation (RAD), sunshine duration (SD), and air
159 temperature (TMP) are from the climate station Hohe Warte (Vienna, Austria, 48.23° N, 16.35° E, 198 m
160 AMSL) (Klein Tank *et al.*, 2002). Air vapour pressure deficit (VPD) was calculated following published
161 procedures (Abtew & Melesse, 2013). Data of the standardised precipitation-evapotranspiration index
162 (SPEI_i) calculated for integrated periods of *i* = 1, 3, 6, 8, 12, 16, 24, 36, 48 months were obtained for 48.25°
163 N, 16.25° E (Fan & van den Dool, 2004; Beguería *et al.*, 2010). The SPEI is a multi-scalar drought index
164 approximating soil moisture variability when calculated for short timescales and groundwater variability
165 when calculated for long timescales (Vicente-Serrano *et al.*, 2010). The RAD series starts in 1964 while all
166 other climate series start in 1961. Horizontal distances between the tree site and the climate station and

167 grid point are < 15 km. Vertical offsets are small. Hence, climate data and site conditions are expected to
168 be in good agreement. Analytical procedures are described in Notes S1.

169

170 **Results**

171 Hydro-carbon isotope signals at tree-ring glucose HC-1 and HC-2

172 Tree-ring glucose of our *Pinus nigra* samples exhibits strongly correlated hydrogen isotope signals at H¹
173 and H² (Wieloch *et al.*, 2022b). These signals occur only after crossing a change point in 1980. Isotope-
174 environment-relationship analyses indicated that the trees had likely access to groundwater before 1980
175 which prevented changes of the processes introducing these isotope signals. We proposed the signals
176 derive from the hydrogen isotope effects of G6PD ($k_H/k_D = 2.97$) (Hermes *et al.*, 1982) and PGI (Table 2)
177 (Rose & O'Connell, 1961; Wieloch *et al.*, 2022a) in autotrophic and/or heterotrophic tissue (Fig. 2;
178 'Introduction') (Wieloch *et al.*, 2022a,b). If this proposal is correct then there should be related signals in Δ_1'
179 and Δ_2' due to the carbon isotope effects of G6PD affecting C-1 ($k_{^{12}\text{C}}/k_{^{13}\text{C}} = 1.0165$) (Hermes *et al.*, 1982)
180 and PGI affecting C-1 and C-2 (Table 2) (Gilbert *et al.*, 2012). Several findings support this hypothesis.
181 First, among all Δ_i' series, Δ_1' , Δ_{1-2}' , Δ_{1-3}' , and Δ are not normally distributed (Table S1, negative skew).
182 Second, among these nonnormal series, Δ_{1-2}' , Δ_{1-3}' , and Δ exhibit a change point in 1980 (Δ_{1-2}^* : parametric
183 test, $p < 0.001$, nonparametric test, $p < 0.05$; Δ_{1-3}^* : parametric test, $p < 0.01$; Δ : parametric test: $p < 0.05$; n
184 = 31). Third, 1983 to 1995 average values of Δ_1' , Δ_2' , Δ_{1-2}' , and Δ are significantly lower than the average
185 values of 1961 to 1980, while the 1983 to 1995 variance is significantly larger (Table S2). By contrast, Δ_3'
186 does not exhibit significant differences in average value or variance between the two periods. Fourth, Δ_1'
187 and Δ_2' data pertaining to 1983 to 1995 are significantly correlated ($r = 0.67$, $p = 0.01$, $n = 13$). Fifth, ε_{met}
188 approximates average hydrogen isotope fractionation at glucose H¹ and H² caused by metabolic processes
189 (Eq. 1). Using simple linear regression modelling, we found significant negative relationships between the
190 1983 to 1995 data of ε_{met} and Δ_1' as well as Δ_2' , but not Δ_3' or any other Δ_i' (Fig. 3, green circles; $\Delta_1' \sim \varepsilon_{\text{met}}$:
191 $R^2 = 0.35$, $\text{adj}R^2 = 0.29$, $p = 0.03$; $\Delta_2' \sim \varepsilon_{\text{met}}$: $R^2 = 0.54$, $\text{adj}R^2 = 0.50$, $p = 0.004$; $\Delta_3' \sim \varepsilon_{\text{met}}$: $R^2 = 0.21$, $\text{adj}R^2$
192 = 0.13, $p > 0.1$; $n = 13$; Table S3). Our ¹³C-NMRS data exhibit relatively large measurement errors. Based
193 on estimates of this random error variance, about 88% of the variance in the Δ_1' and Δ_2' data of 1983 to
194 1995 is systematic variance (Table S4). Hence, about 33% and 57% of the systematic variance in Δ_1' and
195 Δ_2' is explained by processes causing ε_{met} variation (0.29/0.88 and 0.5/0.88) while about 67% and 43%,
196 respectively, go back to other processes. Taken together, carbon and hydrogen isotope signals at glucose
197 HC-1 and HC-2 are significantly associated during 1983 to 1995 but not during 1961 to 1980 (Notes S2).
198 The processes introducing these signals cause concerted ¹³C and deuterium enrichments (Fig. 3A-B).
199

200 Isotope-environment relationships at tree-ring glucose C-1 to C-3

201 As evident from our previously published hierarchical cluster analysis and Pearson correlation analyses for
202 the whole period (1961 to 1995), Δ_1' , Δ_2' , and Δ_3' share common variability (Fig. 1B) (Wieloch *et al.*, 2018).

203 Since Δ_{1-2}' and Δ_{1-3}' exhibit change points in 1980 (see above and Tables S1-2), we analysed the early
204 (1961 to 1980) and late period (1983 to 1995) separately.

205

206 During the late period, Δ_1' and Δ_3' are more closely associated (Fig. 4A; $r = 0.87$, $p = 10^{-4}$, $n = 13$) than Δ_1'
207 and Δ_2' ($r = 0.67$, $p = 0.01$, $n = 13$). While this contrasts with results for the whole period (Fig. 1B), it is
208 consistent with isotope-climate-relationship patterns for the late period. Δ_1' and Δ_3' correlate similarly with
209 numerous climate parameters and periods (Table 3; *VPD*, *PRE*, *SPEI₁* to *SPEI₁₆*, *TMP*, *SD*). By contrast,
210 Δ_2' correlates only with one *VPD* period and several *PRE* periods. A model including ε_{met} and growing
211 season *VPD* as cofactors captures most of the systematic variance in Δ_1' of 88% (Table 4, M1; Table S4).
212 Consistent with the findings above (Fig. 3, Table 3), only ε_{met} but not growing season *VPD* contributes
213 significantly to the Δ_2' model whereas only growing season *VPD* but not ε_{met} contributes significantly to the
214 Δ_3' model (Table 4, M2-3). Removing insignificant terms, we find that ε_{met} explains 57% of the systematic
215 variance in Δ_2' , while growing season *VPD* explains the entire systematic variance in Δ_3' (Table 4, M4-5;
216 Table S4). The effect of *VPD* on Δ_1' is about twice as large as on Δ_3' (Table 4, M1 versus M5) while the
217 effect of ε_{met} on Δ_1' is about half as large as on Δ_2' (M1 versus M4). Intriguingly, Δ_1' and Δ_3' are affected by
218 processes that respond to growing season *VPD*. *VPD*-dependent processes can account for both the
219 clustering and correlation between Δ_1' and Δ_3' data of 1983 to 1995 (Fig. 4A). By contrast, ε_{met} is significantly
220 correlated only with *PRE* (especially March to July *PRE*) but no other climate parameter (Table S5; Table
221 4, M11). Furthermore, in our Δ_1' and Δ_2' models, ε_{met} can be substituted by March to July *PRE* (Table 4, M1
222 versus M6, M4 versus M7).

223

224 During the early period, Δ_1' , Δ_2' , and Δ_3' are not significantly correlated (Fig. 4B). Furthermore, isotope-
225 environment models that work for the late period (Table 4, M5-7) do not work for the early period (M8-10).
226 Compared to the late period, we found fewer and weaker isotope-climate correlations (Table 5).

227

228 Isotope-environment relationships at tree-ring glucose C-4 to C-6

229 As evident from our previously published hierarchical cluster analysis and Pearson correlation analyses for
230 the whole period, Δ_4' , Δ_5' , and Δ_6' share common variability, and Δ_5' and Δ_6' are significantly correlated (Fig.
231 1B; $r = 0.61$, $p < 0.001$, $n = 31$) (Wieloch *et al.*, 2018). This significant correlation holds for both the early
232 and late period (Fig. 4). Furthermore, we did not find change points in the Δ_4' , Δ_5' , and Δ_6' series (see also
233 Tables S1-2). Therefore, we analysed isotope-environment relationships for the whole period. We found
234 that Δ_5' and Δ_6' correlate with numerous climate parameters and periods but most significantly with *RAD*
235 while significant Δ_4' -climate correlations are rare (Table 6). Models including April to September *RAD* and
236 March to October *TMP* as cofactors capture 96% of the systematic variance in Δ_{5-6}' , Δ_5' , and Δ_6' of 73%,
237 66%, and 45%, respectively (Table 7, M1-3; Δ_{5-6}' , $\text{adj}R^2 = 0.70$, $p = 10^{-7}$; Δ_5' , $\text{adj}R^2 = 0.64$, $p = 10^{-6}$; Δ_6' ,
238 $\text{adj}R^2 = 0.43$, $p < 0.001$; $n = 28$; Table S4). Based on *RAD* regression slopes (which are better constrained
239 than *TMP* regression slopes), the ^{13}C discrimination at C-5 is about 1.5 times larger than at C-6 (Table 7,

240 M2-3). The model works well for both the early and late period (Table 7, M4-5). Furthermore, consistent
241 with the weak association between Δ_4' and Δ_{5-6}' (Fig. 1B), the model works reasonably well for Δ_4'
242 considering the relatively low systematic variance in Δ_4' of 38% (Table 7, M6; Table S4).

243

244 Discussion

245 Intramolecular carbon isotope analysis of tree-ring glucose yields information about metabolic variability
246 and water status of both leaves and stems

247 We found evidence for processes affecting Δ_1' and Δ_3' which respond to VPD (Table 4, M1, M3, M5).
248 Intriguingly, we also found evidence for processes simultaneously affecting ε_{met} , Δ_1' , and Δ_2' which respond
249 to PRE but not VPD (Table S5; Table 4, M1, M2, M4, M6, M7, M11). This sensitivity to different hydrological
250 properties may be explained by the fact that stem capacitance can buffer stem water status against changes
251 in VPD (McCulloh *et al.*, 2019), whereas leaf water status is tightly coupled to VPD (Grossiord *et al.*, 2020).
252 Changes in PRE will affect soil water potential and hence both stem and leaf water status. Variability in leaf
253 water status may be impacted more by VPD than by soil water status which would explain why VPD is the
254 best predictor of the intercorrelated processes affecting Δ_1' and Δ_3' . By contrast, VPD-insensitive processes
255 affecting ε_{met} , Δ_1' , and Δ_2' may reside in stems. Hence, we propose intramolecular carbon and hydrogen
256 isotope analysis of tree-ring glucose yields information about metabolic variability and water status not only
257 of leaves but also of stems. PRE-dependent systemic changes in enzyme expression can be considered
258 as an alternative explanation.

259

260 Isotope fractionation mechanisms in leaves affecting tree-ring glucose C-1 to C-3

261 The Δ_{1-2}' and Δ_{1-3}' series exhibit change points in 1980, i.e., their frequency distributions do not align with
262 the properties of a single theoretical probability distribution ('Results'; Tables S1-2). Consequently, we
263 investigated the early (1961 to 1980) and late period (1983 to 1995) separately. During the late period, Δ_1'
264 and Δ_3' are significantly intercorrelated (Fig. 4A) and correlate negatively with VPD and positively with short-
265 term SPEI whereas Δ_2' lacks most of these correlations (Table 3). Furthermore, during the late period,
266 growing season VPD accounts for a significant fraction of the systematic variance in Δ_1' and the entire
267 systematic variance in Δ_3' but does not contribute significantly to explaining Δ_2' (Table 4, M1, M2, M5; Table
268 S4). Hence, increasing VPD during 1983 to 1995 causes ^{13}C enrichments at tree-ring glucose C-1 and C-
269 3 but not C-2. At C-1, the effect is about twice as large as at C-3 (Table 4, M1 and M5).

270

271 As discussed above, the VPD-dependent processes affecting Δ_1' and Δ_3' are likely located in leaves.
272 Qualitatively, VPD-induced ^{13}C enrichments at C-1 and C-3 are consistent with the mechanisms of diffusion-
273 rubisco fractionation (see 'Introduction'). However, diffusion-rubisco fractionation affects all glucose carbon
274 positions equally (Wieloch *et al.*, 2018). Hence, the unequal VPD response of Δ_1' , Δ_2' , and Δ_3' points to
275 post-rubisco fractionations. In the following, we assume Δ_3' variation derives entirely from diffusion-rubisco
276 fractionation and argue VPD-dependent isotope fractionation at PGI and G6PD in leaf chloroplasts and the

277 cytosol may exert additional control over Δ_1' and Δ_2' variability. Generally, variability in PGI fractionation
278 depends on three biochemical properties: (i) the equilibrium status of the PGI reaction, and relative flux of
279 the PGI reactants (ii) F6P and (iii) G6P into competing metabolic pathways (Figs. 2 and 5):
280
281 (i) PGI reversibly converts F6P into G6P (Fig. 5A). Under nonstress conditions, the PGI reaction in
282 chloroplasts is strongly displaced from equilibrium on the side of F6P (Dietz, 1985; Gerhardt *et al.*, 1987;
283 Kruckeberg *et al.*, 1989; Schleucher *et al.*, 1999; Wieloch *et al.*, 2022a; Wieloch, 2022). With decreasing p_i ,
284 however, the reaction moves towards equilibrium (Dietz, 1985; Wieloch *et al.*, 2022a). This shift is
285 accompanied by ^{13}C increases at C-1 and C-2 of G6P (Table 2) which will be transmitted to downstream
286 derivatives such as starch and tree-ring glucose (Wieloch *et al.*, 2018). In isohydric species such as *Pinus*
287 *nigra*, p_i decreases with drought due to stomatal closure (McDowell *et al.*, 2008). Here, we found stronger
288 VPD-induced ^{13}C increases at tree-ring glucose C-1 than at C-3. This is consistent with the PGI-related
289 isotope shift expected at C-1. However, the apparent absence of the diffusion-rubisco signal from C-2
290 contrasts with the expected isotope shift. That said, in *Phaseolus vulgaris*, the ratio of leaf sucrose-to-starch
291 carbon partitioning was shown to increase steeply with decreasing p_i (Sharkey *et al.*, 1985). Hence, the
292 relative contribution of chloroplastic G6P and its isotope composition to downstream metabolism may
293 decrease with increasing VPD reducing the influence of the mechanism described on Δ_1' and Δ_2' variation.
294
295 (ii) In natural systems, leaf nighttime respiration is increased under drought (Fig. 5B; Schmiege *et al.*, 2023).
296 Furthermore, in the dark, the cytosolic PGI reaction was found to be near equilibrium (Gerhardt *et al.*, 1987).
297 Consequently, F6P would be ^{13}C depleted at C-1 but ^{13}C enriched at C-2 relative to the corresponding G6P
298 positions (Table 2). Increasing relative F6P flux into mitochondrial respiration would then result in ^{13}C
299 increases at C-1 and ^{13}C decreases at C-2 of G6P and downstream derivatives. Thus, this mechanism is
300 consistent with both observations, stronger VPD-induced ^{13}C increases at tree-ring glucose C-1 compared
301 to C-3 and the apparent absence of the diffusion-rubisco signal from C-2.
302
303 (iii) While carbon assimilation commonly decreases with drought (McDowell *et al.*, 2008), the activity of leaf-
304 cytosolic G6PD increases (Fig. 5C; Landi *et al.*, 2016). This can be expected to result in increasing relative
305 G6P flux into the OPPP. While some authors reported that the cytosolic PGI reaction in illuminated leaves
306 is in equilibrium (Gerhardt *et al.*, 1987) others found displacements from equilibrium (Leidreiter *et al.*, 1995;
307 Schleucher *et al.*, 1999; Szecowka *et al.*, 2013). Hence, PGI-related isotope shifts in tree-ring glucose
308 resulting from G6P flux into the leaf-cytosolic OPPP are hard to predict (Table 2). By contrast, the
309 unidirectional conversion of G6P to 6-phosphogluconolactone catalysed by G6PD proceeds faster with ^{12}C -
310 1 than ^{13}C -1 G6P ($k_{^{12}\text{C}}/k_{^{13}\text{C}} = 1.0165$) (Hermes *et al.*, 1982). Hence, increasing relative flux through the
311 leaf-cytosolic OPPP may contribute to the stronger VPD-induced ^{13}C increases at tree-ring glucose C-1
312 compared to C-3.
313

314 Aside from these mechanisms, there are others that might introduce Δ_1' and Δ_2' variation. For instance, we
315 recently reported evidence consistent with increasing relative flux through the chloroplastic OPPP in
316 response to decreasing p_i under illumination (Fig. 5A; Wieloch *et al.*, 2022a, 2023). Furthermore, under
317 illumination, chloroplastic F6P is used for both RuBP regeneration and starch biosynthesis (Fig. 5A).
318 Increasing VPD promotes photorespiration resulting in increasing RuBP regeneration relative to carbon
319 export from the Calvin-Benson cycle into sinks such as starch.

320
321 The mechanisms described above should also introduce hydrogen isotope signals because of the hydrogen
322 isotope effects of G6PD affecting G6P H¹ (Hermes *et al.*, 1982) and PGI affecting G6P H² (Table 2, Fig. 5).
323 However, growing season VPD neither correlates with ε_{met} pertaining to tree-ring glucose H¹ nor H² (Tables
324 S5-6). Hence, either G6PD and PGI are not the sources of VPD-dependent carbon isotope fractionation in
325 Δ_1' (and Δ_2') or the corresponding hydrogen isotope signals were washed out after introduction. Washout
326 at H¹ may occur during equilibration of F6P with mannose 6-phosphate by phosphomannose isomerase
327 (cf. Topper, 1957). Similarly, complete washout at H² may occur when the leaf-cytosolic PGI reaction is in
328 equilibrium (Notes S3). Previously, this latter process was invoked (among others) to explain why a whole-
329 molecule deuterium depletion observed in leaf starch was not transmitted to nocturnal sucrose
330 ('Introduction'; Wacker, 2022). As each conversion by PGI was found to be associated with a 0 to 50%
331 probability for hydrogen exchange with the medium (Noltmann, 1972), partial washout of existing hydrogen
332 isotope signals may also occur under non-equilibrium conditions (Notes S3).

333
334 In the mechanisms described above, we assumed diffusion-rubisco fractionation contributes to VPD-
335 dependent Δ' variation. However, diffusion-rubisco fractionation affects all glucose carbon positions equally
336 (Wieloch *et al.*, 2018). Since merely two out of six glucose carbon positions carry VPD-dependent isotope
337 variation, the question arises of whether the diffusion-rubisco signal was already below the detection level
338 on introduction. If this were the case, then VPD-dependent Δ_1' and Δ_2' variation would originate entirely
339 from post-rubisco processes. Furthermore, post-rubisco processes that were previously invoked to explain
340 the absence of the diffusion-rubisco signal from C-4, C-5, and C-6 (see 'Introduction') would not occur.

341
342 *Isotope fractionation mechanisms in stems affecting tree-ring glucose HC-1 and HC-2*
343 Previously, we found a change point in ε_{met} in 1980 (Wieloch *et al.*, 2022b). Here, we found the same
344 change point in Δ_{1-2}' ('Results'). Consistent with this, Δ_1' and Δ_2' data of 1983 to 1995 exhibit a significantly
345 lower average value and a significantly larger variance than those of 1961 to 1980 (Tables S1-2).
346 Furthermore, Δ_1' and Δ_2' are significantly correlated during the late (Fig. 4B) but not the early period (Fig.
347 4A), and ε_{met} accounts for a significant fraction of the variance of both Δ_1' and Δ_2' during the late period
348 (Table 4, M1, M4; Figs. 3A-B). In Δ_2' , the ε_{met} effect is about twice as large as in Δ_1' . Processes affecting
349 ε_{met} , Δ_1' , and Δ_2' simultaneously respond to PRE but not VPD (Table S5; Table 4, M1, M2, M4, M6, M7,
350 M11). Δ_1' and Δ_2' respond to March to July PRE during the late but not the early period (Table 4, M9-10).

351 Previously, we reported evidence suggesting the groundwater table before 1980 was high enough to
352 prevent metabolic changes causing ε_{met} variation (Wieloch *et al.*, 2022b). By extension, this should also
353 explain the properties of Δ_1' and Δ_2' listed above. That is, since the trees had access to groundwater during
354 the early period, metabolic shifts that can cause intercorrelated variation in ε_{met} , Δ_1' , and Δ_2' were not
355 induced.

356

357 Processes causing intercorrelated variation in ε_{met} , Δ_1' , and Δ_2' are probably located in the stem (see the
358 first section of the 'Discussion'). The ε_{met} signal is present at glucose H¹ and, considerably more strongly,
359 at H² (range: 64‰ and 240‰, respectively; 1983 to 1995). In the biochemical pathway leading to tree-ring
360 cellulose, PGI is the last enzyme acting on precursors of glucose H² (Figs. 2 and 5D). With each conversion
361 by PGI, there is a probability for hydrogen exchange with the medium of 0 to 50% (Nolmann, 1972). Thus,
362 if we assume *Pinus nigra* stem PGI exchanges hydrogen with the medium as does spinach leaf PGI
363 (Fedtke, 1969) and the reaction is in equilibrium, then any deuterium signal at G6P H² will be washed out.
364 Among all H-C positions of tree-ring glucose, the deuterium abundance at H² is neither exceptionally high
365 nor low during 1961 to 1980 whereas it is exceptionally high (and exceptionally variable) during 1983 to
366 1995 (Fig. 6). This indicates that the PGI reaction was close to or in equilibrium during 1961 to 1980 but
367 displaced from equilibrium on the side of G6P during 1983 to 1995 (Table 2). Additionally, shifts of the PGI
368 reaction away from equilibrium towards the side of G6P should cause ¹³C enrichment at G6P C-1 and C-2
369 (Δ_1' and Δ_2' decreases), and Δ_2' should decrease 3 times more than Δ_1' (Table 2). Consistent with this, we
370 found negative relationships between ε_{met} and Δ_1' , as well as Δ_2' (Table 4, M1 and M4). However, Δ_2'
371 decreases only 1.88 times more than Δ_1' , but this best estimate is associated with a relatively large error
372 (SE interval: 1.04 to 3.45). That said, the offset from 3 is likely explained by increasing relative flux through
373 the OPPP accompanying the putative PGI reaction shift (Figs. 2 and 5D). This is because G6P to 6-
374 phosphogluconolactone conversion by G6PD exhibit ¹³C and D isotope effects ($k_{\text{D}}/k_{\text{H}} = 1.0165$, $k_{\text{H}}/k_{\text{D}} = 2.97$) (Hermes *et al.*, 1982). Hence, increasing relative OPPP flux causes ¹³C enrichment
375 at G6P C-1 (Δ_1' decreases) and deuterium enrichment at G6P H¹. This is consistent with both the apparently
376 decreased PGI effects ratio (1.88 instead of 3) and, more importantly, ε_{met} increases at glucose H¹ of up to
377 64‰ during 1983 to 1995 (Fig. 6).

379

380 Sucrose translocated from leaves can be split into UDP-glucose and fructose via sucrose synthase or
381 glucose and fructose via invertase (Fig. 2). UDP-glucose entering tree-ring cellulose biosynthesis directly
382 via sucrose synthase is protected from isotope fractionation by PGI and G6PD. However, in stems of
383 juvenile *Quercus petraea* and *Picea abies*, at least 79% and 43% of the precursors of tree-ring glucose
384 went through PGI catalysis, respectively (Augusti *et al.*, 2006). Theoretically, shifts of the PGI reaction away
385 from equilibrium towards the side of G6P can cause ε_{met} increases at glucose H² of up to 611‰ (Notes S3,
386 hydrogen exchange with the medium not considered). With 43% and 79% of all precursors of tree-ring
387 glucose undergoing PGI catalysis, ε_{met} increases at glucose H² of up to 263‰ and 483‰ are possible,

388 respectively. Thus, the PGI-related fractionation mechanism proposed here can potentially cause
389 previously reported ε_{met} increases at glucose H² of up to 240‰ (Wieloch *et al.*, 2022b). Shifts in sucrose
390 cleavage by sucrose synthase versus invertase may exert additional control on the ε_{met} signal at glucose
391 H².

392
393 Based on results and interpretations presented above, decreasing stem water content is associated with
394 both increasing OPPP flux and a shift of the PGI reaction away from equilibrium towards the side of G6P
395 corresponding to low relative F6P concentration (Fig. 5D). We propose these concerted shifts may ensure
396 redox homeostasis and balanced substrate supply to glycolysis as follows. In heterotrophic tissue, NADPH
397 from the OPPP is believed to be central for maintaining redox homeostasis (Fig. 2) (Stincone *et al.*, 2015).
398 Flux through the OPPP is regulated at G6PD. Heterotrophic G6PD activity reportedly increases with drought
399 (Liu *et al.*, 2013; Wang *et al.*, 2016, 2020), oxidative load (Wang *et al.*, 2016, 2020; Li *et al.*, 2020), NADPH
400 demand (Wendt *et al.*, 2000; Esposito *et al.*, 2001; Castiglia *et al.*, 2015), and abscisic acid concentration
401 (Cardi *et al.*, 2011; Wang *et al.*, 2016). Decreasing stem water content may cause increasing OPPP flux
402 via increasing abscisic acid concentration (Brunetti *et al.*, 2020), and possibly increasing oxidative load
403 increasing the demand for NADPH. In turn, increasing OPPP flux results in increasing supply of pentose
404 phosphates which may feed into glycolysis via the reductive part of the pentose phosphate pathway (Figs.
405 2 and 5D). This would reduce the demand for glycolytic substrates supplied via PGI. The shift of the PGI
406 reaction away from equilibrium towards the side of G6P may reflect this decreased demand and result from
407 PGI downregulation by intermediates of the pentose phosphate pathway such as erythrose 4-phosphate,
408 ribulose 5-phosphate, and 6-phosphogluconate (Parr, 1956; Grazi *et al.*, 1960; Salas *et al.*, 1965).
409 Furthermore, relative changes in G6P-to-F6P supply versus consumption may contribute to the shift of the
410 PGI reaction. For instance, while starch storage consumes G6P, remobilisation supplies G6P (Noronha *et*
411 *al.*, 2018). Under drought, the storage-to-remobilisation balance may tilt towards remobilisation (Mitchell *et*
412 *al.*, 2013; Thalmann & Santelia, 2017; Tsamir-Rimon *et al.*, 2021). Consequently, the PGI reaction may
413 move towards the side of G6P. Similarly, we previously reported below-average tree-ring widths for years
414 in which the PGI reaction is on the side of G6P (Wieloch *et al.*, 2022b). Hence, in these years, G6P
415 consumption by growth may have been reduced while F6P consumption by downstream metabolism may
416 have been maintained.

417
418 1961 to 1980: A period of homeostasis with respect to processes affecting Δ_1' , Δ_2' , Δ_3' , and ε_{met}
419 During 1961 to 1980, Δ_1' , Δ_2' , and Δ_3' are not significantly correlated which contrasts with the period 1983
420 to 1995 (Figs. 4a-b). Similarly, relationships of Δ_1' and Δ_3' with VPD and Δ_1' and Δ_2' with PRE observed
421 during the late period are largely absent during the early period (Tables 3-5) even though there is no
422 difference in the magnitude of VPD and PRE variability between these periods (Fig. S1). Like Δ_{1-2}' and Δ_{1-3}' ,
423 ε_{met} exhibits a change point in 1980 and responds to PRE after but not before 1980 (Wieloch *et al.*,
424 2022b). This shift in ε_{met} sensitivity was attributed to long-term drought which intensified over the study

425 period and proposedly lead to a groundwater depletion below a critical level in 1980 (Wieloch *et al.*, 2022b).
426 By extension, this groundwater depletion might also explain the insensitivity of Δ_1' and Δ_3' to *VPD* and Δ_1'
427 and Δ_2' to *PRE* during 1961 to 1980 and their sensitivity from 1983 onwards. Thus, while the trees had
428 access to groundwater, leaf- and stem-level processes affecting Δ_1' , Δ_2' , Δ_3' and ε_{met} could apparently
429 maintain homeostasis despite changing atmospheric conditions.

430

431 *Isotope fractionation mechanisms in leaves affecting tree-ring glucose C-5 and C-6*

432 No change points were detected in Δ_5' and Δ_6' ('Results'; Tables S1-2). Furthermore, Δ_5' and Δ_6' remain
433 significantly correlated across the entire study period (Figs. 1B and 4A-B), and *RAD* is the most influential
434 environmental cofactor (Table 6). Models including *RAD* and *TMP* as cofactors capture most of the
435 systematic variance in Δ_{5-6}' , Δ_5' , and Δ_6' (Table 7, M1-3; Table S4). These relationships hold for both the
436 early and late study period (Table 7, M4-5) with Δ_5' effects being about 1.5-fold larger than Δ_6' effects (M2
437 versus M3, SE interval: 1.1 to 2.28).

438

439 Previously, we reported a negative relationship between tree-ring glucose Δ_{5-6}' and reconstructed
440 tropospheric O_3 concentration ('Introduction', Wieloch *et al.*, 2022c). Light stimulates tropospheric O_3
441 formation (Lu *et al.*, 2019). This may explain the negative relationship between tree-ring glucose Δ_{5-6}' and
442 *RAD* reported here (Table 7, M1-3). Furthermore, we previously explained the absence of the diffusion-
443 rubisco signal from glucose C-5 and C-6 (*inter alia*) by interaction between photorespiration and the TCAC
444 ('Introduction', Wieloch *et al.*, 2022c). As *TMP* increases, photorespiration increases more than
445 photosynthesis (Long, 1991). This may result in decreasing flux of PEP into the TCAC ('Introduction') and
446 explain the positive relationship between tree-ring glucose Δ_{5-6}' and *TMP* reported here (Table 7, M1-3).

447

448 *Isotope fractionation mechanisms in leaves affecting tree-ring glucose C-4*

449 As for Δ_5' and Δ_6' , no change point was detected in Δ_4' ('Results'; Tables S1-2). Considering the entire
450 study period, Δ_4' is weakly associated with Δ_{5-6}' (Fig. 1B). Consistent with this, the Δ_{5-6}' -climate model works
451 reasonably well for Δ_4' considering the relatively low systematic variance in Δ_4' of 38% (Table 7, M1 and
452 M6; Table S4). Introduction of the Δ_4' and Δ_{5-6}' signals proposedly involves leaf-level consumption of PGA
453 and PEP by downstream metabolism, respectively (Wieloch *et al.*, 2021, 2022c). Since PGA is a precursor
454 of PEP (Fig. 2), our previously proposed theories of signal introduction are in line with the observation that
455 Δ_4' , Δ_5' and Δ_6' are associated and respond to the same environmental parameters.

456

457 **Conclusions and future directions**

458 Dual-isotope-environment analysis was used to deconvolute isotope signals and provide several new
459 insights into plant isotope fractionation. First, the diffusion-rubisco signal was previously shown to be absent
460 from tree-ring glucose C-4 to C-6 (Wieloch *et al.*, 2021, 2022c) but believed to be present at C-1 to C-3
461 (Wieloch *et al.*, 2018). Here, this signal was found to also be absent from C-2. Second, isotope fractionation

462 beyond leaves is commonly considered to be constant for any given species (Roden *et al.*, 2000; Gagen *et*
463 *al.*, 2022). However, our results suggest a significant part of the carbon and hydrogen isotope variation in
464 tree-ring glucose originates in stems from processes affecting Δ_1' , Δ_2' , and ε_{met} simultaneously. Third, *VPD*
465 affects Δ_1' and Δ_3' and *PRE* affects Δ_1' , Δ_2' , and ε_{met} (Table 4). These relationships proposedly reflect water
466 content variability in leaves and stems, respectively. They apply to the late but not the early study period
467 consistent with the finding of a change point in both the ε_{met} (Wieloch *et al.*, 2022b) and Δ_{1-3}' series (see
468 above). This change point proposedly marks the crossing of a physiologically relevant groundwater
469 threshold (Wieloch *et al.*, 2022b). Additionally, we reported Δ_{5-6}' relationships with *RAD* and *TMP* which
470 apply to the entire study period (Table 4). These latter relationships are consistent with previously proposed
471 isotope fractionation mechanisms (Wieloch *et al.*, 2022c). By contrast, we here revised and expanded our
472 previous theory on the mechanisms introducing Δ_1' , Δ_2' , Δ_3' , and ε_{met} variability. Given the multitude of
473 isotope-environment relationships (including change-point responses), intramolecular carbon isotope
474 analysis has a remarkable potential for reconstructions of environmental conditions (*VPD*, *PRE*, *RAD*, *TMP*,
475 soil moisture, groundwater thresholds, tropospheric O_3 concentration), tissue water content (leaf, stem),
476 metabolic flux variability (various processes), and ecophysiological properties such as intrinsic water-use
477 efficiency across space and time. Complementing hydrogen isotope analysis is expected to significantly
478 enhance these capabilities.

479

480 Understanding isotope fractionation mechanisms is central for retrospective studies of plant physiology and
481 climate based on tree-ring isotope data, and there is considerable room for improvement as shown above.
482 Research in several largely unexploited areas is needed to make progress. First, there is a basic need for
483 more *in vitro* data on intramolecular isotope effects of enzyme reactions including the reactions catalysed
484 by triosephosphate isomerase, transketolase, PEPC, PK, and DAHPS. Second, intramolecular isotope
485 analyses of leaf metabolites including starch and sucrose from both controlled and natural environments
486 are needed to generate a baseline for mechanistic studies of isotope fractionation along the pathway from
487 leaves to wood. Additionally, intramolecular isotope analysis of metabolites from wood slices acclimated to
488 different ambient conditions (e.g., wet versus dry, varying sucrose supply) will be insightful. Third, combined
489 analysis of intramolecular ^{13}C and deuterium data can help to separate isotope signals. Fourth, genetic
490 modification of key enzymes may help to test proposed isotope fractionation mechanisms *in vivo*. Fifth,
491 intramolecular isotope fractionation affecting tree-ring glucose is complex (see above). Software programs
492 such as QIRN enable the convenient simulation of natural isotope abundances in complex metabolic
493 networks (Mueller *et al.*, 2022). If expanded, these programs may help to extract metabolic information from
494 intramolecular tree-ring isotope data. This would require routines enabling control of relative flux at
495 metabolic branchpoints by optimising regressions between (i) relative branchpoint flux and environmental
496 parameters and (ii) simulated and observed isotope data. In summary, intramolecular isotope analysis has
497 an enormous potential to advance our knowledge about isotope fractionation mechanisms, plant
498 ecophysiology, and paleoclimatology.

499 **Acknowledgements**

500 TW's work was carried out with funding from "Formas - a Swedish Research Council for Sustainable
501 Development" (2022-02833, Grant recipient: TW). MHP's work was supported by the Swiss National
502 Science Foundation (205492).

503

504 **Author Contributions**

505 Conceptualisation: TW; Investigation: TW with input from all authors; Visualization: TW; Development of
506 isotope theory: TW; Project administration: TW; Writing: TW with input from all authors.

507

508 **Competing interests**

509 None declared.

510

511 **Data availability**

512 The authors declare that the data supporting the findings of this study are available within the paper and its
513 supplementary information files.

514

515 **References**

516 **Abtew W, Melesse AM. 2013.** Chapter 5 - Vapor pressure calculation methods. In: Evaporation and
517 Evapotranspiration. Springer Verlag, 53–62.

518 **Augusti A, Betson TR, Schleucher J. 2006.** Hydrogen exchange during cellulose synthesis distinguishes
519 climatic and biochemical isotope fractionations in tree rings. *New Phytologist* **172**: 490–499.

520 **Badeck FW, Tcherkez G, Nogues S, Piel C, Ghashghaei J. 2005.** Post-photosynthetic fractionation of
521 stable carbon isotopes between plant organs-a widespread phenomenon. *Rapid Communications in Mass
522 Spectrometry* **19**: 1381–1391.

523 **Beguería S, Vicente-Serrano SM, Angulo-Martínez M. 2010.** A multiscalar global drought dataset: The
524 SPEIbase. *Bulletin of the American Meteorological Society* **91**: 1351–1356.

525 **Betz GA, Gerstner E, Stich S, Winkler B, Welzl G, Kremmer E, Langebartels C, Heller W, Sandermann
526 H, Ernst D. 2009.** Ozone affects shikimate pathway genes and secondary metabolites in saplings of
527 European beech (*Fagus sylvatica* L.) grown under greenhouse conditions. *Trees* **23**: 539–553.

528 **Brunetti C, Savi T, Nardini A, Loreto F, Gori A, Centritto M. 2020.** Changes in abscisic acid content
529 during and after drought are related to carbohydrate mobilization and hydraulic recovery in poplar stems.
530 *Tree Physiology* **40**: 1043–1057.

531 **Cardi M, Chibani K, Cafasso D, Rouhier N, Jacquot J-P, Esposito S. 2011.** Abscisic acid effects on
532 activity and expression of barley (*Hordeum vulgare*) plastidial glucose-6-phosphate dehydrogenase.
533 *Journal of Experimental Botany* **62**: 4013–4023.

534 **Castiglia D, Cardi M, Landi S, Cafasso D, Esposito S. 2015.** Expression and characterization of a
535 cytosolic glucose 6 phosphate dehydrogenase isoform from barley (*Hordeum vulgare*) roots. *Protein*
536 *Expression and Purification* **112**: 8–14.

537 **Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG,**
538 **Reich PB, Ellsworth DS, et al. 2009.** Why are non-photosynthetic tissues generally ^{13}C enriched compared
539 with leaves in C_3 plants? Review and synthesis of current hypotheses. *Functional Plant Biology* **36**: 199–
540 213.

541 **Cossar JD, Rowell P, Stewart WDP. 1984.** Thioredoxin as a modulator of glucose-6-phosphate
542 dehydrogenase in a N_2 -fixing cyanobacterium. *Microbiology* **130**: 991–998.

543 **Craig H. 1953.** The geochemistry of the stable carbon isotopes. *Geochimica Et Cosmochimica Acta* **3**: 53–
544 92.

545 **Dietz K-J. 1985.** A possible rate-limiting function of chloroplast hexosemonophosphate isomerase in starch
546 synthesis of leaves. *Biochimica et Biophysica Acta* **839**: 240–248.

547 **Dizengremel P. 2001.** Effects of ozone on the carbon metabolism of forest trees. *Plant Physiology and*
548 *Biochemistry* **39**: 729–742.

549 **Esposito S, Carfagna S, Massaro G, Vona V, Di Martino Rigano V. 2001.** Glucose-6-phosphate
550 dehydrogenase in barley roots: kinetic properties and localisation of the isoforms. *Planta* **212**: 627–634.

551 **Evans JR, Farquhar GD, Sharkey TD, Berry JA. 1986.** Carbon isotope discrimination measured
552 concurrently with gas exchange to investigate CO_2 diffusion in leaves of higher plants. *Australian Journal*
553 *of Plant Physiology* **13**: 281–292.

554 **Fan Y, van den Dool H. 2004.** Climate Prediction Center global monthly soil moisture data set at 0.5°
555 resolution for 1948 to present. *Journal of Geophysical Research: Atmospheres* **109**.

556 **Farquhar GD. 1983.** On the nature of carbon isotope discrimination in C_4 species. *Australian Journal of*
557 *Plant Physiology* **10**: 205–226.

558 **Farquhar GD, O'Leary MH, Berry JA. 1982.** On the relationship between carbon isotope discrimination
559 and the intercellular carbon dioxide concentration in leaves. *Australian Journal of Plant Physiology* **9**: 121–
560 137.

561 **Farquhar GD, Richards RA. 1984.** Isotopic composition of plant carbon correlates with water-use
562 efficiency of wheat genotypes. *Australian Journal of Plant Physiology* **11**: 539–552.

563 **Fedtke C. 1969.** Intramolecular hydrogen transfer in isomerisation reactions of sugar phosphates in the
564 Calvin cycle. In: Metzner H, ed. *Progress in Photosynthesis Research*. Tübingen, 1597–1603.

565 **Gagen M, Battipaglia G, Daux V, Duffy J, Dorado-Liñán I, Hayles LA, Martínez-Sancho E, McCarroll**
566 **D, Shestakova TA, Treydte K. 2022.** Climate signals in stable isotope tree-ring records. In: Siegwolf RTW,
567 Brooks JR, Roden J, Saurer M, eds. *Stable isotopes in tree rings: Inferring physiological, climatic and*
568 *environmental responses*. Cham: Springer International Publishing, 537–579.

569 **Gerhardt R, Stitt M, Heldt HW.** 1987. Subcellular metabolite levels in spinach leaves: Regulation of
570 sucrose synthesis during diurnal alterations in photosynthetic partitioning. *Plant Physiology* **83**: 399–407.

571 **Gilbert A, Robins RJ, Remaud GS, Tcherkez G.** 2012. Intramolecular ^{13}C pattern in hexoses from
572 autotrophic and heterotrophic C_3 plant tissues. *Proceedings of the National Academy of Sciences of the*
573 *United States of America* **109**: 18204–18209.

574 **Grazi E, De Flora A, Pontremoli S.** 1960. The inhibition of phosphoglucose isomerase by D-erythrose 4-
575 phosphate. *Biochemical and Biophysical Research Communications* **2**: 121–125.

576 **Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell
577 **NG.** 2020. Plant responses to rising vapor pressure deficit. *New Phytologist* **226**: 1550–1566.**

578 **Hermes JD, Roeske CA, O'Leary MH, Cleland WW.** 1982. Use of multiple isotope effects to determine
579 enzyme mechanisms and intrinsic isotope effects. Malic enzyme and glucose 6-phosphate dehydrogenase.
580 *Biochemistry* **21**: 5106–5114.

581 **Hobbie EA, Werner RA.** 2004. Intramolecular, compound-specific, and bulk carbon isotope patterns in C_3
582 and C_4 plants: a review and synthesis. *New Phytologist* **161**: 371–385.

583 **Janzik I, Preiskowski S, Kneifel H.** 2005. Ozone has dramatic effects on the regulation of the
584 prechorismate pathway in tobacco (*Nicotiana tabacum* L. cv. Bel W3). *Planta* **223**: 20–27.

585 **Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis
586 **S, Hejkrlik L, Kern-Hansen C, et al.** 2002. Daily dataset of 20th-century surface air temperature and
587 precipitation series for the European Climate Assessment. *International Journal of Climatology* **22**: 1441–
588 1453.**

589 **Kruckeberg AL, Neuhaus HE, Feil R, Gottlieb LD, Stitt M.** 1989. Decreased-activity mutants of
590 phosphoglucose isomerase in the cytosol and chloroplast of *Clarkia xantiana*. *The Biochemical Journal*
591 **261**: 457–467.

592 **Landi S, Nurcato R, De Lillo A, Lentini M, Grillo S, Esposito S.** 2016. Glucose-6-phosphate
593 dehydrogenase plays a central role in the response of tomato (*Solanum lycopersicum*) plants to short and
594 long-term drought. *Plant Physiology and Biochemistry* **105**: 79–89.

595 **Leavitt SW, Roden J.** 2022. Isotope dendrochronology: Historical perspective. In: Siegwolf RTW, Brooks
596 JR, Roden J, Saurer M, eds. *Stable isotopes in tree rings: Inferring physiological, climatic and*
597 *environmental Responses*. Cham: Springer International Publishing, 3–20.

598 **Leidreiter K, Kruse A, Heineke D, Robinson DG, Heldt H-W.** 1995. Subcellular volumes and metabolite
599 concentrations in potato (*Solanum tuberosum* cv. *Désirée*) leaves. *Botanica Acta* **108**: 439–444.

600 **Li C, Wei M, Ge Y, Zhao J, Chen Y, Hou J, Cheng Y, Chen J, Li J.** 2020. The role of glucose-6-phosphate
601 dehydrogenase in reactive oxygen species metabolism in apple exocarp induced by acibenzolar-S-methyl.
602 *Food Chemistry* **308**: 125663.

603 **Liu J, Wang X, Hu Y, Hu W, Bi Y.** 2013. Glucose-6-phosphate dehydrogenase plays a pivotal role in
604 tolerance to drought stress in soybean roots. *Plant Cell Reports* **32**: 415–29.

605 **Long SP.** 1991. Modification of the response of photosynthetic productivity to rising temperature by
606 atmospheric CO₂ concentrations: Has its importance been underestimated? *Plant, Cell & Environment* **14**:
607 729–739.

608 **Lu X, Zhang L, Shen L.** 2019. Meteorology and climate influences on tropospheric ozone: a review of
609 natural sources, chemistry, and transport patterns. *Current Pollution Reports* **5**: 238–260.

610 **McCulloh KA, Domec J-C, Johnson DM, Smith DD, Meinzer FC.** 2019. A dynamic yet vulnerable
611 pipeline: Integration and coordination of hydraulic traits across whole plants. *Plant, Cell & Environment* **42**:
612 2789–2807.

613 **McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A,**
614 **Williams DG, et al.** 2008. Mechanisms of plant survival and mortality during drought: why do some plants
615 survive while others succumb to drought? *New Phytologist* **178**: 719–739.

616 **Mitchell PJ, O'Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA.** 2013. Drought
617 response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion
618 during tree mortality. *New Phytologist* **197**: 862–872.

619 **Mueller EP, Wu F, Sessions AL.** 2022. Quantifying Isotopologue Reaction Networks (QIRN): A modelling
620 tool for predicting stable isotope fractionations in complex networks. *Chemical Geology* **610**: 121098.

621 **Noltmann EA.** 1972. 9 Aldose-ketose isomerase. In: Boyer PD, ed. *The Enzymes*. Academic Press, 271–
622 354.

623 **Noronha H, Silva A, Dai Z, Gallusci P, Rombolà AD, Delrot S, Gerós H.** 2018. A molecular perspective
624 on starch metabolism in woody tissues. *Planta* **248**: 559–568.

625 **Parr CW.** 1956. Inhibition of phosphoglucose isomerase. *Nature* **178**: 1401.

626 **Preiser AL, Fisher N, Banerjee A, Sharkey TD.** 2019. Plastidic glucose-6-phosphate dehydrogenases
627 are regulated to maintain activity in the light. *Biochemical Journal* **476**: 1539–1551.

628 **Roden JS, Lin G, Ehleringer JR.** 2000. A mechanistic model for interpretation of hydrogen and oxygen
629 isotope ratios in tree-ring cellulose. *Geochimica et Cosmochimica Acta* **64**: 21–35.

630 **Roeske CA, O'Leary MH.** 1984. Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose
631 bisphosphate. *Biochemistry* **23**: 6275–6284.

632 **Rose IA, O'Connell EL.** 1961. Intramolecular hydrogen transfer in the phosphoglucose isomerase
633 reaction. *The Journal of Biological Chemistry* **236**: 3086–3092.

634 **Salas M, Vinuela E, Sols A.** 1965. Spontaneous and enzymatically catalyzed anomeration of glucose 6-
635 phosphate and anomeric specificity of related enzymes. *Journal of Biological Chemistry* **240**: 561–568.

636 **Schleucher J, Vanderveer P, Markley JL, Sharkey TD.** 1999. Intramolecular deuterium distributions
637 reveal disequilibrium of chloroplast phosphoglucose isomerase. *Plant, Cell and Environment* **22**: 525–533.

638 **Schmiege SC, Heskel M, Fan Y, Way DA.** 2023. It's only natural: Plant respiration in unmanaged systems.
639 *Plant Physiology* **192**: 710–727.

640 **Sharkey TD, Berry JA, Raschke K.** 1985. Starch and sucrose synthesis in *Phaseolus vulgaris* as affected
641 by light, CO₂, and abscisic acid. *Plant Physiology* **77**: 617–620.

642 **Sharkey TD, Weise SE.** 2016. The glucose 6-phosphate shunt around the Calvin–Benson cycle. *Journal*
643 *of Experimental Botany* **67**: 4067–4077.

644 **Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Gruning**
645 **N, Kruger A, Tauqueer Alam M, et al.** 2015. The return of metabolism: biochemistry and physiology of the
646 pentose phosphate pathway. *Biological Reviews Cambridge Philosophical Society* **90**: 927–963.

647 **Szecowka M, Heise R, Tohge T, Nunes-Nesi A, Vosloh D, Huege J, Feil R, Lunn J, Nikoloski Z, Stitt**
648 **M, et al.** 2013. Metabolic fluxes in an illuminated *Arabidopsis* rosette. *The Plant Cell* **25**: 694–714.

649 **Thalmann M, Santelia D.** 2017. Starch as a determinant of plant fitness under abiotic stress. *New*
650 *Phytologist* **214**: 943–951.

651 **Topper YJ.** 1957. On the mechanism of action of phosphoglucose isomerase and phosphomannose
652 isomerase. *Journal of Biological Chemistry* **225**: 419–425.

653 **Tsamir-Rimon M, Ben-Dor S, Feldmesser E, Oppenheimer-Shaanan Y, David-Schwartz R, Samach A,**
654 **Klein T.** 2021. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by
655 three stress-specific beta amylases. *New Phytologist* **229**: 1398–1414.

656 **Ubierna N, Holloway-Phillips M-M, Farquhar GD.** 2022. Scaling from fluxes to organic matter: interpreting
657 ¹³C isotope ratios of plant material using flux models. *New Phytologist* **236**: 2003–2008.

658 **Vicente-Serrano SM, Beguería S, López-Moreno JI.** 2010. A multiscalar drought index sensitive to global
659 warming: The standardized precipitation evapotranspiration index. *Journal of Climate* **23**: 1696–1718.

660 **Wacker A.** 2022. Leaf sucrose shows no nighttime ²H-depletion despite the degradation of strongly ²H-
661 depleted starch. Master thesis. University of Basel, Switzerland.

662 **Wang X, Ruan M, Wan Q, He W, Yang L, Liu X, He L, Yan L, Bi Y.** 2020. Nitric oxide and hydrogen
663 peroxide increase glucose-6-phosphate dehydrogenase activities and expression upon drought stress in
664 soybean roots. *Plant Cell Reports* **39**: 63–73.

665 **Wang H, Yang L, Li Y, Hou J, Huang J, Liang W.** 2016. Involvement of ABA- and H₂O₂-dependent
666 cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under
667 drought stress. *Plant Physiology and Biochemistry* **107**: 126–136.

668 **Wendt UK, Wenderoth I, Tegeler A, Von Schaewen A.** 2000. Molecular characterization of a novel
669 glucose-6-phosphate dehydrogenase from potato (*Solanum tuberosum* L.). *The Plant Journal* **23**: 723–733.

670 **Wieloch T.** 2021. A cytosolic oxidation–reduction cycle in plant leaves. *Journal of Experimental Botany* **72**:
671 4186–4189.

672 **Wieloch T.** 2022. High atmospheric CO₂ concentration causes increased respiration by the oxidative
673 pentose phosphate pathway in chloroplasts. *New Phytologist* **235**: 1310–1314.

674 **Wieloch T, Augusti A, Schleucher J. 2022a.** Anaplerotic flux into the Calvin-Benson cycle. Hydrogen
675 isotope evidence for *in vivo* occurrence in C₃ metabolism. *New Phytologist* **234**: 405–411.

676 **Wieloch T, Augusti A, Schleucher J. 2023.** A model of photosynthetic CO₂ assimilation in C₃ leaves
677 accounting for respiration and energy recycling by the plastidial oxidative pentose phosphate pathway. *New*
678 *Phytologist* **239**: 518–532.

679 **Wieloch T, Ehlers I, Yu J, Frank D, Grabner M, Gessler A, Schleucher J. 2018.** Intramolecular ¹³C
680 analysis of tree rings provides multiple plant ecophysiology signals covering decades. *Scientific Reports* **8**:
681 5048.

682 **Wieloch T, Grabner M, Augusti A, Serk H, Ehlers I, Yu J, Schleucher J. 2022b.** Metabolism is a major
683 driver of hydrogen isotope fractionation recorded in tree-ring glucose of *Pinus nigra*. *New Phytologist* **234**:
684 449–461.

685 **Wieloch T, Sharkey TD, Werner RA, Schleucher J. 2022c.** Intramolecular carbon isotope signals reflect
686 metabolite allocation in plants. *Journal of Experimental Botany* **73**: 2558–2575.

687 **Wieloch T, Werner RA, Schleucher J. 2021.** Carbon flux around leaf-cytosolic glyceraldehyde-3-
688 phosphate dehydrogenase introduces a ¹³C signal in plant glucose. *Journal of Experimental Botany* **72**:
689 7136–7144.

690 **Supporting information**

691 Notes S1. Materials and Methods (expanded).

692 Notes S2. Hydro-carbon isotope fractionation during 1961 to 1980.

693 Notes S3. Estimated deuterium fractionation due to shifts of the phosphoglucose isomerase reaction.

694 Table S1. Shapiro-Wilk normality test.

695 Table S2. F and T test.

696 Table S3. Pearson correlations between Δ'_i and ε_{met} series of the period 1983 to 1995.

697 Table S4. Components of variance in Δ'_i series.

698 Table S5. Pearson correlation coefficients and associated levels of significance of ε_{met} -climate relationships
699 for the period 1983 to 1995.

700 Table S6. Linear regression model of $\varepsilon_{\text{met(H1)}}$ as function of growing season air vapour pressure deficit and
701 March to July precipitation.

702 Figure S1. Air vapour pressure deficit of the growing season and March to July precipitation over the period
703 1961 to 1995 in the Vienna basin.

704

705 **Table 1. Abbreviations and symbols.**

Abbreviation	Definition
^{13}C signal	systematic $^{13}\text{C}/^{12}\text{C}$ variation
DAHPS	3-deoxy-D-arabino-heptulonate 7-phosphate synthase
F6P	fructose 6-phosphate
G6P	glucose 6-phosphate
G6PD	glucose-6-phosphate dehydrogenase
GAP	glyceraldehyde 3-phosphate
GAPDH	glyceraldehyde-3-phosphate dehydrogenases
NMRS	nuclear magnetic resonance spectroscopy
OPPP	oxidative branch of the pentose phosphate pathway
PEP	phosphoenol/pyruvate
PEPC	phosphoenol/pyruvate carboxylase
PGA	3-phosphoglycerate
PGI	phosphoglucose isomerase
PK	pyruvate kinase
RuBP	ribulose 1,5-bisphosphate
TCAC	tricarboxylic acid cycle
Symbol	Definition
p_a	ambient CO_2 partial pressure
p_i	intercellular CO_2 partial pressure
PRE	precipitation
RAD	global radiation
SD	sunshine duration
SPEI_i	standardised precipitation-evapotranspiration index calculated for different timescales, $i = 1, 3, 6, 8, 12, 16, 24, 36, 48$ months
TMP	air temperature
VPD	air vapour pressure deficit
Δ	^{13}C discrimination denoting $^{13}\text{C}/^{12}\text{C}$ variation due to plant physiological processes
Δ'_i	intramolecular ^{13}C discrimination where i denotes individual glucose carbon positions and the prime denotes data corrected for ^{13}C signal redistribution by heterotrophic triose phosphate cycling
Δ_{1-2}'	arithmetic average of Δ'_1 and Δ'_2
Δ_{1-3}'	arithmetic average of Δ'_1 , Δ'_2 , and Δ'_3
Δ_{5-6}'	arithmetic average of Δ'_5 and Δ'_6
ε_{met}	metabolic deuterium fractionation at glucose H ¹ and H ²

706

707 **Table 2. Hydrogen isotope effects of phosphoglucose isomerase (PGI, Rose & O'Connell, 1961), and**
708 **carbon isotope effects of glucose isomerase (GI, Gilbert et al., 2012).**

PGI, $\alpha = k_H/k_D$		GI, $\alpha = k_{12C}/k_{13C}$			
F6P, H ^{1R}	G6P, H ²	F6P, C-1	F6P, C-2	G6P, C-1	G6P, C-2
	→ 2.2			→ 1.005	1.015
0.9	↔ <u>1.1</u>	<u>1.013</u>	<u>0.993</u>	↔ 0.987	1.007
2	←	<u>1.018</u>	<u>1.008</u>	←	

709 → kinetic isotope effect, ↔ equilibrium isotope effect. Calculated values underlined. Since GI and PGI have
710 the same reaction mechanism, the ¹³C isotope effects of GI and PGI are thought to be very similar (Gilbert
711 et al., 2012). H^{1R}, pro-R hydrogen at F6P C-1.

712

Table 3. Significance of Pearson correlations among Δ_1' , Δ_2' , and Δ_3' and climate series for the period 1983 to 1995 ($n = 13$).

Period / Δ_i'	VPD			PRE			SPEI ₁			SPEI ₃			SPEI ₄			SPEI ₆			SPEI ₈			SPEI ₁₂			SPEI ₁₆			SPEI ₂₄			SPEI ₃₆			SPEI ₄₈			TMP			SD			RAD		
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3			
MAMJ	c	a	b		a		b		a	b		a	a																						a			a							
MAMJJ	c		b	a	a	a	b		b	a		b	a		a		a		a																										
MAMJJA	c		b	b	a	a	c		b	c		b	a		b		a		b																										
MAMJJAS	c		b	b	b	b	a		c	b		c	a		b		a		b																										
MAMJJASO	c		b	a	a		b		a	c		a	b		a		b		a		a																								
MAMJJASON	c		b	a	a		b		a	b		a	c		a		b		a		a																								
AMJJ	c		c	a	a	a	a		b	b		b	b		b		b		a		a																								
AMJJA	c		c	a	a	a	b		b	c		b	c		b		b		a		b																								
AMJJAS	c		b	a	b	a	b		b	c		b	c		b		b		a		b																								
AMJJASO	c		b	a	a		b		a	c		b	c		b		c		b		a																								
AMJJASON	c		b	a	b		a		a	b		a	c		b		c		a		c																								
MJJA	b		b	a		b	a		b	b		b	b		b		b		b		a																								
MJJAS	b		b	b	a	a	b		a	c		b	c		b		c		b		a																								
MJJASO	c		b	a		b	a		c		b	c		b		c		b		a		b																							
MJJASON	c		b	b	a	a	a		b	a		c		b		c		b		c		a																							
JJAS	b		b			a			b		b		b		b		c		b		b		a																						
JJASO	b		b						b		a	b		b		c		b		c		a		b																					
JJASON	b		a						b		a	b		a		b		b		c		b		b		b		a		a		a													
JASO	a		a						b		a	b		a		c		b		c		b		b		b		a		a		a													
JASON	a		a						a		b		b		a		b		b		c		b		b		b		a		a		a												
ASON	c		a						a			b		a		b		b		a		c		b		b		a		a		a													

Significance levels: ≤ 0.05 , a; ≤ 0.01 , b; ≤ 0.001 , c. Underscore denotes negative correlation. Climate parameters: PRE, precipitation; RAD, global radiation; SD, sunshine duration;

SPEI_i, standardised precipitation-evapotranspiration index of different periods ($i = 1, 3, 6, 8, 12, 16, 24, 36, 48$ months); TMP, air temperature; VPD, air vapour pressure deficit.

Climate data were averaged for all ≥ 4 -month periods of the growing season (March to November). Months were abbreviated by their initial letters. Δ_1' , Δ_2' , and Δ_3' denote

intramolecular ^{13}C discrimination at glucose C-1, C-2, and C-3, respectively. Glucose was extracted across an annually resolved tree-ring series of *Pinus nigra*.

719

Table 4. Linear regression models for Δ_1' , Δ_2' and Δ_3' as function of ε_{met} , growing season

720 **air vapour pressure deficit (VPD) and March to July precipitation (PRE).**

M1: $\Delta_1' \sim \varepsilon_{\text{met}} + \text{VPD}$, 1983-1995			
$R^2 = 0.87$, $\text{adj}R^2 = 0.84$, $p < 10^{-4}$, $n = 13$			
Estimate	$\pm \text{SE}$	$p \leq$	
Intercept	36.0	2.7	10^{-7}
ε_{met}	-0.0187	0.0057	0.01
VPD	-0.0295	0.0047	10^{-4}
M2: $\Delta_2' \sim \varepsilon_{\text{met}} + \text{VPD}$, 1983-1995			
$R^2 = 0.62$, $\text{adj}R^2 = 0.54$, $p < 0.008$, $n = 13$			
Estimate	$\pm \text{SE}$	$p \leq$	
Intercept	17.6	4.5	0.003
ε_{met}	-0.0315	0.0097	0.009
VPD	-0.0111	0.0080	0.2
M3: $\Delta_3' \sim \varepsilon_{\text{met}} + \text{VPD}$, 1983-1995			
$R^2 = 0.64$, $\text{adj}R^2 = 0.57$, $p < 0.006$, $n = 13$			
Estimate	$\pm \text{SE}$	$p \leq$	
Intercept	14.5	2.1	10^{-4}
ε_{met}	-0.00615	0.00449	0.2
VPD	-0.0129	0.0037	0.006
M4: $\Delta_2' \sim \varepsilon_{\text{met}}$, 1983-1995			
$R^2 = 0.54$, $\text{adj}R^2 = 0.50$, $p < 0.004$, $n = 13$			
Estimate	$\pm \text{SE}$	$p \leq$	
Intercept	11.8	1.7	10^{-4}
ε_{met}	-0.0351	0.0097	0.004
M5: $\Delta_3' \sim \text{VPD}$, 1983-1995			
$R^2 = 0.57$, $\text{adj}R^2 = 0.53$, $p < 0.003$, $n = 13$			
Estimate	$\pm \text{SE}$	$p \leq$	
Intercept	14.3	2.2	10^{-4}
VPD	-0.0143	0.0037	0.003
M6: $\Delta_1' \sim \text{PRE} + \text{VPD}$, 1983-1995			
$R^2 = 0.82$, $\text{adj}R^2 = 0.79$, $p < 0.001$, $n = 13$			
Estimate	$\pm \text{SE}$	$p \leq$	
Intercept	27.8	4.4	10^{-4}
PRE	0.0146	0.0061	0.04
VPD	-0.0280	0.0058	0.001
M7: $\Delta_2' \sim \text{PRE}$, 1983-1995			
$R^2 = 0.43$, $\text{adj}R^2 = 0.37$, $p < 0.02$, $n = 13$			
Estimate	$\pm \text{SE}$	$p \leq$	
Intercept	-1.84	2.79	0.52
PRE	0.0274	0.0096	0.016
M8: $\Delta_3' \sim \text{VPD}$, 1961-1980			
$R^2 = 0.13$, $\text{adj}R^2 = 0.07$, $p = 0.15$, $n = 18$			
Estimate	$\pm \text{SE}$	$p \leq$	
Intercept	12.3	3.8	0.006
VPD	-0.0112	0.0074	0.15
M9: $\Delta_1' \sim \text{PRE} + \text{VPD}$, 1961-1980			
$R^2 = 0.07$, $\text{adj}R^2 = 0$, $p > 0.55$, $n = 18$			

	Estimate	\pm SE	p ≤
Intercept	18.6	4.8	0.002
PRE	0.00273	0.00407	0.51
VPD	-0.00357	0.00781	0.65
M10: Δ_2' ~ PRE, 1961-1980			
$R^2 = 0.05$, adj $R^2 = 0$, p = 0.35, n = 18			
	Estimate	\pm SE	p ≤
Intercept	6.92	0.93	10 ⁻⁵
PRE	0.00276	0.00286	0.35
M11: ε_{met} ~ PRE + VPD, 1983-1995			
$R^2 = 0.71$, adj $R^2 = 0.66$, p < 0.002, n = 13			
	Estimate	\pm SE	p ≤
Intercept	437	118	0.004
PRE	-0.777	0.164	0.001
VPD	-0.082	0.155	0.61

721 ε_{met} , Δ_1' , Δ_2' , and Δ_3' denote hydrogen isotope fractionation caused by metabolic processes at
 722 glucose H¹ and H², and carbon isotope discrimination at glucose C-1, C-2, and C-3, respectively.
 723 Glucose was extracted across an annually resolved tree-ring series of *Pinus nigra* from the Vienna
 724 Basin.

725

Table 5. Significance of Pearson correlations among Δ_1' , Δ_2' , and Δ_3' and climate series for the period 1961 to 1980 ($n = 18$).

Period / Δ_i'	VPD			PRE			SPEI ₁			SPEI ₃			SPEI ₄			SPEI ₆			SPEI ₈			SPEI ₁₂			SPEI ₁₆			SPEI ₂₄			SPEI ₃₆			SPEI ₄₈			TMP			SD			RAD		
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3						
MAMJ	a						a			a									a			a												a		a									
MAMJJ										a									a			a																							
MAMJJA																																													
MAMJJAS							a																																						
MAMJJASO								a																																					
MAMJJASON										a																																			
AMJJ																																													
AMJJA										a																																			
AMJJAS											b																																		
AMJJASO											a																																		
AMJJASON											a																																		
MJJA										a	a																																		
MJJAS										a	b																																		
MJJASO											a																																		
MJJASON											a																																		
JJAS											b																																		
JJASO											a																																		
JJASON												b																																	
JASO												a																																	
JASON													a																																
ASON														a																															

Significance levels: ≤ 0.05 , a; ≤ 0.01 . Underscore denotes negative correlation. Climate parameters: PRE, precipitation; RAD, global radiation; SD, sunshine duration; SPEI_i, standardised precipitation-evapotranspiration index of different periods ($i = 1, 3, 6, 8, 12, 16, 24, 36, 48$ months); TMP, air temperature; VPD, air vapour pressure deficit. Climate data were averaged for all ≥ 4 -month periods of the growing season (March to November). Months were abbreviated by their initial letters. Δ_1' , Δ_2' , and Δ_3' denote intramolecular ^{13}C discrimination at glucose C-1, C-2, and C-3, respectively. Glucose was extracted across an annually resolved tree-ring series of *Pinus nigra*.

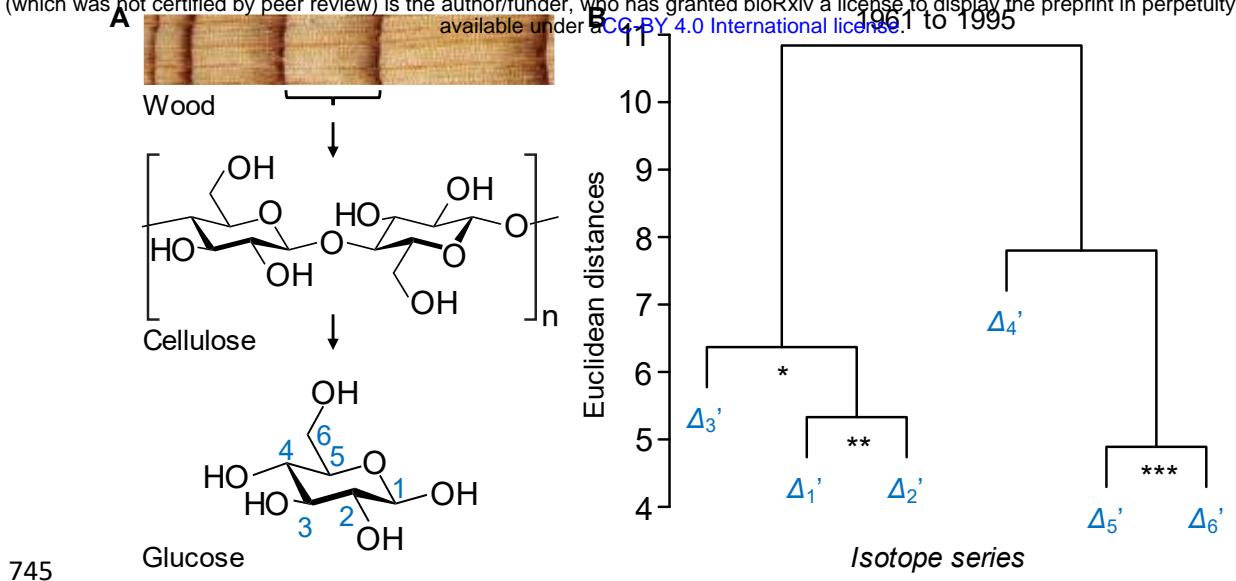
Table 6. Significance of Pearson correlations among Δ_4' , Δ_5' , and Δ_6' and climate series for the period 1961 to 1995 ($n = 31$).

Period / Δ'	VPD			PRE			SPEI ₁			SPEI ₃			SPEI ₄			SPEI ₆			SPEI ₈			SPEI ₁₂			SPEI ₁₆			SPEI ₂₄			SPEI ₃₆			SPEI ₄₈			TMP			SD			RAD			
	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6				
MAMJ																																														
MAMJJ	a			a			a			a			a			a			a			a			a			a			a			a			b		b	b	a					
MAMJJA	a			a			a			a			a			a			a			a			a			a			a			b		b	b	b								
MAMJJAS	a																																													
MAMJJASO																																														
MAMJJASON	a																																													
AMJJ	b	a	b				c	a		b			a			a			a			a			a			a			a			a		a	a	c		c	a					
AMJJA	b	a	b				b	a		b			b			a			a			a			a			a			a		a	c	c	a		c	c	b						
AMJJAS	a	a	a				b	a		b			b			a			a			a			a			a			a		a	c	c	a		c	c	c						
AMJJASO	a	a	a				b	a		a			b			b			a			a			a			a			a		a	b		c	c	c								
AMJJASON	a	a	a				a	a		a			a			a			a			a			a			a			a		a	b		c	c	c								
MJJA	b	a	a	a			b	a		c	a		b			b			b			a			a			a			a		b	c	a		c	b								
MJJAS	a	a	a	a			b	a		b	a		b	a		b	a		b	a		a			a			a		a	b		b	a		b	c									
MJJASO	a	a	a	a			b	a		b	a		b	a		b	a		b	a		a			a			a		a	b		b	a		b	c									
MJJASON	a	a	a				a	a		a	a		b	a		b	a		b	a		b			b			a		a	b		a		b	c										
JJAS	a	a					b	a		b	a		b	a		b	a		b	a		a			a			a		a	b		a		a	c										
JJASO		a					b	a		b	a		b	a		b	a		b	a		a			a			a		a		a		a		c										
JJASON	a	a					a	a		a	a		b	a		b	a		b	a		b			b			a		a		a		a		a		a		c						
JASO	a						a	a		b	a		b	a		b	a		b	a		b			a			a			a			a		b										
JASON	a						a			a	a		b	a		b	a		b	a		b	a		b	a		a			a			a		b		b								
ASON			a																																											

Significance levels: ≤ 0.05 , a; ≤ 0.01 , b; ≤ 0.001 , c. Underscore denotes negative correlation. Climate parameters: PRE, precipitation; RAD, global radiation; SD, sunshine duration;

SPEI_i, standardised precipitation-evapotranspiration index of different periods ($i = 1, 3, 6, 8, 12, 16, 24, 36, 48$ months); TMP, air temperature; VPD, air vapour pressure deficit.

Climate data were averaged for all ≥ 4 -month periods of the growing season (March to November). Months were abbreviated by their initial letters. Δ_4' , Δ_5' , and Δ_6' denote intramolecular ^{13}C discrimination at glucose C-4, C-5, and C-6, respectively. Glucose was extracted across an annually resolved tree-ring series of *Pinus nigra*.

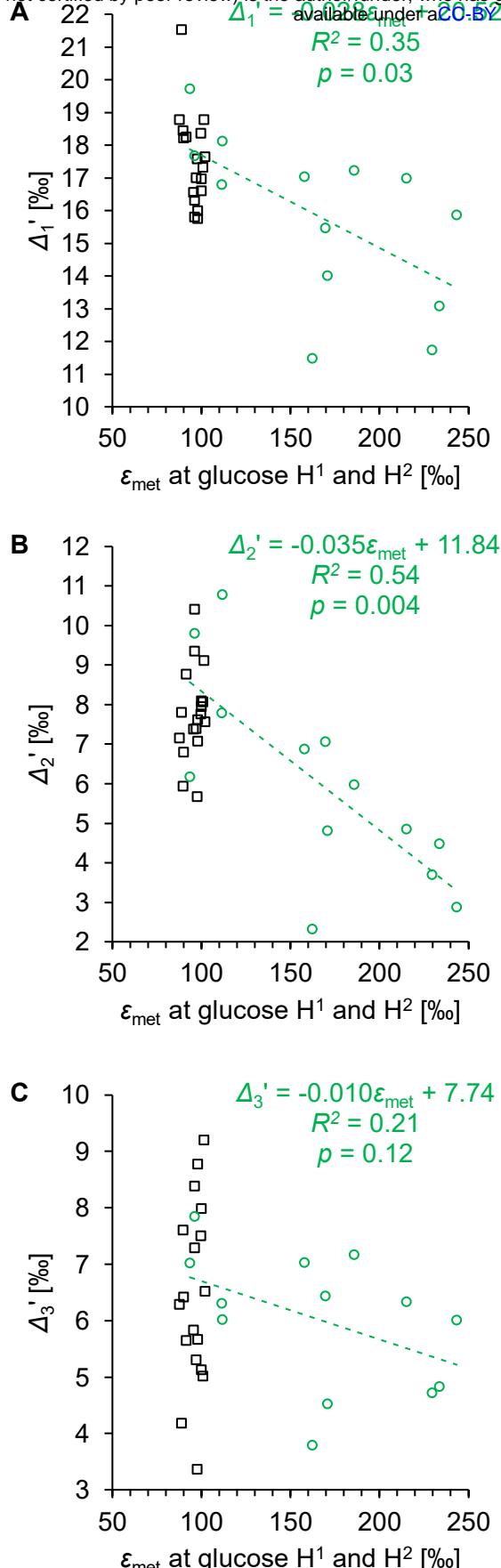

739 **Table 7: Linear regression models for Δ_4' , Δ_5' , and Δ_6' function of April to September global
740 radiation (RAD), and March to October air temperature (TMP).**

M1: $\Delta_{5-6}' \sim RAD + TMP$, 1964-1995		
$R^2 = 0.72$, $adjR^2 = 0.70$, $p = 10^{-7}$, $n = 28$		
Estimate	$\pm SE$	$p \leq$
Intercept	26.0	3.1
RAD	-0.00843	0.00105
TMP	1.35	0.29
M2: $\Delta_5' \sim RAD + TMP$, 1964-1995		
$R^2 = 0.66$, $adjR^2 = 0.64$, $p = 10^{-6}$, $n = 28$		
Estimate	$\pm SE$	$p \leq$
Intercept	24.8	4.3
RAD	-0.0103	0.0015
TMP	1.81	0.40
M3: $\Delta_6' \sim RAD + TMP$, 1964-1995		
$R^2 = 0.47$, $adjR^2 = 0.43$, $p < 0.001$, $n = 28$		
Estimate	$\pm SE$	$p \leq$
Intercept	27.3	4.2
RAD	-0.00658	0.00144
TMP	0.876	0.393
M4: $\Delta_{5-6}' \sim RAD + TMP$, 1964-1980		
$R^2 = 0.69$, $adjR^2 = 0.63$, $p < 0.001$, $n = 15$		
Estimate	$\pm SE$	$p \leq$
Intercept	31.2	6.7
RAD	-0.00906	0.00177
TMP	1.11	0.47
M5: $\Delta_{5-6}' \sim RAD + TMP$, 1983-1995		
$R^2 = 0.82$, $adjR^2 = 0.79$, $p < 0.001$, $n = 13$		
Estimate	$\pm SE$	$p \leq$
Intercept	29.1	4.5
RAD	-0.00875	0.00132
TMP	1.22	0.40
M6: $\Delta_4' \sim RAD + TMP$, 1964-1995		
$R^2 = 0.15$, $adjR^2 = 0.09$, $p = 0.12$, $n = 28$		
Estimate	$\pm SE$	$p \leq$
Intercept	8.33	4.73
RAD	-0.00266	0.00160
TMP	0.931	0.439

741 Δ_4' , Δ_5' , and Δ_6' denote carbon isotope discrimination at glucose C-4, C-5, and C-6, respectively.

742 Glucose was extracted across an annually resolved tree-ring series of *Pinus nigra* from the Vienna
743 Basin.

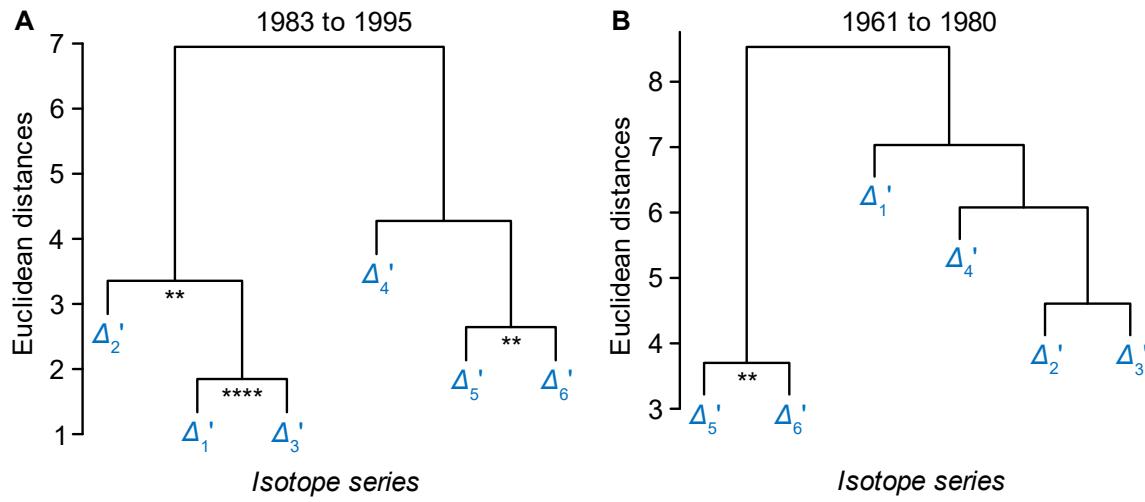
744



753 **Figure 2. Proposed metabolic origins of carbon and hydrogen isotope signals in tree rings**

754 **glucose.** Dashed arrows indicate that intermediate reactions are not shown. Abbreviations: 2PG,
755 2-phosphoglycolate; 2PGA, 2-phosphoglycerate; 6PGL, 6-phosphogluconolactone; ADP,
756 adenosine diphosphate; ATP, adenosine triphosphate; CIT, citrate; COR cycle, cytosolic oxidation-
757 reduction cycle; DAHP, 3-Deoxy-D-arabino-heptulosonate 7-phosphate; DAHPS, DAHP synthase;
758 E4P, erythrose 4-phosphate; F6P, fructose 6-phosphate; FAD, flavin adenine dinucleotide; Fru,
759 fructose; G6P, glucose 6-phosphate; G6PD, G6P dehydrogenase; GDC, glycine decarboxylase
760 complex; Glc, glucose; MEP pathway, methylerythritol 4-phosphate pathway; NAD⁺, nicotinamide
761 adenine dinucleotide; NADP⁺, nicotinamide adenine dinucleotide phosphate; np-GAPDH, non-
762 phosphorylating glyceraldehyde-3-phosphate dehydrogenase; OAA, oxaloacetate; OPPP,
763 oxidative pentose phosphate pathway; PEP, phosphoenolpyruvate; PEPC, PEP carboxylase; p-
764 GAPDH, phosphorylating glyceraldehyde-3-phosphate dehydrogenase; PGA, 3-phosphoglycerate;
765 PGI, phosphoglucose isomerase; PGK, phosphoglycerate kinase; Pi, inorganic phosphate; PK,
766 pyruvate kinase; PP, pentose phosphate; PRE, precipitation; Pyr, pyruvate; Rubisco, ribulose-1,5-
767 bisphosphate carboxylase/oxygenase; RuBP, ribulose 1,5-bisphosphate; RAD, global radiation;
768 Suc, sucrose; SuSy, sucrose synthase; TCAC, tricarboxylic acid cycle; TK, transketolase; TMP, air
769 temperature; TP, triose phosphates (glyceraldehyde 3-phosphate, dihydroxyacetone phosphate);
770 UDPG, uridine diphosphate glucose; VPD, air vapour pressure deficit; Δ'_i , intramolecular ¹³C
771 discrimination where i denotes individual glucose carbon positions and the prime denotes data
772 corrected for ¹³C signal redistribution by heterotrophic triose phosphate cycling; ε_{met} , metabolic
773 deuterium fractionation at glucose H¹ and H².

774

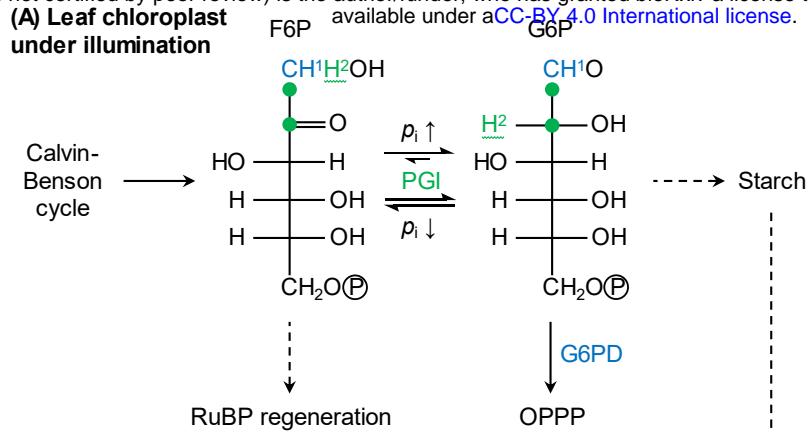


775

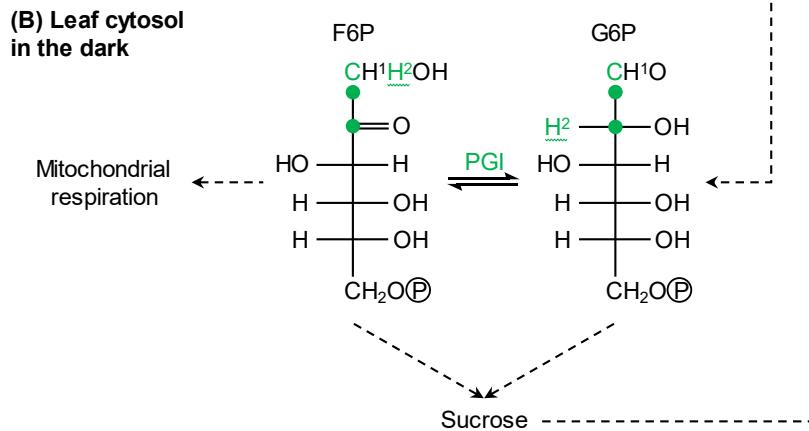
776 **Figure 3. Relationship between the average hydrogen isotope fractionation caused by**
777 **metabolic processes at glucose H¹ and H² (ε_{met}) and ¹³C discrimination at C-1, C-2, and C-3**
778 **(Δ₁', Δ₂', and Δ₃')**. Glucose was extracted across an annually resolved tree-ring series of *Pinus*

780 line, relationship between the hydrogen and carbon isotope data of the period 1983 to 1995.

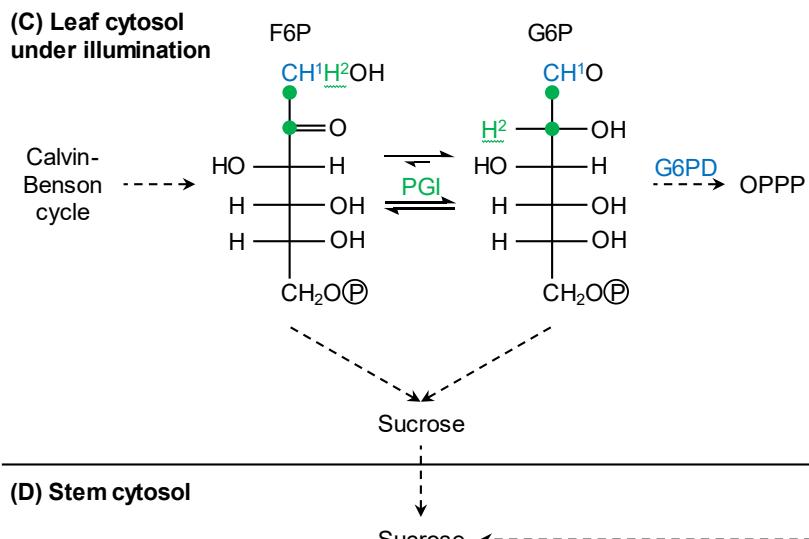
781

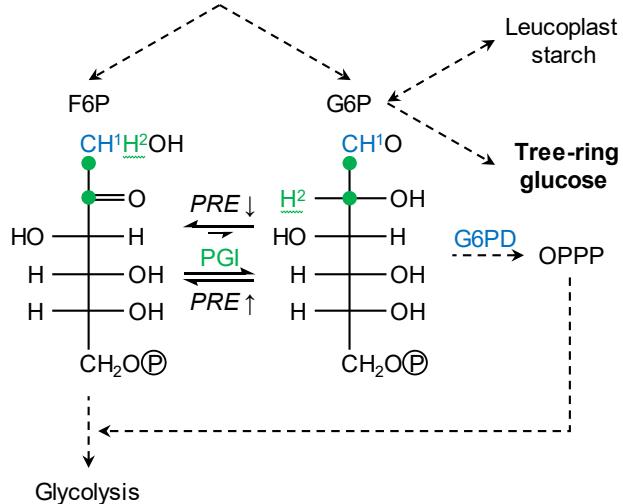


782

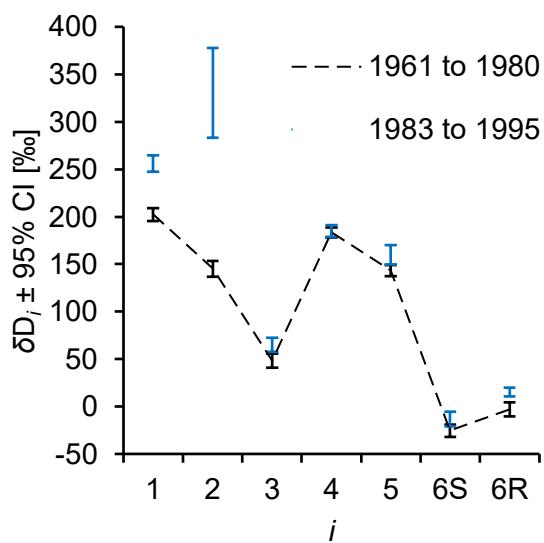

783 **Figure 4. Hierarchical clustering of $\Delta'i$ series for the periods 1983 to 1995 (A) and 1961 to**
784 **1980 (B). $\Delta'i$ denotes intramolecular ^{13}C discrimination in tree-ring glucose of *Pinus nigra* from the**
785 **Vienna basin with i denoting individual glucose carbon positions. Significance of series correlation:**
786 ****, $p \leq 0.01$; ****, $p \leq 10^{-4}$.**

787


(A) Leaf chloroplast under illumination


(B) Leaf cytosol in the dark

(C) Leaf cytosol under illumination


(D) Stem cytosol

789 **Figure 5. Processes involved in isotope fractionation at tree-ring glucose C-1 and**

790 **HC-2: (A) in leaf chloroplasts under illumination, (B) in the leaf cytosol in the dark, (C) in the**
791 **leaf cytosol under illumination, and (D) in the stem cytosol.** F6P and G6P carbon atoms 1 to 6
792 occur in sequentially order from top to bottom. Atom positions affected by G6PD and PGI
793 fractionation are given in blue and green, respectively. In some cases, carbon position 1 is given
794 both as blue letter and green dot to indicate fractionation at both enzymes. Dashed arrows indicate
795 that intermediate reactions are not shown. Wavy lines indicate fractional introduction of hydrogen
796 from water by the PGI reaction. Note, G6PD in stem leucoplasts may additionally contribute to
797 isotope fractionation at tree-ring glucose C-1 and H¹. Abbreviations: F6P, fructose 6-phosphate;
798 G6P, glucose 6-phosphate; G6PD, G6P dehydrogenase; OPPP, oxidative pentose phosphate
799 pathway; p_i , intercellular CO₂ partial pressure; PGI, phosphoglucomutase; PRE, precipitation;
800 RuBP, ribulose 1,5-bisphosphate.

801

802

803 **Figure 6. Average intramolecular δD_i patterns of the periods 1961 to 1980 and 1983 to 1995**
804 **(black and blue, respectively).** The data were acquired for tree-ring glucose of *Pinus nigra* laid
805 down at a site in the Vienna basin. The figure shows discrete data. Dashed and dotted lines were
806 added to guide the eye. Data reference: Average deuterium abundance of the methyl-group
807 hydrogens of the glucose derivative used for NMRS measurements. Modified figure from Wieloch
808 et al. (2022b).

809