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Abstract10

Predicting phenotypes from genomic data is a key goal in genetics, but for11

most complex phenotypes, predictions are hampered by incomplete genotype-12

to-phenotype mapping. Here, we describe a more attainable approach than13

quantitative predictions, which is aimed at qualitatively predicting phenotypic14

differences. Despite incomplete genotype-to-phenotype mapping, we show that15

it is relatively easy to determine which of two individuals has a greater pheno-16

typic value. This question is central in many scenarios, e.g., comparing disease17

risk between individuals, the yield of crop strains, or the anatomy of extinct vs18

extant species. To evaluate prediction accuracy, i.e., the probability that the in-19

dividual with the greater predicted phenotype indeed has a greater phenotypic20

value, we developed an estimator of the ratio between known and unknown21

effects on the phenotype. We evaluated prediction accuracy using human data22

from tens of thousands of individuals from either the same family or the same23

population, as well as data from different species. We found that, in many cases,24

even when only a small fraction of the loci affecting a phenotype is known, the25

individual with the greater phenotypic value can be identified with over 90%26

accuracy. Our approach also circumvents some of the limitations in transfer-27

ring genetic association results across populations. Overall, we introduce an28

approach that enables accurate predictions of key information on phenotypes29

— the direction of phenotypic difference — and suggest that more phenotypic30

information can be extracted from genomic data than previously appreciated.31

Introduction32

A key goal in genetics is to predict phenotypes from genomic data. Such predictions33

are pivotal for assessing disease risk (1; 2), understanding the genetics underlying34

adaptation (3; 4; 1), optimizing genetic engineering outcomes (5), reconstructing the35

traits of extinct species (6), and more. However, our current ability to predict pheno-36

typic values from genetic information, for example by using polygenic scores (PGSs),37
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is restricted by several factors. These include environmental effects, the high poly-38

genicity of many phenotypes, the limited ability to identify causal noncoding variants39

and quantify their effects, and the lack of power to detect small-effect loci (1; 2).40

Given the limitations associated with predicting precise phenotypes, we suggest41

here a more attainable objective: predicting only the direction of phenotypic differ-42

ence. Namely, rather than striving to predict the precise phenotypic value encoded43

by a particular genome, we aim to predict whether this genome encodes for a larger44

or smaller phenotypic value relative to another genome. To illustrate, consider a sce-45

nario where one is interested in determining the probability that an offspring will be46

taller than their 170cm tall parent. Considering that a PGS predicts the offspring47

will be 180cm tall, what is the probability that the offspring will indeed be taller than48

their parent? We previously implemented a simplified version of this approach to re-49

construct Denisovan anatomy using gene regulatory data, and validated the method50

on Neanderthals and chimpanzees, finding that it reaches over 85% accuracy in pre-51

dicting the direction of phenotypic differences (6).52

Undoubtedly, predicting a precise phenotypic value is more informative than pre-53

dicting only the direction of phenotypic difference. However, in studies where the54

precise phenotypic value cannot be accurately inferred (which is often the case), im-55

portant insights could still be gained by inferring the phenotypic direction instead.56

Most importantly, the phenotypic direction is often the crux of phenotypic compar-57

isons, for example, when estimating how likely it is that (i) an individual has an58

increased disease risk compared to a reference (2), (ii) a genetically modified crop59

will have increased yield (7), (iii) an individual will be greater or smaller in a certain60

trait compared to their parents or siblings (e.g., in preimplantation genetic diagnoses;61

(8; 9)), and (iv) the phenotypes of an extinct species differ from those of an extant62

species.63

Here, we explored the feasibility of using currently available genotype-to-phenotype64

information to predict which individual has a greater phenotypic value. We compared65

the total effect of known loci to the range of the potential effects of unknown genetic66

and non-genetic contributors. We studied this ratio of known-to-unknown effects67

through two independent branches of investigation: (i) formalizing a model to delin-68

eate the scenarios in which accurate predictions can be achieved, and (ii) evaluating69

performance in real-world empirical data from humans and other species, examining70

a wide range of levels of divergence between individuals. Our findings underscore the71

known-to-unknown ratio as a high-fidelity and intuitive estimator of prediction accu-72

racy. This allowed us to identify cases where we can reliably discern the individual73

with the greater phenotypic value. Importantly, this is possible even in cases where74

the proportion of variance in the trait explained by known genetic effects is small.75

Our study suggests that it is possible to identify the pairs of individuals for which76

high-accuracy predictions can be made, and that more phenotypic information can77
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be reliably extracted from a genome than perhaps intuitively expected.78

Results79

Approach80

We investigated what genomic information is needed to predict the direction of phe-81

notypic difference between two individuals and the conditions under which this pre-82

diction is accurate. We assume that one individual has been phenotyped (hereafter,83

phenotyped individual) and the other has not (hereafter, unphenotyped individual).84

A phenotype is affected by loci whose contribution to (or often association with)85

the phenotype is known (hereafter, known effects), as well as by loci or non-genetic86

factors whose association with the phenotype is unknown (hereafter, unknown effects,87

Fig. 1a). We make a prediction on the direction of phenotypic difference by summing88

up the contribution of the known effects and determining whether the unphenotyped89

individual has a larger or a smaller sum. We ignore loci where the two compared90

individuals have the same genotype, because only divergent loci could contribute to91

the phenotypic difference (Fig. 1b,c). This procedure is equivalent to computing the92

difference between the PGSs of the two genomes, and using the sign of this difference93

to predict the direction of the phenotypic difference (9; 10). In the following sections,94

we investigated the conditions affecting the probability that a prediction based only95

on the known effects matches the true direction of phenotypic difference (hereafter,96

prediction accuracy or P ).97

Modeling the conditions needed to predict the phenotypic di-98

rection99

We explored the problem from two different perspectives, statistical genetics and100

evolutionary, which provide different tools and intuitions. From a statistical genetics101

perspective, we considered the partitioning of the phenotypic variance into that gen-102

erated by known and unknown effects. For the evolutionary perspective, we modeled103

the approach as a random walk, where each step is an effect on the phenotype in one104

or the other direction. We define the effect size of a locus as the average difference in105

predicted phenotype between the genotypes of the two individuals. For example, if106

the phenotyped individual has a genotype that increases height by 3mm (relative to107

a reference), and the unphenotyped individual has another genotype, which decreases108

height by 1mm, then we consider the effect size of that locus to be +4mm (Fig. 1a).109

The effect size of loci with the same genotype in the two individuals is 0, and these110

loci are therefore ignored throughout this work. Our model makes the simplifying111
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assumptions of additivity and no epistasis (11) (in the empirical section, where we112

test our approach, these simplifying assumptions are evaluated). The direction of the113

sum of known effects (i.e., whether the displacement is above or below the x-axis in114

Figure 1b and the blue dot in Figure 1d) is our prediction of the direction of the115

phenotypic difference (Fig. 1c). If the remaining steps of the random walk (i.e., those116

of the unknown effects) are such that the final displacement (i.e., true phenotype,117

yellow dots in Fig. 1d) is still above 0, our prediction is correct. Otherwise, i.e., if the118

remaining steps push the displacement below 0, our prediction based on the known119

effects is incorrect. Naturally, the larger the sum of known effects is, the less likely it120

Figure 1: Schematic of the approach to predict the direction of phenotypic difference. (a) We start with a phenotyped
individual and an unphenotyped individual. We consider the known and unknown effects contributing to (or associated
with) the phenotype of interest. Known genetic effects on the phenotypic difference are in blue (measured in units
of the phenotype), unknown genetic and non-genetic effects are in yellow. Cases where the contribution is identical
between the two individuals (and therefore do not affect the phenotypic difference) are in gray. (b) Only the known
divergent effects are used to predict the phenotypic difference between the individuals. The sum of the known
effects can be thought of as the final position of a random walk with step sizes and directions corresponding to the
effect sizes. (c) The direction of the total sum of the known effects is used to make a prediction of the direction of
phenotypic difference between the phenotyped and unphenotyped individuals. If the sum of the known effects between
the individuals is positive, we predict that the phenotypic value of the unphenotyped individual is larger than the
phenotyped individual (and the opposite prediction if the sum is negative). (d) Modeling prediction accuracy using
random walks. The curves represent random walks where each step is an effect size. The blue curve shows the known
effects of a specific random walk, and the sign (positive or negative) of the blue point at the end of the walk is the
predicted direction of phenotypic difference. The yellow curves show potential random walks of the unknown effects
(genetic and environmental). In this example, effect sizes were drawn from a standard normal distribution. For a
correct prediction of the direction of the phenotypic difference, the sum of the known effects (blue point) and the true
phenotypic difference (yellow dot) need to be on the same side of the x-axis (both below or both above).
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is for the final displacement to end on the opposite side of the x-axis.121

We start by exploring the factors affecting prediction accuracy and the conditions122

required for high-accuracy predictions. Various factors have the potential to affect123

prediction accuracy: the total number of loci affecting a phenotype, the fraction124

of known effects, the distribution of effect sizes, and more. However, our random125

walk perspective suggests that all of these factors amount to only two aspects of the126

walk that ultimately determine prediction accuracy. The first aspect is the vertical127

displacement of the sum of the known effects (blue dot in Fig. 1d; equivalent in128

statistical genetics to the difference in PGS). Namely, the further above or below 0 we129

“traveled”, the less likely it is that the unknown effects would push the final position to130

the other side of the x-axis. The second aspect is the variation of the overall potential131

sums of the unknown effects (i.e., the variation in the displacements generated by the132

random walk of the unknown effects, yellow region in Fig. 1d; equivalent to the133

proportion of variance in phenotypic differences that is unexplained by PGS). The134

smaller this variation is, the less likely the unknown effects are to push the final135

position of the walk to the other side. We propose here that prediction accuracy can136

be characterized by the ratio between these two quantities. Denoting the sum of the137

known effects as ∆ and the standard deviation of the unknown effects as σ, we define138

the known-to-unknown ratio, κ, as139

κ =
|∆|

|∆|+ σ
. (1)

In Methods, we show that the prediction accuracy can be written as a simple140

function of κ,141

P = Φ

(
κ

1− κ

)
, (2)

where Φ(·) is the standard normal CDF. We provide two derivations — one from the142

viewpoint of random walks and the other from the viewpoint of statistical genetics,143

which also enabled us to model shared genetic and environmental components in sib-144

lings (see Methods). We then explored how different factors affect the distribution145

of κ, by deriving the distributions under simplified conditions (Supplementary Infor-146

mation) as well as using simulations. We simulated pairs of individuals with random147

known and unknown effects and arbitrarily treated one individual as phenotyped and148

the other as unphenotyped (see Methods). Based on these simulated effects, we com-149

puted κ for each pair of individuals and determined whether the prediction is correct.150

We conducted these comparisons for different ratios of known to unknown effects, as151

well as for different effect-size distributions.152

We found an agreement between the theoretical expectation and the simulated re-153

sults across all values of κ (Fig. 2a), as well as across different effect-size distributions154
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Figure 2: Evaluating prediction accuracy using the known-to-unknown ratio (κ). (a) Simulated prediction accuracies
for various κ values (grouped into equally spaced bins), for different proportions of the known vs. unknown effects
(10%, 50%, and 90% of effects known). Effect sizes were drawn from a normal distribution. In gray is the theoretical
expectation from Eq. 4. (b) The distribution of κ values for the case where the known effects are randomly sampled.
The vertical line denotes the κ values required for prediction accuracy of P > 0.95 (κ = 0.62) (c). The distribution
of κ values for the case where the known effects are those with the largest effect sizes. The vertical line denote the
κ values required for prediction accuracy of P > 0.95. In all panels, 10,000 effect sizes were drawn from a standard
normal distribution to represent the known and unknown effects on the phenotype.

(Fig. S1a–b). As expected, predictions on pairs with higher κ values showed higher155

prediction accuracy. For example, for pairs of individuals with κ > 0.62, prediction156

accuracy was P > 0.95. High values of κ are more common when the fractions of157

known effects are larger (Fig. 2b), but we showed analytically (Supporting informa-158

tion) and with simulations (Fig. S1c–d) that the underlying effect-size distribution159

does not affect the κ distributions (Fig. S1c–d).160

We have so far assumed that there is no bias in choosing which effects are known161

and which effects are unknown. However, many detection methods (e.g., quantitative162

trait loci mapping or GWAS) have an ascertainment bias, where loci with larger effects163

are more readily detectable (2). We therefore analyzed scenarios where the known164

effects are those with the largest contribution to phenotypic variance. As before, we165

found that κ is a precise descriptor of prediction accuracy (Fig. S2). However, κ166

values tend to be much higher than in the unbiased scenario (Fig. 2c). Therefore, if167

the known effects tend to be the largest effects, prediction accuracy could be high. For168

example, with 10% of effects known in the unbiased scenario, none of the simulated169

pairs of individuals had prediction accuracy > 0.95 (κ > 0.62); however, in the170

scenario where the largest effects were known, 6.5% of the pairs reached this prediction171

accuracy (Fig. 2b–c, intermediate blue). Thus, if the known effects tend to have larger172

effects, high prediction accuracy can be achieved even in cases where these loci explain173

only a small proportion of the overall phenotypic variance.174

In sum, we found that the known-to-unknown ratio (κ) captures the factors that175

affect the probability of predicting which individual has the higher phenotypic value.176

The κ estimator could thus be used as an intuitive statistic to (i) evaluate prediction177

accuracy, and (ii) identify individuals for which high-accuracy predictions could be178

made, even when genotype-to-phenotype data is limited.179

6

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2024. ; https://doi.org/10.1101/2024.02.22.581566doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581566
http://creativecommons.org/licenses/by-nc-nd/4.0/


Identifying which individual has the higher phenotypic value180

in real-world data181

To investigate the relationship between κ and prediction accuracy in empirical data,182

we compared pairs of individuals with different levels of genetic divergence. We183

considered pairs of individuals from the UK Biobank (12) from either the same fam-184

ily or the same population. For each pair, we investigated six phenotypes: height,185

body mass index (BMI), metabolic rate, blood pressure, hip circumference, and bone186

density. For each phenotype, we selected loci that significantly contribute to the187

phenotype based on a GWAS that excluded the individuals we tested. The effect188

sizes generated in this GWAS were then used to compute ∆ as the difference between189

the PGSs of the two individuals (Methods). In each comparison, we also computed190

κ. For the within-family comparisons, we examined all 10,597 pairs of same-sex sib-191

lings in the dataset (Methods). For within-population comparisons, we randomly192

sampled 20,000 individuals (10,000 females and 10,000 males) who self-identified as193

White British and had Northwestern European genetic ancestry (hereafter labeled194

for brevity as ‘European’, see Methods, Fig. S6). We then examined all pairwise195

same-sex comparisons among them.196

Across the six phenotypes, higher κ values reflected higher prediction accuracy197

(Fig. 3a–b), with a relationship that tightly followed the theoretical expectation198

(Eq. 4). Importantly, this is maintained across both levels of genetic divergence199

between individuals (family-level and population-level), suggesting that κ captures200

the key aspects determining the ability to predict phenotypes. There is an intriguing201

exceptions to this: predictions of blood pressure differences hold at lower κ values,202

but perform badly at higher κ values. This possibly reflects medication-induced phe-203

notypic changes (see below).204

Our approach also allowed us to estimate the proportion of individuals for whom205

high-accuracy predictions can be achieved. For example, for 5% of pairs from the206

European group, κ values for bone mineral density are ≥ 0.4, and we can there-207

fore predict which individual has higher bone mineral density with 75% accuracy208

(i.e., threefold more likely to predict correctly than incorrectly; Figs. 3e and S4b).209

For height, where a larger fraction of loci contributing to the phenotypic variance210

is known, the same prediction accuracy can be achieved for one in four pairs. No-211

tably, we can predict the taller individual with 90% certainty for 3% of the pairs212

(Fig. S4a). Importantly, the percentage of pairs for which high-accuracy predictions213

can be attained increases with increasing genetic distance (κ distributions are shifted214

to the right with higher divergence between pairs in Fig. 3d–e). For example, in 3%215

of sibling pairs, we can predict which sibling is taller with 85% certainty, and be-216

tween unrelated individuals from the European group, this increases to 8% of pairs217

(Fig. S4a–b). It remains to be determined to what extent these results are affected218
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by population stratification (13) or other potential factors.219

One of the most intriguing uses of phenotypic inference is its potential to predict220

an individual’s susceptibility to a particular disease. Since disease risk is not directly221

quantifiable per individual, we tested instead our ability to identify the individual222

with the disease in a pair of individuals where one is healthy and the other is reported223

to have the disease. Here too, the empirical results mostly align with the theoreti-224

cal expectation. However, unlike all other analyses, at higher κ values (κ >∼ 0.4),225

the empirical results started to deviate from the theoretical expectation (Fig. S5a).226

We have not been able to pinpoint the underlying driver of this phenomenon. One227

plausible explanation is that in these comparisons, higher κ values reflect instances228

where one of the individuals is indeed more likely to develop the disease, but early229

signs of the disease or family history prompted treatment and thus exclusion from230

the disease group. Potential support for this can be seen in the context of the blood231

pressure phenotype. At higher κ values, predictions start diverging from the theoret-232

ical expectation both in the within-population analysis of blood pressure (Fig. 3b),233

as well as in the disease analysis of hypertension (Fig. S5a), where for high κ values234

prediction accuracy approaches 0 and thus our predictions are not even random, but235

systematically wrong. This behavior may indicate a negative correlation between high236

κ values and the disease, possibly reflecting medication-induced phenotypic changes237

that specifically affect individuals with a higher likelihood of elevated blood pressure,238

thereby altering the predictive outcome. Nevertheless, for most cases, where κ values239

are not extreme, it is possible to generate accurate estimates of prediction accuracy.240

This could perhaps be clinically relevant when the unphenotyped individual has a241

higher probability of developing the disease relative to an individual known to have242

the disease.243

A major concern in GWAS is its limited transferability across populations. PGSs244

computed using data from one population often perform substantially worse when245

applied to other populations (14). To test whether this phenomenon affects our ap-246

proach, we evaluated the relationship between κ and prediction accuracy using GWAS247

conducted on individuals with European ancestry, but predicting phenotypes between248

pairs of individuals with East Asian or African Ancestry (populations defined in (15)).249

As expected, we observed lower κ values for these comparisons relative to the κ distri-250

bution in Europeans (Fig. 3f), highlighting that prediction accuracy in non-European251

populations is worse than in Europeans, owing to the smaller fraction of the pheno-252

typic variance explained by European-ancestry GWASs (14; 15). This, in turn, may253

lead to inequality in future gains from genomics-based medicine. Nevertheless, here254

too, we observed good agreement with the theoretical expectation for the relation-255

ship between κ and prediction accuracy (Fig. 3c). Thus, while fewer usable SNPs256

and increased noise in effect size estimation lead to fewer pairs with high-accuracy257

predictions, the ability to robustly estimate prediction accuracy is maintained.258
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Figure 3: Predictions of the direction of phenotypic difference in humans. (a)–(c) The relationship between the
known-to-unknown ratio (κ) and the proportion of correct predictions in different phenotypes. The theoretical ex-
pectation (Eq. 4) is shown in gray. (a) Pairwise comparisons of siblings from the UK Biobank for six phenotypes.
(b) Pairwise comparisons of individuals from the European group (self-identified White British with Northwestern
European genetic ancestry) from the UK Biobank for the same six phenotypes. (c) Pairwise height comparisons of
individuals from the same population (either European, East Asian or African, as defined in Fig. S6), using GWAS
generated from a European-ancestry group in Yengo et al. (15). (d)–(f) The distribution of κ values for all pairwise
comparisons. Each panel corresponds to the panel above it.

In summary, we found that: (i) given a pair of individuals, we are able to accu-259

rately estimate the chances of correctly predicting which individual has the greater260

phenotypic value, and (ii) even for phenotypes with limited genotype-to-phenotype261

data, some pairs have sufficiently high known-to-unknown ratios (κ) to enable the262

identification of the individual with the greater phenotypic value. Two important im-263

plications of these findings are that we can (i) select the subset of pairs of individuals264

for which we can make high-confidence predictions, or (ii) given a pair of individuals,265

select the subset of phenotypes for which we can make high-confidence predictions.266

Impact of directional selection on predictions between popu-267

lations and species268

In the model above, we have not addressed the role of selection. Directional selection269

most likely has little effect on the within-population UK Biobank comparisons, but270

may play a more central role when more divergent genomes are compared. In this sec-271

tion, we extend our model to include directional selection and examine predictions in272
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Figure 4: The effect of directional selection on predicting the direction of phenotypic difference. (a) Prediction
accuracy under directional selection, modeled as a biased random walk. The random walks in this schematic are biased
toward the positive direction, with larger effects having a stronger bias. Biased random walks increase prediction
accuracy. (b) Prediction accuracy for different κ values and different levels of bias, with 50% randomly selected
known effects out of 10,000 overall. (c) Prediction accuracy across species. Each point represents the proportion of
correct predictions. The number of phenotypes is noted above each data point. For sticklebacks, between 14 and 27
phenotypic predictions were made for four different freshwater populations. For mice, predictions were made for two
phenotypes in 16 developmental stages.

divergent populations and species (see Discussion for the potential effects of negative273

and stabilizing selection).274

Until now, our model assumed that the effects have an equal probability of in-275

creasing or decreasing the phenotypic difference. Under directional selection, the276

phenotype of a lineage is typically pushed towards a new optimal value. The direc-277

tions of effects of that lineage relative to the ancestral lineage are more likely to be in278

the direction of this optimum (16). Thus, to model the case that directional selection279

has shaped the divergence between the two compared genomes, we introduced biased280

effects into our model. We considered the case where selection is stronger for larger281

effect sizes. In other words, effects are more likely to be aligned with the direction of282

selection than with the opposite direction, and the probability of alignment increases283

with the size of the effect and the strength of selection.284

To model this, we introduced into the random walk a bias that favors one direction285

over the other and is stronger with larger effects (Methods). In this model, we observed286

an improvement in prediction accuracy relative to the neutral case in two aspects: (i)287

the proportion of pairs of individuals with high κ values also increases with stronger288

selection (Fig. S3); (ii) prediction accuracy is higher for any given value of κ (Fig. 4b).289

Both improvements increase with stronger directional selection. Consequently, under290

directional selection, high-accuracy predictions can be achieved more often and with291

fewer known effects.292

These results suggest that more divergent lineages, where directional selection293

might have played a more central role, would tend to show higher prediction accuracy.294

To investigate this, we explored genotype-to-phenotype datasets of more divergent295

lineages. We tested three quantitative trait loci (QTL) mapping datasets investigating296
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stickleback (17), daisy (18), and mouse (19). The stickleback dataset included four297

freshwater populations that diverged from a common marine ancestor less than 12,000298

years ago (17). We analyzed the 27 morphological phenotypes in the dataset, with299

1–2 QTLs reported per phenotype, and found that even with only 1-2 known loci,300

prediction accuracy was 63%-75% (depending on the pair of populations compared;301

Fig. 4c).302

In the daisy dataset, we analyzed 1–5 QTLs for 12 phenotypes that differ between303

two species of daisy (18). We found a prediction accuracy of 92%, with 11 out of 12304

phenotypes predicted correctly based on these known effects (Fig. 4c). The mouse305

dataset included growth rate and weight phenotypes of Gough Island vs. wild-type306

mice over 16 developmental stages (19), with 8–11 QTL per phenotype. Prediction ac-307

curacy was 100% (Fig. 4c). Interestingly, this perfect prediction accuracy is achieved308

despite the fact that in some developmental stages, the joint effect of all known effects309

explains as little as 6% of the variance in weight and 3% of the variance in growth310

rate. In addition, in all three datasets, the single largest-effect locus was sufficient311

to predict the direction of phenotypic difference with high accuracy (63%-75% for312

sticklebacks, 92% for daisies, and 75% for mice).313

We also revisited our previous study that predicted phenotypic differences between314

Neanderthals and modern humans and between chimpanzees and humans (6). These315

predictions were based on DNA methylation data and were made only for phenotypes316

where all known effects pointed in the same direction of phenotypic change, thus fil-317

tering for phenotypes with higher κ values. Prediction accuracy for 33 Neanderthal318

phenotypes and 22 chimpanzee phenotypes was 88% and 91%, respectively (6). In-319

terestingly, we observed similar patterns in our more recent study comparing human320

and chimpanzee gene expression in human-chimpanzee hybrid cells, with an accuracy321

of 81% (20).322

Overall, these datasets represent a diverse range of phenotypes, species, divergence323

times, and genotype-to-phenotype association methods. While we most often do324

not know the exact nature of the selection processes that have shaped the genetics325

of organisms, our results suggest that when comparing divergent genomes, we can326

achieve relatively accurate prediction of the direction of the phenotypic difference327

with very few large-effect loci.328

Discussion329

Traditional quantitative genetic studies attempt to predict the precise phenotypic330

value of an individual. Here, we explored a more modest approach, whereby only the331

direction of phenotypic difference is predicted. Our goal was to develop a model for332

prediction accuracy under various conditions and to test it on empirical data. We333
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found that prediction accuracy is affected by two main factors: the sum of known334

effects, and the variance of the sums of the unknown effects. We formulated the335

relationship between these two factors as κ, from which the prediction accuracy can336

be easily estimated. The κ statistic allows us to identify pairs of individuals where337

the direction of phenotypic difference could be confidently predicted. This statistic338

is not affected by ascertainment bias, the level of divergence between individuals, or339

transferability problems with the data. Pairs for whom accurate predictions can be340

made are more common when (i) more information is known about the genetic basis341

of the phenotypic variation, (ii) the phenotype was more strongly affected by positive342

selection, (iii) large-effect loci are more likely to be known.343

Our model has several limitations. (i) We assumed additivity of effect sizes and344

did not incorporate epistasis. Although previous studies have shown that variation345

in complex traits within species is mostly additive (21; 22; 23), the assumption of346

additivity may not hold for some phenotypes (24; 25). (ii) In our model, we did not347

separate between unknown effects that contribute to the phenotype (e.g., undetected348

loci) and unknown effects due to noise in the estimation of known effects (e.g., mea-349

surement errors or unaccounted factors such as age and socio-economic status). (iii)350

Finally, we model environmental effects as part of the unknown effects, i.e., reflecting351

the same dynamics. However, in phenotypes that evolve under stabilizing selection in352

the face of shifting environments, genetic and environmental effects can have different353

or opposing trends (26; 27). Despite these limitations, testing our approach on real354

data suggests that our current model captures the main factors affecting predictions.355

To model selection, we used an approach where loci are affected by selection in356

proportion to their effect sizes. While this is the general case, selection often fol-357

lows more complex dynamics (3). For example, Hayward and Sella (16) investigated358

temporal evolutionary dynamics of a rapid adaptation phase followed by a prolonged359

stabilizing selection phase. This study showed that in the long term, phenotypic vari-360

ation is dominated primarily by small and moderate effect sizes, and that the larger361

the effect size of a locus that separates the two groups, the more likely it is to reflect362

the overall phenotypic difference between them (16). This could further explain the363

high prediction accuracy reached in our between-species comparisons, where the few364

known large-effect loci explain a small percentage of the overall phenotypic difference,365

but are very predictive of the direction of phenotypic difference.366

Other types of selection could also affect predictions. For example, negative se-367

lection is expected to reduce the number of divergent loci between two individuals,368

thus decreasing both the known and unknown effects. If it disproportionately affects369

larger-effect loci it might reduce the relative contribution of the known effects, thus370

shifting κ values towards lower values, resulting in lower prediction accuracy. Unlike371

directional selection, this is not expected to affect the relation between κ and pre-372

diction accuracy. Stabilizing selection, for a similar optimum on the two genomes,373
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may also reduce prediction accuracy because it can reduce the variance contribution374

of shared loci affecting the phenotype (27).375

The ability to predict the direction of some phenotype differences accord with376

recent results in the context of embryo screening for polygenic conditions. In this377

setting, embryos generated by in vitro fertilization are screened for their genetic pre-378

disposition to complex, polygenic diseases and ranked for transfer for pregnancy.379

This technology is considered by many as unethical (28; 29; 30) and is also widely be-380

lieved to have little ability to identify embryos with substantially lower risk (31; 32).381

However, several simulation and modeling studies (9; 10; 33; 34) found that even382

for diseases with poorly predictive PGS, selection of the lowest-risk embryo could383

lead to substantial relative risk reduction. This result can be understood based on384

the liability threshold model (35), under which a disease is assumed to have an un-385

derlying, unobserved, continuous liability, with affected individuals being those with386

liability exceeding a threshold. Given a weak PGS, embryo screening would reduce387

the expected liability of the selected embryo by a very small amount compared to a388

randomly selected embryo (8; 36). However, even this small shift could be sufficient to389

substantially reduce the chances of exceeding the disease threshold. Similarly, when390

predicting the direction of the phenotypic difference, even a small positive gap in PGS391

between a pair of individuals translates to a high probability for the final phenotypic392

difference to remain positive.393

The approach we presented evaluates the extent to which a key feature of a phe-394

notype — its direction — can be predicted from genomic data. Given the currently395

limited ability to quantitatively predict phenotypes from genotypes (2), our approach396

suggests that qualitative prediction of phenotype direction is often feasible. While397

there is still much to explore with regard to the applicability of this approach to398

various data, its capability to robustly estimate prediction accuracy and to identify399

individuals and phenotypes for which accurate predictions can be achieved, suggests400

that more phenotypic information can be extracted from genomes than previously401

appreciated.402

Methods403

Formal model for prediction accuracy404

We consider a pair of individuals, one phenotyped and the other unphenotyped, with genomes that diverge405

at n loci that affect a certain phenotype. We denote the (absolute value of the) differential effect of these loci406

as ei, (i = 1, . . . , n) which is the relative contribution of locus i to the difference between the phenotypes of407

the two individuals (Fig. 1a). Each effect of a divergent locus either increases the phenotypic difference in the408

direction of the phenotyped individual, arbitrarily denoted as di = 1, or in the direction of the unphenotyped409

individual, denoted as di = −1. The sum of the known effects is ∆ =
∑n

i=1 diei (Fig. 1b). The sign of ∆ is410

our prediction for the direction of the phenotypic difference (Fig. 1c).411
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We consider additional m unknown effects on the phenotype, and denote them as random variables412

X1, ..., Xm. For the most part of this work (but see simulations with selection below), we assume that413

X1, . . . , Xm are independent random variables that attain one of two values, Ej or, −Ej , with equal proba-414

bility, i.e. Xj ∼ 2Ej

(
Bernoulli( 1

2
)− 1

2

)
, for j = 1, . . . ,m. We assume that the Ej ’s are identical independent415

random variables with an effect-size distribution Y , which means that X1, ..., Xm are also identical and inde-416

pendent. Each divergent unknown effect has some contribution to the phenotype, and it can work to either417

increase or decrease the phenotypic difference. We denote the sum of the unknown effects as Ω =
∑m

i=1 Xj .418

Following the definitions in Eq. 1, we denote the variance of Ω as σ2.419

The true phenotypic difference is D = ∆ + Ω, the sum of both known and unknown effects. Our420

prediction is correct if the signs of ∆ and D are the same; otherwise, our prediction is incorrect. We define421

the ‘prediction accuracy’ P as the probability that the signs of ∆ and D are the same.422

Mathematical relationship between κ and P423

Without loss of generality, let us assume that ∆ > 0. Prediction accuracy is the probability that the true424

phenotypic difference is positive, P = Prob
(
∆+Ω > 0

)
. Reformulating this by plugging in Eq. 1 to replace425

∆, we have426

P = Prob
(
Ω > − κσ

1− κ

)
= 1− Prob

(
Ω ≤ − κσ

1− κ

)
(3)

Notably, Ω is a sum of identical independent random variables, and therefore, assuming that the effect size427

distribution Y has a finite variance, we can apply the central limit theorem and show that Ω is approximately428

normally distributed. Ω has a mean of zero because each of the random variables Xi has a zero mean. We429

can now use the CDF of Ω, FΩ(x) = Φ( x
σ
) (where Φ(·) is the standard normal CDF) to explicitly compute430

the prediction accuracy,431

P = 1− FΩ

(
− κσ

1− κ

)
= FΩ

( κσ

1− κ

)
= Φ

( κ

1− κ

)
. (4)

Alternative derivation432

We can also derive this result using standard notations in statistical genetics. As before, we consider that a433

phenotype is measured in normalized units, i.e., y ∼ N(0, 1). The PGS of an individual p is then distributed434

as p ∼ N(0, r2), where r2 is the proportion of the phenotypic variance explained by the PGS. We denote435

the combined non-measured genetic factors and non-genetic factors affecting the trait as e, which is also the436

residual of the regression of the trait on the PGS. We can thus write y = p + e. We assume p and e are437

independent and e ∼ N(0, 1 − r2). Next, we consider two unrelated individuals with computed PGSs p1438

and p2 such that p1 > p2, with residuals e1 and e2, respectively (we assume that e1 and e2 are independent439

because the individuals are unrelated). Denoting the difference in PGSs as d = p1 − p2, and using d to440

predict the direction of phenotypic difference, the prediction accuracy is therefore P = Prob(y1 > y2),441

where y1 and y2 are the true phenotypic values of the two individuals. We can reformulate this probability442

as P = Prob(e2 − e1 < p1 − p2), and therefore P = Prob(e2 − e1 < d). We denote e′ = e2 − e1, and because443

e1 and e2 are each normally distributed with variance 1− r2 and zero mean, we have e′ ∼ N
(
0, 2(1− r2)

)
.444

We can now observe that:445

P = Prob(y1 > y2) = Prob(e′ < d) = Φ
( d√

2(1− r2)

)
. (5)

Reformulating Eq. 1 with the notation of this section (i.e., |∆| = d and σ =
√

2(1− r2), because 2(1− r2)446

is the variance of the differences of the unknown effects), we have κ = d

d+
√

2(1−r2)
, and therefore447

κ

1− κ
=

d

d+
√

2(1−r2)

1− d

d+
√

2(1−r2)

=
d√

2(1− r2)
, (6)
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showing that equations 4 and 5 are equivalent.448

In the Supporting Information we discuss similar derivations for two specific cases: comparison of siblings449

and comparison of disease phenotypes.450

Simulations451

To simulate a single pairwise comparison, we sampled n + m effect sizes from a pre-specified effect size452

distribution, with signs simulated to be negative or positive with equal probability. We then computed the453

sums ∆ =
∑n

i=1 ei and D = ∆+
∑n+m

j=n+1 ej , as in the formulation above. The simulation results in a correct454

prediction if Sign[D] = Sign[∆], otherwise the prediction is incorrect. For each scenario 106 repeats were455

simulated.456

We evaluated different fractions of known effects out of all effects: 10%, 50%, and 90%. Effect size457

distributions can be shaped by various evolutionary processes, such as mutation, selection, and genetic drift458

(3; 37); therefore, we simulated effect size distributions of various types (normal distribution in Fig. 2,459

gamma and Orr’s negative exponential model distributions (38; 3) in Fig. S1). We also considered the case460

where the known effects tend to be the larger effects. To simulate this, we sampled n+m effect sizes from461

the predefined effect size distribution, and then sorted the effect sizes in decreasing order, defining the known462

effects to be the largest n effects. We then continue with the rest of the simulation as described above.463

Modeling and simulating directional selection464

To model directional selection, we modify the random variables representing the effects to have positive465

means. We implement this by simulating n+m effect sizes ei as before, but we simulate their direction by466

letting the probability Xi > 0 be pi = 1− 1
2
e−s|ei|, and then Xi ∼ 2ei

(
Bernoulli(pi)− 1

2

)
. Note that s is467

not a selection coefficient in units of fitness, but is rather a unitless parameter that is proportional to the468

impact of selection on the direction of the effect. The motivation for this particular formulation is based on469

the Ornstein-Uhlenbeck model, which is used to model the evolution of quantitative traits subject to both470

drift and selection by considering random walks with some pull toward a particular state (39; 40; 41). Under471

our model, when s ≈ 0 or ei is very small, then pi ≈ 1
2
, as in the neutral model. As s and ei increase, pi472

approaches 1, meaning that the direction of the effect is almost always in the positive direction.473

Analysis of pairwise comparisons in humans474

Estimating κ from empirical population data475

Estimating κ for a given pair of individuals using Eq. 1 requires (i) effect size differences for known loci to476

compute ∆, and (ii) the variance of the sum of the unknown effects, σ2. The genotype effect sizes can be477

ascertained from summary statistics of large genotype-phenotype datasets (see next section), from which478

we can compute the effect size differences (e.g., the added effect of one allele to the phenotype), denoted479

as ei. Next, we introduce a new parameter, r2, which denotes the overall contribution of known effects to480

the variance of phenotypic differences between pairs. r2 is similar to the proportion of explained phenotypic481

variance of PGS (usually denoted as r2), but refers only to those loci that are divergent between the two482

compared individuals; it is, therefore, expected to have similar values to r2 estimates computed using other483

means.484

We assume that the measured differences in phenotypic values have been normalized and transformed485

to z-scores (i.e. the variance of the scaled phenotypic differences is one). To scale the units of the effect sizes486

to these standardized units, we define e∗i =

√
r2

v2 ei, where v2 is the variance of in the PGS differences in487

the population. Thus, the effect sizes are scaled so that their overall contribution in units of the normalized488

phenotypic differences is r2. For a pair of individuals, we can now denote the overall predicted difference489

∆∗ =
∑n

i=1 e
∗
i , where n is the number of known effects that are divergent between the two individuals. To490

compute the variance of the sum of the unknown effects, we notice that the variance of the true phenotypic491
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difference is composed of the sum of the variance explained by the known effects, r2, and the variance of492

unknown effects σ2; therefore, in the standardized units, σ2 = 1 − r2. Using these standardized units, we493

can reformulate Eq. 1:494

κ =
|∆∗|

|∆∗|+
√

1− r2
(7)

To apply this formulation to empirical data, we must estimate r2. Below, we explore the option of estimating495

r2 from the data by considering the fit to the theoretical expected relationship of κ and P (Eq. 4). We also496

computed, for comparison, the proportion of explained variance (r2) using the regression of the phenotypes497

on the PGSs.498

Analysis of the UK Biobank499

To test our approach on empirical data, we used the UK Biobank (UKB), a large dataset containing almost500

500,000 genotyped individuals with associated phenotype data (12). We generated subsets of comparisons501

that have different levels of divergence: (i) sibling pairs with Northwestern European ancestry (within-502

family), (ii) pairs of individuals with Northwestern European ancestry (within-population), and (iii) pairs503

of individuals where each belongs to a different ancestry group, among European, East Asian, and African.504

Northwestern European ancestry was determined using the UKB Data-Field 22006. Our non-European505

groups were defined by demarcating clusters of genetically similar individuals that are distant from the506

European group on the PC1 and PC2 of the UKB PCA results from UKB Data-Field 22009 (Fig. S6).507

The two clusters were labeled as East Asian and African based on the majority of self-identifications of508

individuals from these groups as reported in UKB Data-Field 21000. These groups included 1,794 and 3,091509

individuals, respectively.510

To compute κ values, we first generated GWAS results for a number of continuous traits: body-mass511

index (UKB Data-Field 21001); systolic blood pressure (UKB Data-Field 4080); heel bone mineral density512

(UKB Data-Field 3148); standing height, referred to as “height” (UKB Data-Field 50); hip circumference513

(UKB Data-Field 49); and basal metabolic rate, referred to as “metabolic rate” (UKB Data-Field 23105).514

We included variants with high-quality imputation scores (imputation INFO scores ≥ 0.8) from the UKB515

imputed genotype release version 3 (12); this yielded roughly 30 million variants. The discovery dataset516

included individuals with Northwestern European ancestry, excluding 20,000 (10,000 female, 10,000 male)517

individuals as a validation subset. We generated single-variant association results using SAIGE v1.1.6.3 (42).518

We used 280,628 markers to fit the null linear mixed model, and age, sex, and the first ten genetic PCs as519

covariates. To generate PGSs, GWAS results were filtered with a fixed P-value threshold of P-value ≤ 0.01520

and minor allele count threshold of MAC ≥ 20. We used PRSice-2 to compute PGSs for all individuals (43).521

κ values were computed for all same-sex pairs from our validation subset as detailed above in Estimating κ522

from empirical data. For each pair, we compared the sign of the PGS difference and the true direction of523

phenotype difference as reported in the UKB.524

To compare our results to the theoretical expectation of the relationship between κ and prediction accu-525

racy, we binned comparisons according to their κ values, and computed the proportion of correct predictions526

in each bin. To estimate r2 from the data, we computed κ values for a range of r2 values, and selected the527

value of r2 that yielded the least sum of absolute distances between the proportion of correct predictions for528

each bin and the theoretical expectation, weighted by the number of comparisons per bin (Table S2).529

PGSs are known to have poor transferability between genetically distinct populations. To test the effect530

of PGS transferability on our model fit, we used the PGSs from the European ancestry group in Yengo et531

al. (15) to evaluate our predictions in non-European pair comparisons, using the ancestry subsets indicated532

above (1,794 individuals with East Asian ancestry for EAS–EAS comparisons, and 3,091 individuals with533

African ancestry for AFR–AFR comparisons), relative to our pairwise predictions in the European group with534

the same PGSs (20,000 individuals for EUR–EUR comparisons). Note that in the EUR–EUR comparisons535

the Yengo et al. (15) PGSs included the tested individuals, but these individuals constitute a very small536

portion of the overall European population analyzed in this study.537
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We also generated predictions for a number of common diseases reported in the UKBB according to538

the following ICD10 codes: asthma (J45), type 2 diabetes (E11), hypertension (I10) and hypothyroidism539

(E03). ICD10 codes were retrieved from UKB Data-Field 41270 (diagnoses). For each disease, we generated540

single-variant association results using SAIGE2 (42) for binary traits with default parameters. The discovery541

dataset included individuals with Northwestern European ancestry (as defined by UKB Datafield 22006),542

excluding 10,000 samples, 5,000 controls and 5,000 cases, as a validation subset. PGSs were generated and κ543

estimated as for the continuous traits. For each case-control pair, correct prediction was recorded whenever544

the PGS for the disease risk was higher in the case individual.545

Analysis of population and species datasets546

To evaluate our approach in cases where the compared genomes are highly diverged, we examined datasets547

from several species. In the stickleback QTL mapping dataset (17), we compared a marine population548

(treated in our analysis as the phenotyped population) and four freshwater populations (treated as unphe-549

notyped). The compared populations likely diverged less than 12,000 years ago (17). We investigated 27550

morphological phenotypes (measurements of shape landmark coordinates), resulting in four pairwise com-551

parisons of 27 phenotypes. Because not all phenotypes had significant QTLs in each population, some of552

the comparisons (three out of four populations) included fewer than 27 predictions (Fig. 4c). Here, because553

the raw data was not available, we could not exclude the compared individuals when computing effect sizes;554

however, because these loci are largely fixed between the populations, this is not expected to affect the555

results.556

In the mouse QTL mapping dataset (19), we compared a wild-derived inbred laboratory house mouse557

strain and the Gough island house mouse subpopulation. These populations diverged in the 19th century.558

Two phenotypes (weight and growth rate) were measured across 16 weeks, resulting in a pairwise comparison559

of 2× 16 phenotypes. We then computed average prediction accuracy across the 16 time points for each of560

the two phenotypes.561

In the daisy QTL mapping dataset (18), we compared two daisy species (Senecio aethnensis, and Senecio562

chrysanthemifolius) that have likely diverged within the last 176,000 years (Brennan et al., 2016). For one563

phenotype out of 13, a prediction could not be made because the sum of the known effects was 0.564

The Neanderthal and chimpanzee datasets (6) included comparisons of DNA methylation maps between565

modern humans (treated as the phenotyped population) and Neanderthals and chimpanzees. Because these566

analyses do not contain effect sizes, they were limited to phenotypes for which the loci with the largest567

differences in methylation levels showed unidirectionality (likely resulting in high ∆ values, and therefore568

high κ values). These analyses predicted the phenotypic direction for 33 Neanderthal phenotypes and 22569

chimpanzee phenotypes. We list here the prediction accuracy as reported in (6).570
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