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10 Abstract

11 Predicting phenotypes from genomic data is a key goal in genetics, but for
12 most complex phenotypes, predictions are hampered by incomplete genotype-
13 to-phenotype mapping. Here, we describe a more attainable approach than
14 quantitative predictions, which is aimed at qualitatively predicting phenotypic
15 differences. Despite incomplete genotype-to-phenotype mapping, we show that
16 it is relatively easy to determine which of two individuals has a greater pheno-
17 typic value. This question is central in many scenarios, e.g., comparing disease
18 risk between individuals, the yield of crop strains, or the anatomy of extinct vs
19 extant species. To evaluate prediction accuracy, i.e., the probability that the in-
20 dividual with the greater predicted phenotype indeed has a greater phenotypic
21 value, we developed an estimator of the ratio between known and unknown
2 effects on the phenotype. We evaluated prediction accuracy using human data
23 from tens of thousands of individuals from either the same family or the same
% population, as well as data from different species. We found that, in many cases,
25 even when only a small fraction of the loci affecting a phenotype is known, the
26 individual with the greater phenotypic value can be identified with over 90%
27 accuracy. Our approach also circumvents some of the limitations in transfer-
28 ring genetic association results across populations. Overall, we introduce an
20 approach that enables accurate predictions of key information on phenotypes
30 — the direction of phenotypic difference — and suggest that more phenotypic
31 information can be extracted from genomic data than previously appreciated.

» Introduction

13 A key goal in genetics is to predict phenotypes from genomic data. Such predictions
s are pivotal for assessing disease risk (1; 2), understanding the genetics underlying
s adaptation (3; 4; 1), optimizing genetic engineering outcomes (5), reconstructing the
s traits of extinct species (6), and more. However, our current ability to predict pheno-
w typic values from genetic information, for example by using polygenic scores (PGSs),
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ss 1S restricted by several factors. These include environmental effects, the high poly-
3 genicity of many phenotypes, the limited ability to identify causal noncoding variants
w and quantify their effects, and the lack of power to detect small-effect loci (1; 2).

a Given the limitations associated with predicting precise phenotypes, we suggest
22 here a more attainable objective: predicting only the direction of phenotypic differ-
»3 ence. Namely, rather than striving to predict the precise phenotypic value encoded
w by a particular genome, we aim to predict whether this genome encodes for a larger
s or smaller phenotypic value relative to another genome. To illustrate, consider a sce-
s nario where one is interested in determining the probability that an offspring will be
a7 taller than their 170cm tall parent. Considering that a PGS predicts the offspring
s will be 180cm tall, what is the probability that the offspring will indeed be taller than
s their parent? We previously implemented a simplified version of this approach to re-
so construct Denisovan anatomy using gene regulatory data, and validated the method
51 on Neanderthals and chimpanzees, finding that it reaches over 85% accuracy in pre-
2 dicting the direction of phenotypic differences (6).

53 Undoubtedly, predicting a precise phenotypic value is more informative than pre-
s« dicting only the direction of phenotypic difference. However, in studies where the
s precise phenotypic value cannot be accurately inferred (which is often the case), im-
ss portant insights could still be gained by inferring the phenotypic direction instead.
57 Most importantly, the phenotypic direction is often the crux of phenotypic compar-
s isons, for example, when estimating how likely it is that (i) an individual has an
s9 increased disease risk compared to a reference (2), (ii) a genetically modified crop
o will have increased yield (7), (iii) an individual will be greater or smaller in a certain
s trait compared to their parents or siblings (e.g., in preimplantation genetic diagnoses;
e (8;9)), and (iv) the phenotypes of an extinct species differ from those of an extant
63 Species.

64 Here, we explored the feasibility of using currently available genotype-to-phenotype
es information to predict which individual has a greater phenotypic value. We compared
s the total effect of known loci to the range of the potential effects of unknown genetic
e and non-genetic contributors. We studied this ratio of known-to-unknown effects
¢ through two independent branches of investigation: (i) formalizing a model to delin-
o eate the scenarios in which accurate predictions can be achieved, and (ii) evaluating
70 performance in real-world empirical data from humans and other species, examining
7 a wide range of levels of divergence between individuals. Our findings underscore the
72 known-to-unknown ratio as a high-fidelity and intuitive estimator of prediction accu-
7z racy. This allowed us to identify cases where we can reliably discern the individual
72 with the greater phenotypic value. Importantly, this is possible even in cases where
7 the proportion of variance in the trait explained by known genetic effects is small.
7 Our study suggests that it is possible to identify the pairs of individuals for which
77 high-accuracy predictions can be made, and that more phenotypic information can
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7 be reliably extracted from a genome than perhaps intuitively expected.

» Results

0 Approach

s We investigated what genomic information is needed to predict the direction of phe-
&2 notypic difference between two individuals and the conditions under which this pre-
g3 diction is accurate. We assume that one individual has been phenotyped (hereafter,
sa  phenotyped individual) and the other has not (hereafter, unphenotyped individual).
8 A phenotype is affected by loci whose contribution to (or often association with)
ss the phenotype is known (hereafter, known effects), as well as by loci or non-genetic
&7 factors whose association with the phenotype is unknown (hereafter, unknown effects,
s Fig. 1la). We make a prediction on the direction of phenotypic difference by summing
g up the contribution of the known effects and determining whether the unphenotyped
o individual has a larger or a smaller sum. We ignore loci where the two compared
o individuals have the same genotype, because only divergent loci could contribute to
» the phenotypic difference (Fig. 1b,c). This procedure is equivalent to computing the
o3 difference between the PGSs of the two genomes, and using the sign of this difference
us to predict the direction of the phenotypic difference (9; 10). In the following sections,
s we investigated the conditions affecting the probability that a prediction based only
o on the known effects matches the true direction of phenotypic difference (hereafter,
o prediction accuracy or P).

s Modeling the conditions needed to predict the phenotypic di-
% rection

w0 We explored the problem from two different perspectives, statistical genetics and
w1 evolutionary, which provide different tools and intuitions. From a statistical genetics
102 perspective, we considered the partitioning of the phenotypic variance into that gen-
103 erated by known and unknown effects. For the evolutionary perspective, we modeled
104 the approach as a random walk, where each step is an effect on the phenotype in one
s or the other direction. We define the effect size of a locus as the average difference in
ws predicted phenotype between the genotypes of the two individuals. For example, if
107 the phenotyped individual has a genotype that increases height by 3mm (relative to
s a reference), and the unphenotyped individual has another genotype, which decreases
o height by Imm, then we consider the effect size of that locus to be +4mm (Fig. 1a).
no  The effect size of loci with the same genotype in the two individuals is 0, and these
w1 loci are therefore ignored throughout this work. Our model makes the simplifying
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12 assumptions of additivity and no epistasis (11) (in the empirical section, where we
us  test our approach, these simplifying assumptions are evaluated). The direction of the
use sum of known effects (i.e., whether the displacement is above or below the x-axis in
s Figure 1b and the blue dot in Figure 1d) is our prediction of the direction of the
s phenotypic difference (Fig. 1c). If the remaining steps of the random walk (i.e., those
ur of the unknown effects) are such that the final displacement (i.e., true phenotype,
us yellow dots in Fig. 1d) is still above 0, our prediction is correct. Otherwise, i.e., if the
e remaining steps push the displacement below 0, our prediction based on the known
120 effects is incorrect. Naturally, the larger the sum of known effects is, the less likely it
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Figure 1: Schematic of the approach to predict the direction of phenotypic difference. (a) We start with a phenotyped
individual and an unphenotyped individual. We consider the known and unknown effects contributing to (or associated
with) the phenotype of interest. Known genetic effects on the phenotypic difference are in blue (measured in units
of the phenotype), unknown genetic and non-genetic effects are in yellow. Cases where the contribution is identical
between the two individuals (and therefore do not affect the phenotypic difference) are in gray. (b) Only the known
divergent effects are used to predict the phenotypic difference between the individuals. The sum of the known
effects can be thought of as the final position of a random walk with step sizes and directions corresponding to the
effect sizes. (c) The direction of the total sum of the known effects is used to make a prediction of the direction of
phenotypic difference between the phenotyped and unphenotyped individuals. If the sum of the known effects between
the individuals is positive, we predict that the phenotypic value of the unphenotyped individual is larger than the
phenotyped individual (and the opposite prediction if the sum is negative). (d) Modeling prediction accuracy using
random walks. The curves represent random walks where each step is an effect size. The blue curve shows the known
effects of a specific random walk, and the sign (positive or negative) of the blue point at the end of the walk is the
predicted direction of phenotypic difference. The yellow curves show potential random walks of the unknown effects
(genetic and environmental). In this example, effect sizes were drawn from a standard normal distribution. For a
correct prediction of the direction of the phenotypic difference, the sum of the known effects (blue point) and the true
phenotypic difference (yellow dot) need to be on the same side of the x-axis (both below or both above).

Effects on the phenotype
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1 is for the final displacement to end on the opposite side of the x-axis.

122 We start by exploring the factors affecting prediction accuracy and the conditions
123 required for high-accuracy predictions. Various factors have the potential to affect
124 prediction accuracy: the total number of loci affecting a phenotype, the fraction
15 of known effects, the distribution of effect sizes, and more. However, our random
s walk perspective suggests that all of these factors amount to only two aspects of the
12z walk that ultimately determine prediction accuracy. The first aspect is the vertical
s displacement of the sum of the known effects (blue dot in Fig. 1d; equivalent in
10 statistical genetics to the difference in PGS). Namely, the further above or below 0 we
1o “traveled”, the less likely it is that the unknown effects would push the final position to
11 the other side of the x-axis. The second aspect is the variation of the overall potential
132 sums of the unknown effects (i.e., the variation in the displacements generated by the
133 random walk of the unknown effects, yellow region in Fig. 1d; equivalent to the
13 proportion of variance in phenotypic differences that is unexplained by PGS). The
135 smaller this variation is, the less likely the unknown effects are to push the final
s position of the walk to the other side. We propose here that prediction accuracy can
137 be characterized by the ratio between these two quantities. Denoting the sum of the
s known effects as A and the standard deviation of the unknown effects as o, we define
130 the known-to-unknown ratio, k, as

A
K= ———. 1
Al + o (1)
140 In Methods, we show that the prediction accuracy can be written as a simple

1 function of x,

P_<I><1fﬁ), 2)

2 where ®(+) is the standard normal CDF. We provide two derivations — one from the
13 viewpoint of random walks and the other from the viewpoint of statistical genetics,
s which also enabled us to model shared genetic and environmental components in sib-
s lings (see Methods). We then explored how different factors affect the distribution
s of k, by deriving the distributions under simplified conditions (Supplementary Infor-
w7 mation) as well as using simulations. We simulated pairs of individuals with random
us  known and unknown effects and arbitrarily treated one individual as phenotyped and
1o the other as unphenotyped (see Methods). Based on these simulated effects, we com-
150 puted k for each pair of individuals and determined whether the prediction is correct.
151 We conducted these comparisons for different ratios of known to unknown effects, as
12 well as for different effect-size distributions.

153 We found an agreement between the theoretical expectation and the simulated re-
15 sults across all values of k (Fig. 2a), as well as across different effect-size distributions
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Figure 2: Evaluating prediction accuracy using the known-to-unknown ratio (k). (a) Simulated prediction accuracies
for various k values (grouped into equally spaced bins), for different proportions of the known vs. unknown effects
(10%, 50%, and 90% of effects known). Effect sizes were drawn from a normal distribution. In gray is the theoretical
expectation from Eq. 4. (b) The distribution of k values for the case where the known effects are randomly sampled.
The vertical line denotes the x values required for prediction accuracy of P > 0.95 (k = 0.62) (c). The distribution
of k values for the case where the known effects are those with the largest effect sizes. The vertical line denote the
K values required for prediction accuracy of P > 0.95. In all panels, 10,000 effect sizes were drawn from a standard
normal distribution to represent the known and unknown effects on the phenotype.

155 (Fig. Sla-b). As expected, predictions on pairs with higher x values showed higher
156 prediction accuracy. For example, for pairs of individuals with x > 0.62, prediction
157 accuracy was P > 0.95. High values of x are more common when the fractions of
155 known effects are larger (Fig. 2b), but we showed analytically (Supporting informa-
150 tion) and with simulations (Fig. Slc—d) that the underlying effect-size distribution
1o does not affect the s distributions (Fig. Slc-d).

161 We have so far assumed that there is no bias in choosing which effects are known
162 and which effects are unknown. However, many detection methods (e.g., quantitative
163 trait loci mapping or GWAS) have an ascertainment bias, where loci with larger effects
e are more readily detectable (2). We therefore analyzed scenarios where the known
165 effects are those with the largest contribution to phenotypic variance. As before, we
166 found that s is a precise descriptor of prediction accuracy (Fig. S2). However, x
167 values tend to be much higher than in the unbiased scenario (Fig. 2¢). Therefore, if
168 the known effects tend to be the largest effects, prediction accuracy could be high. For
180 example, with 10% of effects known in the unbiased scenario, none of the simulated
o pairs of individuals had prediction accuracy > 0.95 (k > 0.62); however, in the
i scenario where the largest effects were known, 6.5% of the pairs reached this prediction
2 accuracy (Fig. 2b—c, intermediate blue). Thus, if the known effects tend to have larger
13 effects, high prediction accuracy can be achieved even in cases where these loci explain
s only a small proportion of the overall phenotypic variance.

175 In sum, we found that the known-to-unknown ratio (k) captures the factors that
e affect the probability of predicting which individual has the higher phenotypic value.
177 The k estimator could thus be used as an intuitive statistic to (i) evaluate prediction
ws accuracy, and (ii) identify individuals for which high-accuracy predictions could be
w9 made, even when genotype-to-phenotype data is limited.
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w Identifying which individual has the higher phenotypic value
s in real-world data

1.2 1o investigate the relationship between x and prediction accuracy in empirical data,
183 'we compared pairs of individuals with different levels of genetic divergence. We
s considered pairs of individuals from the UK Biobank (12) from either the same fam-
15 ily or the same population. For each pair, we investigated six phenotypes: height,
185 body mass index (BMI), metabolic rate, blood pressure, hip circumference, and bone
17 density. For each phenotype, we selected loci that significantly contribute to the
188 phenotype based on a GWAS that excluded the individuals we tested. The effect
189 sizes generated in this GWAS were then used to compute A as the difference between
1o the PGSs of the two individuals (Methods). In each comparison, we also computed
11 K. For the within-family comparisons, we examined all 10,597 pairs of same-sex sib-
102 lings in the dataset (Methods). For within-population comparisons, we randomly
103 sampled 20,000 individuals (10,000 females and 10,000 males) who self-identified as
e White British and had Northwestern European genetic ancestry (hereafter labeled
105 for brevity as ‘European’, see Methods, Fig. S6). We then examined all pairwise
106 same-sex comparisons among them.

107 Across the six phenotypes, higher k values reflected higher prediction accuracy
s (Fig. 3a-b), with a relationship that tightly followed the theoretical expectation
1w (Eq. 4). Importantly, this is maintained across both levels of genetic divergence
20 between individuals (family-level and population-level), suggesting that x captures
21 the key aspects determining the ability to predict phenotypes. There is an intriguing
22 exceptions to this: predictions of blood pressure differences hold at lower x values,
203 but perform badly at higher x values. This possibly reflects medication-induced phe-
200 notypic changes (see below).

205 Our approach also allowed us to estimate the proportion of individuals for whom
206 high-accuracy predictions can be achieved. For example, for 5% of pairs from the
27 FEuropean group, x values for bone mineral density are > 0.4, and we can there-
28 fore predict which individual has higher bone mineral density with 75% accuracy
20 (i.e., threefold more likely to predict correctly than incorrectly; Figs. 3e and S4b).
a0 For height, where a larger fraction of loci contributing to the phenotypic variance
a1 is known, the same prediction accuracy can be achieved for one in four pairs. No-
22 tably, we can predict the taller individual with 90% certainty for 3% of the pairs
a3 (Fig. S4a). Importantly, the percentage of pairs for which high-accuracy predictions
24 can be attained increases with increasing genetic distance (k distributions are shifted
25 to the right with higher divergence between pairs in Fig. 3d—e). For example, in 3%
26 of sibling pairs, we can predict which sibling is taller with 85% certainty, and be-
27 tween unrelated individuals from the European group, this increases to 8% of pairs
28 (Fig. S4a-b). It remains to be determined to what extent these results are affected
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20 by population stratification (13) or other potential factors.

220 One of the most intriguing uses of phenotypic inference is its potential to predict
21 an individual’s susceptibility to a particular disease. Since disease risk is not directly
22 quantifiable per individual, we tested instead our ability to identify the individual
23 with the disease in a pair of individuals where one is healthy and the other is reported
24 to have the disease. Here too, the empirical results mostly align with the theoreti-
»s cal expectation. However, unlike all other analyses, at higher s values (K >~ 0.4),
26 the empirical results started to deviate from the theoretical expectation (Fig. SHa).
27 We have not been able to pinpoint the underlying driver of this phenomenon. One
28 plausible explanation is that in these comparisons, higher s values reflect instances
20 where one of the individuals is indeed more likely to develop the disease, but early
230 signs of the disease or family history prompted treatment and thus exclusion from
o the disease group. Potential support for this can be seen in the context of the blood
23 pressure phenotype. At higher x values, predictions start diverging from the theoret-
2 ical expectation both in the within-population analysis of blood pressure (Fig. 3b),
2¢ as well as in the disease analysis of hypertension (Fig. S5a), where for high x values
235 prediction accuracy approaches 0 and thus our predictions are not even random, but
236 systematically wrong. This behavior may indicate a negative correlation between high
23 Kk values and the disease, possibly reflecting medication-induced phenotypic changes
23 that specifically affect individuals with a higher likelihood of elevated blood pressure,
230 thereby altering the predictive outcome. Nevertheless, for most cases, where x values
20 are not extreme, it is possible to generate accurate estimates of prediction accuracy.
21 This could perhaps be clinically relevant when the unphenotyped individual has a
22 higher probability of developing the disease relative to an individual known to have
23 the disease.

204 A major concern in GWAS is its limited transferability across populations. PGSs
2s  computed using data from one population often perform substantially worse when
26 applied to other populations (14). To test whether this phenomenon affects our ap-
a7 proach, we evaluated the relationship between k and prediction accuracy using GWAS
2s  conducted on individuals with European ancestry, but predicting phenotypes between
200 pairs of individuals with East Asian or African Ancestry (populations defined in (15)).
0 As expected, we observed lower k values for these comparisons relative to the x distri-
21 bution in Europeans (Fig. 3f), highlighting that prediction accuracy in non-European
»2  populations is worse than in Europeans, owing to the smaller fraction of the pheno-
23 typic variance explained by European-ancestry GWASs (14; 15). This, in turn, may
»4  lead to inequality in future gains from genomics-based medicine. Nevertheless, here
5 100, we observed good agreement with the theoretical expectation for the relation-
6 ship between x and prediction accuracy (Fig. 3c). Thus, while fewer usable SNPs
»s7 and increased noise in effect size estimation lead to fewer pairs with high-accuracy
s predictions, the ability to robustly estimate prediction accuracy is maintained.
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Figure 3: Predictions of the direction of phenotypic difference in humans. (a)—(c) The relationship between the
known-to-unknown ratio (k) and the proportion of correct predictions in different phenotypes. The theoretical ex-
pectation (Eq. 4) is shown in gray. (a) Pairwise comparisons of siblings from the UK Biobank for six phenotypes.
(b) Pairwise comparisons of individuals from the European group (self-identified White British with Northwestern
European genetic ancestry) from the UK Biobank for the same six phenotypes. (c) Pairwise height comparisons of
individuals from the same population (either European, East Asian or African, as defined in Fig. S6), using GWAS
generated from a European-ancestry group in Yengo et al. (15). (d)—(f) The distribution of k values for all pairwise
comparisons. Each panel corresponds to the panel above it.

259 In summary, we found that: (i) given a pair of individuals, we are able to accu-
x%0 rately estimate the chances of correctly predicting which individual has the greater
21 phenotypic value, and (ii) even for phenotypes with limited genotype-to-phenotype
% data, some pairs have sufficiently high known-to-unknown ratios (k) to enable the
%3 identification of the individual with the greater phenotypic value. Two important im-
¢ plications of these findings are that we can (i) select the subset of pairs of individuals
265 for which we can make high-confidence predictions, or (ii) given a pair of individuals,
x6  select the subset of phenotypes for which we can make high-confidence predictions.

» Impact of directional selection on predictions between popu-
x lations and species

20 In the model above, we have not addressed the role of selection. Directional selection
o0 most likely has little effect on the within-population UK Biobank comparisons, but
on may play a more central role when more divergent genomes are compared. In this sec-
o2 tion, we extend our model to include directional selection and examine predictions in
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Figure 4: The effect of directional selection on predicting the direction of phenotypic difference. (a) Prediction
accuracy under directional selection, modeled as a biased random walk. The random walks in this schematic are biased
toward the positive direction, with larger effects having a stronger bias. Biased random walks increase prediction
accuracy. (b) Prediction accuracy for different x values and different levels of bias, with 50% randomly selected
known effects out of 10,000 overall. (c¢) Prediction accuracy across species. Each point represents the proportion of
correct predictions. The number of phenotypes is noted above each data point. For sticklebacks, between 14 and 27
phenotypic predictions were made for four different freshwater populations. For mice, predictions were made for two
phenotypes in 16 developmental stages.

o3 divergent populations and species (see Discussion for the potential effects of negative
2 and stabilizing selection).

215 Until now, our model assumed that the effects have an equal probability of in-
e creasing or decreasing the phenotypic difference. Under directional selection, the
o7 phenotype of a lineage is typically pushed towards a new optimal value. The direc-
s tions of effects of that lineage relative to the ancestral lineage are more likely to be in
2o the direction of this optimum (16). Thus, to model the case that directional selection
20 has shaped the divergence between the two compared genomes, we introduced biased
2 effects into our model. We considered the case where selection is stronger for larger
s effect sizes. In other words, effects are more likely to be aligned with the direction of
283 selection than with the opposite direction, and the probability of alignment increases
2 with the size of the effect and the strength of selection.

285 To model this, we introduced into the random walk a bias that favors one direction
26 over the other and is stronger with larger effects (Methods). In this model, we observed
7 an improvement in prediction accuracy relative to the neutral case in two aspects: (i)
28 the proportion of pairs of individuals with high s values also increases with stronger
20 selection (Fig. S3); (ii) prediction accuracy is higher for any given value of s (Fig. 4b).
20 Both improvements increase with stronger directional selection. Consequently, under
201 directional selection, high-accuracy predictions can be achieved more often and with
22 fewer known effects.

203 These results suggest that more divergent lineages, where directional selection
20 might have played a more central role, would tend to show higher prediction accuracy.
2s  To investigate this, we explored genotype-to-phenotype datasets of more divergent
206 lineages. We tested three quantitative trait loci (QTL) mapping datasets investigating
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207 stickleback (17), daisy (18), and mouse (19). The stickleback dataset included four
28 freshwater populations that diverged from a common marine ancestor less than 12,000
20 years ago (17). We analyzed the 27 morphological phenotypes in the dataset, with
30 1-2 QTLs reported per phenotype, and found that even with only 1-2 known loci,
s prediction accuracy was 63%-75% (depending on the pair of populations compared;
302 Fig. 4C>.

303 In the daisy dataset, we analyzed 1-5 QTLs for 12 phenotypes that differ between
3¢ two species of daisy (18). We found a prediction accuracy of 92%, with 11 out of 12
25 phenotypes predicted correctly based on these known effects (Fig. 4c). The mouse
w06 dataset included growth rate and weight phenotypes of Gough Island vs. wild-type
57 mice over 16 developmental stages (19), with 811 QTL per phenotype. Prediction ac-
28 curacy was 100% (Fig. 4c). Interestingly, this perfect prediction accuracy is achieved
500 despite the fact that in some developmental stages, the joint effect of all known effects
s explains as little as 6% of the variance in weight and 3% of the variance in growth
sn rate. In addition, in all three datasets, the single largest-effect locus was sufficient
sz to predict the direction of phenotypic difference with high accuracy (63%-75% for
a3 sticklebacks, 92% for daisies, and 75% for mice).

314 We also revisited our previous study that predicted phenotypic differences between
us  Neanderthals and modern humans and between chimpanzees and humans (6). These
a6 predictions were based on DNA methylation data and were made only for phenotypes
siz where all known effects pointed in the same direction of phenotypic change, thus fil-
a1s  tering for phenotypes with higher x values. Prediction accuracy for 33 Neanderthal
s phenotypes and 22 chimpanzee phenotypes was 88% and 91%, respectively (6). In-
20 terestingly, we observed similar patterns in our more recent study comparing human
;21 and chimpanzee gene expression in human-chimpanzee hybrid cells, with an accuracy
32 of 81% (20)

323 Overall, these datasets represent a diverse range of phenotypes, species, divergence
24 times, and genotype-to-phenotype association methods. While we most often do
»s not know the exact nature of the selection processes that have shaped the genetics
26 of organisms, our results suggest that when comparing divergent genomes, we can
a7 achieve relatively accurate prediction of the direction of the phenotypic difference
s with very few large-effect loci.

= 1Jiscussion

;0 Traditional quantitative genetic studies attempt to predict the precise phenotypic
s value of an individual. Here, we explored a more modest approach, whereby only the
s direction of phenotypic difference is predicted. Our goal was to develop a model for
;3 prediction accuracy under various conditions and to test it on empirical data. We
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s found that prediction accuracy is affected by two main factors: the sum of known
15 effects, and the variance of the sums of the unknown effects. We formulated the
16 relationship between these two factors as «, from which the prediction accuracy can
;7 be easily estimated. The k statistic allows us to identify pairs of individuals where
ss the direction of phenotypic difference could be confidently predicted. This statistic
130 is not affected by ascertainment bias, the level of divergence between individuals, or
a0 transferability problems with the data. Pairs for whom accurate predictions can be
s made are more common when (i) more information is known about the genetic basis
s> of the phenotypic variation, (ii) the phenotype was more strongly affected by positive
a3 selection, (iii) large-effect loci are more likely to be known.

344 Our model has several limitations. (i) We assumed additivity of effect sizes and
us did not incorporate epistasis. Although previous studies have shown that variation
us in complex traits within species is mostly additive (21; 22; 23), the assumption of
w7 additivity may not hold for some phenotypes (24; 25). (ii) In our model, we did not
1 separate between unknown effects that contribute to the phenotype (e.g., undetected
s loci) and unknown effects due to noise in the estimation of known effects (e.g., mea-
350 surement errors or unaccounted factors such as age and socio-economic status). (iii)
;1 Finally, we model environmental effects as part of the unknown effects, i.e., reflecting
2 the same dynamics. However, in phenotypes that evolve under stabilizing selection in
13 the face of shifting environments, genetic and environmental effects can have different
3¢ or opposing trends (26; 27). Despite these limitations, testing our approach on real
15 data suggests that our current model captures the main factors affecting predictions.
356 To model selection, we used an approach where loci are affected by selection in
37 proportion to their effect sizes. While this is the general case, selection often fol-
353 lows more complex dynamics (3). For example, Hayward and Sella (16) investigated
30 temporal evolutionary dynamics of a rapid adaptation phase followed by a prolonged
w0 stabilizing selection phase. This study showed that in the long term, phenotypic vari-
1 ation is dominated primarily by small and moderate effect sizes, and that the larger
w2 the effect size of a locus that separates the two groups, the more likely it is to reflect
33 the overall phenotypic difference between them (16). This could further explain the
s high prediction accuracy reached in our between-species comparisons, where the few
s known large-effect loci explain a small percentage of the overall phenotypic difference,
w6 but are very predictive of the direction of phenotypic difference.

367 Other types of selection could also affect predictions. For example, negative se-
w8 lection is expected to reduce the number of divergent loci between two individuals,
w0 thus decreasing both the known and unknown effects. If it disproportionately affects
s larger-effect loci it might reduce the relative contribution of the known effects, thus
sn shifting x values towards lower values, resulting in lower prediction accuracy. Unlike
sz directional selection, this is not expected to affect the relation between k and pre-
sz diction accuracy. Stabilizing selection, for a similar optimum on the two genomes,
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s may also reduce prediction accuracy because it can reduce the variance contribution
w5 of shared loci affecting the phenotype (27).

376 The ability to predict the direction of some phenotype differences accord with
sz recent results in the context of embryo screening for polygenic conditions. In this
ais setting, embryos generated by in wvitro fertilization are screened for their genetic pre-
;0 disposition to complex, polygenic diseases and ranked for transfer for pregnancy.
30 This technology is considered by many as unethical (28; 29; 30) and is also widely be-
31 lieved to have little ability to identify embryos with substantially lower risk (31; 32).
s> However, several simulation and modeling studies (9; 10; 33; 34) found that even
;3 for diseases with poorly predictive PGS, selection of the lowest-risk embryo could
s lead to substantial relative risk reduction. This result can be understood based on
s the liability threshold model (35), under which a disease is assumed to have an un-
s derlying, unobserved, continuous liability, with affected individuals being those with
;7 liability exceeding a threshold. Given a weak PGS, embryo screening would reduce
s the expected liability of the selected embryo by a very small amount compared to a
;0 randomly selected embryo (8; 36). However, even this small shift could be sufficient to
s0 substantially reduce the chances of exceeding the disease threshold. Similarly, when
;1 predicting the direction of the phenotypic difference, even a small positive gap in PGS
32 between a pair of individuals translates to a high probability for the final phenotypic
503 difference to remain positive.

304 The approach we presented evaluates the extent to which a key feature of a phe-
s notype — its direction — can be predicted from genomic data. Given the currently
26 limited ability to quantitatively predict phenotypes from genotypes (2), our approach
37 suggests that qualitative prediction of phenotype direction is often feasible. While
38 there is still much to explore with regard to the applicability of this approach to
;0 various data, its capability to robustly estimate prediction accuracy and to identify
w0 individuals and phenotypes for which accurate predictions can be achieved, suggests
s that more phenotypic information can be extracted from genomes than previously
w02 appreciated.

« Methods

« Formal model for prediction accuracy

405 We consider a pair of individuals, one phenotyped and the other unphenotyped, with genomes that diverge
a06 at m loci that affect a certain phenotype. We denote the (absolute value of the) differential effect of these loci
a7 as e;, (i =1,...,n) which is the relative contribution of locus ¢ to the difference between the phenotypes of
408 the two individuals (Fig. 1a). Each effect of a divergent locus either increases the phenotypic difference in the
409 direction of the phenotyped individual, arbitrarily denoted as d; = 1, or in the direction of the unphenotyped
a10 individual, denoted as d; = —1. The sum of the known effects is A = 3" | die; (Fig. 1b). The sign of A is
411 our prediction for the direction of the phenotypic difference (Fig. 1c).
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412 We consider additional m unknown effects on the phenotype, and denote them as random variables
413 X1,...,X;m. For the most part of this work (but see simulations with selection below), we assume that
414 Xi,..., X, are independent random variables that attain one of two values, E; or, —Ej;, with equal proba-

415 bility, i.e. X; ~ 2E; (Bernoulli(%)— %)7 for j =1,...,m. We assume that the F;’s are identical independent

416 random variables with an effect-size distribution Y, which means that X1, ..., X,, are also identical and inde-
417 pendent. Each divergent unknown effect has some contribution to the phenotype, and it can work to either
a18  increase or decrease the phenotypic difference. We denote the sum of the unknown effects as @ = >3 | X
419 Following the definitions in Eq. 1, we denote the variance of Q as o2.

420 The true phenotypic difference is D = A + €, the sum of both known and unknown effects. Our
421 prediction is correct if the signs of A and D are the same; otherwise, our prediction is incorrect. We define

422 the ‘prediction accuracy’ P as the probability that the signs of A and D are the same.

»s Mathematical relationship between « and P

424 Without loss of generality, let us assume that A > 0. Prediction accuracy is the probability that the true
425 phenotypic difference is positive, P = Prob(A + Q> 0). Reformulating this by plugging in Eq. 1 to replace

426 A, we have
Ko

P:Prob(Q>—1 ) =1—Pr0b<Q§—1KU ) (3)

- —K
427 Notably, Q is a sum of identical independent random variables, and therefore, assuming that the effect size
428 distribution Y has a finite variance, we can apply the central limit theorem and show that €2 is approximately
420 normally distributed. €2 has a mean of zero because each of the random variables X; has a zero mean. We

430 can now use the CDF of Q, Fa(z) = ®(Z) (where ®(-) is the standard normal CDF) to explicitly compute

431 the prediction accuracy,
Ko KO K
P=1-Fa( - ) =Fa(75) =o(). 4
° 11—k 2\1—x 11—k “)

2 Alternative derivation

433 We can also derive this result using standard notations in statistical genetics. As before, we consider that a
434 phenotype is measured in normalized units, i.e., y ~ N(0,1). The PGS of an individual p is then distributed
435 as p ~ N(0,7%), where r? is the proportion of the phenotypic variance explained by the PGS. We denote
436 the combined non-measured genetic factors and non-genetic factors affecting the trait as e, which is also the
437 residual of the regression of the trait on the PGS. We can thus write y = p + e. We assume p and e are
438 independent and e ~ N (0,1 — r?). Next, we consider two unrelated individuals with computed PGSs p;
439 and ps such that p1 > po, with residuals e; and es, respectively (we assume that e; and ez are independent
440  because the individuals are unrelated). Denoting the difference in PGSs as d = p1 — p2, and using d to
as1  predict the direction of phenotypic difference, the prediction accuracy is therefore P = Prob(y1 > y2),
442 where y; and y2 are the true phenotypic values of the two individuals. We can reformulate this probability
443 as P = Prob(ea — e1 < p1 — p2), and therefore P = Prob(e2 — e1 < d). We denote ¢’ = e2 — e1, and because

444 e; and es are each normally distributed with variance 1 — r? and zero mean, we have ¢/ ~ N (O, 2(1— rz)).

445 'We can now observe that:

P = Prob(y: > y2) = Prob(e’ < d) = @(#) (5)
2(1—1r2)

as6  Reformulating Eq. 1 with the notation of this section (i.e., |A| =d and o = \/ (1 —72), because 2(1 — r?)

447 is the variance of the differences of the unknown effects), we have xk = d+27(1—) and therefore

d
K dty2(-r2) d 6)
11—k 1- — 494 12}
2(1—7r2)
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448 showing that equations 4 and 5 are equivalent.
449 In the Supporting Information we discuss similar derivations for two specific cases: comparison of siblings
450 and comparison of disease phenotypes.

s Simulations

452 To simulate a single pairwise comparison, we sampled n + m effect sizes from a pre-specified effect size
453 distribution, with signs simulated to be negative or positive with equal probability. We then computed the
56 sums A =3" e;and D=A+>"*" e, asin the formulation above. The simulation results in a correct

j=n+1
as5  prediction if Sign[D] = Sign[A], otherwise the prediction is incorrect. For each scenario 10% repeats were
456 simulated.
457 We evaluated different fractions of known effects out of all effects: 10%, 50%, and 90%. Effect size

458 distributions can be shaped by various evolutionary processes, such as mutation, selection, and genetic drift
459 (3; 37); therefore, we simulated effect size distributions of various types (normal distribution in Fig. 2,
a0 gamma and Orr’s negative exponential model distributions (38; 3) in Fig. S1). We also considered the case
461 where the known effects tend to be the larger effects. To simulate this, we sampled n + m effect sizes from
462 the predefined effect size distribution, and then sorted the effect sizes in decreasing order, defining the known
463 effects to be the largest n effects. We then continue with the rest of the simulation as described above.

s Modeling and simulating directional selection

465 To model directional selection, we modify the random variables representing the effects to have positive
466 means. We implement this by simulating n + m effect sizes e; as before, but we simulate their direction by
467 letting the probability X; > 0 be p; =1 — %efs‘eil, and then X; ~ 2e¢; (Bernoulli(pi) — %) Note that s is
468 not a selection coefficient in units of fitness, but is rather a unitless parameter that is proportional to the
460 impact of selection on the direction of the effect. The motivation for this particular formulation is based on
470 the Ornstein-Uhlenbeck model, which is used to model the evolution of quantitative traits subject to both
471 drift and selection by considering random walks with some pull toward a particular state (39; 40; 41). Under
472 our model, when s &~ 0 or e; is very small, then p; ~ %, as in the neutral model. As s and e; increase, p;
4713 approaches 1, meaning that the direction of the effect is almost always in the positive direction.

« Analysis of pairwise comparisons in humans

w5 Estimating « from empirical population data

476 Estimating k for a given pair of individuals using Eq. 1 requires (i) effect size differences for known loci to
a7 compute A, and (ii) the variance of the sum of the unknown effects, 2. The genotype effect sizes can be
478 ascertained from summary statistics of large genotype-phenotype datasets (see next section), from which
479 we can compute the effect size differences (e.g., the added effect of one allele to the phenotype), denoted
480 as e;. Next, we introduce a new parameter, 2, which denotes the overall contribution of known effects to
g1 the variance of phenotypic differences between pairs. 72 is similar to the proportion of explained phenotypic
482 variance of PGS (usually denoted as r?), but refers only to those loci that are divergent between the two
483 compared individuals; it is, therefore, expected to have similar values to r? estimates computed using other
484 1means.

485 We assume that the measured differences in phenotypic values have been normalized and transformed
486 to z-scores (i.e. the variance of the scaled phenotypic differences is one). To scale the units of the effect sizes

487 to these standardized units, we define e] = \/ijei, where v? is the variance of in the PGS differences in
488 the population. Thus, the effect sizes are scaled so that their overall contribution in units of the normalized
489 phenotypic differences is r2. For a pair of individuals, we can now denote the overall predicted difference
a0 A =3" e, where n is the number of known effects that are divergent between the two individuals. To
491 compute the variance of the sum of the unknown effects, we notice that the variance of the true phenotypic

15


https://doi.org/10.1101/2024.02.22.581566
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581566; this version posted June 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

92 difference is composed of the sum of the variance explained by the known effects, r2, and the variance of
403 unknown effects o2; therefore, in the standardized units, 02 = 1 — r2. Using these standardized units, we
494 can reformulate Eq. 1:

AN

At +V1-12

405 To apply this formulation to empirical data, we must estimate 2. Below, we explore the option of estimating
a06 72 from the data by considering the fit to the theoretical expected relationship of x and P (Eq. 4). We also
497 computed, for comparison, the proportion of explained variance (7‘2) using the regression of the phenotypes
498 on the PGSs.

K

(7)

w0 Analysis of the UK Biobank

500 To test our approach on empirical data, we used the UK Biobank (UKB), a large dataset containing almost
501 500,000 genotyped individuals with associated phenotype data (12). We generated subsets of comparisons
502 that have different levels of divergence: (i) sibling pairs with Northwestern European ancestry (within-
503 family), (ii) pairs of individuals with Northwestern European ancestry (within-population), and (iii) pairs
s04 of individuals where each belongs to a different ancestry group, among European, East Asian, and African.
505 Northwestern European ancestry was determined using the UKB Data-Field 22006. Our non-European
s06 groups were defined by demarcating clusters of genetically similar individuals that are distant from the
507 European group on the PC1 and PC2 of the UKB PCA results from UKB Data-Field 22009 (Fig. S6).
508 The two clusters were labeled as East Asian and African based on the majority of self-identifications of
500 individuals from these groups as reported in UKB Data-Field 21000. These groups included 1,794 and 3,091
510 individuals, respectively.

511 To compute x values, we first generated GWAS results for a number of continuous traits: body-mass
512 index (UKB Data-Field 21001); systolic blood pressure (UKB Data-Field 4080); heel bone mineral density
513 (UKB Data-Field 3148); standing height, referred to as “height” (UKB Data-Field 50); hip circumference
s14 (UKB Data-Field 49); and basal metabolic rate, referred to as “metabolic rate” (UKB Data-Field 23105).
515 We included variants with high-quality imputation scores (imputation INFO scores > 0.8) from the UKB
516 imputed genotype release version 3 (12); this yielded roughly 30 million variants. The discovery dataset
517 included individuals with Northwestern European ancestry, excluding 20,000 (10,000 female, 10,000 male)
518 individuals as a validation subset. We generated single-variant association results using SAIGE v1.1.6.3 (42).
519  We used 280,628 markers to fit the null linear mixed model, and age, sex, and the first ten genetic PCs as
520 covariates. To generate PGSs, GWAS results were filtered with a fixed P-value threshold of P-value < 0.01
521 and minor allele count threshold of MAC > 20. We used PRSice-2 to compute PGSs for all individuals (43).
522 Kk values were computed for all same-sex pairs from our validation subset as detailed above in Estimating s
523 from empirical data. For each pair, we compared the sign of the PGS difference and the true direction of
524 phenotype difference as reported in the UKB.

525 To compare our results to the theoretical expectation of the relationship between x and prediction accu-
526 racy, we binned comparisons according to their x values, and computed the proportion of correct predictions
527 in each bin. To estimate r2 from the data, we computed « values for a range of r2 values, and selected the
528 value of r2 that yielded the least sum of absolute distances between the proportion of correct predictions for
520 each bin and the theoretical expectation, weighted by the number of comparisons per bin (Table S2).

530 PGSs are known to have poor transferability between genetically distinct populations. To test the effect
531 of PGS transferability on our model fit, we used the PGSs from the European ancestry group in Yengo et
532 al. (15) to evaluate our predictions in non-European pair comparisons, using the ancestry subsets indicated
533 above (1,794 individuals with East Asian ancestry for EAS-EAS comparisons, and 3,091 individuals with
534 African ancestry for AFR-AFR comparisons), relative to our pairwise predictions in the European group with
535 the same PGSs (20,000 individuals for EUR-EUR comparisons). Note that in the EUR-EUR comparisons
536 the Yengo et al. (15) PGSs included the tested individuals, but these individuals constitute a very small
537 portion of the overall European population analyzed in this study.

16


https://doi.org/10.1101/2024.02.22.581566
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581566; this version posted June 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

538 We also generated predictions for a number of common diseases reported in the UKBB according to
539 the following ICD10 codes: asthma (J45), type 2 diabetes (E11), hypertension (I10) and hypothyroidism
540 (E03). ICD10 codes were retrieved from UKB Data-Field 41270 (diagnoses). For each disease, we generated
541 single-variant association results using SAIGE2 (42) for binary traits with default parameters. The discovery
542 dataset included individuals with Northwestern European ancestry (as defined by UKB Datafield 22006),
543 excluding 10,000 samples, 5,000 controls and 5,000 cases, as a validation subset. PGSs were generated and
544 estimated as for the continuous traits. For each case-control pair, correct prediction was recorded whenever
545 the PGS for the disease risk was higher in the case individual.

s Amnalysis of population and species datasets

547 To evaluate our approach in cases where the compared genomes are highly diverged, we examined datasets
548 from several species. In the stickleback QTL mapping dataset (17), we compared a marine population
549 (treated in our analysis as the phenotyped population) and four freshwater populations (treated as unphe-
550 notyped). The compared populations likely diverged less than 12,000 years ago (17). We investigated 27
551 morphological phenotypes (measurements of shape landmark coordinates), resulting in four pairwise com-
552 parisons of 27 phenotypes. Because not all phenotypes had significant QTLs in each population, some of
553 the comparisons (three out of four populations) included fewer than 27 predictions (Fig. 4c). Here, because
554  the raw data was not available, we could not exclude the compared individuals when computing effect sizes;
555 however, because these loci are largely fixed between the populations, this is not expected to affect the
556 results.

557 In the mouse QTL mapping dataset (19), we compared a wild-derived inbred laboratory house mouse
558 strain and the Gough island house mouse subpopulation. These populations diverged in the 19*® century.
550 Two phenotypes (weight and growth rate) were measured across 16 weeks, resulting in a pairwise comparison
560 of 2 X 16 phenotypes. We then computed average prediction accuracy across the 16 time points for each of
s61  the two phenotypes.

562 In the daisy QTL mapping dataset (18), we compared two daisy species (Senecio aethnensis, and Senecio
563 chrysanthemifolius) that have likely diverged within the last 176,000 years (Brennan et al., 2016). For one
s64 phenotype out of 13, a prediction could not be made because the sum of the known effects was 0.

565 The Neanderthal and chimpanzee datasets (6) included comparisons of DNA methylation maps between
566 modern humans (treated as the phenotyped population) and Neanderthals and chimpanzees. Because these
567 analyses do not contain effect sizes, they were limited to phenotypes for which the loci with the largest
s6s  differences in methylation levels showed unidirectionality (likely resulting in high A values, and therefore
569 high s values). These analyses predicted the phenotypic direction for 33 Neanderthal phenotypes and 22
570 chimpanzee phenotypes. We list here the prediction accuracy as reported in (6).
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