

1 Predicting the direction of phenotypic difference

2 David Gokhman^{1,*†}, Keith D. Harris^{2,*}, Shai Carmi³, and Gili Greenbaum^{2,†}

3 ¹*Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel*

4 ²*Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem
5 91904, Israel*

6 ³*Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem,
7 Jerusalem 9112102, Israel*

8 * Equal contribution

9 † Corresponding author

10 Abstract

11 Predicting phenotypes from genomic data is a key goal in genetics, but for
12 most complex phenotypes, predictions are hampered by incomplete genotype-
13 to-phenotype mapping. Here, we describe a more attainable approach than
14 quantitative predictions, which is aimed at qualitatively predicting phenotypic
15 differences. Despite incomplete genotype-to-phenotype mapping, we show that
16 it is relatively easy to determine which of two individuals has a greater pheno-
17 typic value. This question is central in many scenarios, e.g., comparing disease
18 risk between individuals, the yield of crop strains, or the anatomy of extinct vs
19 extant species. To evaluate prediction accuracy, i.e., the probability that the
20 individual with the greater predicted phenotype indeed has a greater phenotypic
21 value, we developed an estimator of the ratio between known and unknown
22 effects on the phenotype. We evaluated prediction accuracy using human data
23 from tens of thousands of individuals from either the same family or the same
24 population, as well as data from different species. We found that, in many cases,
25 even when only a small fraction of the loci affecting a phenotype is known, the
26 individual with the greater phenotypic value can be identified with over 90%
27 accuracy. Our approach also circumvents some of the limitations in transfer-
28 ring genetic association results across populations. Overall, we introduce an
29 approach that enables accurate predictions of key information on phenotypes
30 — the direction of phenotypic difference — and suggest that more phenotypic
31 information can be extracted from genomic data than previously appreciated.

32 Introduction

33 A key goal in genetics is to predict phenotypes from genomic data. Such predictions
34 are pivotal for assessing disease risk (1; 2), understanding the genetics underlying
35 adaptation (3; 4; 1), optimizing genetic engineering outcomes (5), reconstructing the
36 traits of extinct species (6), and more. However, our current ability to predict pheno-
37 typic values from genetic information, for example by using polygenic scores (PGSs),

38 is restricted by several factors. These include environmental effects, the high poly-
39 genicity of many phenotypes, the limited ability to identify causal noncoding variants
40 and quantify their effects, and the lack of power to detect small-effect loci (1; 2).

41 Given the limitations associated with predicting precise phenotypes, we suggest
42 here a more attainable objective: predicting only the direction of phenotypic differ-
43 ence. Namely, rather than striving to predict the precise phenotypic value encoded
44 by a particular genome, we aim to predict whether this genome encodes for a larger
45 or smaller phenotypic value relative to another genome. To illustrate, consider a sce-
46 nario where one is interested in determining the probability that an offspring will be
47 taller than their 170cm tall parent. Considering that a PGS predicts the offspring
48 will be 180cm tall, what is the probability that the offspring will indeed be taller than
49 their parent? We previously implemented a simplified version of this approach to re-
50 construct Denisovan anatomy using gene regulatory data, and validated the method
51 on Neanderthals and chimpanzees, finding that it reaches over 85% accuracy in pre-
52 dicting the direction of phenotypic differences (6).

53 Undoubtedly, predicting a precise phenotypic value is more informative than pre-
54 dicting only the direction of phenotypic difference. However, in studies where the
55 precise phenotypic value cannot be accurately inferred (which is often the case), im-
56 portant insights could still be gained by inferring the phenotypic direction instead.
57 Most importantly, the phenotypic direction is often the crux of phenotypic compar-
58 isons, for example, when estimating how likely it is that (i) an individual has an
59 increased disease risk compared to a reference (2), (ii) a genetically modified crop
60 will have increased yield (7), (iii) an individual will be greater or smaller in a certain
61 trait compared to their parents or siblings (e.g., in preimplantation genetic diagnoses;
62 (8; 9)), and (iv) the phenotypes of an extinct species differ from those of an extant
63 species.

64 Here, we explored the feasibility of using currently available genotype-to-phenotype
65 information to predict which individual has a greater phenotypic value. We compared
66 the total effect of known loci to the range of the potential effects of unknown genetic
67 and non-genetic contributors. We studied this ratio of known-to-unknown effects
68 through two independent branches of investigation: (i) formalizing a model to delin-
69 einate the scenarios in which accurate predictions can be achieved, and (ii) evaluating
70 performance in real-world empirical data from humans and other species, examining
71 a wide range of levels of divergence between individuals. Our findings underscore the
72 known-to-unknown ratio as a high-fidelity and intuitive estimator of prediction accu-
73 racy. This allowed us to identify cases where we can reliably discern the individual
74 with the greater phenotypic value. Importantly, this is possible even in cases where
75 the proportion of variance in the trait explained by known genetic effects is small.
76 Our study suggests that it is possible to identify the pairs of individuals for which
77 high-accuracy predictions can be made, and that more phenotypic information can

78 be reliably extracted from a genome than perhaps intuitively expected.

79 **Results**

80 **Approach**

81 We investigated what genomic information is needed to predict the direction of phe-
82 notypic difference between two individuals and the conditions under which this pre-
83 diction is accurate. We assume that one individual has been phenotyped (hereafter,
84 *phenotyped* individual) and the other has not (hereafter, *unphenotyped* individual).

85 A phenotype is affected by loci whose contribution to (or often association with)
86 the phenotype is known (hereafter, *known effects*), as well as by loci or non-genetic
87 factors whose association with the phenotype is unknown (hereafter, *unknown effects*,
88 Fig. 1a). We make a prediction on the direction of phenotypic difference by summing
89 up the contribution of the known effects and determining whether the unphenotyped
90 individual has a larger or a smaller sum. We ignore loci where the two compared
91 individuals have the same genotype, because only divergent loci could contribute to
92 the phenotypic difference (Fig. 1b,c). This procedure is equivalent to computing the
93 difference between the PGSs of the two genomes, and using the sign of this difference
94 to predict the direction of the phenotypic difference (9; 10). In the following sections,
95 we investigated the conditions affecting the probability that a prediction based only
96 on the known effects matches the true direction of phenotypic difference (hereafter,
97 *prediction accuracy* or P).

98 **Modeling the conditions needed to predict the phenotypic di- 99 rection**

100 We explored the problem from two different perspectives, statistical genetics and
101 evolutionary, which provide different tools and intuitions. From a statistical genetics
102 perspective, we considered the partitioning of the phenotypic variance into that gen-
103 erated by known and unknown effects. For the evolutionary perspective, we modeled
104 the approach as a random walk, where each step is an effect on the phenotype in one
105 or the other direction. We define the effect size of a locus as the average difference in
106 predicted phenotype between the genotypes of the two individuals. For example, if
107 the phenotyped individual has a genotype that increases height by 3mm (relative to
108 a reference), and the unphenotyped individual has another genotype, which decreases
109 height by 1mm, then we consider the effect size of that locus to be +4mm (Fig. 1a).
110 The effect size of loci with the same genotype in the two individuals is 0, and these
111 loci are therefore ignored throughout this work. Our model makes the simplifying

assumptions of additivity and no epistasis (11) (in the empirical section, where we test our approach, these simplifying assumptions are evaluated). The direction of the sum of known effects (i.e., whether the displacement is above or below the x-axis in Figure 1b and the blue dot in Figure 1d) is our prediction of the direction of the phenotypic difference (Fig. 1c). If the remaining steps of the random walk (i.e., those of the unknown effects) are such that the final displacement (i.e., true phenotype, yellow dots in Fig. 1d) is still above 0, our prediction is correct. Otherwise, i.e., if the remaining steps push the displacement below 0, our prediction based on the known effects is incorrect. Naturally, the larger the sum of known effects is, the less likely it

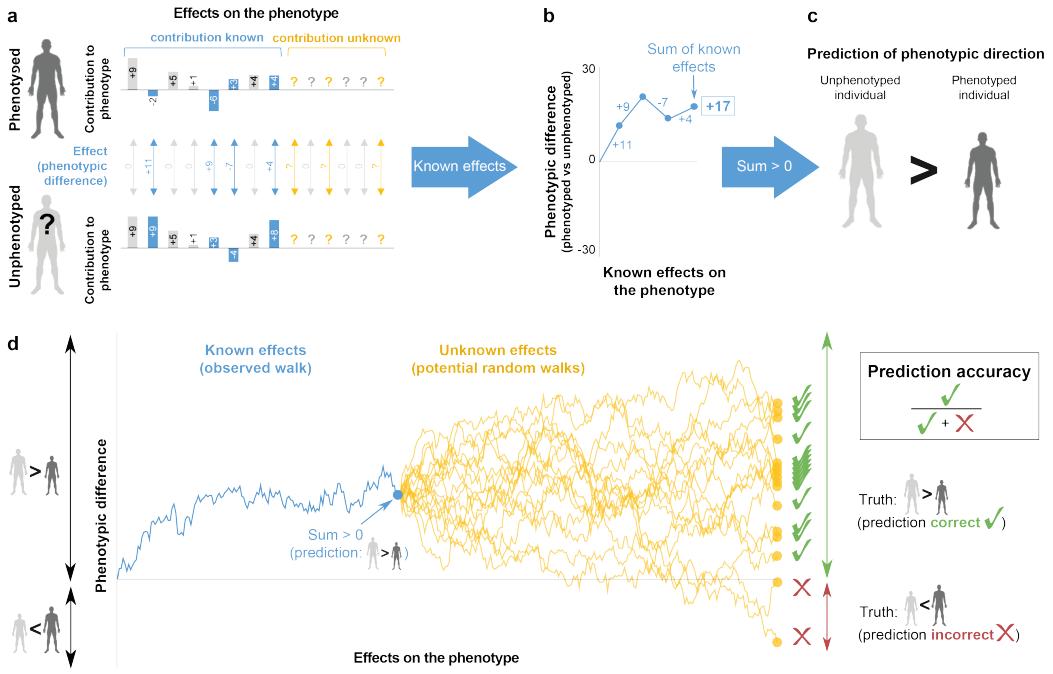


Figure 1: Schematic of the approach to predict the direction of phenotypic difference. (a) We start with a phenotyped individual and an unphenotyped individual. We consider the known and unknown effects contributing to (or associated with) the phenotype of interest. Known genetic effects on the phenotypic difference are in blue (measured in units of the phenotype), unknown genetic and non-genetic effects are in yellow. Cases where the contribution is identical between the two individuals (and therefore do not affect the phenotypic difference) are in gray. (b) Only the known divergent effects are used to predict the phenotypic difference between the individuals. The sum of the known effects can be thought of as the final position of a random walk with step sizes and directions corresponding to the effect sizes. (c) The direction of the total sum of the known effects is used to make a prediction of the direction of phenotypic difference between the phenotyped and unphenotyped individuals. If the sum of the known effects between the individuals is positive, we predict that the phenotypic value of the unphenotyped individual is larger than the phenotyped individual (and the opposite prediction if the sum is negative). (d) Modeling prediction accuracy using random walks. The curves represent random walks where each step is an effect size. The blue curve shows the known effects of a specific random walk, and the sign (positive or negative) of the blue point at the end of the walk is the predicted direction of phenotypic difference. The yellow curves show potential random walks of the unknown effects (genetic and environmental). In this example, effect sizes were drawn from a standard normal distribution. For a correct prediction of the direction of the phenotypic difference, the sum of the known effects (blue point) and the true phenotypic difference (yellow dot) need to be on the same side of the x-axis (both below or both above).

¹²¹ is for the final displacement to end on the opposite side of the x-axis.

¹²² We start by exploring the factors affecting prediction accuracy and the conditions
¹²³ required for high-accuracy predictions. Various factors have the potential to affect
¹²⁴ prediction accuracy: the total number of loci affecting a phenotype, the fraction
¹²⁵ of known effects, the distribution of effect sizes, and more. However, our random
¹²⁶ walk perspective suggests that all of these factors amount to only two aspects of the
¹²⁷ walk that ultimately determine prediction accuracy. The first aspect is the vertical
¹²⁸ displacement of the sum of the known effects (blue dot in Fig. 1d; equivalent in
¹²⁹ statistical genetics to the difference in PGS). Namely, the further above or below 0 we
¹³⁰ “traveled”, the less likely it is that the unknown effects would push the final position to
¹³¹ the other side of the x-axis. The second aspect is the variation of the overall potential
¹³² sums of the unknown effects (i.e., the variation in the displacements generated by the
¹³³ random walk of the unknown effects, yellow region in Fig. 1d; equivalent to the
¹³⁴ proportion of variance in phenotypic differences that is unexplained by PGS). The
¹³⁵ smaller this variation is, the less likely the unknown effects are to push the final
¹³⁶ position of the walk to the other side. We propose here that prediction accuracy can
¹³⁷ be characterized by the ratio between these two quantities. Denoting the sum of the
¹³⁸ known effects as Δ and the standard deviation of the unknown effects as σ , we define
¹³⁹ the *known-to-unknown ratio*, κ , as

$$\kappa = \frac{|\Delta|}{|\Delta| + \sigma}. \quad (1)$$

¹⁴⁰ In *Methods*, we show that the prediction accuracy can be written as a simple
¹⁴¹ function of κ ,

$$P = \Phi\left(\frac{\kappa}{1 - \kappa}\right), \quad (2)$$

¹⁴² where $\Phi(\cdot)$ is the standard normal CDF. We provide two derivations — one from the
¹⁴³ viewpoint of random walks and the other from the viewpoint of statistical genetics,
¹⁴⁴ which also enabled us to model shared genetic and environmental components in sib-
¹⁴⁵ lings (see *Methods*). We then explored how different factors affect the distribution
¹⁴⁶ of κ , by deriving the distributions under simplified conditions (*Supplementary Infor-*
¹⁴⁷ *mation*) as well as using simulations. We simulated pairs of individuals with random
¹⁴⁸ known and unknown effects and arbitrarily treated one individual as phenotyped and
¹⁴⁹ the other as unphenotyped (see *Methods*). Based on these simulated effects, we com-
¹⁵⁰ puted κ for each pair of individuals and determined whether the prediction is correct.
¹⁵¹ We conducted these comparisons for different ratios of known to unknown effects, as
¹⁵² well as for different effect-size distributions.

¹⁵³ We found an agreement between the theoretical expectation and the simulated re-
¹⁵⁴ sults across all values of κ (Fig. 2a), as well as across different effect-size distributions

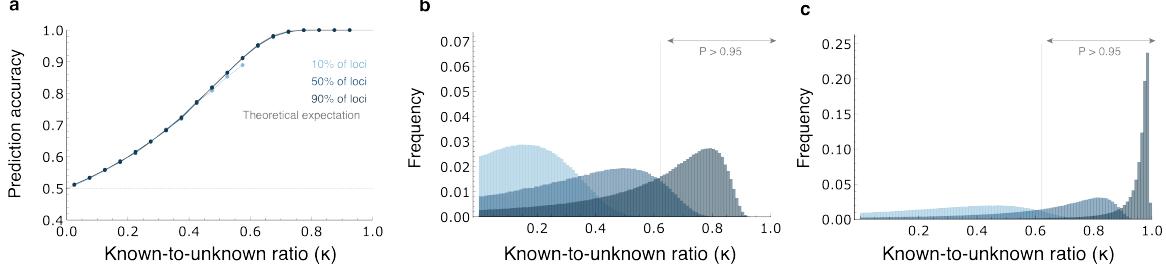


Figure 2: Evaluating prediction accuracy using the known-to-unknown ratio (κ). (a) Simulated prediction accuracies for various κ values (grouped into equally spaced bins), for different proportions of the known vs. unknown effects (10%, 50%, and 90% of effects known). Effect sizes were drawn from a normal distribution. In gray is the theoretical expectation from Eq. 4. (b) The distribution of κ values for the case where the known effects are randomly sampled. The vertical line denotes the κ values required for prediction accuracy of $P > 0.95$ ($\kappa = 0.62$) (c). The distribution of κ values for the case where the known effects are those with the largest effect sizes. The vertical line denote the κ values required for prediction accuracy of $P > 0.95$. In all panels, 10,000 effect sizes were drawn from a standard normal distribution to represent the known and unknown effects on the phenotype.

155 (Fig. S1a–b). As expected, predictions on pairs with higher κ values showed higher
 156 prediction accuracy. For example, for pairs of individuals with $\kappa > 0.62$, prediction
 157 accuracy was $P > 0.95$. High values of κ are more common when the fractions of
 158 known effects are larger (Fig. 2b), but we showed analytically (*Supporting information*) and with simulations (Fig. S1c–d) that the underlying effect-size distribution
 159 does not affect the κ distributions (Fig. S1c–d).

160 We have so far assumed that there is no bias in choosing which effects are known
 161 and which effects are unknown. However, many detection methods (e.g., quantitative
 162 trait loci mapping or GWAS) have an ascertainment bias, where loci with larger effects
 163 are more readily detectable (2). We therefore analyzed scenarios where the known
 164 effects are those with the largest contribution to phenotypic variance. As before, we
 165 found that κ is a precise descriptor of prediction accuracy (Fig. S2). However, κ
 166 values tend to be much higher than in the unbiased scenario (Fig. 2c). Therefore, if
 167 the known effects tend to be the largest effects, prediction accuracy could be high. For
 168 example, with 10% of effects known in the unbiased scenario, none of the simulated
 169 pairs of individuals had prediction accuracy > 0.95 ($\kappa > 0.62$); however, in the
 170 scenario where the largest effects were known, 6.5% of the pairs reached this prediction
 171 accuracy (Fig. 2b–c, intermediate blue). Thus, if the known effects tend to have larger
 172 effects, high prediction accuracy can be achieved even in cases where these loci explain
 173 only a small proportion of the overall phenotypic variance.

174 In sum, we found that the known-to-unknown ratio (κ) captures the factors that
 175 affect the probability of predicting which individual has the higher phenotypic value.
 176 The κ estimator could thus be used as an intuitive statistic to (i) evaluate prediction
 177 accuracy, and (ii) identify individuals for which high-accuracy predictions could be
 178 made, even when genotype-to-phenotype data is limited.

180 Identifying which individual has the higher phenotypic value 181 in real-world data

182 To investigate the relationship between κ and prediction accuracy in empirical data,
183 we compared pairs of individuals with different levels of genetic divergence. We
184 considered pairs of individuals from the UK Biobank (12) from either the same fam-
185 ily or the same population. For each pair, we investigated six phenotypes: height,
186 body mass index (BMI), metabolic rate, blood pressure, hip circumference, and bone
187 density. For each phenotype, we selected loci that significantly contribute to the
188 phenotype based on a GWAS that excluded the individuals we tested. The effect
189 sizes generated in this GWAS were then used to compute Δ as the difference between
190 the PGSSs of the two individuals (*Methods*). In each comparison, we also computed
191 κ . For the within-family comparisons, we examined all 10,597 pairs of same-sex sib-
192 lings in the dataset (*Methods*). For within-population comparisons, we randomly
193 sampled 20,000 individuals (10,000 females and 10,000 males) who self-identified as
194 White British and had Northwestern European genetic ancestry (hereafter labeled
195 for brevity as ‘European’, see *Methods*, Fig. S6). We then examined all pairwise
196 same-sex comparisons among them.

197 Across the six phenotypes, higher κ values reflected higher prediction accuracy
198 (Fig. 3a–b), with a relationship that tightly followed the theoretical expectation
199 (Eq. 4). Importantly, this is maintained across both levels of genetic divergence
200 between individuals (family-level and population-level), suggesting that κ captures
201 the key aspects determining the ability to predict phenotypes. There is an intriguing
202 exceptions to this: predictions of blood pressure differences hold at lower κ values,
203 but perform badly at higher κ values. This possibly reflects medication-induced phe-
204 notypic changes (see below).

205 Our approach also allowed us to estimate the proportion of individuals for whom
206 high-accuracy predictions can be achieved. For example, for 5% of pairs from the
207 European group, κ values for bone mineral density are ≥ 0.4 , and we can there-
208 fore predict which individual has higher bone mineral density with 75% accuracy
209 (i.e., threefold more likely to predict correctly than incorrectly; Figs. 3e and S4b).
210 For height, where a larger fraction of loci contributing to the phenotypic variance
211 is known, the same prediction accuracy can be achieved for one in four pairs. No-
212 tably, we can predict the taller individual with 90% certainty for 3% of the pairs
213 (Fig. S4a). Importantly, the percentage of pairs for which high-accuracy predictions
214 can be attained increases with increasing genetic distance (κ distributions are shifted
215 to the right with higher divergence between pairs in Fig. 3d–e). For example, in 3%
216 of sibling pairs, we can predict which sibling is taller with 85% certainty, and be-
217 tween unrelated individuals from the European group, this increases to 8% of pairs
218 (Fig. S4a–b). It remains to be determined to what extent these results are affected

219 by population stratification (13) or other potential factors.

220 One of the most intriguing uses of phenotypic inference is its potential to predict
221 an individual's susceptibility to a particular disease. Since disease risk is not directly
222 quantifiable per individual, we tested instead our ability to identify the individual
223 with the disease in a pair of individuals where one is healthy and the other is reported
224 to have the disease. Here too, the empirical results mostly align with the theoreti-
225 cal expectation. However, unlike all other analyses, at higher κ values ($\kappa > \sim 0.4$),
226 the empirical results started to deviate from the theoretical expectation (Fig. S5a).
227 We have not been able to pinpoint the underlying driver of this phenomenon. One
228 plausible explanation is that in these comparisons, higher κ values reflect instances
229 where one of the individuals is indeed more likely to develop the disease, but early
230 signs of the disease or family history prompted treatment and thus exclusion from
231 the disease group. Potential support for this can be seen in the context of the blood
232 pressure phenotype. At higher κ values, predictions start diverging from the theoret-
233 cal expectation both in the within-population analysis of blood pressure (Fig. 3b),
234 as well as in the disease analysis of hypertension (Fig. S5a), where for high κ values
235 prediction accuracy approaches 0 and thus our predictions are not even random, but
236 systematically wrong. This behavior may indicate a negative correlation between high
237 κ values and the disease, possibly reflecting medication-induced phenotypic changes
238 that specifically affect individuals with a higher likelihood of elevated blood pressure,
239 thereby altering the predictive outcome. Nevertheless, for most cases, where κ values
240 are not extreme, it is possible to generate accurate estimates of prediction accuracy.
241 This could perhaps be clinically relevant when the unphenotyped individual has a
242 higher probability of developing the disease relative to an individual known to have
243 the disease.

244 A major concern in GWAS is its limited transferability across populations. PGSs
245 computed using data from one population often perform substantially worse when
246 applied to other populations (14). To test whether this phenomenon affects our ap-
247 proach, we evaluated the relationship between κ and prediction accuracy using GWAS
248 conducted on individuals with European ancestry, but predicting phenotypes between
249 pairs of individuals with East Asian or African Ancestry (populations defined in (15)).
250 As expected, we observed lower κ values for these comparisons relative to the κ distri-
251 bution in Europeans (Fig. 3f), highlighting that prediction accuracy in non-European
252 populations is worse than in Europeans, owing to the smaller fraction of the pheno-
253 typic variance explained by European-ancestry GWASs (14; 15). This, in turn, may
254 lead to inequality in future gains from genomics-based medicine. Nevertheless, here
255 too, we observed good agreement with the theoretical expectation for the relation-
256 ship between κ and prediction accuracy (Fig. 3c). Thus, while fewer usable SNPs
257 and increased noise in effect size estimation lead to fewer pairs with high-accuracy
258 predictions, the ability to robustly estimate prediction accuracy is maintained.

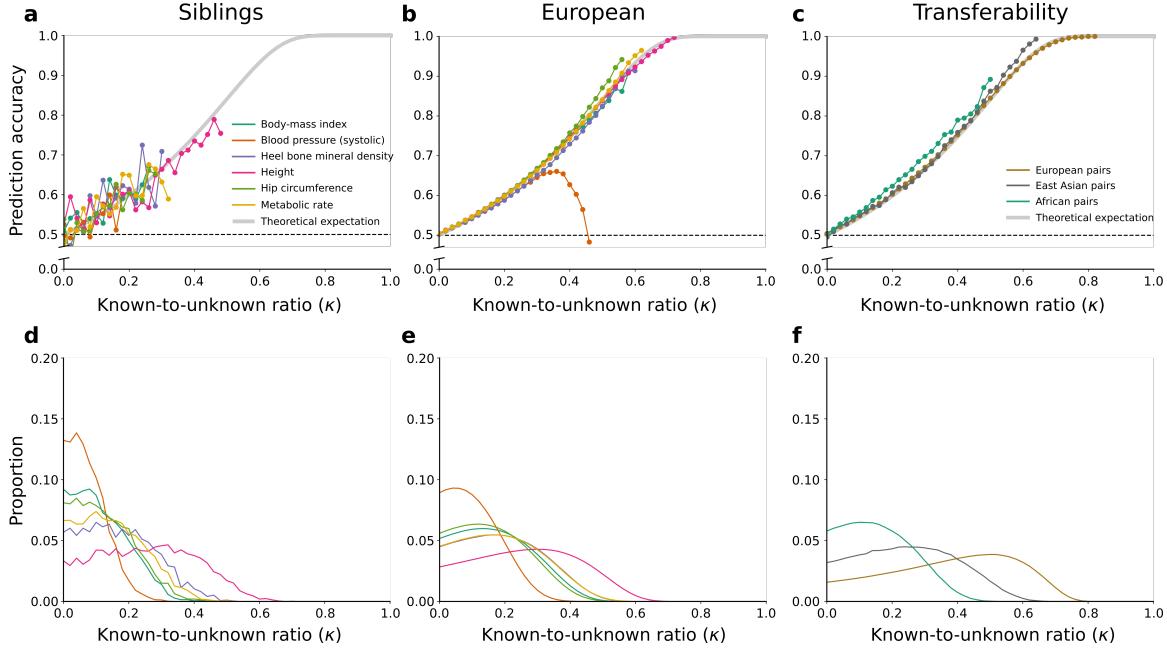


Figure 3: Predictions of the direction of phenotypic difference in humans. (a)–(c) The relationship between the known-to-unknown ratio (κ) and the proportion of correct predictions in different phenotypes. The theoretical expectation (Eq. 4) is shown in gray. (a) Pairwise comparisons of siblings from the UK Biobank for six phenotypes. (b) Pairwise comparisons of individuals from the European group (self-identified White British with Northwestern European genetic ancestry) from the UK Biobank for the same six phenotypes. (c) Pairwise height comparisons of individuals from the same population (either European, East Asian or African, as defined in Fig. S6), using GWAS generated from a European-ancestry group in Yengo *et al.* (15). (d)–(f) The distribution of κ values for all pairwise comparisons. Each panel corresponds to the panel above it.

259 In summary, we found that: (i) given a pair of individuals, we are able to accu-
 260 rately estimate the chances of correctly predicting which individual has the greater
 261 phenotypic value, and (ii) even for phenotypes with limited genotype-to-phenotype
 262 data, some pairs have sufficiently high known-to-unknown ratios (κ) to enable the
 263 identification of the individual with the greater phenotypic value. Two important im-
 264 plications of these findings are that we can (i) select the subset of pairs of individuals
 265 for which we can make high-confidence predictions, or (ii) given a pair of individuals,
 266 select the subset of phenotypes for which we can make high-confidence predictions.

267 Impact of directional selection on predictions between popu- 268 lations and species

269 In the model above, we have not addressed the role of selection. Directional selection
 270 most likely has little effect on the within-population UK Biobank comparisons, but
 271 may play a more central role when more divergent genomes are compared. In this sec-
 272 tion, we extend our model to include directional selection and examine predictions in

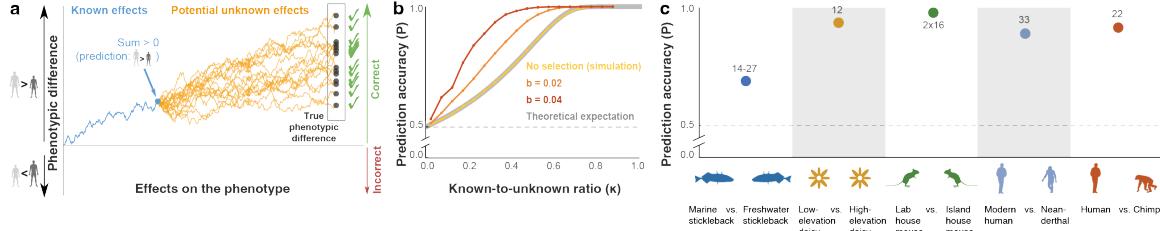


Figure 4: The effect of directional selection on predicting the direction of phenotypic difference. (a) Prediction accuracy under directional selection, modeled as a biased random walk. The random walks in this schematic are biased toward the positive direction, with larger effects having a stronger bias. Biased random walks increase prediction accuracy. (b) Prediction accuracy for different κ values and different levels of bias, with 50% randomly selected known effects out of 10,000 overall. (c) Prediction accuracy across species. Each point represents the proportion of correct predictions. The number of phenotypes is noted above each data point. For sticklebacks, between 14 and 27 phenotypic predictions were made for four different freshwater populations. For mice, predictions were made for two phenotypes in 16 developmental stages.

273 divergent populations and species (see *Discussion* for the potential effects of negative
274 and stabilizing selection).

275 Until now, our model assumed that the effects have an equal probability of in-
276 creasing or decreasing the phenotypic difference. Under directional selection, the
277 phenotype of a lineage is typically pushed towards a new optimal value. The dire-
278 ctions of effects of that lineage relative to the ancestral lineage are more likely to be in
279 the direction of this optimum (16). Thus, to model the case that directional selection
280 has shaped the divergence between the two compared genomes, we introduced biased
281 effects into our model. We considered the case where selection is stronger for larger
282 effect sizes. In other words, effects are more likely to be aligned with the direction of
283 selection than with the opposite direction, and the probability of alignment increases
284 with the size of the effect and the strength of selection.

285 To model this, we introduced into the random walk a bias that favors one direction
286 over the other and is stronger with larger effects (*Methods*). In this model, we observed
287 an improvement in prediction accuracy relative to the neutral case in two aspects: (i)
288 the proportion of pairs of individuals with high κ values also increases with stronger
289 selection (Fig. S3); (ii) prediction accuracy is higher for any given value of κ (Fig. 4b).
290 Both improvements increase with stronger directional selection. Consequently, under
291 directional selection, high-accuracy predictions can be achieved more often and with
292 fewer known effects.

293 These results suggest that more divergent lineages, where directional selection
294 might have played a more central role, would tend to show higher prediction accuracy.
295 To investigate this, we explored genotype-to-phenotype datasets of more divergent
296 lineages. We tested three quantitative trait loci (QTL) mapping datasets investigating

297 stickleback (17), daisy (18), and mouse (19). The stickleback dataset included four
298 freshwater populations that diverged from a common marine ancestor less than 12,000
299 years ago (17). We analyzed the 27 morphological phenotypes in the dataset, with
300 1–2 QTLs reported per phenotype, and found that even with only 1-2 known loci,
301 prediction accuracy was 63%-75% (depending on the pair of populations compared;
302 Fig. 4c).

303 In the daisy dataset, we analyzed 1–5 QTLs for 12 phenotypes that differ between
304 two species of daisy (18). We found a prediction accuracy of 92%, with 11 out of 12
305 phenotypes predicted correctly based on these known effects (Fig. 4c). The mouse
306 dataset included growth rate and weight phenotypes of Gough Island vs. wild-type
307 mice over 16 developmental stages (19), with 8–11 QTL per phenotype. Prediction ac-
308 curacy was 100% (Fig. 4c). Interestingly, this perfect prediction accuracy is achieved
309 despite the fact that in some developmental stages, the joint effect of all known effects
310 explains as little as 6% of the variance in weight and 3% of the variance in growth
311 rate. In addition, in all three datasets, the single largest-effect locus was sufficient
312 to predict the direction of phenotypic difference with high accuracy (63%-75% for
313 sticklebacks, 92% for daisies, and 75% for mice).

314 We also revisited our previous study that predicted phenotypic differences between
315 Neanderthals and modern humans and between chimpanzees and humans (6). These
316 predictions were based on DNA methylation data and were made only for phenotypes
317 where all known effects pointed in the same direction of phenotypic change, thus fil-
318 tering for phenotypes with higher κ values. Prediction accuracy for 33 Neanderthal
319 phenotypes and 22 chimpanzee phenotypes was 88% and 91%, respectively (6). In-
320 terestingly, we observed similar patterns in our more recent study comparing human
321 and chimpanzee gene expression in human-chimpanzee hybrid cells, with an accuracy
322 of 81% (20).

323 Overall, these datasets represent a diverse range of phenotypes, species, divergence
324 times, and genotype-to-phenotype association methods. While we most often do
325 not know the exact nature of the selection processes that have shaped the genetics
326 of organisms, our results suggest that when comparing divergent genomes, we can
327 achieve relatively accurate prediction of the direction of the phenotypic difference
328 with very few large-effect loci.

329 Discussion

330 Traditional quantitative genetic studies attempt to predict the precise phenotypic
331 value of an individual. Here, we explored a more modest approach, whereby only the
332 direction of phenotypic difference is predicted. Our goal was to develop a model for
333 prediction accuracy under various conditions and to test it on empirical data. We

334 found that prediction accuracy is affected by two main factors: the sum of known
335 effects, and the variance of the sums of the unknown effects. We formulated the
336 relationship between these two factors as κ , from which the prediction accuracy can
337 be easily estimated. The κ statistic allows us to identify pairs of individuals where
338 the direction of phenotypic difference could be confidently predicted. This statistic
339 is not affected by ascertainment bias, the level of divergence between individuals, or
340 transferability problems with the data. Pairs for whom accurate predictions can be
341 made are more common when (i) more information is known about the genetic basis
342 of the phenotypic variation, (ii) the phenotype was more strongly affected by positive
343 selection, (iii) large-effect loci are more likely to be known.

344 Our model has several limitations. (i) We assumed additivity of effect sizes and
345 did not incorporate epistasis. Although previous studies have shown that variation
346 in complex traits within species is mostly additive (21; 22; 23), the assumption of
347 additivity may not hold for some phenotypes (24; 25). (ii) In our model, we did not
348 separate between unknown effects that contribute to the phenotype (e.g., undetected
349 loci) and unknown effects due to noise in the estimation of known effects (e.g., mea-
350 surement errors or unaccounted factors such as age and socio-economic status). (iii)
351 Finally, we model environmental effects as part of the unknown effects, i.e., reflecting
352 the same dynamics. However, in phenotypes that evolve under stabilizing selection in
353 the face of shifting environments, genetic and environmental effects can have different
354 or opposing trends (26; 27). Despite these limitations, testing our approach on real
355 data suggests that our current model captures the main factors affecting predictions.

356 To model selection, we used an approach where loci are affected by selection in
357 proportion to their effect sizes. While this is the general case, selection often fol-
358 lows more complex dynamics (3). For example, Hayward and Sella (16) investigated
359 temporal evolutionary dynamics of a rapid adaptation phase followed by a prolonged
360 stabilizing selection phase. This study showed that in the long term, phenotypic vari-
361 ation is dominated primarily by small and moderate effect sizes, and that the larger
362 the effect size of a locus that separates the two groups, the more likely it is to reflect
363 the overall phenotypic difference between them (16). This could further explain the
364 high prediction accuracy reached in our between-species comparisons, where the few
365 known large-effect loci explain a small percentage of the overall phenotypic difference,
366 but are very predictive of the direction of phenotypic difference.

367 Other types of selection could also affect predictions. For example, negative se-
368 lection is expected to reduce the number of divergent loci between two individuals,
369 thus decreasing both the known and unknown effects. If it disproportionately affects
370 larger-effect loci it might reduce the relative contribution of the known effects, thus
371 shifting κ values towards lower values, resulting in lower prediction accuracy. Unlike
372 directional selection, this is not expected to affect the relation between κ and pre-
373 diction accuracy. Stabilizing selection, for a similar optimum on the two genomes,

374 may also reduce prediction accuracy because it can reduce the variance contribution
375 of shared loci affecting the phenotype (27).

376 The ability to predict the direction of some phenotype differences accord with
377 recent results in the context of embryo screening for polygenic conditions. In this
378 setting, embryos generated by *in vitro* fertilization are screened for their genetic pre-
379 disposition to complex, polygenic diseases and ranked for transfer for pregnancy.
380 This technology is considered by many as unethical (28; 29; 30) and is also widely be-
381 lieved to have little ability to identify embryos with substantially lower risk (31; 32).
382 However, several simulation and modeling studies (9; 10; 33; 34) found that even
383 for diseases with poorly predictive PGS, selection of the lowest-risk embryo could
384 lead to substantial relative risk reduction. This result can be understood based on
385 the liability threshold model (35), under which a disease is assumed to have an un-
386 derlying, unobserved, continuous liability, with affected individuals being those with
387 liability exceeding a threshold. Given a weak PGS, embryo screening would reduce
388 the expected liability of the selected embryo by a very small amount compared to a
389 randomly selected embryo (8; 36). However, even this small shift could be sufficient to
390 substantially reduce the chances of exceeding the disease threshold. Similarly, when
391 predicting the direction of the phenotypic difference, even a small positive gap in PGS
392 between a pair of individuals translates to a high probability for the final phenotypic
393 difference to remain positive.

394 The approach we presented evaluates the extent to which a key feature of a phe-
395 notype — its direction — can be predicted from genomic data. Given the currently
396 limited ability to quantitatively predict phenotypes from genotypes (2), our approach
397 suggests that qualitative prediction of phenotype direction is often feasible. While
398 there is still much to explore with regard to the applicability of this approach to
399 various data, its capability to robustly estimate prediction accuracy and to identify
400 individuals and phenotypes for which accurate predictions can be achieved, suggests
401 that more phenotypic information can be extracted from genomes than previously
402 appreciated.

403 Methods

404 Formal model for prediction accuracy

405 We consider a pair of individuals, one phenotyped and the other unphenotyped, with genomes that diverge
406 at n loci that affect a certain phenotype. We denote the (absolute value of the) differential effect of these loci
407 as e_i , ($i = 1, \dots, n$) which is the relative contribution of locus i to the difference between the phenotypes of
408 the two individuals (Fig. 1a). Each effect of a divergent locus either increases the phenotypic difference in the
409 direction of the phenotyped individual, arbitrarily denoted as $d_i = 1$, or in the direction of the unphenotyped
410 individual, denoted as $d_i = -1$. The sum of the known effects is $\Delta = \sum_{i=1}^n d_i e_i$ (Fig. 1b). The sign of Δ is
411 our prediction for the direction of the phenotypic difference (Fig. 1c).

412 We consider additional m unknown effects on the phenotype, and denote them as random variables
 413 X_1, \dots, X_m . For the most part of this work (but see simulations with selection below), we assume that
 414 X_1, \dots, X_m are independent random variables that attain one of two values, E_j or, $-E_j$, with equal proba-
 415 bility, i.e. $X_j \sim 2E_j \left(\text{Bernoulli}\left(\frac{1}{2}\right) - \frac{1}{2} \right)$, for $j = 1, \dots, m$. We assume that the E_j 's are identical independent
 416 random variables with an effect-size distribution Y , which means that X_1, \dots, X_m are also identical and inde-
 417 pendent. Each divergent unknown effect has some contribution to the phenotype, and it can work to either
 418 increase or decrease the phenotypic difference. We denote the sum of the unknown effects as $\Omega = \sum_{i=1}^m X_j$.
 419 Following the definitions in Eq. 1, we denote the variance of Ω as σ^2 .

420 The true phenotypic difference is $D = \Delta + \Omega$, the sum of both known and unknown effects. Our
 421 prediction is correct if the signs of Δ and D are the same; otherwise, our prediction is incorrect. We define
 422 the 'prediction accuracy' P as the probability that the signs of Δ and D are the same.

423 Mathematical relationship between κ and P

424 Without loss of generality, let us assume that $\Delta > 0$. Prediction accuracy is the probability that the true
 425 phenotypic difference is positive, $P = \text{Prob}(\Delta + \Omega > 0)$. Reformulating this by plugging in Eq. 1 to replace
 426 Δ , we have

$$P = \text{Prob}\left(\Omega > -\frac{\kappa\sigma}{1-\kappa}\right) = 1 - \text{Prob}\left(\Omega \leq -\frac{\kappa\sigma}{1-\kappa}\right) \quad (3)$$

427 Notably, Ω is a sum of identical independent random variables, and therefore, assuming that the effect size
 428 distribution Y has a finite variance, we can apply the central limit theorem and show that Ω is approximately
 429 normally distributed. Ω has a mean of zero because each of the random variables X_i has a zero mean. We
 430 can now use the CDF of Ω , $F_\Omega(x) = \Phi\left(\frac{x}{\sigma}\right)$ (where $\Phi(\cdot)$ is the standard normal CDF) to explicitly compute
 431 the prediction accuracy,

$$P = 1 - F_\Omega\left(-\frac{\kappa\sigma}{1-\kappa}\right) = F_\Omega\left(\frac{\kappa\sigma}{1-\kappa}\right) = \Phi\left(\frac{\kappa}{1-\kappa}\right). \quad (4)$$

432 Alternative derivation

433 We can also derive this result using standard notations in statistical genetics. As before, we consider that a
 434 phenotype is measured in normalized units, i.e., $y \sim N(0, 1)$. The PGS of an individual p is then distributed
 435 as $p \sim N(0, r^2)$, where r^2 is the proportion of the phenotypic variance explained by the PGS. We denote
 436 the combined non-measured genetic factors and non-genetic factors affecting the trait as e , which is also the
 437 residual of the regression of the trait on the PGS. We can thus write $y = p + e$. We assume p and e are
 438 independent and $e \sim N(0, 1 - r^2)$. Next, we consider two unrelated individuals with computed PGSs p_1
 439 and p_2 such that $p_1 > p_2$, with residuals e_1 and e_2 , respectively (we assume that e_1 and e_2 are independent
 440 because the individuals are unrelated). Denoting the difference in PGSs as $d = p_1 - p_2$, and using d to
 441 predict the direction of phenotypic difference, the prediction accuracy is therefore $P = \text{Prob}(y_1 > y_2)$,
 442 where y_1 and y_2 are the true phenotypic values of the two individuals. We can reformulate this probability
 443 as $P = \text{Prob}(e_2 - e_1 < p_1 - p_2)$, and therefore $P = \text{Prob}(e_2 - e_1 < d)$. We denote $e' = e_2 - e_1$, and because
 444 e_1 and e_2 are each normally distributed with variance $1 - r^2$ and zero mean, we have $e' \sim N(0, 2(1 - r^2))$.
 445 We can now observe that:

$$P = \text{Prob}(y_1 > y_2) = \text{Prob}(e' < d) = \Phi\left(\frac{d}{\sqrt{2(1 - r^2)}}\right). \quad (5)$$

446 Reformulating Eq. 1 with the notation of this section (i.e., $|\Delta| = d$ and $\sigma = \sqrt{2(1 - r^2)}$, because $2(1 - r^2)$
 447 is the variance of the differences of the unknown effects), we have $\kappa = \frac{d}{d + \sqrt{2(1 - r^2)}}$, and therefore

$$\frac{\kappa}{1-\kappa} = \frac{\frac{d}{d + \sqrt{2(1 - r^2)}}}{1 - \frac{d}{d + \sqrt{2(1 - r^2)}}} = \frac{d}{\sqrt{2(1 - r^2)}}, \quad (6)$$

448 showing that equations 4 and 5 are equivalent.

449 In the Supporting Information we discuss similar derivations for two specific cases: comparison of siblings
450 and comparison of disease phenotypes.

451 Simulations

452 To simulate a single pairwise comparison, we sampled $n + m$ effect sizes from a pre-specified effect size
453 distribution, with signs simulated to be negative or positive with equal probability. We then computed the
454 sums $\Delta = \sum_{i=1}^n e_i$ and $D = \Delta + \sum_{j=n+1}^{n+m} e_j$, as in the formulation above. The simulation results in a correct
455 prediction if $\text{Sign}[D] = \text{Sign}[\Delta]$, otherwise the prediction is incorrect. For each scenario 10^6 repeats were
456 simulated.

457 We evaluated different fractions of known effects out of all effects: 10%, 50%, and 90%. Effect size
458 distributions can be shaped by various evolutionary processes, such as mutation, selection, and genetic drift
459 (3; 37); therefore, we simulated effect size distributions of various types (normal distribution in Fig. 2,
460 gamma and Orr's negative exponential model distributions (38; 3) in Fig. S1). We also considered the case
461 where the known effects tend to be the larger effects. To simulate this, we sampled $n + m$ effect sizes from
462 the predefined effect size distribution, and then sorted the effect sizes in decreasing order, defining the known
463 effects to be the largest n effects. We then continue with the rest of the simulation as described above.

464 Modeling and simulating directional selection

465 To model directional selection, we modify the random variables representing the effects to have positive
466 means. We implement this by simulating $n + m$ effect sizes e_i as before, but we simulate their direction by
467 letting the probability $X_i > 0$ be $p_i = 1 - \frac{1}{2}e^{-s|e_i|}$, and then $X_i \sim 2e_i \left(\text{Bernoulli}(p_i) - \frac{1}{2} \right)$. Note that s is
468 not a selection coefficient in units of fitness, but is rather a unitless parameter that is proportional to the
469 impact of selection on the direction of the effect. The motivation for this particular formulation is based on
470 the Ornstein-Uhlenbeck model, which is used to model the evolution of quantitative traits subject to both
471 drift and selection by considering random walks with some pull toward a particular state (39; 40; 41). Under
472 our model, when $s \approx 0$ or e_i is very small, then $p_i \approx \frac{1}{2}$, as in the neutral model. As s and e_i increase, p_i
473 approaches 1, meaning that the direction of the effect is almost always in the positive direction.

474 Analysis of pairwise comparisons in humans

475 Estimating κ from empirical population data

476 Estimating κ for a given pair of individuals using Eq. 1 requires (i) effect size differences for known loci to
477 compute Δ , and (ii) the variance of the sum of the unknown effects, σ^2 . The genotype effect sizes can be
478 ascertained from summary statistics of large genotype-phenotype datasets (see next section), from which
479 we can compute the effect size differences (e.g., the added effect of one allele to the phenotype), denoted
480 as e_i . Next, we introduce a new parameter, \bar{r}^2 , which denotes the overall contribution of known effects to
481 the variance of phenotypic differences between pairs. \bar{r}^2 is similar to the proportion of explained phenotypic
482 variance of PGS (usually denoted as r^2), but refers only to those loci that are divergent between the two
483 compared individuals; it is, therefore, expected to have similar values to r^2 estimates computed using other
484 means.

485 We assume that the measured differences in phenotypic values have been normalized and transformed
486 to z-scores (i.e. the variance of the scaled phenotypic differences is one). To scale the units of the effect sizes
487 to these standardized units, we define $e_i^* = \sqrt{\frac{\bar{r}^2}{v^2}} e_i$, where v^2 is the variance of in the PGS differences in
488 the population. Thus, the effect sizes are scaled so that their overall contribution in units of the normalized
489 phenotypic differences is \bar{r}^2 . For a pair of individuals, we can now denote the overall predicted difference
490 $\Delta^* = \sum_{i=1}^n e_i^*$, where n is the number of known effects that are divergent between the two individuals. To
491 compute the variance of the sum of the unknown effects, we notice that the variance of the true phenotypic

492 difference is composed of the sum of the variance explained by the known effects, \bar{r}^2 , and the variance of
493 unknown effects σ^2 ; therefore, in the standardized units, $\sigma^2 = 1 - \bar{r}^2$. Using these standardized units, we
494 can reformulate Eq. 1:

$$\kappa = \frac{|\Delta^*|}{|\Delta^*| + \sqrt{1 - \bar{r}^2}} \quad (7)$$

495 To apply this formulation to empirical data, we must estimate \bar{r}^2 . Below, we explore the option of estimating
496 \bar{r}^2 from the data by considering the fit to the theoretical expected relationship of κ and P (Eq. 4). We also
497 computed, for comparison, the proportion of explained variance (r^2) using the regression of the phenotypes
498 on the PGSs.

499 Analysis of the UK Biobank

500 To test our approach on empirical data, we used the UK Biobank (UKB), a large dataset containing almost
501 500,000 genotyped individuals with associated phenotype data (12). We generated subsets of comparisons
502 that have different levels of divergence: (i) sibling pairs with Northwestern European ancestry (within-
503 family), (ii) pairs of individuals with Northwestern European ancestry (within-population), and (iii) pairs
504 of individuals where each belongs to a different ancestry group, among European, East Asian, and African.
505 Northwestern European ancestry was determined using the UKB Data-Field 22006. Our non-European
506 groups were defined by demarcating clusters of genetically similar individuals that are distant from the
507 European group on the PC1 and PC2 of the UKB PCA results from UKB Data-Field 22009 (Fig. S6).
508 The two clusters were labeled as East Asian and African based on the majority of self-identifications of
509 individuals from these groups as reported in UKB Data-Field 21000. These groups included 1,794 and 3,091
510 individuals, respectively.

511 To compute κ values, we first generated GWAS results for a number of continuous traits: body-mass
512 index (UKB Data-Field 21001); systolic blood pressure (UKB Data-Field 4080); heel bone mineral density
513 (UKB Data-Field 3148); standing height, referred to as “height” (UKB Data-Field 50); hip circumference
514 (UKB Data-Field 49); and basal metabolic rate, referred to as “metabolic rate” (UKB Data-Field 23105).
515 We included variants with high-quality imputation scores (imputation INFO scores ≥ 0.8) from the UKB
516 imputed genotype release version 3 (12); this yielded roughly 30 million variants. The discovery dataset
517 included individuals with Northwestern European ancestry, excluding 20,000 (10,000 female, 10,000 male)
518 individuals as a validation subset. We generated single-variant association results using SAIGE v1.1.6.3 (42).
519 We used 280,628 markers to fit the null linear mixed model, and age, sex, and the first ten genetic PCs as
520 covariates. To generate PGSs, GWAS results were filtered with a fixed P-value threshold of $P\text{-value} \leq 0.01$
521 and minor allele count threshold of $MAC \geq 20$. We used PRSice-2 to compute PGSs for all individuals (43).
522 κ values were computed for all same-sex pairs from our validation subset as detailed above in *Estimating κ*
523 *from empirical data*. For each pair, we compared the sign of the PGS difference and the true direction of
524 phenotype difference as reported in the UKB.

525 To compare our results to the theoretical expectation of the relationship between κ and prediction accu-
526 racy, we binned comparisons according to their κ values, and computed the proportion of correct predictions
527 in each bin. To estimate \bar{r}^2 from the data, we computed κ values for a range of r^2 values, and selected the
528 value of \bar{r}^2 that yielded the least sum of absolute distances between the proportion of correct predictions for
529 each bin and the theoretical expectation, weighted by the number of comparisons per bin (Table S2).

530 PGSs are known to have poor transferability between genetically distinct populations. To test the effect
531 of PGS transferability on our model fit, we used the PGSs from the European ancestry group in Yengo *et*
532 *al.* (15) to evaluate our predictions in non-European pair comparisons, using the ancestry subsets indicated
533 above (1,794 individuals with East Asian ancestry for EAS–EAS comparisons, and 3,091 individuals with
534 African ancestry for AFR–AFR comparisons), relative to our pairwise predictions in the European group with
535 the same PGSs (20,000 individuals for EUR–EUR comparisons). Note that in the EUR–EUR comparisons
536 the Yengo *et al.* (15) PGSs included the tested individuals, but these individuals constitute a very small
537 portion of the overall European population analyzed in this study.

538 We also generated predictions for a number of common diseases reported in the UKBB according to
539 the following ICD10 codes: asthma (J45), type 2 diabetes (E11), hypertension (I10) and hypothyroidism
540 (E03). ICD10 codes were retrieved from UKB Data-Field 41270 (diagnoses). For each disease, we generated
541 single-variant association results using SAIGE2 (42) for binary traits with default parameters. The discovery
542 dataset included individuals with Northwestern European ancestry (as defined by UKB Datafield 22006),
543 excluding 10,000 samples, 5,000 controls and 5,000 cases, as a validation subset. PGSs were generated and κ
544 estimated as for the continuous traits. For each case-control pair, correct prediction was recorded whenever
545 the PGS for the disease risk was higher in the case individual.

546 Analysis of population and species datasets

547 To evaluate our approach in cases where the compared genomes are highly diverged, we examined datasets
548 from several species. In the stickleback QTL mapping dataset (17), we compared a marine population
549 (treated in our analysis as the *phenotyped* population) and four freshwater populations (treated as *unpheno-*
550 *typed*). The compared populations likely diverged less than 12,000 years ago (17). We investigated 27
551 morphological phenotypes (measurements of shape landmark coordinates), resulting in four pairwise com-
552 parisons of 27 phenotypes. Because not all phenotypes had significant QTLs in each population, some of
553 the comparisons (three out of four populations) included fewer than 27 predictions (Fig. 4c). Here, because
554 the raw data was not available, we could not exclude the compared individuals when computing effect sizes;
555 however, because these loci are largely fixed between the populations, this is not expected to affect the
556 results.

557 In the mouse QTL mapping dataset (19), we compared a wild-derived inbred laboratory house mouse
558 strain and the Gough island house mouse subpopulation. These populations diverged in the 19th century.
559 Two phenotypes (weight and growth rate) were measured across 16 weeks, resulting in a pairwise comparison
560 of 2×16 phenotypes. We then computed average prediction accuracy across the 16 time points for each of
561 the two phenotypes.

562 In the daisy QTL mapping dataset (18), we compared two daisy species (*Senecio aethnensis*, and *Senecio*
563 *chrysanthemifolius*) that have likely diverged within the last 176,000 years (Brennan et al., 2016). For one
564 phenotype out of 13, a prediction could not be made because the sum of the known effects was 0.

565 The Neanderthal and chimpanzee datasets (6) included comparisons of DNA methylation maps between
566 modern humans (treated as the *phenotyped* population) and Neanderthals and chimpanzees. Because these
567 analyses do not contain effect sizes, they were limited to phenotypes for which the loci with the largest
568 differences in methylation levels showed unidirectionality (likely resulting in high Δ values, and therefore
569 high κ values). These analyses predicted the phenotypic direction for 33 Neanderthal phenotypes and 22
570 chimpanzee phenotypes. We list here the prediction accuracy as reported in (6).

571 Acknowledgments

572 We thank David Reich for the original idea to test this approach with a model, and Dmitri Petrov, Hunter
573 Fraser, Noah Rosenberg, Arbel Harpak, Guy Sella, Yuval Simons, Liran Carmel, Jaehee Kim, John (Tony)
574 Capra, Moi Exposito-Alonso, and members of the Fraser, Petrov, Rosenberg, Greenbaum, and Gokhman
575 labs for input. This research was partially supported by the Israeli Council for Higher Education (CHE) via
576 the Weizmann Data Science Research Center, a research grant from the Center for New Scientists at the
577 Weizmann Institute of Science, and the Kahn Family Research Center for Systems Biology of the Human
578 Cell. SC was supported by the National Institutes of Health (grant R01HG011711). This research has been
579 conducted using data from UK Biobank, a major biomedical database, UK Biobank project ID 26664.

580 References

581 [1] Rosenberg, N. A., Edge, M. D., Pritchard, J. K. & Feldman, M. W. Interpreting polygenic scores,
582 polygenic adaptation, and human phenotypic differences. *Evolution, Medicine, and Public Health* **2019**,
583 26–34 (2019).

584 [2] Young, A. I., Benonisdottir, S., Przeworski, M. & Kong, A. Deconstructing the sources of genotype-
585 phenotype associations in humans. *Science* **365**, 1396–1400 (2019).

586 [3] Dittmar, E. L., Oakley, C. G., Conner, J. K., Gould, B. A. & Schemske, D. W. Factors influencing the
587 effect size distribution of adaptive substitutions. *Proceedings of the Royal Society B: Biological Sciences*
588 **283**, 20153065 (2016).

589 [4] Orr, H. A. The genetic theory of adaptation: a brief history. *Nature Reviews Genetics* **6**, 119–127
590 (2005).

591 [5] Scheben, A. & Edwards, D. Towards a more predictable plant breeding pipeline with CRISPR/Cas-
592 induced allelic series to optimize quantitative and qualitative traits. *Current Opinion in Plant Biology*
593 **45**, 218–225 (2018).

594 [6] Gokhman, D. *et al.* Reconstructing Denisovan Anatomy Using DNA Methylation Maps. *Cell* **179**,
595 180–192.e10 (2019).

596 [7] Thudi, M. *et al.* Genomic resources in plant breeding for sustainable agriculture. *Journal of Plant
597 Physiology* **257**, 153351 (2021).

598 [8] Karavani, E. *et al.* Screening Human Embryos for Polygenic Traits Has Limited Utility. *Cell* **179**,
599 1424–1435.e8 (2019).

600 [9] Lello, L., Raben, T. G. & Hsu, S. D. Sibling validation of polygenic risk scores and complex trait
601 prediction. *Scientific Reports* **10**, 13190 (2020).

602 [10] Widen, E., Lello, L., Raben, T. G., Tellier, L. C. & Hsu, S. D. Polygenic Health Index, General Health,
603 and Pleiotropy: Sibling Analysis and Disease Risk Reduction. *Scientific Reports* **12**, 18173 (2022).

604 [11] Palmer, D. S. *et al.* Analysis of genetic dominance in the UK Biobank. *Science* **379**, 1341–1349 (2023).

605 [12] Bycroft, C. *et al.* The uk biobank resource with deep phenotyping and genomic data. *Nature* **562**,
606 203–209 (2018).

607 [13] Berg, J. J. *et al.* Reduced signal for polygenic adaptation of height in UK biobank. *eLife* **8**, e39725
608 (2019).

609 [14] Martin, A. R. *et al.* Clinical use of current polygenic risk scores may exacerbate health disparities.
610 *Nature Genetics* **51**, 584–591 (2019).

611 [15] Yengo, L. *et al.* A saturated map of common genetic variants associated with human height. *Nature*
612 **610**, 704–712 (2022).

613 [16] Hayward, L. K. & Sella, G. Polygenic adaptation after a sudden change in environment. *eLife* **11**,
614 e66697 (2022).

615 [17] Rogers, S. M. *et al.* Genetic signature of adaptive peak shift in threespine stickleback. *Evolution* **66**,
616 2439–2450 (2012).

617 [18] Brennan, A. C., Hiscock, S. J. & Abbott, R. J. Genomic architecture of phenotypic divergence between
618 two hybridizing plant species along an elevational gradient. *AoB Plants* **8**, plw022 (2016).

619 [19] Gray, M. M. *et al.* Genetics of rapid and extreme size evolution in Island mice. *Genetics* **201**, 213–228
620 (2015).

621 [20] Gokhman, D. *et al.* Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal
622 evolution. *Nature Genetics* **53**, 467–476 (2021).

623 [21] Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic
624 variance for complex traits. *PLoS Genetics* **4**, e1000008 (2008).

625 [22] Hivert, V. *et al.* Estimation of non-additive genetic variance in human complex traits from a large
626 sample of unrelated individuals. *bioRxiv* 2020.11.09.375501 (2020).

627 [23] Pazokitoroudi, A., Chiu, A. M., Burch, K. S., Pasaniuc, B. & Sankararaman, S. Quantifying the contribu-
628 tion of dominance effects to complex trait variation in biobank-scale data. *bioRxiv* 2020.11.10.376897
629 (2020).

630 [24] Exposito-Alonso, M., Wilton, P. & Nielsen, R. Non-additive polygenic models improve predictions of
631 fitness traits in three eukaryote model species. *bioRxiv* 2020.07.14.194407 (2020).

632 [25] Mackay, T. F. Epistasis and quantitative traits: Using model organisms to study gene-gene interactions.
633 *Nature Reviews Genetics* **15**, 22–33 (2014).

634 [26] Harpak, A. & Przeworski, M. The evolution of group differences in changing environments. *PLoS
635 Biology* **19**, e3001072 (2021).

636 [27] Yair, S. & Coop, G. Population differentiation of polygenic score predictions under stabilizing selection.
637 *Philosophical Transactions of the Royal Society B: Biological Sciences* **377** (2022).

638 [28] Polyakov, A. *et al.* Polygenic risk score for embryo selection-not ready for prime time. *Human Repro-
639 duction* **37**, 2229–2236 (2022).

640 [29] Treff, N. R., Savulescu, J., de Melo-Martín, I., Shulman, L. P. & Feinberg, E. C. Should preimplantation
641 genetic testing for polygenic disease be offered to all – or none? *Fertility and Sterility* **117**, 1162–1167
642 (2022).

643 [30] Lencz, T. *et al.* Concerns about the use of polygenic embryo screening for psychiatric and cognitive
644 traits **9**, 838–844 (2022).

645 [31] Siermann, M. *et al.* Limitations, concerns and potential: attitudes of healthcare professionals toward
646 preimplantation genetic testing using polygenic risk scores. *European Journal of Human Genetics* **31**,
647 1133–1138 (2023).

648 [32] Forzano, F. *et al.* The use of polygenic risk scores in pre-implantation genetic testing: an unproven,
649 unethical practice. *European Journal of Human Genetics* **30**, 493–495 (2022).

650 [33] Treff, N. R. *et al.* Preimplantation genetic testing for polygenic disease relative risk reduction: Evalu-
651 ation of genomic index performance in 11,883 adult sibling pairs. *Genes* **11**, 648 (2020).

652 [34] Lencz, T. *et al.* Utility of polygenic embryo screening for disease depends on the selection strategy.
653 *eLife* **10**, e64716 (2021).

654 [35] Dempster, E. R. & Lerner, I. M. Heritability of threshold characters. *Genetics* **35**, 212–236 (1950).

655 [36] Turley, P. *et al.* Problems with using polygenic scores to select embryos. *The New England Journal of*
656 *Medicine* **385**, 78–86 (2021).

657 [37] Simons, Y. B., Mostafavi, H., Smith, C. J., Pritchard, J. K. & Sella, G. Simple scaling laws control the
658 genetic architectures of human complex traits. *bioRxiv* 2022.10.04.509926 (2022).

659 [38] Orr, H. A. The population genetics of adaptation: The distribution of factors fixed during adaptive
660 evolution. *Evolution* **52**, 935–949 (1998).

661 [39] Bedford, T. & Hartl, D. L. Optimization of gene expression by natural selection. *Proceedings of the*
662 *National Academy of Sciences* **106**, 1133–1138 (2009).

663 [40] Butler, M. A. & King, A. A. Phylogenetic comparative analysis: a modeling approach for adaptive
664 evolution. *The American Naturalist* **164**, 683–695 (2004).

665 [41] Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. *Evolution* **51**, 1341–1351
666 (1997).

667 [42] Zhou, W. *et al.* Efficiently controlling for case-control imbalance and sample relatedness in large-scale
668 genetic association studies. *Nature Genetics* **50**, 1335–1341 (2018).

669 [43] Choi, S. W. & O'Reilly, P. F. Prsice-2: Polygenic risk score software for biobank-scale data. *Gigascience*
670 **8**, giz082 (2019).