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Abstract

The equivariant nature of 3D coordinates has posed long term challenges in protein
structure representation learning, alignment, and generation. Can we create a
compact and invariant language that equivalently represents protein structures?
Towards this goal, we propose FoldToken2 to transfer equivariant structures into
discrete tokens, while maintaining the recoverability of the original structures.
From FoldToken1 to FoldToken2, we improve three key components: (1) invariant
structure encoder, (2) vector-quantized compressor, and (3) equivariant structure
decoder. We evaluate FoldToken2 on the protein structure reconstruction task and
show that it outperforms previous FoldToken1 by 20% in TMScore and 81% in
RMSD. FoldToken2 is likely the first method that works well for both single-chain
and multi-chain protein structure quantization. We believe that FoldToken2 will
inspire further improvement in protein structure representation, alignment, and
generation tasks. Online example is available at Colab.

1 Introduction

"SE-(3) structure should not be special and difficult. Let’s lower the barrier."

– Our Goal

Protein structure modelling plays a foundational role in computational biology and has attracted
increasing attention in machine learning. Due to the SE-(3) equivariant nature, encoding [25, 8, 11,
10, 14] and generating [18, 3, 19, 22, 1] protein structure are never trivial, which requires the special
design targeted to protein structures. For example, PiFold [11] proposes the invariant featurizer to
encode structure patterns, and AlphaFold2 [18] design frame-based model to generate equivariant
3D coordinates. While numerious innovations have been proposed in designing the protein structure
models, the structures data itself remains SE-(3) in nature. Can we transform equivariant structures
into an invariant form, and then use the existing NLP/CV models to encode and generate the
structures?

We introduce FoldToken2, a novel method to transform SE-(3) structures into invariant representations.
The key insight is to create a compact invariant latent space that preserve the structure information
via self-reconstruction. After pretraining, the invariant latent representation can serve as a prototype
of the equivariant structures that is editable in the latent space. Akin to image and text, we also
introduce a vector quantization module to discretize the latent space, creating a SE-(3) invariant
language. Taking the invariant latent embedding or language as input, we can use the existing CV or
NLP models [4, 7, 9, 21] to encode and generate the protein structures. FoldToken2 contains three
key components: (1) invariant encoder, (2) vector quantization module, and (3) equivariant decoder.
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A frame-based GNN (BlockGAT) is used for encoding equivariant structures as invariant embeddings.
FoldToken1 [12, 13] represent backbone structures as bond and torsion angles, lacking the ability to
capture the 3D dependencies. As a remedy, FoldToken2 represent residues as block like AlphaFold2
[18], with a efficient and powerful graph neural network BlockGAT [15]. The BlockGAT contains a
simplified featurizer for capturing the informative 3D dependencies and an optimized graph network
module for learning high-level representations. The sparse graph attention mechanism make it much
more efficient than the SE-(3) transformers, which is important for large-scale pre-training.

An optimized vector quantization module (SoftCVQ) is used to quantize the continuous embed-
dings into discrete tokens, termed fold language. There has been great success in applying vector
quantization to image and video modeling; however, few attempts have been made to apply it to
protein structure modeling [12, 13]. To make advanced sequence models, such as BERT [6] and
GPT [4], to be powerful structure learners, quantifying continuous embeddings into discrete tokens is
crucial. Based on FoldToken1 [12, 13], we further improve the vector quantization module (SoftCVQ)
by proposing a new teacher-guided temperature annealing strategy, leading to improved SoftCVQ.
Thanks to the elaborate design, the reconstruction results consistently outperform baselines.

A conditional SE-(3) decoder is proposed for structure generation. The decoder takes discrete tokens
as conditional features and generates the 3D coordinates via equivariant graph message passing.
Each SE-(3) layer include a BlockGAT and a plug-and-play SE-(3) module; By stacking multiple
SE-(3) BlockGATs, we iteratively refine the protein structure from Gaussian noise conditioned on
discrete tokens. During reconstruction, the BlockGAT extracts pairwise residue interactions online,
and SE-(3) module uses frame-level message passing to refine the local frames of residues.

We evaluate the reconstruction performance of FoldToken2 in both single-chain and multi-chain
settings. In single chain reconstruction, following FoldToken1 [12, 13] which may be the first to
tokenizing single-chain, FoldToken2 significantly improves the reconstruction performance on both
TMScore and RMSD by 20% and 81%, respectively. In addition, FoldToken2 extends the idea to
multi-chain protein structure reconstruction, and also lead to promising results. We believe that
FoldToken2 will inspire further improvement in protein structure representation learning, structure
alignment, and structure generation tasks.

2 Method

2.1 Overall Framework

As shown in Fig.1, the overall framework keeps the same as FoldToken1 [12, 13], including encoder,
quantifier and decoder. FoldToken2 comprehensively improves each module to enhance reconstruction
performance, summarized as follows::

1. Data Form: Changing from the angle-based representation to coordinate-based one.
2. Backbone: We replace the transformer backbone with a new GNN, named BlockGAT.
3. VQ: We introduce teacher-guided temperature annealing strategy.
4. Generator: We propose novel SE-(3) layer to refine the protein structures iteratively.

2.2 Invariant Graph Encoder

Due to the rotation and translation equivariant nature, the same protein may have different coordinate
records, posing a challenge in learning compact invariant representations for the same protein.
Previous works [11, 17, 5, 15] have shown that the invariant featurizer can encode the invariant
structure patterns, and we follow the same road: representing the protein structures as a graph
consisting of invariant node and edge features. Then we use the BlockGAT [15] to learn high-level
representations.

Frame-based Block Graph. Given a proteinM = {Bs}ns=1 containing n blocks, where each
block represents an amino acid, we build the block graph G({Bs}ns=1, E) using kNN algorithm. In the
block graph, the s-th node is represented as Bs = (Ts,fs), and the edge between (s, t) is represented
as Bst = (Tst,fst). Ts and Tst = T−1

s ◦Tt are the local frames of the s-th and the relative transform
between the s-th and t-th blocks, respectively. fs and fst are the node and edge features.
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Figure 1: The overall framework of FoldTokenizer2, which contains contains encoder, quantifier, and decoder.
In FoldToken2, we use BlockGAT to encoder protein structures as invariant embeddings, SoftCVQ to quantize
the embeddings into discrete tokens, and SE-(3) layer to recover the protein structures iteratively.

BlockGAT Encoder. We use the BlockGAT [15] layer fθ to learn block-level representations:

f (l+1)
s ,f

(l+1)
st ← BlockGATs(f (l)

s ,f
(l)
st |Ts, Tst, E) (1)

where f
(l)
s and f

(l)
st represent the input node and edge features of the l-th layer. Ts = (Rs, ts) is the

local frame of the s-th block, and Tst = T−1
s ◦ Tt = (Rst, tst) is the relative transform between the

s-th and t-th blocks. Ts, Tst,f
(0)
s and f

(0)
st are initialized from the ground truth structures using the

invariant featurizer proposed in UniIF [15].

2.3 Quantifier

Following FoldToken1 [12, 13], we use SoftCVQ to quantize the invariant embeddings into discrete
tokens, termed fold language. Instead of projecting continuous embeddings into discrete tokens,
SoftCVQ maps pre-defined binary number (bj) into continuous token embeddings vj and then
conduct soft alignment between the token embeddings vj and latent embeddings hs.

Given the decimal integer z and the codebook size m, we represent z as a binary vector bj with
length log2(m). For example, if m = 4, we have b1 = [0, 0], b2 = [0, 1], b3 = [1, 0], b4 = [1, 1].
The quantization operation transforms continuous embeddings hs into discrete tokens z:{

asj =
exp (fT

s vj/T )∑m
j=1 exp (fT

s vj/T )

z = argmaxj asj
(2)

where vj is the j-th token embedding, generated by a conditional network, which also server as the
de-quantization operation: {

bs = Bit(z, log2(m))

f̂s = ConditionNet(bs)
(3)

In Eq. 2, the "argmax" is non-differentiable, and we use a soft approximation during training:
f̂i =

∑m
j=1 aijvj

bj = Bit(j, log2(m))

vj = ConditionNet(bj)
(4)

The temperature parameter T controls the softness of the attention query operation. When T is large,
the attention weights will be close to uniform; otherwise, the attention weights will be close to one-hot.
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During training, the temperature is reduced from 1.0 to 1e-8. The ConditionNet : Rlog2(m) → Rd is
a MLP. If the codebook size is 216, the MLP projects 65536 16-dimension boolvectors into 65536
d-dimension vectors. Considering the gradient of the softmax operation:{

[s1, s2, · · · , sk] = Softmax(z1/T, z2/T, · · · , zk/T )
∂si
∂zj

= 1
T si · (1(i = j)− sj)

(5)

when T tend to zero, the gradient explodes. To avoid this, we frozen the encoder and VQ module
when the temperature is lower than 1e-6. The temperature scheduler is:{

x = 2π( t%T
T )− π

T = max(10−8, 1+cos(x)
2 )× β

(6)

To accelerate model convergence, we introduce:

• Teacher-Guided VQ: We randomly copy the encoder embedding fs as the quantized feature
f̂s in a probability of T , termed teacher-guided vector quantization.

• Adaptive tuner: We adaptively adjust the temperature scale β based on training loss.

The adaptive temperature tuner is defined as:

β =


1.0, if 0.1 < L
0.05, if 0.05 < L ≤ 0.1

0.01, if 0.02 < L ≤ 0.05

0.0001, if L ≤ 0.02

(7)

2.4 Equivariant Graph Decoder

Generating the protein structures conditioned on invariant representations poses significant challenges
in computing efficiency. For example, training well-known AlphaFold2 from scratch takes 128
TPUv3 cores for 11 days [24]; OpenFold takes 50000 GPU hours for training [2]. In this work, we
propose an efficiency plug-and-play SE(3)-layer that could be added to any GNN layer for structure
prediction. Thanks to the simplified module of the SE(3)-layerand BlockGAT with sparse graph
attention, we can train the model on the entire PDB dataset in 1 day using 8 NVIDIA-A100s.

SE-(3) Frame Passing Layer. We introduce frame-level message passing, which updates the local
frame of the s-th block by aggregating the relative rotation Rs and translation ts from its neighbors:

vec(Rs) =
∑

j∈Ns
arsjvec(Rsj)

Rs ← Quat2Rot ◦ Norm ◦MLP9→4(vec(Rs)) Normalize quanternion
ts =

∑
j∈Ns

atsjtsj

(8)

where arsj and atsj are the rotation and translation weights, and Ns is the neighbors of the s-th block.
vec(·) flattens 3 × 3 matrix to 9-dimensional vector. MLP9→4(·) maps the 9-dim rotation matrix
to 4-dim quaternion, and Norm(·) normalize the quaternion to ensure it represents a valid rotation.
Quat2Rot(·) is the quaternion to rotation function. We further introduce the details as follows:


wr

st, w
t
st = σ(MLP(fst))

vec(Rst)← wr
stvec(Rst) + (1− wr

st)MLPd→9(fst)

tst ← wt
sttst + (1− wt

st)MLPd→3(fst)

arst, a
t
st = Softmax(MLPd→1(fst))

(9)

where wr
st and wt

st are the updating weights for rotation and translation, arst and atst are the attention
weights. The propose SE-(3) layer could be add to any graph neural network for local frame updating.
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Iterative Refinement We propose a new module named SE-(3) BlockGAT by adding a SE-(3)
layer to BlockGAT. We stack multi-layer SE-(3) BlockGAT to iteratively refine the structures:

f
(l+1)
s ,f

(l+1)
st = BlockGAT(l)(f

(l)
s ,f

(l)
st )

T
(l)
st = T−1

s ◦ Tt

T
(l+1)
s = SE3Layer(sg(T (l)

st ),f
(l+1)
st )

(10)

where sg(·) is the stop-gradient operation, and SE3Layer(·) is the SE-(3) layer described in Eq.9.
Given the predicted local frame T

(l)
s , we can obtain the 3D coordinates by:{

hs = MLP(f (l)
s )

xs = T
(l)
s ◦ hs

(11)

2.5 Reconstruction Loss

Inspired by Chroma [16], we use multiple loss functions to train the model. The overall loss is:
L = Lglobal + Lfragment + Lpair + Lneighbor + Ldistance (12)

To illustrate the loss terms, we define the aligned RMSD loss as Lalign(X
(l),X) = ∥Align(X̂,X)−

X∥, given the the ground truth 3D coordinates X ∈ Rn,3 and the predicted 3D coordinates X̂ =
{x1,x2,x3, · · · ,xn} ∈ Rn,3. The global, fragment and pair loss are defined by the aligned MSE
loss, but with different input data shape:

• Global Loss: X with shape [n, 4, 3]. RMSD of the global structure.
• Fragment Loss: X with shape [n, c, 4, 3]. RMSD of c neighbors for each residue.
• Pair Loss: X with shape [n,K, c · 2, 4, 3]. RMSD of c neighbors for each kNN pair.
• Neighbor Loss: X with shape [n,K, 4, 3]. RMSD of K neighbors for each residue.

where n is the number of residues, c = 7 is the number of fragments, K = 30 is the number of kNN,
4 means we consider four backbone atoms {N,CA,C,O}, and 3 means the 3D coordinates. The
distance loss is defined as the MSE loss between the predicted and ground truth pairwise distances:

Ldistance = ∥Dist(X̂)− Dist(X)∥ (13)
where Dist(X) ∈ Rn,n is the pairwise distance matrix of the 3D coordinates X. We apply the loss on
each decoder layer, and the final loss is the average, whcih is crucial for good performance.

3 Experiments

We conduct systematic experiments to inspire further improvement in FoldToken2.

• AutoEncoder Training (Q1): How well the compact and invariant latent space learned by
FoldToken2 can be used to reconstruct protein structures?

• Single-Chain Reconstruction (Q2): Can FoldToken2 outperform FoldToken1 in single-
chain protein reconstruction?

• Multi-Chain Reconstruction (Q3): Can FoldToken2 perform well on multi-chain protein
reconstruction?

Metrics We evaluate FoldToken2 on the protein structure reconstruction task, where the TMscore
and aligned RMSD are reported.

Single-chain Data We use the CATH4.3 dataset to train the single-chain model. The same as
protein inverse folding models, CATH4.3 is split into training (16631), validation (1516), and testing
(1864) sets according to the CAT code. During evaluation, we remove proteins with NaN coordinates,
resulting in 493 core samples in the final testing set (T493). Due to the different data representations,
backbone architecture and iterative refinement strategies, FoldToken2 trains much slower than
FoldToken1. Therefore, we do not train FoldToken2 in the AF2DB dataset like FoldToken1, which
can be done in the future if the computing resource is enough. In addition, we also report results over
the sub-testing set (T116) of FoldToken1 for head-to-head comparision, which contains 116 proteins.
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Multi-chain Data We train the model using all proteins collected from the PDB dataset as of 1
March 2024. After filtering residues with missing coordinates and proteins less than 30 residues,
we obtain 162K proteins for training. We random crop long proteins to ensure that the maximum
length is 500. Protein complexes are supported by adding chain encoding features cij to the edge eij :
cij = 0, if i and j are in different chains; else cij = 1.

3.1 AutoEncoder Training (Q1)

Setting We train FoldToken2 without vector quantization to show how well the encoder-decoder
can learn and generate protein structure patterns. The results could be used as the ceiling performance
of FoldToken series models. We train the model up to 25 epochs with a batch size of 8 and a learning
rate of 0.001. The overall model contains 8 encoding layers, 8 decoding layers, and a 128 hidden
dimension, total 9.2M parameters. The training process could be done in 1 days using 1 A100 GPU.
We also report the structure prediction results of ESMFold [19], AlphaFold2 [18] and AlphaFold3 [1]
for evaluating the structure generation capability of FoldToken2.

Data TMScore RMSD
Avg Max Min Avg Max Min

FoldToken2 T493 0.98 0.99 0.93 0.46 2.12 0.26
ESMFold T116 0.94 0.99 0.88 1.21 5.33 0.33
AlphaFold2 (Colab) T116 0.92 0.99 0.35 1.44 11.00 0.38
AlphaFold3 T116 0.94 0.99 0.74 1.24 4.02 0.33
FoldToken2 T116 0.98 0.99 0.87 0.41 0.87 0.25

Table 1: AutoEncoder reconstruction results of FoldToken2.

RMSD=1.302 RMSD=1.392 RMSD=0.470
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Figure 2: Reconstruction performance without VQ. "SAE" means structure autoencoder without VQ.

Results In Table. 1, we show the reconstruction results of FoldToken2. In both T493 and T116,
FoldToken2 achieves good performance in TMScore and RMSD. When compared to ESMFold,
AlphaFold2, and AlphaFold3, FoldToken2 can generate more accurate protein structures from
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invariant latent embeddings, showing the capability of the equivariant decoder. Notabely, the protein
folding decoder only contains 4.9M parameters, which is much smaller than the 688.55M parameters
of ESMFold’s Folding Trunk. FoldToken2 may provide new insights for the protein folding problem.

3.2 Single-Chain Reconstruction (Q2)

Setting We compare FoldToken2 with FoldToken1 on both T116 and T493 datasets. The model is
trained up to 25 epochs with a batch size of 8 and leading rate of 0.001. One experiment could be
done about 1 day using 1 80G A100 GPU.

Model Data Config TMScore ↑ RMSD ↓
#Code #Enc #Dec #Hid #KNN Avg Max Min Avg Max Min

FT1 T116 65536 12 12 480 – 0.77 0.96 0.39 3.31 24.53 0.52

FT2 T116

65536 6 8 128 30 0.84 0.94 0.68 1.50 1.98 1.16
65536 8 8 128 30 0.89 0.96 0.74 1.20 1.68 0.88
65536 10 8 128 30 0.90 0.97 0.73 1.21 2.57 0.55
65536 12 8 128 30 0.41 0.73 0.25 7.51 15.64 2.00
65536 6 10 128 30 0.82 0.91 0.62 1.68 2.15 1.36
65536 6 12 128 30 0.77 0.88 0.60 2.01 2.91 1.59
65536 6 15 128 30 0.70 0.84 0.52 2.48 3.48 1.76
65536 6 10 256 30 0.30 0.43 0.17 12.40 22.09 5.76
65536 6 10 128 50 0.78 0.89 0.59 1.95 2.62 1.44
1024 6 10 128 30 0.76 0.87 0.57 2.34 4.90 1.23
512 6 10 128 30 0.45 0.74 0.28 6.94 13.00 1.80
256 6 10 128 30 0.51 0.86 0.29 5.69 11.99 1.03
32 6 10 128 30 0.29 0.45 0.18 10.02 15.30 4.32
16 6 10 128 30 0.28 0.41 0.16 12.88 21.82 6.52

FT2† T116 65536 8 8 128 30 0.97 0.98 0.88 0.63 0.93 0.42
FT1 T493 65536 12 12 480 – 0.74 0.96 0.44 3.09 18.09 0.48

FT2 T493

65536 6 8 128 30 0.84 0.95 0.61 1.63 4.85 1.10
65536 8 8 128 30 0.88 0.97 0.68 1.38 10.92 0.95
65536 10 8 128 30 0.86 0.96 0.49 1.81 17.56 0.58
65536 12 8 128 30 0.36 0.68 0.21 9.53 27.33 2.77
65536 6 10 128 30 0.82 0.94 0.56 1.68 11.89 1.29
65536 6 12 128 30 0.77 0.93 0.47 2.22 7.67 1.36
65536 6 15 128 30 0.71 0.89 0.45 2.65 11.46 1.95
65536 6 10 256 30 0.28 0.41 0.12 14.30 59.28 6.27
65536 6 10 128 50 0.78 0.91 0.55 2.11 7.28 1.45
1024 6 10 128 30 0.71 0.88 0.38 3.17 15.21 1.29
512 6 10 128 30 0.38 0.67 0.19 9.01 49.81 2.58
256 6 10 128 30 0.43 0.75 0.17 11.96 27.52 5.20
32 6 10 128 30 0.27 0.41 0.17 11.96 27.52 5.20
16 6 10 128 30 0.27 0.43 0.13 14.09 59.69 6.18

FT2† T493 65536 8 8 128 30 0.95 0.99 0.69 0.86 12.62 0.41
Table 2: Reconstruction performance. We highlight the promising models in color. FT1, FT2, and FT2†

indicates FoldToken1 [12, 13], FoldToken2, and FoldToken2 with the adaptive temperature annealing strategy,
respectively. FT2 use the linear temperature decay scheduler, reducing the temperature from 1.0 to 1e−5 in 40k
steps. FT2† use the adaptive temperature tuner, reducing the temperature from 1.0 to 1e−5 in 5k steps.

In Table. 2 and Fig. 3, we show the reconstruction results of FoldToken2 and conclude that:

FoldToken2 outperforms FoldToken1 by a large margin in structure reconstruction. In average
TMScore, the FT2† model achieves 0.97 on T116, outperforming FT1 by 20%. In RMSD, FT2†

achieves 0.63 on T116, outperforming FoldToken1 by 81%. Similar results are observed on T493.
Moreover, FT2† is more reliable than others, with worst-case TMScores and RMSD of 0.88 and 0.42,
respectively, compared to 0.39 and 24.53 for FoldToken1. These results suggest that the new encoder,
quantifier, and decoder in FoldToken2 significantly enhance protein structure reconstruction.

Scalling up model does not perform better on limited data. We find that the 8-layer encoder and
decoder with hidden size 128 achieve the best performance. Futher increasing the number of layers or
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hidden size does not lead to improvement, possiblly limited to the small training data volumn. Also,
we should point out that we do not pay much attention to stablize the training of deepper and wider
models, and results may improve with careful adjustments.

Enlarging Decoing KNN do not improve performance. Increasing the number of KNN neighbors
in the decoder from 30 to 50 does not improve the performance. This result suggests that the 30 kNN
neighbors are sufficient to capture the structure interactions, when using BlockGAT as backbone. The
reason may be that the BlockGAT introduces virtual frames for considering long-term dependencies.

Larger codebook size leads to better reconstruction performance. Increasing the codebook
size from 16 to 65,536 consistently improves reconstruction performance. This suggests that the
20-codebook size in FoldSeek is likely insufficient for accurately describing protein structures from a
reconstruction perspective. However, since FoldSeek [23] focuses on structure alignment, this loss of
information does not significantly affect its widespread usage.

4rt0A00
RMSD 0.569 432atoms

4p78A00
RMSD 0.544 344atoms

5tdeA02
RMSD 0.558 328atoms

5ysnB02
RMSD 0.743 740atoms

6nsjA00
RMSD 0.802 728atoms

6ff4Y00
RMSD 0.763 380atoms

Figure 3: Single-chain reconstruction. Grey and colored residues represent the ground truth and predicted ones.

4 Multi-Chain Reconstruction (Q3)

Setting We train FoldToken2 on the multi-chain protein reconstruction task using the PDB dataset.
The model is trained for up to 25 epochs with a batch size of 8, a learning rate of 0.001, and a padding
length of 500. There is no available benchmark for evaluating multi-chain protein reconstruction, and
we provide some visual examples in Fig. 4. The comprehensive benchmark is coming soon.

FoldToken2 generalize well to large-scale protein systems. While we crop long proteins to
ensure that the maximum length is 500, FoldToken2 can generate protein complexes with low RMSD
errors, as shown in Fig. 4. The results suggest that FoldToken2 can be used for multiple real-world
applications beyond protein monomers.

We are surprised by the small model size and good training efficiency. Unlike other models that
use AF2 for structure generation, FoldToken2 does not copy AF2. Instead, we use a light-weight
model, comprising a 4.31M encoder, 4.27M quantifier, and 4.92M decoder, achieving state-of-the-art
results. When training a protein structure generation model, OpenFold requires 5000 GPU hours; in
contrast, FoldToken2 only requires 40GPU hours to train on the entire PDB dataset.
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RMSD 1.113 (616 atoms)
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RMSD 1.451 (3344 atoms)

6gg6 RMSD 2.733 (6392 atoms)

Figure 4: Multi-chain reconstruction. Grey and colored residues represent the ground truth and predicted ones.

5 Extension (Future Work)

TokenFlow Given a discrete protein language and protein sequence. we train a flow-matching
model using rectified flow [20] on the CATH4.3 training set. The flow-matching model is designed to
predict protein structures from single protein sequences without using MSA information. The model
is trained for up to 1000 epochs with a batch size of 128, a learning rate of 0.0005, and a padding
length of 512. The overall model architecture consists of a 12-layer transformer, similar to ESM-35M.
The training process can be completed in about one day using a single A100 GPU. When training
over 16K data of CATH4.3, the model seems to be not work well as expected. Limited by energy and
computing resources, we plan to scale the model in the future.
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Figure 5: Flow matching for sequence-srtructure translation.

FoldGPT Similar to FoldToken1, we train a model for generating masked structure regions based
on unmasked ones. However, the model seems to be overfitting on the training data, and we need to
scale up the model in the future.
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Figure 6: FoldGPT for srtructure generation.

6 Conclusion

This paper proposes FoldToken2, probably the first multi-chain protein structure tokenization ap-
proach. With great efforts in improving the encoder, quantifier, and decoder, FoldToken2 significantly
outperforms FoldToken1 by 20% in TMScore and 81% in RMSD. Additionally, the training efficiency
is remarkable, requiring only 40 GPU hours to train on the entire PDB dataset. The propose methods
may inspire further improvement in protein structure representation learning, structure alignment,
and structure generation tasks.
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