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Abstract

Seqguence-based maximum likelihood (ML) phylogenetics is a widely used method for
inferring evolutionary relationships, which has illuminated the evolutionary histories of
proteins and the organisms that harbour them. But modern implementations with
sophisticated models of sequence evolution struggle to resolve deep evolutionary
relationships, which can be obscured by excessive sequence divergence and substitution
saturation. Structural phylogenetics has emerged as a promising alternative, because
protein structure evolves much more slowly than protein sequences. Recent developments
protein structure prediction using Al have made it possible to predict protein structures for
entire protein families, and then to translate these structures into a sequence
representation - the 3Di structural alphabet - that can in theory be directly fed into existing
sequence based phylogenetic software. To unlock the full potential of this idea, however,
requires the inference of a general substitution matrix for structural phylogenetics, which
has so far been missing. Here we infer this matrix from large datasets of protein structures
and show that it results in a better fit to empirical datasets that previous approaches. We
then use this matrix to re-visit the question of the root of the tree of life. Using structural
phylogenies of universal paralogs, we provide the first unambiguous evidence for a root
between and archaea and bacteria. Finally, we discuss some practical and conceptual
limitations of structural phylogenetics. Our 3Di substitution matrix provides a starting point
for revisiting many deep phylogenetic problems that have so far been extremely difficult to
solve.

Keywords: Phylogenetics, Maximum likelihood, Structural phylogenetics, evolution,
substitution models

Introduction

The field of phylogenetics has evolved from relying on morphological comparisons to
sophisticated sequence-based analyses (Whelan et al.,, 2001). The advent of
computational methods marked a turning point, introducing a range of algorithms from
Neighbour-Joining (NJ) (Saitou and Nei, 1987) and Maximum Parsimony (MP) (Farris, 1970;
Fitch 1971) to Maximum Likelihood (ML) (Felsenstein, 1981) and Bayesian inferences
(Rannala and Yang, 1996; Mau and Newton, 1997) on nucleotide and amino acid
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sequences. Each methodological leap has brought with it a deeper understanding of
evolutionary history through better trees. Among the various phylogenetic methods,
Maximum Likelihood (ML) approaches have emerged as particularly powerful tools for
modelling evolutionary processes (Posada and Crandall, 2021). The flexibility and
robustness of ML techniques have made them indispensable for contemporary
phylogenetic studies, especially those tackling large datasets or seeking to resolve deep
evolutionary relationships. But especially deep, sequenced-based phylogenetics remains
difficult. Substitution saturation is a particular challenge, in which each site in the
alignment has accumulated multiple substitutions over a branch of interest (Brown, 1982,
Phillippe and Forterre 1999). Depending on the accuracy of the substitution model of
sequence evolution, saturation can lead to spurious phylogenetic signals and artefacts in
phylogenetic trees (Felsenstein, 2003). The problem of saturation cannot always be solved
by adding more sequences (Philippe et al., 2011) or better models of sequence evolution.

Saturation is a relevant problem for the identification of the root of the tree of life. It is
traditionally placed on the branch between bacteria and archaea (Gouy et al., 2015), which
has important implications for the nature of the Last Universal Common Ancestor (LUCA).
This inference is based on paralog rooting with universally duplicated genes, where the
paralogs reciprocally root each other (lwabe et al., 1989). Although this root is tacitly
accepted by the majority of biologists, the paralog trees it is based on are riddled with
potential problems. In all previous attempts, the branch between universal paralogs
remains so long as to be probably saturated (Brown and Doolittle, 1995; Philippe and
Forterre, 1999; Gouy et al., 2015; Mahendrarajah et al., 2023). This means that the root
position within each paralog might be mostly determined by the preferences of the
substitution model, rather than real phylogenetic signal, which has been erased almost
entirely. Some phylogenetics therefore still consider the root of the tree of life an unsolved
problem (Gouy et al., 2015).

Structural phylogenetics offers a potentially powerful alternative to traditional sequence-
based approaches. Structures evolve much more slowly than sequences, and if a model
for structural evolution could be inferred, this could help resolve phylogenies that are
beyond the reach of sequenced-based methods. Early attempts at this idea were limited by
the lack of high-quality protein structures or reliable methods of scoring multiple sequence
alignments of protein structures (Johnson, Sali, et al., 1990; Johnson et al., 1990; Balaji et
al., 2001; Balaji and Srinivasan, 2001). This changed with the advent of artificial intelligence
models than can predict protein structures with good accuracy (Jumper et al., 2021; Varadi
et al., 2023). The availability of a large database of structures has prompted researchers to
mould this novel source of information foridentification of structuralhomologs in a process
similar to BLAST. Chief among these tools is FoldSeek which translates the 3D information
in predicted and experimentally determined structures into 20 unique characters the
authors call the 3Di alphabet (Kempen et al., 2023). The advantage of using an alphabet of
20 characters is that it enables the direct use of these 3Di characters in conventional
implementations of amino acid-based likelihood methods.

The conversion of a large dataset of 3D structures into the 3Di alphabet allows the
computation of a scoring matrix like the BLOSUM scoring matrix commonly employed by
Multiple Sequence Alignment programs (Kempen et al., 2023). This scoring matrix enables
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95 the quick identification of structural homologs of proteins which has been very successful

96 intheidentification of divergent orthologs. Such a scoring system also allows to compute a

97  similarity score (fident in case of FoldTree) which can then be used to compute Neighbour

98 Joining (NJ) trees as demonstrated by FoldTree (Moi et al., 2023). Furthermore, one could

99  also calculate a substitution matrix from this BLOSUM style scoring matrix which can be
100 directly implemented in ML approaches such as in the case of 3DiPhy (Puente-Lelievre et
101 al., 2024). Neither of these approaches correspond to standard maximum likelihood
102 phylogenetics for amino acids: FoldTree’s neighbour joining method is fast and simple but
103 inherits all limitations of classical neighbour joining in that it relies on the true distance
104  between sequences being close to their observed distance (an assumption that is often
105 violated in realistic datasets) and it does not account for among site rate variation
106  (Mihaescu et al., 2009). 3DiPhy does use a full likelihood model, which can account for
107 these phenomena however, its substitution matrix is derived from a BLOSUM-like
108 alignment scoring matrix. Such matrices are constructed by counting co-occurrences of
109 particular characters in sequence pairs, rather than inferring their contents using maximum
110  likelihood (Le and Gascuel, 2008). In standard sequence phylogenetics the BLOSUM matrix
111 has long been superseded by empirical models which are inferred in a full phylogenetic

112  likelihood framework, and generally result in a much better fit to empirical data (Le and
113 Gascuel, 2008).
114

115  These features of existing structural phylogenetics frameworks motivated us to infer a new
116  substitution model using a phylogenetic maximum likelihood framework. This substitution
117  model canin theory be directly inferred from each alignment in the form of a General Time
118  Reversible (GTR) model but inferring a substitution matrix for a 20-letter alphabet from a
119  single multiple sequence alignment is difficult and prone to overfitting. For conventional
120  protein models, this problem is solved by combining large numbers of protein alignments
121 and inferring from them one substitution model that best describes all the data. Once
122 computed, this general model, also denoted as Q, can then be used for individual protein
123  families, which avoids overfitting using GTR. Here we make use of AlphaFold and a recently
124  developed protein large language model to infer a general substitution matrix for structural
125  phylogenetics. We show that this Q-matrix outperforms all previous methods to use 3Di
126  characters to infer ML phylogenies. Finally, we use our Q-matrix to re-infer the phylogenies
127  ofuniversal paralogs and photosystems to settle long-standing questions in deep evolution
128  that previously suffered from saturation.

129

130

131
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133 Figure 1: (A) Overview of the pipeline employed in the manuscript. Briefly, Amino acid (AA) or PDB structures
134 were translated into 3Di characters using FoldSeek or the bilingual ProtT5 model. These 3Di characters are
135 aligned with MAFFT using the 3Di scoring matrix before being used to estimate the general substitution Q-
136 matrix using QMaker which were subsequently used to estimate 3Di-ML trees using |Q-tree. (B) Lower
137 triangular portion is a representation of the Q-matrix estimated from 1660 AF clusters while the upper
138 triangular section denotes the Q matrix estimated from 6653 PFAM clusters translated to 3Di alphabet using
139 the ProtT5 bilingual language model. In both cases values higher than 2 are coloured orange. (C) Ratio of
140 exchangeabilities between the Q.3Di.AF and the Q.3Di.LLM matrix. Each square represents the value (m¥ -
141 my/m? + mYy where m1 and m2 represent Q.3Di.AF and Q.3Di.LLM respectively. (D) Pearsons correlation
142 between the exchangeabilities of the two matrices indicating very little differences between the two matrices

143

144  Results and Discussion

145

146  Estimation of the 3Di Q-matrix

147

148 We set out to compute a general Q-matrix for structural phylogenetics. Given a large
149  enough dataset, this is straightforward to achieve using the QMaker routine of IQ tree (Minh
150 etal, 2021). We used two strategies to gather a large dataset of protein families and their
151 predicted structures. Our first goal was to use the set of 6653 protein families that was used
152  to infer a Q matrix in the initial study by Minh et al. To avoid having to predict AlphaFold
153 models for every sequence in this large database, we opted to use a recently developed
154  bilinguallarge language model, ProtT5. This modelwas trained to directly translate between
155 an amino acid sequence and its corresponding 3Di sequence, without having to infer an
156  AlphaFold model (Heinzinger et al., 2023). We used this method to translate all sequences
157 in the PFAM dataset from AA-sequences to 3Di. The ProtT5 model is not perfect, as it
158 introduces some randomness into the 3Di translation, meaning that translating to a 3Di
159  sequence fromthe same input amino acid sequence results in a slightly different prediction
160  (Supplementary Figure 1A-C). In addition, when comparing 3Di sequences extracted from
161 AlphFold2 structures to the same 3Di sequence predicted with the LLM model, we found
162 large numbers of sequences in which the AlphaFold and LLM predictions had low pairwise
163  identities (Supplementary Figure 1D-F, Supplementary Figure 2). In order to safeguard
164  againstpotential errorsin estimating the substitution model using incorrectly translated 3Di
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165 sequences we also estimated a separate Q matrix using 3Di sequences extracted from
166  AlphaFold predictions. We employed FoldSeek to cluster the SwissProt AlphaFold
167 Database. These 1660 AF clusters (hereafter AF-db) were used along with 3Di translation
168  of the 6653 protein families (hereafter Pfam-db), for the QMaker pipeline. Crucially, both
169  sets of 3Di sequences were then aligned using the alignment program mafft using the 3Di
170  scoring matrix from (Kempen et al., 2023) instead of the standard BLOSUMG62 matrix used
171 for amino acid alignments.

172

173  We then estimated a tree for each of 3Di Multiple Sequence Alignments (MSAs) in our two
174  datasets using the GTR20 model despite the concern of model overfitting given the unique
175 nature of the 3Di alphabet and the lack of other models that could serve as the initial
176  starting model. These initial trees were then used to estimate a single Q-matrix that best
177  explainstherespective sets of MSAs as described in the QMaker pipeline (Minh et al., 2021).
178  Thisresulted in two Q-matrixes hereafter denoted as Q.3Di.AF and Q.3Di.LLM. The two Q-
179  matrices estimated were very similar with minor differences in exchangeabilities (Figure 1C)
180 with a Pearsons correlation of 1 (Figure 1D). We then checked if these matrices are
181 preferred by 1Q-Tree’s modelfinder over the GTR20 or the previously published 3DiPhy
182 model using a test set of 6653 3Di MSAs from PFAM that were not used for estimating the
183 Q-matrix. Indeed, the 3DiPhy model is only preferred in 278 MSAs over 6267 MSAs that
184  prefer either the Q.3Di.AF or the Q.3Di.LLM model, which are practically the same (Figure
185  1B-D). Thisincreased our confidence that we had successfully captured the mechanism of
186  change describing the mutability in the structural alphabet across a wide range of proteins.
187 Inthe analyses of specific protein families that follow, 1Q-Tree’s modelfinder predominantly
188 chose Q.3Di.AF over Q.3Di.LLM or GTR20 according to the Corrected Akaike Criterion
189  (AlCc). Generally, we encourage future users of these matrices to always test if using
190 Q.3Di.AF changes any conclusions in cases where Q.3Di.LLM is the better fit model. This is
191 because the AF matrix is much less affected by the misprediction issues than the LLM
192  (which we discuss further below).

193
Model AlCc AIC BIC
Q.3Di.AF 2342 2065 2309
Q.3Di.LLM | 3925 | 2958 | 3697
3DiPhy 278 322 267
GTR20 108 1308 | 380
Total 6653 | 6653 6653

194

195 Table 1: Number of trees that preferred each model/Q-matrix as identified using modelfinder from 1Q-Tree
196 according to corrected Akaike Information Criterion (AlCc), Akaike Information Criterion (AIC) and Bayesian
197 Information Criterion (BIC)

198

199  Rooting the Tol using structural phylogenetics

200

201 Rooting the tree of life is a particularly challenging problem owing to the lack of outgroups
202 that can reliably root phylogenetic trees. Paralog rooting is a powerful method which uses
203 phylogenetic trees with duplicated genes that reciprocally root each other. In most cases
204  the paralogs root each other along the same branch recovering an unambiguous root for
205 the species tree containing the paralogs. However, in cases of highly divergent paralogs,
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206 thetwo paralogs sometimes do not agree on the same root (Figure 2A). We tested if our new
207  matrix can help improve trees used to root the tree of life using two universal paralogs that
208 have been previously used for this purpose: Elongation factors and catalytic and non-
209 catalytic subunits of the rotary ATPase. We begin with the Elongation factor phylogeny.
210 Elongation factor EF-Tu/EF-2 delivers aminoacyl-tRNAs to the A-site of the ribosome while
211 the Elongation Factor EF-G/EF-1A catalyses the translocation of the peptidyl-tRNA (Miller,
212  1972). Both paralogs are conserved across the tree of life, making them an ideal candidate
213  for paralog rooting (Baldauf et al., 1996; Philippe and Forterre, 1999; Gouy et al., 2015). In
214  all previous attempts to root the tree of life using EF-G and EF-Tu, the branch separating the
215 paralogs is extremely long and potentially completely saturated, which implies that the
216  position of the root within each paralog might be determined entirely by the substitution
217 modeland not by any synapomorphies between the paralogs. In addition, the two paralogs
218 donotrooteach other consistently increasing the uncertainty.

219

220 Totestif our new matrix can help solve this problem, we first assembled a dataset of 1076
221 homologs of EF-Tu and EF-G. In an amino acid-based ML tree we also recover a very long
222  branch (Branch length (BL) = 3.284) between the two paralogs albeit still separating the
223  bacteria and archaea (Figure 2A). In line with previous phylogenies, this tree recovers
224  different roots for the tree of life in the two paralogs: between bacteria and archaea plus
225  eukaryotes, and between archaea and bacteria plus eukaryotes (Figure 2B). We then
226  extracted 3Di sequences from 1076 AlphaFold predictions using FoldSeek (see methods)
227 and utilized our new Q.3Di.AF Q-matrix as the substitution model, to estimate a new tree of
228 the EF-G and EF-tu paralogs. This recovered a phylogenetic tree with the length of the
229  branch separating the paralogs far below 1 (0.186). Crucially, the root position is now
230 consistentin both the paralogs and indicates a root between archaea and bacteria for life
231 (Figure 2C). The archaea in both paralogs remain paraphyletic, which is consistent with the
232  two-domain tree of life.
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234 Figure 2: (A) A schematic representation of paralog rooting. Three possible root positions are shown with the
235 “true” root depicted with a green star and two other possible roots with circles. In the scenario where
236 paralogous rooting is successful both paralog subtrees reciprocally root each other (right). Other possible
237 scenarios are also shown where the paralog subtrees are ambiguously rooted (left). (B) Amino acid ML tree
238 containing 1076 EF-tu and EF-G homologs from eukaryotes, bacteria and archaea. The mitochondrial and
239 plastid encoded copies are not included. Note that the branch separating the EF-tu and EF-G is broken for
240 illustration. (C) 3Di structural ML tree estimated 3Di sequences and the Q.3Di.AF model from the predicted
241 AlphaFold structures of 1069 EF-tu and EF-G homologs. In both cases blue, red and grey clades represent
242 bacteria, archaea and eukaryotes respectively. Numbers in red, black indicate branch lengths and ultrafast
243 bootstrap supports respectively.

244

245  Another universally conserved paralogous gene family used to root the tree of life are the
246  catalytic and non-catalytic subunits of the rotary ATPase. The head group of the rotary
247  ATPase is a hexamer consisting of two subunits, only one of which is catalytic (Figure 3A).
248 The bacterial and mitochondrial ATPases are called the FoF-ATPases, and their subunits
249 are called F1-alpha and F1-beta for the non-catalytic and catalytic subunits respectively
250 (Gruber et al., 2001). The archaeal ATPase is called the V-ATPase and shares a similar
251 architecture with a non-catalytic and a catalytic subunit in its headgroup (Figure3A). Owing
252 to the endosymbiotic event between archaea and bacteria at eukaryogenesis, the
253  eukaryotes and archaea also share this ATPase which in eukaryotesis in the vacuole, where
254 it functions to acidify lysosomes (Gogarten et al., 1989). The archaeal/eukaryotic subunits
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255 are named V1-beta and V1-alpha for the non-catalytic and catalytic subunits respectively
256  (Gruberetal., 2001; Cross and Muller 2004). A recent analysis on rooting the TolL using the
257  ATPase subunits (Mahendrarajah et al., 2023) recovers a tree that separates the four major
258 subunits with extremely long basal branches (Figure 3B). This tree is consistent with the
259 idea that the catalytic and non-catalytic subunits originated before the divergence of
260 archaea and bacteria, and roots the tree of life between these two domains. The same study
261 also identified an early transfer of the archaeal non-catalytic subunit into bacteria,
262  however, the catalytic counterpart to this transfer was not recovered in the catalytic sub-
263  tree suggesting multiple transfer events (Figure 3B).

264

265  Asbefore, we predicted AlphaFold structures for all 1520 sequences and extracted the 3Di
266  sequences using FoldSeek and calculated a 3Di (structural) ML tree with the Q.3Di.AF as
267  the substitution model. While the tree in this case looks remarkably like the amino acid ML
268 tree, the 3Di structural ML tree has significantly shorter branches (Figure 3C). This new
269 topology also reconfirms the root of TolL as between the archaea and bacteria.
270 Furthermore, in the 3Di tree the early transfer of the archaeal ATPase subunits is recovered
271 basalin both catalytic and the non-catalytic subtrees suggesting a single early transfer from
272  archaeato bacteria. Together with the Elongation factors, our results bolster support for the
273  two-domain tree of life with the eukaryotes branching within archaea. In both these cases
274 it is evident that structural phylogenetics can resolve deep phylogenies and recover
275 consistent groupings within the paralogs despite large divergences in amino acid
276  sequences.
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Figure 3: (A) A schematic representation of the bacterial and archaeal ATPase highlighting the subunits under
investigation. They are represented using the same colours in the phylogenetic trees. (B) Amino acid ML tree
of 1520 sequences across the Tol reproduced from Mahendrarajah et al., 2023 of the catalytic and non-
catalytic subunits of bacterial, archaeal, and eukaryotic rotary ATPase. The early branching transfer from
bacteria and archaea in the non-catalytic V1 clade is highlighted in blue with a black outline. The
corresponding clade in the V1 catalytic clade branches deep inside of the archaeal sequences and is
highlighted similarly. (C) 3Di structural tree estimated using the Q.3Di.AF model. Sequences assigned to the
early transfer from the archaeal clade to bacteria are highlight as in (B), but now this transfer is inferred for
both the catalytic and non-catalytic subunits. Numbers in red, black indicate branch lengths and ultrafast
bootstrap supports respectively. In both cases grey clades represent eukaryotes. The green circles and orange
squares indicate cyanobacterial and proteobacterial contributions in eukaryotes representing the plastid and
mitochondrial ATPases.
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291

292  Evolution of photosystems RCl and RCII

293

294  The issue of saturation is not exclusive to tree-of-life problems but to all evolutionarily
295 divergent proteins that share remote homology in sequence. The origin of oxygenic
296 photosynthesis is another event that impacted the overall geochemistry of the planet and
297 has been the subject of contentious debate. Photosynthesis can be classified into two
298 major types: anoxygenic photosynthesis, which uses either reaction centre Il (RCIl) or
299 reaction centre | (RCI), but never both together and oxygenic photosynthesis which uses
300 bothreaction centres | and Il (RCl and RCII) coupled to a water splitting reaction that leads
301 to the formation of oxygen (Hohmann-Marriott and Blankenship, 2011). One set of theories
302 suggests that anoxygenic photosynthesis evolved first and later developed into oxygenic
303 photosynthesis (Martin etal., 2018). An alternative view favours oxygenic photosynthesis to
304  have evolved first, with anoxygenic phototrophs having lost either RCl or RCII. One piece of
305 evidence for the latter view is the lack of any bacterial group that harbours the anoxic
306 versions of both RCI and RCII, which is thought to be a necessary precursor to oxygenic
307 photosynthesis (Sanchez-Baracaldo and Cardona, 2020). Until recently, members of the
308 chloroflexota phylum have only been known to harbour anoxic RCII. This changed when a
309 chloroflexota group, Ca. Chloroheliales, was identified that contains RC1 (Tsuji et al.,
310 2024). This still falls short of proving that anoxic RCl and RCII have existed together in the
311 same genome however, one possible interpretation of these data is that an ancestral
312  Chloroflexus might have contained both, leading to differential losses in extant lineages of
313  Chloroflexi. This would support the idea that anoxic photosynthesis may have come first, if
314 these photosystems are close relatives of the photosystems that were eventually
315 transferred into cyanobacteria

316

317 The phylogenetic tree based on amino acids of RCI containing Chloroflexi does not place
318 their RCl sequences as close relatives to those of cyanobacteria (4A, re-inferred for this
319  study). But this tree suffers from extremely long branches, and we wondered whether this
320 placement is the result of long branch attraction. We therefore set out to re-infer this tree
321 using 3Di characters and our structural substitution matrix (Figure 4B). This shortened all
322 relevant internal branches to lengths well below one but yielded the same topology as the
323 amino acid tree. This confirms the authors’ original inferences and leaves the evolution of
324  oxygenic photosynthesis an unsolved problem for now.

325

326
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327
328 Figure 4: (A) Amino acid ML tree of 321 RC1 protein sequences. Note that long branches are broken as

329 indicated for illustration. (B) 3Di structural ML tree of 297 3Di sequences from AlphaFold structures using the
330 Q.3Di.AF model. Numbersinred, black indicate branch lengths and ultrafast bootstrap supports respectively.

331

332

333 Ourworkinthis manuscript and that of others (Moi et al., 2023; Puente-Lelievre et al., 2024)
334 clearly points to the utility of structural phylogenetics in cases where structures can be
335 predictedreliably and with one possible structure per sequence. There are several practical
336 and conceptual caveats that come with using this method, which we will briefly elaborate
337 on.We present these caveats in the spirit of critical optimism about the utility and impact
338  of this new method.

339

340  Prediction accuracy of LLMs

341

342  Structural phylogenies can only ever be as good as the predicted models that are used to
343 derive 3Di sequences. Predicting large numbers of sequences with AlphaFold is
344  computationally costly and potentially prohibitive for many interested users. Using bilingual
345 Protein LLMs like ProtT5 may seem like an obvious solution, because it removes the
346  computationally expensive requirement of predicting the AF structures of a large number of
347  protein clusters not only in the Q-matrix estimation, but also for tree inference of single
348  protein families with a lot of members. Encouragingly, the Q-matrix estimated from 3Di
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349  sequences derived from AlphaFold structures (Q.3di.AF) is very similar to the one from
350 PFAM-clusterstranslated using ProtT5 (Q.3Di.LLM) despite their low accuracy compared to
351 AlphaFold predictions (Figure 1C,1D, Supplementary Figure 1). This could be due to the fact
352 that the LLM has issues when dealing with long repeated stretches which in some cases
353 leadsto possible register shifts of structural motifs (Supplementary Figure 2). These register
354  shiftscanbe dealt with during a 3Di sequence alignment using the 3Di scoring matrix, which
355 we did not perform for our pairwise identity calculations (as the two sequences are the
356 samelength). Itis also possible that prediction errors average out when inferring a Q-matrix
357 for thousands of protein families, even if there are substantial errors in the alignments of
358 any one family. It is clear, however, that ProtT5 translations are not reliable for inferring
359 individualtrees. We tested this by using ProtT5 derived 3Di alignments for the three protein
360 families we investigated here. In two out of three cases we recovered phylogenies that
361 either were biologically improbable (Supplementary Figure 4) and/or erroneous with non-
362  sensical topologies (Supplementary Figure 5). Most of these issues stem from the faulty
363  prediction of 3Di sequences. While we did not observe this problem here when using
364  AlphaFold structures, we expect similar issues when using structures that are not
365 confidently predicted by AlphaFold. For now, reliable tree inference only seems possible
366 using AlphaFold generated structures and therefore comes with a significant
367 computational overhead. Better language and structure prediction models are certain to be
368 available in the future and they should make structural phylogenetics more widely
369 accessible.

370

371 Fold-switching and conformational variability

372

373  Many proteins undergo conformational changes and some even switch their folds entirely
374  as part of their functions (Chang et al., 2015). Previous analyses using AlphaFold suggests
375 thatitcan sometimes predict structures in different conformations despite having a strong
376 bias towards one dominant conformation (Chakravarty and Porter 2022; Sala et al., 2023;
377 Wayment-Steele et al., 2023). Since this can lead to different 3Di sequences for the same
378 protein, depending on which conformation itis predicted in, we wondered if this could lead
379  to spurious grouping according to conformation rather than genealogical relationships on
380  3Di phylogenies. We examined two proteins for this purpose. One is KaiB, which is known
381 to fold-switch as part of its catalytic cycle, involving a drastic change of a helix to a beta-
382 sheet (Changetal., 2015; Zhang et al., 2023). The other is the RNA Polymerase lll subunit
383 Rpc10, which undergoes a conformational change during its function in gene transcription
384  (Girbigetal., 2021).

385

386 Totest how much thisissue can affect 3Di trees, we constructed a worst-case scenario for
387 both proteins. In both cases, we modelled each sequence on the two distinct
388 conformations using homology modelling and inferred their 3Di sequences using FoldSeek.
389 For tree inference, we then randomly chose the 3Di sequence of one of the two possible
390 conformations for each protein, such that approximately half our sequences were
391 predicted in one conformation, and the other half in the other conformation. For both KaiB
392 and Rpc10 we found that the phylogenetic tree splits the two conformational states with
393 long branches (Figure 4B, 4D) as opposed to a 3Di structural tree which was inferred from
394  3Di sequences reflecting a single conformation (Figure 4A, 4C). This highlights a severe
395 limitation of structural phylogenetics where the presence of multiple predicted
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396 conformations can generate spurious branches and relationships. Here we concocted an
397 extreme case by forcing sequences randomly into distinct conformations. However, in
398 cases where only a small minority of proteins within the analyses share a different
399 conformation, these artefacts can lead to false conclusions. It is therefore very important
400 to assess the conformational homogeneity of the predicted sequences before inferring a
401 3Di tree.

A B)
Branch length = 0.1 Branch length = 0.1
KaiB
Fold-switched
KaiB o
I Ground State
I
Ground State 3Di (Structural) ML tree State heterogenous 3Di (Structural) ML tree
© D)
Branch length = 0.1 Branch length = 0.1

Rpc10
OUT conformation

402 IN configuration 3Di (Structural) ML tree Conformation heterogenous 3Di (Structural) ML tree

403 Figure 5: (A) 3Di structural ML tree constructed from KaiB proteins modelled in the ground state. (B) 3Di
404 structural ML tree constructed from approximately 50% of the KaiB proteins modelled in the ground state
405 (blue) and the other 50% modelled in the fold switched state (green). (C) 3Di structural ML tree constructed
406 from RPC10 proteins modelled in the IN conformation (D) 3Di structural ML tree constructed from
407 approximately 50% of the RPC10 proteins modelled in the OUT conformation (blue) and the other 50%
408 modelled in the IN conformation (green). In both cases the distinct conformations form monophyletic groups

409 in contrast to their placements in (A) and (C) respectively.
410

411 Site-independence in structural alighments
412
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413  One of the main assumptions of maximum likelihood is site independence, which allows
414  thelikelihood to be computed independently for all sites in the alignment (Lio and Goldman
415  1998). It has been obvious for a long time that this is not a realistic assumption. Epistasis
416  between amino acids is a well demonstrated phenomenon and quite extensive among
417  proteins (Starr and Thornton 2016). This violates the site-independence assumption of
418 maximum likelihood phylogenetics, even though it has been argued that increasing the
419  number of sites normally associated with a protein sequence or increasing the number of
420 proteins used for a concatenated alignment averages out the signal in most cases (Starr
421 and Thornton, 2016; Magee et al., 2021). In the case of the structural phylogenetics and 3Di
422  alphabet however, this assumption is explicitly violated since each letter corresponds to at
423 least6 otheramino acid positionsin 3D space. Itis forexample not clear to us thatitis even
424  possible for a single substitution to occur at the level of 3Di characters, because of the
425  structural dependence between sites. In a sense, structural phylogenetics makes the ugly
426  truth of model violation explicit in its alphabet. Whether or not this approach becomes
427  widely accepted in evolutionary biology will depend on investigating the consequences of
428  thisviolation, which is beyond the scope of this manuscript.

429

430  Information loss

431

432 The 3Dialphabet compresses information that would be presentin amino acids. Thisis the
433  very reason for its utility in deep phylogenetics, because it overcomes the saturation
434  problem. But it also makes evolution on short time-scales is harder to resolve using these
435 models, and relationships at the very tips of 3Di trees probably much less reliable than in
436 an amino acid or DNA tree (Mutti et al.,2024). A potential solution is to use partitioned
437 models, in which a tree is inferred from both 3Di and amino acid alighments
438  simultaneously, using different substitution models for the partitions (Puente-Lelievre et
439 al., 2024). To make this approach work, however, one would have to allow the structural
440  partition to also have a different set of branch lengths than the amino acid partition (Lopez
441 et al., 2002), which the first use of this approach did not yet include (Puente-Lelievre et al.,
442  2024). Such a heterotachous model presents a difficult optimization problem, which in our
443 hands leads to impractically long run times on our datasets. Another question is the size of
444  the alphabet. 3Di uses 20 characters because this allows simple integration with existing
445  phylogenetic software. It is not yet clear that whether this is even close to the optimal
446  number of characters for structural phylogenetics. Larger alphabets could perhaps retain
447 more short-term information. They would, however, make the inference of substitution
448  matrices much harder.

449

450  Structural phylogenetics and the future of deep history

451

452  Our work complements and builds on other recent tools that utilise the 3Di alphabet for
453  structural phylogenetics (Moi et al., 2023; Puente-Lelievre et al., 2024). Our structural Q-
454  matrices should make it much easier to infer structure-based trees for anyone familiar with
455  maximum likelihood phylogenetics. Newly developed online tools for the generation of 3Di
456  alignments should further lower the bar for adoption (Gilchrist et al., 2024). As with every
457  new method, it is difficult to know exactly what impact structural phylogenetics will have.
458 For now, we see its main utility in solving difficult rooting problems involving distant
459  outgroups that amino acid phylogenies cannot solve with any degree of confidence. This
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460  will help polarize the direction of evolutionary change in the emergence of many important
461 functions. Better resolved deep protein phylogenies will also improve our reconstructions
462  of the gene content of ancient organisms (The Last Universal Common Ancestor, the Last
463  Eukaryotic Common Ancestor, and the Last Archaeal Common Ancestor, for example).
464

465 For now, these methods will not be useful for ancestral sequence reconstruction, because
466  3Di sequences cannot be back translated into a unique amino acid sequence (Heinzinger
467  etal., 2023). Even though our matrix allows us to infer 3Di sequences at internal nodes of
468  structural phylogenies, it is at present not possible to then turn these reconstructed 3Di
469 sequences into resurrected proteins composed of amino acids. It may, however, be
470  possible torestrict a set of plausible amino acid reconstructions at one particular node on
471 an amino acid phylogeny to a subset that agrees with the reconstructed ancestral 3Di
472  sequence at the corresponding node on a structural phylogeny.

473

474  The true impact of viewing the past through the glacial change in the structure of proteins
475  will only emerge when this method is robustly tested and becomes widely adopted in
476  evolutionary biology. We hope the matrix inferred here will be a first step in this process.
477

478  Methods

479

480 Datasets for QMaker

481 The SwissProt AlphaFold database (https://alphafold.ebi.ac.uk/download) was
482  downloaded andthen clustered with FoldSeek (https://github.com/steineggerlab/foldseek)
483  easy-cluster with default settings and a coverage of 80%. This yielded 1660 clusters which
484  contained at least 50 members and a maximum of 2500 members. Databases of PDB
485  structures were then created and 3Di sequences were subsequently extracted from these
486 1660 clusters using FoldSeek as previously described. The PFAM sets were taken from
487 Minhetal., 2021 which contained 6655 protein families used for training the Q-matrix and
488  a further 6653 families were used for testing. In the case of PFAM families the amino acid
489  FASTA files were directly translated to the 3Di alphabet using the scripts provided by
490 Heinzinger et al.,, 2023 (https://github.com/mheinzinger/ProstT5h).

491

492 Q-matrix estimation

493 Both the AF-db and PFAM-db sets of 3Di sequnces were aligned using ginsi method within
494  Mafft (v7.515) and the 3Di scoring matrix from FoldSeek using the —aamatrix flag
495 implemented within mafft. The 3Di MSAs thus generated were then used in the QMaker
496 routine as described in Minh et al.,, 2021 (http://www.igtree.org/doc/Estimating-amino-
497  acid-substitution-models). Briefly, for each MSA the best fit substitution model was
498 initialised with GTR20 along with the best RHAS model to account for rate-heterogeneity
499  using ModelFinder (Kalyaanamoorthy et al., 2017). In the Next step we estimate a joint
500 reversible Q-matrix for all the 3Di MSAs as described.

501

502 Individual Protein/3Di sequences and Phylogenetic tree reconstructions

503 Elongation factors and Reaction Centre | homologs were identified using BLAST against the
504 NCBI non-redundant (nr) database, and then filtered with a minimum similarity threshold
505 of 50% and an e-value cutoff of 1E-5. For the ATPase phylogeny was exactly reproduced
506 from Mahendrarajahetal.,, 2023 and the same sequences used for the 3Di sequences. The
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507 aminoacid sequences were aligned using linsi and then subsequently trimmed using TrimAl
508 (v1.4) (Capella-Gutiérrez et al., 2009) with the -automated setting. Trimmed amino acid
509 alignments were then used for maximum likelihood tree estimation using 1Q-tree with the
510 best-fitmodel suggested by ModelFinder. 3Di sequences forindividual proteins trees were
511 extracted from PDB files from individual AlphaFold (v2.2.0) predictions. The best ranked
512 AlphaFold models were used to create a database using FoldSeek which allowed us to
513  extract 3Disequences from the PDB structures. For 3Di sequences translated from ProtT5,
514 the modelwas queried as described in Heinzinger et al., 2023 using amino acid sequences
515 as input. All 3Di sequences were aligned with Mafft (ginsi) using the --aamatrix option
516  specifying the 3Di scoring matrix provided by van Kempen et al., as part of FoldSeek. 3Di
517 MSAs were then used to estimate the structural ML tree as described above. For individual
518 3Ditree reconstructions |Q-tree (v2.3.0) was used to identify the best-fit model (Q.3Di.AF,
519 Q.3Di.LLM or GTR20) according to AlCc, along with rate-heterogeneity using ModelFinder.
520 Both amino acid and 3Di trees were estimated with 10000 Ultrafast bootstraps (-bb) and
521 10000 iterations for SH-test (-alrt).

522

523  Homology Modelling

524  Forthe KaiB and RPC10 proteins homologs were identified via BLAST as described above.
525 Then PDB structures or AlphaFold structures of the two conformations in question were
526 used as a template in SWISS-MODEL (Waterhouse et al., 2018). KaiB was modelled using
527 the PDB structure 2QKE in the ground state and 5JYT in the fold-switched state from
528 Thermosynechococcus elongatus. The RPC10 was homology modelled on the PdB
529  structure 7AE1 in the OUT conformation and 7AE3 in the IN conformation as described in
530 (Girbigetal., 2021). 3Di sequences were extracted from both sets of states/conformations
531 and then randomly sampled to generate a set composed approximately 50% of 3Di
532 sequences from PDB of KaiB and RPC10 in one of the two states/conformation. ML trees
533 were then estimated using these proteins sequences as described above.

534

535

536  Supplementary Figure Legends
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Supplementary Figure 1: (A-C) Average Percentage similarity between 10 independent
rounds of 3Di translations using the ProtT5 model for Elongation factors, ATPase subunits
and the Reaction Centre | proteins respectively. (D-F) Percentage similarity between 3Di
translation using the ProtT5 model and 3Di sequences extracted from AlphaFold predicted
structures for Elongation factors, ATPase subunits and the Reaction Centre | proteins
respectively. In all cases percentage similarities were calculated based on the BLOSUM
style 3Di scoring matrix on unaligned sequences. Results show that the ProtT5 model is
more precise than it is accurate when compared to AlphaFold predictions in all the three
cases tested
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Tree scale: 0.1 —————

Supplementary Figure 3: (A) 3Di (structural) ML tree on 3Di translations using ProtT5 of
Elongation factor proteins. Red, Blue, and Grey represent Archaeal, Bacterial, and
Eukaryotic groups respectively. This particular tree recovers the two-domain topology for
the tree of life albeit consistent with the 3Di (structural) ML tree estimated from 3Di
sequences extracted from AlphaFold structures.
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W Beta

F1 Alpha

Tree scale: 0.1
W1 Alnha

Supplementary Figure 4: (A) 3Di (structural) ML tree on 3Di translations using ProtT5 of
ATPase subunits. Red Blue, and Grey represent Archaeal, Bacterial, and Eukaryotic groups
respectively. V1 Alpha and F1 Beta are the catalytic subunits while V1 Beta and F1 Alpha
are non-catalytic. This tree recovers a root for the tree of life between archaea and bacteria.
It does, however, groups the respective catalytic and non-catalytic subunits of bacteria
together, as well as the catalytic and non-catalytic subunits of archaea. This would require
an independent loss of catalytic activities in one of the subunits in both the groups. This is
inconsistent with currently established theories on the origin of the rotary ATPase. For
comparison, our structural tree derived from AlphaFold predictions (Figure 3C) groups
archaeal and bacterial catalytic subunits as one monophyletic group and the non-catalytic
subunits as another.


https://doi.org/10.1101/2024.09.19.613819
http://creativecommons.org/licenses/by-nc-nd/4.0/

577
578

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

604
605

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.19.613819; this version posted September 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 5: (A) 3Di (structural) ML tree on 3Di translations using ProtT5 of
ATPase subunits. This particular tree is highly inconsistent and does not recover the split
between chlorobiales and chloroacidobiales. This is also evident from the particularly low
similarities between the 3Di translations using ProtT5 and the 3Di sequences extracted
form AlphaFold structures. Such cases highlight the importance of the quality of the
structure predictions.
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