

1 **THE DUAL-SPECIFICITY KINASE DYRK1A INTERACTS WITH THE HEPATITIS B VIRUS**

2 **GENOME AND REGULATES THE PRODUCTION OF VIRAL RNA**

3 Florentin Pastor¹, Emilie Charles¹, Chiara Di Vona³, Maëlys Chapelle¹, Michel Rivoire⁴,
4 Guillaume Passot⁵, Benoit Chabot², Susana de la Luna^{3,6}, Julie Lucifora¹, David Durantel¹,
5 Anna Salvetti^{1*}

6 ¹ International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude
7 Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France

8 ² Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health
9 Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.

10 ³ Genome Biology Program, Centre for Genomic Regulation (CRG), and CIBER of Rare
11 Diseases, Barcelona, Spain.

12 ⁴ INSERM U1032, Centre Léon Bérard (CLB), Lyon, France.

13 ⁵ Service de chirurgie générale et oncologique, Hôpital Lyon Sud, Hospices Civils de Lyon Et
14 CICLY, EA3738, Université Lyon 1, Lyon, France

15 ⁶ Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.

16

17

18 * corresponding author: anna.salvetti@inserm.fr

19

20 Keywords: HBV, DYRK1A, cccDNA, transcription, virus-host interaction,

21

22 **ABSTRACT**

23 The genome of Hepatitis B virus (HBV) persists in infected hepatocytes as a nuclear
24 episome (cccDNA) that is responsible for the transcription of viral genes and viral rebound,
25 following antiviral treatment arrest in chronically infected patients. Beside pegylated
26 interferon-alpha, there is currently no clinically approved therapeutic protocol able to target
27 cccDNA [1]. The development of alternative strategies aiming at permanently abrogating
28 HBV RNA production requires a thorough understanding of cccDNA transcriptional and post-
29 transcriptional regulation. In a previous study, we discovered that 1C8, a compound that
30 inhibits the phosphorylation of some cellular RNA-binding proteins (RBPs), could decrease
31 the level of HBV RNAs. Here, we aimed at identifying kinases responsible for this effect.
32 Among the kinases targeted by 1C8, we focused on DYRK1A, a dual-specificity kinase that
33 controls the transcription of cellular genes by phosphorylating transcription factors, histones,
34 chromatin regulators as well as RNA polymerase II. The results of a combination of genetic
35 and chemical approaches using HBV-infected hepatocytes, indicated that DYRK1A positively
36 regulates the production of HBV RNAs. In addition, we found that DYRK1A associates with
37 cccDNA, and stimulates the production of HBV nascent RNAs. Finally, reporter gene assays
38 showed that DYRK1A up-regulates the activity of the HBV enhancer 1/X promoter in a
39 sequence-dependent manner. Altogether, these results indicate that DYRK1A is a proviral
40 factor that may participate in the the HBV life cycle by stimulating the production of HBx, a
41 viral factor absolutely required to trigger the complete cccDNA transcriptional program.

42 **INTRODUCTION**

43 Chronic infection by Hepatitis B virus (HBV) is due to the stable persistence and activity of
44 the viral genome, called cccDNA (for covalently-closed circular DNA), within the nucleus of
45 infected hepatocytes. Clinically accepted treatments are represented mostly by nucleoside
46 analogs, which target viral reverse-transcription and reduce viremia, but rarely lead to a
47 stable functional cure. Indeed, these compounds do not affect cccDNA stability and
48 transcriptional activity. As a consequence, the continuous production of viral RNAs and
49 proteins allows viral replication to resume off-treatment, and, more importantly, contributes to
50 immune escape mechanisms and liver disease progression [2,3]. Despite some experimental
51 proof-of-concept approaches [1,4], *in vivo* therapies aiming at eradicating HBV cccDNA and
52 other replication intermediates from infected hepatocytes are unrealistic to date [1].
53 Therefore, strategies directed to permanently silence the viral genome and/or destabilize the
54 viral RNAs, requiring an in-depth understanding of cccDNA transcriptional and post-
55 transcriptional regulation, are currently investigated.

56 After binding to its main receptor and co-receptors on the hepatocyte membrane, HBV
57 particles are internalized within endosomes from which, the viral nucleocapsids are released
58 later on. Subsequently, these nucleocapsids are directed to the nuclear membrane,
59 translocate through the nuclear pore, and finally disassemble within the inner nuclear basket
60 [5,6]. This process results in the release into the nucleoplasm of the viral relaxed circular
61 DNA genome (rcDNA), with a covalently-attached polymerase, and of 240 copies of the HBc
62 (Core) protein, the unique capsid component. Once in the nucleus, the rcDNA is repaired by
63 cellular factors, chromatinized, and loaded with cellular and viral proteins to form cccDNA,
64 the viral double-stranded DNA episome responsible for the production of viral RNAs [7]. This
65 3.2 Kb viral genome contains 2 enhancers (enhancer 1 and 2) and 4 promoters
66 (preCore/Core, preS1, preS2, and X) that harbor binding sites for several ubiquitous and
67 hepatocyte-specific transcription factors, and drive the transcription of 5 unspliced and
68 several spliced RNAs [8-10]. Seven viral proteins are translated from unspliced transcripts
69 and are sufficient to initiate productive replication. Among them, HBx is a 154 amino-acid

70 protein translated from mRNAs produced from enhancer 1/X promoter with diverse
71 transcription initiation sites [11]. This viral protein is absolutely required to initiate and
72 maintain cccDNA in a transcriptionally active state [12,13]. The reason for this requirement
73 remained obscure for a long time until the discovery that, in the absence of HBx, cccDNA is
74 bound and silenced by the Smc5/6 cohesin complex. The transcriptional repression of
75 cccDNA is relieved by HBx by hijacking the CUL4A E3 ubiquin ligase to induce the
76 degradation of the Smc5/6 complex [14-16].

77 In addition to HBx, the viral HBc protein, translated from the pregenomic RNA (pgRNA)
78 transcribed from the enhancer 2/preCore/Core promoter, is also suspected of playing
79 important regulatory roles in the production of viral RNAs [17]. Indeed, besides its essential
80 role to form capsids in the cytoplasm, HBc is also present in the nucleus where, as HBx, it
81 associates with cccDNA [18,19]. The consequences of this interaction on viral transcription
82 are, however, still a matter of debate [20-23]. The recent observations that capsid-derived
83 HBc stably associates with the viral genome once released into the nucleus [24], and that it
84 interacts with Hira, a histone variant deposited on cccDNA during the chromatinization
85 process [25], additionally suggests that it may be involved during cccDNA repair and/or
86 chromatinization.

87 In a previous study, we found that HBc interacts with several cellular RBPs within the
88 hepatocyte's nucleus raising the hypothesis that it may hijack their activities to control viral
89 replication [26]. In the same study, we discovered that a drug named 1C8, capable of
90 inhibiting the phosphorylation of some RBPs associated with HBc, could reduce the level of
91 nascent HBV RNAs [26]. These results suggested that one or more protein kinases targeted
92 by this 1C8 might control the synthesis of viral RNAs by phosphorylating cellular and/or viral
93 proteins.

94 The objective of the current study was to identify the kinase(s) targeted by 1C8 responsible
95 for its (their) effect on cccDNA transcriptional activity. Our results pointed to DYRK1A as one
96 of these kinases. DYRK1A is a pleiotropic serine/threonine kinase that, among other
97 activities, regulates the transcription of cellular genes by associating with chromatin and

98 phosphorylating histones, chromatin regulators as well as the carboxy-terminal domain of the
99 RNA polymerase II (RNA Pol II) [27-29]. DYRK1A also participates in nuclear condensates
100 associated to transcription elongation [30]. We show that DYRK1A interacts with cccDNA
101 and up-regulates the transcription of viral RNAs. In addition, our data strongly suggest that
102 DYRK1A transcriptional activity is mediated by the recognition of a consensus motif within
103 enhancer I/X promoter region that drives HBx production. Therefore, we propose that
104 DYRK1A is a novel cellular proviral factor that may participate HBV life cycle by stimulating
105 the transcription of HBx, a viral factor required to unleash the complete HBV transcriptional
106 program leading to productive replication.

107 **MATERIALS AND METHODS**

108 **Cell culture and infection**

109 HepaRG cells were cultured, differentiated, and infected by HBV as previously described
110 [31]. Primary human hepatocytes (PHHs) were freshly prepared from human liver resection
111 obtained from the Centre Léon Bérard and Hôpital Lyon Sud (Lyon) with French ministerial
112 authorizations (AC 2013-1871, DC 2013 – 1870, AFNOR NF 96 900 sept 2011) as
113 previously described [32]. To generate HepaRG cells lines over-expressing HA-tagged
114 human DYRK1A and DYRK1B (wild-type and kinase-dead versions (KR), in which the ATP
115 binding Lys179 was replaced by Arg,), and FLAG-tagged SRPK1 [33], the open reading
116 frame of each kinase was inserted into the pLenti4/TO lentiviral vector plasmid, under the
117 control of the minimal CMV/TetOn promoter. Lentiviral particles generated from these
118 plasmids were used to transduce HepaRG-TR cells [13]. Transduced cells were selected
119 using blasticidin (10 µg/mL) and zeocin (100 µg/mL), amplified and frozen as polyclonal
120 lines. HuH7-NTCP cells were cultivated in 10% fetal calf serum supplemented DMEM (4.5
121 g/L glucose) [34]. HBV genotype D inoculum (ayw subtype) was prepared from HepAD38
122 [35] cell supernatant by polyethylene-glycol-MW-8000 (PEG8000, Sigma) precipitation (8%
123 final) as previously described [36]. The titer of endotoxin free viral stocks was determined by
124 qPCR. Cells were infected overnight in a media supplemented with 4% final of PEG, at
125 indicated multiplicity of infections (MOIs), as previously described [31]. Measure of secreted
126 HBs and HBe antigens was performed by chemo-luminescent immune assay (AutoBio,
127 China), following manufacturer's instructions and expressed as international units/mL (IU/mL)
128 and Paul Erlich Internation units/mL (PEIU/mL), respectively.

129

130 **Chemical compounds**

131 Unless otherwise specified, chemical reagents, drugs, antibiotics were purchased from
132 Sigma Aldrich. Tenofovir (TFV) was a kind gift of Gilead Sciences (Foster city, USA). The
133 core assembly modulator (CAM) used in the experiments was previously described [37], and
134 resynthesized by AI-Biopharma (Montpellier, France). 1C8, *i.e.* 1-Methyl-N-(5-

135 nitrobenzo[d]isothiazol-3-yl)-4-oxo-1,4-dihdropyridine-3-carboxamide, was synthesized and
136 purified at 99% by AGV (Montpellier, France). RG7834 [38], a molecule that destabilizes
137 HBV RNAs, was synthetized by Al-Biopharma (Montpellier, France). AZ191 was purchased
138 from SelleckChem, IFN- α (Roferon) from Roche, SRPIN340 and TG003 from MedChem
139 Express. DB18 was a kind gift from René Grée (University of Rennes, France) ([39]).

140

141 **siRNA Transfection**

142 Differentiated HepaRG (dHepaRG) cells or PHHs seeded into a 24-well plate were
143 transfected with 25 nM of siRNA using Lipofectamine RNAiMax (Life Technologies), following
144 manufacturer's instructions: siDYRK1A (Dharmacon SmartPool L-004805-00), siDYRK1B
145 (Dharmacon SmartPool L-004806-00), siCLK2 (Dharmacon J-004801-10), siSRPK1
146 (Dharmacon SmartPool: L-003982-00) and siControl (siCTL) (Dharmacon D-001810).

147

148 **Viability/cytotoxicity assays.**

149 Neutral red uptake and sulforhodamine B assays were performed to estimate cell
150 viability/cytotoxicity as previously described [40]. Puromycin (Puro), was used as a positive
151 control at a concentration of 10 μ M.

152

153 **Nucleic acid extraction and analysis**

154 HBV RNAs and DNA were extracted from cells with the Nucleospin RNA (Macherey-Nagel)
155 and MasterPureTM Complexe Purification Kit (BioSearch Technologies) kit without digestion
156 with proteinase K [41], respectively, according to the manufacturer's instruction. RNA reverse
157 transcription was performed using Maxima First Strand cDNA Synthesis kit (Thermofisher).
158 Quantitative PCR for HBV were performed using HBV specific primers and normalized to
159 PRNP or RPLP0 housekeeping genes as previously described [42]. Pre genomic RNA
160 (pgRNA) was quantified using the TaqMan Fast Advanced Master Mix (Life Technologies)
161 and normalized to GUS B cDNA levels. HBV cccDNA was quantified from total DNA by
162 TaqMan qPCR analyses and normalized to β -globin DNA level, as previously described [43].

163 Unless otherwise stated, results are expressed as the mean normalized ratio +/- SD, of 3
164 independent experiments, each performed in triplicate.

165

166 **Western blot analyses**

167 Proteins were resolved by SDS-PAGE and then transferred onto a nitrocellulose membrane.
168 Membranes were incubated with the primary antibodies corresponding to the indicated
169 proteins. Proteins were revealed by chemiluminescence (Super Signal West Dura Substrate,
170 Pierce) using a secondary peroxidase-conjugated antibody (Dako) at a dilution of 1:10000.
171 Primary antibodies used were CLK1 (Clinisciences, ARP52021, 1:1000), CLK2 (Abcam,
172 Ab65082, 1:1000), SRPK1 (Abcam, Ab131160, 1:1000), DYRK1A (Abcam Ab69811, 1:1000
173 and SantaCruz sc-100376, 1:1000), DYRK1B (Cell Signaling 5672, 1:1000), HBc (provided
174 by A. Zlotnick (Indiana University, USA), 1:40000), β -tubulin (Abcam 6046, 1:10000), β -actin
175 (Sigma A2228, 1:2000), cyclin D1 (Cell Signaling 55506, 1:2000), HA (Abcam 130275;
176 1:1000), and FLAG (Sigma F1804; 1:1000).

177

178 **Native cccDNA-immunoprecipitation (cccDNA-IP) and ChIP**

179 cccDNA was immunoprecipitated from frozen cell pellets following a modified native
180 chromatin-immuno-precipitation (ChIP) protocol as previously described [24]. Antibodies (2
181 μ g) used were: DYRK1A (Abcam 69811 and Sigma D1694), HBc (Life Invitrogen MA1-7609),
182 total RNA Pol II (Diagenode C15200004), RNA Pol II phosphor-Ser5 (Abcam Ab5131), RNA
183 Pol II phosphor-Ser2 (Abcam Ab5095) and control IgG (Cell Signaling 2729).

184

185 **Luciferase assays**

186 Huh7.NTCP cells seeded in a 48-well plates were transfected using TransIT-LT1 transfection
187 reagent (Mirus) and lysed 72 hours later using the Bright-Glo Luciferase reagent (Promega),
188 according to the manufacturer's instructions. Luciferase activity was quantified on a
189 Luminoskan (Life Technologies). Plasmids expressing luciferase under the control of HBV

190 promoters were purchased from Addgene: preC/C_Luc (pHBV_Luc; ref:71414); pX_Luc
191 (pHBV-X/EnhI-Luc; ref:71418). Mutations M1 (CAGGTGcAac) and M2 (CAGGTGTACA) in
192 pX_Luc were introduced using Q5 site-directed mutagenesis kit (New England Biolabs).
193 Plasmids expressing DYRK1A or DYRK1A_KR under the control of the CMV promoter were
194 previously described [29].

195

196 **Run-ON**

197 HBV nascent RNAs were quantified as previously described [44,45]. Briefly, cells were
198 incubated for 2h at 37°C with 5-bromouridine (BrU, Sigma), before RNA extraction and
199 immunoprecipitation using an anti-BrdU antibody (BD Pharmingen) and Dynabeads coated
200 with anti-mouse IgG (Life Technologies), overnight at 4°C. Captured RNAs were then eluted,
201 concentrated and quantified by RT-qPCR. Total RNAs, extracted before IP were similarly
202 quantified by RT-qPCR. Controls were provided by cells treated with actinomycin D
203 (Invitrogen, 1 µM; 1 h before labeling), RG7834 (0.05 µM, added twice 5 and 3 days before
204 labeling) or cells incubated in the absence of BrU.

205

206 **Statistical analysis**

207 Statistical analyses were performed using the GraphPad Prism 9 software and a two-tailed
208 Mann-Whitney non-parametric tests. In graph bars, error bars represent standard deviation
209 (SD) unless otherwise indicated. A p value ≤ 0.05 was considered as significant: *, p value \leq
210 0.05; **, p value ≤ 0.01 ; ***, p value ≤ 0.001 .

211 **RESULTS**

212 **1C8 targets five CMGC kinases expressed in human hepatocytes**

213 Our previous results indicated that the compound 1C8, an inhibitor of the phosphorylation of
214 some cellular RBPs [46,47], downregulated the synthesis of HBV RNAs without affecting
215 cccDNA levels [26]. This observation suggested that one or more kinases involved in RBPs
216 phosphorylation had a proviral function on HBV transcription. A kinase profiler assay
217 conducted using 1C8 (Eurofins Pharma Discovery) identified 18 different kinases highly
218 inhibited by the compound (Figure S1) [48]. Among them, the members of the Cdc2-like
219 kinases (CLK) family CLK1, CLK2 and CLK4, and those of the dual-specificity tyrosine
220 phosphorylation-regulated kinases (DYRKs) family DYRK1A and DYRK1B, were found. All
221 these kinases that belong to the CMGC group of the eukaryotic kinome [49,50],
222 phosphorylate RBPs, in particular SR proteins, and their inhibition has been proposed to
223 have therapeutic potential [51,52]. Interestingly, the serine-arginine protein kinases (SPRKs)
224 family that also belongs to the CMGC group and are well-known regulators of SR proteins,
225 were not found as 1C8 targets.

226 One first requirement for the involvement of these kinases in HBV life cycle is their
227 expression in hepatocytes. Thus, we analyzed the level of expression of these kinases in the
228 human hepatocyte cell line HepaRG, using either proliferating or differentiated (dHepaRG)
229 cells, and in primary human hepatocytes (PHHs), whether infected or not with HBV. We
230 detected the expression of CLK1 and CLK2 mRNAs (CLK4 was not measured as it is highly
231 similar to CLK1) in HepaRG cells, irrespectively of their differentiation or infectious status. In
232 comparison, the mRNA levels of DYRK1A and DYRK1B were much lower (Figure S2A).
233 Similar results were observed in PHHs and in human liver biopsies (Figure S2B and C).
234 Moreover, the four kinases were detected at the protein level in both cell types (Figure 1).
235 We conclude that the four kinases targeted by 1C8 are expressed in human hepatocytes.

236

237

238

239 **Inhibitors targeting DYRK1A/B, but not CLK kinases, reduce HBV replication**

240 In order to identify which CLK/DYRK kinase(s) targeted by 1C8 potentially regulates HBV
241 replication, the effect of inhibitors of these kinases was analyzed on the production of HBV
242 RNAs and the secretion of HBs and HBe antigens in HBV-infected PHHs, two traits
243 commonly used to measure HBV productive infection (Figure 2). As positive controls, we
244 used IFN- α , an inhibitor of HBV transcription [53], which reduces HBV RNAs, and a class I
245 CAM, which prevents capsid assembly [54], and also reduces HBe secretion (Figure 2B)
246 [37]. Treatment of cells with either SRPIN340 [55], an inhibitor of the kinase SRPK1, not
247 targeted by 1C8, or with TG003, a well-known CLK inhibitor [56], had no effect on HBV RNA
248 production or HBs and HBe secretion (Figure 2B). [55] The absence of effect of inhibitors
249 targeting CLKs was further confirmed using DB18 (Figure S3), a compound that selectively
250 targets CLK1/4 and CLK2 but not DYRK1A [39]. In contrast, both 1C8 and AZ191, a DYRK1
251 kinases inhibitor but with no effect on CLKs [57], induced a decrease in HBV RNA levels
252 (Figure 2B and S3). The effect of AZ191 was stronger than that of 1C8 (Figure 2B), with no
253 evidence of cell toxicity at the dose of 10-20 μ M used (Figure S4). The lower effect of 1C8
254 could be due to the poor solubility of 1C8 and/or to a stronger susceptibility to the hepatocyte
255 detoxifying activity. Altogether, these results pointed towards DYRK1A/1B as potential
256 kinases able to directly or indirectly regulate HBV replication.

257

258 **Production of HBV RNAs responds to DYRK1A/DYRK1B levels**

259 To provide further support to the results with the kinase inhibitors, we set up knock-down
260 (KD) experiments in HBV-infected dHepaRG cells, using a well-established protocol in our
261 lab, consisting in two successive siRNAs transfections followed by downstream analyses 10
262 days post-transfection (dpt) (Figure S5A). Unfortunately, despite several attempts using
263 different sources of siRNA, efficient KD of CLK1 mRNA was never achieved in hepatocytes,
264 precluding further analysis with this kinase. It is possible that a previously described stress-
265 responsive mechanism, able to rapidly compensate for the loss of CLK1 [58], may be the

266 cause of this failure [58]. In contrast, CLK2 and SRPK1 expression was reduced in HBV-
267 infected dHepaRG cells upon siRNA treatment, but no effect on HBV RNAs was observed
268 (Figure S5B and C). Transfection of siRNAs targeting either DYRK1A or DYRK1B resulted in
269 the visible death of most cells between 7- and 10-dpt (Figure S6). This cytopathic effect led
270 us to modify the depletion protocol to investigate effects at earlier time-points (Figure S7A),
271 during which no toxic effects were observed (Figure S7B and C), but with KD efficiency
272 gradually increasing (Figure S7D). In these conditions, total viral RNA levels remained
273 unaffected when targeting DYRK1B, but they were clearly reduced when targeting DYRK1A
274 (Figure S7E). Importantly, DYRK1A KD induced not only a significant decrease in total HBV
275 RNAs, but also in pgRNA and downstream parameters (HBe and HBs secretion), without
276 affecting cccDNA levels (Figure 3).

277 To confirm this result, the effect of DYRK1A KD was also assessed in HBV-infected PHHs, in
278 which the effect of DYRK1A KD could be evaluated at longer times after transfection due to
279 the lack of toxicity of the siRNA treatment with good depletion efficiency (Figure S8A and B).
280 Surprisingly, discordant results were obtained using this cell type. For 3 out of 7 total
281 experiments, each performed with PHHs from independent donors, KD of DYRK1A resulted
282 in a decrease of viral RNAs without affecting cccDNA levels (Figure S8C and D), in
283 agreement with the results in dHepaRG cells. However, in four of these experiments, the
284 opposite result was observed despite similar levels of DYRK1A KD (Figure S8E and F). One
285 possibility for these discordant results could be related to compensatory effects between
286 DYRK1A and its close paralog DYRK1B [49,50], effects that might have variable penetrance
287 given that PHHs are from different donors. In fact, an increase in DYRK1B levels in response
288 to silencing DYRK1A has been shown in a different physiological context [59]. To test this
289 possibility, we quantified the levels of DYRK1A and DYRK1B mRNAs in control and KD cells
290 by RT-qPCR. The analyses revealed that DYRK1B mRNA was up-regulated in PHHs
291 transfected with siRNA against DYRK1A. In addition, the up-regulation of DYRK1B mRNA
292 was significantly higher in PHHs where HBV RNAs increased following DYRK1A KD,
293 compared to PHHs where the opposite effect was observed (Figure S9A), suggesting a

294 possible positive correlation between the level of DYRK1B compensation and the effect of
295 DYRK1A KD on HBV RNAs. The increase in DYRK1B upon DYRK1A KD was also observed
296 in dHepaRG cells but at a relatively lower level compared to PHHs, despite a similar
297 efficiency in DYRK1A KD (Figure S9B), highlighting an additional layer of complexity linked
298 to the cell line used. In contrast, DYRK1A mRNA levels were not upregulated upon DYRK1B
299 KD in either dHepaRG cells or PHH (Figure S9B and S10B). Importantly, the variations in
300 DYRK1B mRNA were confirmed at the protein level (Figure S10A). Interestingly, in those
301 PHHs where DYRK1B compensation upon DYRK1A KD was higher, DYRK1B KD, either
302 alone or in combination with DYRK1A, induced a decrease in HBV RNA (Figure S10C).
303 Altogether, these results indicated a regulatory cross-talk between DYRK1B and DYRK1A
304 whereby DYRK1A depletion is compensated by an increase in DYRK1B mRNA, either due to
305 the existence of DYRK1A-responsive elements within the DYRK1B promoter region or to
306 DYRK1A-dependent cellular events that impact on DYRK1B transcription and/or mRNA
307 stability. More importantly, the level of DYRK1B compensation provided a rational
308 explanation for the divergent results observed upon DYRK1A KD in PHHs.
309 Next, we wondered whether DYRK1A could stimulate HBV RNAs when overexpressed. To
310 this end, HepaRG cells over-expressing either a wild-type (wt) DYRK1A or a kinase-dead
311 version (DYRK1A_KR), under the control of a tetracyclin (Tet)-inducible promoter were
312 developed (Figure 4A and B). Notably, over-expression of DYRK1A_WT, but not of SRPK1,
313 led to an increase in HBV parameters, either intracellular viral RNAs or extracellular HBs and
314 HBe antigens (Figure 4C-F). This effect was partially dependent on DYRK1A catalytic
315 activity, as overexpression of the kinase-dead version induced a much lower increase
316 (Figure 4C-F), further supporting the kinase activity dependence showed by the experiments
317 with the inhibitors. Interestingly, overexpression of DYRK1B induced only a modest increase
318 in HBV pgRNA but not in total RNAs, indicating a lower capacity to modulate viral RNAs
319 compared to DYRK1A (Figure S11).
320 Altogether, the loss-of-function and gain-of-function studies indicate that DYRK1A could
321 exert a proviral function by increasing the levels of HBV RNAs, and that its catalytic activity is

322 involved in this function. They also highlight a complex cell-specific compensatory
323 mechanism between DYRK1A and DYRK1B expression, and, at least partially, redundant
324 functions on HBV replication.

325

326 **DYRK1A associates to HBV cccDNA and up-regulates transcriptional activity from
327 enhancer 1/HBx promoter region**

328 Previous studies indicated that DYRK1A promotes the transcription of a set of cellular genes
329 by associating to chromatin at RNA Pol II promoter regions and close to transcriptional start
330 sites (TSS) [29]. We therefore investigated whether DYRK1A could associate to HBV
331 cccDNA using our recently optimized native ChIP protocol [24]. This protocol is efficient in
332 detecting the presence of HBc bound to cccDNA (Figure 5A), and showed that DYRK1A was
333 associated to cccDNA in HBV-infected dHepaRG cells (Figure 5A). The same result was
334 obtained in HBV-infected PHHs with two different antibodies to DYRK1A (Figure 5B and C).
335 These results indicated that DYRK1A interacts with cccDNA, either directly or indirectly via
336 other cellular and/or viral factors.

337 DYRK1A recruitment to chromatin is mediated by a 10 nucleotides sequence
338 TCTCGCG(A/G)(G/T)(A/G) located near TSSs [29,60] (Figure 6A). Association of DYRK1A
339 to such sites regulates the transcription of downstream genes by phosphorylating the C-
340 terminal domain (CTD) of RNA Pol II [29]. Interestingly, a sequence partially matching the
341 DYRK1A motif is present in the enhancer 1/X promoter region of the HBV genome, upstream
342 of the HBx TSSs (Figure 6A). To investigate whether the enhancer 1/X promoter could be a
343 target of DYRK1A, reporter assays were conducted with constructs containing the luciferase
344 cDNA under the control of either the enhancer 1/X promoter (pX_Luc) regions or enhancer
345 2/preCore/Core (preC/C_Luc) as a negative control, co-transfected together with constructs
346 expressing either DYRK1A wt or DYRK1A-KR. As shown in Figure 6B, DYRK1A expression
347 significantly increased the activity of the enhancer 1/X promoter reporter, but not that of the
348 enhancer 2/preCore/Core reporter. Interestingly, a lower but still significant enhancement
349 was observed following transection of the plasmid expressing the DYRK1A kinase-dead

350 version. In this regard, it is worth noting that a transcriptional effect independent of the
351 DYRK1A kinase activity was observed in one-hybrid assays [29], suggesting a possible
352 scaffolding activity. To further determine if the DYRK1A transactivating activity was mediated
353 by the putative DYRK1A motif within enhancer 1/X promoter, two different mutant motifs
354 were generated (Figure 6A). Both pX_M1_Luc and pX_M2_Luc constructs no longer
355 responded to DYRK1A (Figure 6C), indicating that the enhancing activity of DYRK1A did
356 depend on the presence of the motif characteristic of its recruitment to cellular chromatin.
357 Altogether, these results indicated that DYRK1A associates to cccDNA and strongly
358 suggested that its effect on HBV RNAs was, at least in part, linked to its capacity to
359 recognize a sequence matching the DYRK1A motif present on the enhancer 1/HBx promoter
360 region.

361

362 **Over-expression of DYRK1A up-regulates the transcription of HBV RNAs**

363 To investigate whether DYRK1A acts at the transcriptional level, RUN-On assays were
364 performed. For this, BrU-labeled RNAs were extracted from HBV-infected dHepaRG cells,
365 with DYRK1A (WT or KR versions) expression induced by Tet treatment. To proof that the
366 experimental set up does detect nascent RNAs, we show that treatment of cells with
367 RG7834, a compound that degrades HBV RNAs [38,44], had no effect on nascent RNAs,
368 whereas actinomycin D, an inhibitor of RNA Pol II, blocked their synthesis (Figure 7). As
369 shown above, over-expression of DYRK1A wt increased total HBV RNAs, whereas its kinase
370 inactive version had no effect (Figure 7, left panel). Importantly, up-regulation of nascent
371 HBV RNAs was observed only when the expression of active DYRK1A was induced (Figure
372 7, right panel), strongly suggesting that the DYRK1A-dependent effect takes place at the
373 transcriptional level.

374 **DISCUSSION**

375 So far, only few cellular kinases were reported to modulate the HBV life cycle. In addition,
376 most if not all of them, exert their effects at late steps of the infectious cycle, during capsid
377 assembly and pgRNA packaging [17]. This is the case of CDK2, PKC and PLK1, which
378 phosphorylate the HBc protein during capsid assembly in the cytoplasm [61-64]. In this
379 study, we asked whether cellular kinases could also regulate the HBV life cycle by impacting
380 on the production of HBV RNAs. This question arose from the observation that 1C8, a
381 compound able to dephosphorylate some RBPs, including SR proteins involved in the HBV
382 life cycle, could down-regulate the production of nascent HBV RNAs [26,47].

383 Among the kinases identified as the main 1C8 targets *in vitro*, we focused on DYRK1A. This
384 kinase belongs to the DYRK family, within the CMGC group of kinases, a family of
385 constitutively active serine/threonine kinases that participate in a wide variety of processes
386 involved in cell growth, differentiation and transcription [49,50]. DYRK1A is an essential gene
387 in mammals, whose alterations in expression have been associated to different human
388 diseases including Down syndrome when present in trisomy or a neurodevelopmental
389 syndrome when present in haploinsufficiency [65]. It is a pleiotropic kinase regulating a
390 variety of cellular processes including transcription and splicing. DYRK1B is the closest
391 paralog of DYRK1A within the family, sharing a high degree of homology at the primary and
392 secondary structure, with activities connected mostly to cancer development [66]. DYRK1A
393 and DYRK1B have cytoplasmic and nuclear localization but, only DYRK1A localizes to
394 nuclear speckles, the major storage sites of RBPs, and its over-expression induces speckle
395 disassembly [33]. Not surprisingly, DYRK1A can phosphorylate RBPs, among which several
396 SR proteins [52].

397 Our results show that the genetic manipulation of DYRK1A levels in HBV-infected
398 hepatocytes modulates the production of HBV RNAs without affecting cccDNA levels,
399 suggesting a positive, stimulatory role. This role is less evident for DYRK1B, though our
400 results indicate that the cellular context might be relevant for this kinase. In fact, we found
401 that depletion of DYRK1A induces a compensatory effect on DYRK1B levels, which could

402 partially compensate for DYRK1A loss, thereby affecting the final impact on HBV RNA
403 production. The kinase activity of DYRK1A is involved in the process based on the
404 concurring results of the inhibitory role of small molecule inhibitors and the lack of activity of
405 a kinase-dead version of DYRK1A on HBV parameters.

406 Previous studies have shown that DYRK1A is recruited to the proximal promoter of several
407 cellular genes characterized by the presence of a common 10 nucleotides motif [29]. We
408 found that DYRK1A associates to the viral genome, cccDNA, in infected hepatocytes.
409 Recruitment to cccDNA could be dependent on the presence of a DYRK1A motif within the
410 enhancer 1/X promoter as shown by the results with reporter assays mutated for the
411 consensus sequence. This potential binding site is adjacent to a previously described
412 interferon-stimulated response element (ISRE) [53], opening the possibility of a functional
413 cross-talk between the activity of DYRK1A and the interferon pathway. The alignment of
414 more than ten thousand HBV sequences derived from all genotypes
415 (<https://hbvdb.lyon.inserm.fr/HBVdb/>) indicates that this site is conserved among all
416 genotypes, and further support its role as a general regulatory element. These findings do no
417 exclude that DYRK1A may associate to cccDNA via other target sequences. Additional
418 techniques to precisely identify the DYRK1A association site within the cccDNA, such as the
419 recently developed Cut&Run method [67], could confirm our finding. Additionally, targeted
420 mutations in cccDNA should also be performed to determine whether the effect of DYRK1A
421 on HBV life cycle is dependent on its association to the viral genome.

422 The results showed a good correlation between the activity of DYRK1A and the production of
423 nascent HBV RNAs or the stimulation of reporters containing the DYRK1A motif, supporting
424 a role for the enzymatic activity of the kinase. However, we detected a small stimulatory
425 activity independent of the kinase activity, which has been also observed previously [29].
426 This could be due to the capacity of DYRK1A to function as a scaffold protein to recruit other
427 factors involved in the processes.

428 In any case, the Run-On experiments indicated that DYRK1A stimulates HBV transcription.
429 We envision several scenarios that are not mutually exclusive. First, DYRK1A may regulate

430 the phosphorylation status of the RNA Pol II CTD on cccDNA, thereby contributing to
431 increase transcription initiation and/or elongation. Second, transcriptional regulation by
432 DYRK1A could result from its interaction with chromatin associated factors shown to be
433 involved in cccDNA transcriptional regulation, such as the histone acetyl transferase
434 p300/CBP or the transcriptional repressor HP1 [12,27,28,68,69]. Third, DYRK1A may exert
435 its effect on HBV by targeting some cellular RBPs, as it does phosphorylate several splicing-
436 related proteins. Finally, the DYRK1A effect might require some viral factors. In this regard,
437 HBc preferentially associates to CpG island II within cccDNA, a region which partially covers
438 enhancer 1/X promoter, an association that correlates with a permissive epigenetic state
439 [20,21]. Future experiments should investigate whether HBc and DYRK1A can interact in
440 infected hepatocytes as well as consequences of this interaction on HBc phosphorylation
441 and association to viral DNA and RNAs.

442 A major question raised this study concerns the role of DYRK1A during the HBV life cycle.
443 We are aware that the effect of DYRK1A on the level of HBV RNAs was moderate (always
444 lower than 2-fold), arguing against a major function during the productive viral cycle.
445 However, this level of enhancement may be important for the onset of HBV transcription
446 once the cccDNA is formed in the nucleus, in particular to fire transcription of HBx mRNAs,
447 an event that is required for the initiation of the complete HBV transcriptional program
448 [12,13]. Indeed, since the HBx protein is not present within the viral capsids, some basal
449 level of HBx mRNA synthesis has to occur, early after infection, in order to induce Smc5/6
450 degradation and de-repress the HBV genome [14-16]. While some studies have reported the
451 presence of HBx mRNA within secreted particles, no evidence has been provided so far to
452 show that these mRNA molecules are transferred into cells and produce HBx [11,70,71].
453 Therefore, it is possible that a low and transient stimulation of HBx mRNA transcription early
454 upon cccDNA formation may lead to the synthesis of a basal level of HBx sufficient to induce
455 Smc5/6 degradation [72]. In this regard, it is interesting to note that in a recent phospho-
456 proteomic analysis we found that DYRK1A was among the top list of kinases whose activity
457 is predicted to be up-regulated upon HBV infection [73].

458 In conclusion, this study describes for the first time the involvement of DYRK1A, a kinase
459 which controls the expression of several cellular genes, in the regulation of HBV RNAs
460 production and strongly suggests that this nuclear kinase may be involved in the early control
461 of HBV transcription. Further deciphering the exact role of DYRK1A during the HBV life cycle
462 as well as its molecular targets will be important to further understand the factors which are
463 critical to unleash the HBV transcriptional program and to develop strategies to counteract it.

464

465 **ACKNOWLEDGMENTS**

466 We would like to thank Maud Michelet and Anëlle Dubois for their help for PHH isolation, as
467 well as the staff from Pr. Michel Rivoire's and Dr. Guillaume Passot's surgery rooms for
468 providing us with liver resections.

469

470 **FUNDING**

471 This work was funded by Institut National de la Santé et de la Recherche Médicale
472 (INSERM), the Centre National de la Recherche Scientifique (CNRS), and Université Claude
473 Bernard Lyon 1 (UCBL). It was also supported by grants from the Ministry of Science and
474 Innovation (PID2022-139904NB to SdIL], Generalitat de Catalunya (2021SGR01229 and
475 CERCA Programme to SdIL), Agence Nationale de Recherche sur le Sida et les hépatites
476 virales (ANRS, ECTZ11892 to AS) and fellowship to FP (ANRS, ECTZ119385). BC is
477 supported by grant from CIHR.

478 **REFERENCES**

479 1. Lucifora J, Protzer U. Attacking hepatitis B virus cccDNA--The holy grail to hepatitis B
480 cure. *J Hepatol.* 2016;64(1 Suppl):S41-8. doi: 10.1016/j.jhep.2016.02.009. PubMed PMID:
481 27084036.

482 2. Zeisel MB, Lucifora J, Mason WS, Sureau C, Beck J, Levrero M, et al. Towards an
483 HBV cure: state-of-the-art and unresolved questions--report of the ANRS workshop on HBV
484 cure. *Gut.* 2015;64(8):1314-26. doi: 10.1136/gutjnl-2014-308943. PubMed PMID: 25670809.

485 3. Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus
486 infection: towards a cure. *Nat Rev Drug Discov.* 2019. Epub 2019/08/29. doi:
487 10.1038/s41573-019-0037-0. PubMed PMID: 31455905.

488 4. Martinez MG, Smekalova E, Combe E, Gregoire F, Zoulim F, Testoni B. Gene Editing
489 Technologies to Target HBV cccDNA. *Viruses.* 2022;14(12). Epub 2022/12/24. doi:
490 10.3390/v14122654. PubMed PMID: 36560658; PubMed Central PMCID:
491 PMCPMC9787400.

492 5. Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. *Antiviral Res.*
493 2020;182:104925. Epub 2020/09/01. doi: 10.1016/j.antiviral.2020.104925. PubMed PMID:
494 32866519.

495 6. Blondot ML, Bruss V, Kann M. Intracellular transport and egress of hepatitis B virus. *J
496 Hepatol.* 2016;64(1 Suppl):S49-59. doi: 10.1016/j.jhep.2016.02.008. PubMed PMID:
497 27084037.

498 7. Diogo Dias J, Sarica N, Neuveut C. Early Steps of Hepatitis B Life Cycle: From
499 Capsid Nuclear Import to cccDNA Formation. *Viruses.* 2021;13(5). Epub 2021/05/01. doi:
500 10.3390/v13050757. PubMed PMID: 33925977; PubMed Central PMCID:
501 PMCPMC8145197.

502 8. Quasdorff M, Protzer U. Control of hepatitis B virus at the level of transcription. *J Viral
503 Hepat.* 2010;17(8):527-36. Epub 2010/06/16. doi: 10.1111/j.1365-2893.2010.01315.x.
504 PubMed PMID: 20546497.

505 9. Xia Y, Guo H. Hepatitis B virus cccDNA: Formation, regulation and therapeutic
506 potential. *Antiviral Res.* 2020;180:104824. Epub 2020/05/26. doi:
507 10.1016/j.antiviral.2020.104824. PubMed PMID: 32450266; PubMed Central PMCID:
508 PMCPMC7387223.

509 10. Sommer G, Heise T. Posttranscriptional control of HBV gene expression. *Front
510 Biosci.* 2008;13:5533-47. Epub 2008/05/30. doi: 10.2741/3097. PubMed PMID: 18508603.

511 11. Stadelmayer B, Diederichs A, Chapus F, Rivoire M, Neveu G, Alam A, et al. Full-
512 length 5'RACE identifies all major HBV transcripts in HBV-infected hepatocytes and patient
513 serum. *J Hepatol.* 2020;73(1):40-51. Epub 2020/02/23. doi: 10.1016/j.jhep.2020.01.028.
514 PubMed PMID: 32087349.

515 12. Belloni L, Pollicino T, De Nicola F, Guerrieri F, Raffa G, Fanciulli M, et al. Nuclear
516 HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA
517 function. *Proc Natl Acad Sci U S A.* 2009;106(47):19975-9. doi: 10.1073/pnas.0908365106.
518 PubMed PMID: 19906987; PubMed Central PMCID: PMCPMC2775998.

519 13. Lucifora J, Arzberger S, Durantel D, Belloni L, Strubin M, Levrero M, et al. Hepatitis B
520 virus X protein is essential to initiate and maintain virus replication after infection. *J Hepatol.*
521 2011;55(5):996-1003. Epub 2011/03/08. doi: 10.1016/j.jhep.2011.02.015. PubMed PMID:
522 21376091.

523 14. Abdul F, Diman A, Baechler B, Ramakrishnan D, Konyeyev D, Beran RK, et al.
524 Smc5/6 silences episomal transcription by a three-step function. *Nat Struct Mol Biol.*
525 2022;29(9):922-31. Epub 2022/09/14. doi: 10.1038/s41594-022-00829-0. PubMed PMID:
526 36097294.

527 15. Decorsiere A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, et al.
528 Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. *Nature.*
529 2016;531(7594):386-9. Epub 2016/03/18. doi: 10.1038/nature17170. PubMed PMID:
530 26983541.

531 16. Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, Li X, et al. Hepatitis B Virus X
532 Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication. *Cell Rep.*

533 2016;16(11):2846-54. Epub 2016/09/15. doi: 10.1016/j.celrep.2016.08.026. PubMed PMID: 27626656; PubMed Central PMCID: PMCPMC5078993.

535 17. Diab A, Foca A, Zoulim F, Durantel D, Andrisani O. The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals. *Antiviral Res.* 2018;149:211-20. doi: 10.1016/j.antiviral.2017.11.015. PubMed PMID: 29183719; PubMed Central PMCID: PMCPMC5757518.

540 18. Bock CT, Schranz P, Schroder CH, Zentgraf H. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. *Virus Genes.* 1994;8(3):215-29. Epub 1994/07/01. doi: 10.1007/BF01703079. PubMed PMID: 7975268.

543 19. Bock CT, Schwinn S, Locarnini S, Fyfe J, Manns MP, Trautwein C, et al. Structural organization of the hepatitis B virus minichromosome. *J Mol Biol.* 2001;307(1):183-96. Epub 2001/03/13. doi: 10.1006/jmbi.2000.4481. PubMed PMID: 11243813.

546 20. Chong CK, Cheng CYS, Tsui SYJ, Huang FY, Liu F, Seto WK, et al. Role of hepatitis B core protein in HBV transcription and recruitment of histone acetyltransferases to cccDNA minichromosome. *Antiviral Res.* 2017;144:1-7. Epub 2017/05/14. doi: 10.1016/j.antiviral.2017.05.003. PubMed PMID: 28499864.

550 21. Guo YH, Li YN, Zhao JR, Zhang J, Yan Z. HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state. *Epigenetics.* 2011;6(6):720-6. Epub 2011/05/07. doi: 10.4161/epi.6.6.15815. PubMed PMID: 21546797.

553 22. Tu T, Zehnder B, Qu B, Urban S. *D e novo* synthesis of hepatitis B virus nucleocapsids is dispensable for the maintenance and transcriptional regulation of cccDNA. *JHEP Rep.* 2021;3(1):100195. Epub 2021/01/02. doi: 10.1016/j.jhepr.2020.100195. PubMed PMID: 33385130; PubMed Central PMCID: PMCPMC7771110.

557 23. Zhong Y, Wu C, Xu Z, Teng Y, Zhao L, Zhao K, et al. Hepatitis B Virus Core Protein Is Not Required for Covalently Closed Circular DNA Transcriptional Regulation. *J Virol.* 2022;96(21):e0136222. Epub 2022/10/14. doi: 10.1128/jvi.01362-22. PubMed PMID: 36226986; PubMed Central PMCID: PMCPMC9645219.

561 24. Lucifora J, Pastor F, Charles E, Pons C, Auclair H, Fusil F, et al. Evidence for long-
562 term association of virion-delivered HBV core protein with cccDNA independently of viral
563 protein production. *JHEP Rep.* 2021;3(5):100330. Epub 2021/08/20. doi:
564 10.1016/j.jhepr.2021.100330. PubMed PMID: 34409278; PubMed Central PMCID:
565 PMCPMC8363821.

566 25. Locatelli M, Quivy JP, Chapus F, Michelet M, Fresquet J, Maadadi S, et al. HIRA
567 Supports Hepatitis B Virus Minichromosome Establishment and Transcriptional Activity in
568 Infected Hepatocytes. *Cell Mol Gastroenterol Hepatol.* 2022;14(3):527-51. Epub 2022/06/02.
569 doi: 10.1016/j.jcmgh.2022.05.007. PubMed PMID: 35643233; PubMed Central PMCID:
570 PMCPMC9304598.

571 26. Chabrolles H, Auclair H, Vegna S, Lahlali T, Pons C, Michelet M, et al. Hepatitis B
572 virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein
573 restricting HBV RNA production. *PLoS Pathog.* 2020;16(11):e1008593. Epub 2020/11/13.
574 doi: 10.1371/journal.ppat.1008593. PubMed PMID: 33180834; PubMed Central PMCID:
575 PMCPMC7707522 following competing interests: Uri Lopatin is an advisor to and
576 shareholder of Assembly Biosciences. Lee Arnold was an employee of Assembly
577 Biosciences.

578 27. Li S, Xu C, Fu Y, Lei PJ, Yao Y, Yang W, et al. DYRK1A interacts with histone acetyl
579 transferase p300 and CBP and localizes to enhancers. *Nucleic Acids Res.*
580 2018;46(21):11202-13. Epub 2018/08/24. doi: 10.1093/nar/gky754. PubMed PMID:
581 30137413; PubMed Central PMCID: PMCPMC6265467.

582 28. Jang SM, Azebi S, Soubigou G, Muchardt C. DYRK1A phosphorylates histone H3 to
583 differentially regulate the binding of HP1 isoforms and antagonize HP1-mediated
584 transcriptional repression. *EMBO Rep.* 2014;15(6):686-94. Epub 2014/05/14. doi:
585 10.15252/embr.201338356. PubMed PMID: 24820035; PubMed Central PMCID:
586 PMCPMC4197879.

587 29. Di Vona C, Bezdan D, Islam AB, Salichs E, Lopez-Bigas N, Ossowski S, et al.
588 Chromatin-wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II

589 CTD kinase. Mol Cell. 2015;57(3):506-20. Epub 2015/01/27. doi:
590 10.1016/j.molcel.2014.12.026. PubMed PMID: 25620562.

591 30. Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, et al. Phase-separation
592 mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature.
593 2018;558(7709):318-23. Epub 2018/06/01. doi: 10.1038/s41586-018-0174-3. PubMed PMID:
594 29849146; PubMed Central PMCID: PMCPMC6475116.

595 31. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. Infection of a
596 human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99(24):15655-
597 60. Epub 2002/11/15. doi: 10.1073/pnas.232137699. PubMed PMID: 12432097; PubMed
598 Central PMCID: PMCPMC137772.

599 32. Lecluyse EL, Alexandre E. Isolation and culture of primary hepatocytes from resected
600 human liver tissue. Methods Mol Biol. 2010;640:57-82. Epub 2010/07/21. doi: 10.1007/978-
601 1-60761-688-7_3. PubMed PMID: 20645046.

602 33. Alvarez M, Estivill X, de la Luna S. DYRK1A accumulates in splicing speckles through
603 a novel targeting signal and induces speckle disassembly. J Cell Sci. 2003;116(Pt 15):3099-
604 107. Epub 2003/06/12. doi: 10.1242/jcs.00618. PubMed PMID: 12799418.

605 34. Michelet M, Alfaiate D, Chardes B, Pons C, Faure-Dupuy S, Engleitner T, et al.
606 Inducers of the NF- κ B pathways impair hepatitis delta virus replication and strongly
607 decrease progeny infectivity in vitro. JHEP Rep. 2022;4(3):100415. Epub 2022/02/11. doi:
608 10.1016/j.jhepr.2021.100415. PubMed PMID: 35141510; PubMed Central PMCID:
609 PMCPMC8792426.

610 35. Ladner SK, Otto MJ, Barker CS, Zaifert K, Wang GH, Guo JT, et al. Inducible
611 expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a
612 novel system for screening potential inhibitors of HBV replication. Antimicrob Agents
613 Chemother. 1997;41(8):1715-20. Epub 1997/08/01. PubMed PMID: 9257747; PubMed
614 Central PMCID: PMCPMC163991.

615 36. Luangsay S, Gruffaz M, Isorce N, Testoni B, Michelet M, Faure-Dupuy S, et al. Early
616 inhibition of hepatocyte innate responses by hepatitis B virus. *J Hepatol.* 2015;63(6):1314-22.
617 doi: 10.1016/j.jhep.2015.07.014. PubMed PMID: 26216533.

618 37. Lahlali T, Berke JM, Vergauwen K, Foca A, Vandyck K, Pauwels F, et al. Novel
619 Potent Capsid Assembly Modulators Regulate Multiple Steps of the Hepatitis B Virus Life
620 Cycle. *Antimicrob Agents Chemother.* 2018;62(10). Epub 2018/07/18. doi:
621 10.1128/AAC.00835-18. PubMed PMID: 30012770; PubMed Central PMCID:
622 PMCPMC6153789.

623 38. Mueller H, Wildum S, Luangsay S, Walther J, Lopez A, Tropberger P, et al. A novel
624 orally available small molecule that inhibits hepatitis B virus expression. *J Hepatol.*
625 2018;68(3):412-20. Epub 2017/10/29. doi: 10.1016/j.jhep.2017.10.014. PubMed PMID:
626 29079285.

627 39. Brahmaiah D, Kanaka Durga Bhavani A, Aparna P, Sampath Kumar N, Solhi H, Le
628 Guevel R, et al. Discovery of DB18, a potent inhibitor of CLK kinases with a high selectivity
629 against DYRK1A kinase. *Bioorg Med Chem.* 2021;31:115962. Epub 2021/01/11. doi:
630 10.1016/j.bmc.2020.115962. PubMed PMID: 33422908.

631 40. Isorce N, Lucifora J, Zoulim F, Durantel D. Immune-modulators to combat hepatitis B
632 virus infection: From IFN-alpha to novel investigational immunotherapeutic strategies.
633 *Antiviral Res.* 2015;122:69-81. doi: 10.1016/j.antiviral.2015.08.008. PubMed PMID:
634 26275801.

635 41. Allweiss L, Testoni B, Yu M, Lucifora J, Ko C, Qu B, et al. Quantification of the
636 hepatitis B virus cccDNA: evidence-based guidelines for monitoring the key obstacle of HBV
637 cure. *Gut.* 2023. Epub 2023/01/28. doi: 10.1136/gutjnl-2022-328380. PubMed PMID:
638 36707234.

639 42. Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, et al. Specific and
640 nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. *Science.*
641 2014;343(6176):1221-8. doi: 10.1126/science.1243462. PubMed PMID: 24557838.

642 43. Werle-Lapostolle B, Bowden S, Locarnini S, Wursthorn K, Petersen J, Lau G, et al.
643 Persistence of cccDNA during the natural history of chronic hepatitis B and decline during
644 adefovir dipivoxil therapy. *Gastroenterology*. 2004;126(7):1750-8. Epub 2004/06/10. doi:
645 10.1053/j.gastro.2004.03.018. PubMed PMID: 15188170.

646 44. Mueller H, Lopez A, Tropberger P, Wildum S, Schmalen J, Pedersen L, et al.
647 PAPD5/7 Are Host Factors That Are Required for Hepatitis B Virus RNA Stabilization.
648 *Hepatology*. 2019;69(4):1398-411. Epub 2018/10/27. doi: 10.1002/hep.30329. PubMed
649 PMID: 30365161.

650 45. Paulsen MT, Veloso A, Prasad J, Bedi K, Ljungman EA, Magnuson B, et al. Use of
651 Bru-Seq and BruChase-Seq for genome-wide assessment of the synthesis and stability of
652 RNA. *Methods*. 2014;67(1):45-54. Epub 2013/08/27. doi: 10.1016/j.ymeth.2013.08.015.
653 PubMed PMID: 23973811; PubMed Central PMCID: PMCPMC4009065.

654 46. Cheung PK, Horhant D, Bandy LE, Zamiri M, Rabea SM, Karagiosov SK, et al. A
655 Parallel Synthesis Approach to the Identification of Novel Diheteroarylamide-Based
656 Compounds Blocking HIV Replication: Potential Inhibitors of HIV-1 Pre-mRNA Alternative
657 Splicing. *J Med Chem.* 2016;59(5):1869-79. Epub 2016/02/16. doi:
658 10.1021/acs.jmedchem.5b01357. PubMed PMID: 26878150.

659 47. Shkreta L, Blanchette M, Toutant J, Wilhelm E, Bell B, Story BA, et al. Modulation of
660 the splicing regulatory function of SRSF10 by a novel compound that impairs HIV-1
661 replication. *Nucleic Acids Res.* 2017;45(7):4051-67. doi: 10.1093/nar/gkw1223. PubMed
662 PMID: 27928057; PubMed Central PMCID: PMCPMC5397194.

663 48. Shkreta L, Toutant J, Delannoy A, Durantel D, Salvetti A, Ehresmann S, et al. The
664 anticancer potential of the CLK kinases inhibitors 1C8 and GPS167 revealed by their impact
665 on the epithelial-mesenchymal transition and the antiviral immune response. *Oncotarget*.
666 2024;15:313-25. Epub 2024/05/16. doi: 10.18632/oncotarget.28585. PubMed PMID:
667 38753413; PubMed Central PMCID: PMCPMC11098031.

668 49. Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary
669 relationships, biochemical properties, and functional roles. *FASEB J.* 2011;25(2):449-62.
670 Epub 2010/11/05. doi: 10.1096/fj.10-165837. PubMed PMID: 21048044.

671 50. Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases
672 (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. *Int J Mol Sci.*
673 2021;22(11). Epub 2021/07/03. doi: 10.3390/ijms22116047. PubMed PMID: 34205123;
674 PubMed Central PMCID: PMCPMC8199962.

675 51. Wang E, Pineda JMB, Kim WJ, Chen S, Bourcier J, Stahl M, et al. Modulation of RNA
676 splicing enhances response to BCL2 inhibition in leukemia. *Cancer Cell.* 2023;41(1):164-80
677 e8. Epub 2022/12/24. doi: 10.1016/j.ccr.2022.12.002. PubMed PMID: 36563682; PubMed
678 Central PMCID: PMCPMC9839614.

679 52. Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC
680 Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. *Front Microbiol.*
681 2021;12:658721. Epub 2021/04/16. doi: 10.3389/fmicb.2021.658721. PubMed PMID:
682 33854493; PubMed Central PMCID: PMCPMC8040976.

683 53. Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, et al. IFN-alpha
684 inhibits HBV transcription and replication in cell culture and in humanized mice by targeting
685 the epigenetic regulation of the nuclear cccDNA minichromosome. *J Clin Invest.*
686 2012;122(2):529-37. doi: 10.1172/JCI58847. PubMed PMID: 22251702; PubMed Central
687 PMCID: PMCPMC3266786.

688 54. Schlickup CJ, Wang JC, Francis S, Venkatakrishnan B, Turner WW,
689 VanNieuwenhze M, et al. Hepatitis B virus core protein allosteric modulators can distort and
690 disrupt intact capsids. *Elife.* 2018;7. doi: 10.7554/eLife.31473. PubMed PMID: 29377794;
691 PubMed Central PMCID: PMCPMC5788503.

692 55. Fukuhara T, Hosoya T, Shimizu S, Sumi K, Oshiro T, Yoshinaka Y, et al. Utilization of
693 host SR protein kinases and RNA-splicing machinery during viral replication. *Proc Natl Acad
694 Sci U S A.* 2006;103(30):11329-33. Epub 2006/07/15. doi: 10.1073/pnas.0604616103.
695 PubMed PMID: 16840555; PubMed Central PMCID: PMCPMC1544086.

696 56. Muraki M, Ohkawara B, Hosoya T, Onogi H, Koizumi J, Koizumi T, et al. Manipulation
697 of alternative splicing by a newly developed inhibitor of Clks. *J Biol Chem.* 2004;279(23):24246-54. Epub 2004/03/11. doi: 10.1074/jbc.M314298200. PubMed PMID:
699 15010457.

700 57. Ashford AL, Oxley D, Kettle J, Hudson K, Guichard S, Cook SJ, et al. A novel
701 DYRK1B inhibitor AZ191 demonstrates that DYRK1B acts independently of GSK3beta to
702 phosphorylate cyclin D1 at Thr(286), not Thr(288). *Biochem J.* 2014;457(1):43-56. Epub
703 2013/10/19. doi: 10.1042/BJ20130461. PubMed PMID: 24134204.

704 58. Ninomiya K, Kataoka N, Hagiwara M. Stress-responsive maturation of *Clk1/4* pre-
705 mRNAs promotes phosphorylation of SR splicing factor. *J Cell Biol.* 2011;195(1):27-40. Epub
706 2011/09/29. doi: 10.1083/jcb.201107093. PubMed PMID: 21949414; PubMed Central
707 PMCID: PMCPMC3187705.

708 59. Ackeifi C, Swartz E, Kumar K, Liu H, Chalada S, Karakose E, et al. Pharmacologic
709 and genetic approaches define human pancreatic beta cell mitogenic targets of DYRK1A
710 inhibitors. *JCI Insight.* 2020;5(1). Epub 2019/12/11. doi: 10.1172/jci.insight.132594. PubMed
711 PMID: 31821176; PubMed Central PMCID: PMCPMC7030849.

712 60. Di Vona C, Barba L, Ferrari R, de la Luna S. Loss of the DYRK1A Protein Kinase
713 Results in the Reduction in Ribosomal Protein Gene Expression, Ribosome Mass and
714 Reduced Translation. *Biomolecules.* 2023;14(1). Epub 2024/01/23. doi:
715 10.3390/biom14010031. PubMed PMID: 38254631; PubMed Central PMCID:
716 PMCPMC10813206.

717 61. Ludgate L, Ning X, Nguyen DH, Adams C, Mentzer L, Hu J. Cyclin-dependent kinase
718 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is
719 incorporated into viral capsids. *J Virol.* 2012;86(22):12237-50. doi: 10.1128/JVI.01218-12.
720 PubMed PMID: 22951823; PubMed Central PMCID: PMCPMC3486511.

721 62. Luo J, Xi J, Gao L, Hu J. Role of Hepatitis B virus capsid phosphorylation in
722 nucleocapsid disassembly and covalently closed circular DNA formation. *PLoS Pathog.*

723 2020;16(3):e1008459. Epub 2020/04/01. doi: 10.1371/journal.ppat.1008459. PubMed PMID:
724 32226051; PubMed Central PMCID: PMCPMC7145273.

725 63. Diab A, Foca A, Fusil F, Lahlali T, Jalaguier P, Amirache F, et al. Polo-like-kinase 1 is
726 a proviral host factor for hepatitis B virus replication. *Hepatology*. 2017;66(6):1750-65. doi:
727 10.1002/hep.29236. PubMed PMID: 28445592; PubMed Central PMCID: PMCPMC5658273.

728 64. Wittkop L, Schwarz A, Cassany A, Grun-Bernhard S, Delaleau M, Rabe B, et al.
729 Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion
730 formation and causes intracellular capsid accumulation. *Cell Microbiol*. 2010;12(7):962-75.
731 Epub 2010/01/30. doi: 10.1111/j.1462-5822.2010.01444.x. PubMed PMID: 20109160.

732 65. Deboever E, Fistovich A, Hulme C, Dunckley T. The Omnipresence of DYRK1A in
733 Human Diseases. *Int J Mol Sci*. 2022;23(16). Epub 2022/08/27. doi: 10.3390/ijms23169355.
734 PubMed PMID: 36012629; PubMed Central PMCID: PMCPMC9408930.

735 66. Becker W. A wake-up call to quiescent cancer cells - potential use of DYRK1B
736 inhibitors in cancer therapy. *FEBS J*. 2018;285(7):1203-11. Epub 2017/12/02. doi:
737 10.1111/febs.14347. PubMed PMID: 29193696.

738 67. Meers MP, Bryson TD, Henikoff JG, Henikoff S. Improved CUT&RUN chromatin
739 profiling tools. *Elife*. 2019;8. Epub 2019/06/25. doi: 10.7554/elife.46314. PubMed PMID:
740 31232687; PubMed Central PMCID: PMCPMC6598765.

741 68. Cougot D, Wu Y, Cairo S, Caramel J, Renard CA, Levy L, et al. The hepatitis B virus
742 X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-
743 mediated transcription. *J Biol Chem*. 2007;282(7):4277-87. Epub 2006/12/13. doi:
744 10.1074/jbc.M606774200. PubMed PMID: 17158882.

745 69. Riviere L, Gerossier L, Ducroux A, Dion S, Deng Q, Michel ML, et al. HBx relieves
746 chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1
747 histone methyltransferase. *J Hepatol*. 2015;63(5):1093-102. doi: 10.1016/j.jhep.2015.06.023.
748 PubMed PMID: 26143443.

749 70. Bai L, Zhang X, Kozlowski M, Li W, Wu M, Liu J, et al. Extracellular Hepatitis B Virus
750 RNAs Are Heterogeneous in Length and Circulate as Capsid-Antibody Complexes in

751 Addition to Virions in Chronic Hepatitis B Patients. *J Virol.* 2018;92(24). Epub 2018/10/05.

752 doi: 10.1128/JVI.00798-18. PubMed PMID: 30282709; PubMed Central PMCID: PMCPMC6258948.

754 71. Niu C, Livingston CM, Li L, Beran RK, Daffis S, Ramakrishnan D, et al. The Smc5/6
755 Complex Restricts HBV when Localized to ND10 without Inducing an Innate Immune
756 Response and Is Counteracted by the HBV X Protein Shortly after Infection. *PLoS One.*
757 2017;12(1):e0169648. Epub 2017/01/18. doi: 10.1371/journal.pone.0169648. PubMed PMID:
758 28095508; PubMed Central PMCID: PMCPMC5240991 does not alter our adherence to
759 PLOS ONE policies on sharing data and materials.

760 72. Doitsh G, Shaul Y. Enhancer I predominance in hepatitis B virus gene expression.
761 *Mol Cell Biol.* 2004;24(4):1799-808. Epub 2004/01/30. doi: 10.1128/MCB.24.4.1799-
762 1808.2004. PubMed PMID: 14749394; PubMed Central PMCID: PMCPMC344184.

763 73. Pastor F, Charles E, Belmudes L, Chabrolles H, Cescato M, Rivoire M, et al.
764 Deciphering the phospho-signature induced by hepatitis B virus in primary human
765 hepatocytes. *Front Microbiol.* 2024;15:1415449. Epub 2024/06/06. doi:
766 10.3389/fmicb.2024.1415449. PubMed PMID: 38841065; PubMed Central PMCID:
767 PMCPMC11150682.

768 74. Yoo S, Wang W, Wang Q, Fiel MI, Lee E, Hiotis SP, et al. A pilot systematic genomic
769 comparison of recurrence risks of hepatitis B virus-associated hepatocellular carcinoma with
770 low- and high-degree liver fibrosis. *BMC Med.* 2017;15(1):214. Epub 2017/12/08. doi:
771 10.1186/s12916-017-0973-7. PubMed PMID: 29212479; PubMed Central PMCID:
772 PMCPMC5719570.

773 75. Chen JY, Lin JR, Tsai FC, Meyer T. Dosage of Dyrk1a shifts cells within a p21-cyclin
774 D1 signaling map to control the decision to enter the cell cycle. *Mol Cell.* 2013;52(1):87-100.
775 Epub 2013/10/15. doi: 10.1016/j.molcel.2013.09.009. PubMed PMID: 24119401; PubMed
776 Central PMCID: PMCPMC4039290.

777

778

779 **FIGURE CAPTIONS**

780 **Figure 1. Expression levels of selected CMGC kinases in human hepatocytes.** Western
781 blot analysis of CLK1, CLK2, SRPK1, DYRK1A, DYRK1B expression in human hepatocytes
782 (HepaRG cells or PHHs), mock- or HBV-infected. HepaRG: non-differentiated cells;
783 dHepaRG: differentiated cells; dHepaRG_HBV: HBV-infected dHepaRG; PHH: mock-
784 infected cells; PHH-HBV: HBV-infected cells. #1 and #2 refers to PHH purified from two
785 different donors. The detection of HBc is used as a control for HBV infection. β -Actin is used
786 as loading control.

787

788 **Figure 2. Chemical inhibitors targeting DYRK1A and DYRK1B reduce HBV RNAs
789 production. A.** Experimental outline. PHHs derived from different donors were infected with
790 HBV (MOI: 500 vge/cell) and seven days later, treated three times with the indicated
791 compounds. Viral parameters were measured 2 days after the last treatment. IFN: Interferon-
792 α (500 IU/mL), CAM: capsid assembly modulator (class I, 10 μ M), 1C8 TG003, AZ191, and
793 SRPIN340 were used at 20 μ M. **B.** Relative quantification of total intracellular viral RNAs,
794 and of secreted HBs and HBe antigen levels, as indicated. Statistical values are from
795 comparisons between the treated and mock-treated cells for each of the measurements and
796 expressed as the mean +/- SD of 3 independent experiments, each performed in triplicate.

797 .

798

799 **Figure 3. Knock-down of DYRK1A decreases HBV RNAs levels in HBV-infected
800 dHepaRG cells. A.** Experimental outline. Cells were infected and 7 days later transfected
801 with siRNAs targeting DYRK1A. DYRK1A protein levels (**B**) and the viral parameters
802 indicated (**C**) were quantified 4-dpt, a time point at which cell toxicity was not observed
803 (Figure S6). Statistical values are from comparisons between siDYRK1A and siCTL for each
804 of the measurements and expressed as the mean +/- SD of 3 independent experiments,
805 each performed in triplicate.

806

807 **Figure 4. Over-expression of DYRK1A increases HBV RNA levels in HBV-infected**
808 **dHepaRG cells.** **A.** Experimental outline. dHepaRG cells engineered to express either HA-
809 DYRK1A, HA-DYRK1A_KR or FLAG-SRPK1, under the control of a tetracyclin (Tet)-
810 inducible promoter, were infected with HBV (500 vge/cell) with additions of Tet (5 µg/mL) or
811 mock-treated every 2-3 days for ten days. Western blot analyses were performed to detect
812 the over-expressed kinases with anti-tag antibodies (**B**) and viral parameters (**C** to **F**).
813 Results are normalized to the mock situation and expressed as the mean +/- SD of 4
814 independent experiments, each performed in triplicate.

815

816 **Figure 5. DYRK1A interacts with HBV cccDNA.** Native ChIP analyses were performed on
817 HBV-infected dHepaRG (**A**) or PHH (**B** and **C**) using antibodies against HBc or DYRK1A.
818 The results obtained with two different antibodies against DYRK1A are shown in panels **B**
819 and **C**. cccDNA was quantified from immuno-precipitated material by TaqMan qPCR. Results
820 represent the mean +/- the standard error of the mean of 3 (dHepaRG) or 5 (PHHs)
821 independent experiments.

822

823 **Figure 6. DYRK1A activity on HBV transcription regulatory regions.** **A.** Schematic view
824 of a linearized HBV genome (genotype D, ayw subtype), showing the position of the four
825 main ORFs (the HBx ORF is indicated by a large green arrow) and of the two
826 enhancer/promoter regions. The enhancer 1/X promoter region contains a putative DYRK1A
827 recognition site that partially matches the consensus motif found in DYRK1A responsive
828 cellular promoters. The two mutation M1 and M2 introduced within enhancer 1/X promoter
829 are shown below. Nucleotide positions are numbered from the unique EcoRI site. **B.** Plasmid
830 containing the luciferase cDNA under the control of the enhancer 1/HBx (pX_Luc) promoter
831 or the enhancer 2/preCore/Core (preC/C-Luc) regions were cotransfected together with a
832 plasmid coding for DYRK1A, DYRK1A_KR, or a control plasmid into Huh7-NTCP cells.
833 Luciferase assays were performed three days later. **C.** Luciferase assays were performed by
834 transfecting plasmids containing either a wt or two different mutated putative DYRK1A motifs.

835 Results are normalized to the cells co-transfected with a control plasmid (Mock) and
836 expressed as the mean +/- SD of 4 independent experiments, each performed in triplicate.

837

838 **Figure 7. DYRK1A over-expression increases the level of HBV nascent RNAs.** Run-On
839 analysis. dHepaRG-TR-DYRK1A or -DYRK1A_KR cells were infected with HBV and treated
840 with Tet or mock-treated as indicated in the legend of Figure 6A. Controls were provided by
841 cells incubated in the absence of BrU (- BrU) or in the presence of actinomycin D (Act D) or
842 RG7834. Labeled RNAs were immunoprecipitated using an anti-BrdU antibody. Input HBV
843 RNAs (left panel) and immunoprecipitated RNAs representing nascent RNAs (right panel)
844 were quantified by RT-qPCR. Results are expressed as the mean +/- SD of 2 independent
845 experiments, each performed in triplicate. ND: value under the detection limit.

846

847 **Supplemental Figure 1.** Kinase profiler assay of 1C8 (10 μ M). Only the kinases inhibited by
848 1C8 with a residual activity<20% are shown. Grey bars indicate the CLK and DYRK kinases
849 targeted by the compound.

850

851 **Supplemental Figure 2. RNA levels of selected CMGC kinases in dHepaRG, PHHs and**
852 **liver biopsies.** RNA levels of CMGC kinases indicated measured by RT-qPCR. Relative
853 RNA levels are expressed by the $2\Delta Ct$ value calculated using the PRNP mRNA as control in
854 HepaRG cells (undifferentiated or differentiated, **A**) or PHHs (**B**), HBV-infected or mock-
855 infected. PHHs used were purified from two different donors, each analyzed in triplicate. **C.**
856 CLK1, CLK2, DYRK1A, DYRK1B and SRPK1 mRNA expression in human liver using RNA-
857 Seq data retrieved from Yoo *et al.* [74] expressed as Reads Per Kilobase Million (RPKM).

858

859 **Supplemental Figure 3. Comparative effects of AZ191 and DB18 in HBV-infected PHH.**
860 **A.** Experimental outline. **B.** PHH were infected and total viral RNAs and pgRNA were
861 quantified by RTqPCR after treatment. IFN: Interferon- α (500 IU/mL). Doses of AZ191 and

862 DB18 were 10 μ M and 20 μ M. Results are expressed as the mean +/- SD of two independent
863 experiments, each performed in triplicate.

864

865 **Supplemental Figure 4. Toxicity assays of AZ191 in PHHs.** Cells infected and treated
866 with various concentrations of AZ191, as indicated in Figure 2A, were analyzed for signs of
867 toxicity using either a neutral red (**A**) or a sulforhodamine B (**B**) assay. Puromycin (Puro) was
868 used as a positive control at 10 μ M. Results are expressed as the mean +/- SD of 3
869 independent experiments, each performed in triplicate.

870

871 **Supplemental Figure 5. Effect of CLK2 and SRPK1 KD in HBV-infected dHepaRG cells.**

872 **A.** Experimental outline. **B.** KD efficiency of the siRNA treatments measured by RT-qPCR at
873 15-dpt. Results are shown relative to siCTL. **C.** Effect of the kinases KD on the production
874 HBV intracellular RNAs and secreted HBs/HBe antigens, expressed as relative to siCTL
875 (mean +/- SD, n>5, each performed in triplicate).

876

877 **Supplemental Figure 6. Toxicity of DYRK1A and DYRK1B KD in HBV-infected**

878 **dHepaRG cells.** **A.** Experimental outline. HBV-infected cells were transfected once with
879 siRNA and then harvested at 7-, and 10-dpt. **B** and **C.** Toxicity assays in siRNA transfected
880 dHepaRG cells. Infected and transfected cells were analyzed for signs of toxicity using either
881 a neutral red (**B**) or a sulforhodamine B (**C**) assay. Puromycin (Puro) was used as positive
882 control at 10 μ M. In all cases, results are shown relative to siCTL (mean +/- SD, n=2).

883

884 **Supplemental Figure 7. Time course analysis of DYRK1A and DYRK1B KD in HBV-**

885 **infected dHepaRG cells.** **A.** Experimental outline. HBV-infected cells were transfected once
886 with siRNA and then harvested at 1-, 2-, and 4-dpt. **B** and **C.** Toxicity assays in siRNA
887 transfected dHepaRG cells. Infected and transfected cells were analyzed for signs of toxicity
888 using either a neutral red (**B**) or a sulforhodamine B (**C**) assay. Puromycin (Puro) was used
889 as positive control at 10 μ M. **D.** KD efficiency of the siRNA treatments measured by RT-

890 qPCR at the indicated time points. Results are shown relative to siCTL (mean +/- SD, n=2-3).

891 **E.** Effect of the KD for the kinases indicated on HBV RNA production. Intracellular RNA
892 extracted at each time point was analyzed by RT-qPCR to quantify HBV total RNAs. In all
893 cases, results are shown relative to siCTL (mean +/- SD, n=2).

894

895 **Supplemental Figure 8. Divergent effects of DYRK1A KD in HBV-infected PHH. A.**

896 Experimental outline. PHH were infected with HBV and 7 days later transfected with siRNA
897 targeting DYRK1A or with a control siRNA (siCTL). **B.** Representative Western blot analysis
898 of DYRK1A KD levels. **C** to **D.** DYRK1A and HBV RNA analysis of a set of 3 independent
899 experiments, each performed in triplicate, in which a decrease of HBV RNAs was observed.
900 **E** and **F** represent another set of 4 experiments in which HBV RNAs increased upon
901 DYRK1A KD. Results are expressed as the mean +/- SD. Statistical analysis is from
902 comparisons between siDYRK1A and control siRNA for each of the measurements.

903

904 **Supplemental Figure 9. Compensatory effects of DYRK1A or DYRK1B levels in HBV-**

905 **infected PHHs and dHepaRG cells. A.** mRNA levels were quantified in HBV-infected PHHs
906 transfected with siRNA targeting DYRK1A as shown in Figure S7A. Results were clustered
907 according to their effect on HBV RNA levels (see Figure S7D and F). **B.** Analysis of
908 DYRK1A/DYRK1B compensatory mRNAs variations in HBV-infected dHepaRG cells
909 transfected with siRNA targeting either of the kinases. Statistical analysis is from
910 comparisons between siRNA targeting one of the kinases and control siRNA for DYRK1A or
911 DYRK1B mRNA levels.

912

913 **Supplemental Figure 10. Effect of single or combined DYRK1A/DYRK1B KD in HBV-**

914 **infected PHHs. A.** DYRK1A and DYRK1B protein levels in HBV-infected PHHs with KD for
915 each kinase. Cells were infected with HBV and then transfected with indicated siRNA.
916 Western blot analysis was performed at 7-dpt. Cyclin D1 levels were analyzed as a marker of
917 functional DYRK1 KD, since its accumulation has been shown to depend on both DYRK1A

918 and DYRK1B [57,75]. PHHs (+) and (-) refers to experiments in which an increase (+) or a
919 decrease (-) of HBV RNAs levels was observed following DYRK1A KD (see Figure S7). The
920 bands were quantified using ImageJ (numbers relative to control siRNA, below the blots). **B.**
921 and **C.** Effect of single DYRK1B or double DYRK1A/1B KD in HBV-infected PHHs. Cells
922 were infected and transfected as indicated in Figure S7A. DYRK1A, DYRK1B (**B**), and HBV
923 (**C**) RNAs were quantified at 7-dpt. Results are normalized versus control siRNA and
924 expressed as the mean +/- SD of 2 independent experiments, each performed in triplicate.

925

926 **Supplemental Figure 11. Effect of DYRK1B and DYRK1B_KR over-expression on HBV**
927 **parameters.** dHepaRG cells engineered to express either HA-DYRK1B or HA-DYRK1B_KR
928 under the control of a tetracyclin (Tet)-inducible promoter were infected with HBV and then
929 treated with Tet as indicated in Figure 4A. **A.** Western blot analysis to detect over-expressed
930 HA-DYRK1B or HA-DYRK1B_KR. **B** and **C.** Quantification of HBV RNAs. Results are
931 normalized to the mock situation and expressed as the mean +/- SD, of 2 independent
932 experiments, each performed in triplicate.

933

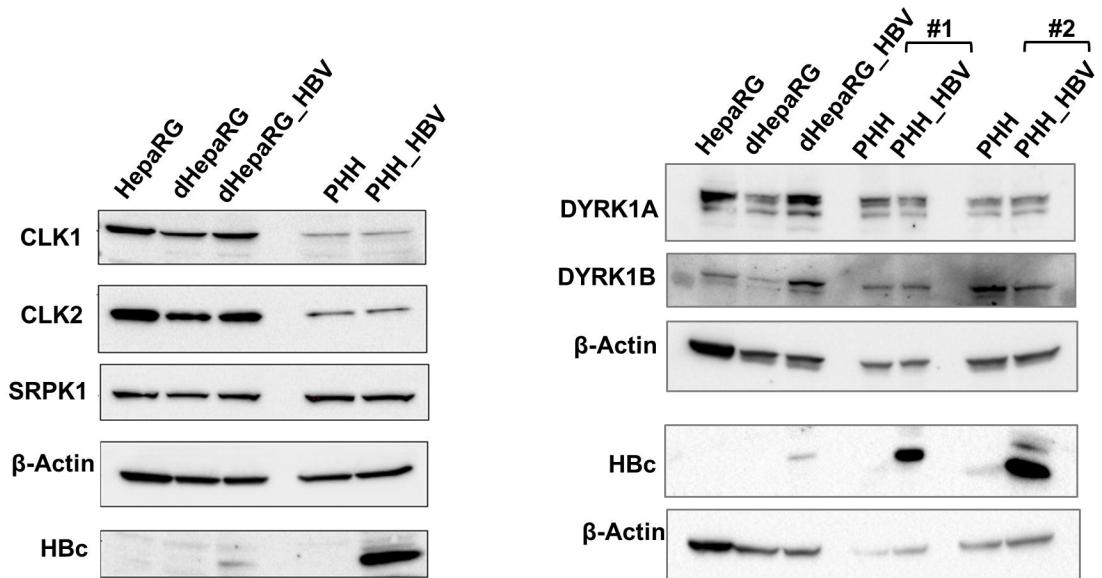
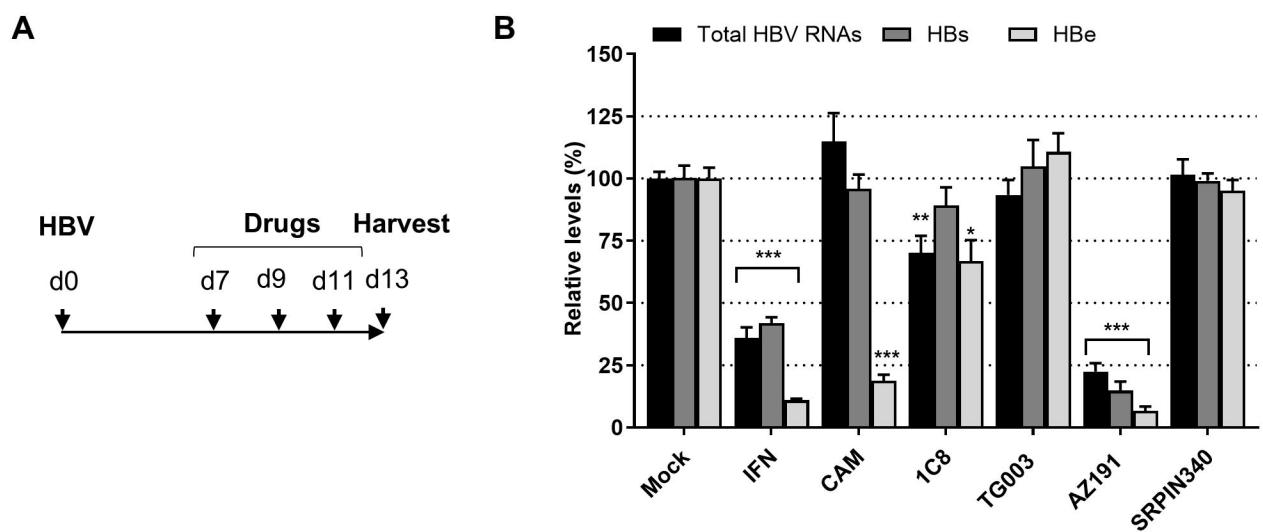



Figure 1

Figure 2

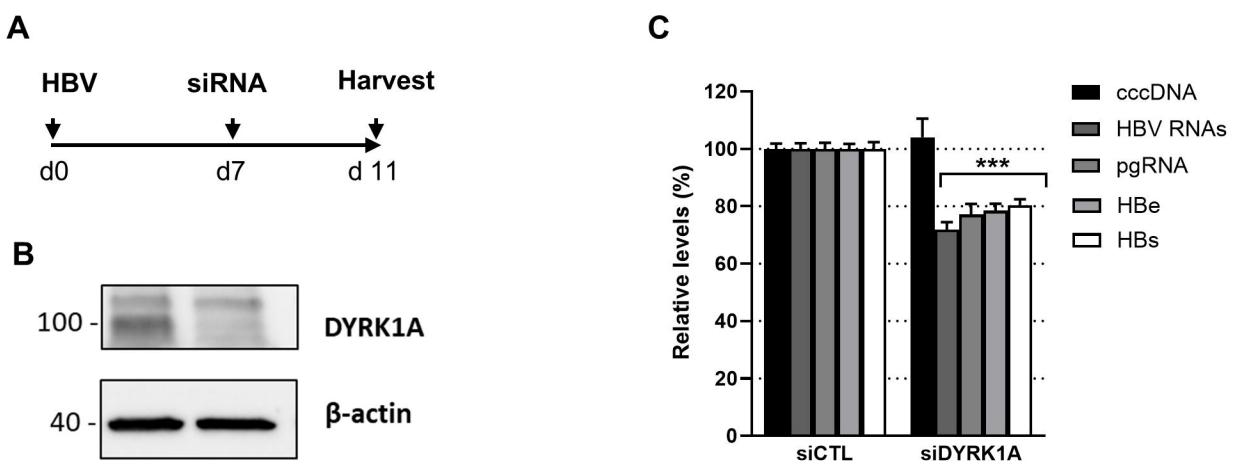
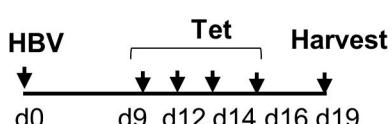
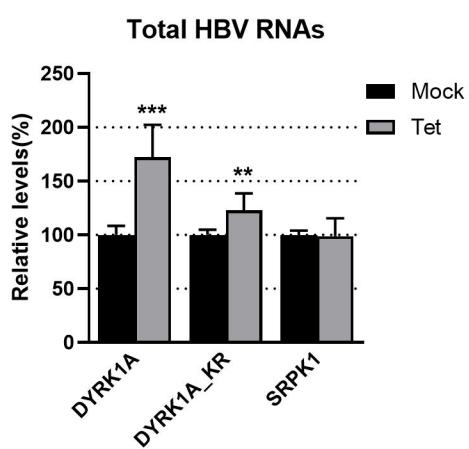
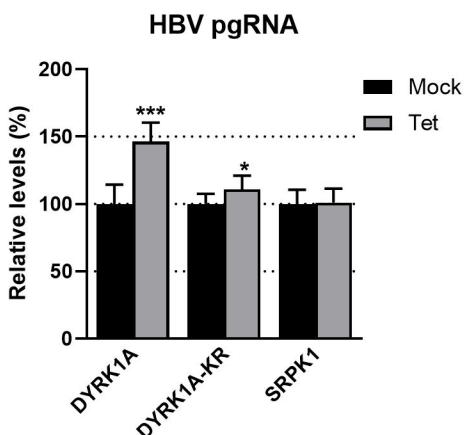
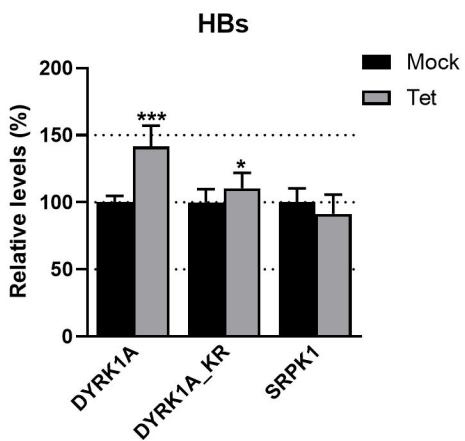




Figure 3


A

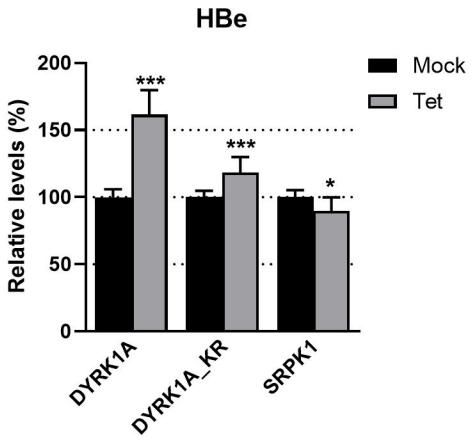
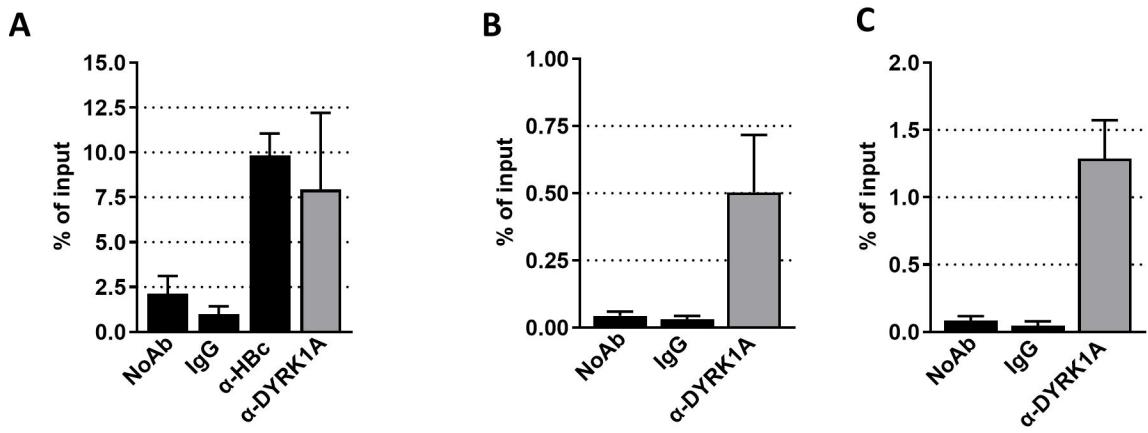
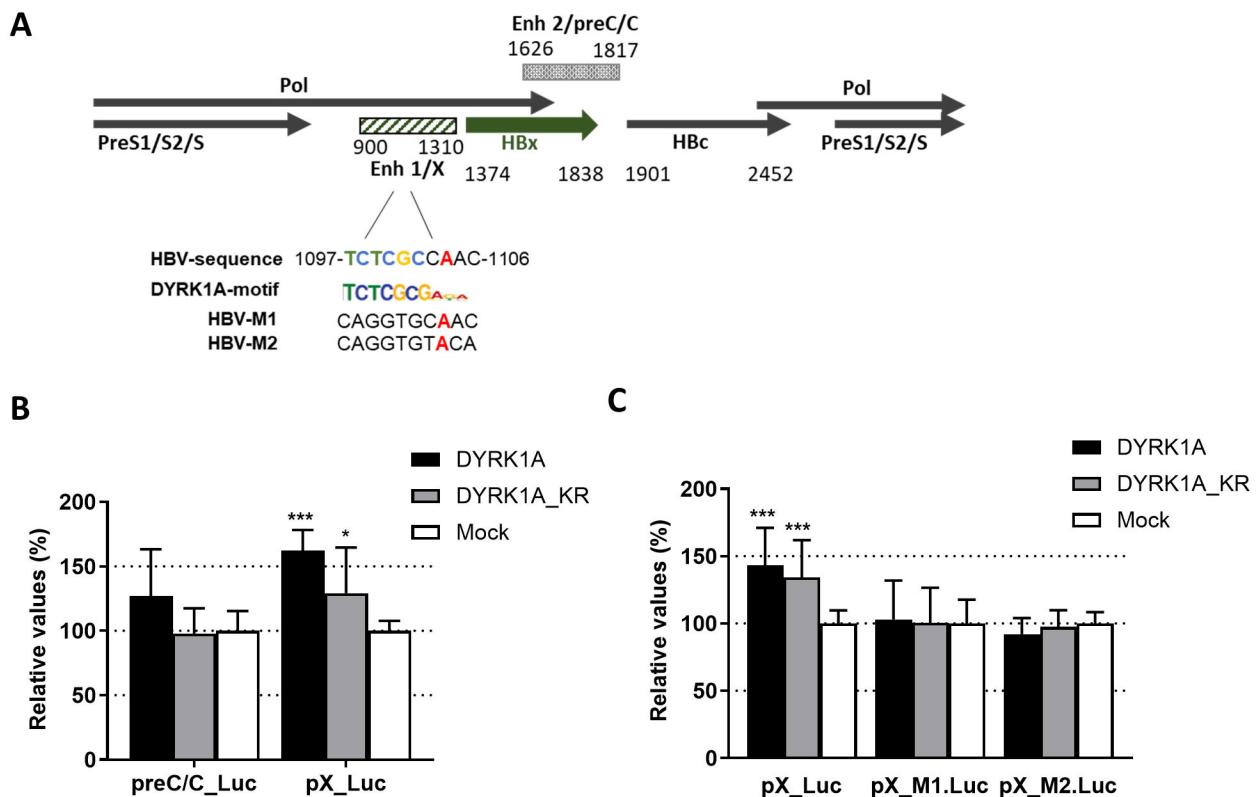

B


C

D

E

F

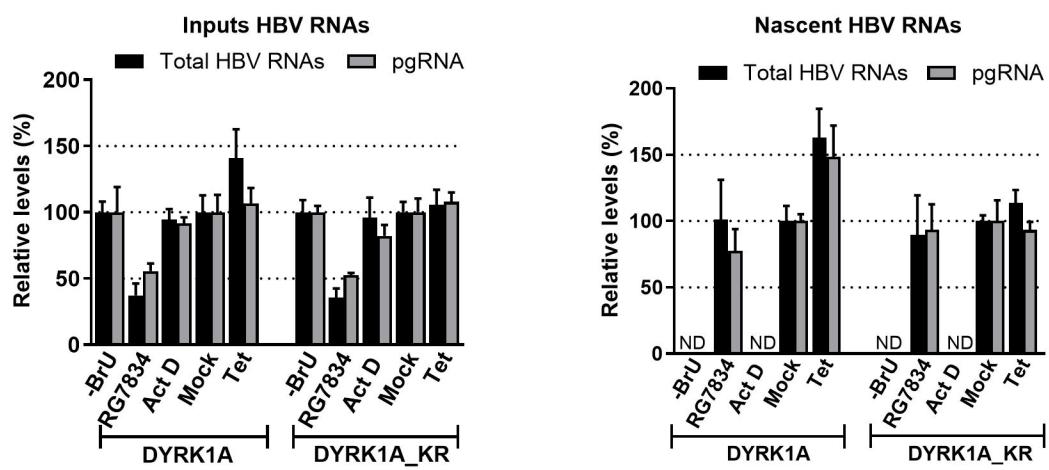

Figure 4

Figure 5

Figure 6

Figure 7